Comprehensive Physiology Wiley Online Library

Electrophysiology and Excitation‐Contraction Coupling

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Electrophysiology
1.1 Methods
1.2 Resting Membrane Potential
1.3 Action Potentials
1.4 Categories of Vascular Smooth Muscles
1.5 Spontaneous Activity and Propagation
1.6 Vasomotor Control Through Changes in Resting Potential and Spike Discharge
2 Activation of Contraction
2.1 Electromechanical Coupling
2.2 Pharmacomechanical Coupling
3 Activator Calcium: Sources and Sinks
3.1 Transmembrane Calcium Movements
3.2 Intracellular Calcium Sites: Sarcoplasmic Reticulum and Mitochondria
Figure 1. Figure 1.

Examples of types of action potentials recorded from different vessels, some panels also including associated contractile responses. A: turtle aorta. B: turtle vena cava. C: rat small mesenteric artery. D: small artery in frog's tongue. E: guinea pig portal vein. F: rabbit main pulmonary artery. G: longitudinal muscle of chicken mesenteric artery. H: vein in bat wing. I: sheep carotid artery in Ca‐ and Mg‐free solution. Panels A–F show intracellular recordings; panels G–I show recordings by sucrose gap.

A and B from Roddie , with permission of S. Karger AG, Basel; C from Steedman ; D from Funaki ; E from von Loh , with permission of S. Karger AG, Basel; F from Somlyo et al. ; G from Bolton ; H from Huggel et al. ; I from Keatinge
Figure 2. Figure 2.

Effects of supramaximal concentrations of norepinephrine and serotonin on frequency distribution of membrane potentials in rabbit mesenteric vein. Note comparatively lesser mean depolarizing action of serotonin, due to partial depolarization of fibers rather than to a bimodal distribution of maximally depolarized and normally polarized cells.

From Somlyo et al.
Figure 3. Figure 3.

Effects of dynamic and static passive stretch and shortening on mechanical and extracellularly recorded electrical activity in isolated rat portal vein. Left part of bottom section shows recordings taken at high paper speed of a single contraction, burst of spikes, and spike‐counter output.

From Johansson and Mellander , by permission of the American Heart Association, Inc
Figure 4. Figure 4.

Effect of hypoxia on spontaneous electrical and mechanical activity in rat portal vein. Sucrose‐gap recording. A: spontaneous activity in standard medium. B: after 5 min in hypoxic solution. C: after 15 min recovery. Lower part of figure shows recordings at higher paper speed. D: recordings obtained during control period. E: recordings obtained during hypoxia.

From Hellstrand et al.
Figure 5. Figure 5.

Contractile responses of two types of vascular smooth muscle in normal and in Ca‐free solutions. Contractions in right column illustrate responses in normal (Ca‐containing) solution to supramaximal concentrations of acetylcholine (5 μg/ml) and of norepinephrine (10 μg/ml). Left column shows effect of same drugs on the same preparations placed in Ca‐free Krebs (two upper recordings) or Ca‐free depolarizing (lower left record) solution. Amplifier gain was increased in upper left record (see vertical calibration). Note that contractile response of the portal‐anterior mesenteric vein (mesenteric vein) is almost completely abolished in Ca‐free solution, whereas main pulmonary artery smooth muscle still develops sizeable contractions in this medium. Unequal maximal contractions produced by the two drugs still persist in depolarized main pulmonary artery smooth muscle in Ca‐free, high‐K medium (left bottom panel).

From Devine et al.
Figure 6. Figure 6.

High‐magnification view of surface membrane coupling in sarcoplasmic reticulum (SR). Electron‐opaque material (arrows) is present between SR membrane and plasma membrane. Rabbit portal‐anterior mesenteric vein. × 249,500. For other illustrations of SR‐surface membrane couplings see Figures 21 and 22 in the chapter by A. V. Somlyo in this Handbook.

From Somlyo and Somlyo
Figure 7. Figure 7.

Oblique section of smooth muscle cell in guinea pig portal‐anterior mesenteric vein incubated in Krebs solution containing 10 mM Sr2+ for 1 h before fixation. Electron‐opaque deposits of Sr (arrows) are present in lumen of sarcoplasmic reticulum. M, mitochondrion. Osmium‐fixed, unstained preparation. × 32,500.

From Somlyo and Somlyo . Copyright 1971 by the American Association for the Advancement of Science
Figure 8. Figure 8.

X‐ray spectrum of region of sarcoplasmic reticulum in rabbit portal‐anterior mesenteric vein smooth muscle. Note presence of prominent Ca Kα peak.

From Somlyo et al.
Figure 9. Figure 9.

Frozen thin section of portal‐anterior mesenteric vein. Results of electron probe analysis (mmol/kg dry wt) are shown over regions analyzed in five fibers. Values other than mito represent cytoplasmic measurement. Carbon foil support film can be seen on right. Note that mitochondrial Ca granules (with a mitochondrial Ca of approximately 800 mmol/kg dry wt) are present only in the fiber that has a high‐Na and low‐K concentration. × 23,000.

From Somlyo et al.


Figure 1.

Examples of types of action potentials recorded from different vessels, some panels also including associated contractile responses. A: turtle aorta. B: turtle vena cava. C: rat small mesenteric artery. D: small artery in frog's tongue. E: guinea pig portal vein. F: rabbit main pulmonary artery. G: longitudinal muscle of chicken mesenteric artery. H: vein in bat wing. I: sheep carotid artery in Ca‐ and Mg‐free solution. Panels A–F show intracellular recordings; panels G–I show recordings by sucrose gap.

A and B from Roddie , with permission of S. Karger AG, Basel; C from Steedman ; D from Funaki ; E from von Loh , with permission of S. Karger AG, Basel; F from Somlyo et al. ; G from Bolton ; H from Huggel et al. ; I from Keatinge


Figure 2.

Effects of supramaximal concentrations of norepinephrine and serotonin on frequency distribution of membrane potentials in rabbit mesenteric vein. Note comparatively lesser mean depolarizing action of serotonin, due to partial depolarization of fibers rather than to a bimodal distribution of maximally depolarized and normally polarized cells.

From Somlyo et al.


Figure 3.

Effects of dynamic and static passive stretch and shortening on mechanical and extracellularly recorded electrical activity in isolated rat portal vein. Left part of bottom section shows recordings taken at high paper speed of a single contraction, burst of spikes, and spike‐counter output.

From Johansson and Mellander , by permission of the American Heart Association, Inc


Figure 4.

Effect of hypoxia on spontaneous electrical and mechanical activity in rat portal vein. Sucrose‐gap recording. A: spontaneous activity in standard medium. B: after 5 min in hypoxic solution. C: after 15 min recovery. Lower part of figure shows recordings at higher paper speed. D: recordings obtained during control period. E: recordings obtained during hypoxia.

From Hellstrand et al.


Figure 5.

Contractile responses of two types of vascular smooth muscle in normal and in Ca‐free solutions. Contractions in right column illustrate responses in normal (Ca‐containing) solution to supramaximal concentrations of acetylcholine (5 μg/ml) and of norepinephrine (10 μg/ml). Left column shows effect of same drugs on the same preparations placed in Ca‐free Krebs (two upper recordings) or Ca‐free depolarizing (lower left record) solution. Amplifier gain was increased in upper left record (see vertical calibration). Note that contractile response of the portal‐anterior mesenteric vein (mesenteric vein) is almost completely abolished in Ca‐free solution, whereas main pulmonary artery smooth muscle still develops sizeable contractions in this medium. Unequal maximal contractions produced by the two drugs still persist in depolarized main pulmonary artery smooth muscle in Ca‐free, high‐K medium (left bottom panel).

From Devine et al.


Figure 6.

High‐magnification view of surface membrane coupling in sarcoplasmic reticulum (SR). Electron‐opaque material (arrows) is present between SR membrane and plasma membrane. Rabbit portal‐anterior mesenteric vein. × 249,500. For other illustrations of SR‐surface membrane couplings see Figures 21 and 22 in the chapter by A. V. Somlyo in this Handbook.

From Somlyo and Somlyo


Figure 7.

Oblique section of smooth muscle cell in guinea pig portal‐anterior mesenteric vein incubated in Krebs solution containing 10 mM Sr2+ for 1 h before fixation. Electron‐opaque deposits of Sr (arrows) are present in lumen of sarcoplasmic reticulum. M, mitochondrion. Osmium‐fixed, unstained preparation. × 32,500.

From Somlyo and Somlyo . Copyright 1971 by the American Association for the Advancement of Science


Figure 8.

X‐ray spectrum of region of sarcoplasmic reticulum in rabbit portal‐anterior mesenteric vein smooth muscle. Note presence of prominent Ca Kα peak.

From Somlyo et al.


Figure 9.

Frozen thin section of portal‐anterior mesenteric vein. Results of electron probe analysis (mmol/kg dry wt) are shown over regions analyzed in five fibers. Values other than mito represent cytoplasmic measurement. Carbon foil support film can be seen on right. Note that mitochondrial Ca granules (with a mitochondrial Ca of approximately 800 mmol/kg dry wt) are present only in the fiber that has a high‐Na and low‐K concentration. × 23,000.

From Somlyo et al.
References
 1. Abe, Y., and T. Tomita. Cable properties of smooth muscle. J. Physiol London 196: 87–100, 1968.
 2. Altura, B. M., and B. T. Altura. Calcium content and force of drug‐induced contractions of arterial muscle during recovery in vitro. Proc. Soc. Exptl. Biol. Med. 135: 739–744, 1970.
 3. Altura, B. M., and B. T. Altura. Differential effects of substrate depletion on drug‐induced contractions of rabbit aorta. Am. J. Physiol. 219: 1698–1705, 1970.
 4. Anderson, N. C.Jr. Voltage‐clamp studies on uterine smooth muscle. J. Gen. Physiol. 54: 145–165, 1969.
 5. Andersson, C., P. Hellstrand, B. Johansson, and A. Ringberg. Contraction in venous smooth muscle induced by hypertonicity. Calcium dependence and mechanical characteristics. Acta Physiol. Scand. 90: 451–461, 1974.
 6. Arvill, A., B. Johansson, and O. Jonsson. Effects of hyperosmolarity on the volume of vascular smooth muscle cells and the relation between cell volume and muscle activity. Acta Physiol. Scand. 75: 484–495, 1969.
 7. Axelsson, J., B. Johansson, and O. Jonsson. Simultaneous recording of electrical and mechanical activity of vascular smooth muscle using the sucrose‐gap technique. Acta Physiol. Scand. 68: (Suppl. 277) 21, 1966.
 8. Axelsson, J., B. Wahlström, B. Johansson, and O. Jonsson. Influence of the ionic environment on spontaneous electrical and mechanical activity of the rat portal vein. Circulation Res. 21: 609–618, 1967.
 9. Barr, L. M. The responsiveness of arterial smooth muscle. In: Symposium on Biophysics of Physiological Actions, edited by A. Shanes and A. Bass. Washington, DC: Am. Assoc. Advan. Sci., 1961, p. 579–589.
 10. Barr, L., W. Berger, and M. M. Dewey. Electrical transmission at the nexus between smooth muscle cells. J. Gen. Physiol. 51: 347–368, 1968.
 11. Beeler, G. W.Jr., and H. Reuter. Membrane calcium current in ventricular myocardial fibres. J. Physiol. London 207: 191–209, 1970.
 12. Bell, C. Transmission from vasoconstrictor and vasodilator nerves to single smooth muscle cells of the guinea pig uterine artery. J. Physiol. London 205: 695–708, 1969.
 13. Bennet, M. R., and G. Burnstock. Application of the sucrose‐gap method to determine the ionic basis of the membrane potential of smooth muscle. J. Physiol London 183: 637–648, 1966.
 14. Berne, R. M. Metabolic regulation of blood flow. Circulation Res. 15: (Suppl. 1) 261–267, 1964.
 15. Bevan, J. A., and B. Ljung. Longitudinal propagation of myogenic activity in rabbit arteries and in the rat portal vein. Acta Physiol. Scand. 90: 703–715, 1974.
 16. Bevan, R. D. An autoradiographic and pathological study of cellular proliferation in rabbit arteries correlated with an increase in arterial pressure. Blood Vessels 13: 100–128, 1976.
 17. Biamino, G., and B. Johansson. Effects of calcium and sodium on contracture tension in the smooth muscle of the rat portal vein. Pfluegers Arch. European J. Physiol. 321: 143–158, 1970.
 18. Biamino, G., and P. Kruckenberg. Synchronization and conduction of excitation in the rat aorta. Am. J. Physiol. 217: 376–382, 1969.
 19. Biamino, G., and H. J. Wessel. Potassium induced relaxation of vascular smooth muscle: a possible mechanism of exercise hyperemia. Pfluegers Arch. European J. Physiol. 343: 95–106, 1973.
 20. Bohr, D. F. Vascular smooth muscle: dual effect of calcium. Science 139: 597–599, 1963.
 21. Bohr, D. F. Vascular smooth muscle updated. Circulation Res. 32: 665–672, 1973.
 22. Bohr, D. F. Vascular smooth muscle. In: The Peripheral Circulation, edited by P. C. Johnson. New York: Wiley, 1978, p. 13–43.
 23. Bolton, T. B. Electrical and mechanical activity of the longitudinal muscle of the anterior mesenteric artery of the domestic fowl. J. Physiol. London 196: 283–292, 1968.
 24. Bolton, T. B. Electrical properties and constants of longitudinal muscle from the avian anterior mesenteric artery. Blood Vessels 11: 65–78, 1974.
 25. Bonaccorsi, A., K. Hermsmeyer, O. Aprigliano, C. B. Smith, and D. F. Bohr. Mechanism of potassium relaxation of arterial muscle. Blood Vessels 14: 261–276, 1977.
 26. Bozler, E. Conduction, automaticity and tonus of visceral muscles. Experientia 4: 213–218, 1948.
 27. Bozler, E. Role of calcium in initiation of activity of smooth muscle. Am. J. Physiol. 216: 671–674, 1969.
 28. Brecht, K., and G. Gebert. The effect of potassium on vascular smooth muscle. In: Physiology and Pharmacology of Vascular Neuroeffector Systems, edited by J. A. Bevan, R. F. Furchgott, R. A. Maxwell, and A. P. Somlyo. Basel: Karger, 1971, p. 313–320.
 29. Breemen, C. van. Calcium requirement for activation of intact aortic smooth muscle. J. Physiol. London 272: 317–329, 1977.
 30. Breemen, C. van, B. R. Farinas, R. Casteels, P. Gerba, F. Wuytack, and R. Deth. Factors controlling cytoplasmic Ca2+ concentration. Phil. Trans. Roy. Soc. London Ser. B 265: 57–71, 1973.
 31. Burnstock, G., and R. W. Straub. A method for studying the effects of ions and drugs on the resting and action potentials in smooth muscle with external electrodes. J. Physiol. London 140: 156–167, 1958.
 32. Carmeliet, E., and J. Vereecke. Adrenaline and the plateau phase of the cardiac action potential. Importance of Ca2+, Na+, and K+ conductance. Pfluegers Arch. European J. Physiol. 313: 300–315, 1969.
 33. Carrier, O.Jr., J. R. Walker, and A. C. Guyton. Role of oxygen in autoregulation of blood flow in isolated vessels. Am. J. Physiol. 206: 951–954, 1964.
 34. Carsten, M. E., and J. D. Miller. Effects of prostaglandins and oxytocin on calcium release from a uterine microsomal fraction. J. Biol. Chem. 252: 1576–1581, 1977.
 35. Casteels, R. Calculation of the membrane potential in smooth muscle cells of the guinea‐pig's taenia coli by the Goldman equation. J. Physiol. London 205: 193–208, 1969.
 36. Casteels, R. The distribution of chloride ions in the smooth muscle cells of the guinea‐pig's taenia coli. J. Physiol. London 214: 225–243, 1971.
 37. Casteels, R., K. Kitamura, H. Kuriyama, and H. Suzuki. The membrane properties of the smooth muscle cells of the rabbit main pulmonary artery. J. Physiol. London 271: 41–61, 1977.
 38. Casteels, R., K. Kitamura, H. Kuriyama, and H. Suzuki. Excitation‐contraction coupling in the smooth muscle cells of the rabbit main pulmonary artery. J. Physiol. London 271: 63–79, 1977.
 39. Coburn, R. F. Oxygen tension sensors in vascular smooth muscle. In: Tissue Hypoxia and Ischemia, edited by M. Reivich, R. Coburn, S. Lahiri, and B. Chance. New York: Plenum, 1977, p. 101–115.
 40. Coburn, R. F., B. Grubb, and R. Aronson. Effect of cyanide on oxygen tension dependent mechanical tension in rabbit aorta. Circulation Res. 44: 368–378, 1979.
 41. Coburn, R. F., and T. Yamaguchi. Membrane potential‐dependent and ‐independent tension in the canine tracheal muscle. J. Pharmacol. Exptl. Therap. 201: 276–284, 1977.
 42. Collins, G. A., M. C. Sutter, and J. C. Teiser. The effects of manganese on the rabbit anterior mesenteric‐portal vein. Can. J. Physiol. Pharmacol. 50: 300–309, 1972.
 43. Connor, J. A., C. L. Prosser, and W. A. Weems. A study of pace‐maker activity in intestinal smooth muscle. J. Physiol. London 240: 671–701, 1974.
 44. Cuthbert, A. W., and M. C. Sutter. Electrical activity of a mammalian vein. Nature 202: 95, 1964.
 45. Cuthbert, A. W., and M. C. Sutter. The effects of drugs on the relation between the action potential discharge and tension in a mammalian vein. Brit. J. Pharmacol. 25: 592–601, 1965.
 46. Dawkins, O., and D. F. Bohr. Sodium and potassium movement in the excised rat aorta. Am. J. Physiol. 199: 28–30, 1960.
 47. Detar, R., and D. F. Bohr. Oxygen and vascular smooth muscle contraction. Am. J. Physiol. 214: 241–244, 1968.
 48. Deth, R., and C. Van Breemen. Relative contribution of Ca2+ influx and cellular Ca2+ release during drug induced activation of the rabbit aorta. Pfluegers Arch. European J. Physiol. 348: 13–22, 1974.
 49. Deth, R., and R. Casteels. A study of releasable Ca fractions in smooth muscle cells of the rabbit aorta. J. Gen. Physiol. 69: 401–416, 1977.
 50. Devine, C. E., A. V. Somlyo, and A. P. Somlyo. Sarcoplasmic reticulum and excitation‐contraction coupling in mammalian smooth muscle. J. Cell Biol. 52: 690–718, 1972.
 51. Droogmans, G., L. Raeymaekers, and R. Casteels. Electro‐ and pharmacomechanical coupling in the smooth muscle cells of the rabbit ear artery. J. Gen. Physiol. 70: 129–148, 1977.
 52. Engel, E., V. Barcilon, and R. S. Eisenberg. The interpretation of current‐voltage relations recorded from a spherical cell with a single microelectrode. Biophys. J. 12: 384–403, 1972.
 53. Evans, D. H. L., H. O. Schild, and S. Thesleff. Effects of drugs on depolarized plain muscle. J. Physiol. London 143: 474–485, 1958.
 54. Farley, J. M., and P. R. Miles. Role of depolarization in acetylcholine‐induced contractions of dog trachealis muscle. J. Pharmacol. Exptl. Therap. 201: 199–205, 1977.
 55. Fawcett, D. W., and N. S. McNutt. The ultrastructure of the cat myocardium I. Ventricular papillary muscle. J. Cell Biol. 42: 1–145, 1969.
 56. Fay, F. S., P. Nair, and W. J. Whalen. Mechanism of oxygen induced contraction of ductus arteriosus. In: Tissue Hypoxia and Ischemia, edited by M. Reivich, R. Coburn, S. Lahiri, and B. Chance. New York: Plenum, 1977, p. 123–134.
 57. Fleckenstein, A. Specific pharmacology of calcium in myocardium, cardiac pacemakers, and vascular smooth muscle. In: Annual Reviews of Pharmacology and Toxicology, edited by H. W. Elliott, R. George, and R. Okun. Palo Alto, CA: Ann. Rev., 1977, vol. 17, p. 149–166.
 58. Fleckenstein, A., K. Nakayama, G. Fleckenstein‐Grün, and Y. K. Byon. Interactions of vasoactive ions and drugs with Ca‐dependent excitation‐contraction coupling of vascular smooth muscle. In: Calcium Transport in Contraction and Secretion, edited by E. Carafoli, F. Clementi, W. Drabikowski, and A. Margreth. Amsterdam: North‐Holland, 1975, p. 555–566.
 59. Folkow, B. Description of the myogenic hypothesis. Circulation Res. 15 (Suppl. 1): 279–285, 1964.
 60. Ford, G. D., R. Z. Litten, and R. J. Solaro. Calcium binding to actomyosin from bovine aorta. Biophys. J. 17: 266A, 1977.
 61. Freeman, D. J., and E. E. Daniel. Calcium movement in vascular smooth muscle and its detection using lanthanum as a tool. Can. J. Physiol. Pharmacol. 51: 900–913, 1973.
 62. Funaki, S. Studies on membrane potentials of vascular smooth muscle with intracellular micro‐electrodes. Proc. Japan Acad. 34: 534–536, 1958.
 63. Funaki, S. Spontaneous spike‐discharges of vascular smooth muscle. Nature 191: 1102–1103, 1961.
 64. Funaki, S., and D. F. Bohr. Electrical and mechanical activity of isolated vascular smooth muscle of the rat. Nature 203: 192–194, 1964.
 65. Gabella, G. Quantitative morphological study of smooth muscle cells of the guinea‐pig taenia coli. Cell. Tissue Res. 170: 161–186, 1976.
 66. Garfield, R. E., and A. P. Somlyo. Electron probe analysis and ultrastructure of cultured, freeze dried vascular smooth muscle. In: Proc. Ann. Meeting Electron Microscopy Soc. Am. 33rd, Las Vegas, NV, Aug. 1975, edited by G. W. Bailey and C. J. Arceneaux. Baton Rouge, LA: Claitor's, 1975, p. 558–559.
 67. Godfraind, T. Calcium exchange in vascular smooth muscle, action of noradrenaline and lanthanum. J. Physiol. London 260: 21–35, 1976.
 68. Golenhofen, K. Slow rhythms in smooth muscle. In: Smooth Muscle, edited by E. Bülbring, A. F. Brading, A. W. Jones, and T. Tomita. London: Arnold, 1970, p. 316–342.
 69. Golenhofen, K., N. Hermstein, and E. Lammel. Membrane potential and contraction of vascular smooth muscle (portal vein) during application of noradrenaline and high potassium, and selective inhibitory effects of iproveratril (verapamil). Microvascular Res. 5: 73–80, 1973.
 70. Golenhofen, K., and D. von Loh. Intracelluläre Potential‐messungen zur normalen Spontanaktivität der isolierten Portalvene des Meerschweinchens. Pfluegers Arch. European J. Physiol. 319: 82–100, 1970.
 71. Goodman, F. R., G. B. Weiss, M. N. Weinberg, and S. D. Pomarantz. Effects of added or substituted potassium ion on 45Ca movements in rabbit aortic smooth muscle. Circulation Res. 31: 672–681, 1972.
 72. Greenberg, S., D. C. Heitz, M. J. Brody, W. R. Wilson, F. P. J. Diecke, and J. P. Long. Differential effect of metabolic inhibitors on myogenic tone and contractility in isolated tibial arteries. J. Pharmacol. Exptl. Therap. 191: 458–467, 1974.
 73. Grubb, B., and R. F. Coburn. Oxygen‐dependent mechanical tension. Physiologist 19: 212, 1976.
 74. Gurevich, M. J., S. A. Bershtein, and I. R. Evdokimov. The effect of changes in osmolality and oxygen tension on excitability and conduction of excitation in vascular smooth muscles. In: Physiology of Smooth Muscle, edited by E. Bülbring and M. F. Shuba. New York: Raven, 1976, p. 153–161.
 75. Haeusler, G. Differential effect of verapamil on excitation‐contraction coupling in smooth muscle and on excitation‐secretion coupling in adrenergic nerve terminals. J. Pharmacol. Exptl. Therap. 180: 672–682, 1972.
 76. Haeusler, G. Membrane potential and contraction in vascular smooth muscle. Experientia 28: 742–743, 1972.
 77. Hellstrand, P. Effects of hypoxia on the rat portal vein in vitro: Po2 gradients in tissue and surrounding fluid. Acta Physiol. Scand. 103: 472–474, 1978.
 78. Hellstrand, P., B. Johansson, and K. Norberg. Mechanical, electrical and biochemical effects of hypoxia and substrate removal on spontaneously active vascular smooth muscle. Acta Physiol. Scand. 100: 69–83, 1977.
 79. Hellstrand, P., B. Johansson, and A. Ringberg. Influence of extracellular calcium on isometric force and velocity of shortening in depolarized venous smooth muscle. Acta Physiol. Scand. 84: 528–537, 1972.
 80. Hendrickx, H., and R. Casteels. Electrogenic sodium pump in arterial smooth muscle cells. Pfluegers Arch. European J. Physiol. 346: 299–306, 1974.
 81. Hermsmeyer, K. Contraction and membrane activation in several mammalian vascular muscles. Life Sci. 10: 223–234, 1971.
 82. Hermsmeyer, K. Multiple pacemaker sites in spontaneously active vascular muscle. Circulation Res. 33: 244–251, 1973.
 83. Hermsmeyer, K. Ba2+ and K+ alteration of K+ conductance in spontaneously active vascular muscle. Am. J. Physiol. 230: 1031–1036, 1976.
 84. Hermsmeyer, K. In vitro methods: electrophysiology of vascular smooth muscle. In: Microcirculation, edited by B. M. Altura and G. Kaley. Baltimore: Univ. Park, 1977, vol. III.
 85. Hodgkin, A., and P. Horowicz. Potassium contractures in single muscle fibres. J. Physiol. London 153: 386–403, 1960.
 86. Holman, M. E. Some electrophysiological aspects of transmission from noradrenergic nerves to smooth muscle. Circulation Res. 21: (Suppl. 3) 71–82, 1967.
 87. Holman, M. E., C. B. Kasby, M. B. Suthers, and J. A. F. Wilson. Some properties of the smooth muscle of rabbit portal vein. J. Physiol. London 196: 111–132, 1968.
 88. Huggel, H., B. Johansson, and J. Peristiany. Sucrose‐gap recording of electrical and mechanical activity in the smooth muscle of the isolated metacarpal vein of the bat. Experientia 29: 977–978, 1973.
 89. Inomata, H., and C. Y. Kao. Ionic currents in the guinea‐pig taenia coli. J. Physiol. London 255: 347–378, 1976.
 90. Ito, Y., and H. Kuriyama. Membrane properties of the smooth muscle fibres of the guinea‐pig portal vein. J. Physiol. London 214: 427–441, 1971.
 91. Johansson, B. Electromechanical and mechanoelectrical coupling in vascular smooth muscle. Angiologica 8: 129–143, 1971.
 92. Johansson, B. Active state in the smooth muscle of the rat portal vein in relation to electrical activity and isometric force. Circulation Res. 32: 246–258, 1973.
 93. Johansson, B. Structural and functional changes in rat portal veins after experimental portal hypertension. Acta Physiol. Scand. 98: 381–383, 1976.
 94. Johansson, B., and D. F. Bohr. Rhythmic activity in smooth muscle from small subcutaneous arteries. Am. J. Physiol. 210: 801–806, 1966.
 95. Johansson, B., and O. Jonsson. Cell volume as a factor influencing electrical and mechanical activity of vascular smooth muscle. Acta Physiol. Scand. 72: 456–468, 1968.
 96. Johansson, B., O. Jonsson, J. Axelsson, and B. Wahlström. Electrical and mechanical characteristics of vascular smooth muscle response to norepinephrine and isoproterenol. Circulation Res. 21: 619–633, 1967.
 97. Johansson, B., and B. Ljung. Spread of excitation in the smooth muscle of the rat portal vein. Acta Physiol. Scand. 70: 312–322, 1967.
 98. Johansson, B., and S. Mellander. Static and dynamic components in the vascular myogenic response to passive changes in length as revealed by electrical and mechanical recordings from the rat portal vein. Circulation Res. 36: 76–83, 1975.
 99. Johnson, E. A., and M. Lieberman. Heart: excitation and contraction. In: Annual Review of Physiology, edited by V. E. Hall, A. Giese, and R. R. Sonnenschein. Palo Alto, CA: Ann. Rev., 1971, vol. 33, p. 479–532.
 100. Johnson, P. C. Myogenic tone in resistance vessels. In: Mechanisms of Vasodilatation, edited by P. Vanhoutte and I. Leusen. Basel: Karger, 1978, p. 73–78.
 101. Jones, A. W., and L. A. Miller. Ion transport in tonic and phasic vascular smooth muscle and changes during desoxycorticosterone hypertension. Blood Vessels 15: 83–92, 1978.
 102. Jones, A. W., A. P. Somlyo, and A. V. Somlyo. Potassium accumulation in smooth muscle and associated ultrastructural changes. J. Physiol. London 232: 247–273, 1973.
 103. Jonsson, O. Extracellular osmolality and vascular smooth muscle activity. Acta Physiol. Scand. (Suppl.) 359: 1–48, 1970.
 104. Kao, C. Y., H. Inomata, J. R. McCullough, and J. C. Yuan. Voltage clamp studies of the actions of catecholamines and adrenergic blocking agents on mammalian smooth muscles. In: Smooth Muscle Pharmacology and Physiology, edited by M. Worcel and G. Vassort. Paris: Inst. Natl. Santé Recherche Médicale, 1975, vol. 50, chapt. 3, p. 165–176.
 105. Kao, C. Y., and J. R. McCullough. Ionic currents in the uterine smooth muscle. J. Physiol. London 246: 1–36, 1975.
 106. Keatinge, W. R. Mechanism of adrenergic stimulation of mammalian arteries and its failure at low temperatures. J. Physiol. London 174: 184–205, 1964.
 107. Keatinge, W. R. Electrical and mechanical response of arteries to stimulation of sympathetic nerves. J. Physiol. London 185: 701–715, 1966.
 108. Keatinge, W. R. Ionic requirements for arterial action potential. J. Physiol. London 194: 169–182, 1968.
 109. Keatinge, W. R. Reversal of electrical response of arterial smooth muscle to noradrenaline in calcium‐deficient solution. J. Physiol. London 198: 20P–22P, 1968.
 110. Keatinge, W. R. Sodium flux and electrical activity of arterial smooth muscle. J. Physiol. London 194: 183–200, 1968.
 111. Kjellmer, I. Studies on exercise hyperemia. Acta Physiol. Scand. 64: (Suppl. 244) 1–27, 1965.
 112. Kreye, V. A. W., G. D. Baron, J. B. Luth, and H. Schmidt‐Gayk. Mode of action of sodium nitroprusside on vascular smooth muscle. Naunyn‐Schmiedebergs Arch. Pharmacol. 288: 381–402, 1975.
 113. Kroeger, E. A., and J. M. Marshall. Beta‐adrenergic effects on rat myometrium: mechanisms of membrane hyperpolarization. Am. J. Physiol. 225: 1339–1345, 1973.
 114. Kuffler, S. W., and E. M. Vaughan Williams. Properties of the “slow” skeletal muscle fibres of the frog. J. Physiol. London 121: 318–340, 1953.
 115. Kuriyama, H., K. Ohshima, and Y. Sakamoto. The membrane properties of the smooth muscle of the guinea‐pig portal vein in isotonic and hypertonic solutions. J. Physiol. London 217: 179–199, 1971.
 116. Levy, J. V. Verapamil and diazoxide antagonism of agonist‐induced contractions of aortic strips from normal and spontaneously hypertensive rats (SHR). Res. Commun. Chem. Pathol. Pharmacol. 11: 387–404, 1975.
 117. Ljung, B., O. Isaksson, and B. Johansson. Levels of cyclic AMP and electrical events during inhibition of contractile activity in vascular smooth muscle. Acta Physiol. Scand. 94: 154–166, 1975.
 118. Ljung, B., and L. Stage. Adrenergic excitatory influences on initiation and conduction of electrical activity in the rat portal vein. Acta Physiol. Scand. 80: 131–141, 1970.
 119. Loh, D. von. The effect of adrenergic drugs on spontaneously active vascular smooth muscle studied by long‐term intracellular recording of membrane potential. Angiologica 8: 144–155, 1971.
 120. Loh, D. von, and D. F. Bohr. Membrane potentials of smooth muscle cells of isolated resistance vessels. Proc. Soc. Exptl. Biol. Med. 144: 513–516, 1973.
 121. Lüllmann, H., and T. Peters. Plasmalemmal calcium in cardiac excitation‐contraction coupling. Clin. Exptl. Pharmacol. Physiol. 4: 49–57, 1977.
 122. Lundvall, J. Tissue hyperosmolality as a mediator of vasodilatation and transcapillary fluid flux in exercising skeletal muscle. Acta Physiol. Scand. Suppl. 379: 1–142, 1972.
 123. Lüttgau, H. C. The action of calcium ions on potassium contractures of single muscle fibres. J. Physiol. London 168: 679–697, 1963.
 124. Lüttgau, H. C., and R. Niedergerke. The antagonism between Ca and Na ions on the frog's heart. J. Physiol. London 143: 486–505, 1958.
 125. Marshall, J. M. Modulation of smooth muscle activity by catecholamines. Federation Proc. 36: 2450–2455, 1977.
 126. Martonosi, A., R. Boland, and R. A. Halpin. The biosynthesis of sarcoplasmic reticulum membranes and the mechanism of calcium transport. Cold Spring Harbor Symp. Quant. Biol. 37: 445–468, 1973.
 127. Martonosi, A., D. Roufa, R. Boland, and E. Reyes. Development of sarcoplasmic reticulum in cultured chicken muscle. J. Biol. Chem. 252: 318–332, 1977.
 128. McLean, M. J., and N. Sperelakis. Electrophysiological recordings from spontaneously contracting reaggregates of cultured vascular smooth muscle cells from chick embryos. Exptl. Cell Res. 104: 309–318, 1977.
 129. Mekata, F. Rectification in the smooth muscle cell membrane of rabbit aorta. J. Physiol. London 258: 269–278, 1976.
 130. Mela, L. Mechanism and physiological significance of calcium transport across mammalian mitochondrial membranes. In: Current Topics in Membranes and Transport, edited by F. Bronner and A. Kleinzeller. New York: Academic, 1977, vol. 9, p. 322–366.
 131. Mellander, S., and B. Johansson. Control of resistance, exchange and capacitance functions in the peripheral circulation. Pharmacol. Rev. 20: 117–196, 1968.
 132. Mellander, S., B. Johansson, S. Gray, O. Jonsson, J. Lundvall, and B. Ljung. The effects of hyperosmolarity on intact and isolated vascular smooth muscle. Possible role in exercise hyperemia. Angiologica 4: 310–322, 1967.
 133. Miller, L., and A. W. Jones. Ionic permeabilities in phasic and tonic vascular smooth muscle. Physiologist 19: 298, 1976.
 134. Peskoff, A., and R. S. Eisenberg. Interpretation of some microelectrode measurements of electrical properties of cells. In: Annual Reviews of Biophysics and Bioengineering, edited by L. Mullins, W. A. Hagins, and L. Stryer. Palo Alto, CA: Ann. Rev., 1973, vol. 2, p. 65–79.
 135. Popescu, L. M., and I. Diculescu. Calcium in smooth muscle sarcoplasmic reticulum in situ: conventional and x‐ray analytical electron microscopy. J. Cell Biol. 67: 911–918, 1975.
 136. Popescu, L. M., I. Diculescu, U. Zelck, and N. Ionescu. Ultrastructural distribution of calcium in smooth muscle cells of guinea‐pig taenia coli. A correlated electron microscopic and quantitative study. Cell Tissue Res. 154: 357–378, 1974.
 137. Reuter, H., M. P. Blaustein, and G. Haeusler. Na‐Ca exchange and tension development in arterial smooth muscle. Phil. Trans. Roy. Soc. London Ser. B 265: 87–94, 1973.
 138. Roddie, I. C. The transmembrane potential changes associated with smooth muscle activity in turtle arteries and veins. J. Physiol. London 163: 138–150, 1962.
 139. Roddie, I. Electrical and mechanical activity in turtle arteries and veins. Bibliotheca Anat. 8: 1–4, 1967.
 140. Scholz, H. Über die Wirkung von Calcium und Natrium auf die Kalium‐kontraktur isolierter Meerschweinchenvorhöfe. Pfluegers Arch. European J. Physiol. 308: 315–332, 1969.
 141. Siegel, G., R. Eheholt, and H. P. Koepchen. Membrane potential and relaxation. In: Mechanisms of Vasodilatation, edited by P. Vanhoutte and I. Leusen. Basel: Karger, 1978, p. 56–72.
 142. Sigurdsson, S. B., B. Johansson, and S. Mellander. Rate‐dependent myogenic response of vascular smooth muscle during imposed changes in length and force. Acta Physiol. Scand. 99: 183–189, 1977.
 143. Sigurdsson, S. B., B. Uvelius, and B. Johansson. Relative contribution of superficially bound and extracellular calcium to activation of contraction in isolated rat portal vein. Acta Physiol. Scand. 95: 263–269, 1975.
 144. Sitrin, M. D., and D. F. Bohr. Ca and Na interaction in vascular smooth muscle contraction. Am. J. Physiol. 220: 1124–1128, 1971.
 145. Sloane, B. F., A. P. Somlyo, A. V. Somlyo, H. Shuman, and A. Scarpa. Calcium and magnesium content of isolated vascular smooth muscle mitochondria (Abstract). Proc. Intern. Biophys. Congr., 6th, 1978, p. 233.
 146. Somlyo, A. P. Vascular smooth muscle. In: Cellular Pharmacology of Excitable Tissues, edited by T. Narahashi. Springfield, IL: Thomas, 1975, p. 360–407.
 147. Somlyo, A. P., C. E. Devine, A. V. Somlyo, and S. R. North. Sarcoplasmic reticulum and the temperature‐dependent contraction of smooth muscle in calcium‐free solutions. J. Cell Biol. 51: 722–741, 1971.
 148. Somlyo, A. P., and A. V. Somlyo. Vascular smooth muscle. I. Normal structure, pathology, biochemistry and biophysics. Pharmacol. Rev. 20: 197–272, 1968.
 149. Somlyo, A. P., and A. V. Somlyo. Vascular smooth muscle. II. Pharmacology of normal and hypertensive vessels. Pharmacol. Rev. 22: 249–353, 1970.
 150. Somlyo, A. P., and A. V. Somlyo. Electrophysiological correlates of the inequality of maximal vascular smooth muscle contraction elicited by drugs. In: Physiology and Pharmacology of Vascular Neuroeffector Systems, edited by J. A. Bevan, R. F. Furchgott, R. A. Maxwell, and A. P. Somlyo. Basel: Karger, 1971, p. 216–226.
 151. Somlyo, A. P., and A. V. Somlyo. Ultrastructure of smooth muscle. In: Methods in Pharmacology, edited by E. E. Daniel and D. M. Paton. New York: Plenum, 1975, vol. 3, p. 3–45.
 152. Somlyo, A. P., and A. V. Somlyo. Calcium and magnesium in vascular smooth muscle function. In: International Textbook on Hypertension, edited by J. Genest, E. Kolw, and O. Kuchel. New York: McGraw‐Hill, 1977, p. 440–452.
 153. Somlyo, A. P., A. V. Somlyo, F. T. Ashton, and J. Vallières. Vertebrate smooth muscle: ultrastructure and function. In: Cell Motility, edited by R. Goldman, T. Pollard, and J. Rosenbaum. Cold Spring Harbor, NY: Cold Spr. Harbor Labs., 1976, vol. 3, p. 165–183. (Cold Spr. Harbor Conf. Cell Proliferation.)
 154. Somlyo, A. P., A. V. Somlyo, C. E. Devine, P. D. Peters, and T. A. Hall. Electron microscopy and electron probe analysis of mitochondrial cation accumulation in smooth muscle. J. Cell Biol. 61: 723–742, 1974.
 155. Somlyo, A. P., A. V. Somlyo, and H. Shuman. Electron probe analysis of vascular smooth muscle: composition of mitochondria, nuclei and cytoplasm. J. Cell Biol. 80: 316–335, 1979.
 156. Somlyo, A. P., A. V. Somlyo, H. Shuman, and R. E. Garfield. Calcium compartments in vascular smooth muscle: electron probe analysis. In: Ionic Actions on Vascular Smooth Muscle, edited by E. Betz. Berlin: Springer‐Verlag, 1976, p. 17–20.
 157. Somlyo, A. P., A. V. Somlyo, H. Shuman, B. Sloane, and A. Scarpa. Electron probe analysis of calcium compartments' in cryo sections of smooth and striated muscles. Ann. NY Acad. Sci. 307: 523–544, 1978.
 158. Somlyo, A. P., A. V. Somlyo, and V. Smiesko. Cyclic AMP and vascular smooth muscle. In: Advances in Cyclic Nucleotide Research, edited by R. Paoletti and G. A. Robinson. New York: Raven, 1972, vol. 1, p. 175–194.
 159. Somlyo, A. V. Bridging structures spanning the junctional gap at the triad of skeletal muscle. J. Cell Biol. 80: 743–750, 1979.
 160. Somlyo, A. V., G. Haeusler, and A. P. Somlyo. Cyclic adenosine‐monophosphate: potassium‐dependent action on vascular smooth muscle membrane potential. Science 169: 490–491, 1970.
 161. Somlyo, A. V., and A. P. Somlyo. Electromechanical and pharmacomechanical coupling in vascular smooth muscle. J. Pharmacol. Exptl. Therap. 159: 129–145, 1968.
 162. Somlyo, A. V., and A. P. Somlyo. Strontium accumulation by sarcoplasmic reticulum and mitochondria in vascular smooth muscle. Science 174: 955–958, 1971.
 163. Somlyo, A. V., P. Vinall, and A. P. Somlyo. Excitation‐contraction coupling and electrical events in two types of vascular smooth muscle. Microvascular Res. 1: 354–373, 1971.
 164. Sommer, J. R., and E. A. Johnson. Cardiac muscle. A comparative study of Purkinje fibers and ventricular fibers. J. Cell Biol. 36: 497–526, 1968.
 165. Sparrow, M. P., and W. J. Simmonds. The relationship of the calcium content of smooth muscle to its contractility in response to different modes of stimulation. Biochim. Biophys. Acta 109: 503–511, 1965.
 166. Speden, R. N. Electrical activity of single smooth muscle cells of the mesenteric artery produced by splanchnic nerve stimulation in the guinea pig. Nature 202: 193–194, 1964.
 167. Speden, R. N. Adrenergic transmission in small arteries. Nature 216: 289–290, 1967.
 168. Speden, R. N., and P. A. Nicoll. Excitation and contraction of bat venule smooth muscle cells. Proc. Australian Physiol. Pharmacol. Soc. 3: 83–84, 1972.
 169. Stämpfli, R. A new method for measuring membrane potentials with external electrodes. Experientia 10: 508–509, 1954.
 170. Steedman, W. M. Micro‐electrode studies on mammalian vascular muscle. J. Physiol. London 186: 382–400, 1966.
 171. Steinsland, O. S., R. F. Furchgott, and S. M. Kirpekar. Biphasic vasoconstriction of the rabbit ear artery. Circulation Res. 32: 49–58, 1973.
 172. Su, C., J. A. Bevan, and R. C. Ursillo. Electrical quiescence of pulmonary artery smooth muscle during sympathomimetic stimulation. Circulation Res. 15: 20–27, 1964.
 173. Szurszewski, J. H. Modulation of smooth muscle by nervous activity: a review and a hypothesis. Federation Proc. 36: 2456–2461, 1977.
 174. Szurszewski, J. H., and E. Bülbring. The stimulant action of acetylcholine and catecholamines on the uterus. Phil. Trans. Roy. Soc. London Ser. B 265: 149–156, 1973.
 175. Triggle, D. J. Effects of calcium on excitable membranes and neurotransmitter action. In: Progress in Surface and Membrane Science, edited by J. F. Danuilli and M. D. Rosenberg. New York: Academic, 1972, vol. 5, p. 267–331.
 176. Turlapaty, P. D. M. V., R. K. Hester, and O. Carrier. Role of calcium in different layers of vascular smooth muscle in norepinephrine contraction. Blood Vessels 13: 193–209, 1976.
 177. Uvelius, B., and B. Johansson. Relation between extracellular potassium ion concentration and contracture force after abolition of spike discharge in isolated rat portal vein. Blood Vessels 11: 120–127, 1974.
 178. Uvelius, B., S. B. Sigurdsson, and B. Johansson. Strontium and barium as substitutes for calcium on electrical and mechanical activity in rat portal vein. Blood Vessels 11: 245–259, 1974.
 179. Vallières, J., A. Scarpa, and A. P. Somlyo. Subcellular fractions of smooth muscle. Isolation, substrate utilization and Ca2+ transport by main pulmonary artery and mesenteric vein mitochondria. Arch. Biochem. Biophys. 170: 659–669, 1975.
 180. Wahlström, B. A. Ionic fluxes in the rat portal vein and the applicability of the Goldman equation in predicting the membrane potential from flux data. Acta Physiol. Scand. 89: 436–448, 1973.
 181. Wahlström, B. A. A study on the action of noradrenaline on ionic content and sodium, potassium and chloride effluxes in the rat portal vein. Acta Physiol. Scand. 89: 522–530, 1973.
 182. Waugh, W. H. Adrenergic stimulation of depolarized arterial muscle. Circulation Res. 11: 264–276, 1962.
 183. Weiss, G. B. Cellular pharmacology of lanthanum. In: Annual Reviews of Pharmacology, edited by H. W. Elliott, R. George, and R. Okun. Palo Alto, CA: Ann. Rev., 1974, vol. 14, p. 343–354.
 184. Weiss, G. B. Calcium and contractility in vascular smooth muscle. In: Advances in General and Cellular Pharmacology, edited by T. Narahashi and C. P. Bianchi. New York: Plenum, 1977, vol. 2, p. 71–154.
 185. Wiedeman, M. P. Contractile activity of arterioles in the bat wing during intraluminal pressure changes. Circulation Res. 19: 559–563, 1966.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Börje Johansson, Andrew P. Somlyo. Electrophysiology and Excitation‐Contraction Coupling. Compr Physiol 2011, Supplement 7: Handbook of Physiology, The Cardiovascular System, Vascular Smooth Muscle: 301-323. First published in print 1980. doi: 10.1002/cphy.cp020212