Comprehensive Physiology Wiley Online Library

Venous System: Physiology of the Capacitance Vessels

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Synopsis
2 Perspectives
3 Definitions and Basic Concepts
3.1 Definitions
3.2 Active Contraction of Veins
3.3 Effect of Flow on Vascular Volume
3.4 Central Venous Pressure
3.5 Mean Circulatory Filling Pressure
3.6 Venous Hemodynamics
3.7 Venous Resistance
4 Structural Characteristics of Veins
4.1 Anatomy
4.2 Volume of Blood
4.3 Vascular Compliance
4.4 Linearity of Pressure‐Volume Relationship
5 Venous Return and Potential Role of Veins in Cardiovascular Homeostasis
5.1 Guytonian Relationship Between Venous Return and Cardiac Output
5.2 De Jager‐Krogh Phenomenon
5.3 Venous Pooling on Standing
6 Reflex Control of Capacitance System
6.1 Effect of Neural and Hormonal Stimulation
6.2 Baroreceptors
6.3 Chemoreceptors
6.4 Atrial, Ventricular, and Pulmonary Receptors
6.5 Receptor Interaction
6.6 Venous Myogenic Activity
6.7 Venoarteriolar Reflex
6.8 Effect of Temperature
6.9 Time Course of Reflex Response
6.10 Capacitance‐Vessel Tone
7 Veins in Health and Disease
7.1 Exercise
7.2 Vasovagal Syncope
7.3 Orthostatic Hypotension
7.4 Shock
7.5 Hypertension
8 Methods of Measurement of Vascular Capacitance
8.1 Transmural Pressure of Capacitance Vessels
8.2 Volume of Capacitance Vessels
8.3 Measures of Total‐Body Vascular Compliance and Capacitance
8.4 General Problems
9 Pharmacology of Veins
9.1 Anesthetics
9.2 Angiotensin
9.3 Catecholamines
9.4 Histamine
9.5 Morphine
9.6 Nitroprusside
9.7 Serotonin
9.8 Vasopressin
10 Future Research
Figure 1. Figure 1.

Three‐dimensional plot of average interrelationships determined simultaneously among mean right atrial pressure (MRAP), mean aortic pressure (MAP), and aortic flow (AF). Inhibition of sympathetic outflow by carotid and aortic baroreceptors blocked.

From Herndon and Sagawa
Figure 2. Figure 2.

Effects of volume loading with blood (right of center) compared with volume depletion (left of center) on responses of cardiac output (circles and solid lines), heart rate (triangles and dotted lines), and stroke volume (squares and dashed lines). Heart rate rose almost equally with volume loading and depletion. In contrast, stroke volume fell strikingly with hemorrhage but remained essentially constant with infusion of blood.

From Vatner and Boettcher , by permission of the American Heart Association, Inc
Figure 3. Figure 3.

Vascular capacitance as the relation of transmural pressure to contained volume. A, control pressure‐volume relationship. Unstressed volume is volume, estimated by extrapolation, of vessel if transmural pressure is zero; B, reduction in unstressed volume; C, reduction in compliance (increased stiffness of vasculature). With large untethered vessels there tends to be a relatively wide range of volume change with little change of transmural pressure at zero pressure because cross section of vessel changes (α). With vessels embedded in tissue, transmural pressure at volumes less than unstressed volume may be markedly negative (β).

Figure 4. Figure 4.

Volume in collapsible tube as function of transmural pressure. Typical transverse cross sections shown at various points in curve.

From Katz et al.
Figure 5. Figure 5.

Diameter‐pressure relationship in unexposed femoral vein before and after norepinephrine infusion in dog. (Norepinephrine administered via iv drip in cephalic vein at rate sufficient to increase mean arterial pressure 20 mmHg.)

From Morris et al.
Figure 6. Figure 6.

Volume contained in isolated canine saphenal vein segment at various hydrostatic pressures. Data at rest and at maximum contraction induced by constant electrical stimulation (10 s, 15/s), imposed after 2‐min stabilization against each increase in hydrostatic pressure (2 cmH2O every 5 min). •, Data at rest; ×, data during stimulation.

From Vanhoutte and Leusen
Figure 7. Figure 7.

Conceptual representation of technique for distinguishing between active and passive factors in change in vascular capacitance. Left panel: during electrical stimulation venous outflow transiently increased, arterial flow decreased. Integrated difference between two curves was 112 ml. Middle panel: effect of partial mechanical occlusion to decrease arterial flow to about same level as during stimulation. Both inflow and outflow decreased, giving integrated difference due to passive emptying of 55 ml. Right panel: difference of 57 ml between these two volumes, or integrated difference between two venous outflow curves assuming equal arterial flow patterns, represents active component.

From Shepherd , copyright © 1978 by Year Book Medical Publishers, Inc., Chicago
Figure 8. Figure 8.

Flow effect on changes in total hepatic blood volume (ΔV) at different levels of changes from control of total hepatic inflow (Fin). Symbols, flow changed via hepatic artery; lines, flow changed via portal vein inflow.

From Bennett and Rothe
Figure 9. Figure 9.

Diagram of blood vessel pattern in vein walls.

From O'Neill
Figure 10. Figure 10.

Diagrammatic representation of relationship between adrenergic nerves and mesenteric blood vessels: pa, principal artery; pv, principal vein; sa, small artery of microvasculature; ta, terminal arteriole; pca, precapillary arteriole; c, capillary; cv, collecting venule; sv, small vein. Adrenergic nerves represented by heavy lines. Arrows indicate direction of blood flow. Note that precapillary arterioles and collecting venules are not innervated.

From Furness and Marshall
Figure 11. Figure 11.

Average changes in venous pressure at ankle produced by walking 1.7 mph.

From Pollack and Wood
Figure 12. Figure 12.

Total‐body pressure‐volume relationship of chloralose‐anesthetized dogs. Upper panel: mean circulatory pressure (Pmc) of control group after various changes in blood volume as function of time after changing volume. Compensatory mechanisms tend to restore mean circulatory filling pressure after various volume changes shown. Lower panel: mean circulatory pressure changes as function of blood volume at 0.5 min after start of volume change at control and after sympathetic ganglionic blocking agent, hexamethonium. Mean circulatory filling pressure (Pmc) is linearly related to change in blood volume in range of about 5–25 mmHg.

From Drees and Rothe , by permission of the American Heart Association, Inc
Figure 13. Figure 13.

Cardiac output curves for normal heart, for hyper‐ and hypoeffective hearts, and for hearts subjected to increased or decreased resistive loads, that is, increased or decreased arterial pressures.

From Guyton
Figure 14. Figure 14.

Effect on venous return curve caused by changes in mean systemic filling pressure (Pms).

From Guyton
Figure 15. Figure 15.

Equilibrium right atrial pressure of venous return and cardiac output curves under various conditions: A, normal; B, damaged myocardium with compensatory increase in mean circulatory filling pressure (MCFP); C, sympathetic stimulation of heart and periphery, such as in exercise with equilibrium right atrial pressure not changed from normal; D, increased right atrial pressure with no change in cardiac function; venous return curve increased by increase in blood volume or venoconstriction causing increased mean circulatory filling pressure; E, reduced right atrial pressure with sympathetic enhancement of cardiac function during hemorrhage; F, equilibrium with damaged heart and reduced blood volume, such as in uncompensated irreversible hemorrhage in shock; right atrial pressure normal.

Adapted from Guyton
Figure 16. Figure 16.

Mean changes in hepatic blood volume during hepatic nerve stimulation. Mean hepatic blood volume at control was 31 ml/100 g liver in dogs and 27 ml/100 g in cats.

From Greenway and Oshiro
Figure 17. Figure 17.

Steady‐state changes in reservoir volume versus carotid intrasinus pressure. Volume changes corrected to that intrasinus pressure giving the maximal response (ISP0).

From Shoukas and Sagawa , by permission of the American Heart Association, Inc
Figure 18. Figure 18.

Total‐body pressure‐volume relationship in dogs. Mean circulatory pressure (Pmc) at various blood volumes with ganglionic blockade (relaxed) or maximal stimulation by norepinephrine (constricted) compared with control 5 min after blood volume change. Chloralose anesthesia. Spleen intact. Confidence bands at 5% level shown. Control blood volume for areflexic group after 8.5 ml/kg transfusion.

From Drees and Rothe , by permission of the American Heart Association, Inc
Figure 19. Figure 19.

Stimulus‐response curves showing simultaneous changes in arterial blood pressure, liver blood volume, total hepatic blood flow, and hepatic arterial and portal venous resistances during step changes in carotid sinus pressure from a control level of 169 mmHg. Anesthetized dog with vagi cut. Changes calculated as % of control values. HAF, hepatic arterial flow; PVF, portal venous flow; HAR, hepatic arterial resistance; PVR, portal venous resistance.

From Carneiro and Donald , by permission of the American Heart Association, Inc
Figure 20. Figure 20.

Three‐dimensional plot of vascular pressure‐to‐volume relationship in dogs. A: volume trajectory hypothesized during instantaneous reduction in volume of about 17 ml/kg body weight to bring mean circulatory filling pressure (Pmc) to 4 mmHg and volume change then required to maintain this Pmc. B: changes of mean circulatory pressure with time after reduction in blood volume of 17 ml/kg. C: pressure‐volume relationship during cardiac fibrillation for 1 min. Mean circulatory filling pressure returned to and held at control value by removing volume from animal starting at about 15 s.

Adapted from Rothe , by permission of the American Heart Association, Inc.; data in curve B from Drees and Rothe
Figure 21. Figure 21.

Different patterns of cardiac and resistant vessel responses resulting from different types of chemoreceptor stimulation. Top, arterial hypoxia; middle, carbon monoxide hypoxia; bottom, hemorrhage of 6% of animal's blood volume plus its increased heart rate or vasoconstriction; black, average neuro source of effector stimulation; striped, adrenal catecholamine; open, local.

From Korner
Figure 22. Figure 22.

Process of obtaining mean transit time () of indicator.

Figure 23. Figure 23.

Basic concepts for determining mean transit time () using indicator dilution.

Adapted from Lassen and Perl
Figure 24. Figure 24.

Diagrammatic representation of technique of estimating changes in vascular capacitance. A: reservoir approach. Constant flow perfusion of right heart and return of all venous blood to reservoir at fixed venous pressure (Pv). Compliance estimated as ratio of volume change to step change in Pv. B: technique using closed system. Compliance estimated as change in central venous pressure (Pv) in response to known change of injected volume (ΔV).

From Rothe
Figure 25. Figure 25.

Mean circulatory pressure technique. Blood volume reduced by rapid hemorrhage 0.5 min before. Heart fibrillated, blood pumped from aorta to vena cava until pressures equal. PA, arterial pressure; PCV, raw central venous pressure; , averaged and expanded central venous pressure; PMC, mean circulatory filling pressure at equilibrium obtained before 7 s after start of arterial pressure decrease; ΔPA‐V, difference between aortic and central venous pressures.

From Drees and Rothe , by permission of the American Heart Association, Inc


Figure 1.

Three‐dimensional plot of average interrelationships determined simultaneously among mean right atrial pressure (MRAP), mean aortic pressure (MAP), and aortic flow (AF). Inhibition of sympathetic outflow by carotid and aortic baroreceptors blocked.

From Herndon and Sagawa


Figure 2.

Effects of volume loading with blood (right of center) compared with volume depletion (left of center) on responses of cardiac output (circles and solid lines), heart rate (triangles and dotted lines), and stroke volume (squares and dashed lines). Heart rate rose almost equally with volume loading and depletion. In contrast, stroke volume fell strikingly with hemorrhage but remained essentially constant with infusion of blood.

From Vatner and Boettcher , by permission of the American Heart Association, Inc


Figure 3.

Vascular capacitance as the relation of transmural pressure to contained volume. A, control pressure‐volume relationship. Unstressed volume is volume, estimated by extrapolation, of vessel if transmural pressure is zero; B, reduction in unstressed volume; C, reduction in compliance (increased stiffness of vasculature). With large untethered vessels there tends to be a relatively wide range of volume change with little change of transmural pressure at zero pressure because cross section of vessel changes (α). With vessels embedded in tissue, transmural pressure at volumes less than unstressed volume may be markedly negative (β).



Figure 4.

Volume in collapsible tube as function of transmural pressure. Typical transverse cross sections shown at various points in curve.

From Katz et al.


Figure 5.

Diameter‐pressure relationship in unexposed femoral vein before and after norepinephrine infusion in dog. (Norepinephrine administered via iv drip in cephalic vein at rate sufficient to increase mean arterial pressure 20 mmHg.)

From Morris et al.


Figure 6.

Volume contained in isolated canine saphenal vein segment at various hydrostatic pressures. Data at rest and at maximum contraction induced by constant electrical stimulation (10 s, 15/s), imposed after 2‐min stabilization against each increase in hydrostatic pressure (2 cmH2O every 5 min). •, Data at rest; ×, data during stimulation.

From Vanhoutte and Leusen


Figure 7.

Conceptual representation of technique for distinguishing between active and passive factors in change in vascular capacitance. Left panel: during electrical stimulation venous outflow transiently increased, arterial flow decreased. Integrated difference between two curves was 112 ml. Middle panel: effect of partial mechanical occlusion to decrease arterial flow to about same level as during stimulation. Both inflow and outflow decreased, giving integrated difference due to passive emptying of 55 ml. Right panel: difference of 57 ml between these two volumes, or integrated difference between two venous outflow curves assuming equal arterial flow patterns, represents active component.

From Shepherd , copyright © 1978 by Year Book Medical Publishers, Inc., Chicago


Figure 8.

Flow effect on changes in total hepatic blood volume (ΔV) at different levels of changes from control of total hepatic inflow (Fin). Symbols, flow changed via hepatic artery; lines, flow changed via portal vein inflow.

From Bennett and Rothe


Figure 9.

Diagram of blood vessel pattern in vein walls.

From O'Neill


Figure 10.

Diagrammatic representation of relationship between adrenergic nerves and mesenteric blood vessels: pa, principal artery; pv, principal vein; sa, small artery of microvasculature; ta, terminal arteriole; pca, precapillary arteriole; c, capillary; cv, collecting venule; sv, small vein. Adrenergic nerves represented by heavy lines. Arrows indicate direction of blood flow. Note that precapillary arterioles and collecting venules are not innervated.

From Furness and Marshall


Figure 11.

Average changes in venous pressure at ankle produced by walking 1.7 mph.

From Pollack and Wood


Figure 12.

Total‐body pressure‐volume relationship of chloralose‐anesthetized dogs. Upper panel: mean circulatory pressure (Pmc) of control group after various changes in blood volume as function of time after changing volume. Compensatory mechanisms tend to restore mean circulatory filling pressure after various volume changes shown. Lower panel: mean circulatory pressure changes as function of blood volume at 0.5 min after start of volume change at control and after sympathetic ganglionic blocking agent, hexamethonium. Mean circulatory filling pressure (Pmc) is linearly related to change in blood volume in range of about 5–25 mmHg.

From Drees and Rothe , by permission of the American Heart Association, Inc


Figure 13.

Cardiac output curves for normal heart, for hyper‐ and hypoeffective hearts, and for hearts subjected to increased or decreased resistive loads, that is, increased or decreased arterial pressures.

From Guyton


Figure 14.

Effect on venous return curve caused by changes in mean systemic filling pressure (Pms).

From Guyton


Figure 15.

Equilibrium right atrial pressure of venous return and cardiac output curves under various conditions: A, normal; B, damaged myocardium with compensatory increase in mean circulatory filling pressure (MCFP); C, sympathetic stimulation of heart and periphery, such as in exercise with equilibrium right atrial pressure not changed from normal; D, increased right atrial pressure with no change in cardiac function; venous return curve increased by increase in blood volume or venoconstriction causing increased mean circulatory filling pressure; E, reduced right atrial pressure with sympathetic enhancement of cardiac function during hemorrhage; F, equilibrium with damaged heart and reduced blood volume, such as in uncompensated irreversible hemorrhage in shock; right atrial pressure normal.

Adapted from Guyton


Figure 16.

Mean changes in hepatic blood volume during hepatic nerve stimulation. Mean hepatic blood volume at control was 31 ml/100 g liver in dogs and 27 ml/100 g in cats.

From Greenway and Oshiro


Figure 17.

Steady‐state changes in reservoir volume versus carotid intrasinus pressure. Volume changes corrected to that intrasinus pressure giving the maximal response (ISP0).

From Shoukas and Sagawa , by permission of the American Heart Association, Inc


Figure 18.

Total‐body pressure‐volume relationship in dogs. Mean circulatory pressure (Pmc) at various blood volumes with ganglionic blockade (relaxed) or maximal stimulation by norepinephrine (constricted) compared with control 5 min after blood volume change. Chloralose anesthesia. Spleen intact. Confidence bands at 5% level shown. Control blood volume for areflexic group after 8.5 ml/kg transfusion.

From Drees and Rothe , by permission of the American Heart Association, Inc


Figure 19.

Stimulus‐response curves showing simultaneous changes in arterial blood pressure, liver blood volume, total hepatic blood flow, and hepatic arterial and portal venous resistances during step changes in carotid sinus pressure from a control level of 169 mmHg. Anesthetized dog with vagi cut. Changes calculated as % of control values. HAF, hepatic arterial flow; PVF, portal venous flow; HAR, hepatic arterial resistance; PVR, portal venous resistance.

From Carneiro and Donald , by permission of the American Heart Association, Inc


Figure 20.

Three‐dimensional plot of vascular pressure‐to‐volume relationship in dogs. A: volume trajectory hypothesized during instantaneous reduction in volume of about 17 ml/kg body weight to bring mean circulatory filling pressure (Pmc) to 4 mmHg and volume change then required to maintain this Pmc. B: changes of mean circulatory pressure with time after reduction in blood volume of 17 ml/kg. C: pressure‐volume relationship during cardiac fibrillation for 1 min. Mean circulatory filling pressure returned to and held at control value by removing volume from animal starting at about 15 s.

Adapted from Rothe , by permission of the American Heart Association, Inc.; data in curve B from Drees and Rothe


Figure 21.

Different patterns of cardiac and resistant vessel responses resulting from different types of chemoreceptor stimulation. Top, arterial hypoxia; middle, carbon monoxide hypoxia; bottom, hemorrhage of 6% of animal's blood volume plus its increased heart rate or vasoconstriction; black, average neuro source of effector stimulation; striped, adrenal catecholamine; open, local.

From Korner


Figure 22.

Process of obtaining mean transit time () of indicator.



Figure 23.

Basic concepts for determining mean transit time () using indicator dilution.

Adapted from Lassen and Perl


Figure 24.

Diagrammatic representation of technique of estimating changes in vascular capacitance. A: reservoir approach. Constant flow perfusion of right heart and return of all venous blood to reservoir at fixed venous pressure (Pv). Compliance estimated as ratio of volume change to step change in Pv. B: technique using closed system. Compliance estimated as change in central venous pressure (Pv) in response to known change of injected volume (ΔV).

From Rothe


Figure 25.

Mean circulatory pressure technique. Blood volume reduced by rapid hemorrhage 0.5 min before. Heart fibrillated, blood pumped from aorta to vena cava until pressures equal. PA, arterial pressure; PCV, raw central venous pressure; , averaged and expanded central venous pressure; PMC, mean circulatory filling pressure at equilibrium obtained before 7 s after start of arterial pressure decrease; ΔPA‐V, difference between aortic and central venous pressures.

From Drees and Rothe , by permission of the American Heart Association, Inc
References
 1. Aarseth, P., J. Karlsen, and G. Bo. Effects of catecholamine infusions and hypoxia on pulmonary blood volume and extra‐vascular lung water content in cats. Acta Physiol. Scand. 95: 34–40, 1975.
 2. Abboud, F. M., D. L. Eckberg, U. J. Johannsen, and A. L. Mark. Carotid and cardiopulmonary baroreceptor control of splanchnic and forearm vascular resistance during venous pooling in man. J. Physiol. London 286: 173–184, 1979.
 3. Abboud, F. M., J. W. Eckstein, and B. G. Zimmerman. Venous and arterial responses to stimulation of beta adrenergic receptors. Am. J. Physiol. 209: 383–389, 1965.
 4. Abboud, F. M., P. G. Schmid, and J. W. Eckstein. Vascular responses after alpha adrenergic receptor blockade. I. Responses of capacitance and resistance vessels to norepinephrine in man. J. Clin. Invest. 47: 1–9, 1968.
 5. Abdel‐Sayed, W. A., F. M. Abboud, and D. R. Ballard. Contribution of venous resistance to total vascular resistance in skeletal muscle. Am. J. Physiol. 218: 1291–1295, 1970.
 6. Abdel‐Sayed, W. A., F. M. Abboud, and M. G. Calvelo. Effect of local cooling on responsiveness of muscular and cutaneous arteries and veins. Am. J. Physiol. 219: 1772–1778, 1970.
 7. Alexander, R. S. The participation of the venomotor system in pressor reflexes. Circ. Res. 2: 405–409, 1954.
 8. Alexander, R. S. Contribution of plastoelasticity to the tone of the cat portal vein. Circ. Res. 28: 461–469, 1971.
 9. Alexander, R. S., W. S. Edwards, and J. L. Ankeney. The distensibility characteristics of the portal vascular bed. Circ. Res. 1: 271–277, 1953.
 10. Allen, T. H., and E. B. Reeve. Distribution of ‘extra plasma’ in the blood of some tissues in the dog as measured with P32 and T‐1824. Am. J. Physiol. 175: 218–223, 1953.
 11. Altschule, M. D. Emotion and the circulation. Circulation 3: 444–454, 1951.
 12. Altura, B. M. Pharmacology of venular smooth muscle. Bibl. Anat. 16: 284–286, 1977. (Proc. European Conf. Microcirculation, 9th, Antwerp, 1976.)
 13. Altura, B. M. Pharmacology of venular smooth muscles: new insights. Microvasc. Res. 16: 91–117, 1978.
 14. Altura, B. M., B. T. Altura, A. Carella, P. D. M. V. Turlapaty, and J. Weinberg. Vascular smooth muscle and general anesthetics. Federation Proc. 39: 1584–1591, 1980.
 15. Altura, B. T., and B. M. Altura. Pentobarbital and contraction of vascular smooth muscle. Am. J. Physiol. 229: 1635–1640, 1975.
 16. Anliker, M., W. G. Yates, and E. Ogden. Transmission of small pressure waves in the canine vena cava. Am. J. Physiol. 221: 644–651, 1971.
 17. Appel, A. J., M. K. Park, and W. G. Guntheroth. Portal vein diameter, pressure, and flow during hemorrhagic shock. J. Appl. Physiol. 23: 575–578, 1967.
 18. Arnoldi, C. C., T. Greitz, and H. Linderholm. Variations in cross sectional area and pressure in the veins of the normal human leg during rhythmic muscular exercise. Acta Chir. Scand. 132: 507–522, 1966.
 19. Attinger, E. O. Wall properties of veins. IEEE Trans. Biomed. Eng. 16: 253–261, 1969.
 20. Auden, R. M., and D. E. Donald. Reflex responses of the isolated in situ portal vein of the dog. J. Surg. Res. 18: 35–42, 1975.
 21. Bagshaw, R. J., and R. H. Cox. Baroreceptor control of regional haemodynamics during halothane anaesthesia in the dog. Br. J. Anaesth. 49: 535–543, 1977.
 22. Bainbridge, F. A. The influence of venous filling upon the rate of the heart. J. Physiol. London 50: 65–84, 1915–16.
 23. Baker, C. H. Epinephrine‐induced vascular volume changes in dog forelimbs with controlled flow. Am. J. Physiol. 216: 368–372, 1969.
 24. Baker, C. H., and D. L. Davis. Isolated skeletal muscle blood flow and volume changes during contractile activity. Blood Vessels 11: 32–44, 1974.
 25. Baker, C. H., and L. J. O'Brien. Vascular volume changes in the dog forelimb. Am. J. Physiol. 206: 1291–1298, 1964.
 26. Baker, C. H., and R. P. Menninger. Histamine‐induced peripheral volume and flow changes. Am. J. Physiol. 226: 731–737, 1974.
 27. Bancroft, F. W. The venomotor nerves of the hind limb. Am. J. Physiol. 1: 477–485, 1898.
 28. Barcroft, H. Cardiac output and blood distribution. J. Physiol. London 71: 280–291, 1931.
 29. Barcroft, H., and A. Samaan. The explanation of the increase in systemic flow caused by occluding the descending thoracic aorta. J. Physiol. London 85: 47–61, 1935.
 30. Barnes, R. J., E. A. Bower, and T. J. Rink. Haemodynamic responses to stimulation of the cardiac autonomic nerves in the anaesthetized cat with closed chest. J. Physiol. London 299: 55–73, 1980.
 31. Bartelstone, H. J. Role of the veins in venous return. Circ. Res. 8: 1059–1076, 1960.
 32. Bassingthwaighte, J. B. Circulatory transport and the convolution integral. Mayo Clin. Proc. 42: 137–154, 1967.
 33. Bauer, W., H. H. Dale, L. T. Poulsson, and D. W. Richards. The control of circulation through the liver. J. Physiol. London 74: 343–375, 1932.
 34. Beaconsfield, P. Veins after sympathectomy. Surgery 36: 771–776, 1954.
 35. Beneken, J. E. W. A physical approach to hemodynamic aspects of the human cardiovascular system. In: Physical Bases of Circulatory Transport: Regulation and Exchange, edited by E. B. Reeve and A. C. Guyton. Philadelphia, PA: Saunders, 1967, p. 1–45.
 36. Bennett, T. D., C. L. Macanespie, and C. F. Rothe. Active hepatic capacitance responses to neural and humoral stimuli in dogs. Am. J. Physiol. 242 (Heart Circ. Physiol. 11): H1000–H1009, 1982.
 37. Bennett, T. D., and C. F. Rothe. Hepatic capacitance responses to changes in flow and hepatic venous pressure in dogs. Am. J. Physiol. 240: (Heart Circ. Physiol. 9): H18–H28, 1981.
 38. Bergel, D. H. The properties of blood vessels. In: Biomechanics, edited by Y. C. Fung, N. Perrone, and M. Anliker. Englewood Cliffs, NJ: Prentice‐Hall, 1972, p. 105–139.
 39. Bevan, J. A., D. W. Hosmer, B. Ljung, B. L. Pegram, and C. Su. Innervation pattern and neurogenic response of rabbit veins. Blood Vessels 11: 172–182, 1974.
 40. Bevegård, B. S., A. Holmgren, and B. Jonsson. The effect of body position on the circulation at rest and during exercise, with special reference to the influence on the stroke volume. Acta Physiol. Scand. 49: 279–298, 1960.
 41. Bevegård, B. S., and J. T. Shepherd. Changes in tone of limb veins during supine exercise. J. Appl. Physiol. 20: 1–8, 1965.
 42. Bevegård, B. S., and J. T. Shepherd. Effect of local exercise of forearm muscles on forearm capacitance vessels. J. Appl. Physiol. 20: 968–974, 1965.
 43. Bevegård, B. S., and J. T. Shepherd. Circulatory effects of stimulating the carotid arterial stretch receptors in man at rest and during exercise. J. Clin. Invest. 45: 132–142, 1966.
 44. Bevegård, B. S., and J. T. Shepherd. Reaction in man of resistance and capacity vessels in forearm and hand to leg exercise. J. Appl. Physiol. 21: 123–132, 1966.
 45. Bevegård, B. S., and J. T. Shepherd. Regulation of the circulation during exercise in man. Physiol. Rev. 47: 178–213, 1967.
 46. Bohlen, H. G., and R. W. Gore. Comparison of microvascular pressures and diameters in the innervated and denervated rat intestine. Microvasc. Res. 14: 251–264, 1977.
 47. Bohlen, H. G., and R. W. Gore. Microvascular pressures in rat intestinal muscle during direct nerve stimulation. Microvasc. Res. 17: 27–37, 1979.
 48. Bohlen, H. G., P. M. Hutchins, C. E. Rapela, and H. D. Green. Microvascular control in intestinal mucosa of normal and hemorrhaged rats. Am. J. Physiol. 229: 1159–1164, 1975.
 49. Börgstrom, P., and P. O. Grände. Myogenic microvascular response to change of transmural pressure. A mathematical approach. Acta Physiol. Scand. 106: 411–423, 1979.
 50. Borst, J. G. G., and A. Borst‐De Geus. Hypertension explained by Starling's theory of circulatory homeostasis. Lancet 1: 677–682, 1963.
 51. Bourgeois, M. J., B. K. Gilbert, G. van Bernuth, and E. H. Wood. Continuous determination of beat‐to‐beat stroke volume from aortic pressure pulses in the dog. Circ. Res. 39: 15–24, 1976.
 52. Bradley, S. E., P. A. Marks, P. C. Reynell, and J. Meltzer. Circulating splanchnic blood volume in dog and man. Trans. Assoc. Am. Physicians 66: 294–302, 1953.
 53. Braunwald, E., and J. Ross, Jr. Control of cardiac performance. In: Handbook of Physiology. The Cardiovascular System, edited by R. M. Berne and N. Sperelakis. Bethesda, MD: Am. Physiol. Soc., 1979, sect. 2, vol. I, Chapt. 15, p. 533–580.
 54. Braunwald, E., J. Ross, Jr., R. L. Kahler, T. E. Gaffney, A. Goldblatt, and D. T. Mason. Reflex control of the systemic venous bed. Circ. Res. 12: 539–552, 1963.
 55. Brecher, G. A. Mechanisms of venous flow under different degrees of aspiration. Am. J. Physiol. 169: 423–433, 1952.
 56. Brecher, G. A. Venous Return. New York: Grune, 1956.
 57. Brender, D., and M. M. Webb‐Peploe. Influence of carotid baroreceptors on different components of the vascular system. J. Physiol. London 205: 257–274, 1969.
 58. Brooksby, G. A., and D. E. Donald. Measurement of changes in blood flow and blood volume in the splanchnic circulation. J. Appl. Physiol. 31: 930–933, 1971.
 59. Brooksby, G. A., and D. E. Donald. Dynamic changes in splanchnic blood flow and blood volume in dogs during activation of sympathetic nerves. Circ. Res. 29: 227–238, 1971.
 60. Brooksby, G. A., and D. E. Donald. Release of blood from the splanchnic circulation in dogs. Circ. Res. 31: 105–118, 1972.
 61. Brown, E., J. Hopper, Jr., and R. Wennesland. Blood volume and its regulation. Annu. Rev. Physiol. 19: 231–254, 1957.
 62. Browse, N. L., D. E. Donald, and J. T. Shepherd. Role of the veins in the carotid sinus reflex. Am. J. Physiol. 210: 1424–1434, 1966.
 63. Browse, N. L., R. R. Lorenz, and J. T. Shepherd. Response of capacity and resistance vessels of dog's limb to sympathetic nerve stimulation. Am. J. Physiol. 210: 95–102, 1966.
 64. Browse, N. L., and J. T. Shepherd. Response of veins of canine limb to aortic and carotid chemoreceptor stimulation. Am. J. Physiol. 210: 1435–1441, 1966.
 65. Browse, N. L., J. T. Shepherd, and D. E. Donald. Differences in response of veins and resistance vessels in limbs to same stimulus. Am. J. Physiol. 211: 1241–1247, 1966.
 66. Brunner, M. J., A. A. Shoukas, and C. L. MacAnespie. The effect of the carotid sinus baroreceptor reflex on blood flow and volume redistribution in the total systemic vascular bed of the dog. Circ. Res. 48: 274–285, 1981.
 67. Buckberg, G., J. Cohn, and C. Darling. Escherichia coli bacteremic shock in conscious baboons. Ann. Surg. 173: 122–130, 1971.
 68. Burch, G. E. A method for measuring venous tone on digital veins of intact man. Arch. Intern. Med. 94: 724–742, 1954.
 69. Burch, G. E. Evidence for increased venous tone in chronic congestive heart failure. Arch. Intern. Med. 98: 750–766, 1956.
 70. Burton, A. C. Relation of structure to function of the tissues of the wall of blood vessels. Physiol. Rev. 34: 619–642, 1954.
 71. Burton, A. C. Physiology and Biophysics of the Circulation (2nd ed.). Chicago IL: Year Book, 1972.
 72. Busse, R., R. D. Bauer, A. Schaebert, Y. Summa, and E. Wetterer. An improved method for the determination of the pulse transmission characteristics of arteries in vivo. Circ. Res. 44: 630–636, 1979.
 73. Caldini, P., S. Permutt, J. A. Waddell, and R. L. Riley. The effect of epinephrine on pressure, flow and volume relationships in the systemic circulation of dogs. Circ. Res. 34: 606–623, 1974.
 74. Caliva, F. S., R. J. Napodano, R. M. Stafford, W. Loftus, and R. H. Lyons. Digital hemodynamics in the normotensive and hypertensive states. Circulation 28: 421–426, 1963.
 75. Calvelo, M. G., F. M. Abboud, D. R. Ballard, and W. Abdel‐Sayed. Reflex vascular responses to stimulation of chemoreceptors with nicotine and cyanide. Circ. Res. 27: 259–276, 1970.
 76. Carneiro, J. J., and D. E. Donald. Blood reservoir function of dog spleen, liver, and intestine. Am. J. Physiol. 232 (Heart Circ. Physiol. 1): H67–H72, 1977.
 77. Carneiro, J. J., and D. E. Donald. Change in liver blood flow and blood content in dogs during direct and reflex alteration of hepatic sympathetic nerve activity. Circ. Res. 40: 150–158, 1977.
 78. Carruba, M., V. Mandelli, and P. Mantegazza. The effect of angiotensin II and other vasoactive drugs on isolated portal vein preparations. Arch. Int. Pharmacodyn. Ther. 201: 224–233, 1973.
 79. Carswell, F., R. Hainsworth, and J. R. Ledsome. The effects of distension of the pulmonary vein‐atrial junctions upon peripheral vascular resistance. J. Physiol. London 207: 1–14, 1970.
 80. Celander, O. The range of control exercised by the “sympathico‐adrenal system.” Acta Physiol. Scand. 32, Suppl. 116: 1–132, 1954.
 81. Chien, S. Cell volume, plasma volume and cell percentage in splanchnic circulation of splenectomized dogs. Circ. Res. 12: 22–28, 1963.
 82. Chien, S. Role of the sympathetic nervous system in hemorrhage. Physiol. Rev. 47: 214–288, 1967.
 83. Chien, S. Hemodynamics in hemorrhage: influences of sympathetic nerves and pentobarbital anesthesia. Proc. Soc. Exp. Biol. Med. 136: 271–275, 1971.
 84. Chien, S., C. Chang, R. J. Dellenback, S. Usami, and M. I. Gregersen. Hemodynamic changes in endotoxin shock. Am. J. Physiol. 210: 1401–1410, 1966.
 85. Chien, S., R. J. Dellenback, S. Usami, D. A. Burton, P. F. Gustavson, and V. Magazinovic. Blood volume, hemodynamic, and metabolic changes in hemorrhagic shock in normal and splenectomized dogs. Am. J. Physiol. 225: 866–879, 1973.
 86. Chien, S., R. J. Dellenback, S. Usami, K. Treitel, C. Chang, and M. I. Gregersen. Blood volume and its distribution in endotoxin shock. Am. J. Physiol. 210: 1411–1418, 1966.
 87. Chien, S., and L. Krakoff. Hemodynamics of dogs in histamine shock, with special reference to splanchnic blood volume and flow. Circ. Res. 12: 29–39, 1963.
 88. Chinard, F. P., T. Enns, C. A. Goresky, and M. F. Nolan. Renal transit times and distribution volumes of T‐1824, creatinine, and water. Am. J. Physiol. 209: 243–252, 1965.
 89. Clement, D. L., and J. T. Shepherd. Influence of muscle afferents on cutaneous and muscle vessels in the dog. Circ. Res. 35: 177–183, 1974.
 90. Cobbold, A., B. Folkow, O. Lundgren, and I. Wallentin. Blood flow, capillary filtration coefficients and regional blood volume responses in the intestine of the cat during stimulation of the hypothalamic “defence” area. Acta Physiol. Scand. 61: 467–475, 1964.
 91. Cohn, J. N. Central venous pressure as a guide to volume expansion. Ann. Intern. Med. 66: 1283–1287, 1967.
 92. Cohn, J. N., and A. L. Pinkerson. Intrahepatic distribution of hepatic arterial and portal venous flows in the dog. Am. J. Physiol. 216: 285–289, 1969.
 93. Coleman, T. G. Venous compliance and the hemodynamics of hypertension. Recent Adv. Hypertension 2: 185–191, 1975.
 94. Coleman, T. G., H. J. Granger, and A. C. Guyton. Whole‐body circulatory autoregulation and hypertension. Circ. Res. 28: Suppl. II 76–87, 1971.
 95. Coleman, T. G., R. D. Manning, Jr., R. A. Norman, Jr., and A. C. Guyton. Control of cardiac output by regional blood flow distribution. Ann. Biomed. Eng. 2: 149–163, 1974.
 96. Coles, D. R., and G. C. Patterson. The capacity and distensibility of the blood vessels of the human hand. J. Physiol. London 135: 163–170, 1957.
 97. Comroe, J. H., Jr., and L. Mortimer. The respiratory and cardiovascular responses of temporally separated aortic and carotid bodies to cyanide, nicotine, phenyldiguanide and serotonin. J. Pharmacol. Exp. Ther. 146: 33–41, 1964.
 98. Conrad, W. A. Pressure‐flow relationships in collapsible tubes. IEEE Trans. Biomed. Eng. 16: 284–295, 1969.
 99. Corcondilas, A., D. E. Donald, and J. T. Shepherd. Assessment by two independent methods of the role of cardiac output in the pressor response to carotid occlusion. J. Physiol. London 170: 250–262, 1964.
 100. Coulam, C. M., H. R. Warner, E. H. Wood, and J. B. Bassingthwaighte. A transfer function analysis of coronary and renal circulation calculated from upstream and downstream indicator‐dilution curves. Circ. Res. 19: 879–890, 1966.
 101. Cowley, A. W., S. J. Switzer, and M. M. Guinn. Evidence and quantification of the vasopressin arterial pressure control system in the dog. Circ. Res. 46: 58–67, 1980.
 102. Cox, R. H., and R. J. Bagshaw. Influence of anesthesia on the response to carotid hypotension in dogs. Am. J. Physiol. 237 (Heart Circ. Physiol. 6): H424–H532, 1979.
 103. Cox, R. H., and R. J. Bagshaw. Effects of anesthesia on carotid sinus reflex control of arterial hemodynamics in the dog. Am. J. Physiol. 239 (Heart Circ. Physiol. 8): H681–H691, 1980.
 104. Crane, M. G., J. E. Holloway, R. Adams, and I. C. Woodward. The relative mean transit times of red cells and plasma in the portal circulation of the dog. J. Nucl. Med. 4: 296–305, 1963.
 105. Cruz, C. C., R. F. Grover, J. T. Reeves, J. T. Maher, A. Cymerman, and J. C. Denniston. Sustained venoconstriction in man supplemented with CO2 at high altitude. J. Appl. Physiol. 40: 96–100, 1976.
 106. Curd, L. H., Jr., and M. C. Conrad. Role of sympathetica in the response to acute venous occlusion. Am. J. Physiol. 233 (Heart Circ. Physiol. 2): H264–H268, 1977.
 107. Daly, M. D., J. L. Hazzledine, and A. Howe. Reflex respiratory and peripheral vascular responses to stimulation of the isolated perfused aortic arch chemoreceptors of the dog. J. Physiol. London 177: 300–322, 1965.
 108. Daly, M. D., P. I. Korner, J. E. Angell‐James, and J. R. Oliver. Cardiovascular‐respiratory reflex interactions between carotid bodies and upper‐airways receptors in the monkey. Am. J. Physiol. 234 (Heart Circ. Physiol. 3): H293–H299, 1978.
 109. Daly, M. D., and M. J. Scott. The effects of stimulation of the carotid body chemoreceptors on heart rate in the dog. J. Physiol. London 144: 148–166, 1958.
 110. Daly, M. D., and M. J. Scott. An analysis of the primary cardiovascular reflex effects of stimulation of the carotid body chemoreceptors in the dog. J. Physiol. London 162: 555–573, 1962.
 111. Davies, B. N., and P. G. Withrington. The actions of drugs on the smooth muscle of the capsule and blood vessels of the spleen. Pharmacol. Rev. 25: 373–413, 1973.
 112. Deavers, S., E. L. Smith and R. A. Huggins. Control circulatory values of morphine‐pentobarbitalized dogs. Am. J. Physiol. 199: 797–799, 1960.
 113. De Jager, S. Experiments and considerations on haemodynamics. J. Physiol. London 7: 130–215, 1886.
 114. Delius, W. Variability in measurement of venous tone reactions with the occluded limb technique. Scand. J. Clin. Lab. Invest. 27: 207–212, 1971.
 115. Delius, W., and E. Kellerova. Reactions of arterial and venous vessels in the human forearm and hand to deep breath or mental strain. Clin. Sci. 40: 271–282, 1971.
 116. Diana, J. N., J. Schwinghamer, and S. Young. Direct effect of histamine on arterial and venous resistance in isolated dog hindlimb. Am. J. Physiol. 214: 494–505, 1968.
 117. Diana, J. N., and C. A. Shadur. Effect of arterial and venous pressure on capillary pressure and vascular volume. Am. J. Physiol. 225: 637–650, 1973.
 118. Dickinson, C. J. Neurogenic Hypertension. Oxford, UK: Blackwell, 1965, p. 120–121.
 119. DiSalvo, J., P. E. Parker, J. B. Scott, and F. J. Haddy. Carotid baroceptor influence on total and segmental resistances in skin and muscle vasculatures. Am. J. Physiol. 220: 1970–1978, 1971.
 120. Donald, D. E., and L. L. Aarhus. Active and passive release of blood from canine spleen and small intestine. Am. J. Physiol. 227: 1166–1172, 1974.
 121. Donald, D. E., and A. J. Edis. Comparison of aortic and carotid baroreflexes in the dog. J. Physiol. London 215: 521–538, 1971.
 122. Donald, D. E., and J. T. Shepherd. Reflexes from the heart and lungs: physiological curiosities or important regulatory mechanisms. Cardiovasc. Res. 12: 449–469, 1978.
 123. Donald, D. E., and J. T. Shepherd. Cardiac receptors: normal and disturbed function. Am. J. Cardiol. 44: 873–878, 1979.
 124. Donegan, J. F. The physiology of the veins. J. Physiol. London 55: 226–245, 1921.
 125. Drees, J. A., and C. F. Rothe. Reflex venoconstriction and capacity vessel pressure‐volume relationships in dogs. Circ. Res. 34: 360–373, 1974.
 126. Duggan, J. J., V. L. Love, and R. H. Lyons. A study of reflex venomotor reactions in man. Circulation 7: 869–873, 1953.
 127. Duomarco, J. L., and R. Rimini. Energy and hydraulic gradients along systemic veins. Am. J. Physiol. 178: 215–220, 1954.
 128. Echt, M., J. Düweling, O. H. Gauer, and L. Lange. Effective compliance of the total vascular bed and intrathoracic compartment derived from changes in central venous pressure induced by volume changes in man. Circ. Res. 34: 61–68, 1974.
 129. Echt, M., and L. Lange. Continuous measurement of venous diameter by a combined photoelectric‐photographic and plethysmographic technique. Pfluegers Arch. 331: 153–159, 1972.
 130. Echt, M., L. Lange, and O. H. Gauer. Changes of peripheral venous tone and central transmural venous pressure during immersion in a thermo‐neutral bath. Pfluegers Arch. 352: 211–217, 1974.
 131. Eckstein, J. W., W. K. Hamilton, and J. M. McCammond. Pressure‐volume changes in the forearm veins of man during hyperventilation. J. Clin. Invest. 37: 956–961, 1958.
 132. Eckstein, J. W., W. K. Hamilton, and J. M. McCammond. Effect of thiopental on peripheral venous tone. Anesthesiology 22: 525–528, 1961.
 133. Eckstein, J. W., and A. W. Horsley. Effects of hypoxia on peripheral venous tone in man. J. Lab. Clin. Med. 56: 847–853, 1960.
 134. Eckstein, J. W., M. G. Wendling, and F. M. Abboud. Forearm venous responses to stimulation of adrenergic receptors. J. Clin. Invest. 44: 1151–1159, 1965.
 135. Edis, A. J., D. E. Donald, and J. T. Shepherd. Cardiovascular reflexes from stretch of pulmonary vein‐atrial junctions in the dog. Circ. Res. 27: 1091–1100, 1970.
 136. Edis, A. J., and J. T. Shepherd. Selective denervation of aortic arch baroreceptors and chemoreceptors in dogs. J. Appl. Physiol. 30: 294–296, 1971.
 137. Elsner, R., W. N. Hanafee, and D. D. Hammond. Angiography of the inferior vena cava of the harbor seal during simulated diving. Am. J. Physiol. 220: 1155–1161, 1971.
 138. Emerson, T. E., Jr. Effects of angiotensin, epinephrine, norepinephrine, and vasopressin on venous return. Am. J. Physiol. 210: 933–942, 1966.
 139. Engelberg, J., and A. B. DuBois. Mechanics of pulmonary circulation in isolated rabbit lungs. Am. J. Physiol. 196: 401–414, 1959.
 140. Epstein, S. E., G. D. Beiser, M. Stampfer, and E. Braunwald. Role of the venous system in baroreceptor‐mediated reflexes in man. J. Clin. Invest. 47: 139–152, 1968.
 141. Epstein, S. E., M. Stampfer, and G. D. Beiser. Role of the capacitance and resistance vessels in vasovagal syncope. Circulation 37: 524–533, 1968.
 142. Fell, C., and R. F. Rushmer. Anatomic distribution of induced changes in blood volume, evaluated by regional weighing. J. Appl. Physiol. 16: 85–88, 1961.
 143. Ferrario, C. M., and I. H. Page. Current views concerning cardiac output in the genesis of experimental hypertension. Circ. Res. 43: 821–831, 1978.
 144. Fishman, A. P., and D. W. Richards (editors). Circulation of the Blood—Men and Ideas. New York: Oxford Univ. Press, 1964.
 145. Floyer, M. A., and P. C. Richardson. Mechanisms of arterial hypertension. Role of capacity and resistance vessels. Lancet 1: 253–255, 1961.
 146. Folkow, B., B. Johansson, and S. Mellander. The comparative effects of angiotensin and noradrenaline on consecutive vascular sections. Acta. Physiol. Scand. 53: 99–104, 1961.
 147. Folkow, B., D. H. Lewis, O. Lundgren, S. Mellander, and I. Wallentin. The effect of graded vasoconstrictor fibre stimulation on the intestinal resistance and capacitance vessels. Acta Physiol. Scand. 61: 445–457, 1964.
 148. Folkow, B., S. Mellander, and B. Öberg. The range of effect of the sympathetic vasodilator fibres with regard to consecutive sections of the muscle vessels. Acta Physiol. Scand. 53: 7–22, 1961.
 149. Franklin, K. J. Valves in veins: an historical survey. Proc. R. Soc. Med. 21: 1–33, 1927.
 150. Franklin, K. J. A Monograph on Veins. Springfield, IL: Thomas, 1937.
 151. Fray, J. C. S., L. G. Siwek, W. M. Strull, R. N. Steller, and J. M. Wilson. Influence of dietary sodium on renin activity and arterial pressure during anesthesia. Am. J. Physiol. 231: 1185–1190, 1976.
 152. Frye, R. L., and E. Braunwald. Studies on Starling's law of the heart. I. The circulatory response to acute hypervolemia and its modification by ganglionic blockade. J. Clin. Invest. 39: 1043–1050, 1960.
 153. Fuchs, R. M., D. L. Rutlen, and W. J. Powell, Jr. Effect of dobutamine on systemic capacity in the dog. Circ. Res. 46: 133–138, 1980.
 154. Furness, J. B., and J. M. Marshall. Correlation of the directly observed responses of mesenteric vessels of the rat to nerve stimulation and noradrenaline with the distribution of adrenergic nerves. J. Physiol. London 239: 75–88, 1974.
 155. Furnival, C. M., R. J. Linden, and H. M. Snow. Reflex effects on the heart of stimulating left atrial receptors. J. Physiol. London 218: 447–463, 1971.
 156. Fuxe, K., and G. Sedvall. The distribution of adrenergic nerve fibres to the blood vessels in skeletal muscle. Acta Physiol. Scand. 64: 75–86, 1965.
 157. Gaehtgens, P., and U. Uekermann. The distensibility of mesenteric venous microvessels. Pfluegers Arch. 330: 206–216, 1971.
 158. Gaskell, P., and A. C. Burton. Local postural vasomotor reflexes arising from the limb veins. Circ. Res. 1: 27–39, 1953.
 159. Gauer, O. H. Mechanoreceptors in the intrathoracic circulation and plasma volume control. In: The Kidney in Liver Disease, edited by M. Epstein. New York: Elsevier, 1978, p. 3–17.
 160. Gauer, O. H., and J. P. Henry. Circulatory basis of fluid volume control. Physiol. Rev. 43: 423–481, 1963.
 161. Gauer, O. H., J. P. Henry, and C. Behn. The regulation of extracellular fluid volume. Annu. Rev. Physiol. 32: 547–595, 1970.
 162. Gauer, O. H., J. P. Henry, and H. O. Sieker. Changes in central venous pressure after moderate hemorrhage and transfusion in man. Circ. Res. 4: 79–84, 1956.
 163. Gauer, O. H., and H. L. Thron. Properties of veins in vivo: integrated effects of their smooth muscle. Physiol. Rev. 42, Suppl. 5: 283–303, 1962.
 164. Gauer, O. H., and H. L. Thron. Postural changes in the circulation. In: Handbook of Physiology. Circulation, edited by W. F. Hamilton. Washington, DC: Am. Physiol. Soc., 1965, sect. 2, vol. III, chapt. 67, p. 2409–2439.
 165. Gero, J., and M. Gerova. Sympathetic regulation of collecting vein. Experientia 24: 811–812, 1968.
 166. Gilbert, R. P. Mechanisms of the hemodynamic effects of endotoxin. Physiol. Rev. 40: 245–279, 1960.
 167. Gilmore, J. P., and I. H. Zucker. The contribution of neural pathways to blood volume homeostasis in the subhuman primate. Basic Res. Cardiol. 75: 281–288, 1980.
 168. Goetz, K. L., G. C. Bond, and D. D. Bloxham. Atrial receptors and renal function. Physiol. Rev. 55: 157–205, 1975.
 169. Gootman, P. M., S. Baez, and S. M. Feldman. Microcirculatory responses to central neural stimulation in the rat. Am. J. Physiol. 225: 1375–1383, 1973.
 170. Gore, R. W., and H. G. Bohlen. Pressure regulation in the microcirculation. Federation Proc. 34: 2031–2137, 1975.
 171. Gore, R. W., and H. G. Bohlen. Microvascular pressures in rat intestinal muscle and mucosal villi. Am. J. Physiol. 233 (Heart Circ. Physiol. 2): H685–H693, 1977.
 172. Goresky, C. A. A linear method for determining liver sinusoidal and extravascular volumes. Am. J. Physiol. 204: 626–640, 1963.
 173. Goresky, C. A., and M. Silverman. Effect of correction of catheter distortion on calculated liver sinusoidal volumes. Am. J. Physiol. 207; 883–892, 1964.
 174. Gow, B. S. Circulatory correlates: vascular impedance, resistance, and capacity. In: Handbook of Physiology. The Cardiovascular System Vascular Smooth Muscle, edited by D. F. Bohr, A. P. Somlyo, and H. V. Sparks, Jr. Bethesda, MD: Am. Physiol. Soc., 1980, sect. 2, vol. II, chapt. 14, p. 353–408.
 175. Grände, P.‐O. Influence of neural and humoral beta‐adrenoceptor stimulation on dynamic myogenic microvascular reactivity in cat skeletal muscle. Acta Physiol. Scand. 106: 457–465, 1979.
 176. Green, H. D. Circulation: physical principles. In: Medical Physics, edited by O. Glasser. Chicago, IL: Year Book, 1944, vol. I, p. 208–232.
 177. Green, H. D. Circulatory system: physical principles. In: Medical Physics, edited by O. Glasser. Chicago, IL: Year Book, 1950, vol. II, p. 228–251.
 178. Green, H. D., K. Ottis, and T. Kitchen. Autonomic stimulation and blockade on canine splenic inflow, outflow and weight. Am. J. Physiol. 198: 424–428, 1960.
 179. Green, J. F. Pressure‐flow relationships in the peripheral circulation of the dog with isoprenaline. Clin. Exp. Pharmacol. Physiol. 2: 181–184, 1975.
 180. Green, J. F. Pressure‐flow and volume‐flow relationships of the systemic circulation of the dog. Am. J. Physiol. 229: 761–769, 1975.
 181. Green, J. F. Mechanism of action of isoproterenol on venous return. Am. J. Physiol. 232 (Heart Circ. Physiol. 1): H152–H156, 1977.
 182. Green, J. F., and A. P. Jackman. Mechanism of the increased vascular capacity produced by mild perfusion hypothermia in the dog. Circ. Res. 44: 411–419, 1979.
 183. Green, J. F., A. P. Jackman, and K. A. Krohn. Mechanism of morphine‐induced shifts in blood volume between extracorporeal reservoir and the systemic circulation of the dog under conditions of constant blood flow and vena caval pressures. Circ. Res. 42: 479–486, 1978.
 184. Green, J. F., A. P. Jackman, and G. Parsons. The effects of morphine on the mechanical properties of the systemic circulation in the dog. Circ. Res. 42: 474–478, 1978.
 185. Greenwald, S. E., D. L. Newman, and N. L. R. Bowden. Comparison between theoretical and directly measured pulse propagation velocities in the aorta of the anaesthetized dog. Cardiovasc. Res. 12: 407–414, 1978.
 186. Greenway, C. V. Effects of sodium nitroprusside, isosorbide dinitrate, isoproterenol, phentolamine and prazosin on hepatic venous responses to sympathetic nerve stimulation in the cat. J. Pharmacol. Exp. Ther. 209: 56–61, 1979.
 187. Greenway, C. V., and I. R. Innes. Effects of splanchnic nerve stimulation on cardiac preload, afterload, and output in cats. Circ. Res. 46: 181–189, 1980.
 188. Greenway, C. V., and W. W. Lautt. Effects of hepatic venous pressure on transsinusoidal fluid transfer in the liver of the anesthetized cat. Circ. Res. 26: 697–703, 1970.
 189. Greenway, C. V., and W. W. Lautt. Effects of adrenaline, isoprenaline and histamine on transsinusoidal fluid filtration in the cat liver. Br. J. Pharmacol. 44: 185–191, 1972.
 190. Greenway, C. V., and W. W. Lautt. Effects of infusions of catecholamines, angiotensin, vasopressin and histamine on hepatic blood volume in the anaesthetized cat. Br. J. Pharmacol. 44: 177–184, 1972.
 191. Greenway, C. V., and G. E. Lister. Capacitance effects and blood reservoir function in the splanchnic vascular bed during non‐hypotensive haemorrhage and blood volume expansion in anaesthetized cats. J. Physiol. London 237: 279–294, 1974.
 192. Greenway, C. V., and G. Oshiro. Comparison of the effects of hepatic nerve stimulation on arterial flow, distribution of arterial and portal flows and blood content in the livers of anaesthetized cats and dogs. J. Physiol. London 227: 487–501, 1972.
 193. Greenway, C. V., and G. Oshiro. Effects of histamine on hepatic volume (outflow block) in anaesthetized dogs. Br. J. Pharmacol. 47: 282–290, 1973.
 194. Greenway, C. V., G. D. Scott, and J. Zink. Sites of autoregulatory escape of blood flow in the mesenteric vascular bed. J. Physiol. London 259: 1–12, 1976.
 195. Greenway, C. V., and R. D. Stark. Vascular responses of the spleen to rapid haemorrhage in the anaesthetized cat. J. Physiol. London 204: 169–179, 1969.
 196. Greenway, C. V., and R. D. Stark. The vascular responses of the spleen to intravenous infusions of catecholamines, angiotensin and vasopressin in the anaesthetized cat. Br. J. Pharmacol. 38: 583–592, 1970.
 197. Greenway, C. V., R. D. Stark, and W. W. Lautt. Capacitance responses and fluid exchange in the cat liver during stimulation of the hepatic nerves. Circ. Res. 25: 277–284, 1969.
 198. Gregersen, M. I., and R. A. Rawson. Blood volume. Physiol. Rev. 39: 307–342, 1959.
 199. Griffith, F. R., Jr., and F. E. Emery. The vasomotor control of the liver circulation. Am. J. Physiol. 95: 20–34, 1930.
 200. Grim, E. The flow of blood in the mesenteric vessels. In: Handbook of Physiology. Circulation, edited by W. F. Hamilton. Washington, DC: Am. Physiol. Soc., 1963, sect. 2, vol II, chapt. 42, p. 1439–1456.
 201. Grodins, F. S. Integrative cardiovascular physiology: a mathematical synthesis of cardiac and blood vessel hemodynamics. Q. Rev. Biol. 34: 93–116, 1959.
 202. Guntheroth, W. G. In vivo measurement of dimensions of veins with implications regarding control of venous return. IEEE Trans. Biomed. Eng. 16: 247–253, 1969.
 203. Guntheroth, W. G., and A. J. Felsenfeld. Splenic constriction with endotoxin shock in the dog. J. Appl. Physiol. 30: 517–520, 1971.
 204. Guntheroth, W. G., G. A. McGough, and G. L. Mullins. Continuous recording of splenic diameter, vein flow, and hematocrit in intact dogs. Am. J. Physiol. 213: 690–694, 1967.
 205. Guntheroth, W. G., and G. L. Mullins. Liver and spleen as venous reservoirs. Am. J. Physiol. 204: 35–41, 1963.
 206. Gupta, P. D., J. P. Henry, R. Sinclair, and R. Von Baumgarten. Responses of atrial and aortic baroreceptors to nonhypotensive hemorrhage and to transfusion. Am. J. Physiol. 211: 1429–1437, 1966.
 207. Guyton, A. C. Determination of cardiac output by equating venous return curves with cardiac response curves. Physiol. Rev. 35: 123–129, 1955.
 208. Guyton, A. C. Venous return. In: Handbook of Physiology. Circulation, edited by W. F. Hamilton. Washington, DC: Am. Physiol. Soc., 1963, sect. 2, vol. II, chapt. 32, p. 1099–1133.
 209. Guyton, A. C. The systemic circulation. In: Textbook of Medical Physiology (5th ed.). Philadelphia, PA: Saunders, 1976, p. 237–249.
 210. Guyton, A. C., G. G. Armstrong, and P. L. Chipley. Pressure‐volume curves of the arterial and venous systems in live dogs. Am. J. Physiol. 184: 253–258, 1956.
 211. Guyton, A. C., and T. G. Coleman. Long‐term regulation of the circulation: interrelationships with body fluid volumes. In: Physical Bases of Circulatory Transport: Regulation and Exchange, edited by E. B. Reeve and A. C. Guyton. Philadelphia, PA: Saunders, 1967, p. 179–201.
 212. Guyton, A. C., T. G. Coleman, J. D. Bower, and H. J. Granger. Circulatory control in hypertension. Circ. Res. 26/27, Suppl. II: 135–147, 1970.
 213. Guyton, A. C., T. G. Coleman, and H. J. Granger. Circulation: overall regulation. Annu. Rev. Physiol. 34: 13–46, 1972.
 214. Guyton, A. C., B. H. Douglas, J. B. Langston, and T. Q. Richardson. Instantaneous increase in mean circulatory pressure and cardiac output at onset of muscular activity. Circ. Res. 11: 431–441, 1962.
 215. Guyton, A. C., and F. P. Greganti. A physiologic reference point for measuring circulatory pressures in the dog—particularly venous pressure. Am. J. Physiol. 185: 137–141, 1956.
 216. Guyton, A. C., C. E. Jones, and T. G. Coleman. Circulatory Physiology: Cardiac Output and its Regulation (2nd ed.). Philadelphia, PA: Saunders, 1973.
 217. Guyton, A. C., D. Polizo, and G. G. Armstrong. Mean circulatory filling pressure measured immediately after cessation of heart pumping. Am. J. Physiol. 179: 261–272, 1954.
 218. Guyton, A. C., J. H. Satterfield, and J. W. Harris. Dynamics of central venous resistance with observations on static blood pressure. Am. J. Physiol. 169: 691–699, 1952.
 219. Guyton, A. C., A. E. Taylor, and H. J. Granger. Circulatory Physiology. II. Dynamics and Control of the Body Fluids. Philadelphia, PA: Saunders, 1975.
 220. Haddy, F. J., and R. P. Gilbert. The relation of a venous‐arteriolar reflex to transmural pressure and resistance in small and large systemic vessels. Circ. Res. 4: 25–32, 1956.
 221. Hadjiminas, J., and B. Öberg. Effects of carotid baroreceptor reflexes on venous tone in skeletal muscle and intestine of the cat. Acta Physiol. Scand. 72: 518–532, 1968.
 222. Hainsworth, R., and F. Karim. Responses of abdominal vascular capacitance in the anaesthetized dog to changes in carotid sinus pressure. J. Physiol. London 262: 659–677, 1976.
 223. Hainsworth, R., F. Karim, K. H. McGregor, and L. M. Wood. Carotid baroreceptors and the hind‐limb vascular capacitance (Abstract). J. Physiol. London 293: 21P, 1979.
 224. Hainsworth, R., F. Karim, K. H. McGregor, and L. M. Wood. Carotid body chemoreceptors and abdominal vascular capacitance in the dog (Abstract). J. Physiol. London 307: 75P–76P, 1980.
 225. Hainsworth, R., F. Karim, and O. A. Sofola. Left ventricular inotropic responses to stimulation of carotid body chemoreceptors in anaesthetized dogs. J. Physiol. London 287: 455–466, 1979.
 226. Hainsworth, R., F. Karim, and J. B. Stoker. The influence of aortic baroreceptors on venous tone in the perfused hind limb of the dog. J. Physiol. London 244: 337–351, 1975.
 227. Hainsworth, R., and R. J. Linden. Reflex control of vascular capacitance. In: Cardiovascular Physiology III, edited by A. C. Guyton and D. B. Young. Baltimore, MD: University Park, 1979, vol. 18, p. 67–124. (Int. Rev. Physiol. Ser.)
 228. Hakim, T. S., C. A. Dawson, and J. H. Linehan. Hemodynamic responses of dog lung lobe to lobar venous occlusion. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 47: 145–152, 1979.
 229. Hammill, S. C., W. W. Wagner, Jr., L. P. Latham, W. W. Frost, and J. V. Weil. Autonomic cardiovascular control during hypoxia and in the dog. Circ. Res. 44: 569–575, 1979.
 230. Hanson, K. M., and P. C. Johnson. Evidence for local arteriovenous reflex in intestine. J. Appl. Physiol. 17: 509–513, 1962.
 231. Harlan, J. C., E. E. Smith, and T. Q. Richardson. Pressure‐volume curves of the systemic and pulmonary circuit. Am. J. Physiol. 213: 1499–1503, 1967.
 232. Harris, P. D., E. K. Greenwald, and P. A. Nicoll. Neural mechanisms in small vessel response to hemorrhage in the unanesthetized bat. Am. J. Physiol. 218: 560–565, 1970.
 233. Henderson, Y. Tonus and the venopressor mechanism: The clinical physiology of a major mode of death. Medicine 22: 223–249, 1943.
 234. Henney, R. P., J. S. Vasko, R. K. Brawley, H. N. Oldham, and A. G. Morrow. Effect of morphine on the resistance and capacitance vessels of the peripheral circulation. Am. Heart J. 72: 242–250, 1966.
 235. Henriksen, O., and P. Sejrsen. Effect of “vein pump” activation upon venous pressure and blood flow in human subcutaneous tissue. Acta Physiol. Scand. 100: 14–21, 1977.
 236. Henry, J. P., and O. H. Gauer. The influence of temperature upon venous pressure in the foot. J. Clin. Invest. 29: 855–861, 1950.
 237. Henry, J. P., O. H. Gauer, and J. L. Reeves. Evidence of the atrial location of receptors influencing urine flow. Circ. Res. 4: 85–90, 1956.
 238. Herndon, C. W., and K. Sagawa. Combined effects of aortic and right atrial pressures on aortic flow. Am. J. Physiol. 217: 65–72, 1969.
 239. Hess, M. L. Concise review: subcellular function in the acutely failing myocardium. Circ. Shock 6: 119–136, 1979.
 240. Heymans, C., J. J. Bouckaert, and L. Dautrebande. Sinus carotidien et réflexes vénomoteurs mésentériques. C. R. Soc. Biol. 105: 217–219, 1930.
 241. Heymans, C., J. J. Bouckaert, and L. Dautrebande. Sur la régulation réflexe de la circulation par les nerfs vasosensibles du sinuscarotidien. Arch. Int. Pharmacodyn. Ther. 40: 292–343, 1931.
 242. Heymans, C., and E. Neil. Reflexogenic Areas of the Cardiovascular System. Boston, MA: Little, Brown, 1958.
 243. Hinshaw, L. B., T. E. Emerson, Jr., and D. A. Reins. Cardiovascular responses of the primate in endotoxin shock. Am. J. Physiol. 210: 335–340, 1966.
 244. Hinshaw, L. B., M. M. Jordan, and J. A. Vick. Histamine release and endotoxin shock in the primate. J. Clin. Invest. 40: 1631–1637, 1961.
 245. Hinshaw, L. B., D. A. Reins, and L. Wittmers. Venous‐arteriolar response in the canine liver. Proc. Soc. Exp. Biol. Med. 118: 979–982, 1965.
 246. Hinshaw, L. B., J. A. Vick, C. H. Carlson, and Y‐L. Fan. Role of histamine in endotoxin shock. Proc. Soc. Exp. Biol. Med. 104: 379–381, 1960.
 247. Hirakawa, S. Capacitance of systemic and pulmonary circulatory system during acute venous congestion. Jpn. Circ. J. 37: 753–760, 1973.
 248. Hirakawa, S., H. Ito, Y. Kondo, I. Watanabe, K. Hiei, S. Banno, and S. Hayase. The mean circulatory pressure, reproducibility of its measurements and the effect of phenylephrine with a note on the effect of pentobarbital. Jpn. Circ. J. 39: 403–409, 1975.
 249. Holt, J. P. The collapse factor in the measurement of venous pressure. Am. J. Physiol. 134: 292–299, 1941.
 250. Holt, J. P. Flow through collapsible tubes and through in situ veins. IEEE Trans. Biomed. Eng. 16: 274–283, 1969.
 251. Honda, T., J. M. Fuqua, C. H. Edmonds, C. W. Hibbs, and T. Akutsu. Applications of total artificial heart for studies of circulatory physiology: measurement of resistance to venous return in postoperative awake calves. Ann. Biomed. Eng. 4: 271–279, 1976.
 252. Hooker, D. R. The veno‐pressor mechanism. Am. J. Physiol. 46: 591–598, 1918.
 253. Horvath, S. M., T. Kelly, G. E. Folk, Jr., and B. K. Hutt. Measurement of blood volumes in splanchnic bed of the dog. Am. J. Physiol. 189: 573–575, 1957.
 254. Hosomi, H., and K. Sagawa. Effect of pentobarbital anesthesia on hypotension after 10% hemorrhage in the dog. Am. J. Physiol. 236 (Heart Circ. Physiol. 5): H607–H612, 1979.
 255. Hsu, H. O., R. F. Hickey, and A. R. Forbes. Morphine decreases peripheral vascular resistance and increases capacitance in man. Anesthesiology 50: 98–102, 1979.
 256. Iizuka, T., A. L. Mark, M. G. Wendling, P. G. Schmid, and J. W. Eckstein. Differences in responses of saphenous and mesenteric veins to reflex stimuli. Am. J. Physiol. 219: 1066–1070, 1970.
 257. Imai, Y., K. Satoh, and N. Taira. Role of the peripheral vasculature in changes in venous return caused by isoproterenol, norepinephrine, and methoxamine in anesthetized dogs. Circ. Res. 43: 553–561, 1978.
 258. Intaglietta, M., and B. W. Zweipach. Geometrical model of the microvasculature of rabbit omentum from in vivo measurements. Circ. Res. 28: 593–600, 1971.
 259. Ishikawa, N., T. Ichikawa, and T. Shigei. Possible embryogenetical differences of the dog venous system in sensitivity to vasoactive substances. Jpn. J. Pharmacol. 30: 807–818, 1980.
 260. Jackman, A. P., and J. F. Green. A model describing the intravascular distribution of blood volume following a volume load. Comput. Biol. Med. 5: 297–302, 1975.
 261. Janssens, W. J., and P. M. Vanhoutte. Instantaneous changes of alpha‐adrenoceptor affinity caused by moderate cooling in canine cutaneous veins. Am. J. Physiol. 234 (Heart Circ. Physiol. 3): H330–H337, 1978.
 262. Johansson, B., and S. Mellander. Static and dynamic components in the vascular myogenic response to passive changes in length as revealed by electrical and mechanical recordings from the rat portal vein. Circ. Res. 36: 76–83, 1975.
 263. Johns, B. L., and C. F. Rothe. Delayed vascular compliance and fluid exchange in the canine intestine. Am. J. Physiol. 234 (Heart Circ. Physiol. 3): H660–H669, 1978.
 264. Johnson, P. C. Myogenic nature of increase in intestinal vascular resistance with venous pressure elevation. Circ. Res. 7: 992–999, 1959.
 265. Johnson, P. C. Effect of venous pressure on mean capillary pressure and vascular resistance in the intestine. Circ. Res. 16: 294–300, 1965.
 266. Johnson, P. C. Measurement of microvascular dimensions in vivo. J. Appl. Physiol. 23: 593–596, 1967.
 267. Johnson, P. C. Myogenic tone in resistance vessels. In: Mechanisms of Vasodilatation: Proceeding, edited by P. M. Vanhoutte and I. Leusen. Basel: Karger, 1978, p. 73–78. (Official Satellite Symp. Int. Congr. Physiol. Sci., Wilryk, July 10–12, 1977.)
 268. Johnson, P. C. The myogenic response. In: Handbook of Physiology. The Cardiovascular System, edited by D. F. Bohr, A. P. Somlyo, and H. V. Sparks, Jr. Bethesda, MD: Am. Physiol. Soc., 1980, sect. 2, vol. II, chapt. 15, p. 409–442.
 269. Johnson, P. C., and K. M. Hanson. Effect of arterial pressure on arterial and venous resistance of intestine. J. Appl. Physiol. 17: 503–508, 1962.
 270. Johnson, P. C., and K. M. Hanson. Relation between venous pressure and blood volume in the intestine. Am. J. Physiol. 204: 31–34, 1963.
 271. Johnsson, G., and B. Öberg. Comparative effects of isoprenaline and nitroglycerin on consecutive vascular sections in the skeletal muscle of the cat. Angiologica 5: 161–171, 1968.
 272. Johnstone, F. R. C. Measurement of splanchnic blood volume in dogs. Am. J. Physiol. 185: 450–452, 1956.
 273. Kahler, R. L., A. Goldblatt, and E. Braunwald. The effects of acute hypoxia on the systemic venous and arterial systems and on myocardial contractile force. J. Clin. Invest. 41: 1553–1563, 1962.
 274. Kaiser, G. A., J. Ross, Jr., and E. Braunwald. Alpha and beta adrenergic receptor mechanisms in the systemic venous bed. J. Pharmacol. Exp. Ther. 144: 156–162, 1964.
 275. Kappagoda, C. T., R. J. Linden, and D. A. S. G. Mary. Atrial receptors in the dog and rabbit. J. Physiol. London 272: 799–815, 1977.
 276. Karim, F., and H. Ali. Effect of electrical stimulation of the carotid sinus on venomotor tone of the superior vena cava in dogs. Life Sci. 8: 791–798, 1969.
 277. Karim, F., G. Araneda, and R. Hainsworth. The influence of perfusate temperature on the responses of a superficial vein in the carotid baroreceptor reflex in dogs. Pfluegers Arch. 383: 79–85, 1980.
 278. Karim, F., and R. Hainsworth. Responses of abdominal vascular capacitance to stimulation of splanchnic nerves. Am. J. Physiol. 231: 434–440, 1976.
 279. Karim, F., R. Hainsworth, and R. P. Pandey. Reflex responses of abdominal vascular capacitance from aortic baroreceptors in dogs. Am. J. Physiol. 235: (Heart Circ. Physiol. 4): H488–H493, 1978.
 280. Karim, F., R. Hainsworth, O. A. Sofola, and L. M. Wood. Responses of the heart to stimulation of aortic body chemoreceptors in dogs. Circ. Res. 46: 77–83, 1980.
 281. Karim, F., C. Kidd, C. M. Malpus, and P. E. Penna. The effects of stimulation of the left atrial receptors on sympathetic efferent nerve activity. J. Physiol. London 227: 243–260, 1972.
 282. Katz, A. I., Y. Chen, and A. H. Moreno. Flow through a collapsible tube. Experimental analysis and mathematical model. Biophys. J. 9: 1261–1279, 1969.
 283. Knisely, W. H., M. S. Mahaley, Jr., and H. H. Jett. Approximation of “total vascular space” and its distribution in three sizes of blood vessels in rats by plastic casts. Circ. Res. 6: 20–28, 1958.
 284. Koehler, R. C., B. W. McDonald, and J. A. Krasney. Influence of CO2 on cardiovascular response to hypoxia in conscious dogs. Am. J. Physiol. 239 (Heart Circ. Physiol. 8): H545–H558, 1980.
 285. Koo, A., and I. Y. S. Liang. Microvascular filling pattern in rat liver sinusoids during vagal stimulation. J. Physiol. London 295: 191–199, 1979.
 286. Korner, P. I. Integrative neural cardiovascular control. Physiol. Rev. 51: 312–367, 1971.
 287. Korner, P. I. Central nervous control of autonomic cardiovascular function. In: Handbook of Physiology. The Cardiovascular System, edited by R. M. Berne and N. Sperelakis. Bethesda, MD: Am. Physiol. Soc., 1979, sect. 2, vol. I, chapt. 20, p. 691–739.
 288. Korner, P. I. Operation of the central nervous system in reflex circulatory control. Federation Proc. 39: 2504–2512, 1980.
 289. Kostiuk, D. P., K. Sagawa, and A. A. Shoukas. Modification of the flow‐generating capability of the canine heart‐lung compartment by the carotid sinus baroreceptor reflex. Circ. Res. 38: 546–553, 1976.
 290. Koubenec, H.‐J., W. D. Risch, and O. H. Gauer. Effective compliance of the circulation in the upright sitting posture. Pfluegers Arch. 374: 121–124, 1978.
 291. Kramer, K., and U. C. Luft. Mobilization of red cells and oxygen from the spleen in severe hypoxia. Am. J. Physiol. 165: 215–228, 1951.
 292. Krause, S. M., and M. L. Hess. Diphenhydramine protection of the failing myocardium during gram‐negative endotoxemia. Circ. Shock. 6: 75–87, 1979.
 293. Kreye, V. A. W., G. D. Baron, J. B. Lüth, and H. Schmidt‐Gayk. Mode of action of sodium nitroprusside on vascular smooth muscle. Naunyn‐Schmiedeberg's Arch. Pharmacol. 288: 381–402, 1975.
 294. Krogh, A. The regulation of the supply of blood to the right heart. Skand. Arch. Physiol. 27: 227–248, 1912.
 295. Kuida, H., R. P. Gilbert, L. B. Hinshaw, J. G. Brunson, and M. B. Visscher. Species differences in effect of gram‐negative endotoxin on circulation. Am. J. Physiol. 200: 1197–1202, 1961.
 296. Kumada, M., O. Okai, and A. Gunji. Mean circulatory pressure in carotid sinus reflex. Jpn. J. Physiol. 21: 591–599, 1971.
 297. Lahiri, S. Role of arterial O2 flow in peripheral chemoreceptor excitation. Federation Proc. 39: 2648–2652, 1980.
 298. Lahiri, S., T. Nishino, A. Mokashi, and E. Mulligan. Relative responses of aortic body and carotid body chemoreceptors to hypotension. J. Appl. Physiol: Respirat. Environ. Exercise Physiol. 48: 781–788, 1980.
 299. Landis, E. M., and J. C. Hortenstine. Functional significance of venous blood pressure. Physiol. Rev. 30: 1–32, 1950.
 300. Landowne, M., and R. W. Stacy. Glossary of terms. In: Tissue Elasticity, edited by J. W. Remington. Washington, DC: Am. Physiol. Soc., 1957, p. 191–201.
 301. Lange, L., M. Echt, K. Kirsch, and H. L. Thron. Studies on the distensibility characteristics of capacitance and resistance vessels of the isolated rabbit ear. Pfluegers Arch. 330: 111–123, 1971.
 302. Larochelle, P., and R. I. Ogilvie. Effect of drugs on effective vascular compliance in acute heart failure. Can. J. Physiol. Pharmacol. 53: 850–858, 1975.
 303. Larochelle, P., and R. I. Ogilvie. Effective vascular compliance of dogs in acute heart failure. Can. J. Physiol. Pharmacol. 53: 129–136, 1975.
 304. Larochelle, P., and R. I. Ogilvie. Effective vascular compliance and venous diameter in dogs. Can. J. Physiol. Pharmacol. 54: 154–159, 1976.
 305. Lassen, N. A., and W. Perl. Tracer Kinetic Methods in Medical Physiology. New York: Raven, 1979, p. 50–101.
 306. Lautt, W. W. Hepatic nerves: A review of their functions and effects. Can. J. Physiol. Pharmacol. 58: 105–123, 1980.
 307. Lautt, W. W., and C. V. Greenway. Hepatic capacitance vessel responses to bilateral carotid occlusion in anesthetized cats. Can. J. Physiol. Pharmacol. 50: 244–247, 1972.
 308. Lautt, W. W., and C. V. Greenway. Hepatic venous compliance and role of liver as a blood reservoir. Am. J. Physiol. 231: 292–295, 1976.
 309. Laxminarayan, S., R. Laxminarayan, G. J. Langewouters, and A. V. D. Vos. Computing total arterial compliance of the arterial system from its input impedance. Med. Biol. Eng. Comput. 17: 623–628, 1979.
 310. Ledsome, J. R., and W.‐O. Kan. Reflex changes in hindlimb and renal vascular resistance in response to distention of the isolated pulmonary arteries of the dog. Circ. Res. 40: 64–72, 1977.
 311. Lee, C., E. Yang, and M. Lippmann. Constrictive effect of pancuronium on capacitance vessels. Br. J. Anaesth. 52: 261–263, 1980.
 312. Lefer, A. M., R. Cowgill, F. F. Marshall, L. M. Hall, and E. D. Brand. Characterization of a myocardial depressant factor present in hemorrhagic shock. Am. J. Physiol. 213: 492–498, 1967.
 313. Lefer, A. M., and T. M. Glenn. Role of the pancreas in the pathogenesis of circulatory shock. Adv. Exp. Med. Biol. 23: 311–335, 1972.
 314. Lesh, T. A., and C. F. Rothe. Sympathetic and hemodynamic effects on capacitance vessels in dog skeletal muscle. Am. J. Physiol. 217: 819–827, 1969.
 315. Levy, M. N., and P. J. Martin. Neural control of the heart. In: Handbook of Physiology. The Cardiovascular System, edited by R. M. Berne and N. Sperelakis. Bethesda, MD: Am. Physiol. Soc., 1979, sect. 2, vol. I, chapt. 16, p. 581–620.
 316. Lewis, C. M., and M. H. Weil. Hemodynamic spectrum of vasopressor and vasodilator drugs. J. Am. Med. Assoc. 208: 1391–1398, 1969.
 317. Lewis, D. H., and S. Mellander. Competitive effects of sympathetic control and tissue metabolites on resistance and capacitance vessels and capillary filtration in skeletal muscles. Acta Physiol. Scand. 56: 162–188, 1962.
 318. Lang, C.‐S., and W. B. Hood, Jr. Effects of sympathetic blockade and splenectomy on cardiac output response to muscular work in dogs. Cardiology 62: 21–34, 1977.
 319. Liang, C.‐S., and W. E. Huckabee. Effects of splenectomy and beta‐adrenoceptor blockade on cardiac output response to acute hypoxemia. J. Clin. Invest. 52: 3129–3134, 1973.
 320. Liang, C.‐S., and W. E. Huckabee. Effects of sympathetic stimulation of the spleen on cardiac output. Am. J. Physiol. 224: 1099–1103, 1973.
 321. Little, R., and B. Öberg. Circulatory responses to stimulation of the carotid body chemoreceptors in the cat. Acta Physiol. Scand. 93: 34–51, 1975.
 322. Lochner, W., and W. Schoedel. Die Bedeutung der depressorischen Kreislaufreflexe für die Steuerung des Herzzitvolumens. Plfuegers Arch. 225: 333–338, 1952.
 323. Loewy, A. D., and S. McKellar. The neuroanatomical basis of central cardiovascular control. Federation Proc. 39: 2495–2503, 1980.
 324. London, G. M., M. E. Safar, A. C. Simon, J. M. Alexandre, J. A. Levenson, and Y. A. Weiss. Total effective compliance, cardiac output and fluid volumes in essential hypertension. Circulation 57: 995–1000, 1978.
 325. London, G. M., M. E. Safar, Y. A. Weiss, and C. A. Simon. Total effective compliance of the vascular bed in essential hypertension. Am. Heart J. 95: 325–330, 1978.
 326. Longnecker, D., and F. L. Abel. Peripheral vascular response to simulated hemorrhagic shock during cardiopulmonary bypass in dogs. Circ. Res. 25: 107–117, 1969.
 327. Longnecker, D. E., and P. D. Harris. Microcirculatory actions of general anesthetics. Federation Proc. 39: 1580–1583, 1980.
 328. Ludbrook, J. The Analysis of the Venous System. Bern: Huber, 1972.
 329. Lund, M. G., A. A. Rovick, and P. B. Dobrin. Influence of vascular muscle tone upon isogravimetric capillary pressure. Microvasc. Res. 7: 250–267, 1974.
 330. Lundgren, O., J. Lundwall, and S. Mellander. Range of sympathetic discharge and reflex vascular adjustments in skeletal muscle during hemorrhagic hypotension. Acta Physiol. Scand. 62: 380–390, 1964.
 331. Lurie, A. A. Anesthesia and the systemic venous circulation. Anesthesiology 24: 368–395, 1963.
 332. Lutz, J. Hämodynamische Eigenschaften und Gefässbreaktionen der intestinalen Strombahn. Arch. Kreislaufforsch. 59: 99–152, 1969.
 333. Lutz, J., and J. Biester. Comparison of veno‐vasomotoric reactions in the abdominal circulatory systems of intestine, stomach, spleen, liver and of the kidney. In: Vascular Smooth Muscle, edited by E. Betz. New York: Springer‐Verlag, 1972, p. 139–142.
 334. Lutz, J., U. Peiper, J. Segarra‐Domenech, and E. Bauereisen. Das Druck‐Volumendiagramm und Elastizitätswerte des gesamten Lebergefässsystems der Katze in situ. Pfluegers Arch. 295: 315–327, 1967.
 335. MacLean, L. D. Blood volume versus central venous pressure in shock. Surg. Gynecol. Obstet. 118: 594–595, 1964.
 336. MacLean, L. D., E. L. Brackney, and M. B. Visscher. Effects of epinephrine, norepinephrine and histamine on canine intestine and liver weight continuously recorded in vivo. J. Appl. Physiol. 9: 237–240, 1956.
 337. MacLean, L. D., M. H. Weil, W. W. Spink, and M. B. Visscher. Canine intestinal and liver weight changes induced by E. coli endotoxin. Proc. Soc. Exp. Biol. Med. 92: 602–605, 1956.
 338. Mall, F. Die Blut und Lymphwege im Dünndarm des Hundes. Abh. Math. Phys. Kl. Saech. Ges. Wiss. 14: 1888.
 339. Manchanda, S. K., and R. Bhattarai. Central nervous control of venous tone. I. Effect of sympathetic chain stimulation on cutaneous capacitance and resistance vessels. Indian J. Physiol. Pharmacol. 18: 3–13, 1974.
 340. Manchanda, S. K., R. Bhattarai, and U. Nayar. Central nervous control of venous tone. III. Responses of capacitance and resistance vessels of skin to bulbar and hypothalamic stimulation. Indian J. Physiol. Pharmacol. 19: 105–120, 1975.
 341. Mancia, G. Influence of carotid baroreceptors on vascular responses to carotid chemoreceptor stimulation in the dog. Circ. Res. 36: 270–276, 1975.
 342. Mancia, G., and D. E. Donald. Demonstration that the atria, ventricles, and lungs each are responsible for a tonic inhibition of the vasomotor center in the dog. Circ. Res. 36: 310–318, 1975.
 343. Mancia, G., D. E. Donald, and J. T. Shepherd. Inhibition of adrenergic outflow to peripheral blood vessels by vagal afferents from the cardiopulmonary region in the dog. Circ. Res. 33: 713–721, 1973.
 344. Mancia, G., J. T. Shepherd, and D. E. Donald. Role of cardiac, pulmonary, and carotid mechanoreceptors in the control of hind‐limb and renal circulation in dogs. Circ. Res. 37: 200–208, 1975.
 345. Mancia, G., J. T. Shepherd, and D. E. Donald. Interplay among carotid sinus, cardiopulmonary, and carotid body reflexes. Am. J. Physiol. 230: 19–24, 1976.
 346. Manning, R. D., T. G. Coleman, A. C. Guyton, R. A. Norman, and R. E. McCaa. Essential role of mean circulatory filling pressure in salt‐induced hypertension. Am. J. Physiol. 236 (Regulatory Integrative Comp. Physiol. 5): R40–R47, 1979.
 347. Marino, R. J., A. Romagnoli, and A. S. Keats. Selective venoconstriction by dopamine in comparison with isoproterenol and phenylephrine. Anesthesiology 43: 570–572, 1975.
 348. Marshall, R. J., Y. Wang, and J. T. Shepherd. Components of the “central” blood volume in the dog. Circ. Res. 8: 93–99, 1960.
 349. Martin, D. A., K. L. White, and C. R. Vernon. Influence of emotional and physical stimuli on pressure in the isolated vein segment. Circ. Res. 7: 580–587, 1959.
 350. Maseri, A., P. Caldini, S. Permutt, and K. L. Zierler. Frequency function of transit times through dog pulmonary circulation. Circ. Res. 26: 527–543, 1970.
 351. Mason, D. T., I. J. Kopin, and E. Braunwald. Abnormalities in reflex control of the circulation in familial dysautonomia. Am. J. Med. 41: 898–909, 1966.
 352. McNeill, J. R. Role of vasopressin and angiotensin in response of splanchnic resistance vessels to hemorrhage. Adv. Exp. Med. Biol. 23: 127–144, 1972.
 353. McNeill, J. R., R. D. Stark, and C. V. Greenway. Intestinal vasoconstriction after hemorrhage: roles of vasopressin and angiotensin. Am. J. Physiol. 219: 1342–1347, 1970.
 354. Meier, P., and K. L. Zierler. On the theory of the indicator‐dilution method for measurement of blood flow and volume. J. Appl. Physiol. 6: 731–744, 1954.
 355. Mellander, S. Comparative studies on the adrenergic neurohormonal control of resistance and capacitance blood vessels in the cat. Acta Physiol. Scand. Suppl. 176: 1–86, 1960.
 356. Mellander, S. On the control of capillary fluid transfer by precapillary and postcapillary vascular adjustments. Microvasc. Res. 15: 319–330, 1978.
 357. Mellander, S., and D. H. Lewis. Effect of hemorrhagic shock on the reactivity of resistance and capacitance vessels and on capillary filtration transfer in cat skeletal muscle. Circ. Res. 13: 105–118, 1963.
 358. Mellander, S., B. Öberg, and H. Odelram. Vascular adjustments to increased transmural pressure in cat and man with special reference to shifts in capillary fluid transfer. Acta Physiol. Scand. 61: 34–48, 1964.
 359. Merillon, J. P., G. Motte, J. Fruchaud, C. Masquet, and R. Gourgon. Evaluation of the elasticity and characteristic impedance of the ascending aorta in man. Cardiovasc. Res. 12: 401–406, 1978.
 360. Mikami, T., and E. O. Attinger. Stress relaxation of blood vessel walls. Angiologica 5: 281–292, 1968.
 361. Miller, F. N., and P. D. Harris. Sensitivity of subcutaneous small arteries and veins to norepinephrine, and epinephrine, and isoproterenol in the unanesthetized bat. Microvasc. Res. 10: 340–351, 1975.
 362. Miller, R. R., L. A. Vismara, R. Zelis, E. A. Amsterdam, and D. T. Mason. Clinical use of sodium nitroprusside in chronic ischemic heart disease. Circulation 51: 328–336, 1975.
 363. Milnor, W. R., and C. D. Bertram. The relation between arterial viscoelasticity and wave propagation in the canine femoral artery in vivo. Circ. Res. 43: 870–879, 1978.
 364. Milnor, W. R., and W. W. Nichols. A new method of measuring propagation coefficients and characteristic impedance in blood vessels. Circ. Res. 36: 631–639, 1975.
 365. Mitzner, W. Hepatic outflow resistance, sinusoid pressure, and the vascular waterfall. Am. J. Physiol. 227: 513–519, 1974.
 366. Mitzner, W., and H. Goldberg. Effects of epinephrine on resistive and compliant properties of the canine vasculature. J. Appl. Physiol. 39: 272–280, 1975.
 367. Mitzner, W., H. Goldberg, and S. Lichtenstein. Effect of thoracic blood volume changes on steady state cardiac output. Circ. Res. 38: 255–261, 1976.
 368. Moreno, A. H. Dynamics of pressure in the central veins. In: Cardiovascular System Dynamics, edited by J. Baan, A. Noordergraaf, and J. Raines. Cambridge, MA: MIT Press, 1978, p. 266–282.
 369. Moreno, A. H., A. R. Burchell, R. Van Der Woude, and J. H. Burke. Respiratory regulation of splanchnic and systemic venous return. Am. J. Physiol. 213: 455–465, 1967.
 370. Moreno, A. H., A. I. Katz, and L. D. Gold. An integrated approach to the study of the venous system with steps toward a detailed model of the dynamics of venous return to the right heart. IEEE Trans. Biomed. Eng. 16: 308–324, 1969.
 371. Moreno, A. H., A. I. Katz, L. D. Gold, and R. V. Reddy. Mechanics of distension of dog veins and other very thinwalled tubular structures. Circ. Res. 27: 1069–1080, 1970.
 372. Morris, T. W., P. H. Abbrecht, and S. D. Leverett, Jr. Diameter‐pressure relationships in the unexposed femoral vein. Am. J. Physiol. 227: 782–788, 1974.
 373. Morris, T. W., and M. L. Swain. Peripheral vein: diameter‐pressure relationships, structure and control. In: Cardiovascular System Dynamics, edited by J. Baan, A. Noordergraaf, and J. Raines. Cambridge, MA: MIT Press, 1978, p. 283–290.
 374. Mortillaro, N. A., and A. E. Taylor. Interaction of capillary and tissue forces in the cat small intestine. Circ. Res. 39: 348–358, 1976.
 375. Müller‐Ruchholtz, E. R., E. Grund, F. Hauer, and E. R. Lapp. Effect of carotid pressoreceptor stimulation on integrated systemic venous bed. Basic Res. Cardiol. 74: 467–476, 1979.
 376. Müller‐Ruchholtz, E. R., H.‐M. Lösch, E. Grund, and W. Lochner. Effect of alpha adrenergic receptor stimulation on integrated systemic venous bed. Pfluegers Arch. 370: 241–246, 1977.
 377. Müller‐Ruchholtz, E. R., H.‐M. Lösch, E. Grund, and W. Lochner. Effect of beta adrenergic receptor stimulation on integrated systemic venous bed. Pfluegers Arch. 370: 247–251, 1977.
 378. Müller‐Schweinitzer, E. On the pharmacology of venous smooth muscle from dog and man. Folia Haematol. Leipzig 106: 690–704, 1979.
 379. Murray, R. H., L. J. Thompson, J. A. Bowers, and C. D. Albright. Hemodynamic effects of graded hypovolemia and vasodepressor syncope induced by lower body negative pressure. Am. Heart J. 76: 799–811, 1968.
 380. Nicolosi, G. R., and H. P. Pieper. Aortic smooth muscle responses to changes in venous return studied in intact dogs. Am. J. Physiol. 221: 1209–1216, 1971.
 381. Nicolosi, G. R., and H. P. Pieper. Nature of aortic smooth muscle responses to changes in venous return in intact dogs. Am. J. Physiol. 228: 518–525, 1975.
 382. Niijima, A. Baroreceptor effects on renal and adrenal nerve activity. Am. J. Physiol. 230: 1733–1736, 1976.
 383. Ninomiya, I., N. Nisimaru, and H. Irisawa. Sympathetic nerve activity to the spleen, kidney, and heart in response to baroreceptor input. Am. J. Physiol. 221: 1346–1351, 1971.
 384. Nippa, J. H., R. H. Alexander, and R. Folse. Pulse wave velocity in human veins. J. Appl. Physiol. 30: 558–563, 1971.
 385. Noordergraaf, A. Circulatory System Dynamics. New York: Academic, 1978.
 386. Numao, Y., and J. Iriuchijima. Effect of cardiac output on circulatory blood volume. Jpn. J. Physiol. 27: 145–156, 1977.
 387. Öberg, B. The relationship between active constriction and passive recoil of the veins at various distending pressures. Acta Physiol. Scand. 71: 233–247, 1967.
 388. O'Neill, J. F. The effects on venous endothelium of alterations in blood flow through the vessels in vein walls, and the possible relation to thrombosis. Ann. Surg. 126: 270–288, 1947.
 389. Opdyke, D. F. Hemodynamics of blood flow through the spleen. Am. J. Physiol. 219: 102–106, 1970.
 390. Opdyke, D. F., and C. J. Ward. Spleen as an experimental model for the study of vascular capacitance. Am. J. Physiol. 225: 1416–1420, 1973.
 391. Overbeck, H. W. Hemodynamics of early experimental renal hypertension in dogs. Circ. Res. 31: 653–663, 1972.
 392. Pagani, M., P. J. Schwartz, V. S. Bishop, and A. Malliani. Reflex sympathetic changes in aortic diastolic pressure‐diameter relationship. Am. J. Physiol. 229: 286–290, 1975.
 393. Page, E. B., J. B. Hickam, H. O. Sieker, H. D. McIntosh, and W. W. Pryor. Reflex venomotor activity in normal persons and in patients with postural hypotension. Circulation 11: 262–270, 1955.
 394. Paintal, A. S. Vagal sensory receptors and their reflex effects. Physiol. Rev. 53: 159–227, 1973.
 395. Parratt, J. R., and R. M. Sturgess. The possible roles of histamine, 5‐hydroxytryptamine and prostaglandin F2α as mediators of the acute pulmonary effects of endotoxin. Br. J. Pharmacol. 60: 209–219, 1977.
 396. Peiper, U., R. Laven, and M. Ehl. Force velocity relationships in vascular smooth muscle. The influence of temperature. Pfluegers Arch. 356: 33–45, 1975.
 397. Pelletier, C. L. Circulatory responses to graded stimulation of the carotid chemoreceptors in the dog. Circ. Res. 31: 431–443, 1972.
 398. Pelletier, C. L., A. J. Edis, and J. T. Shepherd. Circulatory reflex from vagal afferents in response to hemorrhage in the dog. Circ. Res. 29: 626–634, 1971.
 399. Pelletier, C. L., and J. T. Shepherd. Venous responses to stimulation of carotid chemoreceptors by hypoxia and hypercapnia. Am. J. Physiol. 223: 97–103, 1972.
 400. Permutt, S., B. Bromberger‐Barnea, and H. N. Bane. Alveolar pressure, pulmonary venous pressure, and the vascular waterfall. Med. Thorac. 19: 239–260, 1962.
 401. Permutt, S., and P. Caldini. Regulation of cardiac output by the circuit: Venous return. In: Cardiovascular System Dynamics, edited by J. Baan, A. Noordergraaf, and J. Raines. Cambridge, MA: MIT Press, 1978, p. 465–479.
 402. Permutt, S., and R. L. Riley. Hemodynamics of collapsible vessels with tone: the vascular waterfall. J. Appl. Physiol. 18: 924–932, 1963.
 403. Piene, H. Some physical properties of the pulmonary arterial bed deduced from pulsatile arterial flow and pressure. Acta Physiol. Scand. 98: 295–306, 1976.
 404. Pollack, A. A., and E. H. Wood. Venous pressure in the saphenous vein at the ankle in man during exercise and changes in posture. J. Appl. Physiol. 1: 649–662, 1949.
 405. Polosa, C., and W. F. Hamilton. Blood volume and intravascular hematocrit in different vascular beds. Am. J. Physiol. 204: 903–909, 1963.
 406. Porciuncula, C. I., G. G. Armstrong, Jr., A. C. Guyton, and H. L. Stone. Delayed compliance in external jugular vein of the dog. Am. J. Physiol. 207: 728–732, 1964.
 407. Prather, J. W., A. E. Taylor, and A. C. Guyton. Effect of blood volume, mean circulatory pressure, and stress relaxation on cardiac output. Am. J. Physiol. 216: 467–472, 1969.
 408. Price, H. L., S. Deutsch, B. E. Marshall, G. W. Stephen, M. G. Behar, and G. R. Neufeld. Hemodynamic and metabolic effects of hemorrhage in man, with particular reference to the splanchnic circulation. Circ. Res. 18: 469–474, 1966.
 409. Rajagopalan, B., C. D. Bertram, T. Stallard, and G. de J. Lee. Blood flow in pulmonary veins. III. Simultaneous measurements of their dimensions, intravascular pressure and flow. Cardiovasc. Res. 13: 684–692, 1979.
 410. Rashkind, W. J., D. H. Lewis, J. B. Henderson, D. F. Heiman, and R. B. Dietrick. Venous return as affected by cardiac output and total peripheral resistance. Am. J. Physiol. 175: 415–423, 1953.
 411. Reilly, F. D., and R. S. McCuskey. Studies of the hemopoietic microenvironment. VII. Neural mechanisms in splenic microvascular regulation in mice. Microvasc. Res. 14: 293–302, 1977.
 412. Rein, H., and A. Dohrn. Die Beeinflussung von Coronar‐oder Hypoxie‐bedingten Myokard‐Insuffizienzen durch Milz und Liber. Pfluegers Arch. 253: 435–458, 1951.
 413. Remington, J. W. Extensibility behavior and hysteresis phenomena in smooth muscle tissues. In: Tissue Elasticity, edited by J. W. Remington. Washington, DC: Am. Physiol. Soc., 1957, p. 138–153.
 414. Reynell, P. C., P. A. Marks, C. Chidsey, and S. E. Bradley. Changes in splanchnic blood volume and splanchnic blood flow in dogs after haemorrhage. Clin. Sci. 14: 407–419, 1955.
 415. Reynolds, D. G., and C. J. Imig. Segmental vascular reactivity subsequent to sympathectomy. Am. J. Physiol. 204: 1145–1150, 1963.
 416. Richardson, P. D. I., D. N. Granger, and A. E. Taylor. Capillary filtration coefficient: the technique and its application to the small intestine. Cardiovasc. Res. 13: 547–561, 1979.
 417. Richardson, P. D. I., and P. G. Withrington. The effects of intra‐arterial and intraportal injections of vasopressin on the simultaneously perfused hepatic arterial and portal venous vascular beds of the dog. Circ. Res. 43: 496–503, 1978.
 418. Richardson, T. Q., and J. D. Fermoso. Elevation of mean circulatory pressure in dogs with cerebral ischemia‐induced hypertension. J. Appl. Physiol. 19: 1133–1134, 1964.
 419. Richardson, T. Q., J. D. Fermoso, and A. C. Guyton. Increase in mean circulatory pressure in Goldblatt hypertension. Am. J. Physiol. 207: 751–752, 1964.
 420. Richardson, T. Q., J. C. Harlan, and B. H. Douglas. Measurement of pulmonary circuit pressure and systemic circuit pressure in normal dogs. J. Surg. Res. 8: 84–89, 1968.
 421. Richardson, T. Q., J. O. Stallings, and A. C. Guyton. Pressure‐volume curves in live intact dogs. Am. J. Physiol. 201: 471–474, 1961.
 422. Roberts, C. J. C., L. Jackson, M. Halliwell, and R. A. Branch. The relationship between liver volume, antipyrine clearance and indocyanine green clearance before and after phenobarbitone administration in man. Br. J. Clin. Pharmacol. 3: 907–913, 1976.
 423. Robinson, B. F., J. G. Collier, and R. J. Dobbs. Comparative dilator effect of verapamil and sodium nitroprusside in forearm arterial bed and dorsal hand veins in man: functional differences between vascular smooth muscle in arterioles and veins. Cardiovasc. Res. 13: 16–21, 1979.
 424. Robinson, B. F., J. Collier, and C. Nachev. Changes in peripheral venous compliance after myocardial infarction. Cardiovasc. Res. 6: 67–74, 1972.
 425. Rocha e Silva, M. Action of histamine upon the circulatory apparatus. In: Handbook of Experimental Pharmacology, edited by M. Rocha e Silva. New York: Springer‐Verlag, 1966, vol. 18, pt. 1, p. 238–294.
 426. Rose, C. P., and C. A. Goresky. Vasomotor control of capillary transit time heterogeneity in the canine coronary circulation. Circ. Res. 39: 541–554, 1976.
 427. Rose, J. C., and E. D. Freis. Alterations in systemic vascular volume of the dog in response to hexamethonium and norepinephrine. Am. J. Physiol. 191: 283–286, 1957.
 428. Rose, J. C., P. A. Kot, J. N. Cohn, E. D. Freis, and G. E. Eckert. Comparison of effects of angiotensin and norepinephrine on pulmonary circulation, systemic arteries and veins, and systemic vascular capacity in the dog. Circulation 25: 247–252, 1962.
 429. Ross, J., Jr., C. J. Frahm, and W. Braunwald. Influence of carotid baroreceptors and vasoactive drugs on systemic vascular volume and venous distensibility. Circ. Res. 9: 75–82, 1961.
 430. Ross, J., Jr., C. J. Frahm, and E. Braunwald. The influence of intracardiac baroreceptors on venous return, systemic vascular volume and peripheral resistance. J. Clin. Invest. 40: 563–572, 1961.
 431. Rothe, C. F. Cardiac and peripheral failure in hemorrhagic shock treated with massive transfusions. Am. J. Physiol. 210: 1347–1361, 1966.
 432. Rothe, C. F. Reflex vascular capacity reduction in the dog. Circ. Res. 39: 705–710, 1976.
 433. Rothe, C. F. A computer model of the cardiovascular system for effective learning. Physiologist 22 (6): 29–33, 1979.
 434. Rothe, C. F. Reflex control of the veins in cardiovascular function. Physiologist 22 (1): 28–35, 1979.
 435. Rothe, C. F., T. D. Bennett, and B. L. Johns. Linearity of the vascular pressure‐volume relationship of the canine intestine. Circ. Res. 47: 551–558, 1980.
 436. Rothe, C. F., and J. A. Drees. Vascular capacitance and fluid shifts in dogs during prolonged hemorrhagic hypotension. Circ. Res. 38: 347–356, 1976.
 437. Rothe, C. F., B. L. Johns, and T. D. Bennett. Vascular capacitance of dog intestine using mean transit time of indicator. Am. J. Physiol. 234 (Heart Circ. Physiol. 3): H7–H13, 1978.
 438. Rothe, C. F., R. H. Murray, and T. D. Bennett. Actively circulating blood volume in endotoxin shock measured by indicator dilution. Am. J. Physiol. 236 (Heart Circ. Physiol. 5): H291–H300, 1979.
 439. Rowell, L. B. The splanchnic circulation. In: The Peripheral Circulations, edited by R. Zelis. New York: Grune, 1975, p. 163–192.
 440. Rowell, L. B. Reflex control of the cutaneous vasculature. J. Invest. Dermatol. 69: 154–166, 1977.
 441. Rowell, L. B., J.‐M. R. Detry, J. R. Blackmon, and C. Wyss. Importance of the splanchnic vascular bed in human blood pressure regulation. J. Appl. Physiol. 32: 213–220, 1972.
 442. Rubin, S. A., G. Misbach, J. Lekven, W. W. Parmley, and J. V. Tyberg. Resistance and volume changes caused by nitroprusside in the dog. Am. J. Physiol. 237 (Heart Circ. Physiol. 6): H99–H103, 1979.
 443. Rushmer, R. F. Constancy of stroke volume in ventricular responses to exertion. Am. J. Physiol. 196: 745–750, 1959.
 444. Rushmer, R. F. Postural effects on the baselines of ventricular performance. Circulation 20: 897–905, 1959.
 445. Rushmer, R. F. Cardiovascular Dynamics. Philadelphia, PA: Saunders, 1976.
 446. Rutherford, J. D., and S. F. Vatner. Integrated carotid chemoreceptor and pulmonary inflation reflex control of peripheral vasoactivity in conscious dogs. Circ. Res. 43: 200–208, 1978.
 447. Rutlen, D. L., E. N. Supple, and W. J. Powell, Jr. Betaadrenergic regulation of total systemic intravascular volume in the dog. Circ. Res. 48: 112–120, 1981.
 448. Salisbury, P. F., C. E. Cross, and P. A. Rieben. Reflex effects of left ventricular distention. Circ. Res. 8: 530–534, 1960.
 449. Salzman, E. W. Reflex peripheral venoconstriction induced by carotid occlusion. Circ. Res. 5: 149–152, 1957.
 450. Samar, R. E., and T. G. Coleman. Measurement of mean circulatory filling pressure and vascular capacitance in the rat. Am. J. Physiol. 234 (Heart Circ. Physiol. 3): H94–H100, 1978.
 451. Samar, R. E., and T. G. Coleman. Whole‐body response of the peripheral circulation following hemorrhage in the rat. Am. J. Physiol. 236 (Heart Circ. Physiol. 5): H206–H210, 1979.
 452. Samar, R. E., and T. G. Coleman. Mean circulatory pressure and vascular compliances in the spontaneously hypertensive rat. Am. J. Physiol. 237 (Heart Circ. Physiol. 6): H584–H589, 1979.
 453. Samueloff, S. L., B. S. Bevegård, and J. T. Shepherd. Temporary arrest of circulation to a limb for the study of venomotor reactions in man. J. Appl. Physiol. 21: 341–346, 1966.
 454. Samueloff, S. L., N. L. Browse, and J. T. Shepherd. Response of capacity vessels in human limbs to head‐up tilt and suction on lower body. J. Appl. Physiol. 21: 47–54, 1966.
 455. Schmid‐Schönbein, H. Microrheology of erythrocytes, blood viscosity, and the distribution of blood flow in the microcirculation. In: Cardiovascular Physiology II, edited by A. C. Guyton and A. W. Cowley. Baltimore, MD: University Park, 1976, vol. 9, p. 1–62. (Int. Rev. Physiol. Ser.)
 456. Schmidt, R. M., M. Kumada, and K. Sagawa. Cardiac output and total peripheral resistance in carotid sinus reflex. Am. J. Physiol. 221: 480–487, 1971.
 457. Seaman, R. G., R. L. Wiley, F. W. Zechman, and J. A. Goldey. Venous reactivity during static exercise (handgrip) in man. J. Appl. Physiol. 35: 858–860, 1973.
 458. Shadle, O. W., M. Zukof, and J. Diana. Translocation of blood from the isolated dog's hindlimb during levarterenol infusion and sciatic nerve stimulation. Circ. Res. 6: 326–333, 1958.
 459. Sharpey‐Schafer, E. P. Venous tone. Br. Med. J. 2: 1589–1595, 1961.
 460. Sharpey‐Schafer, E. P., and J. Ginsburg. Humoral agents and venous tone effects of catecholamines, 5 hydroxytryptamine, histamine, and nitrites. Lancet 2: 1337–1340, 1962.
 461. Shepherd, A. P. Myogenic responses of intestinal resistance and exchange vessels. Am. J. Physiol. 233 (Heart Circ. Physiol. 2): H547–H554, 1977.
 462. Shepherd, J. T. Reflex control of the venous system. In: Venous Problems, edited by J. J. Bergan and J. S. T. Yao. Chicago, IL: Year Book, 1978, p. 5–23.
 463. Shepherd, J. T., and P. M. Vanhoutte. Veins and Their Control. Philadelphia, PA: Saunders, 1975.
 464. Shoukas, A. A. Pressure‐flow and pressure‐volume relations in the entire pulmonary vascular bed of the dog determined by two‐port analysis. Circ. Res. 37: 809–818, 1975.
 465. Shoukas, A. A., and M. C. Brunner. Epinephrine and the carotid sinus baroreceptor reflex: influence on capacitive and resistive properties of the total systemic vascular bed of the dog. Circ. Res. 47: 249–257, 1980.
 466. Shoukas, A. A., C. L. MacAnespie, M. J. Brunner, and L. Watermeier. The importance of the spleen in blood volume shifts of the systemic vascular bed caused by the carotid sinus baroreceptor reflex in the dog. Circ. Res. 49: 759–766, 1981.
 467. Shoukas, A. A., and K. Sagawa. Total systemic vascular compliance measured as incremental volume‐pressure ratio. Circ. Res. 28: 277–289, 1971.
 468. Shoukas, A. A., and K. Sagawa. Control of total systemic vascular capacity by the carotid sinus baroreceptor reflex. Circ. Res. 33: 22–33, 1973.
 469. Shubin, H., and M. H. Weil. Bacterial shock. J. Am. Med. Assoc. 235: 421–424, 1976.
 470. Smith, E. E., and J. W. Crowell. Influence of hypoxia on mean circulatory pressure and cardiac output. Am. J. Physiol. 212: 1067–1069, 1967.
 471. Smith, J. C., and W. Mitzner. Analysis of pulmonary vascular interdependence in excised dog lobes. J. Appl. Physiol: Respirat. Environ. Exercise Physiol. 48: 450–467, 1980.
 472. Snyder, M. F., and V. C. Rideout. Computer simulation studies of the venous circulation. IEEE Trans. Biomed. Eng. 16: 325–334, 1969.
 473. Sobin, S. S. The architecture and function of the microvasculature. In: Biomechanics, edited by Y. C. Fung. New York: Am. Soc. Mech. Eng., p. 132–150, 1966.
 474. Somlyo, A. P., and A. V. Somlyo. Vascular smooth muscle. II. Pharmacology of normal and hypertensive vessels. Pharmacol. Rev. 22: 249–353, 1970.
 475. Somlyo, A. V., and A. P. Somlyo. Effect of angiotensin and beta‐adrenergic stimulation on venous smooth muscle. Am. Heart J. 71: 568–570, 1966.
 476. Starling, E. H. The Linacre Lecture on the Law of the Heart. London: Longmans, 1918. (Given at Cambridge, 1915.)
 477. Stead, E. A., and J. V. Warren. Cardiac output in man. Arch. Intern. Med. 80: 237–248, 1947.
 478. Stephenson, R. B., and D. E. Donald. Reflexes from isolated carotid sinuses of intact and vagotomized conscious dogs. Am. J. Physiol. 238 (Heart Circ. Physiol. 7): H815–H822, 1980.
 479. Stewart, G. N. The pulmonary circulation time, the quantity of blood in the lungs and the output of the heart. Am. J. Physiol. 58: 20–44, 1921.
 480. Stokland, O., M. M. Miller, A. Ilebekk, and F. Kill. Mechanism of hemodynamic responses to occlusion of the descending thoracic aorta. Am. J. Physiol. 238 (Heart Circ. Physiol. 7): H423–H429, 1980.
 481. Suga, H., Y. Numao, and J. Iriuchijima. Correlative changes in total vascular capacity and resistance in carotid sinus reflex. Jpn. Heart J. 17: 196–210, 1976.
 482. Sutter, M. C. The pharmacology of isolated veins. Br. J. Pharmacol. 24: 742–751, 1965.
 483. Swan, K. G., R. W. Barton, and D. G. Reynolds. Splanchnic blood flow in experimental shock. Adv. Exp. Med. Biol. 23: 87–107, 1972.
 484. Takeuchi, T., and K. Miyakawa. Neurogenic constriction of the superior mesenteric and femoral veins during systemic blood pressure oscillation in rabbits. Jpn. J. Physiol. 29: 767–780, 1979.
 485. Thames, M. D., D. E. Donald, and J. T. Shepherd. Behavior of cardiac receptors with nonmyelinated vagal afferents during spontaneous respiration in cats. Circ. Res. 41: 694–701, 1977.
 486. Thames, M. D., and P. G. Schmid. Cardiopulmonary receptors with vagal afferents tonically inhibit ADH release in the dog. Am. J. Physiol. 237 (Heart Circ. Physiol. 6): H299–H304, 1979.
 487. Thomas, W. D., and H. E. Essex. Observations on hepatic venous circulation with special reference to the sphincteric mechanism. Am. J. Physiol. 158: 303–310, 1949.
 488. Thorén, P. N. Atrial receptors with nonmedullated vagal afferents in the cat: discharge frequency and pattern in relation to atrial pressure. Circ. Res. 38: 357–362, 1976.
 489. Thorén, P. N., D. E. Donald, and J. T. Shepherd. Role of heart and lung receptors with nonmedullated vagal afferents in circulatory control. Circ. Res. 38, Suppl. II: 2–9, 1976.
 490. Thron, H. L. Das Verhalten peripherer Blutgefässe in vivo bei passiven und aktiven Weitenänderungen. Arch. Kreislaufforsch. 52: 1–63, 1967.
 491. Tilton, R. G., C. Kilo, J. R. Williamson, and D. W. Murch. Differences in pericyte contractile function in rat cardiac and skeletal muscle microvasculatures. Microvasc. Res. 18: 336–352, 1979.
 492. Tkachenko, B. I., and S. A. Polenov. Responses of the resistance and capacitance vessels reflexly induced from the cardiac chambers. Experientia 28: 421–422, 1972.
 493. Tkachenko, B. I., and A. K. Saveliev. Interrelationships among central and peripheral mechanisms for the capacitance vessels control. Sechenov Physiol. J. USSR 64: 607–617, 1978.
 494. Tkachenko, B. I., M. I. Vinogradova, and V. A. Makovskaja. Relation of efferent impulse activity in splenic nerve to reflexly induced reactions of resistance and capacitance vessels of spleen. Experientia 32: 1012–1014, 1976.
 495. Tkachenko, B. I., M. I. Vinogradova, and V. A. Makovskaja. A correlation of responses of the resistance and capacitance vessels of the intestine and kidney to changes of impulse in postganglionic nerves under pressor reflexes. Experientia 34: 1298–1299, 1978.
 496. Trippodo, N. C. Total circulatory capacity in the rat. Effects of epinephrine and vasopressin on compliance and unstressed volume. Circ. Res. 49: 923–931, 1981.
 497. Trippodo, N. C., J. Yamamoto, and E. D. Frohlich. Whole‐body venous capacity and effective total tissue compliance in SHR. Hypertension 3: 104–112, 1981.
 498. Ueda, H., M. Iizuka, H. Yasuda, T. Iizuka, M. Ihori, and K. Inoue. Effects of mesencephalic stimulation on resistance and capacitance vessels in extremity of the dog. Jpn. Heart J. 7: 487–493, 1966.
 499. Ulrych, M. The role of vascular capacitance in the genesis of essential hypertension. Clin. Sci. Mol. Med. 51, Suppl. 3: 203s–205s, 1976.
 500. Ulrych, M., J. Hofman, and Z. Hejl. Cardiac and renal hyperresponsiveness to acute plasma volume expansion in hypertension. Am. Heart. J. 68: 193–203, 1964.
 501. Ungvary, G. Y., C. S. Léránth and S. A. Naszály. Die Innervation der A. hepatica und V. portae. Experimentellhistologische und histochemische Studien. Verh. Anat. Ges. 66: 187–193, 1971.
 502. Vanhoutte, P. M. Role of changes in venular and venous diameter in circulatory control. Bibl. Anat. 16, pt. 2: 294–297, 1977.
 503. Vanhoutte, P. M., and W. J. Janssens. Local control of venous function. Microvasc. Res. 16: 196–214, 1978.
 504. Vanhoutte, P. M., and I. Leusen. The reactivity of isolated venous preparations to electrical stimulation. Pfluegers Arch. 306: 341–353, 1969.
 505. Vanhoutte, P. M., and R. R. Lorenz. Effect of temperature on reactivity of saphenous, mesenteric, and femoral veins of the dog. Am. J. Physiol. 218: 1746–1750, 1970.
 506. Vanhoutte, P. M., and J. T. Shepherd. Effect of temperature on reactivity of isolated cutaneous veins of the dog. Am. J. Physiol. 218: 187–190, 1970.
 507. Vatner, S. F., and D. H. Boettcher. Regulation of cardiac output by stroke volume and heart rate in conscious dogs. Circ. Res. 42: 557–561, 1978.
 508. Vatner, S. F., and M. Zimpfer. Bainbridge reflex in conscious, unrestrained, and tranquilized baboons. Am. J. Physiol. 240 (Heart Circ. Physiol. 9): H164–167, 1981.
 509. Vick, J. A., B. Mehleman, and M. H. Heiffer. Early histamine release and death due to endotoxin. Proc. Soc. Exp. Biol. Med. 137: 902–906, 1971.
 510. Vidt, D. G., and L. A. Sapirstein. Distribution volumes of T‐1824 and chromium51 labelled red cells immediately following intravenous injection. Circ. Res. 5: 129–132, 1957.
 511. Vismara, L. A., D. M. Leaman, and R. Zelis. The effects of morphine on venous tone in patients with acute pulmonary edema. Circulation 54: 335–337, 1976.
 512. Wallentin, I. Importance of tissue pressure for the fluid equilibrium between the vascular and interstitial compartments in the small intestine. Acta Physiol. Scand. 68: 304–315, 1966.
 513. Walsh, J. A., C. Hyman, and R. F. Maronde. Venous distensibility in essential hypertension. Cardiovasc. Res. 3: 338–349, 1969.
 514. Webb‐Peploe, M. M. Effect of changes in central body temperature on capacity elements of limb and spleen. Am. J. Physiol. 216: 643–646, 1969.
 515. Webb‐Peploe, M. M. The isovolumetric spleen: index of reflex changes in splanchnic vascular capacity. Am. J. Physiol. 216: 407–413, 1969.
 516. Webb‐Peploe, M. M., and J. T. Shepherd. Response of large hindlimb veins of the dog to sympathetic nerve stimulation. Am. J. Physiol. 215: 299–307, 1968.
 517. Webb‐Peploe, M. M., and J. T. Shepherd. Responses of the superficial limb veins of the dog to changes in temperature. Circ. Res. 22: 737–746, 1968.
 518. Webb‐Peploe, M. M., and J. T. Shepherd. Responses of dogs' cutaneous veins to local and central temperature changes. Circ. Res. 23: 693–699, 1968.
 519. Webb‐Peploe, M. M., and J. T. Shepherd. Peripheral mechanism involved in response of dogs' cutaneous veins to local temperature change. Circ. Res. 23: 701–708, 1968.
 520. Webb‐Peploe, M. M., and J. T. Shepherd. Beta‐receptor mechanisms in the superficial limb veins of the dog. J. Clin. Invest. 48: 1328–1335, 1969.
 521. Weidner, W. J., G. J. Grega, and F. J. Haddy. Changes in forelimb weight and vascular resistances during endotoxin shock. Am. J. Physiol. 221: 1229–1237, 1971.
 522. Weil, M. H., L. D. MacLean, M. B. Visscher, and W. W. Spink. Studies on the circulatory changes in the dog produced by endotoxin from gram‐negative microorganisms. J. Clin. Invest. 35: 1191–1198, 1956.
 523. Weissler, A. M., and J. V. Warran. Vasodepressor syncope. Am. Heart J. 57: 786–794, 1959.
 524. Wenger, C. B., and M. F. Roberts. Control of forearm venous volume during exercise and body heating. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 48: 114–119, 1980.
 525. Wesly, R. L. R., R. N. Vaishnav, J. C. A. Fuchs, D. J. Patel, and J. C. Greenfield, Jr. Static linear and nonlinear elastic properties of normal and arterialized venous tissue in dog and man. Circ. Res. 37: 509–520, 1975.
 526. Wiedeman, M. P. Dimensions of blood vessels from distributing artery to collecting vein. Circ. Res. 12: 375–378, 1963.
 527. Wiederhielm, C. A. Extensibility characteristics of small blood vessels. Federation Proc. 24: 1075–1084, 1965.
 528. Wiederhielm, C. A. Analysis of small vessel function. In: Physical Bases of Circulatory Transport: Regulation and Exchange, edited by B. B. Reeve and A. C. Guyton. Philadelphia, PA: Saunders, 1967, p. 313–326.
 529. Wood, J. E. The mechanism of increased venous pressure with exercise in congestive heart failure. J. Clin. Invest. 41: 2020–2024, 1962.
 530. Wood, J. E. The Veins: Normal and Abnormal Function. Boston, MA: Little, Brown, 1965.
 531. Wood, J. E. Peripheral venous and arteriolar responses to infusions of angiotensin in normal and hypertensive subjects. Circ. Res. 9: 768–772, 1961.
 532. Wood, J. E., and J. W. Eckstein. A tandem forearm plethysmograph for study of acute responses of the peripheral veins of man: the effect of environmental and local temperature change, and the effect of pooling blood in the extremities. J. Clin. Invest. 37: 41–50, 1958.
 533. Wood, J. E., J. Litter, and R. W. Wilkins. Peripheral venoconstriction in human congestive heart failure. Circulation 13: 524–527, 1956.
 534. Wood, J. E., and S. B. Roy. The relationship of peripheral venomotor response to high altitude pulmonary edema in man. Am. J. Med. Sci. 259: 56–65, 1970.
 535. Yamamoto, J., N. C. Trippodo, S. Ishise, and E. D. Frohlich. Total vascular pressure‐volume relationship in the conscious rat. Am. J. Physiol. 238 (Heart Circ. Physiol 7): H823–H828, 1980.
 536. Zelis, R., and J. Longhurst. The circulation in congestive heart failure. In: The Peripheral Circulations, edited by R. Zelis. New York: Grune & Stratton, 1975, p. 283–314.
 537. Zelis, R., and D. T. Mason. Comparison of the reflex reactivity of skin and muscle veins in the human forearm. J. Clin. Invest. 48: 1870–1877, 1969.
 538. Zierler, K. L. Theoretical basis of indicator‐dilution methods for measuring flow and volume. Circ. Res. 10: 393–407, 1962.
 539. Zierler, K. L. Circulation times and the theory of indicator‐dilution methods for determining blood flow and volume. In: Handbook of Physiology. Circulation, edited by W. F. Hamilton. Washington, DC: Am. Physiol. Soc., 1962, sect. 2, vol. I, chapt. 18, p. 585–615.
 540. Zierler, K. L. Theory of use of indicators to measure blood flow and extracellular volume and calculation of transcapillary movement of tracers. Circ. Res. 12: 464–471, 1963.
 541. Zierler, K. L. Equations for measuring blood flow by external monitoring of radioisotopes. Circ. Res. 16: 309–321, 1965.
 542. Zimpfer, M., S. P. Sit, and S. F. Vatner. Effects of anesthesia on the canine carotid chemoreceptor reflex. Circ. Res. 48: 400–406, 1981.
 543. Zitnik, R. S., E. Ambrosioni, and J. T. Shepherd. Effect of temperature on cutaneous venomotor reflexes in man. J. Appl. Physiol. 31: 507–512, 1971.
 544. Zitnik, R. S., and R. R. Lorenz. Sensitivity of methods for detection of active changes in venous wall tension. Am. J. Cardiol. 24: 220–223, 1969.
 545. Zucker, I. H., A. M. Earle, and J. P. Gilmore. Changes in the sensitivity of left atrial receptors following reversal of heart failure. Am. J. Physiol. 237 (Heart Circ. Physiol. 6): H555–H559, 1979.
 546. Zweifach, B. W. Quantitative studies of microcirculatory structure and function. I. Analysis of pressure distribution in the terminal vascular bed in cat mesentery. Circ. Res. 34: 843–857, 1974.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Carl F. Rothe. Venous System: Physiology of the Capacitance Vessels. Compr Physiol 2011, Supplement 8: Handbook of Physiology, The Cardiovascular System, Peripheral Circulation and Organ Blood Flow: 397-452. First published in print 1983. doi: 10.1002/cphy.cp020313