Comprehensive Physiology Wiley Online Library

Cardiac Mechanoreceptors

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Historical Landmarks
1.1 Depressor Reflexes From the Heart
1.2 Pressor Reflexes From the Heart
1.3 Electrophysiological Recordings From Vagal Afferents
1.4 Electrophysiological Recordings From Sympathetic Afferents
2 Morphological Notes
3 Receptors with Vagal Afferents
3.1 Atrial Receptors With Myelinated Afferents
3.2 Ventricular Receptors With Myelinated Afferents
3.3 Cardiac Receptors With Unmyelinated Afferents (C Fibers)
4 Tonic Vasomotor Inhibition from Cardiopulmonary Receptors
4.1 In Animals
4.2 In Humans
5 Role of Cardiopulmonary Reflexes
5.1 In Physiological State
5.2 In Pathophysiological State
6 Receptors with Sympathetic Afferents
6.1 Methodological Notes
6.2 Atrial Receptors
6.3 Ventricular Receptors
6.4 Coronary Receptors
6.5 Receptors in Large Thoracic Vessels
6.6 Reflex Effects
6.7 Positive‐Feedback Hypothesis
6.8 General Properties of Cardiovascular Sympathetic Afferents
7 Possible Interaction of Vagal and Sympathetic Afferents
8 Summary
Figure 1. Figure 1.

Recordings from A, B, and intermediate atrial receptors with myelinated vagal afferents in anesthetized cats.

Figure 2. Figure 2.

Effect of simultaneously distending middle and upper pulmonary vein‐atrial junctions and left atrial appendage. Top to bottom: respiratory pressure, end‐tidal CO2 pressure (PCO2), femoral artery blood pressure, heart rate, mean left atrial pressure, and electrocardiogram. Increase in heart rate during distension was 52 beats/min. Mean arterial pressure was the same throughout.

From Linden 244
Figure 3. Figure 3.

Impulse activity in right ventricular pressure receptor in dog. Pulmonary artery pressure was measured from lobar branch. A: control conditions; note marked respiratory variation. B: effect of tightening a snare around origin of pulmonary trunk. ECG, electrocardiogram; P, impulses from a vagal strip; t, time (50 Hz); R, tracheal pressure.

From Coleridge et al. 81
Figure 4. Figure 4.

Increase in right atrial C‐fiber discharge during stepwise increase in blood volume. Top to bottom: right atrial pressure, neurogram with corrected position of spikes within cardiac cycle, ECG, spike frequency, and change in blood volume. Receptor fired with cardiac rhythmicity at V wave (C and D), but A wave was markedly augmented as in post‐ectopic beat. D*: A wave.

From Thorén 420, by permission of the American Heart Association, Inc
Figure 5. Figure 5.

Relationship between activity in myelinated and unmyelinated vagal afferents from right and left atria of cats during increases in atrial pressure caused by graded occlusion of respective outflow tract. Each set of recordings is from single fiber.

From Thorén et al. 424, by permission of the American Heart Association, Inc
Figure 6. Figure 6.

Activity in single left ventricular C fiber plotted against left ventricular systolic and end‐diastolic pressures during graded aortic occlusion in control situation, during infusion of isoproterenol [Isuprel (1.25‐2.5 g/min)], and after administration of propranolol (0.2‐0.3 mg/kg). Values for maximal rate of increase in left ventricular pressure [(dP/dt)max] reflect changes in ventricular inotropism.

From Thorén 422
Figure 7. Figure 7.

Firing pattern in cardiac cycle of a left ventricular C fiber. A: control condition. B: after balloon occlusion of tricuspid valve. C: during brief aortic occlusion. D: after transfusion of 40 ml of dextran. E: during total conduction time of electrical stimulation over receptor area. Asterisk indicates corrected position of receptor activation in cardiac cycle after total conduction time as measured in E was taken into account. Receptor fired spontaneously in early systole. During aortic occlusion and transfusion, receptor discharged throughout systole. Occasional spikes in diastole are also seen in C.

From Thorén 421, by permission of the American Heart Association, Inc
Figure 8. Figure 8.

Effect of afferent stimulation of right cardiac nerve (4 V, 1 ms) on arterial blood pressure, heart rate, and gastric volume. Left panel: heart and blood pressure responses “escape” during continued stimulation, whereas gastric response is well maintained. Right panel: clear‐cut circulatory and gastric responses were obtained at stimulation frequencies as low as 1‐2 impulses/s. Maximal circulatory effects were obtained at 10 impulses/s, whereas the gastric response increased further with stimulation frequencies up to 40‐100 impulses.

From Abrahamsson and Thorén 8
Figure 9. Figure 9.

Pronounced hypotension, bradycardia, and gastric relaxation were produced by local application of nicotine to pericardium (left panel) and by intravenous injection of veratrum (right panel). Recovery of gastric volume after local administration of lidocaine in pericardium suggests that relaxation caused by veratrum was elicited from receptors localized in the heart.

From Thorén 428
Figure 10. Figure 10.

Changes (δ) in mean arterial pressure (MAP), heart rate (HR), cardiac output (MCO), and peripheral resistance (PR) from control (C) during bilateral vagal cold block (VB) in conscious dogs before (○) and after (•) sinoaortic denervation. *P < 0.05; ** P < 0.01; *** P < 0.001. Bars equal ± SEM.

From Bishop and Peterson 44, by permission of the American Heart Association, Inc
Figure 11. Figure 11.

Discharge frequency of left ventricular receptors from 7 cats plotted against time (logarithmic scale) after onset of occlusion of coronary artery supplying receptor area. Activity in 4 receptors was also observed after release of occlusion; in 3 of the 4 cats a rebound phenomenon occurred during first 2‐3 min after release

From Thorén 419
Figure 12. Figure 12.

Changes (δ) from control (C) in heart rate (HR), mean arterial pressure (MAP), cardiac output (MCO), and peripheral resistance (PR) to vagal cold block (VB) and subsequent coronary artery occlusion (VB + CO) in dogs with intact carotid sinuses. **P < 0.05; ***P < 0.001. Bracket shows changes from VB due to VB + CO. Bars equal ± SEM.

From Bishop and Peterson 44, by permission of the American Heart Association, Inc
Figure 13. Figure 13.

Changes (δ) in mean cardiac output (MCO), mean arterial pressure (MAP), mean left atrial pressure (MLAP), and peripheral resistance (PR) to coronary occlusion (CO), vagal block (VB), and vagal block plus coronary occlusion (VB + CO) in sinoaortic‐denervated dogs. P < 0.05; **P < 0.01; ***P < 0.001. P values for VB + CO refer to vagal block stage.

From Bishop and Peterson 44, by permission of the American Heart Association, Inc
Figure 14. Figure 14.

A: mean activity in left atrial C fibers plotted against mean left atrial pressure for 10 receptors in normotensive control rats (NCR) and 7 receptors in spontaneously hypertensive rats (SHR). Note that thresholds for C‐fiber endings in NCR were ∼5 mmHg. At pressures of 5‐12.5 mmHg there was a significant difference in discharge between the 2 groups of animals. *P < 0.05. B: relation between mean left atrial pressure and reflexly induced inhibition of renal sympathetic outflow for 6 NCR and 6 sinoaortic‐denervated SHR. Activity in renal nerves was inhibited at considerably higher pressure levels in SHR. **P < 0.001.

From Ricksten et al. 363
Figure 15. Figure 15.

Activity of a fiber with left atrial endings. Tracings in each chart from top to bottom: endotracheal pressure (inflation upward), arterial blood pressure, right atrial pressure, ECG, and neural activity. A: control. B: injection, starting at arrow, of 2 ml warm saline. C: constriction of the thoracic aorta (marked by bar). D: beginning of rise in arterial blood pressure produced by intravenous injection of 3 μg norepinephrine. E: mechanical probing of area of left atrium in the beating heart. F: electrical stimulation of left inferior cardiac nerve activating the afferent fiber. First biphasic deflection is artifact of the stimulus, whereas second upward and smaller deflection is action potential of the fiber. Fiber length was ∼7 cm; its conduction velocity was 32 m/s.

From Malliani et al. 274
Figure 16. Figure 16.

Activity of a fiber with left ventricular endings. Tracings in each chart from top to bottom: endotracheal pressure (inflation upward), arterial blood pressure, right atrial pressure, ECG, and neural activity. A: spontaneous activity. B: abolition of discharge obtained by constriction of the pulmonary artery (marked by bar). C: mechanical probing of area of left ventricle in the beating heart. D: repetition of probing surface of ventricular wall at end of experiment in opened, nonbeating heart.

From Malliani et al. 268
Figure 17. Figure 17.

Effects of various experimental interventions on impulse activity. AO, aortic occlusion; Isopr., intravenous injection of isoproterenol; Inf., intravenous infusion of isotonic solution; LCO, left coronary occlusion; IVCO, inferior vena cava occlusion; Bleed., bleeding; ACh., intravenous injection of acetylcholine; Asph., asphyxia; VF, ventricular fibrillation; n, number of fibers studied; ***P < 0.001; **P < 0.02; NS, not statistically significant. Bars equal ± SEM.

From Casati et al. 68
Figure 18. Figure 18.

Activity of an unmyelinated afferent sympathetic nerve fiber with its receptive field in the left ventricle. Tracings in each chart from top to bottom: ECG, systemic arterial pressure, right atrial pressure, neural activity. (All tracings are cathode‐ray oscilloscope recordings.) A: occlusion of descending thoracic aorta (indicated by rise in arterial pressure). B: intravenous injection of 5 ml warm saline, beginning at arrow. C: occlusion of inferior vena cava, released at arrow. D: electrical stimulation of left inferior cardiac nerve activating the afferent fiber. First biphasic deflection is artifact of the stimulus, detectable also on ECG, whereas second biphasic deflection is action potential of the fiber. Fiber length was ∼3.8 cm; its conduction velocity was 0.92 m/s. E: mechanical probing of area of external surface of left ventricle (marked by bar) in the nonbeating heart after bleeding the animal to death. Note afterdischarge, which is typical of C fibers.

From Casati et al. 68
Figure 19. Figure 19.

Effects of ventricular fibrillation on activity of 2 nerve filaments. Tracings in each chart from top to bottom: ECG, systemic arterial pressure, right atrial pressure, neural activity. (All tracings are cathode‐ray oscilloscope recordings.) A: nerve filament impulses from 2 unmyelinated fibers. Fiber yielding biphasic action potentials had its receptive field in the depth of the left ventricle and a conduction velocity of 0.32 m/s; fiber producing monophasic potentials had its receptive field in the left atrium and a conduction velocity of 0.53 m/s. A (upper): episode of ventricular fibrillation induced by gentle mechanical stimulation of right ventricle, corresponding to ectopic beat, preceding the episode itself by a few cardiac cycles. A (lower): spontaneous return of ventricles to normal action after −8.0 s. B: nerve filament impulses of an unmyelinated and a myelinated afferent fiber, each with its receptive field in left ventricle. Potentials of unmyelinated fiber (conduction velocity, 0.36 m/s) are marked with dots. Highest potentials were produced by myelinated fiber (conduction velocity, 7.23 m/s). B (upper): ventricular fibrillation induced by high‐frequency electrical stimulation of right ventricle. B (lower): spontaneous return of ventricles to normal action after 6.8 s.

From Casati et al. 68
Figure 20. Figure 20.

Activity of an unmyelinated afferent sympathetic nerve fiber with a left ventricular sensory field. Tracings in each chart from top to bottom: systemic arterial pressure, coronary perfusion pressure, and neural impulse activity (cathode‐ray oscilloscope recordings). A: interruption of left main coronary artery perfusion. B: intracoronary administration, beginning at arrow, of bradykinin, 5 ng/kg. C: intracoronary administration of bradykinin, 10 ng/kg. D: intracoronary administration of bradykinin, 30 ng/kg. E: electrical stimulation of left inferior cardiac nerve activating the afferent fiber. First biphasic deflection is artifact of the stimulus, and second biphasic deflection is action potential of the fiber. Fiber length was ∼8 cm; its conduction velocity was 0.45 m/s. F: mechanical probing (marked by bar) of area of external surface of left ventricle. Note afterdischarge, which is typical of unmyelinated afferents.

From Lombardi et al. 257, by permission of the American Heart Association, Inc
Figure 21. Figure 21.

Activity of an unmyelinated afferent sympathetic nerve fiber (C fiber) with receptive field in distal third of aortic arch. A: control. B: occlusion of descending aorta. C, D, E, F, H, and I: effects of stretching aortic wall by distending a latex balloon in distal part of aortic arch. Top tracing, pressure applied to distending balloon; bottom tracing, neural activity. G: electrical stimulation of left inferior cardiac nerve activating the fiber. Fiber length was ∼5 cm; its conduction velocity was 1 m/s. Tracings in A and B from top to bottom: endotracheal pressure (inflation upward), aortic and femoral artery pressures, ECG, and neural activity.

From Malliani and Pagani 269
Figure 22. Figure 22.

Effects of intravenous infusion of Locke solution and bleeding on impulse activity of a single afferent fiber innervating a pulmonary artery receptor. Charts are continuous records. Tracings in each chart from top to bottom: impulse activity, pulmonary artery pressure (PAP), and ECG. Intravenous infusion of Locke solution (15 ml) in C at arrow.

From Nishi et al. 309
Figure 23. Figure 23.

Activity of a single afferent sympathetic fiber innervating left middle pulmonary vein. Tracings in each chart from top to bottom: systemic blood pressure, right atrial pressure, left atrial pressure, ECG, and neural activity. A: control. B: 10 s after beginning of intravenous infusion of saline. C: end of infusion (100 ml infused in ∼5 min).

From Lombardi et al. 258
Figure 24. Figure 24.

Effects of progressively increasing aortic stretch on arterial pressure and heart rate in a conscious dog. Distending balloon pressure, obviously not corresponding to pressure effectively applied to aortic walls, is displayed in bottom tracing as index of progressive stretch.

From Malliani et al. 270
Figure 25. Figure 25.

Suggested mechanisms underlying neural control of arterial blood pressure. Baroreceptors are indicated as example of receptors that activate negative‐feedback mechanisms. Coexistence of inhibitory components in excitatory reflexes mediated by sympathetic afferents is represented by broken line. CNS, central nervous system; CV, cardiovascular.

From Malliani et al. 270


Figure 1.

Recordings from A, B, and intermediate atrial receptors with myelinated vagal afferents in anesthetized cats.



Figure 2.

Effect of simultaneously distending middle and upper pulmonary vein‐atrial junctions and left atrial appendage. Top to bottom: respiratory pressure, end‐tidal CO2 pressure (PCO2), femoral artery blood pressure, heart rate, mean left atrial pressure, and electrocardiogram. Increase in heart rate during distension was 52 beats/min. Mean arterial pressure was the same throughout.

From Linden 244


Figure 3.

Impulse activity in right ventricular pressure receptor in dog. Pulmonary artery pressure was measured from lobar branch. A: control conditions; note marked respiratory variation. B: effect of tightening a snare around origin of pulmonary trunk. ECG, electrocardiogram; P, impulses from a vagal strip; t, time (50 Hz); R, tracheal pressure.

From Coleridge et al. 81


Figure 4.

Increase in right atrial C‐fiber discharge during stepwise increase in blood volume. Top to bottom: right atrial pressure, neurogram with corrected position of spikes within cardiac cycle, ECG, spike frequency, and change in blood volume. Receptor fired with cardiac rhythmicity at V wave (C and D), but A wave was markedly augmented as in post‐ectopic beat. D*: A wave.

From Thorén 420, by permission of the American Heart Association, Inc


Figure 5.

Relationship between activity in myelinated and unmyelinated vagal afferents from right and left atria of cats during increases in atrial pressure caused by graded occlusion of respective outflow tract. Each set of recordings is from single fiber.

From Thorén et al. 424, by permission of the American Heart Association, Inc


Figure 6.

Activity in single left ventricular C fiber plotted against left ventricular systolic and end‐diastolic pressures during graded aortic occlusion in control situation, during infusion of isoproterenol [Isuprel (1.25‐2.5 g/min)], and after administration of propranolol (0.2‐0.3 mg/kg). Values for maximal rate of increase in left ventricular pressure [(dP/dt)max] reflect changes in ventricular inotropism.

From Thorén 422


Figure 7.

Firing pattern in cardiac cycle of a left ventricular C fiber. A: control condition. B: after balloon occlusion of tricuspid valve. C: during brief aortic occlusion. D: after transfusion of 40 ml of dextran. E: during total conduction time of electrical stimulation over receptor area. Asterisk indicates corrected position of receptor activation in cardiac cycle after total conduction time as measured in E was taken into account. Receptor fired spontaneously in early systole. During aortic occlusion and transfusion, receptor discharged throughout systole. Occasional spikes in diastole are also seen in C.

From Thorén 421, by permission of the American Heart Association, Inc


Figure 8.

Effect of afferent stimulation of right cardiac nerve (4 V, 1 ms) on arterial blood pressure, heart rate, and gastric volume. Left panel: heart and blood pressure responses “escape” during continued stimulation, whereas gastric response is well maintained. Right panel: clear‐cut circulatory and gastric responses were obtained at stimulation frequencies as low as 1‐2 impulses/s. Maximal circulatory effects were obtained at 10 impulses/s, whereas the gastric response increased further with stimulation frequencies up to 40‐100 impulses.

From Abrahamsson and Thorén 8


Figure 9.

Pronounced hypotension, bradycardia, and gastric relaxation were produced by local application of nicotine to pericardium (left panel) and by intravenous injection of veratrum (right panel). Recovery of gastric volume after local administration of lidocaine in pericardium suggests that relaxation caused by veratrum was elicited from receptors localized in the heart.

From Thorén 428


Figure 10.

Changes (δ) in mean arterial pressure (MAP), heart rate (HR), cardiac output (MCO), and peripheral resistance (PR) from control (C) during bilateral vagal cold block (VB) in conscious dogs before (○) and after (•) sinoaortic denervation. *P < 0.05; ** P < 0.01; *** P < 0.001. Bars equal ± SEM.

From Bishop and Peterson 44, by permission of the American Heart Association, Inc


Figure 11.

Discharge frequency of left ventricular receptors from 7 cats plotted against time (logarithmic scale) after onset of occlusion of coronary artery supplying receptor area. Activity in 4 receptors was also observed after release of occlusion; in 3 of the 4 cats a rebound phenomenon occurred during first 2‐3 min after release

From Thorén 419


Figure 12.

Changes (δ) from control (C) in heart rate (HR), mean arterial pressure (MAP), cardiac output (MCO), and peripheral resistance (PR) to vagal cold block (VB) and subsequent coronary artery occlusion (VB + CO) in dogs with intact carotid sinuses. **P < 0.05; ***P < 0.001. Bracket shows changes from VB due to VB + CO. Bars equal ± SEM.

From Bishop and Peterson 44, by permission of the American Heart Association, Inc


Figure 13.

Changes (δ) in mean cardiac output (MCO), mean arterial pressure (MAP), mean left atrial pressure (MLAP), and peripheral resistance (PR) to coronary occlusion (CO), vagal block (VB), and vagal block plus coronary occlusion (VB + CO) in sinoaortic‐denervated dogs. P < 0.05; **P < 0.01; ***P < 0.001. P values for VB + CO refer to vagal block stage.

From Bishop and Peterson 44, by permission of the American Heart Association, Inc


Figure 14.

A: mean activity in left atrial C fibers plotted against mean left atrial pressure for 10 receptors in normotensive control rats (NCR) and 7 receptors in spontaneously hypertensive rats (SHR). Note that thresholds for C‐fiber endings in NCR were ∼5 mmHg. At pressures of 5‐12.5 mmHg there was a significant difference in discharge between the 2 groups of animals. *P < 0.05. B: relation between mean left atrial pressure and reflexly induced inhibition of renal sympathetic outflow for 6 NCR and 6 sinoaortic‐denervated SHR. Activity in renal nerves was inhibited at considerably higher pressure levels in SHR. **P < 0.001.

From Ricksten et al. 363


Figure 15.

Activity of a fiber with left atrial endings. Tracings in each chart from top to bottom: endotracheal pressure (inflation upward), arterial blood pressure, right atrial pressure, ECG, and neural activity. A: control. B: injection, starting at arrow, of 2 ml warm saline. C: constriction of the thoracic aorta (marked by bar). D: beginning of rise in arterial blood pressure produced by intravenous injection of 3 μg norepinephrine. E: mechanical probing of area of left atrium in the beating heart. F: electrical stimulation of left inferior cardiac nerve activating the afferent fiber. First biphasic deflection is artifact of the stimulus, whereas second upward and smaller deflection is action potential of the fiber. Fiber length was ∼7 cm; its conduction velocity was 32 m/s.

From Malliani et al. 274


Figure 16.

Activity of a fiber with left ventricular endings. Tracings in each chart from top to bottom: endotracheal pressure (inflation upward), arterial blood pressure, right atrial pressure, ECG, and neural activity. A: spontaneous activity. B: abolition of discharge obtained by constriction of the pulmonary artery (marked by bar). C: mechanical probing of area of left ventricle in the beating heart. D: repetition of probing surface of ventricular wall at end of experiment in opened, nonbeating heart.

From Malliani et al. 268


Figure 17.

Effects of various experimental interventions on impulse activity. AO, aortic occlusion; Isopr., intravenous injection of isoproterenol; Inf., intravenous infusion of isotonic solution; LCO, left coronary occlusion; IVCO, inferior vena cava occlusion; Bleed., bleeding; ACh., intravenous injection of acetylcholine; Asph., asphyxia; VF, ventricular fibrillation; n, number of fibers studied; ***P < 0.001; **P < 0.02; NS, not statistically significant. Bars equal ± SEM.

From Casati et al. 68


Figure 18.

Activity of an unmyelinated afferent sympathetic nerve fiber with its receptive field in the left ventricle. Tracings in each chart from top to bottom: ECG, systemic arterial pressure, right atrial pressure, neural activity. (All tracings are cathode‐ray oscilloscope recordings.) A: occlusion of descending thoracic aorta (indicated by rise in arterial pressure). B: intravenous injection of 5 ml warm saline, beginning at arrow. C: occlusion of inferior vena cava, released at arrow. D: electrical stimulation of left inferior cardiac nerve activating the afferent fiber. First biphasic deflection is artifact of the stimulus, detectable also on ECG, whereas second biphasic deflection is action potential of the fiber. Fiber length was ∼3.8 cm; its conduction velocity was 0.92 m/s. E: mechanical probing of area of external surface of left ventricle (marked by bar) in the nonbeating heart after bleeding the animal to death. Note afterdischarge, which is typical of C fibers.

From Casati et al. 68


Figure 19.

Effects of ventricular fibrillation on activity of 2 nerve filaments. Tracings in each chart from top to bottom: ECG, systemic arterial pressure, right atrial pressure, neural activity. (All tracings are cathode‐ray oscilloscope recordings.) A: nerve filament impulses from 2 unmyelinated fibers. Fiber yielding biphasic action potentials had its receptive field in the depth of the left ventricle and a conduction velocity of 0.32 m/s; fiber producing monophasic potentials had its receptive field in the left atrium and a conduction velocity of 0.53 m/s. A (upper): episode of ventricular fibrillation induced by gentle mechanical stimulation of right ventricle, corresponding to ectopic beat, preceding the episode itself by a few cardiac cycles. A (lower): spontaneous return of ventricles to normal action after −8.0 s. B: nerve filament impulses of an unmyelinated and a myelinated afferent fiber, each with its receptive field in left ventricle. Potentials of unmyelinated fiber (conduction velocity, 0.36 m/s) are marked with dots. Highest potentials were produced by myelinated fiber (conduction velocity, 7.23 m/s). B (upper): ventricular fibrillation induced by high‐frequency electrical stimulation of right ventricle. B (lower): spontaneous return of ventricles to normal action after 6.8 s.

From Casati et al. 68


Figure 20.

Activity of an unmyelinated afferent sympathetic nerve fiber with a left ventricular sensory field. Tracings in each chart from top to bottom: systemic arterial pressure, coronary perfusion pressure, and neural impulse activity (cathode‐ray oscilloscope recordings). A: interruption of left main coronary artery perfusion. B: intracoronary administration, beginning at arrow, of bradykinin, 5 ng/kg. C: intracoronary administration of bradykinin, 10 ng/kg. D: intracoronary administration of bradykinin, 30 ng/kg. E: electrical stimulation of left inferior cardiac nerve activating the afferent fiber. First biphasic deflection is artifact of the stimulus, and second biphasic deflection is action potential of the fiber. Fiber length was ∼8 cm; its conduction velocity was 0.45 m/s. F: mechanical probing (marked by bar) of area of external surface of left ventricle. Note afterdischarge, which is typical of unmyelinated afferents.

From Lombardi et al. 257, by permission of the American Heart Association, Inc


Figure 21.

Activity of an unmyelinated afferent sympathetic nerve fiber (C fiber) with receptive field in distal third of aortic arch. A: control. B: occlusion of descending aorta. C, D, E, F, H, and I: effects of stretching aortic wall by distending a latex balloon in distal part of aortic arch. Top tracing, pressure applied to distending balloon; bottom tracing, neural activity. G: electrical stimulation of left inferior cardiac nerve activating the fiber. Fiber length was ∼5 cm; its conduction velocity was 1 m/s. Tracings in A and B from top to bottom: endotracheal pressure (inflation upward), aortic and femoral artery pressures, ECG, and neural activity.

From Malliani and Pagani 269


Figure 22.

Effects of intravenous infusion of Locke solution and bleeding on impulse activity of a single afferent fiber innervating a pulmonary artery receptor. Charts are continuous records. Tracings in each chart from top to bottom: impulse activity, pulmonary artery pressure (PAP), and ECG. Intravenous infusion of Locke solution (15 ml) in C at arrow.

From Nishi et al. 309


Figure 23.

Activity of a single afferent sympathetic fiber innervating left middle pulmonary vein. Tracings in each chart from top to bottom: systemic blood pressure, right atrial pressure, left atrial pressure, ECG, and neural activity. A: control. B: 10 s after beginning of intravenous infusion of saline. C: end of infusion (100 ml infused in ∼5 min).

From Lombardi et al. 258


Figure 24.

Effects of progressively increasing aortic stretch on arterial pressure and heart rate in a conscious dog. Distending balloon pressure, obviously not corresponding to pressure effectively applied to aortic walls, is displayed in bottom tracing as index of progressive stretch.

From Malliani et al. 270


Figure 25.

Suggested mechanisms underlying neural control of arterial blood pressure. Baroreceptors are indicated as example of receptors that activate negative‐feedback mechanisms. Coexistence of inhibitory components in excitatory reflexes mediated by sympathetic afferents is represented by broken line. CNS, central nervous system; CV, cardiovascular.

From Malliani et al. 270
References
 1. Aars, H. Relationship between aortic diameter and aortic baroreceptor activity in normal and hypertensive rabbits. Acta Physiol. Scand. 75: 406–414, 1969.
 2. Abboud, F. M., D. L. Eckberg, U. J. Johannsen, and A. L. Mark. Carotid and cardiopulmonary baroreceptor control of splanchnic and forearm vascular resistance during venous pooling in man. J. Physiol. London 286: 173–184, 1979.
 3. Abboud, F. M., D. D. Heistad, A. L. Mark, and P. G. Schmid. Reflex control of the peripheral circulation. Prog. Cardiovasc. Dis. 18: 371–403, 1976.
 4. Abboud, F. M., and A. L. Mark. Cardiac baroreceptors in circulatory control in humans. In: Cardiac Receptors, edited by R. Hainsworth, C. Kidd, and R. J. Linden. Cambridge, UK: Cambridge Univ. Press, 1979, p. 437–461.
 5. Abboud, F. M., and P. G. Schmid. Circulatory adjustments to heart failure. In: Heart Failure, edited by A. P. Fishman. Washington, DC: Hemisphere, 1978, p. 249–260.
 6. Abboud, F. M., M. D. Thames, and A. L. Mark. Role of cardiac afferent nerves in the regulation of circulation during coronary occlusion and heart failure. In: Disturbances in Neurogenic Control of the Circulation, edited by F. M. Abboud, H. A. Fottard, J. P. Gilmore, and D. J. Reis. Bethesda, MD: Am. Physiol. Soc, 1981, p. 65–86.
 7. Abraham, A. Microscopic Innervation of the Heart and Blood Vessels in Vertebrates Including Man. London: Pergamon, 1969.
 8. Abrahamsson, H., and P. Thorén. Reflex relaxation of the stomach elicited from receptors located in the heart. An analysis of the receptors and afferents involved. Acta Physiol. Scand. 84: 197–207, 1972.
 9. Abrahamsson, H., and P. Thorén. Vomiting and reflex vagal relaxation of the stomach elicited from heart receptors in the cat. Acta Physiol. Scand. 88: 433–439, 1973.
 10. Agostoni, E., J. E. Chinnock, M. de B. Daly, and J. G. Murray. Functional and histological studies of the vagus and its branches to the heart, lungs and abdominal viscera in the cat. J. Physiol. London 135: 182–205, 1957.
 11. Ahmed, G., and P. A. Nicoll. Chronotropic response to intravenous infusion in anesthetized dog. Am. J. Physiol. 204: 423–426, 1963.
 12. Amann, A., and A. Jarisch. Auslösung des Bezold‐Effektes durch Ionen. Arch. Exp. Pathol. Pharmakol. 201: 46–56, 1943.
 13. Amann, A., A. Jarisch, and H. Richter. Reflektorische Kreislaufwirkungen des Histamins. Arch. Exp. Pathol. Pharmakol. 198: 158–164, 1941.
 14. Amann, A., and H. Schaefer. Über sensibel Impulse in Herznerven. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 246: 757–789, 1943.
 15. Armour, J. A. Physiological behavior of thoracic cardiovascular receptors. Am. J. Physiol. 225: 177–185, 1973.
 16. Arndt, J. O. Neurophysiological properties of atrial mechanoreceptors. In: Cardiac Receptors, edited by R. Hainsworth, C. Kidd, and R. J. Linden. Cambridge, UK: Cambridge Univ. Press, 1979, p. 89–115.
 17. Arndt, J. O., P. Brambring, K. Hindorf, and M. Rohnelt. The afferent impulse traffic from atrial A‐type receptors in cats. Does the A‐type receptor signal heart rate Pfluegers Arch. 326: 300–315, 1971.
 18. Arndt, J. O., P. Brambring, K. Hindorf, and M. Rohnelt. The afferent discharge pattern of atrial mechanoreceptors in the cat during sinusoidal stretch of atrial strips in situ. J. Physiol. London 240: 33–52, 1974.
 19. Arndt, J. O., H. Reineck, and O. H. Gauer. Ausscheidungs Funktion und Hamodynamik der Nieren bei Dehnung des linken Vorhofes am narkotisieren Hund. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 27: 1–15, 1963.
 20. Aviado, D. M., Jr., T. H. Li, W. Kalow, C. F. Schmidt, G. L. Turnbull, G. W. Peskin, M. E. Hess, and A. J. Weiss. Respiratory and circulatory reflexes from the perfused heart and pulmonary circulation of the dog. Am. J. Physiol. 165: 261–277, 1951.
 21. Aviado, D. M., Jr., and C. F. Schmidt. Reflexes from stretch receptors in blood vessels, heart and lungs. Physiol. Rev. 35: 247–300, 1955.
 22. Aviado, D. M., Jr., and C. F. Schmidt. Cardiovascular and respiratory reflexes from the left side of the heart. Am. J. Physiol. 196: 726–730, 1959.
 23. Baertschi, A. J., and D. S. Gann. Responses of atrial mechanoreceptors to pulsation of atrial volume. J. Physiol. London 273: 1–21, 1977.
 24. Baertschi, A. J., R. F. Munzer, D. G. Ward, R. N. Johnson, and D. S. Gann. Right and left B‐fiber input to the medulla of the cat. Brain Res. 98: 189–192, 1975.
 25. Bainbridge, F. A. The influence of venous filling upon the rate of the heart. J. Physiol. London 50: 65–84, 1915.
 26. Baker, D. G., H. M. Colerdige, J. C. G. Coleridge, and T. Nerdrum. Search for a cardiac nociceptor: stimulation by bradykinin of sympathetic afferent nerve endings in the heart of cat. J. Physiol. London 306: 519–536, 1980.
 27. Barcroft, H., and O. G. Edholm. On the vasodilation in human skeletal muscle during post‐haemorrhagic fainting. J. Physiol. London 104: 161–175, 1945.
 28. Barger, A. C., F. P. Muedowney, and M. R. Libowitz. Role of the kidney in the pathogenesis of congestive heart failure. Circulation 20: 273–285, 1959.
 29. Barron, K. W., and V. S. Bishop. The influence of vagal afferents on left ventricular contractile response to intracoronary administration of catecholamines in the conscious dog. Circ. Res. In press.
 30. Beccari, E. Contribution à l'étude de l'innervation sensible pulmonaire et des réflexes proprioceptifs respiratoires. Arch. Int. Physiol. 39: 257–294, 1934.
 31. Belleau, L., H. Mion, S. Simard, P. Granger, E. Bertranou, W. Nowaczynski, R. Boucher, and J. Genest. Studies on the mechanism of experimental congestive heart failure in dogs. Can. J. Physiol. Pharmacol. 48: 450–456, 1970.
 32. Benforado, J. M. The veratrum alkaloids. In: Physiological Pharmacology. New York: Academic, 1965, vol. 2, p. 331–398.
 33. Bennett, E. D., N. H. Brooks, J. Keddie, Y. Lis, and A. Wilson. Increased renal function in patients with acute left ventricular failure: a possible hemostatic mechanism. Clin. Sci. Mol. Med. 52: 43–50, 1977.
 34. Bergamaschi, M. Role of the sympathetic and parasympathetic innervation in the genesis of ventricular arrhythmias during experimental myocardial ischemia. In: Neural Mechanisms in Cardiac Arrhythmias, edited by P. J. Schwartz, A. M. Brown, A. Malliani, and A. Zanchetti. New York: Raven, 1978, p. 139–154.
 35. Bergel, D. H., and G. S. Makin. Central and peripheral cardiovascular changes following chemical stimulation of the surface of the dog's heart. Cardiovasc. Res. 1: 80–90, 1967.
 36. Berkley, H. J. The intrinsic nerve supply of cardiac ventricles in certain vertebrates. Johns Hopkins Hosp. Rep. 4: 248–255, 1894.
 37. Bevegård, B. S., J. Castenfors, and L. E. Lindblad. Effect of changes in blood volume distribution on circulatory variables and plasma renin activity in man. Acta Physiol. Scand. 99: 237–245, 1977.
 38. Bevegård, B. S., and J. T. Shepherd. Regulation of the circulation during exercise in man. Physiol. Rev. 47: 178–213, 1967.
 39. Bezold, A. von, and L. Hirt. Über die physiologischen Wirkungen des essigsauren Veratrins. Unters Physiol. Lab. Wurzburg 1: 75–156, 1867.
 40. Bishop, V. S., and K. W. Barron. Contribution of vagal afferents in the regulation of the circulation in conscious dogs. In: Arterial Baroreceptors in Hypertension, edited by P. Sleight. Oxford, UK: Oxford Univ. Press, 1980, p. 91–97.
 41. Bishop, V. S., R. L. Kaspar, G. E. Barnes, and M. B. Kardon. Left ventricular function during acute regional myocardial ischemia in the conscious dog. J. Appl. Physiol. 37: 785–792, 1974.
 42. Bishop, V. S., F. Lombardi, A. Malliani, M. Pagani, and G. Recordati. Reflex sympathetic tachycardia during intravenous infusions in chronic spinal cats. Am. J. Physiol. 230: 25–29, 1976.
 43. Bishop, V. S., and D. F. Peterson. Pathways regulating cardiovascular changes during volume loading in awake dogs. Am. J. Physiol. 231: 854–859, 1976.
 44. Bishop, V. S., and D. F. Peterson. The circulatory influences of vagal afferents at rest and during coronary occlusion in conscious dogs. Circ. Res. 43: 840–847, 1978.
 45. Bishop, V. S., H. L. Stone, and A. C. Guyton. Cardiac function curves in conscious dogs. Am. J. Physiol. 207: 677–682, 1964.
 46. Borison, H. L., and F. V. Fairbanks. Mechanism of veratrum induced emesis in the cat. J. Pharmacol. Exp. Ther. 105: 317–325, 1952.
 47. Borison, H. L., and S. R. Sampson. The vagal body: receptor site for emetic action of veratrum alkaloids (Abstract). Federation Proc. 20: 169, 1961.
 48. Botár, J. The Autonomic Nervous System. An Introduction to its Physiology and Pathological Histology. Budapest, Hungary: Akad. Kiado, 1966, p. 442.
 49. Boyd, J. D., and G. P. McCullagh. Experimental hypertension following caroticoaortic denervation in the rabbit. Q. J. Exp. Physiol. 27: 293–306, 1937.
 50. Brennan, L. A., A. L. Henninger, K. E. Jochim, and R. L. Malvin. Relationship between carotid sinus pressure and plasma renin level. Am. J. Physiol. 227: 295–299, 1974.
 51. Brennan, L. A., R. L. Malvin, K. E. Jochim, and D. E. Roberts. Influence of right and left atrial receptors on plasma concentrations of ADH and renin. Am. J. Physiol. 221: 273–278, 1971.
 52. Brigiden, W., and E. P. Sharpey‐Schafer. Postural changes in peripheral blood flow in cases with left heart failure. Clin. Sci. 9: 93–100, 1950.
 53. Bronk, D. W., L. K. Furguson, R. Margaria, and D. Y. Solandt. The activity of the cardiac sympathetic centers. Am. J. Physiol. 117: 237–249, 1936.
 54. Brosnihan, K. B., and E. L. Bravo. Graded reductions of atrial pressure and renin release. Am. J. Physiol. 235 (Heart Circ. Physiol. 4): H175–H181, 1978.
 55. Brosnihan, K. B., and R. H. Travis. Influence of the vagal and carotid sinus nerves on plasma renin in the cat. J. Endocrinol. 71: 59–65, 1976.
 56. Brown, A. M. Afferent Innervation of the Coronary Arteries and Cardiac Chambers. London: Univ. of London, 1964.
 57. Brown, A. M. Mechanoreceptors in or near the coronary arteries. J. Physiol. London 177: 203–214, 1965.
 58. Brown, A. M. The depressor reflex arising from the left coronary artery of the cat. J. Physiol. London 184: 825–836, 1966.
 59. Brown, A. M. Excitation of afferent cardiac sympathetic nerve fibres during myocardial ischaemia. J. Physiol. London 190: 35–53, 1967.
 60. Brown, A. M. Cardiac reflexes. In: Handbook of Physiology. The Cardiovascular System. The Heart, edited by R. M. Berne and N. Sperelakis. Bethesda, MD: Am. Physiol. Soc., 1979, sect. 2, vol. I, chapt. 19, p. 677–689.
 61. Brown, A. M. Receptors under pressure. An update on baroreceptors. Circ. Res. 46: 1–10, 1980.
 62. Brown, A. M., and A. Malliani. Spinal sympathetic reflexes initiated by coronary receptors. J. Physiol. London 212: 685–705, 1971.
 63. Bunay, R. D., I. H. Page, and J. W. McCubbin. Neural stimulation of release of renin. Circ. Res. 19: 851–858, 1966.
 64. Burch, G. E., and N. P. De Pasquale. Bradykinin. Am. Heart J. 65: 116–123, 1963.
 65. Burgess, P. R., and E. R. Perl. Cutaneous mechanoreceptors and nociceptors. In: Handbook of Sensory Physiology. Somatosensory System, edited by A. Iggo. Berlin: Springer‐Verlag, 1973, vol. II, p. 29–78.
 66. Burkhart, S. M., and J. R. Ledsome. The response to distension of the pulmonary vein‐left atrial junctions in dogs with spinal section. J. Physiol. London 237: 685–700, 1974.
 67. Carswell, F., R. Hainsworth, and J. R. Ledsome. The effect of left atrial distension upon urine flow from the isolated perfused kidney. Q. J. Exp. Physiol. 55: 173–182, 1970.
 68. Casati, R., F. Lombardi, and A. Malliani. Afferent sympathetic unmyelinated fibres with left ventricular endings in cats. J. Physiol. London 292: 135–148, 1979.
 69. Chen, D. S., D. E. Donald, and J. C. Romero. Role of vagal afferents in vasodepressor effects of pge2 in spontaneously hypertensive rats. Am. J. Physiol. 236 (Heart Circ. Physiol. 5): H635–H639, 1979.
 70. Chen, H. I., C. Y. Chai, C. S. Tung, and H. C. Chen. Modulation of the carotid baroreflex function during volume expansion. Am. J. Physiol. 237 (Heart Circ. Physiol. 6): H153–H158, 1979.
 71. Chen, H. I., H. O. Stinnett, D. F. Peterson, and V. S. Bishop. Enhancement of vagal restraint on systemic blood pressure during hemorrhage. Am. J. Physiol. 234 (Heart Circ. Physiol. 3): H192–H198, 1978.
 72. Chevalier, P. A., K. C. Weber, G. W. Lyons, D. M. Nicoloff, and I. J. Fox. Hemodynamic changes from stimulation of left ventricular baroreceptors. Am. J. Physiol. 227: 719–728, 1974.
 73. Chidsey, C. A., D. C. Harrison, and E. Braunwald. Augmentation of the plasma norepinephrine response to exercise in patients with congestive heart failure. N. Engl. J. Med. 267: 650–654, 1962.
 74. Claybaugh, J. R., and L. Share. Vasopressin, renin and cardiovascular responses to continuous slow hemorrhage. Am. J. Physiol. 224: 519–523, 1973.
 75. Clement, D. L., C. L. Pelletier, and J. T. Shepherd. Role of vagal afferents in the control of renal sympathetic nerve activity in the rabbit. Circ. Res. 31: 824–830, 1972.
 76. Coggeshall, R. E., J. D. Coulter, and W. D. Willis. Unmyelinated axons in the ventral roots of the cat lumbosacral enlargement. J. Comp. Neurol. 153: 39–58, 1974.
 77. Coggeshall, R. E., and S. L. Galbraith. Categories of axons in mammalian rami communicantes. Part II. J. Comp. Neurol. 181: 349–360, 1978.
 78. Coleridge, H. M., and J. C. G. Coleridge. Afferent vagal C‐fibers in the dog lung: their discharge during spontaneous breathing, and their stimulation by alloxan and pulmonary congestion. In: Krogh Centenary Symposium on Respiratory Adaptations. Capillary Exchange and Reflex Mechanisms, edited by A. S. Paintal. Delhi: Vallabhbhai Patel Chest Inst., 1977, p. 396–406.
 79. Coleridge, H. M., and J. C. G. Coleridge. Cardiovascular afferents involved in regulation of peripheral vessels. Annu. Rev. Physiol. 42: 413–427, 1980.
 80. Coleridge, H. M., J. C. G. Coleridge, A. Dangel, C. Kidd, J. C. Luck, and P. Sleight. Impulses in slowly conducting vagal fibers from afferent endings in the veins, atria and arteries of dogs and cats. Circ. Res. 33: 87–97, 1973.
 81. Coleridge, H.M., J. C. G. Coleridge, and C. Kidd. Cardiac receptors in the dog with particular reference to two types of endings in the ventricular wall. J. Physiol. London 174: 323–339, 1964.
 82. Colerdige, H. M., C. Kidd, J. C. G. Coleridge, and R. B. Banzett. Multi‐terminal sympathetic afferent fibers supplying the thoracic organs of cats and dogs. Physiologist 18: 173, 1975.
 83. Coleridge, J. C. G., and H. M. Coleridge. Afferent C‐fibers and cardiorespiratory chemoreflexes. Am. Rev. Respir. Dis. 115: 251–260, 1977.
 84. Coleridge, J. C. G., and H. M. Coleridge. Chemoreflex regulation of the heart. In: Handbook of Physiology. The Cardiovascular System. The Heart, edited by R. M. Berne and N. Sperelakis. Bethesda, MD: Am. Physiol. Soc., 1979, sect. 2, vol. I, chapt. 18, p. 653–676.
 85. Coleridge, J. C. G., H. M. Coleridge, and D. G. Baker. Vagal afferent C‐fibers from the ventricle. In: Cardiac Receptors, edited by R. Hainsworth, C. Kidd, and R. J. Linden. Cambridge, UK: Cambridge Univ. Press, 1979, p. 117–137.
 86. Coleridge, J. C. G., A. Hemingway, R. L. Holmes, and R. J. Linden. The location of atrial receptors in the dog. A physiological and histological study. J. Physiol. London 136: 174–197, 1957.
 87. Coleridge, J. C. G., and R. J. Linden. The effect upon the heart rate of increasing the venous return by opening an arterio‐venous fistula in the anaesthetized dog. J. Physiol. London 130: 674–702, 1955.
 88. Constantin, L. Extracardiac factors contributing to hypotension during coronary occlusion. Am. J. Cardiol. 11: 205–217, 1963.
 89. Cowley, A. W., Jr., J. F. Liard, and A. C. Guyton. Role of the baroreceptor reflex in the daily control of arterial pressure and other variables in dogs. Circ. Res. 32: 564–576, 1973.
 90. Daly, I. de B, G. Ludany, A. Todd, and E. B. Verney. Sensory receptors in the pulmonary vascular bed. Q. J. Exp. Physiol. 27: 123–146, 1937.
 91. Daly, I. de B, and E. B. Verney. The localisation of receptors involved in the reflex regulation of the heart rate. J. Physiol. London 62: 330–340, 1927.
 92. Dampney, R. A. L., A. Stella, R. Golin, and A. Zanchetti. Vagal and sinoaortic reflexes in postural control of circulation and renin release. Am. J. Physiol. 237 (Heart Circ. Physiol. 6): H146–H152, 1979.
 93. Davis, J. O., and R. H. Freeman. Mechanisms regulating renin release. Physiol. Rev. 56: 1–56, 1976.
 94. Dawes, G. S. Studies on veratrum alkaloids. J. Pharmacol. Exp. Ther. 89: 325–342, 1947.
 95. Dawes, G. S., and J. H. Comroe, Jr. Chemoreflexes from the heart and lungs. Physiol. Rev. 34: 167, 1954.
 96. Dawes, G. S., and J. G. Widdicombe. The afferent pathway of the Bezold reflex: the left vagal branches in dogs. Br. J. Pharmacol. 8: 395–398, 1953.
 97. De Champlain, J., R. Boucher, and J. Genest. Arterial angiotensin levels in edematous patients. Proc. Soc. Exp. Biol. Med. 113: 932–937, 1963.
 98. DeWaele, H., and J. Van de Velde. Sur un réflexe hypertenseur des oreillettes. Arch. Int. Physiol. 50: 33–53, 1940.
 99. Di Bona, G. F Neurogeneic regulation of renal tubular sodium reabsorption. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol. 2): F73–F81, 1977.
 100. Dickinson, C. J. Afferent nerves from the heart region. J. Physiol. London 111: 399–407, 1950.
 101. Djojosugito, A. M., B. Folkow, P. H. Kylstra, B. Lisander, and R. S. Tuttle. Differentiated interaction between the hypothalmic defense reaction and the baroreceptor reflex. Effects on heart rate and regional flow resistances. Acta Physiol. Scand. 78: 376–385, 1970.
 102. Dogiel, A. D. Die Sensiblen Nervendigungen im Herzen und in den Blutgefassen der Saugetiere. Arch. Mikrosk. Anat. Entwicklungsmech. 52: 44–70, 1898.
 103. Donald, D. E., and A. J. Edis. Comparison of aortic and carotid baroreflexes in the dog. J. Physiol. London 215: 521–538, 1971.
 104. Donald, D. E., and J. T. Shepherd. Reflexes from the heart and lungs: physiological curiosities or important regulatory mechanisms. Cardiovasc. Res. 12: 449–469, 1978.
 105. Doutheil, U., and K. Kramer. Über die Differenzierung kreislaufregulierender reflexe aus dem linke herzen. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 269: 114–129, 1959.
 106. Downing, S. E., and R. W. Torrance. Vagal baroreceptors of the bull frog. J. Physiol. London 156: 13P, 1961.
 107. Eber, P. A., W. G. Austin, and L. J. Greenfield. Effect of neurogenic reflexes on heart rate during systemic hypotension. Am. J. Physiol. 203: 457–461, 1974.
 108. Echtenkamp, S. F., and J. P. Gilmore. Intravascular mechanoreceptor modulation of renal sympathetic nerve activity in the cat. Am. J. Physiol. 238 (Heart Circ. Physiol. 7): H801–H808, 1980.
 109. Echtenkamp, S. F., I. H. Zucker, and J. P. Gilmore. Characterization of high and low pressure baroreceptor influences on renal nerve activity in the primate Macaca fascicularis. Circ. Res. 46: 726–730, 1980.
 110. Edgeworth, F. H. On a large‐fibre sensory supply of the thoracic and abdominal viscera. J. Physiol. London 13: 260–271, 1892.
 111. Edis, A. J., D. E. Donald, and J. T. Shepherd. Cardiovascular reflexes from stretch of pulmonary vein‐atrial junctions in the dog. Circ. Res. 27: 1091–1100, 1970.
 112. Emery, D. G., R. D. Foreman, and R. E. Coggeshall. Fiber analysis of the feline inferior cardiac sympathetic nerve. J. Comp. Neurol. 166: 457–468, 1976.
 113. Epstein, M. Renal effects of head‐out water immersion in man: implications for an understanding of volume homeostasis. Physiol. Rev. 58: 529–581, 1978.
 114. Esler, M., S. Julius, A. Zweifler, O. Randall, E. Harburg, H. Gardiner, and K. De Quattro. Mild high‐renin essential hypertension. Neurogenic human hypertension N. Engl. J. Med. 296: 405–411, 1977.
 115. Estrin, J. A., R. W. Emery, J. J. Leonard, D. M. Nicoloff, C. R. Swayze, J. J. Buckley, and I. J. Fox. The Bezold reflex: a special case of the left ventricular mechanoreceptor reflex. Proc. Natl. Acad. Sci. USA 76: 4146–4150, 1979.
 116. Fasola, A. F., and B. L. Martz. Peripheral venous renin activity during 70° tilt and lower body negative pressure. Aerosp. Med. 43: 713–715, 1972.
 117. Felder, R. B., and M. D. Thames. Interaction between cardiac receptors and sinoaortic baroreceptors in the control of efferent cardiac sympathetic nerve activity during myocardial ischemia in dogs. Circ. Res. 45: 728–738, 1979.
 118. Felder, R. B., and M. D. Thames. The cardiocardiac sympathetic reflex during coronary occlusion in anesthetized dogs. Circ. Res. 48: 686–692, 1981.
 119. Fleckenstein, A., R. Muschaweck, and F. Bohlinger. Weitere Untersuchungen über die pharmakologische Ausschaltung des Bezold‐Jarisch Reflexes. Arch. Exp. Pathol. Pharmakol. 211: 132–142, 1950.
 120. Floyd, K. Light microscopy of nerve endings in the atrial endocardium. In: Cardiac Receptors, edited by R. Hainsworth, C. Kidd, and R. J. Linden. Cambridge, UK: Cambridge Univ. Press, 1979, p. 3–26.
 121. Folkow, B., M. Hallbäck, Y. Lundgren, R. Sivertsson, and L. Weiss. Importance of adaptive changes in vascular design for establishment of primary hypertension studied in man and in spontaneously hypertensive rats. Circ. Res. 32, Suppl. 1: 2–16, 1973.
 122. Fox, I. J., D. A. Gerasch, and J. J. Leonard. Left ventricular mechanoreceptors: a hemodynamic study. J. Physiol. London 273: 405–425, 1977.
 123. Furnival, C. M., R. J. Linden, and H. M. Snow. Reflex effects on the heart of stimulating left atrial receptors. J. Physiol. London 218: 447–463, 1971.
 124. Fussey, I. F., C. Kidd, and J. G. Whitwam. Single unit activity associated with cardiovascular events in the brain stem of the dog. J. Physiol. London 191: 57P–58P, 1967.
 125. Gaskell, W. H. On the structure, distribution and function of the nerves which innervate the visceral and vascular systems. J. Physiol. London 7: 1–80, 1886.
 126. Gasser, H. S., and H. Grundpest. Axon diameters in relation to the spike dimensions and the conduction velocity in mammalian A fibers. Am. J. Physiol. 127: 393–414, 1939.
 127. Gauer, O. H., and J. P. Henry. Circulatory basis of fluid volume control. Physiol. Rev. 43: 423–481, 1963.
 128. Gauer, O. H., and J. P. Henry. Neurohormonal control of plasma volume. In: Cardiovascular Physiology II, edited by A. C. Guyton and A. W. Cowley. Baltimore, MD: University Park, 1976, vol. 9, p. 145–190. (Int. Rev. Physiol. Ser.).
 129. Gauer, O. H., J. P. Henry, and C. Behn. Regulation of extracellular fluid volume. Annu. Rev. Physiol. 32: 547–595, 1970.
 130. Genest, J., P. Granger, J. DeChamplain, and R. Boucher. Endocrine factors in congestive heart failure. Am. J. Cardiol. 22: 35–42, 1968.
 131. Gillis, R. A. Role of the nervous system in the arrhythmias produced by coronary occlusion in the cat. Am. Heart J. 81: 677–684, 1979.
 132. Gillis, R. A., and J. A. Quest. The role of the nervous system in the cardiovascular effects of digitalis. Pharmacol. Rev. 31: 19–97, 1980.
 133. Gilmore, J. P., T. V. Peterson, and I. H. Zucker. Neither dorsal root nor baroreceptor afferents are necessary for eliciting the renal responses to acute intravascular volume expansion in the primate Macaca fascicularis. Circ. Res. 45: 95–99, 1979.
 134. Gilmore, J. P., and I. H. Zucker. Discharge of type‐B atrial receptors during changes in vascular volume and depression of atrial contractility. J. Physiol. London 239: 207–223, 1974.
 135. Gilmore, J. P., and I. H. Zucker. Failure of the type‐B atrial receptors to respond to increase in plasma osmolality in the dog. Am. J. Physiol. 227: 1005–1007, 1974.
 136. Gilmore, J. P., and I. H. Zucker. Contribution of vagal pathways to the renal responses to head‐out immersion in the nonhuman primate. Circ. Res. 42: 263–267, 1978.
 137. Ginzel, K. H. The importance of sensory nerve endings as sites of drug action. Naunyn‐Schmiedeberg's Arch. Pharmacol. 288: 29–56, 1975.
 138. Goetz, K. L., G. C. Bond, and D. D. Bloxham. Atrial receptors and renal function. Physiol. Rev. 55: 157–205, 1975.
 139. Goetz, K. L., A. S. Hermreck, G. L. Slick, and H. S. Starke. Atrial receptors and renal function in conscious dogs. Am. J. Physiol. 219: 1417–1423, 1970.
 140. Gorpinkel, H. J., J. P. Szidon, L. J. Hirsch, and A. P. Fishman. Renal performance in experimental cardiogenic shock. Am. J. Physiol. 222: 1260–1268, 1972.
 141. Gottschalk, C., W. Renal. Annu. Rev. Physiol. 41: 229–240, 1979.
 142. Greenberg, S., E. C. Palmer, and W. M. Wilborn. Pressure‐independent hypertrophy of veins and pulmonary arteries of spontaneously hypertensive rats. Characterization of function, structural and histochemical changes. Clin. Sci. Mol. Med. 55, Suppl. 4: 31s–36s, 1978.
 143. Greenberg, T. T., W. H. Richmond, R. A. Stocking, P. D. Gupta, J. P. Meehan, and J. P. Henry. Impaired atrial receptor response in dogs with heart failure due to tricuspid insufficiency and pulmonary artery stenosis. Circ. Res. 32: 424–433, 1973.
 144. Guazzi, M., A. Libretti, and Z. Zanchetti. Tonic reflex regulation of the cat's blood pressure through vagal afferents from the cardiopulmonary region. Circ. Res. 11: 7–16, 1962.
 145. Guazzi, M., A. Polese, C. Fiorentini, F. Magrini, and C. Bartorelli. Left ventricular performance and related hemodynamic changes in Prinzmetal's variant angina pectoris. Br. Heart J. 33: 84–94, 1971.
 146. Guazzi, M., A. Polese, C. Fiorentini, F. Magrini, M. T. Olivari, and C. Bartorelli. Left and right heart hemodynamics during spontaneous angina pectoris. Comparison between angina with ST segment depression and angina with ST segment elevation. Br. Heart J. 37: 401–413, 1975.
 147. Gupta, B. N. The location and distribution of type A and type B atrial endings in cats. Pfluegers Arch. 367: 271–275, 1977.
 148. Gupta, B. N. Studies on the adaptation rate and frequency distribution of type A and type B atrial endings in cats. Pfluegers Arch. 367: 277–281, 1977.
 149. Gupta, P. D., J. P. Henry, R. Sinclair, and R. von Baumgarten. Responses of atrial and aortic baroreceptors to nonhypotensive hemorrhage and to transfusion. Am. J. Physiol. 211: 1429–1437, 1966.
 150. Gupta, P. D., and M. Singh. Autonomic afferents at T1 in elicitation of volume‐induced tachycardia in the dog. Am. J. Physiol. 232 (Heart Circ. Physiol. 1): H464–H469, 1977.
 151. Gupta, P. D., and M. Singh. Neural mechanism underlying tachycardia induced by nonhypotensive a‐v shunt. Am. J. Physiol. 236 (Heart Circ. Physiol. 5): H35–H41, 1979.
 152. Guzman, F., C. Braun, and R. K. S. Lim. Visceral pain and the pseudoaffective response to intra‐arterial injection of bradykinin and other algesic agents. Arch. Int. Pharmacodyn. Ther. 136: 353–384, 1962.
 153. Haber E. The role of renin in normal and pathological cardiovascular homeostasis. Circulation 54: 849–861, 1976.
 154. Hainsworth, R., C. Kidd, and R. J. Linden. Cardiac Receptors. Cambridge, UK: Cambridge Univ. Press, 1979.
 155. Hallbäck‐Nordlander, M., E. Noresson, and P. Thorén. Hemodynamic consequences of left ventricular hypertrophy in spontaneously hypertensive rats. Am. J. Cardiol. 44: 986–993, 1979.
 156. Hanley, H. G., J. C. Costin, and N. S. Skinner, Jr. Differential reflex adjustments in cutaneous and muscle vascular beds during experimental coronary artery occlusion. Am. J. Cardiol. 27: 513–521, 1971.
 157. Harris, M. C., and K. M. Spyer. Inhibition of ADH release by stimulation of afferent cardiac branches of the right vagus in cats. J. Physiol. London 231: 15P–16P, 1973.
 158. Hayduk, K., H. M. Brecht, A. Vladutu, S. Simard, J. M. Rojo‐Ortega, L. Belleau, R. Boucher, and J. Genest. Renin activity and norepinephrine. Can. J. Physiol. Pharmacol. 48: 463–468, 1970.
 159. Heesch, C., and V. S. Bishop. Effects of veratridine on plasma epinephrine and norepinephrine concentrations. Federation Proc. 39: 3636, 1980.
 160. Hellner, K., and R. von Baumgarten. Über rin Endigungsebiet afferentes, Kardiovascularer Fasern des Nervus vagus in Rantenhirn der Katze. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 273: 223–234, 1961.
 161. Henry, J. P., O. H. Gauer, and J. L. Reeves. Evidence of the left atrial location of receptors influencing urine flow. Circ. Res. 4: 85–90, 1956.
 162. Henry, J. P., and J. W. Pearce. The possible role of cardiac atrial stretch receptors in the induction of changes in urine flow. J. Physiol. London 131: 572–585, 1956.
 163. Hess, G. L., E. J. Zuperku, R. L. Coon, and J. P. Kampine. Sympathetic afferent nerve activity of left ventricular origin. Am. J. Physiol. 227: 543–546, 1974.
 164. Heymans, C., and E. Neil. Reflexogenic Areas of the Cardiovascular System. London: Churchill, 1958.
 165. Higgins, C. B., S. F. Vatner, D. L. Eckbert, and E. Braunwald. Alteration in the baroreflex in conscious dogs with heart failure. J. Clin. Invest. 51: 715–724, 1972.
 166. Higgins, C. B., S. F. Vatner, D. Franklin, and E. Braunwald. Effects of experimentally produced heart failure on the peripheral vascular responses to severe exercise in conscious dogs. Circ. Res. 31: 186–194, 1972.
 167. Hilton, S. M. Inhibition of baroreceptor reflexes on hypothalamic stimulation. J. Physiol. London 165: 56P–57P, 1963.
 168. Hirsch, E., W. Keil, R. Muschaweck, and E. Rademacher. Experimentelle Schockbehandlung mit Lokalanaesthetika. Arzneim. Forsch. 4: 194–198, 1954.
 169. Hirsch, L. J., E. Boyd, and L. N. Katz. Effect of intravenous volume infusion on heart rate in unanesthetized dogs. Am. J. Physiol. 206: 992–996, 1964.
 170. Hodge, R. L., R. D. Lowe, and J. R. Vane. Increased angiotensin formation in response to carotid occlusion in the dog. Nature London 211: 491–493, 1966.
 171. Hoobler, S. W., and A. S. Dontas. Drug treatment of hypertension. Pharmacol. Rev. 5: 135–174, 1953.
 172. Holmes, R. L. Cholinesterase activity in the atrial wall of the dog and cat heart. J. Physiol. London 137: 421–426, 1957.
 173. Holmes, R. L. Structures in the atrial endocardium of the dog which stain with methylene blue, and the effects of unilateral vagotomy. J. Anat. 91: 259–266, 1957.
 174. Holmes, R. L., and R. W. Torrance. Afferent fibres of the stellate ganglion. Q. J. Exp. Physiol. 44: 271–281, 1959.
 175. Horwitz, L. D., J. A. Atkins, and S. J. Leshin. Effect of beta‐adrenergic blockage on left ventricular function in exercise. Am. J. Physiol. 227: 839–842, 1974.
 176. Horwitz, L. D., and V. S. Bishop. Effect of acute volume loading on heart rate in the conscious dog. Circ. Res. 30: 316–321, 1972.
 177. Humphrey, D. R. Neuronal activity in the medulla oblongata of the cat evoked by stimulation of the carotid sinus nerve. In: Baroreceptors and Hypertension, edited by P. Kezdi. Oxford, UK: Pergamon, 1967, p. 131–168.
 178. Iwamura, N., and V. S. Bishop. Afferent pathways of reflex hypotension and bradycardia during coronary occlusion. Am. J. Physiol. 239 (Heart Circ. Physiol. 8): H172–H180, 1980.
 179. James, T. N., G. R. Hageman, and F. Urthaler. Anatomic and physiologic consideration of a cardiogenic hypertensive chemoreflex. Am. J. Cardiol. 44: 852–859, 1979.
 180. Jarecki, M., P. Thorén, and D. E. Donald. Release of renin by the carotid baroreflex in anesthetized dogs. Role of cardiopulmonary vagal afferents and renal arterial pressure. Circ. Res. 42: 614–619, 1978.
 181. Jarisch, A. Detektorstoffe des Bezoldeffektes. Wien Klin. Wochenschr. 61: 551–555, 1949.
 182. Jarisch, A., and H. Richter. Die afferenten Bahnen des Veratrineffektes in den Herznerven. Arch. Exp. Pathol. Pharmakol. 193: 355–371, 1939.
 183. Jarisch, A., and H. Richter. Die Kreislaufwirkung des Veratrins. Arch. Exp. Pathol. Pharmakol. 193: 347–354, 1939.
 184. Jarisch, A., and Y. Zotterman. Depressor reflexes from the heart. Acta Physiol. Scand. 16: 31–51, 1948.
 185. Johnson, A. M. Aortic stenosis, sudden death, and left ventricular baroreceptors. Br. Heart J. 33: 1–5, 1971.
 186. Johnson, J. A., W. W. Moore, and W. E. Segar. Small changes in left atrial pressure and plasma antidiuretic hormone titers in dogs. Am. J. Physiol. 217: 210–214, 1969.
 187. Johnson, J. M., L. B. Rowell, M. Niederberger, and M. M. Eisman. Human splanchnic and forearm vasoconstrictor responses to reductions of right atrial and aortic pressure. Circ. Res. 34: 515–524, 1974.
 188. Johnston, B. D. Nerve endings in the human endocardium. Am. J. Anat. 122: 621–629, 1968.
 189. Jonnesco, T. Traitement chirurgical de l'angine de poitrine par la résection du sympathique cervico‐thoracique. Presse Med. 29: 193–194, 1921.
 190. Juhasz‐Nagy, S., M. Szentivanyi, J. Horkay, and B. Vamosi. Central nervous localization of coronary reflexes. Acta Physiol. Acad. Sci. Hung. 26: 319–328, 1965.
 191. Julius, S., and M. Esler. Increased central blood volume: a possible pathophysiological factor in mild low‐renin essential hypertension. Clin. Sci. 51: 207–210, 1976.
 192. Kaczmarczyk, G., H. W. Reinhardt, Y. Riedel, R. Eisele, M. Gatzka, and U. Kuhl. Left atrial pressure and postprandial diuresis in conscious dogs on a high sodium intake. Pfluegers Arch. 368: 181–184, 1977.
 193. Kahl, F. R., J. F. Flint, and J. P. Szidon. Influence of left atrial distention on renal vasomotor tone. Am. J. Physiol. 226: 240–246, 1974.
 194. Kappagoda, C. T. Atrial receptors and urine flow. In: Cardiac Receptors, edited by R. Hainsworth, C. Kidd, and R. J. Linden. Cambridge, UK: Cambridge Univ. Press, 1979, p. 193–212.
 195. Kappagoda, C. T., M. F. Knapp, R. J. Linden, M. J. Pearson, and E. M. Whitaker. Diuresis from left atrial receptors: effect of plasma on the secretion of Malpighian tubules of Rhodnius prolixus. J. Physiol. London 291: 381–391, 1979.
 196. Kappagoda, C. T., R. J. Linden, and D. A. S. G. Mary. Atrial receptors in the cat. J. Physiol. London 262: 431–446, 1976.
 197. Kappagoda, C. T., R. J. Linden, and D. A. S. G. Mary. Atrial receptors in the dog and rabbit. J. Physiol. London 272: 799–815, 1977.
 198. Kappagoda, C. T., R. J. Linden, E. M. Scott, and H. M. Snow. Atrial receptors and heart rate: the efferent pathway. J. Physiol. London 249: 581–590, 1975.
 199. Kappagoda, C. T., R. J. Linden, and N. Sivananthan. The receptors mediating reflex increase in heart rate. J. Physiol. London 266: 89P–90P, 1977.
 200. Kappagoda, C. T., R. J. Linden, and N. Sivananthan. The nature of the atrial receptors responsible for a reflex increase in heart rate in the dog. J. Physiol. London 291: 393–412, 1979.
 201. Kappagoda, C. T., R. J. Linden, and H. M. Snow. The effect of stretching the superior vena caval‐right atrial junction on right atrial receptors in the dog. J. Physiol. London 227: 875–887, 1972.
 202. Kappagoda, C. T., R. J. Linden, and H. M. Snow. Effect of stimulating right atrial receptors on the urine flow in the dog. J. Physiol. London 235: 493–502, 1973.
 203. Kappagoda, C. T., R. J. Linden, H. M. Snow, and E. M. Whitaker. Effect of destruction of the posterior pituitary on the diuresis from left atrial receptors. J. Physiol. London 244: 757–770, 1975.
 204. Karim, F., C. Kidd, C. M. Malpus, and P. E. Penna. The effects of stimulation of the left atrial receptors. J. Physiol. London 213: 71–78, 1972.
 205. Kendrick, E., B. Öberg, and G. Wennergren. Vasoconstrictor fibre discharge on skeletal muscle, kidney, intestine and skin at varying levels of arterial baroreceptor activity in the cat. Acta Physiol. Scand. 85: 464–476, 1972.
 206. Kezdi, P. Cardiac reflexes conducted by vagal afferents in normotensive and renal hypertensive dogs. Clin. Sci. 51: 353–355, 1976.
 207. Kezdi, P., R. K. Kordenat, and S. N. Misra. Reflex inhibitory effects of vagal afferents in experimental myocardial infarction. Am. J. Cardiol. 33: 853–860, 1974.
 208. Khabarova, A. Y. The Afferent Innervation of the Heart. New York: Consultants Bureau, 1963.
 209. Khayutin, V. M., L. A. Baraz, E. V. Lukoshkova, R. S. Sonina, and P. E. Chernilovskaya. Chemosensitive spinal afferents: threshold of specific and nociceptive reflexes as compared with threshold of excitation for receptors and axons. In: Progress in Brain Research. Somatosensory and Visceral Receptor Mechanisms, edited by A. Iggo and O. B. Ilyinsky. Amsterdam: Elsevier, 1976, vol. 43, p. 293–306.
 210. Kidd, C. Central neurons activated by cardiac receptors. In: Cardiac Receptors, edited by R. Hainsworth, C. Kidd, and R. J. Linden. Cambridge, UK: Cambridge Univ. Press, 1979, p. 377–403.
 211. Kidd, C., J. R. Ledsome, and R. J. Linden. The effect of distension of the pulmonary vein‐atrial junction on activity of left atrial receptors. J. Physiol. London 285: 445–453, 1978.
 212. Kimura, E., K. Hashimoto, S. Furukawa, and H. Hayakawa. Changes in bradykinin level in coronary sinus blood after the experimental occlusion of a coronary artery. Am. Heart J. 85: 635–647, 1973.
 213. Kiowski, W., and S. Julius. Renin response to stimulation of cardiopulmonary mechanoreceptors in man. J. Clin Invest. 62: 656–663, 1978.
 214. Kirchheim, H. Effect of common carotid occlusion on arterial blood pressure and on kidney blood flow in unanesthetized dogs. Pfluegers Arch. 306: 119–134, 1969.
 215. Koepchen, H. P., P. Langhorst, H. Seller, J. Polster, and P. H. Wagner. Neuronale Aktivität im unteren Hirnstamm mit Beziehung zum Kreislauf. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 294: 40–64, 1967.
 216. Koike, H., A. L. Mark, D. D. Heistad, and P. G. Schmid. Influence of cardiopulmonary vagal afferent activity on carotid chemoreceptor and baroreceptor reflexes in the dog. Circ. Res. 37: 422–429, 1975.
 217. Kolatat, T., K. Kramer, and N. Muhl. Über die Aktivität Sensibler Herznerven des Frosches and ihre Beziehungen zur Herzdynamik. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 264: 127–144, 1957.
 218. Korner, P. I. Integrative neural cardiovascular control. Physiol. Rev. 51: 312–367, 1971.
 219. Koss, M. C., G. M. Davisson, and J. Nakano. Cardiovascular actions of prostaglandins E and F2 in the cat. Eur. J. Pharmacol. 24: 151–157, 1973.
 220. Koss, M. C., and J. Nakano. Reflex bradycardia and hypotension produced by prostaglandin F2 in the cat. Br. J. Pharmacol. 56: 245–253, 1976.
 221. Kostreva, D. R., E. J. Zuperku, R. V. Purtock, R. L. Coon, and J. P. Kampine. Sympathetic afferent nerve activity of right heart origin. Am. J. Physiol. 229: 911–915, 1975.
 222. Krayer, O. The history of the Bezold‐Jarisch effect. Arch. Exp. Pathol. Pharmakol. 240: 361–368, 1961.
 223. Krayer, O., and G. H. Acheson. The pharmacology of the veratrum alkaloids. Physiol. Rev. 26: 383–446, 1946.
 224. Kupchan, S. H., and W. E. Flacke. Hypotensive veratrum alkaloids. In: Antihypertensive Agents, edited by E. Schlittler. New York: Academic, 1967, p. 429–458.
 225. LaGrange, R. G., C. H. Sloup, and H. E. Schmid. Selective stimulation of renal nerves in the anesthetized dog. Circ. Res. 33: 704–712, 1970.
 226. Langley, J. N. Observations on the medullated fibres of the sympathetic system and chiefly on those of the grey rami communicantes. J. Physiol. London 20: 55–76, 1896.
 227. Langley, J. N. The autonomic nervous system. Brain 26: 1–26, 1903.
 228. Langley, J. N. Sketch of the progress of discovery in the 18th century as regards the autonomic nervous system. J. Physiol. London 50: 225–258, 1915.
 229. Langrehr, D. Beziehungen zwischen Vorhofsreceptoraktivitater und Herzmechanik von Hund und Katze bei verschiedenen Kreislaufzustanden. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 271: 270–282, 1960.
 230. Langrehr, D. Entladungsmuster und allgemeine Reizbedingungen von Vorhofsreceptoren beim Hund und Katze. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 271: 257–269, 1960.
 231. Langrehr, D., and K. Kramer. Beziehungen der mittleren Impulsfrequenz von Vorhofsreceptoren zum thorakalen Blutvolumen. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 217: 797–807, 1960.
 232. Leach, B. E., F. B. Armstrong, G. S. Germain, and E. E. Muirhead. Vasodepressor action of prostaglandins a2 and E2 in the spontaneously hypertensive rat (SH rat): evidence for a central action mediated by the vagus. J. Pharmacol. Exp. Ther. 185: 479–485, 1973.
 233. Ledsome, J. R., and R. J. Linden. A reflex increase in heart rate from distension of the pulmonary vein‐atrial junctions. J. Physiol. London 170: 456–473, 1964.
 234. Ledsome, J. R., and R. J. Linden. The effect of distending a pouch of the left atrium on the heart rate. J. Physiol. London 193: 121–129, 1967.
 235. Ledsome, J. R., and R. J. Linden. The role of left atrial receptors in the diuretic response to left atrial distension. J. Physiol. London 198: 487–503, 1968.
 236. Ledsome, J. R., R. J. Linden, and W. J. O'Connor. The mechanisms by which distension of the left atrium produces diuresis in anaesthetized dogs. J. Physiol. London 159: 87–100, 1961.
 237. Lee, T. M., J. S. Juo, and C. Y. Chai. Central integrating mechanism of the Bezold‐Jarisch and baroreceptor reflexes. Am. J. Physiol. 222: 713–720, 1972.
 238. Leek, B. F. Abdominal and pelvic visceral receptors. Br. Med. Bull. 33: 163–168, 1977.
 239. Leriche, R., and R. Fontaine. The surgical treatment of angina pectoris. Am. Heart J. 3: 649–671, 1927.
 240. Levy, M. N., and A. L. Frankel. Vasomotor responses to acute coronary occlusion in the dog. Am. J. Physiol. 172: 427–436, 1953.
 241. Lewis, T. Angina pectoris associated with high blood pressure and its relief by amylnitrite; with a note on Nothnagel's syndrome. Heart 15: 305–327, 1931.
 242. Lind, A. R., S. H. Taylor, P. W. Humphreys, B. M. Kennelly, and K. W. Donald. The circulatory effects of sustained voluntary muscle contraction. Clin. Sci. Mol. Med. 27: 229–244, 1964.
 243. Linden, R. J. Reflexes from the heart. Prog. Cardiovasc. Dis. 18: 201–221, 1975.
 244. Linden, R. J. Reflexes from receptors in the heart. Cardiology 61, Suppl. 1: 7–30, 1976.
 245. Linden, R. J. Atrial receptors and heart rate. In: Cardiac Receptors, edited by R. Hainsworth, C. Kidd, and R. J. Linden. Cambridge, UK: Cambridge Univ. Press, 1979, p. 165–191.
 246. Linden, R. J., D. A. S. G. Mary, and D. Weatherill. Effect of changes in carotid sinus pressure on activity in efferent cardiac sympathetic nerves which responded to stimulation of atrial receptors. J. Physiol. London 308: 106P–107P, 1980.
 247. Linden, R. J., D. A. S. G. Mary, and D. Weatherill. The nature of the atrial receptors responsible for a reflex decrease in activity in renal nerves in the dog. J. Physiol. London 300: 31–40, 1980.
 248. Lindgren, I., and H. Olivecrona. Surgical treatment of angina pectoris. J. Neurosurg. 4: 19–39, 1947.
 249. Lioy, F., A. Malliani, M. Pagani, G. Recordati, and P. J. Schwartz. Reflex hemodynamic responses initiated from thoracic aorta. Circ. Res. 34: 78–84, 1974.
 250. Lisander, B. Factors influencing the autonomic component of the defence reaction. Acta Physiol. Scand. Suppl. 351: 1–42, 1970.
 251. Little, R., G. Wennergren, and B. Öberg. Aspects of the central integration of arterial baroreceptor and cardiac ventricular receptor reflexes in the cat. Acta Physiol. Scand. 93: 85–86, 1975.
 252. Littler, W. A., J. Honour, P. Sleight, and F. D. Stott. Direct arterial pressure and electrocardiogram in unrestricted patients with angina pectoris. Circulation 48: 125–134, 1973.
 253. Lloyd, T. C., Jr. Control of systemic vascular resistance by pulmonary and left heart baroreflexes. Am. J. Physiol. 222: 1511–1517, 1972.
 254. Lloyd, T. C., Jr. Cardiopulmonary baroreflexes: integrated responses to sine‐ and square‐wave forcing. J. Appl. Physiol. 35: 870–874, 1973.
 255. Lloyd, T. C., Jr. Cardiopulmonary baroreflexes: effects of staircase, ramp, and square‐wave stimulation. Am. J. Physiol. 228: 470–476, 1975.
 256. Lloyd, T. C., Jr. Cardiopulmonary baroreflexes: left ventricular effects. Am. J. Physiol. 232 (Heart Circ. Physiol. 1): H634–H638, 1977.
 257. Lombardi, F., P. Della Bella, R. Casati, and A. Malliani. Effects of intracoronary administration of bradykinin on the impulse activity of afferent sympathetic unmyelinated fibers with left ventricular endings in the cat. Circ. Res. 48: 69–75, 1981.
 258. Lombardi, F., A. Malliani, and M. Pagani. Nervous activity of afferent sympathetic fibers innervating the pulmonary veins. Brain Res. 113: 197–200, 1976.
 259. Lombardi, R., C. P. Patton, P. Della Bella, M. Pagani, and A. Malliani. Cardiovascular and sympathetic responses reflexly elicited through the excitation with bradykinin of sympathetic and vagal cardiac sensory endings in the cat. Cardiovasc. Res. 16: 197–200, 1982.
 260. London, G. M., M. E. Safar, Y. A. Weiss, P. L. Corvol, J. E. Menard, A. C. H. Simon, and P. L. Millietz. Relationship of plasma renin activity and aldosterone levels with hemodynamic functions in essential hypertension. Arch. Intern. Med. 137: 1042–1047, 1977.
 261. Lown, B. Sudden cardiac death: the major challenge confronting contemporary cardiology. Am. J. Cardiol. 43: 313–328, 1979.
 262. Lydtin, H., and W. F. Hamilton. Effect of acute changes in left atrial pressure on urine flow in unanesthetized dogs. Am. J. Physiol. 207: 530–536, 1964.
 263. Malliani, A. Afferent cardiovascular sympathetic nerve fibers and their function in the neural regulation of the circulation. In: Cardiac Receptors, edited by R. Hainsworth, C. Kidd, and R. J. Linden. Cambridge, UK: Cambridge Univ. Press, 1979, p. 319–338.
 264. Malliani, A. Cardiovascular and sympathetic afferent fibers. Rev. Physiol. Biochem. Pharmacol. 94: 11–74, 1982.
 265. Malliani, A., and A. M. Brown. Reflexes arising from coronary receptors. Brain Res. 24: 352–355, 1970.
 266. Malliani, A., and F. Lombardi. Neural reflexes associated with myocardial ischemia. In: Neural Mechanisms in Cardiac Arrhythmias, edited by P. J. Schwartz, A. M. Brown, A. Malliani, and A. Zanchetti. New York: Raven, 1978, p. 209–219.
 267. Malliani, A., and F. Lombardi. Consideration of the fundamental mechanisms eliciting cardiac pain. Am. Heart J. 103: 575–578, 1982.
 268. Malliani, A., F. Lombardi, M. Pagani, G. Recordati, and P. J. Schwartz. Spinal cardiovascular reflexes. Brain Res. 87: 239–246, 1975.
 269. Malliani, A., and M. Pagani. Afferent sympathetic nerve fibres with aortic endings. J. Physiol. London 263: 157–169, 1976.
 270. Malliani, A., M. Pagani, and M. Bergamaschi. Positive feedback, sympathetic reflexes and hypertension. Am. J. Cardiol. 44: 860–865, 1979.
 271. Malliani, A., M. Pagani, G. Recordati, and P. J. Schwartz. Spinal sympathetic reflexes elicited by increases in arterial blood pressure. Am. J. Physiol. 220: 128–134, 1971.
 272. Malliani, A., M. Parks, R. P. Tuckett, and A. M. Brown. Reflex increases in heart rate elicited by stimulation of afferent cardiac sympathetic nerve fibers in the cat. Circ. Res. 32: 9–14, 1973.
 273. Malliani, A., D. F. Peterson, V. S. Bishop, and A. M. Brown. Spinal sympathetic cardiocardiac reflexes. Circ. Res. 30: 158–166, 1972.
 274. Malliani, A., G. Recordati, and P. J. Schwartz. Nervous activity of afferent cardiac sympathetic fibres with atrial and ventricular endings. J. Physiol. London 29: 457–469, 1973.
 275. Malliani, A., P. J. Schwartz, and A. Zanchetti. A sympathetic reflex elicited by experimental coronary occlusion. Am. J. Physiol. 217: 703–709, 1969.
 276. Malliani, A., P. J. Schwartz, and A. Zanchetti. Neural mechanisms in life‐threatening arrhythmias. Am. Heart J. 100: 705–715, 1980.
 277. Mancia, G. Influence of carotid baroreceptors on vascular responses to carotid chemoreceptor stimulation in the dog. Circ. Res. 36: 270–276, 1975.
 278. Mancia, G., and D. E. Donald. Demonstration that atria, ventricles and lungs each are responsible for a tonic inhibition of the vasomotor center in the dog. Circ. Res. 36: 310–318, 1975.
 279. Mancia, G., D. E. Donald, and J. T. Shepherd. Inhibition of adrenergic outflow to peripheral blood vessels by vagal afferents from the cardiopulmonary region in the dog. Circ. Res. 713–721, 1973.
 280. Mancia, G., R. R. Lorenz, and J. T. Shepherd. Reflex control of circulation by heart and lungs. In: Cardiovascular Physiology II, edited by A. C. Guyton and A. W. Cowley. Baltimore. MD: University Park, 1976, vol. 9, p. 111–144. (Int. Rev. Physiol. Ser.).
 281. Mancia, G., J. C. Romero, and J. T. Shepherd. Continuous inhibition of renin release in dogs by vagally innervated receptors in the cardiopulmonary region. Circ. Res. 36: 529–535, 1975.
 282. Mancia, G., J. T. Shepherd, and D. E. Donald. Role of cardiac, pulmonary and carotid mechanoreceptors in the control of hind‐limb and renal circulation in dogs. Circ. Res. 37: 200–208, 1975.
 283. Mancia, G., J. T. Shepherd, and D. E. Donald. Interplay among carotid sinus, cardiopulmonary, and carotid body reflexes in dogs. Am. J. Physiol. 230: 19–24, 1976.
 284. Mark, A. L., F. M. Abboud, and A. E. Fitz. Influence of low‐and high‐pressure baroreceptors on plasma renin activity in humans. Am. J. Physiol. 235 (Heart Circ. Physiol. 4) H29–H33, 1978.
 285. Mark, A. L., F. M. Abboud, P. G. Schmid, and D. D. Heistad. Reflex vascular responses to left ventricular outflow obstruction and activation of ventricular baroreceptors in dogs. J. Clin. Invest. 52: 1147–1153, 1973.
 286. Mark, A. L., J. M. Koischos, F. M. Abboud, D. D. Heistad, and P. G. Schmid. Abnormal vascular response to exercise in patients with aortic stenosis. J. Clin. Invest. 52: 1138–1146, 1973.
 287. Maseri, A., S. Severi, M. DeNes, A. L'abbate, S. Chierchia, M. Marzilli, A. M. Ballestra, O. Parodi, A. Biagini, and A. Distante. “Variant” angina: one aspect of a continuous spectrum of vasospastic myocardial ischemia. Am. J. Cardiol. 42: 1019–1035, 1978.
 288. Mason, D. T., and E. Braunwald. Studies on digitalis. Effects of ouabain on forearm vascular resistance and venous tone in normal subjects and in patients in heart failure. J. Clin. Invest. 43: 532–543, 1964.
 289. Mason, J. M., and J. R. Ledsome. Effects of obstruction of the mitral orifice or distension of the pulmonary vein‐atrial junctions on renal and hindlimb vascular resistance in the dog. Circ. Res. 35: 24–32, 1974.
 290. Mauskopf, J. M., S. D. Gray, and E. M. Renkin. Transient and persistent components of sympathetic cholinergic vasodilatation. Am. J. Physiol. 216: 92–97, 1969.
 291. McCloskey, D. I., and J. H. Mitchell. Reflex cardiovascular and respiratory responses originating in exercising muscle. J. Physiol. London 224: 173–186, 1972.
 292. Menninger, R. P., and D. T. Frazier. Effects of blood volume and atrial stretch on hypothalamic single unit activity. Am. J. Physiol. 223: 288–293, 1972.
 293. Meyling, H. A. Structure and significance of the peripheral extension of the autonomic nervous system. J. Comp. Neurol. 99: 495–543, 1953.
 294. Middleton, S., C. N. Woolsey, H. Burton, and J. E. Rose. Neural activity with cardiac periodicity in medulla oblongata of the cat. Brain Res. 50: 297–314, 1973.
 295. Millard, R. W., C. B. Higgins, D. Franklin, and S. F. Vatner. Regulation of the renal circulation during severe exercise in normal dogs and dogs with experimental heart failure. Circ. Res. 31: 881–888, 1972.
 296. Miller, M. R., and M. Kasahara. Studies on the nerve endings in the heart. Am. J. Anat. 115: 217–233, 1964.
 297. Mitchell, G. A. G. The innervation of the heart. Br. Heart J. 15: 159–171, 1953.
 298. Miura, M., and D. J. Reis. The role of the solitary and paramedian reticular nuclei in mediating cardiovascular reflex responses from carotid baro‐ and chemoreceptors. J. Physiol. London 223: 524–548, 1972.
 299. Mizeres, N. J. The anatomy of the autonomic nervous system in the dog. Am. J. Anat. 96: 285–318, 1955.
 300. Moore, R. M., and A. O. Singleton, Jr. Studies on the pain‐sensibility of arteries. II. Peripheral paths of afferent neurones from the arteries of the extremities and of the abdominal viscera. Am. J. Physiol. 104: 267–275, 1933.
 301. Muers, M. F., and P. Sleight. Action potentials from ventricular mechanoreceptors stimulated by occlusion of the coronary sinus in the dog. J. Physiol. London 221: 283–309, 1972.
 302. Muers, M. F., and P. Sleight. The reflex cardiovascular depression, caused by occlusion of the coronary sinus in the dog. J. Physiol. London 221: 259–282, 1972.
 303. Mursch, D. A., and V. S. Bishop. Effects of vagal cold block on plasma renin activity and renin secretion in the conscious dog (Abstract). Federation Proc. 39: 3025A, 1980.
 304. Needleman, P. The synthesis and function of prostaglandins in the heart. Federation Proc. 35: 2376–2381, 1976.
 305. Neil, E., and N. Joels. The impulse activity in cardiac afferent vagal fibres. Naunyn‐Schmiedebergs Arch. Exp. Pathol. Pharmakol. 240: 453–460, 1961.
 306. Neto, F. R., J. C. F. Brasil, and A. Antonio. Bradykinin‐induced coronary chemoreflex in the dog. Naunyn‐Schmiedebergs Arch. Exp. Pathol. Pharmakol. 283: 135–142, 1974.
 307. Nettleship, W. A. Experimental studies on the afferent innervation of the cat's heart. J. Comp. Neurol. 64: 115–131, 1936.
 308. Ninomiya, I., N. Nisimaru, and H. Irisawa. Sympathetic nerve activity to the spleen, kidney, and heart in response to baroreceptor input. Am. J. Physiol. 221: 1346–1351, 1971.
 309. Nishi, K., M. Sakanashi, and F. Takenaka. Afferent fibres from pulmonary arterial baroreceptors in the left cardiac sympathetic nerve of the cat. J. Physiol. London 240: 53–66, 1974.
 310. Nishi, K., M. Sakanashi, and F. Takenaka. Activation of afferent cardiac sympathetic nerve fibers of the cat by pain producing substances and by noxious heat. Pfluegers Arch. 372: 53–61, 1977.
 311. Nonidez, J. F. Identification of the receptor areas in the venae cavae and pulmonary veins which initiate reflex cardiac acceleration (Bainbridge's reflex). Am. J. Anat. 61: 203–231, 1937.
 312. Nonidez, J. F. Studies on the innervation of the heart. I. Distribution of the cardiac nerves, with special reference to the identification of the sympathetic and parasympathetic postganglionics. Am. J. Anat. 65: 361–413, 1939.
 313. Nonidez, J. F. Studies on the innervation of the heart. II. Afferent nerve endings in the large arteries and veins. Am. J. Anat. 68: 151–189, 1941.
 314. Noresson, E., S. E. Ricksten, M. Hallbäck‐Nordlander, and P. Thorén. Performance of hypertrophied left ventricle in spontaneously hypertensive rats. Effects of changes in preload and afterload. Acta Physiol. Scand. 107: 1–8, 1979.
 315. Noresson, E., S. E. Ricksten, and P. Thorén. Left atrial pressure in normotensive and spontaneously hypertensive rats. Acta Physiol. Scand. 107: 9–12, 1979.
 316. Öberg, B, and P. Thorén. Increased activity in left ventricular receptor during hemorrhage or occlusion of caval veins in the cat: a possible cause of vasovagal reaction. Acta Physiol. Scand. 85: 164–173, 1972.
 317. Öberg, B, and P. Thorén. Studies on left ventricular receptors, signalling in non‐medullated vagal afferents. Acta Physiol. Scand. 85: 145–163, 1972.
 318. Öberg, B, and P. Thorén. Circulatory responses to stimulation of left ventricular receptors in the cat. Acta Physiol. Scand. 88: 8–22, 1973.
 319. Öberg, B, and P. Thorén. Circulatory responses to stimulation of medullated and non‐medullated afferents in the cardiac nerve in the cat. Acta Physiol. Scand. 87: 121–132, 1973.
 320. Öberg, B, and S. White. Circulatory effects of interruption and stimulation of cardial vagal afferents. Acta Physiol. Scand. 80: 383–394, 1970.
 321. Öberg, B, and S. White. The role of vagal cardiac nerves and arterial baroreceptors on the circulatory adjustments to hemorrhage in the cat. Acta Physiol. Scand. 80: 395–403, 1970.
 322. Okamoto, K., and A. Aoki. Development of a strain of spontaneously hypertensive rats. Jpn. Circ. J. 27: 282–293, 1963.
 323. Ott, N. T., and J. T. Shepherd. Modification of the aortic and vagal depressor reflexes by hypercapnia in the rabbit. Circ. Res. 33: 160–165, 1973.
 324. Ott, N. T., and J. T. Shepherd. Modification of vagal depressor reflex by CO2 in spontaneously breathing rabbits. Am. J. Physiol. 228: 530–535, 1975.
 325. Overbeck, H. W. Hemodynamics of early experimental renal hypertension in dogs. Normal limb blood flow, elevated limb vascular resistance and decreased venous compliance. Circ. Res. 31: 653–663, 1972.
 326. Paintal, A. S. Cardiovascular receptors. In: Handbook of Sensory Physiology. Enteroceptors, edited by E. Neil. Berlin: Springer‐Verlag, 1971, vol. III, pt. 1, p. 1–45.
 327. Paintal, A. S. A study of the right and left atrial receptors. J. Physiol. London 120: 596–610, 1953.
 328. Paintal, A. S. A study of ventricular pressure receptors and their role in the Bezold‐Jarisch reflex. Q. J. Exp. Physiol. 40: 348–363, 1955.
 329. Paintal, A. S. Natural stimulation of type B atrial receptors. J. Physiol. London 169: 116–136, 1963.
 330. Paintal, A. S. Vagal afferent fibres. Ergeb. Physiol. 52: 74–156, 1963.
 331. Paintal, A. S. Sensory mechanisms involved in the Bezold‐Jarisch reflex. Aust. J. Exp. Biol. Med. Sci. 51: 3–15, 1973.
 332. Paintal, A. S. Vagal sensory receptors and their reflex effects. Physiol. Rev. 53: 159–227, 1973.
 333. Paintal, A. S. Electrophysiology of atrial receptors. In: Cardiac Receptors, edited by R. Hainsworth, C. Kidd, and R. J. Linden. Cambridge, UK: Cambridge Univ. Press, 1979, p. 73–87.
 334. Pagani, M. Afferent sympathetic nerve fibres with aortic endings. Physiol. London 252: 45P–46P, 1975.
 335. Pagani, M., P. Pizzinelli, M. Bergamaschi, and A. Malliani. A positive feedback sympathetic pressor reflex during stretch of the thoracic aorta in conscious dogs. Cir. Res. 50: 125–132, 1982.
 336. Pagani, M., P. J. Schwartz, R. Banks, F. Lombardi, and A. Malliani. Reflex responses of sympathetic preganglionic neurones initiated by different cardiovascular receptors in spinal animals. Brain Res. 68: 215–225, 1974.
 337. Pagani, M., P. J. Schwartz, V. S. Bishop, and A. Malliani. Reflex sympathetic changes in aortic diastolic pressure‐diameter relationship. Am. J. Physiol. 229: 286–290, 1975.
 338. Pantridge, J. F. Autonomic disturbance at the onset of acute myocardial infarction. In: Neural Mechanisms in Cardiac Arrhythmias, edited by P. J. Schwartz, A. M. Brown, A. Malliani, and A. Zanchetti. New York: Raven, 1978, p. 7–17.
 339. Pantridge, J. F., S. W. Webb, A. A. J. Adgey, and J. S. Geddes. The first hour after onset of acute myocardial infarction. Prog. Cardiol. 3: 173–188, 1974.
 340. Passo, S. S., T. A. Assaykeen, A. Goldfien, and W. F. Ganong. Effect of alpha‐ and beta‐adrenergic blocking agents on the increase in renin secretion produced by stimulation of the medulla oblongata in dogs. Neuroendocrinology 7: 97–104, 1971.
 341. Pathak, C. L. Alternative mechanism of cardiac acceleration in Bainbridge's infusion experiments. Am. J. Physiol. 197: 441–444, 1959.
 342. Pearce, J. W., J. P. Henry, and K. M. Chapman. The behaviour and possible functions of cardiac atrial stretch receptors (Abstract). In: Proc. Int. Congr. Physiol. Sci., 20th, 1956, p. 711–712.
 343. Pelletier, C. L., A. J. Edis, and J. T. Shepherd. Circulatory reflex from vagal afferents in response to hemorrhage in dogs. Circ. Res. 29: 626–634, 1971.
 344. Pelletier, C. L., and J. T. Shepherd. Relative influence of carotid baroreceptors and muscle receptors in the control of renal and hindlimb circulation. Can. J. Physiol. Pharmacol. 53: 1042–1049, 1975.
 345. Perl, E. R. Is pain a specific sensation J. Psychiatr. Res. 8: 273–287, 1971.
 346. Peterson, D.F., and V. S. Bishop. Reflex blood pressure control during acute myocardial ischemia in the conscious dog. Circ. Res. 34: 226–232, 1974.
 347. Peterson, D. F., and A. M. Brown. Pressor reflexes produced by stimulation of afferent fibers in cardiac sympathetic nerves of the cat. Circ. Res. 28: 605–610, 1971.
 348. Peterson, D. F., R. L. Kaspar, and V. S. Bishop. Reflex tachycardia due to temporary coronary occlusion in the conscious dog. Circ. Res. 32: 652–659, 1973.
 349. Pillsbury, H. R. C., III, M. Guazzi, and E. D. Freis. Vagal afferent depressor nerves in the rabbit. Am. J. Physiol. 217: 768–770, 1969.
 350. Prosnitz, E. H., and G. F. DiBona. Effect of decreased renal sympathetic nerve activity on renal tubular sodium reabsorption. Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol. 4): F557–F563, 1978.
 351. Purpura, D. P., and B. Cohen. Intracellular recording from thalamus neurons during recruiting responses. J. Neurophysiol. 25: 621–635, 1962.
 352. Purtock, R. V., J. H. von Colditz, J. L. Seacard, F. O. Igler, E. J. Zuperku, and J. P. Kampine. Reflex effects of thoracic sympathetic afferent nerve stimulation on the kidney. Am. J. Physiol. 233 (Heart Circ. Physiol. 2): H580–H586, 1977.
 353. Quest, J. A., and R. A. Gillis. Carotid sinus reflex changes produced by digitalis. J. Pharmacol. Exp. Ther. 177: 650–661, 1971.
 354. Quest, J. A., and R. A. Gillis. Effects of digitalis on carotid sinus baroreceptor activity. Circ. Res. 35: 247–255, 1974.
 355. Randall, W. C., M. McNally, J. Cowan, L. Caliguiri, and W. G. Rohse. Functional analysis of the cardioaugmentor and cardioaccelerator pathways in the dog. Am. J. Physiol. 191: 213–217, 1957.
 356. Ranson, S. W., and P. R. Billingsley. The thoracic truncus sympathicus, rami communicantes and splanchnic nerves in the cat. J. Comp. Neurol. 29: 405–439, 1918.
 357. Recordati, G., F. Lombardi, V. S. Bishop, and A. Malliani. Response of type B atrial vagal receptors to changes in wall tension during atrial filling. Circ. Res. 36: 682–691, 1975.
 358. Recordati, G., F. Lombardi, V. S. Bishop, and A. Malliani. Mechanical stimuli exciting type A atrial vagal receptors in the cat. Circ. Res. 38: 397–403, 1976.
 359. Recordati, G., P. J. Schwartz, M. Pagani, A. Malliani, and A. M. Brown. Activation of cardiac vagal receptors during myocardial ischemia. Experientia 27: 1423–1424, 1971.
 360. Reimann, K. A., and L. C. Weaver. Contrasting reflexes evoked by chemical activation of cardiac afferent nerves. Am. J. Physiol. 239 (Heart Circ. Physiol. 8): H316–H325, 1980.
 361. Reinhardt, H. W., R. Eisele, G. Kaczmarczyk, R. Mohnhaupt, W. Oelkers, and B. Schimmrich. The control of sodium excretion by reflexes from the low pressure system independent of adrenal activity. Pfluegers Arch. 384: 171–176, 1980.
 362. Richardson, D., A. Stella, G. Leonetti, A. Barolorelli, and A. Zanchetti. Mechanisms of renal release of renin by electrical stimulation of the brainstem in the cat. Circ. Res. 34: 425–434, 1979.
 363. Ricksten, S. E., E. Noresson, and P. Thorén. Inhibition of renal sympathetic nerve traffic from cardiac receptors in normotensive and spontaneously hypertensive rats. Acta Physiol. Scand. 106: 17–22, 1979.
 364. Ricksten, S. E., and P. Thorén. Reflex inhibition of sympathetic activity during volume load in awake normotensive and spontaneously hypertensive rats. Acta Physiol. Scand. 110: 77–82, 1980.
 365. Ricksten, S. E., T. Yao, G. F. DiBona, and P. Thorén. Renal nerve activity and exaggerated natriuresis in conscious spontaneously hypertensive rats. Acta Physiol. Scand. 112: 161–167, 1981.
 366. Ricksten, S. E., T. Yao, B. Ljung, and P. Thorén. Distensibility of left atrium in normotensive and spontaneously hypertensive rats. Acta Physiol. Scand. 110: 413–418, 1980.
 367. Ricksten, S. E., T. Yao, and P. Thorén. Peripheral and central vascular compliance in conscious normotensive and spontaneously hypertensive rats. Acta Physiol. Scand. 112: 169–177, 1981.
 368. Rocchini, A. P., and A. C. Barger. Renin release with carotid occlusion in the conscious dog: role of renal arterial pressure. Am. J. Physiol. 236 (Heart Circ. Physiol. 5): H108–H111, 1979.
 369. Rocchini, A. P., J. R. Cant, and A. C. Barger. Carotid sinus reflex in dogs with low‐ to high‐sodium intake. Am. J. Physiol. 233 (Heart Circ. Physiol. 2): H196–H202, 1977.
 370. Roddie, I. C., J. T. Shepherd, and R. F. Whelan. Reflex changes in vasoconstrictor tone in human skeletal muscle in response to stimulation of receptors in a low‐pressure area of the intrathoracic vascular bed. J. Physiol. London 139: 369–376, 1957.
 371. Ross, J., Jr., C. J. Frahm, and E. Braunwald. The influence of intracardiac baroreceptors on venous return, systemic vascular volume and peripheral resistance. J. Clin. Invest. 40: 563–572, 1961.
 372. Roughgarden, J. W. Circulatory changes associated with spontaneous angina pectoris. Am. J. Med. 41: 947–961, 1966.
 373. Ryden, J., I. Cullhed, and H. Wasir. The effect of lidocaine on heart rate in patients with sinus bradycardia associated with proved and suspected acute myocardial infarction. Cardiovasc. Res. 6: 664–670, 1972.
 374. Salisbury, P. F., C. E. Cross, and P. A. Rieben. Reflex effect of left ventricular distention. Circ. Res. 8: 530–534, 1960.
 375. Schaefer, H. Elektrophysiologie der Herznerven. Ergeb. Physiol. 46: 71–125, 1950.
 376. Schmitt, G., H. W. Müller‐Limmroth, and V. Guth. Über die Bedeutung der Chemoreceptoren der Carotis und Aorta für die Toxische Digitalisbradykardie bei der Katze. Z. Gesamte Exp. Med. 130: 190–202, 1958.
 377. Schoener, E. P., and H. M. Frankel. Effect of hyperthermia and Paco2 on the slowly adapting pulmonary stretch receptor. Am. J. Physiol. 222: 68–72, 1972.
 378. Schrier, R. W. Effects of adrenergic nervous system and catecholamines on systemic and renal hemodynamics, sodium and water excretion and renin secretion. Kidney Int. 6: 291–306, 1974.
 379. Schrier, R. W., and T. Berl. Nonosmolar factors affecting renal water excretion. N. Engl. J. Med. 292: 81–88, 1975.
 380. Schwartz, P. J., A. M. Brown, A. Malliani, and Z. Zanchetti. Neural Mechanisms in Cardiac Arrhythmias. New York: Raven, 1978.
 381. Schwartz, P. J., R. D. Foreman, H. L. Stone, and A. M. Brown. Effect of dorsal root section on the arrhythmias associated with coronary occlusion. Am. J. Physiol. 231: 923–928, 1976.
 382. Schwartz, P. J., M. Pagani, F. Lombardi, A. Malliani, and A. M. Brown. A cardiocardiac sympathovagal reflex in the cat. Circ. Res. 32: 215–220, 1973.
 383. Seller, H., and M. Illert. The localization of the first synapse in the carotid sinus baroreceptor reflex pathway and its alteration of the afferent input. Pfluegers Arch. 306: 1–19, 1969.
 384. Share, L. Control of plasma ADH titer in hemorrhage: role of atrial and arterial receptors. Am. J. Physiol. 215: 1384–1389, 1968.
 385. Share, L. The role of cardiovascular receptors in the control of ADH release. Cardiology 61, Suppl. 1: 51–64, 1976.
 386. Sherrington, C.S. The Integrative Action of the Nervous System. New Haven, CT: Yale Univ. Press, 1906, 413 p.
 387. Shimizu, T., and V. S. Bishop. Role of carotid sinus and cardiopulmonary reflexes on left ventricular dP/dt in cats. Am. J. Physiol. 238 (Heart Circ. Physiol. 7): H93–H97, 1980.
 388. Shimizu, T., D. F. Peterson, and V. S. Bishop. Reflex circulatory changes due to the afferent stimulation of cat pericoronary nerve. Am. J. Physiol. 235 (Heart Circ. Physiol. 4): H759–H766, 1978.
 389. Shimizu, T., D. F. Peterson, and V. S. Bishop. Role of cardiac sympathetics in the tonic circulatory restraint by vagal afferents. Am. J. Physiol. 237 (Heart Circ. Physiol. 6): H528–H534, 1979.
 390. Simon, G. Altered venous function in hypertensive rats. Circ. Res. 38: 412–418, 1976.
 391. Simon, G., J. A. Franciosa, and J. N. Cohn. Decreased venous distensibility in essential hypertension. Lack of systemic hemodynamic correlates. Angiology 30: 147–159, 1979.
 392. Sleight, P. A cardiovascular depressor reflex from the epicardium of the left ventricle in the dog. J. Physiol. London 173: 321–343, 1964.
 393. Sleight, P. Reflex control of the heart. Am. J. Cardiol. 44: 889–894, 1979.
 394. Sleight, P., A. Lall, and M. Muers. Reflex cardiovascular effects of epicardial stimulation by acetylstrophanthidin in dogs. Circ. Res. 25: 705–711, 1969.
 395. Sleight, P., and J. G. Widdicombe. Action potentials in fibres from receptors in the epicardium and myocardium of the dog's left ventricle. J. Physiol. London 181: 235–258, 1965.
 396. Smirnow, A. Über die sensiblen Nerven‐endigungen im Herzen bei Amphibien und Saugetieren. Anat. Anz. 10: 737–749, 1895.
 397. Smith, R. S., and J. W. Pierce. Microelectrode recordings from the region of the nucleus tractus solitarius in the cat. Can. J. Biochem. Physiol. 39: 933–939, 1961.
 398. Staszewska‐Barzak, J., S. H. Ferreira, and J. R. Vane. An excitatory nociceptive cardiac reflex elicited by bradykinin and potentiated by prostaglandins and myocardial ischemia. Cardiovasc. Res. 10: 314–327, 1976.
 399. Sutton, D. C., and H. C. Lueth. Experimental production of pain on excitation of the heart and great vessels. Arch. Intern. Med. 45: 827–867, 1930.
 400. Takeshita, A., and A. L. Mark. Decreased venous distensibility in borderline hypertension. Hypertension 1: 202–206, 1979.
 401. Takeshita, A., A. L. Mark, and D. L. Eckberg. Effect of changes in central venous pressure on arterial baroreflex control of heart rate in humans. Am. J. Physiol. 236 (Heart. Circ. Physiol. 5): H42–H47, 1979.
 402. Taquini, A. C., and D. M. Aviado. Reflex stimulation of heart induced by partial occlusion of pulmonary artery. Am. J. Physiol. 200: 647–650, 1961.
 403. Tarazi, R. C., F. G. Estafanous, and F. M. Fouad. Unilateral stellate block in the treatment of hypertension after coronary bypass surgery. Implications of a new therapeutic approach. Am. J. Cardiol. 42: 1013–1018, 1978.
 404. Thames, M. D. Reflex suppression of renin release by ventricular receptors with vagal afferents. Am. J. Physiol. 233 (Heart Circ. Physiol. 2): H181–H184, 1977.
 405. Thames, M. D. Acetylstrophanthidin‐induced reflex inhibition of canine renal sympathetic nerve activity mediated by cardiac receptors with vagal afferents. Circ. Res. 44: 8–15, 1979.
 406. Thames, M. D. Effect of d‐ and l‐ propranolol on the discharge of cardiac vagal C fibers. Am. J. Physiol. 238 (Heart Circ. Physiol. 7): H465–H470, 1980.
 407. Thames, M. D., and F. M. Abboud. Interaction of somatic and cardiopulmonary receptors in control of renal circulation. Am. J. Physiol. 237 (Heart Circ. Physiol. 6): H560–H565, 1979.
 408. Thames, M. D., and F. M. Abboud. Reflex inhibitors of renal sympathetic nerve activity during myocardial ischemia mediated by left ventricular receptor with vagal afferents in dogs. J. Clin. Invest. 63: 395–402, 1979.
 409. Thames, M. D., D. E. Donald, and J. T. Shepherd. Behaviour of cardiac receptors with vagal C‐fiber afferents during spontaneous respiration in cats. Circ. Res. 41: 694–701, 1977.
 410. Thames, M. D., J. Jarecki, and D. E. Donald. Neural control of renin secretion in anesthetized dogs: interaction of cardiopulmonary and carotid baroreceptors. Circ. Res. 42: 237–245, 1978.
 411. Thames, M. D., H. S. Kloppenstein, F. M. Abboud, A. L. Mark, and J. L. Walker. Preferential distribution of inhibitory cardiac receptors with vagal afferents to the interposterior wall of the left ventricle activated during coronary occlusion in the dog. Circ. Res. 43: 512–519, 1978.
 412. Thames, M. D., M. G. Peterson, and P. G. Schmid. Stimulation of cardiac receptors with veratrum alkaloids inhibits ADH secretion. Am. J. Physiol. 239 (Heart Circ. Physiol. 8): H784–H788, 1980.
 413. Thames, M. D., and P. G. Schmid. Cardiopulmonary receptors with vagal afferents tonically inhibit ADH release in the dog. Am. J. Physiol 237 (Heart Circ. Physiol. 6): H299–H304, 1979.
 414. Thames, M. D., L. A. Waickman, and F. M. Abboud. Sensitization of cardiac receptors (vagal afferents) by intracoronary acetylstrophanthidin. Am. J. Physiol. 239 (Heart Circ. Physiol. 8): H628–H635, 1980.
 415. Thames, M. D., Zubair‐Ul‐Hassan, N., C. Brackett, Jr, R. R. Lower, and H. A. Kontos. Plasma renin responses to hemorrhage after cardiac autotransplantation. Am. J. Physiol. 221: 1115–1119, 1971.
 416. Thorén, P. Left ventricular receptors activated by severe asphyxia and by coronary occlusion. Acta Physiol. Scand. 85: 455–463, 1972.
 417. Thorén, P. Evidence for a depressor reflex elicited from left ventricular receptors during occlusion of one coronary artery in the cat. Acta Physiol. Scand. 88: 23–34, 1973.
 418. Thorén, P. Reflex bradycardia elicited from left ventricular receptors during acute severe hypoxia in cats. Acta Physiol. Scand. 87: 103–112, 1973.
 419. Thorén, P. Activation of left ventricular receptors with nonmyelinated vagal afferent fibers during occlusion of coronary artery in the cat. Am. J. Cardiol. 37: 1046–1051, 1976.
 420. Thorén, P. Atrial receptors with non‐medullated vagal afferents in the cat: discharge frequency and pattern in relation to atrial pressure. Circ. Res. 38: 357–362, 1976.
 421. Thorén, P. Characteristics of left ventricular receptors with nonmedullated vagal afferents in cats. Circ. Res. 40: 415–421, 1977.
 422. Thorén, P. Role of cardiac vagal C‐fibers in cardiovascular control. Rev. Physiol. Biochem. Pharmacol. 86: 1–94, 1979.
 423. Thorén, P. Characteristics of right ventricular receptors with nonmedullated vagal afferents in the cat. Acta Physiol. Scand. 110: 431–434, 1980.
 424. Thorén, P., D. E. Donald, and J. T. Shepherd. Role of heart and lung receptors with non‐medullated afferents in circulatory control. Circ. Res. 38, Suppl. 2: 2–9, 1976.
 425. Thorén, P., E. Noresson, and S. E. Ricksten. Cardiac receptors with vagal afferents in the rat. Acta Physiol. Scand. 105: 295–303, 1979.
 426. Thorén, P., E. Noresson, and S. E. Ricksten. Resetting of cardiac C‐fiber endings in the spontaneously hypertensive rat. Acta Physiol. Scand. 107: 13–18, 1979.
 427. Thorén, P., and B. Öberg. Studies on the endoanesthetic effect of lidocaine and benzonatate on non‐medullated nerve endings in the left ventricle. Acta Physiol. Scand. 111: 51–58, 1981.
 428. Thorén, P., W. R. Saum, and A. M. Brown. Characteristics of aortic baroreceptors with non‐medullated afferents in the rat. Circ. Res. 40: 321–337, 1977.
 429. Thorén, P., J. T. Shepherd, and D. E. Donald. Anodal block of medullated cardiopulmonary vagal afferents in cats. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 42: 461–465, 1977.
 430. Tokar, R. L., and G. L. Gebber. Analysis of nicotine‐induced vascular reflexes in the dog. Arch. Int. Pharmacodyn. Ther. 179: 408–418, 1969.
 431. Torrente, A., G. L. Robertson, K. M. McDonald, and R. W. Schrier. Mechanism of diuretic response to increased left atrial pressure in the anesthetized dog. Kidney Int. 8: 355–361, 1975.
 432. Toubes, D. B., and M. Brody. Inhibition of reflex vasoconstriction after experimental coronary embolization in the dog. Circ. Res. 26: 211–224, 1970.
 433. Tranum‐Jensen, J. The ultrastructure of the sensory end organs (baroreceptors) in the atrial endocardium of young mini‐pigs. J. Anat. 119: 255–275, 1975.
 434. Tranum‐Jensen, J. Ultrastructural studies on atrial nerve‐end formations in mini‐pigs. In: Cardiac Receptors, edited by R. Hainsworth, C. Kidd, and R. J. Linden. Cambridge, UK: Cambridge Univ. Press, 1979, p. 27–50.
 435. Uchida, Y. Afferent aortic nerve fibers with their pathways in cardiac sympathetic nerves. Am. J. Physiol. 228: 990–995, 1975.
 436. Uchida, Y., K. Kamisaka, S. Murao, and H. Ueda. Mechanosensitivity of afferent cardiac sympathetic nerve fibers. Am. J. Physiol. 226: 1088–1093, 1974.
 437. Uchida, Y., and S. Murao. Afferent sympathetic nerve fibers originating in left atrial wall. Am. J. Physiol. 227: 753–758, 1974.
 438. Uchida, Y., and S. Murao. Bradykinin‐induced excitation of afferent cardiac sympathetic nerve fibers. Jpn. Heart J. 15: 84–91, 1974.
 439. Uchida, Y., and S. Murao. Excitation of afferent cardiac sympatheic nerve fibers during coronary occlusion. Am. J. Physiol. 226: 1094–1099, 1974.
 440. Uchida, Y., and S. Murao. Acid‐induced excitation of afferent cardiac sympathetic nerve fibers. Am. J. Physiol. 228: 27–33, 1975.
 441. Uchida, Y., and A. Sakamoto. Role of autonomic nerves in the pathogenesis of hypotension produced by coronary embolization in the dog. Jpn. Circ. J. 38: 491–495, 1974.
 442. Ueda, H., Y. Uchida, and K. Kamisaka. Distribution and responses of the cardiac sympathetic receptors to mechanically induced circulatory changes. Jpn. Heart J. 10: 70–81, 1969.
 443. Ulbricht, W. The effect of veratridine on excitable membranes of nerve and muscle. Ergeh. Physiol. 61: 18–71, 1969.
 444. Vatner, S. F. Effects of hemorrhage on regional blood flow distribution in dogs and primates. J. Clin. Invest. 54: 225–235, 1974.
 445. Vatner, S. F., D. H. Boettcher, G. H. Heyndricks, and R. J. McRitchie. Reduced baroreflex sensitivity with volume loading in conscious dogs. Circ. Res. 37: 236–242, 1975.
 446. Vatner, S. F., and M. Pagani. Cardiovascular adjustment to exercise: hemodynamic mechanisms. Prog. Cardiovasc. Dis. 19: 91–108, 1976.
 447. Wahab, N. S., I. H. Zucker, and J. P. Gilmore. Lack of direct effect of efferent cardiac vagal nerve activity on atrial receptor activity. Am. J. Physiol. 229: 314–317, 1975.
 448. Walker, J. L., F. M. Abboud, A. L. Mark, and M. D. Thames. Interaction of cardiopulmonary and somatic reflexes in humans. J. Clin. Invest. 65: 1491–1497, 1980.
 449. Walker, J. L., M. D. Thames, F. M. Abboud, A. L. Mark, and H. S. Klopfenstein. Preferential distribution of inhibitory cardiac receptors in left ventricle of the dog. Am. J. Physiol. 235 (Heart Circ. Physiol. 4): H188–H192, 1978.
 450. Walsh, J. A., C. Hyman, and R. F. Maronde. Venous distensibility in essential hypertension. Cardiovasc. Res. 3: 338–349, 1969.
 451. Wang, S. C. Emetic and antiemetic drugs. In: Physiological Pharmacology. New York: Academic, 1965, p. 255–328.
 452. Watkins, L., J. A. Burton, E. Haber, J. R. Cant, F. W. Smith, and A. C. Barger. The renin‐angiotensin‐aldosterone system in congestive failure in conscious dogs. J. Clin. Invest. 57: 1606–1617, 1976.
 453. Weaver, L. C. Cardiopulmonary sympathetic afferent influences on renal nerve activity. Am. J. Physiol. 233 (Heart Circ. Physiol. 2): H592–H599, 1977.
 454. Webb, S. W., A. A. Adgey, and J. F. Pantridge. Autonomic disturbance at onset of acute myocardial infarction. Br. Med. J. 3: 89–92, 1972.
 455. Weber, M. A., I. R. Thornell, and G. S. Stokes. Effect of hemorrhage with and without fluid replacement on plasma renin activity. Am. J. Physiol. 225: 1161–1164, 1973.
 456. Wennergren, G., B. A. Henriksson, L. G. Weiss, and B. Öberg. Effects of stimulation of non‐medullated cardiac afferents on renal water and sodium excretion. Acta Physiol. Scand. 97: 261–263, 1976.
 457. Wennergren, G., B. Lisander, and B. Öberg. Interaction between the hypothalamic defense reaction and cardiac ventricular receptor reflexes. Acta Physiol. Scand. 96: 532–541, 1976.
 458. Wennergren, G., P. Thorén, and B. Lisander. Cardiac receptors activated during hypothalamic defense reaction. Acta Physiol. Scand. 101: 241–246, 1977.
 459. White, J. C. Cardiac pain. Anatomic pathways and physiologic mechanisms. Circulation 16: 644–655, 1957.
 460. Whitteridge, D. Afferent nerve fibres from the heart and lungs in the cervical vagus. J. Physiol. London 107: 496–512, 1948.
 461. Williams, T. H. Mitral and tricuspid valve innervation. Br. Heart J. 26: 105–115, 1964.
 462. Witty, R. T., J. O. Davis, R. E. Shade, J. A. Johnson, and R. L. Prewitt. Mechanisms regulating renin release in dogs with thoracic caval constriction. Circ. Res. 31: 339–347, 1972.
 463. Wolthuis, R. A., S. A. Bergman, and A. E. Nigogossian. Physiological effects of locally applied reduced pressure in man. Physiol. Rev. 54: 566–595, 1974.
 464. Woollard, H. H. The innervation of the heart. J. Anat. 60: 345–373, 1926.
 465. Zehr, J. E., and E. O. Feigl. Suppression of renin activity by hypothalamic stimulation. Circ. Res. 32, Suppl. 17–27, 1973.
 466. Zehr, J. E., J. A. Hasbargen, and K. D. Kurz. Reflex suppression of renin secretion during distention of cardiopulmonary receptors in dogs. Circ. Res. 38: 232–239, 1976.
 467. Zelis, R., M. Loysh, M. Brais, C. L. Peng, E. Hurly, and D. T. Mason. Effect of isolated right and left ventricular stretch on regional arteriolar resistance. Cardiovasc. Res. 11: 419–426, 1977.
 468. Zipf, H. The pharmacology of visceroafferent receptors with special reference to endoanaesthesia. Acta Neuroveg. 28: 169–196, 1966.
 469. Zoller, R. O., A. L. Mark, F. M. Abboud, P. G. Schmid, and D. D. Heistad. The role of low pressure baroreceptors in reflex vasoconstrictor responses in man. J. Clin. Invest. 51: 2967–2972, 1972.
 470. Zucker, I. H., A. M. Earle, and J. P. Gilmore. The mechanism of adaptation of left atrial stretch receptors in dogs with chronic congestive heart failure. J. Clin. Invest. 60: 323–331, 1977.
 471. Zucker, I. H., A. M. Earle, and J. P. Gilmore. Changes in sensitivity of left atrial receptors following reversal of heart failure. Am. J. Physiol. 237 (Heart Circ. Physiol. 6): H555–H559, 1979.
 472. Zucker, I. H., and J. P. Gilmore. Atrial receptor discharge during acute coronary occlusion in the dog. Am. J. Physiol. 227: 360–363, 1974.
 473. Zucker, I. H., and J. P. Gilmore. Evidence for an indirect sympathetic control of atrial stretch receptor discharge in the dog. Circ. Res. 34: 441–446, 1974.
 474. Zucker, I. H., and J. P. Gilmore. Responsiveness of type B atrial receptors in the monkey. Brain Res. 95: 159–165, 1975.
 475. Zucker, I. H., and J. P. Gilmore. Cardiopulmonary vagal afferents in the monkey. A survey of receptor activity. Basic Res. Cardiol. 721: 392–401, 1977.
 476. Zucker, I. H., T. V. Peterson, and J. P. Gilmore. Ouabain increases left atrial stretch receptor discharge in the dog. J. Pharmacol. Exp. Ther. 212: 320–324, 1980.
 477. Zucker, I. H., L. Share, and J. P. Gilmore. Renal effects of left atrial distension in dogs with chronic congestive heart failure. Am J. Physiol. 236 (Heart Circ. Physiol. 5): H554–H560, 1979.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Vernon S. Bishop, Alberto Malliani, Peter Thorén. Cardiac Mechanoreceptors. Compr Physiol 2011, Supplement 8: Handbook of Physiology, The Cardiovascular System, Peripheral Circulation and Organ Blood Flow: 497-555. First published in print 1983. doi: 10.1002/cphy.cp020315