Comprehensive Physiology Wiley Online Library

Arterial Chemoreceptors

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Anatomical Features
2 Physiological Characteristics
2.1 Arterial Chemoreceptors in the Fetus and Newborn
2.2 Peripheral Chemoreceptors in Adult Human Beings and Animals
2.3 Adaptation of Response to CO2
2.4 Oscillations of Chemoreceptor Activity
2.5 Effects of Exercise
2.6 Blood Pressure, Perfusate Flow, and Carotid Chemoreceptor Activity
2.7 Oxygen Consumption and Tissue PO2
2.8 Oxygen Content and Po2 in Chemoreceptor Excitation
2.9 Anesthetics and Peripheral Chemoreceptor Activity
2.10 Effects of Temperature and Tonicity
2.11 Pathophysiology of Peripheral Chemoreceptors
3 Cellular Electrophysiological Mechanisms
3.1 Glomus Cells
4 Possible Role of Carotid Body Cells as Conditioners or Inductors of Chemosensory Activity
5 Chemosensory Nerve Endings
5.1 Mass Receptor Potential of Chemoreceptors
5.2 Recordings From Single Nerve Fibers and Endings
6 Hypotheses of Chemoreception
6.1 Hypotheses Involving Neurotransmitters
6.2 Mechanoreceptor Hypotheses
6.3 Hypotheses Based on pH Sensitivity
6.4 Protein Receptor Hypothesis
6.5 Metabolic Hypothesis
7 Interactions Between Nerves and Carotid Body Cells
7.1 Result of Efferent Input on Carotid Body Afferent Output
7.2 Physiological Significance of Carotid Nerve Efferent Input
8 Peripheral Chemoreceptors and Cardiovascular Control
8.1 Chemoreceptor Stimulation in the Normoxic Animal
8.2 Perfusion of Isolated Aortic and Carotid Chemoreceptors with Hypoxic and Hypoxic‐Hypercapnic Blood
8.3 Cardiovascular Adjustments to Acute Systemic Hypoxia
8.4 Chemoreceptor Activity and Regional Blood Flow
9 Conclusions
Figure 1. Figure 1.

Synaptic connections in rat carotid body. Note membrane densifications at different synaptic sites. Heavier densification (δ) is generally considered to be located in presynaptic side of junction. Glomus cells have dense‐core vesicles and are interconnected by synapses. Afferent nerve endings apposed to cells have relatively large synaptic vesicles and few large dense‐core vesicles. Some regions of afferent nerve endings are presynaptic to cells, some postsynaptic, and some form reciprocal synapses. Where cell bodies are presynaptic, large dense‐core vesicles and synaptic vesicles accumulate in equal concentration near synaptic junction, but synaptic vesicles predominate where cell processes are presynaptic.

Adapted from McDonald and Mitchell
Figure 2. Figure 2.

Effect of occluding the umbilical cord (for period indicated by bar on time marker) on aortic chemoreceptor activity in sheep fetal preparation. Neurograms A and B obtained when indicated on rate‐meter trace.

From Ponte and Purves
Figure 3. Figure 3.

Isometric diagram. Changes in carotid nerve impulses of cat during inhalation of different O2 mixtures at various ventilation levels. X axis, alveolar CO2 pressure (PCO2); Y axis, concentration of inhaled oxygen; Z axis, frequency of carotid nerve impulses; discharges mainly from chemoreceptors. Mean arterial pressure 140–170 Torr throughout series: O2‐impulse curves obtained during inhalation of O2 (100%‐10%) at different PCO2 levels; CO2‐impulse curves obtained at different PCO2 levels during inhalation of 100% O2 and of 50%, 20%, and 10% O2 in N2.

From Eyzaguirre and Lewin
Figure 4. Figure 4.

Chemoreceptor sensitivity to hypoxia. Effect of arterial O2 pressure (PaO2) levels on slopes of CO2‐response (mean ± SE) curves of aortic (▪) and carotid (•) cat chemoreceptors (n = 15).

From Lahiri et al.
Figure 5. Figure 5.

Response (mean ± SE) of carotid and aortic bodies to increasing levels of PaCO2 at decreasing levels of PaO2 (bottom to top). Carotid sinus nerve (n = 10) and aortic depressor nerve (n = 6) single‐ or few‐fiber preparations from the cat. ×, Hyperoxia; ⋄, normoxia; •, mild hypoxia; ○, moderate hypoxia.

Adapted from Fitzgerald and Dehghani
Figure 6. Figure 6.

Responses of cat carotid chemoreceptor fibers to changes in end‐tidal CO2 pressure (PETCO2) during hyperoxia (A) and hypoxia (B). Increases in PETCO2 were followed by increases in discharge rates during both hyperoxia and hypoxia. PSA, systemic arterial pressure.

From Lahiri et al. (ref. and unpublished observations)
Figure 7. Figure 7.

Aortic (Δ) and carotid (•) chemoreceptor responses of cat to carboxyhemoglobinemia during normoxia (PaO2 = 82–98 Torr; mean ± SE; n = 10). Only aortic chemoreceptors were stimulated.

From Lahiri et al.
Figure 8. Figure 8.

Arrhenius plots for single (different) chemoreceptor fibers of cat carotid body in vitro under different conditions. A: line 2, regression under 50% O2 in N2; line 1, under 100% O2; line 3, under air. B: line 1, under 50% O2 in N2, pH 7.43; line 2, under 6% CO2) 50% O2, and 44% N2, pH 7.43; line 3, under 6% CO2, 50% O2, and 44% N2, pH 6. C: line 1, under 50% O2 in N2, pH 7.43; line 2, under 6% CO2, 50% O2, and 44% N2, pH 6; line 3, after 50% O2 in N2, pH 6. D: under 100% O2; line 2, pH 7.43; line 3, pH 7.0; line 1, pH 7.8. Ordinates, impulses per second; abscissae, 105 × reciprocal of absolute temperature (T−l).

From Gallego et al.
Figure 9. Figure 9.

Results obtained with solutions of different osmolalities on single unit discharge in separate experiments on cat carotid bodies in vitro. Ordinate: mean change in discharge frequency (ΔF) ± SEM; +, increase; −, decrease. Abscissa: changes in osmolality (Δ mOsm); 304 mOsm, mean control osmolality. Bars, ΔF; vertical lines, SE; *P < 0.05; circled numbers above and below bars, number of observations. Right, changes during application of hyperosmotic solutions at constant [Na+]o = 154 mM; left, changes in frequency induced by hyposomotic solutions at constant [Na+]o = 112 mM.

From Gallego et al.
Figure 10. Figure 10.

Effect of drop in temperature from 37°C to 32°C on membrane potential (MP) and input resistance (Ro) of single glomus cell and on sensory discharge frequency of whole carotid nerve. Cat carotid body preparation in vitro. Upper trace, intracellular recording; middle trace, sensory discharge frequency; lower trace, temperature.

From Baron and Eyzaguirre
Figure 11. Figure 11.

Reversal potential of cooling effect on cat carotid body in vitro. A: intracellular recording of MP and Ro before, during, and after cooling at normal resting potential. B: MP artificially displaced toward positive values by injecting direct outward current (0.4 nA) through recording electrode. Note cell repolarization and loss of Ro during cooling. C: cell artificially hyperpolarized by injecting direct inward current (0.1 nA) through micropipette. Note larger depolarization during cooling. In all 3 cases, potential of cell tends to reach same level. D: temperature record.

From Baron and Eyzaguirre
Figure 12. Figure 12.

Effects of solutions of different osmolalities on MP and Ro of glomus cells of cat carotid body in vitro. Right, hyperosmotic solutions, [Na+]o = 154 mM; left, hyposmotic solutions, [Na+]o = 112 mM. Open bars, changes in MP; shaded bars, changes in Ro; *P < 0.05; circled numbers above bars, number of observations. Left ordinate (MP): +, depolarization; −, hyperpolarization. Right ordinate (Ro): +, increase; −, decrease. Abscissa: changes in osmolality (± mOsm); 302 mOsm, mean control osmolarity.

From Gallego et al.
Figure 13. Figure 13.

Effects of acetylcholine (ACh; 50 μg) on glomus cell of cat carotid body in vitro impaled with micropipette filled with 6% Procion yellow. Cell identified after ejecting dye from pipette. Upper trace, ΔMP induced by drug; middle trace, lower trace, high‐gain AC recording of voltage noise from same cell. 1, Base‐line noise (before ACh); 2, noise recorded near peak of drug‐induced depolarization.

From Hayashida and Eyzaguirre
Figure 14. Figure 14.

Effect of asphyxia and N2 inhalation on sensory discharges recorded from superior laryngeal nerve (SLN) filament innervating cat carotid body; carotid nerve anastomosed to SLN 131 days prior to experiment. A : control discharge during spontaneous inhalation of room air. B : discharge during peak of asphyxic effect elicited by tracheal occlusion. C: discharge several seconds after B and during inhalation of room air. D: discharge during peak of effect induced by inhalation of 100% N2. Bottom: frequency changes induced by asphyxia and 100% N2. Effects elicited between arrows.

From Zapata et al.
Figure 15. Figure 15.

Dose‐peak‐response curves constructed after intravenous injections of different doses of NaCN and nicotine. Bilateral carotid nerve recordings from cat. A, B: carotid nerve crushed 6 days before. ▪, Responses of nerve crushed close to glomus; ▪, responses of nerve crushed far from glomus. C, D: different experiment. •, Response of normal nerve; ○, response of nerve crushed in its middle 6 days before.

From Zapata et al.
Figure 16. Figure 16.

Labeled carotid nerve terminal of cat carotid body examined with ultrastructural autoradiography 6 days after treating petrosal ganglion with [3H] proline. Note silver grains over nerve ending after radioactive material was transported through sensory nerves.

Courtesy of S. J. Fidone, P. Zapata, and L. J. Stensaas (see also ref. )
Figure 17. Figure 17.

Local nature of slow negative (mass receptor) potential induced by intra‐arterial injections of ACh in cat. Upper traces, recording from nerve; lower traces, sensory discharge frequency. Injections made at arrows. A: slow potential elicited by intra‐arterial injection of 5 μg of ACh, recorded from filament of carotid nerve with proximal electrode placed at entrance of nerve into glomus. B: proximal electrode at 0.7 mm from glomus; distal electrode remained stationary near cut end of nerve.

From Eyzaguirre et al.
Figure 18. Figure 18.

Impalement of single nerve ending yields spontaneous depolarizing potentials (SDPs) that (if large enough) seem to evoke sensory discharges in cat carotid body in vitro. Smaller SDPs do not appear to give rise to action potentials. Terminal was invaded by spikes originating elsewhere. Nerve ending identified by intracellular staining after recording.

From Hayashida et al.
Figure 19. Figure 19.

Effects of physostigmine (eserine) and mecamylamine on Loewi‐type effect in cat carotid bodies in vitro. Inset, experimental situation. Locke solution equilibrated with 50% O2 in N2, pH 7.45 at 35°C, flowing at 0.6 ml/min under paraffin oil. Donor carotid body (1) is upstream and separated from downstream detector carotid body preparation (2) by 17 mm. Direction of flow indicated by horizontal arrows. Electrical current (60 μA DC) applied for 60 s to carotid body 1 (vertical arrows) and sensory discharges recorded from carotid nerve of preparation 2. A : preparations bathed in normal Locke solution. B: preparations bathed with physostigmine‐Locke solution (10−6 g/ml eserine salicylate) for 60 min. C: mecamylamine HCl (10−4 g/ml) added to physostigmine‐Locke solution for 60 min. Each point shows mean frequency recorded during 60 s.

From Eyzaguirre and Zapata
Figure 20. Figure 20.

Catecholamine biosynthesis in rat carotid body. Circles, pools of tyrosine (TYR), dihydroxyphenylalanine (DOPA), dopamine (DA), norepinephrine (NA), and epinephrine (AD). Arrows, enzymes involved: tyrosine hydroxylase (TH), aromatic L‐amino acid decarboxylase (AAAD), dopamine β‐hydroxylase (DBH), and phenylethanolamine N‐methyltransferase (PNMT); widths indicate activities of enzymes. Columns: immunofluorescence intensity in glomus cells, enzymatic activity, contents, and changes induced by hypoxia.

Data from Bolme et al. , Hanbauer et al. , and Hellström, and co‐workers
Figure 21. Figure 21.

Dopamine (DA) and norepinephrine (NA) contents in rat carotid body. Areas of large circles, proportional content detected under basal conditions. Upward and downward arrows, increase or decrease in content produced by different conditions. Thin horizontal arrows, moderate but statistically significant effects. Thick horizontal arrows, pronounced effects. Small circles, no effects. Responses to a precursor (L‐dopa), a monoamine oxidase (MAO) inhibitor (pargyline), 1 wk of carotid neurotomy, chronic treatment with a glucocorticoid (dexamethasone) and a mineralocorticoid (doca), 15–60 min of hypoxia, 2‐h administration of reserpine and a DBH inhibitor [diethyldithiocarbamate (DDC)], 1 wk of sympathectomy, and chronic administration of 6‐hydroxydopamine (6‐OHDA).

Data from Hanbauer and Hellström , Hellström et al. , and Hellström and Kaslow
Figure 22. Figure 22.

Dose‐response curves of cat carotid chemoreceptors to haloperidol at various levels of PaO2. Haloperidol had little effect during hyperoxia when receptor activity was slight. At lower PaO2 levels, as activity increased, haloperidol had an augmenting effect. At all levels of PaO2, saturation dose of haloperidol appeared to be 1 mg/kg. At each dose of haloperidol, responses to steady‐state PaO2 were obtained systematically. Each data point represents 1 measurement.

From Lahiri et al.
Figure 23. Figure 23.

Effects of close intra‐arterial injections of Met‐enkephalin before (A) and after (B) naloxone on cat carotid nerve discharges. Met‐enkephalin inhibited chemoreceptor activity, and this effect was blocked by naloxone. PSA, systemic arterial pressure.

From Pokorski and Lahiri
Figure 24. Figure 24.

Inhibition of cat carotid chemoreceptor response to PaO2 by oligomycin. Carotid chemoreceptor steady‐state responses to PaO2 at constant PaCO2 in 8 experiments before (A) and after (B) oligomycin (50–500 μg ia). Open symbols in B correspond to closed symbols in A. Chemoreceptor activity is insensitive to PaO2 level after oligomycin.

From Mulligan et al.
Figure 25. Figure 25.

Responses of carotid chemoreceptor afferent of cat to similar changes in PETCO2, before (A, C) and after (B, D) oligomycin (200 μg ia) during hyperoxia (PaO2 > 400 Torr). After oligomycin there were appreciable overshoots and undershoots in activity.

From Mulligan et al.
Figure 26. Figure 26.

Temporal separation of aortic and carotid body stimulation in the dog. A: nicotine injected through catheter placed in aorta (just beyond aortic valves) reaches aortic bodies within 1 s; coils of plastic tubing inserted in common carotids delay nicotine from reaching carotid bodies for 75 s. B: nicotine injected at 2 stimulates aortic bodies and causes tachycardia and hypertension. Neuromuscular blocking agent (succinylcholine) injected at 1 produces apnea and eliminates effects of hyperventilation. Top tracing, respiratory air flow; bottom tracing, carotid blood pressure. At 3, 45 s was deleted to save space; A.A., ascending aorta.

From Comroe and Mortimer
Figure 27. Figure 27.

Effects of carotid chemoreceptor stimulation on phasic and mean arterial pressure, left ventricular (LV) pressure, dP/dt, LV diameter, respiration (monitored by pneumograph), and heart rate in dog with spontaneous respiration (left panel). Heart rate remained constant, but chemoreceptor stimulation markedly increased respiration with increase in aortic and LV pressures and in dP/dt. With ventilation controlled (right panel), same carotid chemoreceptor stimulus induced larger increase in pressures and dP/dt.

From Vatner and Rutherford
Figure 28. Figure 28.

Hemodynamics during hypoxic hypoxia (HH) and CO hypoxia (COH) before and after carotid body resection (CBR) in the dog. A: Cao2, arterial oxygen content; Pa, mean arterial pressure; Q, cardiac output; TPR, total peripheral resistance. B: HR, heart rate; SV, stroke volume; PLA, mean left atrial pressure; SW/PLA, stroke work. Bars, ±; SD.

From Sylvester et al.
Figure 29. Figure 29.

Effect of arterial hypoxia on systemic hemodynamics in conscious dogs. C, control room‐air breathing; H, hypoxia; brackets, ± SEM.

From Krasney and Koehler
Figure 30. Figure 30.

Cardiac responses to arterial hypoxia in conscious dogs. C, control room‐air breathing; H, hypoxia; brackets, ±; SEM.

From Krasney and Koehler
Figure 31. Figure 31.

Responses to aortic injection of cyanide (CN) before (left) and after (right) acute carotid denervation and bilateral vagotomy in dog. Changes in perfusion pressure (PP) in gracilis muscle and paw were abolished, indicating that reflex responses in muscle and paw were triggered by afferent impulses from carotid sinus area and aortic arch. Changes in systemic arterial pressure (SAP) were small and persisted with some modification after denervation.

From Calvelo et al. , by permission of the American Heart Association, Inc


Figure 1.

Synaptic connections in rat carotid body. Note membrane densifications at different synaptic sites. Heavier densification (δ) is generally considered to be located in presynaptic side of junction. Glomus cells have dense‐core vesicles and are interconnected by synapses. Afferent nerve endings apposed to cells have relatively large synaptic vesicles and few large dense‐core vesicles. Some regions of afferent nerve endings are presynaptic to cells, some postsynaptic, and some form reciprocal synapses. Where cell bodies are presynaptic, large dense‐core vesicles and synaptic vesicles accumulate in equal concentration near synaptic junction, but synaptic vesicles predominate where cell processes are presynaptic.

Adapted from McDonald and Mitchell


Figure 2.

Effect of occluding the umbilical cord (for period indicated by bar on time marker) on aortic chemoreceptor activity in sheep fetal preparation. Neurograms A and B obtained when indicated on rate‐meter trace.

From Ponte and Purves


Figure 3.

Isometric diagram. Changes in carotid nerve impulses of cat during inhalation of different O2 mixtures at various ventilation levels. X axis, alveolar CO2 pressure (PCO2); Y axis, concentration of inhaled oxygen; Z axis, frequency of carotid nerve impulses; discharges mainly from chemoreceptors. Mean arterial pressure 140–170 Torr throughout series: O2‐impulse curves obtained during inhalation of O2 (100%‐10%) at different PCO2 levels; CO2‐impulse curves obtained at different PCO2 levels during inhalation of 100% O2 and of 50%, 20%, and 10% O2 in N2.

From Eyzaguirre and Lewin


Figure 4.

Chemoreceptor sensitivity to hypoxia. Effect of arterial O2 pressure (PaO2) levels on slopes of CO2‐response (mean ± SE) curves of aortic (▪) and carotid (•) cat chemoreceptors (n = 15).

From Lahiri et al.


Figure 5.

Response (mean ± SE) of carotid and aortic bodies to increasing levels of PaCO2 at decreasing levels of PaO2 (bottom to top). Carotid sinus nerve (n = 10) and aortic depressor nerve (n = 6) single‐ or few‐fiber preparations from the cat. ×, Hyperoxia; ⋄, normoxia; •, mild hypoxia; ○, moderate hypoxia.

Adapted from Fitzgerald and Dehghani


Figure 6.

Responses of cat carotid chemoreceptor fibers to changes in end‐tidal CO2 pressure (PETCO2) during hyperoxia (A) and hypoxia (B). Increases in PETCO2 were followed by increases in discharge rates during both hyperoxia and hypoxia. PSA, systemic arterial pressure.

From Lahiri et al. (ref. and unpublished observations)


Figure 7.

Aortic (Δ) and carotid (•) chemoreceptor responses of cat to carboxyhemoglobinemia during normoxia (PaO2 = 82–98 Torr; mean ± SE; n = 10). Only aortic chemoreceptors were stimulated.

From Lahiri et al.


Figure 8.

Arrhenius plots for single (different) chemoreceptor fibers of cat carotid body in vitro under different conditions. A: line 2, regression under 50% O2 in N2; line 1, under 100% O2; line 3, under air. B: line 1, under 50% O2 in N2, pH 7.43; line 2, under 6% CO2) 50% O2, and 44% N2, pH 7.43; line 3, under 6% CO2, 50% O2, and 44% N2, pH 6. C: line 1, under 50% O2 in N2, pH 7.43; line 2, under 6% CO2, 50% O2, and 44% N2, pH 6; line 3, after 50% O2 in N2, pH 6. D: under 100% O2; line 2, pH 7.43; line 3, pH 7.0; line 1, pH 7.8. Ordinates, impulses per second; abscissae, 105 × reciprocal of absolute temperature (T−l).

From Gallego et al.


Figure 9.

Results obtained with solutions of different osmolalities on single unit discharge in separate experiments on cat carotid bodies in vitro. Ordinate: mean change in discharge frequency (ΔF) ± SEM; +, increase; −, decrease. Abscissa: changes in osmolality (Δ mOsm); 304 mOsm, mean control osmolality. Bars, ΔF; vertical lines, SE; *P < 0.05; circled numbers above and below bars, number of observations. Right, changes during application of hyperosmotic solutions at constant [Na+]o = 154 mM; left, changes in frequency induced by hyposomotic solutions at constant [Na+]o = 112 mM.

From Gallego et al.


Figure 10.

Effect of drop in temperature from 37°C to 32°C on membrane potential (MP) and input resistance (Ro) of single glomus cell and on sensory discharge frequency of whole carotid nerve. Cat carotid body preparation in vitro. Upper trace, intracellular recording; middle trace, sensory discharge frequency; lower trace, temperature.

From Baron and Eyzaguirre


Figure 11.

Reversal potential of cooling effect on cat carotid body in vitro. A: intracellular recording of MP and Ro before, during, and after cooling at normal resting potential. B: MP artificially displaced toward positive values by injecting direct outward current (0.4 nA) through recording electrode. Note cell repolarization and loss of Ro during cooling. C: cell artificially hyperpolarized by injecting direct inward current (0.1 nA) through micropipette. Note larger depolarization during cooling. In all 3 cases, potential of cell tends to reach same level. D: temperature record.

From Baron and Eyzaguirre


Figure 12.

Effects of solutions of different osmolalities on MP and Ro of glomus cells of cat carotid body in vitro. Right, hyperosmotic solutions, [Na+]o = 154 mM; left, hyposmotic solutions, [Na+]o = 112 mM. Open bars, changes in MP; shaded bars, changes in Ro; *P < 0.05; circled numbers above bars, number of observations. Left ordinate (MP): +, depolarization; −, hyperpolarization. Right ordinate (Ro): +, increase; −, decrease. Abscissa: changes in osmolality (± mOsm); 302 mOsm, mean control osmolarity.

From Gallego et al.


Figure 13.

Effects of acetylcholine (ACh; 50 μg) on glomus cell of cat carotid body in vitro impaled with micropipette filled with 6% Procion yellow. Cell identified after ejecting dye from pipette. Upper trace, ΔMP induced by drug; middle trace, lower trace, high‐gain AC recording of voltage noise from same cell. 1, Base‐line noise (before ACh); 2, noise recorded near peak of drug‐induced depolarization.

From Hayashida and Eyzaguirre


Figure 14.

Effect of asphyxia and N2 inhalation on sensory discharges recorded from superior laryngeal nerve (SLN) filament innervating cat carotid body; carotid nerve anastomosed to SLN 131 days prior to experiment. A : control discharge during spontaneous inhalation of room air. B : discharge during peak of asphyxic effect elicited by tracheal occlusion. C: discharge several seconds after B and during inhalation of room air. D: discharge during peak of effect induced by inhalation of 100% N2. Bottom: frequency changes induced by asphyxia and 100% N2. Effects elicited between arrows.

From Zapata et al.


Figure 15.

Dose‐peak‐response curves constructed after intravenous injections of different doses of NaCN and nicotine. Bilateral carotid nerve recordings from cat. A, B: carotid nerve crushed 6 days before. ▪, Responses of nerve crushed close to glomus; ▪, responses of nerve crushed far from glomus. C, D: different experiment. •, Response of normal nerve; ○, response of nerve crushed in its middle 6 days before.

From Zapata et al.


Figure 16.

Labeled carotid nerve terminal of cat carotid body examined with ultrastructural autoradiography 6 days after treating petrosal ganglion with [3H] proline. Note silver grains over nerve ending after radioactive material was transported through sensory nerves.

Courtesy of S. J. Fidone, P. Zapata, and L. J. Stensaas (see also ref. )


Figure 17.

Local nature of slow negative (mass receptor) potential induced by intra‐arterial injections of ACh in cat. Upper traces, recording from nerve; lower traces, sensory discharge frequency. Injections made at arrows. A: slow potential elicited by intra‐arterial injection of 5 μg of ACh, recorded from filament of carotid nerve with proximal electrode placed at entrance of nerve into glomus. B: proximal electrode at 0.7 mm from glomus; distal electrode remained stationary near cut end of nerve.

From Eyzaguirre et al.


Figure 18.

Impalement of single nerve ending yields spontaneous depolarizing potentials (SDPs) that (if large enough) seem to evoke sensory discharges in cat carotid body in vitro. Smaller SDPs do not appear to give rise to action potentials. Terminal was invaded by spikes originating elsewhere. Nerve ending identified by intracellular staining after recording.

From Hayashida et al.


Figure 19.

Effects of physostigmine (eserine) and mecamylamine on Loewi‐type effect in cat carotid bodies in vitro. Inset, experimental situation. Locke solution equilibrated with 50% O2 in N2, pH 7.45 at 35°C, flowing at 0.6 ml/min under paraffin oil. Donor carotid body (1) is upstream and separated from downstream detector carotid body preparation (2) by 17 mm. Direction of flow indicated by horizontal arrows. Electrical current (60 μA DC) applied for 60 s to carotid body 1 (vertical arrows) and sensory discharges recorded from carotid nerve of preparation 2. A : preparations bathed in normal Locke solution. B: preparations bathed with physostigmine‐Locke solution (10−6 g/ml eserine salicylate) for 60 min. C: mecamylamine HCl (10−4 g/ml) added to physostigmine‐Locke solution for 60 min. Each point shows mean frequency recorded during 60 s.

From Eyzaguirre and Zapata


Figure 20.

Catecholamine biosynthesis in rat carotid body. Circles, pools of tyrosine (TYR), dihydroxyphenylalanine (DOPA), dopamine (DA), norepinephrine (NA), and epinephrine (AD). Arrows, enzymes involved: tyrosine hydroxylase (TH), aromatic L‐amino acid decarboxylase (AAAD), dopamine β‐hydroxylase (DBH), and phenylethanolamine N‐methyltransferase (PNMT); widths indicate activities of enzymes. Columns: immunofluorescence intensity in glomus cells, enzymatic activity, contents, and changes induced by hypoxia.

Data from Bolme et al. , Hanbauer et al. , and Hellström, and co‐workers


Figure 21.

Dopamine (DA) and norepinephrine (NA) contents in rat carotid body. Areas of large circles, proportional content detected under basal conditions. Upward and downward arrows, increase or decrease in content produced by different conditions. Thin horizontal arrows, moderate but statistically significant effects. Thick horizontal arrows, pronounced effects. Small circles, no effects. Responses to a precursor (L‐dopa), a monoamine oxidase (MAO) inhibitor (pargyline), 1 wk of carotid neurotomy, chronic treatment with a glucocorticoid (dexamethasone) and a mineralocorticoid (doca), 15–60 min of hypoxia, 2‐h administration of reserpine and a DBH inhibitor [diethyldithiocarbamate (DDC)], 1 wk of sympathectomy, and chronic administration of 6‐hydroxydopamine (6‐OHDA).

Data from Hanbauer and Hellström , Hellström et al. , and Hellström and Kaslow


Figure 22.

Dose‐response curves of cat carotid chemoreceptors to haloperidol at various levels of PaO2. Haloperidol had little effect during hyperoxia when receptor activity was slight. At lower PaO2 levels, as activity increased, haloperidol had an augmenting effect. At all levels of PaO2, saturation dose of haloperidol appeared to be 1 mg/kg. At each dose of haloperidol, responses to steady‐state PaO2 were obtained systematically. Each data point represents 1 measurement.

From Lahiri et al.


Figure 23.

Effects of close intra‐arterial injections of Met‐enkephalin before (A) and after (B) naloxone on cat carotid nerve discharges. Met‐enkephalin inhibited chemoreceptor activity, and this effect was blocked by naloxone. PSA, systemic arterial pressure.

From Pokorski and Lahiri


Figure 24.

Inhibition of cat carotid chemoreceptor response to PaO2 by oligomycin. Carotid chemoreceptor steady‐state responses to PaO2 at constant PaCO2 in 8 experiments before (A) and after (B) oligomycin (50–500 μg ia). Open symbols in B correspond to closed symbols in A. Chemoreceptor activity is insensitive to PaO2 level after oligomycin.

From Mulligan et al.


Figure 25.

Responses of carotid chemoreceptor afferent of cat to similar changes in PETCO2, before (A, C) and after (B, D) oligomycin (200 μg ia) during hyperoxia (PaO2 > 400 Torr). After oligomycin there were appreciable overshoots and undershoots in activity.

From Mulligan et al.


Figure 26.

Temporal separation of aortic and carotid body stimulation in the dog. A: nicotine injected through catheter placed in aorta (just beyond aortic valves) reaches aortic bodies within 1 s; coils of plastic tubing inserted in common carotids delay nicotine from reaching carotid bodies for 75 s. B: nicotine injected at 2 stimulates aortic bodies and causes tachycardia and hypertension. Neuromuscular blocking agent (succinylcholine) injected at 1 produces apnea and eliminates effects of hyperventilation. Top tracing, respiratory air flow; bottom tracing, carotid blood pressure. At 3, 45 s was deleted to save space; A.A., ascending aorta.

From Comroe and Mortimer


Figure 27.

Effects of carotid chemoreceptor stimulation on phasic and mean arterial pressure, left ventricular (LV) pressure, dP/dt, LV diameter, respiration (monitored by pneumograph), and heart rate in dog with spontaneous respiration (left panel). Heart rate remained constant, but chemoreceptor stimulation markedly increased respiration with increase in aortic and LV pressures and in dP/dt. With ventilation controlled (right panel), same carotid chemoreceptor stimulus induced larger increase in pressures and dP/dt.

From Vatner and Rutherford


Figure 28.

Hemodynamics during hypoxic hypoxia (HH) and CO hypoxia (COH) before and after carotid body resection (CBR) in the dog. A: Cao2, arterial oxygen content; Pa, mean arterial pressure; Q, cardiac output; TPR, total peripheral resistance. B: HR, heart rate; SV, stroke volume; PLA, mean left atrial pressure; SW/PLA, stroke work. Bars, ±; SD.

From Sylvester et al.


Figure 29.

Effect of arterial hypoxia on systemic hemodynamics in conscious dogs. C, control room‐air breathing; H, hypoxia; brackets, ± SEM.

From Krasney and Koehler


Figure 30.

Cardiac responses to arterial hypoxia in conscious dogs. C, control room‐air breathing; H, hypoxia; brackets, ±; SEM.

From Krasney and Koehler


Figure 31.

Responses to aortic injection of cyanide (CN) before (left) and after (right) acute carotid denervation and bilateral vagotomy in dog. Changes in perfusion pressure (PP) in gracilis muscle and paw were abolished, indicating that reflex responses in muscle and paw were triggered by afferent impulses from carotid sinus area and aortic arch. Changes in systemic arterial pressure (SAP) were small and persisted with some modification after denervation.

From Calvelo et al. , by permission of the American Heart Association, Inc
References
 1. Abbott, C. P., M. de B. Daly, and A. Howe. Early ultrastructural changes in the carotid body after degenerative section of the carotid sinus nerve in the c t. Acta Anat. 83: 161–185, 1972.
 2. Abbott, C. P., and A. Howe. Ultrastructure of aortic body tissue in the cat. Acta Anat. 81: 609–619, 1972.
 3. Achtel, R. A., and S. E. Downing. Ventricular responses to hypoxemia following chemoreceptor denervation and adrenalectomy. Am. Heart J. 84: 377–386, 1972.
 4. Acker, H. The meaning of tissue Po2 and local blood flow for the chemoreceptive process of the carotid body. Federation Proc. 39: 2641–2647, 1980.
 5. Acker, H., H. P. Keller, D. W. Lübbers, D. Bingmann, H. Schulze, and H. Caspers. The relationship between neuronal activity of chemoreceptor fibers and tissue Po2 of the carotid body of the cat during changes in arterial Po2 and blood pressure. Pfluegers Arch. 343: 287–296, 1973.
 6. Acker, H., and D. W. Lübbers. The kinetics of local tissue Po2 decrease after perfusion stop within the carotid body of the cat in vivo and in vitro. Pfluegers Arch. 369: 135–140, 1977.
 7. Acker, H., and D. W. Lübbers. Relationship between local flow, tissue Po2 and total flow of the cat carotid body. In: Chemoreception in the Carotid Body, edited by H. Acker, S. Fidone, D. Pallot, C. Eyzaguirre, D. W. Lübbers, and R. W. Torrance. New York: Springer‐Verlag, 1977, p. 271–276.
 8. Acker, H., D. W. Lübbers, and M. J. Purves. Local oxygen tension field in the glomus caroticum of the cat and its change at changing arterial Po2. Pfluegers Arch. 329: 136–155, 1971.
 9. Acker, H., and F. Pietruschka. Meaning of the type I cell for the chemoreceptive process—an electrophysiological study on cultured type I cells of the carotid body. In: Chemoreception in the Carotid Body, edited by H. Acker, S. Fidone, D. Pallot, C. Eyzaguirre, D. W. Lübbers, and R. W. Torrance. New York: Springer‐Verlag, 1977, p. 92–96.
 10. Adachi, H., H. W. Strauss, H. Ochi, and H. N. Wagner, Jr. The effect of hypoxia on the regional distribution of cardiac output in the dog. Circ. Res. 39: 314–319, 1976.
 11. Adams, W. E. The Comparative Morphology of the Carotid Body and Carotid Sinus. Springfield, IL: Thomas, 1958, p. 272.
 12. Aggarwal, D., H. T. Milhorn, and L. Y. Lee. Role of the carotid chemoreceptors in the hyperpnea of exercise in the cat. Respir. Physiol. 26: 147–155, 1976.
 13. Akoev, G. N., Y. A. Chelyshev, and S. I. Elman. Effect of acetylcholine and catecholamines on excitability of pacinian corpuscles. In: Progress in Brain Research. Somatosensory and Visceral Receptor Mechanisms, edited by A. Iggo and O. B. Ilyinsky. Amsterdam: Elsevier, 1976, vol. 43, p. 187–193.
 14. Al‐Lami, F., and R. G. Murray. Fine structure of the carotid body of normal and anoxic cats. Anat. Rec. 160: 697–718, 1968.
 15. Aminoff, M. J., R. A. Jaffe, S. R. Sampson, and E. H. Vidruk. Effects of droperidol on activity of carotid body chemoreceptors in cat. Br. J. Pharmacol. 63: 245–250, 1978.
 16. Anand, A., A. Iggo, and A. S. Paintal. Lability of granular vesicles in Merkel cells of the type I slowly‐adapting cutaneous receptors of the cat (Abstract). J. Physiol. London 296: 19P–20P, 1979.
 17. Angell‐James, J. E., and M. de B. Daly. Cardiovascular responses in apnoeic asphyxia: role of arterial chemoreceptors and the modification of their effects by a pulmonary vagal inflation reflex. J. Physiol. London 201: 87–104, 1969.
 18. Anichkov, S. V., and M. L. Belen'Kii. Pharmacology of the Carotid Body Chemoreceptors. New York: Macmillan, 1963, 225 p.
 19. Anichkov, S. V., V. V. Zakusov, A. I. Kuznetsov, and N. G. Polyakov. Pharmacology of the Carotid Body Chemoreceptors. New York: Macmillan, 1963, p. 64.
 20. Arias‐Stella, J., and F. Bustos. Chronic hypoxia and chemodectomas in bovines at high altitudes. Arch. Pathol. Lab. Med. 100: 636–639, 1976.
 21. Arias‐Stella, J., and J. Valcarcel. Chief cell hyperplasia in the human carotid body at high altitudes; physiologic and pathologic significance. Human Pathol. 7: 361–373, 1976.
 22. Armett, C. J., and J. M. Ritchie. The action of acetylcholine and some related substances on conduction in mammalian nonmyelinated nerve fibres. J. Physiol. London 155: 372–384, 1961.
 23. Asmussen, E., and H. Chiodi. The effect of hypoxemia on ventilation and circulation in man. Am. J. Physiol. 132: 426–436, 1941.
 24. Bainbridge, C. W., and D. D. Heistad. Effect of haloperidol on ventilatory responses to dopamine in man. J. Pharmacol. Exp. Ther. 213: 13–17, 1980.
 25. Ballard, K. J., and J. V. Jones. The fine structural localization of cholinesterases in the carotid body of the cat. J. Physiol. London 219: 747–753, 1971.
 26. Ballard, K. J., and J. V. Jones. Demonstration of choline acetyltransferase activity in the carotid body of the cat. J. Physiol. London 227: 87–94, 1972.
 27. Band, D. M., M. McClelland, D. L. Phillips, K. B. Saunders, and C. B. Wolff. Sensitivity of the carotid body to within‐breath changes in arterial PCO2. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 45: 768–777, 1978.
 28. Band, D. M., K. B. Saunders, and C. B. Wolff. The relation between chemoreceptor discharge and respiratory fluctuation of arterial pH in the anesthetized cat (Abstract). J. Physiol. London 218: 73P, 1971.
 29. Bangham, A. D., and W. T. Mason. Anesthetics may act by collapsing pH gradients. Anaesthesiology 53: 135–141, 1980.
 30. Banister, R. J., P. J. Portig, and M. Vogt. The content and localization of catecholamines in the carotid labyrinths and aortic arches of Rana temporaria. J. Physiol. London 192: 529–535, 1967.
 31. Barer, G. R., C. W. Edwards, and A. I. Jolly. Changes in the carotid body and the ventilatory response to hypoxia in chronically hypoxic rats. Clin. Sci. Mol. Med. 50: 311–313, 1976.
 32. Baron, M., and C. Eyzaguirre. Effects of temperature on some membrane characteristics of carotid body cells. Am. J. Physiol. 233 (Cell Physiol. 2): C35–C46, 1977.
 33. Bates, D., and T. M. Sundt, Jr. The relevance of peripheral baroreceptors and chemoreceptors to regulation of cerebral blood flow in the cat. Circ. Res. 38: 488–493, 1976.
 34. Battaglia, G. Ultrastructural observations on the biogenic amines in the carotid and aortic‐abdominal bodies of the human fetus. Z. Zellforsch. Mikrosk. Anat. 99: 529–537, 1969.
 35. Becker, A. E., J. Drukker, and A. E. F. H. Meijer. Histochemical characteristics of chemoreceptor organs (Glomera). Histochemie 11: 195–204, 1967.
 36. Bellville, J. W., B. J. Whipp, R. D. Kaufman, G. D. Swanson, K. A. Aqleh, and D. M. Wiberg. Central and peripheral chemoreflex loop gain in normal and carotid body‐resected subjects. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 46: 843–853, 1979.
 37. Belmonte, C., and C. Eyzaguirre. Efferent influences on carotid body chemoreceptors. J. Neurophysiol. 37: 1131–1143, 1974.
 38. Belmonte, C., C. González, and A. G. García. Dopamine beta‐hydroxylase activity in cat carotid body. In: Chemoreception in the Carotid Body, edited by H. Acker, S. Fidone, D. Pallot, C. Eyzaguirre, D. W. Lübbers, and R. W. Torrance. New York: Springer‐Verlag, 1977, p. 99–105.
 39. Berger, A. J. The distribution of the cat's carotid sinus nerve afferent and efferent cell bodies using the horseradish peroxidase technique. Brain Res. 190: 309–320, 1980.
 40. Bernthal, T. Chemo‐reflex control of vascular reactions through the carotid body. Am. J. Physiol. 121: 1–20, 1938.
 41. Bernthal, T., and F. J. Schwind. A comparison in intestine and leg of the reflex vascular response to carotid‐aortic chemoreceptor stimulation. Am. J. Physiol. 143: 361–372, 1945.
 42. Bernthal, T., and W. F. Weeks. Respiratory and vasomotor effects of variations in carotid body temperature. A study of the mechanism of chemoreceptor stimulation. Am. J. Physiol. 127: 94–105, 1939.
 43. Bing, O. H. L., J. F. Keefe, M. J. Wolk, J. G. Lipana, K. M. McIntyre, and H. J. Levine. Cardiovascular responses to hypoxia and varying Pco2 in the awake dog. J. Appl. Physiol. 27: 204–208, 1969.
 44. Biro, G. P., J. D. Hatcher, and D. B. Jennings. The role of the aortic body chemoreceptors in the cardiac and respiratory responses to acute hypoxia in the anesthetized dog. Can. J. Physiol. Pharmacol. 51: 249–259, 1973.
 45. Biscoe, T. J. Some effects of drugs on the isolated superfused carotid body. Nature London 208: 294–295, 1965.
 46. Biscoe, T. J. Carotid body: structure and function. Physiol. Rev. 51: 437–495, 1971.
 47. Biscoe, T. J., G. W. Bradley, and M. J. Purves. The relation between carotid body chemoreceptor discharge, carotid sinus pressure and carotid body venous flow. J. Physiol. London 208: 99–120, 1970.
 48. Biscoe, T. J., A. Lall, and S. R. Sampson. Electron microscopic and electrophysiological studies on the carotid body following intracranial section of the glossopharyngeal nerve. J. Physiol. London 208: 133–152, 1970.
 49. Biscoe, T. J., and R. A. Millar. Effects of inhalation anaesthetics on carotid body chemoreceptor activity. Br. J. Anaesth. 40: 2–12, 1968.
 50. Biscoe, T. J., and M. J. Purves. Factors affecting the cat carotid chemoreceptor and cervical sympathetic activity with special reference to passive hind‐limb movements. J. Physiol. London 190: 425–441, 1967.
 51. Biscoe, T. J., and M. J. Purves. Carotid body chemoreceptor activity in the new‐born lamb. J. Physiol. London 190: 443–454, 1967.
 52. Biscoe, T. J., M. J. Purves, and S. R. Sampson. Types of nervous activity which may be recorded from the carotid sinus nerve in the sheep foetus. J. Physiol. London 202: 1–23, 1969.
 53. Biscoe, T. J., M. J. Purves, and S. R. Sampson. The frequency of nerve impulses in single carotid body chemoreceptor afferent fibres recorded in vivo with intact circulation. J. Physiol. London 208: 121–131, 1970.
 54. Biscoe, T. J., and S. R. Sampson. Rhythmical and non‐rhythmical spontaneous activity recorded from the central cut end of the sinus nerve. J. Physiol. London 196: 327–338, 1968.
 55. Biscoe, T. J., and A. Silver. The distribution of cholinesterases in the cat carotid body. J. Physiol. London 183: 501–512, 1966.
 56. Biscoe, T. J., and W. E. Stehbens. Ultrastructure of the carotid body. J. Cell Biol. 30: 563–578, 1966.
 57. Biscoe, T. J., and W. E. Stehbens. Ultrastructure of the denervated carotid body. Q. J. Exp. Physiol. 52: 31–36, 1967.
 58. Bisgard, G. E., R. A. Mitchell, and D. A. Herbert. Effects of dopamine, norepinephrine, and 5‐hydroxytryptamine on the carotid body of the dog. Respir. Physiol. 37: 61–80, 1979.
 59. Black, A. M. S., J. H. Comroe, Jr, and L. Jacobs. Species difference in carotid body response of cat and dog to dopamine and serotonin. Am. J. Physiol. 223: 1097–1102, 1972.
 60. Black, A. M. S., R. C. Goode, and R. W. Torrance. The response of peripheral chemoreceptors to intense hypoxia (Abstract). J. Physiol. London 194: 48P, 1968.
 61. Black, A. M. S., D. I. McCloskey, and R. W. Torrance. The responses of carotid body chemoreceptors in the cat to sudden changes in hypercapnic and hypoxic stimuli. Respir. Physiol. 13: 36–49, 1971.
 62. Black, A. M. S., and R. W. Torrance. Chemoreceptor effects in the respiratory cycle (Abstract). J. Physiol. London 189: 59P–61P, 1967.
 63. Black, A. M. S., and R. W. Torrance. Respiratory oscillations in chemoreceptor discharge in the control of breathing. Respir. Physiol. 13: 221–237, 1971.
 64. Blümcke, S., J. Rode, and H. R. Niedorf. The carotid body after oxygen deficiency. Z. Zellforsch. Mikrosk. Anat. 80: 52–77, 1967.
 65. Böck, P. Adenine nucleotides in the carotid body. Cell Tissue Res. 206: 279–290, 1980.
 66. Böck, P. Noradrenaline and acidic protein(s) in four types of cat carotid body chief cells. Arch. Histol. Jpn. 43: 23–34, 1980.
 67. Böck, P. Identification of paraneurons by labelling with quinacrine (Atebrin). Arch. Histol. Jpn. 43: 35–44, 1980.
 68. Böck, P., and K. Gorgas. Catecholamines and granule content of carotid body type I cells. In: Chromaffin, Enterochromaffin and Related Cells, edited by R. E. Coupland and T. Fujita. Amsterdam: Elsevier, 1976, p. 355–374.
 69. Böck, P., and K. Gorgas. Catecholamine fluorescence and staining with lead haematoxylin of the carotid body type‐I cells. In: Peripheral Neuroendocrine Interaction, edited by R. E. Coupland and W. G. Forssmann. Berlin: Springer‐Verlag, 1978, p. 106–111.
 70. Böck, P., L. Stockinger, and E. Vyslonzil. Die Feinstruktur des Glomus caroticum beim Menschen. Z. Zellforsch. Mikrosk. Anat. 105: 543–568, 1970.
 71. Bolme, P., K. Fuxe, T. Hökfelt, and M. Goldstein. Studies on the role of dopamine in cardiovascular and respiratory control: central versus peripheral mechanisms. Adv. Biochem. Psychopharmacol. 16: 281–290, 1977.
 72. Boron, W. F., and P. De Weer. Active proton transport stimulated by CO2/HCO3, blocked by cyanide. Nature London 259: 240–241, 1976.
 73. Boushey, H. A., P. S. Richardson, J. G. Widdicombe, and J. C. M. Wise. The response of laryngeal afferent fibres to mechanical and chemical stimuli. J. Physiol. London 240: 153–175, 1974.
 74. Braunwald, E., J. Ross, Jr, R. L. Kahler, T. E. Gaffney, A. Goldblatt, and D. T. Mason. Reflex control of the systemic venous bed: effects on venous tone of vasoactive drugs, and of baroreceptor and chemoreceptor stimulation. Circ. Res. 12: 539–550, 1963.
 75. Brinley, F. J. Calcium and magnesium transport in single cells. Federation Proc. 32: 1735–1739, 1973.
 76. Brown, H. M., S. Hagiwara, K. Koike, and R. M. Meech. Membrane properties of a barnacle photoreceptor examined by the voltage clamp technique. J. Physiol. London 208: 385–413, 1970.
 77. Browse, N. L., and J. T. Shepherd. Response of veins of canine limb to aortic and carotid chemoreceptor stimulation. Am. J. Physiol. 210: 1435–1441, 1966.
 78. Bühler, H. U., M. Da Prada, W. Haefely, and G. B. Picotti. Plasma adrenaline, noradrenaline and dopamine in man and different animal species. J. Physiol. London 276: 311–320, 1978.
 79. Calvelo, M. G., F. M. Abboud, D. R. Ballard, and W. Abdel‐Sayed. Reflex vascular responses to stimulation of chemoreceptors with nicotine and cyanide. Circ. Res. 27: 259–276, 1970.
 80. Carbonetto, S. T., D. M. Fambrough, and K. J. Miller. Nonequivalence of α‐bungarotoxin receptors and acetylcholine receptors in chick sympathetic neurons. Proc. Natl. Acad. Sci. USA 75: 1016–1020, 1978.
 81. Cardenas, H., and P. Zapata. Dual effects of dopamine upon chemosensory responses to cyanide. Neurosci. Lett. 18: 317–322, 1980.
 82. Cardenas, H., and P. Zapata. Dopamine‐induced ventilatory depression in the rat mediated by carotid nerve afferents. Neurosci. Lett. 24: 29–33, 1981.
 83. Castillo, J. Del, I. Escobar, and E. Gijon. Effects of the electrophoretic application of sulfhydryl reagents to the end‐plate receptors. Int. J. Neurosci. 1: 199–209, 1971.
 84. Chalmers, J. P., P. I. Korner, and S. W. White. The relative roles of the aortic and carotid sinus nerves in the rabbit in the control of respiration and circulation during arterial hypoxia and hypercapnia. J. Physiol. London 188: 435–450, 1967.
 85. Chance, B. Molecular basis on O2 affinity for cytochrome oxidase. In: Oxygen and Physiological Function, edited by F. F. Jöbsis. Dallas, TX: Prof. Inf. Libr., 1977, p. 14–25.
 86. Chance, B., and G. R. Williams. The respiratory chain and oxidative phosphorylation. Adv. Enzymol. Relat. Subj. Biochem. 17: 65–134, 1956.
 87. Chen, I.‐L., and R. D. Yates. Electron microscopic radioautographic studies of the carotid body following injections of labeled biogenic amine precursors. J. Cell Biol. 42: 794–803, 1969.
 88. Chen, I.‐L., R. D. Yates, and D. Duncan. The effects of reserpine and hypoxia on the amine‐storing granules of the hamster carotid body. J. Cell Biol. 42: 804–816, 1969.
 89. Chiocchio, S. R., A. M. Biscardi, and J. H. Tramezzani. Catecholamines in the carotid body of the cat. Nature London 212: 834–835, 1966.
 90. Chiocchio, S. R., A. M. Biscardi, and J. H. Tramezzani. 5‐Hydroxytryptamine in the carotid body of the cat. Science 158: 790–791, 1967.
 91. Chiocchio, S. R., M. P. King, and E. T. Angelakos. Carotid body catecholamines. Histochemical studies on the effects of drug treatments. Histochemie 25: 52–59, 1971.
 92. Chiocchio, S. R., M. P. King, L. Carballo, and E. T. Angelakos. Monoamines in the carotid body cells of the cat. J. Histochem. Cytochem. 19: 621–626, 1971.
 93. Chubb, I. W., A. J. Hodgson, and G. H. White. Acetylcholinesterase hydrolyzes substance P. Neuroscience 5: 2065–2072, 1980.
 94. Cole, S., L. B. Lindenberg, F. M. Galioto, P. E. Howe, A. C. De Garaaf, J. M. Davis, R. Lubka, and E. M. Gross. Ultrastructural abnormalities of the carotid body in sudden infant death syndrome. Pediatrics 63: 13–17, 1979.
 95. Coleridge, H., J. C. G. Coleridge, and A. Howe. A search for pulmonary arterial chemoreceptors in the cat, with a comparison of the blood supply of the aortic bodies in the newborn and adult animal. J. Physiol. London 191: 353–374, 1967.
 96. Coleridge, H., J. C. G. Coleridge, and A. Howe. Thoracic chemoreceptors in the dog: a histological and electrophysiological study of the location, innervation and blood supply of the aortic bodies. Circ. Res. 26: 235–247, 1970.
 97. Comroe, J. H., Jr. The location and function of the chemoreceptors of the aorta. Am. J. Physiol. 127: 176–191, 1939.
 98. Comroe, J. H., Jr.. The peripheral chemoreceptors. In: Handbook of Physiology. Respiration, edited by W. O. Fenn and H. Rahn. Washington, DC: Am. Physiol. Soc., 1964, sect. 3, vol. 1, chapt. 23, p. 557–583.
 99. Comroe, J. H., Jr., and L. Mortimer. The respiratory and cardiovascular responses of temporally separated aortic and carotid bodies to cyanide, nicotine, phenyldiguanide and serotonin. J. Pharmacol. Exp. Ther. 146: 33–41, 1964.
 100. Comroe, J. H., Jr., and C. F. Schmidt. The part played by reflexes from the carotid body in the chemical regulation of respiration in the dog. Am. J. Physiol. 121: 75–97, 1938.
 101. Cools, A. R., and J. M. Van Rossum. Excitation‐mediating and inhibition‐mediating dopamine‐receptors: a new concept towards a better understanding of electrophysiological, biochemical, pharmacological, functional and clinical data. Psychopharmacologia 45: 243–254, 1976.
 102. Cools, A. R., and J. M. Van Rossum. Multiple receptors for brain dopamine in behavior regulation. Concept of dopamine‐E and dopamine‐I receptors. Life Sci. 27: 1237–1253, 1980.
 103. Cowan, W. M., D. I. Gottlieb, A. E. Hendrickson, J. L. Price, and T. A. Woolsey. The autoradiographic demonstration of axonal connections in the central nervous system. Brain Res. 37: 21–51, 1972.
 104. Crandall, E. D., A. Bidani, and R. E. Forster. Postcapillary changes in blood pH in vivo during carbonic anhydrase inhibition. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 43: 582–590, 1977.
 105. Cross, C. E., P. A. Rieben, C. I. Barron, and P. F. Salisbury. Effects of arterial hypoxia on the heart and circulation: an integrative study. Am. J. Physiol. 205: 963–970, 1963.
 106. Cuello, A. C., and D. S. McQueen. Substance P: a carotid body peptide. Neurosci. Lett. 17: 215–219, 1980.
 107. Cunningham, D. J. C., E. N. Hey, J. M. Patrick, and B. B. Lloyd. The effect of noradrenaline infusion on the relation between pulmonary ventilation and the alveolar Po2 and Pco2 in man. Ann. NY Acad. Sci. 109: 756–771, 1963.
 108. Cunningham, D. J. C., D. Spurr, and B. B. Lloyd. The drive to ventilation from arterial chemoreceptors in hypoxic exercise. In: Arterial Chemoreceptors, edited by R. W. Torrance. Oxford, UK: Blackwell, 1968, p. 301–323.
 109. Daly, M. de B, J. L. Hazzledine, and A. Howe. Reflex respiratory and peripheral vascular responses to stimulation of the isolated perfused aortic arch chemoreceptors of the dog. J. Physiol. London 177: 300–322, 1965.
 110. Daly, M. de B, C. J. Lambertsen, and A. Schweitzer. Observations on the volume of blood flow and oxygen utilization of the carotid body in the cat. J. Physiol. London 125: 67–89, 1954.
 111. Daly, M. de B, and B. H. Robinson. An analysis of the reflex systemic vasodilator response elicited by lung inflation in the dog. J. Physiol. London 195: 387–406, 1968.
 112. Daly, M. de B, and M. J. Scott. The effect of hypoxia on the heart rate of the dog with special reference to the contribution of the carotid body chemoreceptors. J. Physiol. London 145: 440–446, 1959.
 113. Daly, M. de B, and M. J. Scott. An analysis of the primary cardiovascular reflex effects of stimulation of the carotid body chemoreceptors in the dog. J. Physiol. London 162: 555–573, 1962.
 114. Daly, M. de B, and M. J. Scott. The cardiovascular responses to stimulation of the carotid body chemoreceptors in the dog. J. Physiol. London 165: 179–197, 1963.
 115. Daly, M. de B, and M. J. Scott. The cardiovascular effects of hypoxia in the dog with special reference to the contribution of the carotid body chemoreceptors. J. Physiol. London 173: 201–214, 1964.
 116. Daugherty, R. M., Jr., J. B. Scott, J. M. Dabney, and F. J. Haddy. Local effects of O2 and CO2 on limb, renal, and coronary vascular resistances. Am. J. Physiol. 213: 1102–1110, 1967.
 117. Davidson, N. S., S. Goldner, and D. I. McCloskey. Respiratory modulation of baroreceptor and chemoreceptor reflexes affecting heart rate and cardiac vagal efferent nerve activity. J. Physiol. London 259: 523–530, 1976.
 118. Davies, R. O., and S. Lahiri. Absence of carotid chemoreceptor response during hypoxic exercise in the cat. Respir. Physiol. 18: 92–100, 1973.
 119. Davis, A. L., D. I. McCloskey, and G. K. Potter. Respiratory modulation of baroreceptor and chemoreceptor reflexes affecting heart rate through the sympathetic nervous system. J. Physiol. London 272: 691–703, 1977.
 120. Dawes, G. S., S. L. B. Duncan, B. V. Lewis, C. L. Merlet, J. B. Owen‐Thomas, and J. T. Reeves. Hypoxaemia and aortic chemoreceptor function in foetal lambs. J. Physiol. London 201: 105–116, 1969.
 121. Dawes, G. S., S. L. B. Duncan, B. V. Lewis, C. L. Merlet, J. B. Owen‐Thomas, and J. T. Reeves. Cyanide stimulation of the systemic arterial chemoreceptors in foetal lambs. J. Physiol. London 201: 117–128, 1969.
 122. Dawes, G. S., B. V. Lewis, J. B. Milligan, M. R. Roach, and N. S. Talner. Vasomotor responses in the hind limb of foetal and new‐born lambs to asphyxia and aortic chemoreceptor stimulation. J. Physiol. London 195: 55–81, 1968.
 123. Deane, B. M., A. Howe, and M. Morgan. Abdominal vagal paraganglia distribution and comparison with carotid body, in the rat. Acta Anat. 93: 19–28, 1975.
 124. Dearnaley, D. P., M. Fillenz, and R. I. Woods. The identification of dopamine in the rabbit's carotid body. Proc. R. Soc. London Ser. B 170: 195–203, 1968.
 125. De Castro, F Sur la structure et l'innervation du sinus carotidien de l'homme et des mammifères. Nouveaux faits sur l'innervation et la fonction du glomus caroticum. Études anatomiques et physiologiques. Trab. Lab. Invest. Biol. Univ. Madrid 25: 331–380, 1928.
 126. De Castro, F Nuevas observaciones sobre la inervación de la región carotidea. Los quimio y presorreceptores. Trab. Lab. Invest. Biol. Univ. Madrid 32: 297–384, 1940.
 127. De Castro, F Sur la structure de la synapse dans les chémocepteurs: leur mécanisme d'excitation et rôle dans la circulation sanguine locale. Acta Physiol. Scand. 22: 14–43, 1951.
 128. De Castro, F., and M. Rubio. The anatomy and innervation of the blood vessels of the carotid body and the role of chemoreceptive reactions in the autoregulation of the blood flow. In: Arterial Chemoreceptors, edited by R. W. Torrance. Oxford, UK: Blackwell, 1968, p. 267–277.
 129. DeGeest, H., M. N. Levy, and H. Zieske. Reflex effects of cephalic hypoxia, hypercapnia, and ischemia upon ventricular contractility. Circ. Res. 17: 349–358, 1965.
 130. DeGroat, W. C., C. Morgan, I. Nadelhaft, and T. Schauble. Localization by the horseradish peroxidase technique of medullary neurons projecting efferent fibers to the carotid sinus nerve of the cat. Soc. Neurosci. Abstr. 4: 549, 1978.
 131. DeGroat, W. C., I. Nadelhaft, C. Morgan, and T. Schauble. The central origin of efferent pathways in the carotid sinus nerve of the cat. Science 205: 1017–1018, 1979.
 132. Dehghani, G. A., and R. S. Fitzgerald. Carotid and aortic chemoreceptor responses to hypoxia (Abstract). Physiologist 20 (4): 21, 1977.
 133. Delpiano, M., and H. Acker. Relationship between tissue Po2 and chemoreceptor activity of the carotid body in vitro. Brain Res. 195: 85–93, 1980.
 134. Devanandan, M. S. A study of the myelinated fibres of the aortic nerve of cats. J. Physiol. London 171: 361–367, 1964.
 135. Diamond, J. Observations on the excitation by acetylcholine and by pressure of sensory receptors in the cat's carotid sinus. J. Physiol. London 130: 513–532, 1955.
 136. Diamond, J. The effects of injecting acetylcholine into normal and regenerating nerves. J. Physiol. London 145: 611–629, 1959.
 137. Diamond, J., J. A. B. Gray, and D. R. Inman. The relation between receptor potentials and the concentration of sodium ions. J. Physiol. London 142: 382–394, 1958.
 138. Dimsdale, J. E., and J. Moss. Plasma catecholamines in stress and exercise. J. Am. Med. Assoc. 243: 340–342, 1980.
 139. Dinger, B., C. González, K. Yoshizaki, and S. Fidone. Alpha‐bungarotoxin binding in cat carotid body. Brain Res. 205: 187–193, 1981.
 140. Dinger, B., C. González, K. Yoshizaki, and S. Fidone. (3H)‐spiroperidol binding in normal and denervated carotid bodies. Neurosci. Lett. 21: 51–55, 1981.
 141. Docherty, R. J., and D. S. McQueen. Inhibitory action of dopamine on cat carotid chemoreceptors. J. Physiol. London 279: 425–436, 1978.
 142. Docherty, R. J., and D. S. McQueen. The effects of acetylcholine and dopamine on carotid chemosensory activity in the rabbit. J. Physiol. London 288: 411–423, 1979.
 143. Donnelly, D. F., E. J. Smith, and R. E. Dutton. Neural response of carotid chemoreceptors following dopamine blockade. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 50: 172–177, 1981.
 144. Donoso, A., P. Zapata, and J. Alvarez. Incorporation of tritiated choline by the carotid body incubated in vitro. Arch. Biol. Med. Exp. 7: 1–7, 1970.
 145. Douglas, W. W. The effect of a ganglionic‐blocking drug, hexamethonium, on the response of the cat's carotid body to various stimuli. J. Physiol. London 118: 373–383, 1952.
 146. Dowdall, M. J., and D. J. Simon. Comparative studies on synaptosomes: uptake of [N,‐Me‐3H] choline by synaptosomes from squid optic lobes. J. Neurochem. 21: 969–982, 1973.
 147. Downing, S. E., T. H. Gardner, and J. M. Rocamora. Adrenergic support of cardiac function during hypoxia in the newborn lamb. Am. J. Physiol. 217: 728–735, 1969.
 148. Downing, S. E., J. H. Mitchell, and A. G. Wallace. Cardiovascular responses to ischemia, hypoxia, and hypercapnia of the central nervous system. Am. J. Physiol. 204: 881–887, 1963.
 149. Downing, S. E., J. P. Remensnyder, and J. M. Mitchell. Cardiovascular responses to hypoxic stimulation of the carotid bodies. Circ. Res. 10: 676–685, 1962.
 150. Downing, S. E., and J. H. Siegel. Baroreceptor and chemoreceptor influences on sympathetic discharge to the heart. Am. J. Physiol. 204: 471–479, 1963.
 151. Downing, S. E., N. S. Talner, and T. H. Gardner. Influences of hypoxemia and acidemia on left ventricular function. Am. J. Physiol. 210: 1327–1334, 1966.
 152. Duncan, D., and R. Yates. Ultrastructure of the carotid body of the cat as revealed by various fixatives and the use of reserpine. Anat. Rec. 157: 667–682, 1967.
 153. Dutton, R. E., W. A. Hodson, D. G. Davies, and V. Chernick. Ventilatory adaptation to a step change in Pco2 at the carotid bodies. J. Appl. Physiol. 23: 195–202, 1967.
 154. Echeverría, O. M., G. H. Vázquez‐Nin, and B. Chávez. Correlated ultrastructural and biochemical studies on the mechanisms of secretion of catecholamines. Acta Anat. 98: 313–324, 1977.
 155. Eclache, J. P., R. Favier, and R. Flandrois. Commande chémoréflexe de la ventilation et stimulus nor‐adrénaline chez l'homme. Arch. Int. Physiol. Biochim. 87: 969–979, 1979.
 156. Edwards, C., and D. Ottoson. The site of impulse initiation in a nerve cell of a crustacean stretch receptor. J. Physiol. London 143: 138–148, 1958.
 157. Edwards, C., C. A. Terzuolo, and Y. Washizu. The effect of changes of the ionic environment upon an isolated crustacean sensory neuron. J. Neurophysiol. 26: 948–957, 1963.
 158. Edwards, M. W., Jr., R. O. Davies, and S. Lahiri. Halothane depresses the response of carotid body chemoreceptors to hypoxia and hypercapnia in the cat. Federation Proc. 39: 828, 1980.
 159. Ehrhart, I. C., P. E. Parker, W. J. Weidner, J. M. Dabney, J. B. Scott, and F. J. Haddy. Coronary vascular and myocardial responses to carotid body stimulation in the dog. Am. J. Physiol. 229: 754–760, 1975.
 160. Eldridge, F. L. The importance of timing on the respiratory effects of intermittent carotid body chemoreceptors stimulation. J. Physiol. London 222: 319–333, 1972.
 161. Eldridge, F. L., and P. Gill‐Kumar. Mechanisms of hyperpnea induced by isoproterenol. Respir. Physiol. 40: 349–363, 1980.
 162. Erickson, H. H., and H. L. Stone. Cardiac beta‐adrenergic receptors and coronary hemodynamics in the conscious dog during hypoxic hypoxia. Aerosp. Med. 43: 422–428, 1972.
 163. Euler, U. S. von, G. Liljestrand, and Y. Zotterman. The excitation mechanism of the chemoreceptors of the carotid body. Skand. Arch. Physiol. 83: 132–152, 1939.
 164. Euler, U. S. von, G. Liljestrand, and Y. Zotterman. Über den Reizmechanismus der Chemorezeptoren im Glomus Caroticum. Acta Physiol. Scand. 1: 383–385, 1941.
 165. Eyzaguirre, C., M. Baron, and R. Gallego. Effects of temperature and stimulating agents on carotid body cells. In: Chemoreception in the Carotid Body, edited by H. Acker, S. Fidone, D. Pallot, C. Eyzaguirre, D. W. Lübbers, and R. W. Torrance. New York: Springer‐Verlag, 1977, p. 71–78.
 166. Eyzaguirre, C., M. Baron, and R. Gallego. Intracellular studies of carotid body cells: effects of temperature, “natural” stimuli and chemical substances. In: Tissue Hypoxia and Ischemia, edited by M. Reivich, R. Coburn, S. Lahiri, and B. Chance. New York: Plenum, 1977, p. 209–223.
 167. Eyzaguirre, C., and S. J. Fidone. Transduction mechanism in the carotid body: glomus cells, putative neurotransmitters, and nerve endings. Am. J. Physiol. 239 (Cell Physiol. 8): C135–C152, 1980.
 168. Eyzaguirre, C., S. Fidone, and K. Nishi. Recent studies on the generation of chemoreceptor impulses. In: The Peripheral Arterial Chemoreceptors, edited by M. J. Purves. London: Cambridge Univ. Press, 1975, p. 175–194.
 169. Eyzaguirre, C., and A. Gallego. An examination of de Castro's original slides. In: The Peripheral Arterial Chemoreceptors, edited by M. J. Purves. London: Cambridge Univ. Press, 1975, p. 1–23.
 170. Eyzaguirre, C., and H. Koyano. Effects of hypoxia, hypercapnia, and pH on the chemoreceptor activity of the carotid body in vitro. J. Physiol. London 178: 385–409, 1965.
 171. Eyzaguirre, C., and H. Koyano. Effects of some pharmacological agents on chemoreceptor discharges. J. Physiol. London 178: 410–437, 1965.
 172. Eyzaguirre, C., and H. Koyano. Effects of electrical stimulation on the frequency of chemoreceptor discharges. J. Physiol. London 178: 438–462, 1965.
 173. Eyzaguirre, C., H. Koyano, and J. R. Taylor. Presence of acetylcholine and transmitter release from carotid body chemoreceptors. J. Physiol. London 178: 463–476, 1965.
 174. Eyzaguirre, C., and S. W. Kuffler. Processes of excitation in the dendrites and in the soma of single, isolated nerve cells of the lobster and crayfish. J. Gen. Physiol. 39: 87–119, 1955.
 175. Eyzaguirre, C., L. M. Leitner, K. Nishi, and S. Fidone. Depolarization of chemosensory nerve endings in carotid body of the cat. J. Neurophysiol. 33: 685–696, 1970.
 176. Eyzaguirre, C., and J. Lewin. Chemoreceptor activity of the carotid body of the cat. J. Physiol. London 159: 222–237, 1961.
 177. Eyzaguirre, C., and J. Lewin. Effect of different oxygen tensions on the carotid body in vitro. J. Physiol. London 159: 238–250, 1961.
 178. Eyzaguirre, C., and J. Lewin. Effect of sympathetic stimulation on carotid nerve activity. J. Physiol. London 159: 251–267, 1961.
 179. Eyzaguirre, C., and L. Monti‐Bloch. Similarities and differences in the physiology and pharmacology of cat and rabbit carotid bodies. Federation Proc. 39: 2653–2656, 1980.
 180. Eyzaguirre, C., and K. Nishi. Further study on mass receptor potential of carotid body chemosensors. J. Neurophysiol. 37: 156–169, 1974.
 181. Eyzaguirre, C., and K. Nishi. Effects of different ions on resting polarization and on the mass receptor potential of carotid body chemosensors. J. Neurobiol. 7: 417–434, 1976.
 182. Eyzaguirre, C., K. Nishi, and S. Fidone. Chemoreceptor synapses in the carotid body. Federation Proc. 31: 1385–1393, 1972.
 183. Eyzaguirre, C., and K. Uchizono. Observations on the fibre content of nerves reaching the carotid body of the cat. J. Physiol. London 159: 268–281, 1961.
 184. Eyzaguirre, C., and P. Zapata. A discussion of possible transmitter or generator substances in carotid body chemoreceptors. In: Arterial Chemoreceptors, edited by R. W. Torrance. Oxford UK: Blackwell, 1968, p. 213–251.
 185. Eyzaguirre, C., and P. Zapata. Pharmacology of pH effects on carotid body chemoreceptors in vitro. J. Physiol. London 195: 557–588, 1968.
 186. Eyzaguirre, C., and P. Zapata. The release of acetylcholine from carotid body tissues. Further study on the effects of acetylcholine and cholinergic blocking agents on the chemosensory discharge. J. Physiol. London 195: 589–607, 1968.
 187. Fay, F. S. Oxygen consumption of the carotid body. Am. J. Physiol. 218: 518–523, 1970.
 188. Fidone, S. J., C. González, and K. Yoshizaki. Putative neurotransmitters in the carotid body: the case for dopamine. Federation Proc. 39: 2636–2640, 1980.
 189. Fidone, S. J., C. González, and K. Yoshizaki. A study of the relationship between dopamine release and chemosensory discharge from the rabbit carotid body in vitro: preliminary findings. In: Arterial Chemoreceptors. Proc. VIth Int. Meet., edited by C. Belmonte, D. Pallot, H. Acker, and S. Fidone. Leicester, UK: Leicester Univ. Press, 1981, p. 209–219.
 190. Fidone, S. J., and A. Sato. A study of chemoreceptor and baroreceptor A and C‐fibres in the cat carotid nerve. J. Physiol. London 205: 527–548, 1969.
 191. Fidone, S. J., and A. Sato. Efferent inhibition and antidromic depression of chemoreceptor A‐fibers from the cat carotid body. Brain Res. 22: 181–193, 1970.
 192. Fidone, S. J., S. Weintraub, and W. B. Stavinoha. Acetylcholine content of normal and denervated cat carotid bodies measured by pyrolysis gas chromatography/mass fragmentometry. J. Neurochem. 26: 1047–1049, 1976.
 193. Fidone, S. J., S. Weintraub, W. B. Stavinoha, C. Stirling, and L. Jones. Endogenous acetylcholine levels in cat carotid body and the autoradiographic localization of a high affinity component of choline uptake. In: Chemoreception in the Carotid Body, edited by H. Acker, S. Fidone, D. Pallot, C. Eyzaguirre, D. W. Lübbers, and R. W. Torrance. New York: Springer‐Verlag, 1977, p. 106–113.
 194. Fidone, S. J., P. Zapata, and L. J. Stensaas. Axonal transport of labeled material into sensory nerve endings of cat carotid body. Brain Res. 124: 9–28, 1977.
 195. Fitzgerald, R. S. Single fiber chemoreceptor responses of aortic and carotid bodies. In: Morphology and Mechanisms of Chemoreceptors, edited by A. S. Paintal. Delhi: Vallabhbhai Patel Chest Inst., 1976, p. 27–35.
 196. Fitzgerald, R. S., and G. A. Dehghani. Neural responses of the cat carotid and aortic bodies to hypercapnia and hypoxia. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 52: 596–601, 1982.
 197. Fitzgerald, R. S., G. A. Dehghani, A. Anand, and A. M. Goldberg. The failure of differences in neurally contained acetylcholine to explain differences between carotid body and aortic body chemoreception. Brain Res. 179: 176–180, 1979.
 198. Fitzgerald, R. S., P. Garger, L. Fechter, H. Raff, and C. Hauer. Hypoxia, hypercapnia and catecholamine release in the cat carotid body (Abstract). Physiologist 23 (4): 68, 1980.
 199. Fitzgerald, R. S., L. M. Leitner, and M. J. Liaubet. Carotid chemoreceptor response to intermittent or sustained stimulation in the cat. Respir. Physiol. 6: 395–402, 1969.
 200. Fitzgerald, R. S., and D. C. Parks. Effect of hypoxia on carotid chemoreceptor response to carbon dioxide in cats. Respir. Physiol. 12: 218–229, 1971.
 201. Fitzgerald, R. S., H. Raff, P. Garger, A. Anand, and S. Said. Vasoactive intestinal polypeptide (VIP) and the carotid body. In: Arterial Chemoreceptors. Proc. VIth Int. Meet., edited by C. Belmonte, D. Pallot, H. Acker, and S. Fidone. Leicester, UK: Leicester Univ. Press, 1981, p. 289–298.
 202. Fitzgerald, R. S., and R. J. Traystman. Peripheral chemoreceptors and the cerebral vascular response to hypoxemia. Federation Proc. 39: 2674–2677, 1980.
 203. Fjällbrant, N., and A. Iggo. The effect of histamine, 5‐hydroxytryptamine and acetylcholine on cutaneous afferent fibres. J. Physiol. London 156: 578–590, 1961.
 204. Flandrois, R., R. Favier, and J. M. Pequignot. Role of adrenaline in gas exchanges and respiratory control in the dog at rest and exercise. Respir. Physiol. 30: 291–303, 1977.
 205. Folgering, H., J. Ponte, and M. J. Purves. β‐Adrenergic receptors and carotid body chemoreception (Abstract). J. Physiol. London 303: 28P, 1980.
 206. Forster, R. E. The diffusion of gases in the carotid body. In: Arterial Chemoreceptors, edited by R. W. Torrance. Oxford, UK: Blackwell, 1968, p. 115–132.
 207. Fujita, T., and S. Kobayashi. Current views on the paraneurone concept. Trends Neurosci. 2: 27–30, 1979.
 208. Gallagher, J. P., H. Inokuchi, and P. Shinnick‐Gallagher. Dopamine depolarisation of mammalian primary afferent neurones. Nature London 283: 770–772, 1980.
 209. Gallego, R., and C. Belmonte. The effects of blood osmolality changes on cat carotid body chemoreceptors in vivo. Pfluegers Arch. 380: 53–58, 1979.
 210. Gallego, R., and C. Eyzaguirre. Membrane and action potential characteristics of A and C nodose ganglion cells studied in whole ganglia and in tissue slices. J. Neurophysiol. 41: 1217–1232, 1978.
 211. Gallego, R., C. Eyzaguirre, and L. Monti‐Bloch. Thermal and osmotic responses of arterial receptors. J. Neurophysiol. 42: 665–680, 1979.
 212. Garner, C. M., and D. Duncan. Observations on the fine structure of the carotid body. Anat. Rec. 130: 691–708, 1958.
 213. Gerard, M. W., and P. R. Billingsley. The innervation of the carotid body. Anat. Rec. 25: 391–400, 1923.
 214. Gershorn, M. D. The identification of neurotransmitters to smooth muscle. In: Smooth Muscle, edited by E. Bulbring, A. F. Brading, W. W. Jones, and T. Tomita. Baltimore, MD: Williams & Wilkins, 1970, p. 496–524.
 215. Gillis, R. A., C. J. Helke, B. L. Hamilton, W. P. Norman, and D. M. Jacobowitz. Evidence that substance P is a neurotransmitter of baro‐ and chemoreceptor afferents in nucleus tractus solitarius. Brain Res. 181: 476–481, 1980.
 216. Glenner, G. G., J. R. Rout, and W. C. Roberts. Functional carotid body‐like tumor secreting levarterenol. Arch. Pathol. 73: 230–240, 1962.
 217. Glick, G., W. H. Plauth, Jr, and E. Braunwald. Circulatory response to hypoxia in unanesthetized dogs with and without cardiac denervation. Am. J. Physiol. 207: 753–758, 1964.
 218. Goldberg, A. M., A. P. Lentz, and R. S. Fitzgerald. Neurotransmitter mechanism in the carotid body: absence of ACh in the carotid sinus nerve. Brain Res. 140: 374–377, 1978.
 219. Goldstein, M., J. Y. Lew, S. Nakamura, A. P. Battista, A. Lieberman, and K. Fuxe. Dopaminophilic properties of ergot alkaloids. Federation Proc. 37: 2202–2206, 1978.
 220. González, C., and S. Fidone. Increased release of 3H‐dopamine during low O2 stimulation of rabbit carotid body in vitro. Neurosci. Lett. 6: 95–99, 1977.
 221. González, C., Y. Kwok, J. Gibb, and S. Fidone. A comparative study of the effects of hypoxia on tyrosine hydroxylase activity in the carotid body of rat, rabbit and cat. Soc. Neurosci. Abstr. 4: 513, 1978.
 222. González, C., Y. Kwok, J. W. Gibb, and S. Fidone. Effects of hypoxia on tyrosine hydroxylase activity in rat carotid body. J. Neurochem. 33: 713–719, 1979.
 223. González, C., Y. Kwok, J. W. Gibb, and S. J. Fidone. Reciprocal modulation of tyrosine hydroxylase activity in rat carotid body. Brain Res. 172: 572–576, 1979.
 224. González, C., Y. Kwok, J. Gibb, and S. Fidone. Regulation of tyrosine hydroxylase activities in carotid body, superior cervical ganglion and adrenal gland of rat, rabbit and cat. In: Arterial Chemoreceptors. Proc. VIth Int. Meet., edited by C. Belmonte, D. Pallot, H. Acker, and S. Fidone. Leicester, UK: Leicester Univ. Press, 1981, p. 187–197.
 225. González, C., K. Yoshizaki, and S. Fidone. Catecholamine synthesis from tyrosine and dopa in rabbit carotid body: effects of natural stimulation. In: Arterial Chemoreceptors. Proc. VIth Int. Meet., edited by C. Belmonte, D. Pallot, H. Acker, and S. Fidone. Leicester, UK: Leicester Univ. Press, 1981, p. 198–208.
 226. Goodman, N. W. Efferent control of arterial chemoreceptors mediated by glossopharyngeal fibres and artifacts introduced by stimulation techniques. J. Physiol. London 230: 295–311, 1973.
 227. Goodman, N. W. Some observations on the homogeneity of response of single chemoreceptor fibers. Respir. Physiol. 20: 271–281, 1974.
 228. Goodman, N. W., and D. I. McCloskey. Intracellular potentials in the carotid body. Brain Res. 39: 501–504, 1972.
 229. Goodman, N. W., B. S. Nail, and R. W. Torrance. Oscillations in the discharge of single carotid chemoreceptor fibres of the cat. Respir. Physiol. 20: 251–269, 1974.
 230. Gorlin, R., and B. M. Lewis. Circulatory adjustments to hypoxia in dogs. J. Appl. Physiol. 7: 180–185, 1954.
 231. Gouder, B. Y., and R. N. Desai. Studies on the carotid body in the frog Rana tigrina Daud. Naturwissenschaften 53: 535–536, 1966.
 232. Gray, B. A. On the speed of the carotid chemoreceptor response in relation to the kinetics of CO2 hydration. Respir. Physiol. 11: 235–246, 1971.
 233. Green, J. H., and E. Neil. Cited by C. Heymans and E. Neil. In: Reflexogenic Areas of the Cardiovascular System. Boston, MA: Little, Brown, 1958, p. 184.
 234. Grillo, M. A., L. Jacobs, and J. H. Comroe, Jr. A combined fluorescence histochemical and electron microscopic method for studying special monoamine‐containing cells (SIF cells). J. Comp. Neurol. 153: 1–14, 1974.
 235. Grodins, F. S. Exercise hyperpnea. The ultra secret. In: Respiration. Advances in Physiological Sciences, edited by I. Hutas and L. A. Debreczeni. Budapest: Akad. Kiado, 1981, vol. 10, p. 243–252.
 236. Grönblad, M., K. E. Akerman, and O. Eränkö Induction of exocytosis from glomus cells by incubation of the carotid body of the rat with calcium and ionophore A23187. Anat. Rec. 195: 387–395, 1979.
 237. Grönblad, M., and O. Eränkö Fine structure of dense‐cored vesicles in glomus cells of rat carotid body after fixation with permanganate or glutaraldehyde. Histochemistry 57: 305–312, 1978.
 238. Grossman, U., R. Wodick, H. Acker, and D. W. Lübbers. Mathematical analysis of oxygen partial pressure distribution of the carotid body tissue. In: Chemoreception in the Carotid Body, edited by H. Acker, S. Fidone, D. Pallot, C. Eyzaguirre, D. W. Lübbers, and R. W. Torrance. New York: Springer‐Verlag, 1977, p. 240–243.
 239. Gruber, H., and R. Metson. Carotid body paraganglioma regression with relief of hypoxemia. Ann. Intern. Med. 92: 800–802, 1980.
 240. Grufferman, S., M. W. Gillman, L. R. Pasternak, C. L. Peterson, and W. G. Young, Jr. Familial carotid body tumors: case report and epidemiologic review. Cancer 46: 2116–2122, 1980.
 241. Guz, A., G. S. Kurland, and A. S. Freedberg. Relation of coronary flow to oxygen supply. Am. J. Physiol. 199: 179–182, 1960.
 242. Hackett, J. G., F. M. Abboud, A. L. Mark, P. G. Schmid, and D. D. Heistad. Coronary vascular responses to stimulation of chemoreceptors and baroreceptors. Circ. Res. 31: 8–17, 1972.
 243. Hamberger, B., M. Ritzén, and J. Wersäll. Demonstration of catecholamines and 5‐hydroxy‐tryptamine in the human carotid body. J. Pharmacol. Exp. Ther. 152: 197–201, 1966.
 244. Hanbauer, I. Regulation of tyrosine hydroxylase in carotid body. Adv. Biochem. Psychopharmacol. 16: 275–280, 1977.
 245. Hanbauer, I., and S. Hellström. The regulation of dopamine and noradrenaline in the rat carotid body and its modification by denervation and by hypoxia. J. Physiol. London 282: 21–34, 1978.
 246. Hanbauer, I., F. Karoum, S. Hellström, and S. Lahiri. Effects of hypoxia lasting up to one month on the catecholamine content in rat carotid body. Neuroscience 6: 81–86, 1981.
 247. Hanbauer, I., W. Lovenberg, and E. Costa. Induction of tyrosine 3‐monooxygenase in carotid body of rats exposed to hypoxic conditions. Neuropharmacology 16: 277–282, 1977.
 248. Hansen, J. T. Morphometric study of the aortic body type I cell. Experientia 33: 76–78, 1977.
 249. Hansen, J. T. Development of type I cells of the rabbit subclavian glomera (aortic bodies): a light, fluorescence and electron microscopic study. Am. J. Anat. 153: 15–31, 1978.
 250. Hansen, J., and T. Ord. Effects of 6‐hydroxy‐dopamine on rat carotid body chief cells. Experientia 34: 1357–1358, 1978.
 251. Hansen, J. T., and N. K. R. Smith. Calcium binding sites in the vesicles of the carotid and aortic body chief cells. Cell Tissue Res. 199: 145–151, 1979.
 252. Hanson, M. A., P. S. Rao, and R. W. Torrance. Aortic nerve chemoreceptors are sensitive to changes in Paco2. In: The Regulation of Respiration During Sleep and Anesthesia, edited by R. S. Fitzgerald, H. Gautier, and S. Lahiri. New York: Plenum, 1978, p. 269–273.
 253. Harmar, A., J. G. Schofield, and P. Keen. Cycloheximidesensitive synthesis of substance P by isolated dorsal root ganglia. Nature London 284: 267–269, 1980.
 254. Hartzell, H. C., S. W. Kuffler, R. Stickgold, and D. Yoshikami. Synaptic excitation and inhibition resulting from direct action of acetylcholine on two types of chemoreceptors on individual amphibian parasympathetic neurons. J. Physiol. London 271: 817–846, 1977.
 255. Hatcher, J. D., L. K. Chiu, and D. B. Jennings. Anemia as a stimulus to aortic and carotid chemoreceptors in the cat. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 44: 696–702, 1978.
 256. Hayashida, Y., and C. Eyzaguirre. Voltage noise of carotid body type I cells. Brain Res. 167: 189–194, 1979.
 257. Hayashida, Y., H. Koyano, and C. Eyzaguirre. An intracellular study of chemosensory fibers and endings. J. Neurophysiol. 44: 1077–1088, 1980.
 258. Hayashida, Y., H. Koyano, and C. Eyzaguirre. Intracellular recording from chemoreceptor afferents and terminals. In: Arterial Chemoreceptors. Proc. VIth Int. Meet., edited by C. Belmonte, D. Pallot, H. Acker, and S. Fidone. Leicester, UK: Leicester Univ. Press, 1981, p. 362–372.
 259. Hayes, M. W., B. K. Maini, and R. W. Torrance. Reduction of the responses of carotid chemoreceptors by acetazolamide. In: Morphology and Mechanisms of Chemoreceptors, edited by A. S. Paintal. Delhi: Vallabhbhai Patel Chest Inst., 1976, p. 36–47.
 260. Heistad, D. D., M. L. Marcus, J. C. Ehrhart, and F. M. Abboud. Effect of stimulation of carotid chemoreceptors on total and regional cerebral blood flow. Circ. Res. 38: 20–25, 1976.
 261. Hellström, S. Morphometric studies of dense‐cored vesicles in type I cells of rat carotid body. J. Neurocytol. 4: 77–86, 1975.
 262. Hellström, S. Type I cells of carotid body from rats treated with 5‐OH‐Dopa and l‐Dopa: an electron microscopical study. J. Neurocytol. 4: 439–451, 1975.
 263. Hellström, S. Putative neurotransmitters in the carotid body. Mass fragmentographic studies. Adv. Biochem. Psychopharmacol. 16: 257–263, 1977.
 264. Hellström, S., J. Commissiong, and I. Hanbauer. Modification of the dopamine and noradrenaline content in rat carotid body by carbohydrate‐active steroids. Neuroscience 4: 1157–1162, 1979.
 265. Hellström, S., I. Hanbauer, and E. Costa. Selective decrease of dopamine content in rat carotid body during exposure to hypoxic conditions. Brain Res. 118: 352–355, 1976.
 266. Hellström, S., and S. H. Koslow. Biogenic amines in carotid body of adult and infant rats, a gas chromatographic‐mass spectrometric assay. Acta Physiol. Scand. 93: 540–547, 1975.
 267. Hervonen, A., L. Kanerva, O. Korkala, and S. Partanen. Effects of hypoxia and glucocorticoids on the histochemically demonstrable catecholamines of the newborn rat carotid body. Acta Physiol. Scand. 86: 109–114, 1972.
 268. Hess, A. Electron microscopic observations of normal and experimental cat carotid bodies. In: Arterial Chemoreceptors, edited by R. W. Torrance. Oxford, UK: Blackwell, 1968, p. 51–56.
 269. Hess, A. Hyposensitivity of deafferented receptor cells in the rat carotid body. Brain Res. 98: 348–353, 1975.
 270. Hess, A. The significance of the ultrastructure of the rat carotid body in structure and function of chemoreceptors. In: The Peripheral Arterial Chemoreceptors, edited by M. J. Purves. London: Cambridge Univ. Press, 1975, p. 51–73.
 271. Hess, A. Calcium inhibits catecholamine depletion by reserpine from carotid body glomus cells. Brain Res. Bull. 1: 359–362, 1976.
 272. Hess, A. The calcium binding sites of dense‐core vesicles in the catecholaminergic glomus cells of the rat carotid body. Brain Res. 138: 555–560, 1977.
 273. Hess, A. Chronically denervated rat carotid bodies. Acta Anat. 97: 307–316, 1977.
 274. Hess, A. Are glomus cells in the rat carotid body dopaminergic or noradrenergic Neuroscience 3: 412–418, 1978.
 275. Hess, A., G. Pilar, and J. N. Weakly. Correlation between transmission and structure in avian ciliary ganglion synapses. J. Physiol. London 202: 339–354, 1969.
 276. Hess, A., and P. Zapata. Innervation of the cat carotid body; normal and experimental studies. Federation Proc. 31: 1365–1382, 1972.
 277. Heymans, C., and J. J. Bouckaert. Les chémo‐récepteurs du sinus carotidien. Ergeh. Physiol. Exp. Pharmakol. 41: 28–55, 1939.
 278. Heymans, C., J. J. Bouckaert, and L. Dautrebande. Sinus carotidien et réflexes respiratoires; sensibilité des sinus carotidiens aux substances chimiques. Action stimulante respiratoire réflexe du sulfure de sodium, du cyanure de potassium, de la nicotine et de la lobéline. Arch. Int. Pharmacodyn. Ther. 40: 54–91, 1931.
 279. Heymans, C., J. J. Bouckaert, S. Farber, and F. J. Hsu. Influence réflexogène de l'acétylcholine sur les terminaisons nerveuses, chimio‐sensitives, du sinus carotidien. Arch. Int. Pharmacodyn. Ther. 54: 129–135, 1936.
 280. Heymans, C., A. de Schaepdryver, and G. de Vleeschhouwer. Catecholamines and chemoreceptors. In: Arterial Chemoreceptors, edited by R. W. Torrance. Oxford, UK: Black‐well, 1968, p. 263–266.
 281. Heymans, C., and E. Neil. Reflexogenic Areas of the Cardiovascular System. London: Churchill, 1958, p. 271.
 282. Heymans, C., and P. Rijlant. Le courant d'action du nerf du sinus carotidien intact. C. R. Soc. Biol. 113: 69–73, 1933.
 283. Hill, E. P., G. G. Poer, and L. D. Long. Kinetics of O2 and CO2 exchange. In: Lung Biology in Health and Disease. Bioengineering Aspects of the Lung, edited by J. B. West. New York: Dekker, 1977, vol. 3, p. 459–514.
 284. Hoffman, H., and J. H. W. Birrell. The carotid body in normal and anoxic states: an electron microscopic study. Acta Anat. 32: 297–311, 1958.
 285. Hökfelt, T., O. Johansson, A. Ljungdahl, J. M. Lundberg, and M. Schultzberg. Peptidergic neurones. Nature London 284: 515–521, 1980.
 286. Hollinshead, W. H. Chemoreceptors in the abdomen. J. Comp. Neurol. 74: 269–285, 1941.
 287. Hollinshead, W. H. The function of the abdominal chemoreceptors of the rat and mouse. Am. J. Physiol. 147: 654–660, 1946.
 288. Honda, Y., S. Myojo, S. Hasegawa, T. Hasegawa, and J. W. Severinghaus. Decreased exercise hyperpnea in patients with bilaterial carotid chemoreceptor resection. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 46: 908–912, 1979.
 289. Honda, Y., S. Watanabe, I. Hashizume, Y. Satomura, N. Hata, Y. Sakakibara, and J. W. Severinghaus. Hypoxic chemosensitivity in asthmatic patients two decades after carotid body resection. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 46: 632–638, 1979.
 290. Hornbein, T. F., Z. J. Griffo, and A. Roos. Quantitation of chemoreceptor activity: interrelation of hypoxia and hypercapnia. J. Neurophysiol. 24: 561–568, 1961.
 291. Hornbein, T. F., and A. Roos. Specificity of H ion concentration as a carotid chemoreceptor stimulus. J. Appl. Physiol. 18: 580–584, 1963.
 292. Hornbein, T. F., and J. W. Severinghaus. Carotid chemoreceptor response to hypoxia and acidosis in cats living at high altitude. J. Appl. Physiol. 27: 837–839, 1969.
 293. Hornbein, T. F., and S. C. Sørensen. Ventilatory response to hypoxia and hypercapnia in cats living at high altitude. J. Appl. Physiol. 27: 834–836, 1969.
 294. Hörtnagl, H., H. Hörtnagl, A. Propst, H. Schwingshackl, G. Weiser, and H. Winkler. Catecholamine storage in liver metastases of a malignant carotid body tumour. A biochemical and morphological study. Virchows Arch. B 12: 330–337, 1973.
 295. Horwitz, L. D., V. S. Bishop, and H. L. Stone. Effects of hypercapnia on the cardiovascular system of conscious dogs. J. Appl. Physiol. 25: 346–348, 1968.
 296. Horwitz, L. D., V. S. Bishop, H. L. Stone, and H. F. Stegall. Cardiovascular effects of low‐oxygen atmospheres in conscious and anesthetized dogs. J. Appl. Physiol. 27: 370–373, 1969.
 297. Howard, P., B. Bromberger‐Barnea, R. S. Fitzgerald, and H. N. Bane. Ventilatory responses to peripheral nerve stimulation at different times in the respiratory cycle. Respir. Physiol. 7: 389–398, 1969.
 298. Howe, A. The vasculature of aortic bodies in the cat. J. Physiol. London 134: 311–318, 1956.
 299. Hunt, C. C., and A. Takeuchi. Responses of the nerve terminal of the Pacinian corpuscle. J. Physiol. London 160: 1–21, 1962.
 300. Hunt, C. C., R. S. Wilkinson, and Y. Fukami. Ionic basis of the receptor potential in primary endings of mammalian muscle spindles. J. Gen. Physiol. 71: 683–689, 1978.
 301. Ito, F., and Y. Komatsu. Calcium‐dependent regenerative responses in the afferent nerve terminal of the frog muscle spindle. Brain Res. 175: 160–164, 1979.
 302. Iversen, L. L. Putative neurotransmitters. Criteria for establishing a neurotransmitter. Neurosci. Res. Program Bull. 17: 406, 1979.
 303. Jacobowitz, D. M., and C. J. Helke. Localization of substance P immunoreactive nerves in the carotid body. Brain Res. Bull. 5: 195–197, 1980.
 304. Jacobs, L., and J. H. Comroe, Jr. Stimulation of the carotid body chemoreceptors of the dog by dopamine. Proc. Natl. Acad. Sci. USA 59: 1187–1193, 1968.
 305. Jacobs, L., S. R. Sampson, and J. H. Comroe, Jr. Carotid sinus versus carotid body origin of nicotine and cyanide bradycardia in the dog. Am. J. Physiol. 220: 472–476, 1971.
 306. Jansen, A. H. Peripheral chemoreceptor function in the fetus. Semin. Perinatol. 1: 327–337, 1977.
 307. Jansen, A. H., and V. Chernick. Cardiorespiratory response to central cyanide in fetal sheep. J. Appl. Physiol. 37: 18–21, 1974.
 308. Jennings, D. B., and J. Sparling. Effects of low O2 and high CO2 on cardiorespiratory function in conscious resting dogs. Am. J. Physiol. 226: 431–438, 1974.
 309. Jöbsis, F. F. What is a molecular oxygen sensor What is a transduction process In: Tissue Hypoxia and Ischemia, edited by M. Reivich, R. Coburn, S. Lahiri, and B. Chance. New York: Plenum, 1977, p. 3–18.
 310. Joels, N., and E. Neil. The action of high tension of carbon monoxide on the carotid chemoreceptors. Arch. Int. Pharmacodyn. Ther. 139: 528–534, 1962.
 311. Joels, N., and E. Neil. The idea of a sensory transmitter. In: Arterial Chemoreceptors, edited by R. W. Torrance. Oxford, UK: Blackwell, 1968, p. 153–178.
 312. Joels, N., and H. White. The contribution of the arterial chemoreceptors to the stimulation of respiration by adrenaline and noradrenaline. J. Physiol. London 197: 1–23, 1968.
 313. Jones, D., and H. S. Mason. Gradients of O2 concentration in hepatocytes. J. Biol. Chem. 253: 4874–4880, 1978.
 314. Jones, J. V. Localization and quantitation of carotid body enzymes: their relevance to the cholinergic transmitter hypothesis. In: The Peripheral Arterial Chemoreceptors, edited by M. J. Purves. London: Cambridge Univ. Press, 1975, p. 143–162.
 315. Jose, A. D., and F. Stitt. Effects of hypoxia and metabolic inhibitors on the intrinsic heart rate and myocardial contractility in dogs. Circ. Res. 25: 53–66, 1969.
 316. Kahler, R. L., A. Goldblatt, and E. Braunwald. The effects of acute hypoxia on the systemic venous and arterial system and myocardial contractile force. J. Clin. Invest. 41: 1553–1563, 1962.
 317. Kalia, M., and R. O. Davies. A neuroanatomical search for glossopharyngeal efferents to the carotid body using the retrograde transport of horseradish peroxidase. Brain Res. 149: 477–481, 1978.
 318. Kalia, M., and R. V. Welles. Brain stem projections of the aortic nerve in the cat: a study using tetramethyl benzidine as the substrate for horseradish peroxidase. Brain Res. 188: 23–32, 1980.
 319. Karlin, A. Chemical modification of the active site of the acetylcholine receptor. J. Gen. Physiol. 54: 245s–264s, 1969.
 320. Karlin, A., and E. Bartels. Effects of blocking sulfhydryl groups and of reducing disulfide bonds on the acetylcholine activated permeability system of the electroplax. Biochim. Biophys. Acta 126: 525–535, 1966.
 321. Katz, B. Depolarization of sensory terminals and the initiation of impulses in the muscle spindle. J. Physiol. London 111: 261–282, 1950.
 322. Keller, H. P., and D. W. Lübbers. Flow measurements in the carotid body of the cat by the hydrogen clearance method. Pfluegers Arch. 336: 217–224, 1972.
 323. Kienecker, E. W., H. Knoche, and D. Bingmann. Functional properties of regenerating sinus nerve fibres in the rabbit. Neuroscience 3: 977–988, 1978.
 324. King, A. S., D. Z. King, R. D. Hodges, and J. Henry. Synaptic morphology of the carotid body of the domestic fowl. Cell Tissue Res. 162: 459–473, 1975.
 325. Kjaergaard, J. Anatomy of the Carotid Glomus and Carotid Glomus‐Like Bodies (Non‐Chromaffin Paraganglia). Copenhagen: FADL Forlag, 1973, p. 328.
 326. Knoche, H., H. Alfes, and H. Mollmann. On the biogenic amines in the carotid body: identification of dopamine by mass spectrometry. Experientia 25: 515–516, 1969.
 327. Kobayashi, S. Comparative cytological studies of the carotid body. I. Demonstration of monamine‐storing cells by correlated chromaffin reaction and fluorescence histochemistry. Arch. Histol. Jpn. 33: 319–339, 1971.
 328. Kobayashi, S. Comparative cytological studies of the carotid body. II. Ultrastructure of the synapses on the chief cell. Arch. Histol. Jpn. 33: 397–420, 1971.
 329. Kobayashi, S. An autoradiographic study of the mouse carotid body using tritiated leucine, dopa, dopamine, and ATP with special reference to the chief cell as a paraneuron. Arch. Histol. Jpn. 39: 295–317, 1976.
 330. Kobayashi, S., and M. Uehara. Occurrence of afferent synaptic complexes in the carotid body of the mouse. Arch. Histol. Jpn. 32: 193–201, 1970.
 331. Koike, H., A. L. Mark, D. D. Heistad, and P. G. Schmid. Influence of cardiopulmonary vagal afferent activity on carotid chemoreceptor and baroreceptor reflexes in the dog. Circ. Res. 37: 422–429, 1975.
 332. Kondo, H. A light and electron microscopic study on the embryonic development of the rat carotid body. Am. J. Anat. 144: 275–294, 1975.
 333. Kondo, H. Innervation of the carotid body of the adult rat. Cell Tissue Res. 173: 1–15, 1976.
 334. Kontos, H. A., J. E. Levasseur, D. W. Richardson, H. P. Mauck, Jr., and J. L. Patterson, Jr. Comparative circulatory responses to systemic hypoxia in man and in unanesthetized dog. J. Appl. Physiol. 23: 381–386, 1967.
 335. Kontos, H. A., H. P. Mauck, Jr, D. W. Richardson, and J. L. Patterson, Jr. Circulatory responses to hypocapnia in the anesthetized dog. Am. J. Physiol. 208: 139–143, 1965.
 336. Kontos, H. A., H. P. Mauck, Jr, D. W. Richardson, and J. L. Patterson, Jr. Mechanism of circulatory responses to systemic hypoxia in the anesthetized dog. Am. J. Physiol. 209: 397–403, 1965.
 337. Kontos, H. A., G. W. Vetrovec, and D. W. Richardson. Role of carotid chemoreceptors in circulatory response to hypoxia in dogs. J. Appl. Physiol. 28: 561–565, 1970.
 338. Korkala, O. Histochemical and ultrastructural observations on catecholamine storage in the carotid body of normal and pargyline‐treated rats. Anat. Embryol. 146: 133–140, 1974.
 339. Korkala, O., and A. Hervonen. Origin and development of the catecholamine‐storing cells of the human fetal carotid body. Histochemie 37: 287–297, 1973.
 340. Korkala, O., and T. Waris. The acetylcholinesterase reaction and catecholamine fluorescence in the glomus cells of rat carotid body. Experientia 33: 1363–1364, 1977.
 341. Korner, P. I. The role of the arterial chemoreceptors and baroreceptors in the circulatory response to hypoxia of the rabbit. J. Physiol. London 180: 279–303, 1965.
 342. Koshland, D. E., Jr. A model regulatory system: bacterial Chemotaxis. Physiol. Rev. 59: 811–862, 1979.
 343. Krammer, E. Carotid body chemoreceptor function: hypothesis based on a new circuit model. Proc. Natl. Acad. Sci. USA 75: 2507–2511, 1978.
 344. Krasney, J. A. Effect of sino‐aortic denervation on regional circulatory responses to cyanide. Am. J. Physiol. 218: 56–63, 1970.
 345. Krasney, J. A. Regional circulatory responses to arterial hypoxia in the anesthetized dog. Am. J. Physiol. 220: 699–704, 1971.
 346. Krasney, J. A., and R. C. Koehler. Influence of arterial hypoxia on cardiac and coronary dynamics in the conscious sinoaortic‐denervated dog. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 43: 1012–1018, 1977.
 347. Krasney, J. A., M. G. Magno, M. G. Levitzky, R. C. Koehler, and D. G. Davies. Cardiovascular responses to arterial hypoxia in awake sinoaortic‐denervated dogs. J. Appl. Physiol. 35: 733–738, 1973.
 348. Krebs, H. A. The Pasteur effect and the relations between respiration and fermentation. Essays Biochem. 8: 1–34, 1972.
 349. Krylov, S. S., and S. V. Anichkov. The effect of metabolic inhibitors on carotid chemoreceptors. In: Arterial Chemoreceptors, edited by R. W. Torrance. Oxford, UK: Blackwell, 1968, p. 103–113.
 350. Kuffler, S. W., and C. Edwards. Mechanism of gamma aminobutyric acid (GABA) action and its relation to synaptic inhibition. J. Neurophysiol. 21: 589–610, 1958.
 351. Kuffler, S. W., and C. Eyzaguirre. Synaptic inhibition in an isolated nerve cell. J. Gen. Physiol. 39: 155–184, 1955.
 352. Lack, E. E. Carotid body hypertrophy in patients with cystic fibrosis and cyanotic congenital heart disease. Hum. Pathol. 8: 39–51, 1977.
 353. Lack, E. E. Hyperplasia of vagal and carotid body paraganglia in patients with chronic hypoxemia. Am. J. Pathol. 91: 497–516, 1978.
 354. Lahiri, S. Oxygen linked response of carotid chemoreceptors. In: Tissue Hypoxia and Ischemia, edited by M. Reivich, R. Coburn, S. Lahiri, and B. Chance. New York: Plenum, 1977, p. 185–202.
 355. Lahiri, S. Ventilatory response to hypoxia in intact cats living at 3,850 m. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 43: 114–120, 1977.
 356. Lahiri, S. Role of arterial O2 flow in peripheral chemoreceptor excitation. Federation Proc. 39: 2648–2652, 1980.
 357. Lahiri, S. Chemical modification of carotid body chemoreception by sulfhydryls. Science 212: 1065–1066, 1981.
 358. Lahiri, S. Dopamine and chemoreception in carotid and aortic bodies. In: Arterial Chemoreceptors. Proc. VIth Int. Meet., edited by C. Belmonte, D. Pallot, H. Acker, and S. Fidone. Leicester, UK: Leicester Univ. Press, 1981, p. 277–288.
 359. Lahiri, S., and R. G. DeLaney. Stimulus interaction in the responses of carotid body chemoreceptor single afferent fibers. Respir. Physiol. 24: 249–266, 1975.
 360. Lahiri, S., and R. G. DeLaney. The nature of response of single chemoreceptor fibers of carotid body to changes in arterial Po2 and Pco2–H+. In: Morphology and Mechanisms of Chemoreceptors, edited by A.S. Paintal. Delhi: Vallabhbhai Patel Chest Inst., 1976, p. 18–24.
 361. Lahiri, S., R. G. DeLaney, and A. P. Fishman. Peripheral and central effects of acetazolamide in the control of ventilation (Abstract). Physiologist 19: 261, 1976.
 362. Lahiri, S., A. Mokashi, R. G. DeLaney, and A. P. Fishman. Arterial Po2 and Pco2 stimulus threshold for carotid chemoreceptors and breathing. Respir. Physiol. 34: 359–375, 1978.
 363. Lahiri, S., A. Mokashi, E. Mulligan, and T. Nishino. Comparison of aortic and carotid chemoreceptor responses to hypercapnia and hypoxia. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 51: 55–61, 1981.
 364. Lahiri, S., E. Mulligan, and A. Mokashi. Relative lack of adaptative response to Paco2 of aortic body chemoreceptors in the cat. Federation Proc. 39: 829, 1980.
 365. Lahiri, S., E. Mulligan, and A. Mokashi. Adaptative response of carotid body chemoreceptors to CO2. Brain Res. 234: 137–148, 1982.
 366. Lahiri, S., E. Mulligan, T. Nishino, and A. Mokashi. Aortic body chemoreceptor responses to changes in Pco2 and Po2 in the cat. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 47: 858–866, 1979.
 367. Lahiri, S., E. Mulligan, T. Nishino, A. Mokashi, and R. O. Davies. Relative responses of aortic body and carotid body chemoreceptors to carboxyhemoglobinemia. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 50: 580–586, 1981.
 368. Lahiri, S., and T. Nishino. Inhibitory and excitatory effects of dopamine on carotid chemoreceptors. Neurosci. Lett. 20: 313–318, 1980.
 369. Lahiri, S., T. Nishino, A. Mokashi, and E. Mulligan. Relative responses of aortic body and carotid body chemoreceptors to hypotension. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 48: 781–788, 1980.
 370. Lahiri, S., T. Nishino, A. Mokashi, and E. Mulligan. Interaction of dopamine and haloperidol with O2 and CO2 chemoreception in carotid body. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 49: 45–51, 1980.
 371. Lahiri, S., T. Nishino, E. Mulligan, and A. Mokashi. Convergence of dopamine, O2 and CO2 chemoreception in aortic and carotid bodies (Abstract). Physiologist 22 (4): 74, 1979.
 372. Lahiri, S., M. Pokorski, and R. O. Davies. Augmentation of carotid body chemoreceptor responses by isoproterenol in the cat. Respir. Physiol. 44: 351–364, 1981.
 373. Laidler, P., and J. M. Kay. A quantitative morphological study of the carotid bodies of rats living at a simulated altitude of 4300 meters. J. Pathol. 117: 183–191, 1974.
 374. Laidler, P., and J. M. Kay. The effect of chronic hypoxia on the number and nuclear diameter of type I cells in the carotid body of rats. Am. J. Pathol. 79: 311–320, 1975.
 375. Laidler, P., and J. M. Kay. A quantitative study of some ultrastructural features of the type I cells in the carotid bodies of rats living at a simulated altitude of 4300 metres. J. Neurocytol. 7: 183–192, 1978.
 376. Landgren, S., G. Liljestrand, and Y. Zotterman. The effect of certain autonomic drugs on the action potentials of the sinus nerve. Acta Physiol. Scand. 26: 264–290, 1952.
 377. Landgren, S., G. Liljestrand, and Y. Zotterman. Impulse activity in the carotid sinus nerve following intracarotid injections of sodium iodo‐acetate, histamine hydrochloride, lergitin, and some purine and barbituric acid derivatives. Acta Physiol. Scand. 30: 149–160, 1954.
 378. Landgren, S., and E. Neil. Chemoreceptor impulse activity following haemorrhage. Acta Physiol. Scand. 23: 158–167, 1951.
 379. Landgren, S., A. P. Skouby, and Y. Zotterman. Sensitization of baroreceptors of the carotid sinus by acetylcholine. Acta Physiol. Scand. 29: 381–388, 1953.
 380. Lardy, H. A., P. Witonsky, and D. Johnson. Antibiotics as tools for metabolic studies. IV. Comparative effectiveness of oligomycin A, B, C and rutamycin as inhibitors of phosphoryl transfer reactions in mitochondria. Biochemistry 4: 552–560, 1965.
 381. Lassmann, H., and P. Böck. Die Wirkung von 6‐Hydroxydo‐pamine auf den Katecholamingehalt des Glomus Caroticum der Ratte. Z. Zellforsch. Mikrosk. Anat. 127: 220–229, 1972.
 382. Laurent, P., and M. C. Jager‐Barrès. Activité efférent d'origine centrale dans le nerf sinocarotidien du lapin. J. Physiol. Paris 61: 403–409, 1969.
 383. Lauweryns, J. M., and J. C. Peuskens. Neuro‐epithelial bodies (neuroreceptor or secretory organs) in human infant bronchial and bronchiolar epithelium. Anat. Rec. 172: 471–482, 1972.
 384. Le Douarin, N., C. Le Lièvre, and J. Fontaine. Recherches expérimentales sur l'origine embryologique du corps carotidien chez les Oiseaux. C. R. Acad. Sci. Ser. D 275: 583–586, 1972.
 385. Lee, K. D., R. A. Mayou, and R. W. Torrance. The effect of blood pressure upon chemoreceptor discharge to hypoxia, and the modification of this effect by the sympathetic‐adrenal system. Q. J. Exp. Physiol. 49: 171–183, 1964.
 386. Lehninger, A. L., E. Carafoli, and C. S. Rossi. Energy‐linked ion movement in mitochondrial systems. Adv. Enzymol. 29: 259–320, 1967.
 387. Leitner, L. M., and M. J. Liaubet. Carotid body oxygen consumption of the cat in vitro. Pfluegers Arch. 323: 315–322, 1971.
 388. Leitner, L. M., and E. R. Perl. Receptors supplied by spinal nerves which respond to cardiovascular changes and adrenaline. J. Physiol. London 175: 254–274, 1964.
 389. Lever, J. D., P. R. Lewis, and J. D. Boyd. Observations on the fine structure and histochemistry of the carotid body in the cat and rabbit. J. Anat. 93: 478–490, 1959.
 390. Liljestrand, G. Acetylcholine and respiration. Acta Physiol. Scand. 24: 225–246, 1956.
 391. Lishajko, F. Release and uptake of dopamine in isolated granules from a human carotid body tumour. Acta Physiol. Scand. 79: 533–536, 1970.
 392. Little, R., and B. Öberg. Circulatory responses to stimulation of the carotid body chemoreceptors in the cat. Acta Physiol. Scand. 93: 34–51, 1975.
 393. Llados, F., and P. Zapata. Effects of dopamine analogues and antagonists on carotid body chemosensors in situ. J. Physiol. London 274: 487–499, 1978.
 394. Llados, F., and P. Zapata. Effects of adrenoceptor stimulating and blocking agents on carotid body chemosensory inhibition. J. Physiol. London 274: 501–509, 1978.
 395. Lloyd, B. B., D. J. C. Cunningham, and R. C. Goode. Depression of hypoxic hyperventilation in man by sudden inspiration of carbon monoxide. In: Arterial Chemoreceptors, edited by R. W. Torrance. Oxford, UK: Blackwell, 1968, p. 145–148.
 396. Lugliani, R., B. J. Whipp, C. Seard, and K. Wasserman. Effect of bilateral carotid body resection on ventilatory control at rest and during exercise in man. N. Engl. J. Med. 285: 1105–1111, 1971.
 397. Lundberg, J. M., T. Hökfelt, J. Fahrenkrug, G. Nilsson, and L. Terenius. Peptides in the cat carotid body (glomus caroticum): VIP‐, enkephalin‐, and substance P‐like immunoreactivity. Acta Physiol. Scand. 107: 279–281, 1979.
 398. Lundberg, J. M., T. Hökfelt, M. Schultzberg, K. Uvnäs‐Wallensten, C. Köhler, and S. I. Said. Occurrence of vasoactive intestinal polypeptide (VIP)‐like immunoreactivity in certain cholinergic neurons of the cat: evidence from combined immunohistochemistry and acetylcholinesterase staining. Neuroscience 4: 1539–1559, 1979.
 399. MacLeod, R. D. M., and M. J. Scott. The heart rate responses to carotid body chemoreceptor stimulation in the cat. J. Physiol. London 175: 193–202, 1964.
 400. Main, R. J. Acute effects of smoking on respiration and circulation. Proc. Soc. Exp. Biol. Med. 48: 495–500, 1941.
 401. Majcherczyk, S., A. Trzebski, and P. Szulczyk. The effect of change in pH of cerebrospinal fluid at the ventrolateral surface of the medulla oblongata on the efferent discharges in carotid sinus and aortic nerves in the cat. Acta Med. Pol. 15: 11–18, 1974.
 402. Majcherczyk, S., and P. Willshaw. Inhibition of peripheral chemoreceptor activity during superfusion with an alkaline C. S. F. of the ventral brain stem surface of the cat (Abstract). J. Physiol. London 231: 26P–27P, 1973.
 403. Majcherczyk, S., and P. Willshaw. The influence of hyperventilation on efferent control of peripheral chemoreceptors. Brain Res. 124: 561–564, 1977.
 404. Mancia, G. Influence of carotid baroreceptors on vascular responses to carotid chemoreceptor stimulation in the dog. Circ. Res. 36: 270–276, 1975.
 405. Masson, R. G., and S. Lahiri. Chemical control of ventilation during hypoxic exercise. Respir. Physiol. 22: 241–262, 1974.
 406. Matsumoto, S., T. Nagao, A. Ibi, T. Nakajima. Effects of carotid body chemoreceptor stimulation by dopamine on ventilation. Arch. Int. Pharmacodyn. Ther. 245: 145–155, 1980.
 407. Matsuura, S. Depolarisation of sensory nerve endings and impulse initiation in common carotid baroreceptors. J. Physiol. London 235: 31–56, 1973.
 408. Matsuura, S. Chemoreceptor properties of glomus tissue found in the carotid region of the cat. J. Physiol. London 235: 57–73, 1973.
 409. McCloskey, D. I. Mechanisms of autonomic control of carotid chemoreceptor activity. Respir. Physiol. 25: 53–61, 1975.
 410. McCloskey, D. I., and R. W. Torrance. Autoregulation of blood flow in the carotid body. Respir. Physiol. 13: 23–35, 1971.
 411. McDonald, D. M. Peripheral chemoreceptors: structure‐function relationships of the carotid body. In: Lung Biology in Health and Disease. The Regulation of Breathing, edited by T. F. Hornbein. New York: Dekker, 1981, vol. 17, p. 105–319.
 412. McDonald, D. M., and R. A. Mitchell. The innervation of glomus cells, ganglion cells and blood vessels in the rat carotid body: a quantitative ultrastructural analysis. J. Neurocytol. 4: 177–230, 1975.
 413. McDonald, D. M., and R. A. Mitchell. A quantitative analysis of synaptic connections in the rat carotid body. In: The Peripheral Arterial Chemoreceptors, edited by M. J. Purves. London: Cambridge Univ. Press, 1975, p. 101–131.
 414. McLennan, H. Synaptic Transmission. Philadelphia, PA: Saunders, 1963, p. 134.
 415. McQueen, D. S. Effects of suberyldicholine on carotid baroreceptors and chemoreceptors. Neuropharmacology 13: 829–835, 1974.
 416. McQueen, D. S. A quantitative study of the effects of cholinergic drugs on carotid chemoreceptors in the cat. J. Physiol. London 273: 515–532, 1977.
 417. McQueen, D. S. Effects of methacholine on the carotid chemoreceptors. Q. J. Exp. Physiol. 63: 171–178, 1978.
 418. McQueen, D. S. Effects of substance P on carotid chemoreceptor activity in the cat. J. Physiol. London 302: 31–47, 1980.
 419. McQueen, D. S. Effects of some polypeptides on carotid chemoreceptor activity. In: Arterial Chemoreceptors. Proc. VIth Int. Meet., edited by C. Belmonte, D. Pallot, H. Acker, and S. Fidone. Leicester, UK; Leicester Univ. Press, 1981, p. 299–308.
 420. McQueen, D. S., and C. Eyzaguirre. Effects of temperature on carotid chemoreceptor and baroreceptor activity. J. Neurophysiol. 37: 1287–1296, 1974.
 421. Metz, B. Release of acetylcholine from the carotid body by hypoxia and hypoxia plus hypercapnia. Respir. Physiol. 6: 386–394, 1969.
 422. Michaelis, L. L., and J. P. Gilmore. Renal effects of electrical stimulation of the carotid sinus nerve. Surgery 65: 797–801, 1969.
 423. Mills, E. Activity of aortic chemoreceptors during electrical stimulation of the stellate ganglion in the cat. J. Physiol. London 199: 103–114, 1968.
 424. Mills, E., and M. W. Edwards, Jr. Stimulation of aortic and carotid chemoreceptors during carbon monoxide inhalation. J. Appl. Physiol. 25: 494–502, 1968.
 425. Mills, E., and F. F. Jöbsis. Mitochondrial respiratory chain of carotid body and chemoreceptor response to changes in oxygen tension. J. Neurophysiol. 35: 405–428, 1972.
 426. Mills, E., and T. A. Slotkin. Catecholamine content of the carotid body in cats ventilated with 8–40% oxygen. Life Sci. 16: 1555–1562, 1975.
 427. Mills, E., T. A. Slotkin, and G. Breese. Role of carotid body catecholamines in chemoreceptor function. Neuroscience 3: 1137–1146, 1978.
 428. Mills, E., T. A. Slotkin, and S. Sampson. Carotid body chemoreceptors. Nature London 258: 268–269, 1975.
 429. Mishra, J., H. N. Sapru, and A. Hess. Physiological effects of dopamine agonists and antagonists on rat carotid body. Federation Proc. 38: 1143, 1979.
 430. Mitchell, R. A., and D. M. McDonald. Adjustment of chemoreceptor sensitivity in the cat carotid body by reciprocal synapses. In: The Peripheral Arterial Chemoreceptors, edited by M. J. Purves. London: Cambridge Univ. Press, 1975, p. 269–291.
 431. Mitchell, R. A., A. K. Sinha, and D. M. McDonald. Chemoreceptive properties of regenerated endings of the carotid sinus nerve. Brain Res. 43: 681–685, 1972.
 432. Moe, G. K., L. R. Capo, and B. Peralta. Action of tetraethylammonium on chemoreceptor and stretch receptor mechanisms. Am. J. Physiol. 153: 601–605, 1948.
 433. Møller, M., K. Møllgärd, and S. C. Sørensen. The ultrastructure of the carotid body in chronically hypoxic rabbits. J. Physiol. London 238: 447–453, 1974.
 434. Mollman, H., H. Knoche, D. H. Niemeyer, H. Alpes, E. W. Kienecker, and S. D. Ecker. Experimenteller Beitrag zur Kenntnis der biogenen amine im glomus caroticum des Kaninchens. Elektronen und fluoreszenzmikroskopische Untersuchungen nach Reserpin‐ und PCPA‐Applikation. Z. Zellforsch. Mikrosk. Anat. 124: 238–246, 1972.
 435. Mollmann, H., D. H. Niemeyer, H. Alfes, and H. Knoche. Mikrospektrofluorometrische Untersuchungen der biogenen Amine im Glomus Caroticum des Kaninchens nach Reserpinund PCPA‐Applikation. Z. Zellforsch. Mikrosk. Anat. 126: 104–115, 1972.
 436. Monroe, R. G., G. French, and J. L. Whittenberger. Effects of hypocapnia and hypercapnia on myocardial contractility. Am. J. Physiol. 199: 1121–1124, 1960.
 437. Monti‐Bloch, L., and C. Eyzaguirre. A comparative physiological and pharmacological study of cat and rabbit carotid body chemoreceptors. Brain Res. 193: 449–470, 1980.
 438. Monti‐Bloch, L., and C. Eyzaguirre. Effects of M‐enkephalin (ME) and substance P (SP) on the sensory discharge and response of carotid body chemoreceptors to ACh and dopamine. Soc. Neurosci. Abstr. 6: 282, 1980.
 439. Monti‐Bloch, L., L. J. Stensaas, and C. Eyzaguirre. Effect of ischemia on carotid body structure and function. In: Arterial Chemoreceptors. Proc. VIth Int. Meet, edited by C. Belmonte, D. Pallot, H. Acker, and S. Fidone. Leicester, UK: Leicester Univ. Press, 1981, p. 133–142.
 440. Monti‐Bloch, L., L. J. Stensaas, and C. Eyzaguirre. Induction of chemosensitivity in a muscle nerve after grafting the carotid body into the muscle. Soc. Neurosci. Abstr. 7: 469, 1981.
 441. Morgado, E., F. Llados, and P. Zapata. Dopamine‐β‐hydroxylase activity in normal and sympathectomized carotid bodies. Neurosci. Lett 3: 139–143, 1976.
 442. Morgan, M., R. J. Pack, and A. Howe. Nerve endings in the rat carotid body. Cell Tissue Res. 157: 255–272, 1975.
 443. Morita, E., S. R. Chiocchio, and J. H. Tramezzani. Four types of main cells in the carotid body of the cat. J. Ultrastruct. Res. 28: 399–410, 1969.
 444. Mulligan, E. Metabolic Aspects of O2 and CO2 Chemoreception in the Carotid Body. Philadelphia: Univ. of Pennsylvania, 1980.
 445. Mulligan, E., and S. Lahiri. Augmented adaptative responses to CO2 of cat carotid chemoreceptors made O2 insensitive by oligomycin. Federation Proc. 39: 372, 1980.
 446. Mulligan, E., and S. Lahiri. Dependence of carotid chemoreceptor stimulation by metabolic agents on Pao2 and Paco2. J. Appl. Physiol.: Respirat Environ. Exercise Physiol. 50: 884–891, 1981.
 447. Mulligan, E., and S. Lahiri. Mitochondrial oxidative metabolism and chemoreception in the carotid body. In Arterial Chemoreceptors. Proc. VIth Int. Meet, edited by C. Belmonte, D. Pallot, H. Acker, and S. Fidone. Leicester, UK: Leicester Univ. Press, 1981, p. 316–326.
 448. Mulligan, E., and S. Lahiri. Separation of carotid body chemoreceptor responses to O2 and CO2 by oligomycin and by antimycin A. Am. J. Physiol. 242 (Cell Physiol. 11): C200–C206, 1982.
 449. Mulligan, E., S. Lahiri, and B. T. Storey. Carotid body O2 chemoreception and mitochondrial oxidative phosphorylation. J. Appl. Physiol.: Respirat Environ. Exercise Physiol. 51: 438–446, 1981.
 450. Muratori, G., G. N. Chiarini, and G. Battaglia. Osservazioni istochimiche al microscopio a fluorescenza sul tessuto paragangliare cervicotoracico. Monit. Zool. Ital. 72: 84, 1964.
 451. Murray, J. F., and I. M. Young. Regional blood flow and cardiac output during acute hypoxia in the anesthetized dog. Am. J. Physiol. 204: 963–968, 1963.
 452. Naeye, R. L., R. Fisher, M. Ryser, and P. Whalen. Carotid body in the sudden infant death syndrome. Science 191: 567–569, 1976.
 453. Neil, E. Influence of the carotid body chemoreceptor reflexes on the heart rate in systemic anoxia. Arch. Int. Pharmacodyn. Ther. 105: 477–488, 1956.
 454. Neil, E., and N. Joels. The carotid glomus sensory mechanism. In: The Regulation of Human Respiration, edited by D. J. C. Cunningham and B. B. Lloyd. Oxford, UK: Blackwell, 1963, p. 163–171.
 455. Neil, E., and R. G. O'Regan. The effects of electrical stimulation of the distal end of the cut sinus and aortic nerves on peripheral arterial chemoreceptor activity in the cat. J. Physiol. London 215: 15–32, 1971.
 456. Neil, E., and R. G. O'Regan. Efferent and afferent impulse activity recorded from few fibre preparations of otherwise intact sinus and aortic nerves. J. Physiol. London 215: 33–47, 1971.
 457. Ng, M. L., M. N. Levy, and H. A. Zieske. Effects of changes of pH and of carbon dioxide tension on left ventricular performance. Am. J. Physiol. 213: 115–120, 1967.
 458. Niemi, M., and K. Ojala. Cytochemical demonstration of catecholamines in the human carotid body. Nature London 203: 539–540, 1964.
 459. Nishi, K. The action of 5‐hydroxytryptamine on chemoreceptor discharges of the cat's carotid body. Br. J. Pharmacol. 55: 27–40, 1975.
 460. Nishi, K. Serial section analysis of the ultrastructure of nerve endings and glomus cells in the carotid body. In: Morphology and Mechanisms of Chemoreceptors, edited by A. S. Paintal. Delhi: Vallabhbhai Patel Chest Inst., 1976, p. 1–24.
 461. Nishi, K. A pharmacologic study on a possible inhibitory role of dopamine in the cat carotid body chemoreceptor. In: Chemoreception in the Carotid Body, edited by H. Acker, S. Fidone, D. Pallot, C. Eyzaguirre, D. W. Lübbers, and R. W. Torrance. New York: Springer‐Verlag, 1977, p. 145–151.
 462. Nishi, K., and C. Eyzaguirre. The action of some cholinergic blockers on carotid body chemoreceptors in vivo. Brain Res. 33: 37–56, 1971.
 463. Nishi, K., K. Iwasaki, and Y. Kase. Actions of piperidine and dimethylphenylpiperazinium (DMPP) on afferent discharge of the cat's carotid body. Eur. J. Pharmacol. 54: 141–152, 1979.
 464. Nishi, K., N. Sakanashi, and P. Takenaka. Activation of afferent cardiac sympathetic nerve fibers of the cat by pain‐producing substances and by noxious heat. Pfluegers Arch. 372: 53–61, 1977.
 465. Nishi, K., and L. J. Stensaas. The ultrastructure and source of nerve endings in the carotid body. Cell Tissue Res. 154: 303–319, 1974.
 466. Nishino, T., and S. Lahiri. Effects of dopamine on chemo‐reflexes in breathing. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 50: 892–897, 1981.
 467. Noble, M. I. M., D. Trenchard, and A. Guz. Effect of changes in Paco2 and Pao2 on cardiac performance in conscious dogs. J. Appl. Physiol. 22: 147–152, 1967.
 468. Nonídez, J. F. The aortic depressor nerve and its associated epithelioid body, the glomus aorticum. Am. J. Anat. 57: 259–301, 1935.
 469. Obara, S. Effects of some organic cations on generator potential of crayfish stretch receptor. J. Gen. Physiol. 52: 363–386, 1968.
 470. Oehlke, C., D. Pruhs, and W. Wiemer. The reaction of carotid chemoreceptors to prolonged ischaemia, anoxia and infusion of cyanide in the rabbit (Abstract). J. Physiol. London 284: 168P–169P, 1978.
 471. O'Regan, R. G. The influences exerted by the centrifugal innervation of the carotid sinus nerve. In: The Peripheral Arterial Chemoreceptors, edited by M. J. Purves. London: Cambridge Univ. Press, 1975, p. 221–240.
 472. O'Regan, R. G. Carotid chemoreceptor response to sympathetic excitation (Abstract). J. Physiol. London 263: 267P, 1976.
 473. O'Regan, R. G. Efferent control of chemoreceptors. In: Morphology and Mechanisms of Chemoreceptors, edited by A. S. Paintal. Delhi: Vallabhbhai Patel Chest Inst., 1976, p. 229–246.
 474. O'Regan, R. G. Control of carotid body chemoreceptors by autonomic nerves. Ir. J. Med. Sci. 146; 199–205, 1977.
 475. O'Regan, R. G. Variable influences of the sympathetic nervous system upon carotid body chemoreceptor activity. In: Chemoreception in the Carotid Body, edited by H. Acker, S. Fidone, D. Pallot, C. Eyzaguirre, D. W. Lübbers, and R. W. Torrance. New York: Springer‐Verlag, 1977, p. 160–167.
 476. O'Regan, R. G. Oxygen usage of the cat carotid body perfused with cell‐free solutions. Ir. J. Med. Sci. 148: 69–77, 1979.
 477. O'Regan, R. G. Responses of the chemoreceptors of the cat carotid body perfused with cell‐free solutions. Ir. J. Med. Sci. 148: 78–85, 1979.
 478. Osborne, M. P., and P. J. Butler. New theory for receptor mechanisms of carotid body chemoreceptors. Nature London 254: 701–703, 1975.
 479. Ottoson, D. The effect of sodium deficiency on the response of the isolated muscle spindle. J. Physiol. London 171: 109–118, 1964.
 480. Ottoson, D. The action of calcium on the frog's isolated muscle spindle. J. Physiol. London 178: 68–79, 1965.
 481. Pagtakhan, R. D., E. E. Faridy, and V. Chernick. Interaction between arterial Po2 and Pco2 in the initiation of respiration of fetal sheep. J. Appl. Physiol. 30: 382–387, 1971.
 482. Paintal, A. S. Mechanisms of stimulation of aortic chemoreceptors by natural stimuli and chemical substances. J. Physiol. London 189: 63–84, 1967.
 483. Paintal, A. S. Some considerations relating to studies on chemoreceptor responses. In: Arterial Chemoreceptors, edited by R. W. Torrance. Oxford, UK: Blackwell, 1968, p. 253–261.
 484. Paintal, A. S. Action of drugs on sensory nerve endings. Annu. Rev. Pharmacol. 11: 231–240, 1971.
 485. Paintal, A. S. Cardiovascular receptors. In: Handbook of Sensory Physiology. Enteroceptors, edited by E. Neil. New York: Springer‐Verlag, 1972, vol. III, p. 1–46.
 486. Palkama, A. Histochemistry and electron microscopy of the carotid body. Ann. Med. Exp. Biol. Fenn. 43: 260–266, 1965.
 487. Panneton, W. M., and A. D. Loewy. Projections of the carotid sinus nerve to the nucleus of the solitary tract in the cat. Brain Res. 191: 239–244, 1980.
 488. Pappas, G. D., and S. G. Waxman. Synaptic fine structure—morphological correlates of chemical and electrotonic transmission. In: Structure and Function of Synapses, edited by G. D. Pappas and D. P. Purpura. New York: Raven, 1972, p. 1–43.
 489. Parker, P. E., J. M. Dabney, J. B. Scott, and F. J. Haddy. Reflex vascular responses in kidney, ileum, and forelimb to carotid body stimulation. Am. J. Physiol. 228: 46–51, 1975.
 490. Pearse, A. G. E. The cytochemistry and ultrastructure of polypeptide hormone‐producing cells of the APUD series and the embryologie, physiologic and pathologic implications of the concept. J. Histochem. Cytochem. 17: 303–313, 1969.
 491. Pearse, A. G. E., J. M. Polak, F. W. D. Rost, J. Fontaine, C. Le Lièvre, and N. Le Douarin. Demonstration of the neural crest origin of type I (APUD) cells in the avian carotid body, using a cytochemical marker system. Histochemie 34: 191–203, 1973.
 492. Pelletier, C. L., and J. T. Shepherd. Venous responses to stimulation of carotid chemoreceptors by hypoxia and hypercapnia. Am. J. Physiol. 223: 97–103, 1972.
 493. Penna, M., L. Soma, and D. M. Aviado. Role of carotid and aortic bodies in mediating the increase in cardiac output during anoxemia. Am. J. Physiol. 203: 133–136, 1962.
 494. Pokorski, M., and S. Lahiri. Effects of naloxone on carotid body chemoreception and ventilation in the cat. J. Appl. Physiol. : Respirat. Environ. Exercise Physiol. 51: 1533–1538, 1981.
 495. Ponte, J., and M. J. Purves. Types of afferent nervous activity which may be measured in the vagus nerve of the sheep foetus. J. Physiol. London 229: 51–76, 1973.
 496. Ponte, J., and M. J. Purves. Frequency response of carotid body chemoreceptors in the cat to changes of Paco2, Pao2 and pH. J. Appl. Physiol. 37: 635–647, 1974.
 497. Ponte, J., and M. J. Purves. The role of the carotid body chemoreceptors and carotid sinus baroreceptors in the control of cerebral blood vessels. J. Physiol. London 237: 315–340, 1974.
 498. Portalier, P., and D. Vigier. Localization of aortic cells in the nodose ganglion by HRP retrograde transport in the cat. Neurosci. Lett. 11: 7–11, 1979.
 499. Priihs, D. Das Erregungsverhalten der Chemoreceptoren des Glomus Caroticum bei Anoxie. Essen, West Germany: Univ. of Essen, 1979.
 500. Purves, M. J. The effect of hypoxia, hypercapnia and hypotension upon carotid body blood flow and oxygen consumption in the cat. J. Physiol. London 209: 395–416, 1970.
 501. Purves, M. J. The role of the cervical sympathetic nerve in the regulation of oxygen consumption of the carotid body of the cat. J. Physiol. London 209: 417–432, 1980.
 502. Purves, M. J., and T. J. Biscoe. Development of chemoreceptor activity. Br. Med. Bull. 22: 56–60, 1966.
 503. Rees, P. M. The distribution of biogenic amines in the carotid bifurcation region. J. Physiol. London 193: 245–253, 1967.
 504. Richardson, D. W., H. A. Kontos, W. Shapiro, and J. L. Patterson, Jr. Role of hypocapnia in the circulatory responses to acute hypoxia in man. J. Appl. Physiol. 21: 22–26, 1966.
 505. Ringham, G. L. Origin of nerve impulse in slowly adapting stretch receptor of crayfish. J. Neurophysiol. 34: 773–784, 1971.
 506. Robinson, S. E., J. P. Schwartz, and E. Costa. Substance P in the superior cervical ganglion and the submaxillary gland of the rat. Brain Res. 182: 11–17, 1980.
 507. Rogers, D. C. A histological and histochemical study of the carotid labyrinth in the anuran amphibians, Bufo marinas, Hyla aurea and Neobatrachus pictus. Acta Anat. 63: 249–280, 1966.
 508. Roumy, M., and L. M. Leitner. Role of calcium ions in the mechanisms of arterial chemoreceptor excitation. In: Chemoreception in the Carotid Body, edited by H. Acker, S. Fidone, D. Pallot, C. Eyzaguirre, D. W. Lübbers, and R. W. Torrance. New York: Springer‐Verlag, 1977, p. 257–263.
 509. Said, S. I., and V. Mutt. Polypeptide with broad biological activity: isolation from small intestine. Science 169: 1217–1218, 1970.
 510. Saldana, M. J., L. E. Salem, and R. Travezan. High altitude hypoxia and chemodectomas. Hum. Pathol. 4: 251–263, 1973.
 511. Salem, H., M. Penna, and D. M. Aviado. Mechanisms for bradycardia arising from stimulation of carotid bodies. Arch. Int. Pharmacodyn. Ther. 150: 249–258, 1964.
 512. Sampson, S. R. Effects of mecamylamine on responses of carotid body chemoreceptors in vivo to physiological and pharmacological stimuli. J. Physiol. London 212: 655–666, 1971.
 513. Sampson, S. R. Mechanism of efferent inhibition of carotid body chemoreceptors in the cat. Brain Res. 45: 266–270, 1972.
 514. Sampson, S. R. Pharmacology of feedback inhibition of carotid body chemoreceptors in the cat. In: The Peripheral Arterial Chemoreceptors, edited by M. J. Purves. London: Cambridge Univ. Press, 1975, p. 207–220.
 515. Sampson, S. R., M. J. Aminoff, R. A. Jaffe, and E. H. Vidruk. Analysis of inhibitory effect of dopamine on carotid body chemoreceptors in cats. Am. J. Physiol. 230: 1494–1498, 1976.
 516. Sampson, S. R., M. J. Aminoff, R. A. Jaffe, and E. H. Vidruk. A pharmacological analysis of neurally induced inhibition of carotid body chemoreceptor activity in cats. J. Pharmacol. Exp. Ther. 197: 119–125, 1976.
 517. Sampson, S. R., and T. J. Biscoe. Efferent control of the carotid body chemoreceptor. Experientia 26: 261–262, 1970.
 518. Sampson, S. R., and R. Hainsworth. Responses of aortic body chemoreceptors of the cat to physiological stimuli. Am. J. Physiol. 222: 953–958, 1972.
 519. Sampson, S. R., and R. A. Jaffe. Excitatory effects of 5‐hydroxytryptamine, veratridine and phenyldiguanide on sensory ganglion cells of the nodose ganglion of the cat. Life Sci. 15: 2157–2165, 1974.
 520. Sampson, S. R., G. Nicolaysen, and R. A. Jaffe. Influence of centrifugal sinus nerve activity on carotid body catecholamines: microphotometric analysis of formaldehyde‐induced fluorescence. Brain Res. 85: 437–446, 1975.
 521. Sampson, S. R., and E. H. Vidruk. Hyperpolarizing effects of dopamine on chemoreceptor nerve endings from cat and rabbit carotid bodies in vitro. J. Physiol. London 268: 211–221, 1977.
 522. Sapru, H. N., and A. J. Krieger. Effect of 5‐hydroxytryptamine on the peripheral chemoreceptors in the rat. Res. Commun. Chem. Pathol. Pharmacol. 16: 245–250, 1977.
 523. Sato, M., M. Ozeki, and K. Nishi. Changes produced by sodium‐free condition in the receptor potential of the nonmyelinated terminal in Pacinian corpuscles. Jpn. J. Physiol. 18: 232–237, 1968.
 524. Schweitzer, A., and S. Wright. Action of prostigmine and acetylcholine on respiration. Q. J. Exp. Physiol. 28: 33–47, 1938.
 525. Schwieler, G. H. The physiology and morphology of the peripheral chemoreceptor afferents and the ventilatory reactions to changes in oxygen concentration of the respired air during postnatal development in cats and rabbits. Acta Physiol. Scand. Suppl. 304: 49–63, 1968.
 526. Seidl, E. On the morphology of the vascular system of the carotid body of cat and rabbit and its relation to the glomus type I cells. In: The Peripheral Arterial Chemoreceptors, edited by M. J. Purves. London: Cambridge Univ. Press, 1975, p. 293–299.
 527. Serafini‐Fracassini, A., and P. Frasson. Histochemical observations on the carotid body of the dog. Acta Anat. 63: 240–248, 1966.
 528. Share, L., and M. N. Levy. Effect of carotid chemoreceptor stimulation on plasma antidiuretic hormone titer. Am. J. Physiol. 210: 157–161, 1966.
 529. Simon, J. R., S. Atweh, and M. J. Kuhar. Sodium‐dependent high affinity choline uptake: a regulatory step in the synthesis of acetylcholine. J. Neurochem. 26: 909–922, 1976.
 530. Slotkin, T. A., and N. Kirshner. All‐or‐none secretion of adrenal medullary storage vesicle contents in the rat. Biochem. Pharmacol. 22: 205–219, 1973.
 531. Smatresk, N. J., A. Mokashi, and S. Lahiri. Modulation of aortic body chemoreceptor responses to hypoxia by dopamine, before and after pargyline. Federation Proc. 40: 566, 1981.
 532. Smith, E. E., and J. W. Crowell. Influence of hypoxia on mean circulatory pressure and cardiac output. Am. J. Physiol. 212: 1067–1069, 1967.
 533. Smith, P. G., and E. Mills. Autoradiographic identification of the termination of petrosal ganglion neurons in the cat carotid body. Brain Res. 113: 174–178, 1976.
 534. Smith, P. G., and E. Mills. Physiological and ultrastructural observations on regenerated carotid sinus nerves after removal of the carotid bodies in cats. Neuroscience 4: 2009–2020, 1979.
 535. Smith, P. G., and E. Mills. Restoration of reflex ventilatory response to hypoxia after removal of carotid bodies in the cat. Neuroscience 5: 573–580, 1980.
 536. Sorensen, S. C. The ultrastructure and catecholamine content of the carotid body during chronic hypoxia. In: Morphology and Mechanisms of Chemoreceptors, edited by A. S. Paintal. Delhi: Vallabhbhai Patel Chest Inst., 1976, p. 260–264.
 537. Starlinger, H. Activity of dopamine β‐monooxygenase in the tissue of the cat's carotid body. Hoppe‐Seylers Z. Physiol. Chem. 360: 103–106, 1979.
 538. Starlinger, H. Tyrosine 3‐monooxygenase activity in the cat carotid body tissue. Hoppe‐Seylers Z. Physiol. Chem. 361: 1457–1460, 1980.
 539. Starlinger, H., and D. W. Lübbers. Oxygen consumption of the isolated carotid body tissue (cat). Pfluegers Arch. 366: 61–66, 1976.
 540. Steele, R. H., and H. Hinterberger. Catecholamines and 5‐hydroxytryptamine in the carotid body in vascular, respiratory, and other diseases. J. Lab. Clin. Med. 80: 63–70, 1972.
 541. Stensaas, L. J., and S. J. Fidone. An ultrastructural study of cat petrosal ganglia: a search for autonomic ganglion cells. Brain Res. 124: 29–39, 1977.
 542. Stern, S., and E. Rapaport. Comparison of the reflexes elicited from combined or separate stimulation of the aortic and carotid chemoreceptors on myocardial contractility, cardiac output and systemic resistance. Circ. Res. 20: 214–227, 1967.
 543. Storey, B. T. The respiratory chain of plant mitochondria. V. Reaction of reduced cytochromes a and a3 in mung bean mitochondria with oxygen in the presence of cyanide. Plant Physiol. 45: 455–460, 1970.
 544. Sylvester, J. T., S. M. Scharf, R. D. Gilbert, R. S. Fitzgerald, and R. J. Traystman. Hypoxic and CO hypoxia in dogs: hemodynamics, carotid reflexes, and catecholamines. Am. J. Physiol. 236 (Heart Circ. Physiol. 5): H22–H28, 1979.
 545. Tenney, S. M., and L. C. Ou. Hypoxic ventilatory response of cats at high altitude: an interpretation of “blunting.” Respir. Physiol. 30: 185–199, 1977.
 546. Thilenius, O. G., P. B. Hoffer, R. S. Fitzgerald, and J. F. Perkins, Jr. Response of pulmonary circulation of resting, unanesthetized dogs to acute hypoxia. Am. J. Physiol. 206: 867–874, 1964.
 547. Torrance, R. W. Manipulation of bicarbonate in the carotid body. In: Chemoreception in the Carotid Body, edited by H. Acker, S. Fidone, D. Pallot, C. Eyzaguirre, D. W. Lübbers, and R. W. Torrance. New York: Springer‐Verlag, 1977, p. 286–293.
 548. Travis, D. M. Molecular CO2 is inert on the carotid chemoreceptors. Demonstration by inhibition of carbonic anhydrase. J. Pharmacol. Exp. Ther. 178: 529–540, 1971.
 549. Traystman, R. J., R. S. Fitzgerald, and S. C. Loscutoff. Cerebral circulatory responses to arterial hypoxia in normal and chemodenervated dogs. Circ. Res 42: 649–657, 1978.
 550. Trzebski, A., L. Chruscielewski, and S. Majcherczyk. Effect of hyperosmotic solutions on the carotid baroreceptor and chemoreceptor discharges in cats. Eur. J. Clin. Invest. 7: 236, 1977.
 551. Tucker, C. E., W. E. James, M. A. Berry, C. J. Johnstone, and R. F. Grover. Depressed myocardial function in the goat at high altitude. J. Appl. Physiol. 41: 356–361, 1976.
 552. Van Loon, G. R., L. Schwartz, and M. J. Sole. Plasma dopamine responses to standing and exercise in man. Life Sci. 24: 2273–2278, 1979.
 553. Vatner, S. F., and R. J. McRitchie. Interaction of the chemoreflex and pulmonary inflation reflex in the regulation of coronary circulation in conscious dogs. Circ. Res. 37: 664–673, 1975.
 554. Vatner, S. F., and J. D. Rutherford. Control of myocardial contractile state by carotid chemo‐ and baroreceptor and pulmonary inflation reflexes in conscious dogs. J. Clin. Invest. 61: 1593–1601, 1978.
 555. Vázquez‐Nin, G., I. Costero, R. Aguilar, and O. M. Echeverría. Innervation of the carotid body, types of nerve endings and their possible significance. Acta Anat. 98: 233–239, 1977.
 556. Verna, A. Infrastructure des divers types de terminaisons nerveuses dans le glomus carotidien du lapin. J. Microsc. 10: 59–66, 1971.
 557. Verna, A. Terminaisons nerveuses afférentes et efférentes dans le glomus carotidien du lapin. J. Microsc. 16: 299–308, 1973.
 558. Verna, A. Contribution a l'étude du glomus carotidien du lapin. Recherches cytologiques, cytochimiques et expérimentales. Bordeaux, France: Univ. of Bordeaux, 1975.
 559. Verna, A. Observations on the innervation of the carotid body of the rabbit. In: The Peripheral Arterial Chemoreceptors, edited by M. J. Purves. London: Cambridge Univ. Press, 1975, p. 75–99.
 560. Verna, A. Dense‐cored vesicles and cell types in the rabbit carotid body. In: Chemoreception in the Carotid Body, edited by H. Acker, S. Fidone, D. Pallot, C. Eyzaguirre, D. W. Lübbers, and R. W. Torrance. New York: Springer‐Verlag, 1977, p. 216–220.
 561. Verna, A. Ultrastructure of the carotid body in mammals. Int. Rev. Cytol. 60: 271–330, 1979.
 562. Verna, A., M. Roumy, and L. M. Leitner. Loss of chemo‐receptive properties of the rabbit carotid body after destruction of the glomus cells. Brain Res. 100: 13–23, 1975.
 563. Vidruk, E. H., and J. A. Dempsey. Carotid body chemoreceptor activity as recorded from the petrosal ganglion in cats. Brain Res. 181: 455–459, 1980.
 564. Villegas, J. Effects of tubocurarine and eserine on the axon‐Schwann cell relationship in the squid nerve fibre. J. Physiol. London 232: 193–208, 1973.
 565. Weigelt, H., and H. Acker. Comparative measurements of tissue Po2 in the carotid body. In: Chemoreception in the Carotid Body, edited by H. Acker, S. Fidone, D. Pallot, C. Eyzaguirre, D. W. Lübbers, and R. W. Torrance. New York: Springer‐Verlag, 1977, p. 244–249.
 566. Weight, F. F., and S. D. Erulkar. Synaptic transmission and effects of temperature at the squid giant synapse. Nature London 261: 720–722, 1976.
 567. Welsh, M. J., D. D. Heistad, and F. M. Abboud. Depression of ventilation by dopamine in man. Evidence for an effect on the chemoreceptor reflex. J. Clin. Invest. 61: 708–713, 1978.
 568. Werman, R. A review—criteria for identification of a central nervous system transmitter. Comp. Biochem. Physiol. 18: 745–766, 1966.
 569. Whalen, W. J., and P. Nair. Some factors affecting tissue Po2 in the carotid body. J. Appl. Physiol. 39: 562–566, 1975.
 570. Whalen, W. J., and P. Nair. Po2 in the carotid body perfused and/or superfused with cell‐free media. J. Appl. Physiol. 41: 180–184, 1976.
 571. Whalen, W. J., and P. Nair. Factors affecting O2 consumption of the cat carotid body. In: Chemoreception in the Carotid Body, edited by H. Acker, S. Fidone, D. Pallot, C. Eyzaguirre, D. W. Lübbers, and R. W. Torrance. New York: Springer‐Verlag, 1977, p. 233–239.
 572. Whalen, W. J., J. Savoca, and P. Nair. Oxygen tension measurements in carotid body of the cat. Am. J. Physiol. 225: 986–991, 1973.
 573. Wharton, J., J. M. Polak, A. G. E. Pearse, G. P. McGregor, M. G. Bryant, S. R. Bloom, P. C. Emson, G. E. Bisgard, and J. A. Will. Enkephalin‐, VIP‐, and substance‐P‐like immunoreactivity in the carotid body. Nature London 284: 269–271, 1980.
 574. Whelan, R. F., and I. M. Young. The effect of adrenaline and noradrenaline infusion on respiration in man. Br. J. Pharmacol. Chemother. 8: 98–102, 1953.
 575. Willshaw, P. Mechanism of inhibition of chemoreceptor activity by sinus nerve efferents. In: Chemoreception in the Carotid Body, edited by H. Acker, S. Fidone, D. Pallot, C. Eyzaguirre, D. W. Lübbers, and R. W. Torrance. New York: Springer‐Verlag, 1977, p. 168–174.
 576. Willshaw, P., and S. Majcherczyk. The effects of changes in arterial pressure on sinus nerve efferent activity. Adv. Exp. Med. Biol. 99: 275–280, 1978.
 577. Willshaw, P., and S. Majcherczyk. Peripheral arterial chemoreceptors as detectors of oxygen flow to the brain. In: Central Nervous Control Mechanisms in Breathing, edited by C. von Euler and H. Lagercrantz. Oxford, UK: Pergamon, 1979, p. 95–100.
 578. Wilson, D. F., M. Erecinska, C. Drown, and I. A. Silver. The oxygen dependence of cellular energy metabolism. Arch. Biochem. Biophys. 195: 485–493, 1979.
 579. Winder, C. V. On the mechanism of stimulation of carotid gland chemoreceptors. Am. J. Physiol. 118: 389–398, 1937.
 580. Wirthlin, L. S., and E. P. Beck. Effects of simulated high altitude on left circumflex coronary flow, blood pressure, cardiac output, and myocardial metabolism in the unmedicated greyhound dog. US Naval Aerosp. Med. Inst. Bull. 965: 1–23, 1966.
 581. Woodrum, D. E., T. A. Standaert, C. R. Parks, D. Belenky, J. Murphy, and W. A. Hodson. Ventilatory response in the fetal lamb following peripheral chemodenervation. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 42: 630–635, 1977.
 582. Woods, E. F., and J. A. Richardson. Effects of acute anoxia on cardiac contractility. Am. J. Physiol. 196: 203–206, 1959.
 583. Woods, R. I. Distribution of cytochrome oxidase, monoamine oxidase and carbonic anhydrase in the carotid body of the rabbit. Nature London 213: 1240, 1967.
 584. Woods, R. I. Penetration of horseradish peroxidase between all elements of the carotid body. In: Peripheral Arterial Chemoreceptors, edited by M. J. Purves. London: Cambridge Univ. Press, 1975, p. 195–205.
 585. Yamamura, H. I., and S. H. Snyder. High affinity transport of choline into synaptosomes of rat brain. J. Neurochem. 21: 1355–1374, 1973.
 586. Yamashita, H. Effect of baro‐ and chemoreceptor activation on supraoptic nuclei neurons in the hypothalamus. Brain Res. 126: 551–556, 1977.
 587. Yasuhara, H., S. Nakayama, and T. Mayahara. Depressed respiration induced by intravenously administered dopamine in anesthetized dogs. Jpn. J. Pharmacol. 30: 251–255, 1980.
 588. Yates, R. D., I.‐L. Chen, and D. Duncan. Effects of sinus nerve stimulation on the carotid body glomus cells. J. Cell Biol. 47: 544–552, 1970.
 589. Young, I. M. Some observations on the mechanism of adrenaline hyperpnoea. J. Physiol. London 137: 374–395, 1957.
 590. Zapata, P. Effects of dopamine on carotid chemo‐ and baroreceptors in vitro. J. Physiol. London 244: 235–251, 1975.
 591. Zapata, P. Modulatory role of dopamine on arterial chemoreceptors. Adv. Biochem. Psychopharmacol. 16: 291–298, 1977.
 592. Zapata, P. Arterial chemoreceptors: searching for transmitter and modulator substances. In: Trends in Autonomic Pharmacology, edited by S. Kalsner. Baltimore, MD: Urban & Schwarzenberg, 1982, vol. 2, p. 343–361.
 593. Zapata, P., A. Hess, E. L. Bliss, and C. Eyzaguirre. Chemical, electron microscopic and physiological observations on the role of catecholamines in the carotid body. Brain Res. 14: 473–498, 1969.
 594. Zapata, P., A. Hess, and C. Eyzaguirre. Reinnervation of carotid body and sinus with superior laryngeal nerve fibers. J. Neurophysiol. 32: 215–228, 1969.
 595. Zapata, P., and C. Larrain. Antagonism of dopamine‐induced chemosensory inhibition by ergot alkaloids. Neurosci. Lett. 8: 131–136, 1978.
 596. Zapata, P., and F. Llados. Blockade of carotid body chemosensory inhibition. In: Chemoreception in the Carotid Body, edited by H. Acker, S. Fidone, D. Pallot, C. Eyzaguirre, D. W. Lübbers, and R. W. Torrance. New York: Springer‐Verlag, 1977, p. 152–159.
 597. Zapata, P., L. J. Stensaas, and C. Eyzaguirre. Axon regeneration following a lesion of the carotid nerve: electrophysiological and ultrastructural observations. Brain Res. 113: 235–253, 1976.
 598. Zapata, P., and A. Zuazo. Respiratory effects of dopamine‐induced inhibition of chemosensory inflow. Respir. Physiol. 40: 79–92, 1980.
 599. Zapata, P., A. Zuazo, and F. Llados. Acute changes in ventilation and blood pressure induced by inhalation of tobacco smoke. Arch. Int. Pharmacodyn. Ther. 219: 116–127, 1976.
 600. Zapata, P., A. Zuazo, and F. Llados. Respiratory and circulatory reflexes induced by nicotine injections: role of carotid body chemoreceptors. Arch. Int. Pharmacodyn. Ther. 219: 128–139, 1976.
 601. Zuazo, A., and P. Zapata. Regional sympathectomy induced by intra‐arterial 6‐hydroxy‐dopamine. Neurosci. Lett. 9: 317–322, 1978.
 602. Zuazo, A., and P. Zapata. Effects of 6‐hydroxy‐dopamine on carotid body chemosensory activity. Neurosci. Lett. 9: 323–328, 1978.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Carlos Eyzaguirre, Robert S. Fitzgerald, Sukhamay Lahiri, Patricio Zapata. Arterial Chemoreceptors. Compr Physiol 2011, Supplement 8: Handbook of Physiology, The Cardiovascular System, Peripheral Circulation and Organ Blood Flow: 557-621. First published in print 1983. doi: 10.1002/cphy.cp020316