Comprehensive Physiology Wiley Online Library

Cardiovascular Reflex Control by Afferent Fibers from Skeletal Muscle Receptors

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Afferent Fibers from Skeletal Muscle and Their Receptors
1.1 Composition of Muscle Nerves
1.2 Muscle Spindles and Golgi Tendon Organs
1.3 Receptive Properties of Group III and Group IV Afferent Fibers
2 Central Pathways for Cardiovascular Reflexes from Skeletal Muscle Receptors
2.1 Spinal Termination of Primary Muscle Afferents
2.2 Central Pathways Arising From Myelinated Primary Muscle Afferents
2.3 Central Pathways Arising From Unmyelinated Primary Muscle Afferents
2.4 Ascending and Descending Spinal Pathways Involved in Cardiovascular Reflex Control From Skeletal Muscle
3 Organization of Efferent Outflow in Pre‐ and Postganglionic Neurons
4 Cardiovascular Responses from Skeletal Muscle Receptors
4.1 Effect of Activation of Afferent Fibers
4.2 Effect of Induced Muscular Contraction (Simulated Exercise)
5 Interaction of Muscle Afferents with Other Cardiovascular Reflexes
5.1 Arterial Baroreceptors
5.2 Cardiopulmonary Vagal Afferents
6 Role of Skeletal Muscle Afferents in Cardiovascular Response to Exercise in Humans
6.1 Dynamic and Static Exercise
6.2 Central Control (Central Command)
6.3 Peripheral Control
6.4 Integration of Neural Control Mechanisms During Exercise
7 Conclusion
Figure 1. Figure 1.

Experimental arrangements to record, identify, and stimulate fine afferent units of skeletal muscle and tendon.

Figure 2. Figure 2.

Responses of gastrocnemius‐soleus fine afferent units to stretch. Peristimulus time histograms plotted from computer records with a dwell time of 1‐4s for each address. Filled bars, hindpaw held flexed (static stretch); open bars, paw moved rhythmically from extended to flexed position at a rate of 1 Hz (dynamic stretch). A and B: group IV units (conduction velocities 0.9 and 2.1 m/s, respectively). C, D, and E: group III units (conduction velocities 21.5, 16.1, and 15.9 m/s). F: stretch‐sensitive (excitation) units excited by static and/or dynamic stretch.

From Mense
Figure 3. Figure 3.

Responses of gastrocnemius‐soleus fine afferent units to isometric contractions induced by stimulating these muscle nerves every second with a 50‐Hz tetanus lasting 500 ms for 2 min. Muscle temperature changes thus induced are also displayed. Histograms give resulting discharges at an address advance rate of 1/4 s. A: group III unit (conduction velocity 14.2 m/s) probably activated mechanically (CSm unit). B: responses to stretch of this group III unit. C: group IV unit (conduction velocity 0.9 m/s), probably not activated mechanically (CSx unit). Unit was not sensitive to stretch. No appreciable change in response pattern occurred after occlusion of local blood supply. D: group IV unit (conduction velocity 0.7 m/s) responds preferentially during ischemic contractions (N unit).

From Mense
Figure 4. Figure 4.

Responses of gastrocnemius‐soleus group IV unit (conduction velocity 1.1 m/s) to temperature stimuli. Inset in C: peak discharge to a warm stimulus. Brad., bradykinin; 5‐HT, serotonin.

From Mense
Figure 5. Figure 5.

Activity in a single group IV afferent unit in response to intra‐arterial injection of various algesic agents. Recording from gastrocnemius part of sciatic nerve at upper part of thigh. Conduction velocity of fiber was 1.27 m/s. Arrows, intra‐arterial injections. Brad., bradykinin; Hist., histamine; 5‐HT, serotonin. Upper right‐hand inset shows receptor discharge after 5‐HT injection.

Adapted from Mense and Schmidt
Figure 6. Figure 6.

Response characteristics of a group III afferent unit having a receptive field in the calcaneal tendon. Inset: area from which unit could be activated by stroking and touching with a painter's brush is hatched. Mod. P., moderate, innocuous pressure; Nox. P., noxious pressure resulting in tissue damage; Stretch, muscle and tendon rapidly stretched and kept in stretched position for 15 s; Contraction, 1 tetanic contraction of 0.5 s duration every second, induced by electrical stimulation of the muscle nerve. Force of 2 kp was maximal here because muscle was not prestretched. Thermal stimulation was applied via water‐perfused thermodes in contact with receptive field. Conduction velocity of the afferent fiber was 8.8 m/s.

S. Mense and H. Meyer, unpublished observations
Figure 7. Figure 7.

Organization of vasoconstrictor systems and sudomotor system in brain‐intact animals (supraspinal and spinal) and in spinal animals (spinal) with respect to various afferent input systems. Baro, stimulation of arterial baroreceptors; Chemo, stimulation of arterial chemoreceptors; Noci, stimulation of cutaneous nociceptors (i.l., ipsilateral; c.l., contralateral); Vibr., stimulation of Pacinian corpuscles by vibration; Warm, stimulation of warm receptors in the spinal canal; Air jet, stimulation of hair follicle receptors.

Adapted from Jänig
Figure 8. Figure 8.

Specificity of sympathetic channels supplying peripheral target organs in skin and muscle of cat's hindlimb and tail. Deduced from reflex reaction patterns summarized in Fig. .

From Jänig and Szulczyk
Figure 9. Figure 9.

Blood pressure responses to stimulation of afferent fibers from muscle. Stimulation at 12 V for 0.5 ms at 6 Hz (A), at 20 Hz (B), and at 100 Hz (C).

From Johansson
Figure 10. Figure 10.

Percent change from control of cardiovascular and respiratory responses to capsaicin infusion into skeletal muscles and to induced isometric exercise. HR, heart rate; MAP, mean arterial pressure; CO, cardiac output; MV, respiratory minute volume; TPR, total peripheral vascular resistance.

From Crayton, Mitchell, and Payne
Figure 11. Figure 11.

Effect of somatopressor reflex on coronary artery resistance. A: control; B: after propranolol and at constant heart rate. COR, mean perfusion pressure of a constantly perfused coronary artery; SAP, mean systemic arterial pressure; HR, heart rate. Black bars, stimulation.

From Nutter and Wickliffe , by permission of the American Heart Association, Inc
Figure 12. Figure 12.

Percent change from control of cardiac output and organ blood flow to capsaicin infusion into skeletal muscles and into induced isometric exercise.

From Crayton, Mitchell, and Payne
Figure 13. Figure 13.

Effect of somatopressor reflex on venous tone. Vein, mean perfusion pressure in the lateral saphenous vein perfused at constant flow; SAP, mean systemic arterial pressure; HR, heart rate. Black bar, stimulation of central end of sectioned tibial nerve.

From Nutter and Wickliffe , by permission of the American Heart Association, Inc
Figure 14. Figure 14.

Response to induced static exercise. LVP, left ventricular pressure; dP/dt, rate of left ventricular pressure development. Time mark, 1 s. Exercise between bars.

From Mitchell et al.
Figure 15. Figure 15.

Effect of muscle paralysis on changes in mean aortic pressure and perfusion pressure in left paw and lateral saphenous vein during induced rhythmic contractions (upper panels) and during sustained contractions (lower panels) before and after muscle paralysis produced by gallamine.

From Clement and Shepherd , by permission of the American Heart Association, Inc
Figure 16. Figure 16.

Cardiovascular response to induced exercise. AP, arterial pressure; HPP, hindlimb perfusion pressure; HR, heart rate. A: dynamic exercise; B: static exercise induced by stimulation of femoral nerve.

From Tallarida et al.
Figure 17. Figure 17.

Effect of arterial occlusion on arterial blood presure response during induced exercise. • Static exercise without occlusion; ○, static exercise with occlusion; ⋄, dynamic exercise without occlusion; ⋄, dynamic exercise with occlusion. Arrows, pairs of consecutive contractions with free and occluded arterial inflow.

From Pérez‐González , by permission of the American Heart Association, Inc
Figure 18. Figure 18.

Relation of rate of left ventricular pressure development to left ventricular pressure at rest and during induced static exercise before and after blockade of β‐adrenergic receptor.

From Mitchell et al.
Figure 19. Figure 19.

Regional myocardial blood flow and resistance responses to induced static exercise after blockade of β‐adrenergic receptor with propranolol.

From Longhurst, Aung‐Din, and Mitchell
Figure 20. Figure 20.

Response to induced static exercise during anodal block. Records of tidal volume (VT), arterial blood pressure (B.P.), and dorsal root compound action potentials are shown for 3 exercise responses. Upper panel, control exercise response before anodal block; middle panel, exercise response during anodal block just sufficient to abolish the A wave of compound action potential; lower panel, control exercise response after removal of anodal block.

From McCloskey and Mitchell
Figure 21. Figure 21.

Response to induced static exercise during anesthetic block. VT tidal volume; B.P., arterial blood pressure. Upper panel, control exercise response before anesthetic block; middle panel, exercise response during anesthetic block that had not affected the A wave of the compound action potential; lower panel, control exercise response after removal of the anesthetic block.

From McCloskey and Mitchell
Figure 22. Figure 22.

Blood pressure response to induced contractions of cat medial gastrocnemius muscle after partial neuromuscular blockade. ○, Systolic blood pressure; •, diastolic blood pressure recorded before, during, and after fatiguing contraction. Solid lines, after administration of curare; dashed lines, after administration of decamethonium.

From Petrofsky and Lind
Figure 23. Figure 23.

Baroreflex activity in a dog. ○, Points for pulse interval at rest; •, pulse interval during induced isometric contractions (exercise) of hindlimb muscles. Points are plotted at a control level of blood pressure and at the peak of rise in blood pressure caused by inflating a balloon in the thoracic aorta. Slopes of lines joining pairs of points represent baroreceptor‐cardiodepressor reflex sensitivity.

From Streatfeild et al. , by permission of the New England Journal of Medicine
Figure 24. Figure 24.

Heart rate, mean blood pressure, smoothed, rectified electromyographic activity (SREMG), and force during 5 min of static contraction (mean values). ⋄, Force‐constant experiments; ×, SREMG‐constant experiments. • Significantly different values obtained for mean blood pressure and heart rate in 2 series of experiments (P < 0.01 after 1.5 and 2 min of contraction, respectively).

From Schibye et al.


Figure 1.

Experimental arrangements to record, identify, and stimulate fine afferent units of skeletal muscle and tendon.



Figure 2.

Responses of gastrocnemius‐soleus fine afferent units to stretch. Peristimulus time histograms plotted from computer records with a dwell time of 1‐4s for each address. Filled bars, hindpaw held flexed (static stretch); open bars, paw moved rhythmically from extended to flexed position at a rate of 1 Hz (dynamic stretch). A and B: group IV units (conduction velocities 0.9 and 2.1 m/s, respectively). C, D, and E: group III units (conduction velocities 21.5, 16.1, and 15.9 m/s). F: stretch‐sensitive (excitation) units excited by static and/or dynamic stretch.

From Mense


Figure 3.

Responses of gastrocnemius‐soleus fine afferent units to isometric contractions induced by stimulating these muscle nerves every second with a 50‐Hz tetanus lasting 500 ms for 2 min. Muscle temperature changes thus induced are also displayed. Histograms give resulting discharges at an address advance rate of 1/4 s. A: group III unit (conduction velocity 14.2 m/s) probably activated mechanically (CSm unit). B: responses to stretch of this group III unit. C: group IV unit (conduction velocity 0.9 m/s), probably not activated mechanically (CSx unit). Unit was not sensitive to stretch. No appreciable change in response pattern occurred after occlusion of local blood supply. D: group IV unit (conduction velocity 0.7 m/s) responds preferentially during ischemic contractions (N unit).

From Mense


Figure 4.

Responses of gastrocnemius‐soleus group IV unit (conduction velocity 1.1 m/s) to temperature stimuli. Inset in C: peak discharge to a warm stimulus. Brad., bradykinin; 5‐HT, serotonin.

From Mense


Figure 5.

Activity in a single group IV afferent unit in response to intra‐arterial injection of various algesic agents. Recording from gastrocnemius part of sciatic nerve at upper part of thigh. Conduction velocity of fiber was 1.27 m/s. Arrows, intra‐arterial injections. Brad., bradykinin; Hist., histamine; 5‐HT, serotonin. Upper right‐hand inset shows receptor discharge after 5‐HT injection.

Adapted from Mense and Schmidt


Figure 6.

Response characteristics of a group III afferent unit having a receptive field in the calcaneal tendon. Inset: area from which unit could be activated by stroking and touching with a painter's brush is hatched. Mod. P., moderate, innocuous pressure; Nox. P., noxious pressure resulting in tissue damage; Stretch, muscle and tendon rapidly stretched and kept in stretched position for 15 s; Contraction, 1 tetanic contraction of 0.5 s duration every second, induced by electrical stimulation of the muscle nerve. Force of 2 kp was maximal here because muscle was not prestretched. Thermal stimulation was applied via water‐perfused thermodes in contact with receptive field. Conduction velocity of the afferent fiber was 8.8 m/s.

S. Mense and H. Meyer, unpublished observations


Figure 7.

Organization of vasoconstrictor systems and sudomotor system in brain‐intact animals (supraspinal and spinal) and in spinal animals (spinal) with respect to various afferent input systems. Baro, stimulation of arterial baroreceptors; Chemo, stimulation of arterial chemoreceptors; Noci, stimulation of cutaneous nociceptors (i.l., ipsilateral; c.l., contralateral); Vibr., stimulation of Pacinian corpuscles by vibration; Warm, stimulation of warm receptors in the spinal canal; Air jet, stimulation of hair follicle receptors.

Adapted from Jänig


Figure 8.

Specificity of sympathetic channels supplying peripheral target organs in skin and muscle of cat's hindlimb and tail. Deduced from reflex reaction patterns summarized in Fig. .

From Jänig and Szulczyk


Figure 9.

Blood pressure responses to stimulation of afferent fibers from muscle. Stimulation at 12 V for 0.5 ms at 6 Hz (A), at 20 Hz (B), and at 100 Hz (C).

From Johansson


Figure 10.

Percent change from control of cardiovascular and respiratory responses to capsaicin infusion into skeletal muscles and to induced isometric exercise. HR, heart rate; MAP, mean arterial pressure; CO, cardiac output; MV, respiratory minute volume; TPR, total peripheral vascular resistance.

From Crayton, Mitchell, and Payne


Figure 11.

Effect of somatopressor reflex on coronary artery resistance. A: control; B: after propranolol and at constant heart rate. COR, mean perfusion pressure of a constantly perfused coronary artery; SAP, mean systemic arterial pressure; HR, heart rate. Black bars, stimulation.

From Nutter and Wickliffe , by permission of the American Heart Association, Inc


Figure 12.

Percent change from control of cardiac output and organ blood flow to capsaicin infusion into skeletal muscles and into induced isometric exercise.

From Crayton, Mitchell, and Payne


Figure 13.

Effect of somatopressor reflex on venous tone. Vein, mean perfusion pressure in the lateral saphenous vein perfused at constant flow; SAP, mean systemic arterial pressure; HR, heart rate. Black bar, stimulation of central end of sectioned tibial nerve.

From Nutter and Wickliffe , by permission of the American Heart Association, Inc


Figure 14.

Response to induced static exercise. LVP, left ventricular pressure; dP/dt, rate of left ventricular pressure development. Time mark, 1 s. Exercise between bars.

From Mitchell et al.


Figure 15.

Effect of muscle paralysis on changes in mean aortic pressure and perfusion pressure in left paw and lateral saphenous vein during induced rhythmic contractions (upper panels) and during sustained contractions (lower panels) before and after muscle paralysis produced by gallamine.

From Clement and Shepherd , by permission of the American Heart Association, Inc


Figure 16.

Cardiovascular response to induced exercise. AP, arterial pressure; HPP, hindlimb perfusion pressure; HR, heart rate. A: dynamic exercise; B: static exercise induced by stimulation of femoral nerve.

From Tallarida et al.


Figure 17.

Effect of arterial occlusion on arterial blood presure response during induced exercise. • Static exercise without occlusion; ○, static exercise with occlusion; ⋄, dynamic exercise without occlusion; ⋄, dynamic exercise with occlusion. Arrows, pairs of consecutive contractions with free and occluded arterial inflow.

From Pérez‐González , by permission of the American Heart Association, Inc


Figure 18.

Relation of rate of left ventricular pressure development to left ventricular pressure at rest and during induced static exercise before and after blockade of β‐adrenergic receptor.

From Mitchell et al.


Figure 19.

Regional myocardial blood flow and resistance responses to induced static exercise after blockade of β‐adrenergic receptor with propranolol.

From Longhurst, Aung‐Din, and Mitchell


Figure 20.

Response to induced static exercise during anodal block. Records of tidal volume (VT), arterial blood pressure (B.P.), and dorsal root compound action potentials are shown for 3 exercise responses. Upper panel, control exercise response before anodal block; middle panel, exercise response during anodal block just sufficient to abolish the A wave of compound action potential; lower panel, control exercise response after removal of anodal block.

From McCloskey and Mitchell


Figure 21.

Response to induced static exercise during anesthetic block. VT tidal volume; B.P., arterial blood pressure. Upper panel, control exercise response before anesthetic block; middle panel, exercise response during anesthetic block that had not affected the A wave of the compound action potential; lower panel, control exercise response after removal of the anesthetic block.

From McCloskey and Mitchell


Figure 22.

Blood pressure response to induced contractions of cat medial gastrocnemius muscle after partial neuromuscular blockade. ○, Systolic blood pressure; •, diastolic blood pressure recorded before, during, and after fatiguing contraction. Solid lines, after administration of curare; dashed lines, after administration of decamethonium.

From Petrofsky and Lind


Figure 23.

Baroreflex activity in a dog. ○, Points for pulse interval at rest; •, pulse interval during induced isometric contractions (exercise) of hindlimb muscles. Points are plotted at a control level of blood pressure and at the peak of rise in blood pressure caused by inflating a balloon in the thoracic aorta. Slopes of lines joining pairs of points represent baroreceptor‐cardiodepressor reflex sensitivity.

From Streatfeild et al. , by permission of the New England Journal of Medicine


Figure 24.

Heart rate, mean blood pressure, smoothed, rectified electromyographic activity (SREMG), and force during 5 min of static contraction (mean values). ⋄, Force‐constant experiments; ×, SREMG‐constant experiments. • Significantly different values obtained for mean blood pressure and heart rate in 2 series of experiments (P < 0.01 after 1.5 and 2 min of contraction, respectively).

From Schibye et al.
References
 1. Abboud, F. M., A. L. Mark, and M. D. Thames. Modulation of the somatic reflex by carotid baroreceptors and by cardiopulmonary afferents in animals and humans. Circ. Res. 48, Suppl. 1: 131–137, 1981.
 2. Aihara, Y., H. Nakamura, A. Sato, and A. Simpson. Neural control of gastric motility with special reference to cutaneogastric reflexes. In: Integrative Functions of the Autonomic Nervous System, edited by C. McC Brooks, K. Koizumi, and A. Sato. Amsterdam: Elsevier, 1979, p. 38–49.
 3. Alam, M., and F. H. Smirk. Observations in man upon a blood pressure raising reflex arising from the voluntary muscles. J. Physiol. London 89: 372–383, 1937.
 4. Alam, M., and F. H. Smirk. Observations in man on a pulse‐accelerating reflex from the voluntary muscles of the legs. J. Physiol. London 92: 167–177, 1938.
 5. Alam, M., and F. H. Smirk. Unilateral loss of a blood pressure raising, pulse accelerating, reflex from voluntary muscle due to a lesion of the spinal cord. Clin. Sci. 3: 247–252, 1938.
 6. Alam, M., and F. H. Smirk. Observation in man concerning the effects of different types of sensory stimulation upon the blood pressure. Clin. Sci. 3: 253–258, 1938.
 7. Alexander, R. S. The effects of blood flow and anoxia on spinal cardiovascular centers. Am. J. Physiol. 143: 698–708, 1945.
 8. Andres, K. H., M. von Düring, W. Jänig, and R. F. Schmidt. Ultrastructure of fine afferent terminals in the Achilles tendon of the cat (Abstract). Pfluegers Arch. 384: R33, 1980.
 9. Applebaum, M. L., G. L. Clifton, R. E. Coggeshall, J. D. Coulter, W. H. Vance, and W. D. Willis. Unmyelinated fibres in the sacral 3 and caudal 1 ventral roots of the cat. J. Physiol. London 256: 557–572, 1976.
 10. Asmussen, E. Similarities and dissimilarities between static and dynamic exercise. Circ. Res. 48, Suppl. 1: 3–10, 1981.
 11. Asmussen, E., E. H. Christensen, and M. Nielsen. Kreislaufgrösse und cortikale motorische Innervation. Skand. Arch. Physiol. 83: 181–187, 1940.
 12. Asmussen, E., S. H. Johansen, M. Jørgensen, and M. Nielsen. On the nervous factors controlling respiration and circulation during exercise. Experiments with curarization. Acta Physiol. Scand. 63: 343–350, 1965.
 13. Asmussen, E., M. Nielsen, and G. Wieth‐Pedersen. On the regulation of the circulation during muscular work. Acta Physiol. Scand. 6: 353–358, 1943.
 14. Asp, D. Beobachtungen über Gefässnerven. Ber. K. Sächs Ges. Wiss. Math. Phys. Kl. 19: 135–189, 1867.
 15. Aung‐Din, R., J. H. Mitchell, and J. C. Longhurst. Reflex α‐adrenergic coronary vasoconstriction during hindlimb static exercise in dogs. Circ. Res. 48: 502–509, 1981.
 16. Barcroft, H., and J. L. E. Millen. The blood flow through muscle during sustained contraction. J. Physiol. London 97: 17–31, 1939.
 17. Barker, D. The morphology of muscle receptors. In: Handbook of Sensory Physiology. Muscle Receptors, edited by C. C. Hunt. New York: Springer‐Verlag, 1974, vol. III, pt. 2, p. 1–90.
 18. Barman, S. M., and R. D. Wurster. Interaction of descending spinal sympathetic pathways and afferent nerves. Am. J. Physiol. 234 (Heart Circ. Physiol. 3): H223–H229, 1978.
 19. Beacham, W. S., and E. R. Perl. Background and reflex discharge of sympathetic preganglionic neurones in the spinal cat. J. Physiol. London 172: 400–416, 1964.
 20. Beacham, W. S., and E. R. Perl. Characteristics of a spinal sympathetic reflex. J. Physiol. London 173: 431–448, 1964.
 21. Berman, A. L. The Brainstem of the Cat. A Cytoarchitectonic Atlas with Stereotaxic Coordinates. Madison: Univ. of Wisconsin Press, 1968.
 22. Bessou, P., and Y. Laporte. Activation des fibres afférentes amyéliniques d'origine musculaire. C. R. Soc. Biol. 152: 1587–1590, 1958.
 23. Bessou, P., and Y. Laporte. Activation des fibres afférentes myélinisées de petit calibre, d'origine musculaire (fibre du groupe III). J. Physiol. Paris 52: 19–20, 1960.
 24. Bevegárd, B. S., and J. T. Shepherd. Circulatory effects of stimulating the carotid arterial stretch receptors in man at rest and during exercise. J. Clin. Invest. 45: 132–142, 1966.
 25. Bevegárd, B. S., and J. T. Shepherd. Regulation of the circulation during exercise in man. Physiol. Rev. 47: 178–213, 1967.
 26. Bligh, J. Temperature Regulation in Mammals and Other Vertebrates. Amsterdam: North‐Holland, 1973.
 27. Blomqvist, C. G., S. F. Lewis, W. F. Taylor, and R. M. Graham. Similarity of the hemodynamic responses to static and dynamic exercise of small muscle groups. Circ. Res. 48, Suppl. 1: 87–92, 1981.
 28. Blumberg, H., W. Jänig, C. Rieckmann, and P. Szulczyk. Baroreceptor and chemoreceptor reflexes in postganglionic neurones supplying skeletal muscle and hairy skin. J. Auton. Nerv. Syst. 2: 223–240, 1980.
 29. Bonde‐Petersen, F., A. L. Mørk, and E. Nielsen. Local muscle blood flow and sustained contractions of human arm and back muscles. Eur. J. Appl. Physiol. Occup. Physiol. 34: 43–50, 1975.
 30. Borst, C., A. P. Hollander, and L. N. Bouman. Cardiac acceleration elicited by voluntary muscle contractions of minimal duration. J. Appl. Physiol. 32: 70–77, 1972.
 31. Boyd, I. A., and M. R. Davey. Composition of Peripheral Nerves. London: Livingstone, 1968.
 32. Boyd, I. A., and K. U. Kalu. Scaling factor relating conduction velocity and diameter for myelinated afferent nerve fibres in the cat hind limb. J. Physiol. London 289: 277–297, 1979.
 33. Bradley, K., and J. C. Eccles. Analysis of the fast afferent impulses from thigh muscles. J. Physiol. London 122: 462–473, 1953.
 34. Bristow, J. D., E. B. Brown, Jr, D. J. C. Cunningham, M. G. Howson, E. S. Petersen, T. G. Pickering, and P. Sleight. Effect of bicycling on the baroreflex regulation of pulse interval. Circ. Res. 28: 582–592, 1971.
 35. Brody, M. J. Histaminergic and cholinergic vasodilator systems. In: Mechanics of Vasodilation, edited by P. M. Vanhoutte and I. Leusen. Basel: Karger, 1978, p. 266–277.
 36. Brooks, C. McC, K. Koizumi, and A. Sato. Integrative Functions of the Autonomic Nervous System. Amsterdam: Elsevier, 1979.
 37. Brown, A. M. Cardiac reflexes. In: Handbook of Physiology. The Cardiovascular System. The Heart, edited by R. M. Berne and N. Sperelakis. Bethesda, MD: Am. Physiol. Soc, 1979, sect. 2, vol. I, chapt. 19, p. 677–689.
 38. Bruce, R. A., A. R. Lind, D. Franklin, A. L. Muir, H. R. Macdonald, G. W. McNicol, and K. W. Donald. The effects of digoxin on fatiguing static and dynamic exercise in man. Clin. Sci. 34: 29–42, 1968.
 39. Buck, J. A., L. R. Amundsen, and D. H. Nielsen. Systolic blood pressure response during isometric contractions of large and small muscle groups. Med. Sci. Sports Exerc. 12: 145–147, 1980.
 40. Burch, G. E., and N. P. DePasquale. Bradykinin, digital blood flow, and the arteriovenous anastomoses. Circ. Res. 10: 105–115, 1962.
 41. Burgess, P. R., and E. R. Perl. Cutaneous mechanoreceptors and nociceptors. In: Handbook of Sensory Physiology. Somatosensory System, edited by A. Iggo. New York: Springer‐Verlag, 1973, vol. II, p. 29–76.
 42. Cannon, W. B. Bodily Changes in Pain, Hunger, Fear and Rage (2nd ed.). New York: Appleton, 1929.
 43. Cannon, W. B. The Wisdom of the Body. New York: Norton, 1932.
 44. Chung, J. M., C. L. Webber, Jr, and R. D. Wurster. Ascending spinal pathways for the somatosympathetic A and C reflexes. Am. J. Physiol. 237 (Heart Circ. Physiol. 6): H342–H347, 1979.
 45. Chung, J. M., and R. D. Wurster. Ascending pressor and depressor pathways in the cat spinal cord. Am. J. Physiol. 231: 786–792, 1976.
 46. Chung, K., L. A. Langford, A. E. Applebaum, and R. E. Coggeshall. Primary afferent fibers in the tract of Lissauer in the rat. J. Comp. Neurol. 184: 587–598, 1979.
 47. Ciriello, J., and F. R. Calaresu. Lateral reticular nucleus: a site of somatic and cardiovascular integration in the cat. Am. J. Physiol. 233 (Regulatory Integrative Comp. Physiol. 2): R100–R109, 1977.
 48. Clement, D. L. Onderzoekingen over de Reflectoire Regulatie van de Bloeddruk en van de Vaattonus Tijdens Kontrakties van Skeletspieren. Brussels: Arscia, 1974.
 49. Clement, D. L. Neurogenic influences on blood pressure and vascular tone from peripheral receptors during muscular contraction. Cardiology 61, Suppl. 1: 65–68, 1976.
 50. Clement, D. L., and J. L. Pannier. Cardiac output distribution during induced static muscular contractions in the dog. Eur. J. Appl. Physiol. Occup. Physiol. 45: 199–207, 1980.
 51. Clement, D. L., C. L. Pelletier, and J. T. Shepherd. Role of muscular contraction in the reflex vascular responses to stimulation of muscle afferents in the dog. Circ. Res. 33: 386–392, 1973.
 52. Clement, D. L., and J. T. Shepherd. Influence of muscle afferents on cutaneous and muscle vessels in the dog. Circ. Res. 35: 177–183, 1974.
 53. Clifton, G. L., R. E. Coggeshall, W. H. Vance, and W. D. Willis. Receptive fields of unmyelinated ventral root afferent fibres in the cat. J. Physiol. London 256: 573–600, 1976.
 54. Coffman, J. D. The effect of aspirin on pain and hand blood flow responses to intra‐arterial injection of bradykinin in man. Clin. Pharmacol. Ther. 7: 26–37, 1966.
 55. Coggeshall, R. E., K. C. Chung, J. M. Chung, and L. A. Langford. Primary afferent axons in the tract of Lissauer in the monkey. J. Comp. Neurol. 196: 431–442, 1981.
 56. Coleridge, J. C. G., and H. M. Coleridge. Chemoreflex regulation of the heart. In: Handbook of Physiology. The Cardiovascular System. The Heart, edited by R. M. Berne and N. Sperelakis. Bethesda, MD: Am. Physiol. Soc, 1979, sect. 2, vol. I, chapt. 18, p. 653–676.
 57. Collins, W. F., F. E. Nulsen, and T. Clark. Relation of peripheral nerve fiber size and sensation in man. Arch Neurol. Chicago 3: 381–385, 1960.
 58. Comroe, J. H. Physiology of Respiration (2nd ed.). Chicago, IL: Year Book, 1974.
 59. Coote, J. H. Physiological significance of somatic afferent pathways from skeletal‐muscle and joints with reflex effects on heart and circulation. Brain Res. 87: 139–144, 1975.
 60. Coote, J. H., and W. N. Dodds. The baroreceptor reflex and the cardiovascular changes associated with sustained muscular contraction in the cat. Pfluegers Arch. 363: 167–173, 1976.
 61. Coote, J. H., and C. B. B. Downman. Central pathways of some autonomic reflex discharges. J. Physiol. London 183: 714–729, 1966.
 62. Coote, J. H., and C. B. B. Downman. Supraspinal control of reflex activity in renal nerves. J. Physiol. London 202: 161–170, 1969.
 63. Coote, J. H., S. M. Hilton, and J. F. Pérez‐González. The reflex nature of the pressor response to muscular exercise. J. Physiol. London 215: 789–804, 1971.
 64. Coote, J. H., and V. H. MacLeod. The influence of bulbospinal monoaminergic pathways on sympathetic nerve activity. J. Physiol. London 241: 453–475, 1974.
 65. Coote, J. H., and V. H. MacLeod. Evidence for the involvement in the baroreceptor reflex of a descending inhibitory pathway. J. Physiol. London 241: 477–496, 1974.
 66. Coote, J. H., and V. H. MacLeod. The spinal route of sympatho‐inhibitory pathways descending from the medulla oblongata. Pfluegers Arch. 359: 335–347, 1975.
 67. Coote, J. H., and J. F. Pérez‐González. The response of some sympathetic neurones to volleys in various afferent nerves. J. Physiol. London 208: 261–278, 1970.
 68. Coote, J. H., and A. Sato. Supraspinal regulation of spinal reflex discharge into cardiac sympathetic nerves. Brain Res. 142: 425–437, 1978.
 69. Crayton, S. C., R. Aung‐Din, D. E. Fixler, and J. H. Mitchell. Distribution of cardiac output during induced isometric exercise in dogs. Am. J. Physiol. 236 (Heart Circ. Physiol. 5): H218–H224, 1979.
 70. Crayton, S. C., J. H. Mitchell, and F. C. Payne III Reflex cardiovascular response during injection of capsaicin into skeletal muscle. Am. J. Physiol. 240 (Heart Circ. Physiol. 9): H315–H319, 1981.
 71. Creed, R. S., D. Denny‐Brown, J. C. Eccles, E. G. T. Liddell, and C. S. Sherrington. Reflex Activity of the Spinal Cord. London: Oxford Univ. Press, 1932.
 72. Cunningham, D. J. C., E. S. Petersen, R. Peto, T. G. Pickering, and P. Sleight. Comparison of the effect of different types of exercise on the baroreflex regulation of heart rate. Acta Physiol. Scand. 86: 444–455, 1972.
 73. DeGroat, W. C., and P. M. Lalley. Reflex sympathetic firing in response to electrical stimulation of the carotid sinus nerve in the cat. Brain Res. 80: 17–40, 1974.
 74. Dembowsky, K., J. Czachurski, K. Amendt, and H. Seller. Tonic descending inhibition of the spinal somato‐sympathetic reflex from the lower brain stem. J. Auton. Nerv. Syst. 2: 157–182, 1980.
 75. Dembowsky, K., K. Lackner, J. Czachurski, and H. Seller. Tonic catecholaminergic inhibition of the spinal somato‐sympathetic reflexes originating in the ventrolateral medulla oblongata. J. Auton. Nerv. Syst. 3: 277–290, 1981.
 76. Dittmar, C. Ein neuer Beweis für die Reizbarkeit der centripetalen Fasern des Rückenmarks. Ber. K. Sächs Ges. Wiss. Math. Phys. Kl. 22: 18–48, 1870.
 77. Downing, S. E. Baroreceptor regulation of the heart. In: Handbook of Physiology. The Cardiovascular System. The Heart, edited by R. M. Berne and N. Sperelakis. Bethesda, MD: Am. Physiol. Soc, 1979, sect. 2, vol. I, chapt. 17, p. 621–652.
 78. Duncan, G., R. H. Johnson, and D. G. Lambie. Role of sensory nerves in the cardiovascular and respiratory changes with isometric forearm exercise in man. Clin. Sci. 60: 145–155, 1981.
 79. Ekelund, L. G., and A. Holmgren. Central hemodynamics during exercise. Circ. Res. 20/21, Suppl. 1: 33–43, 1967.
 80. Eldred, E., D. F. Lindsley, and J. S. Buchwald. The effect of cooling on mammalian muscle spindles. Exp. Neurol. 2: 144–157, 1960.
 81. Erlanger, J., and H. S. Gasser. Electrical Signs of Nervous Activity. Philadelphia: Univ. of Pennsylvania Press, 1937.
 82. Fell, C. Changes in blood flow distribution produced by central sciatic nerve stimulation. Am. J. Physiol. 214: 561–565, 1968.
 83. Ferreira, S. H., S. Moncada, and J. R. Vane. Further experiments to establish that the analgesic action of aspirinlike drugs depends on the inhibition of prostaglandin biosynthesis (Abstract). Br. J. Pharmacol. 47: 629P–630P, 1973.
 84. Fisher, M. L., and D. O. Nutter. Cardiovascular reflex adjustments to static muscular contractions in the canine hindlimb. Am. J. Physiol. 226: 648–655, 1974.
 85. Folkow, B., and E. Neil. Circulation. London: Oxford Univ. Press, 1971.
 86. Foreman, R. D., and R. D. Wurster. Localization and functional characteristics of descending sympathetic spinal pathways. Am. J. Physiol. 225: 212–217, 1973.
 87. Franz, M., and S. Mense. Muscle receptors with group IV afferent fibres responding to application of bradykinin. Brain Res. 92: 369–383, 1975.
 88. Freund, P. R., S. F. Hobbs, and L. B. Rowell. Cardiovascular responses to muscle ischemia in man—dependency on muscle mass. J. Appl. Physiol: Respirat. Environ. Exercise Physiol. 45: 762–767, 1978.
 89. Freund, P. R., L. B. Rowell, T. M. Murphy, S. F. Hobbs, and S. H. Butler. Blockade of the pressor response to muscle ischemia by sensory nerve block in man. Am. J. Physiol. 237 (Heart Circ. Physiol. 6): H433–H439, 1979.
 90. Freyschuss, U. Cardiovascular adjustment to somatomotor activation. Acta Physiol. Scand. Suppl. 342: 1–63, 1970.
 91. Furness, J. B., and M. Costa. The adrenergic innervation of the gastrointestinal tract. Ergeb. Physiol. Biol. Chem. Exp. Pharmakol. 69: 1–51, 1974.
 92. Gassel, M. M., and W. Trajaborg. Clinical and electrophysiological study of pattern of conduction times in the distribution of the sciatic nerve (Abstract). J. Neurol. Neurosurg. Psychiatry 27: 251, 1964.
 93. Gasser, H. S. Properties of dorsal root unmedullated fibers on the Z sides of the ganglion. J. Gen. Physiol. 38: 709–728, 1955.
 94. Gasser, H. S. Effect of the method of leading on the recording of the nerve fiber spectrum. J. Gen. Physiol. 43: 927–940, 1960.
 95. Gebber, G. L., D. G. Taylor, and L. C. Weaver. Electrophysiological studies on organization of central vasopressor pathways. Am. J. Physiol. 224: 470–481, 1973.
 96. Ginzel, K. H. Interaction of somatic and autonomic functions in muscular exercise. Exercise Sport Sci. Rev. 4: 35–86, 1976.
 97. Goodwin, G. M., D. I. McCloskey, and J. H. Mitchell. Cardiovascular and respiratory responses to changes in central command during isometric exercise at constant muscle tension. J. Physiol. London 226: 173–190, 1972.
 98. Gordon, G. The mechanism of the vasomotor reflexes produced by stimulating mammalian sensory nerves. J. Physiol. London 102: 95–107, 1943.
 99. Granit, R., S. Skoglund, and S. Thesleff. Activation of muscle spindles by succinylcholine and decamethonium. Effect of curare. Acta Physiol. Scand. 28: 134–151, 1953.
 100. Gregor, M., W. Jänig, and W. Riedel. Response pattern of cutaneous postganglionic neurones to the hindlimb on spinal cord heating and cooling in the cat. Pfluegers Arch. 363: 135–140, 1976.
 101. Gregor, M., W. Jänig, and L. Wipprich. Cardiac and respiratory rhythmicities in cutaneous and muscle vasoconstrictor neurones to the cat's hindlimb. Pfluegers Arch. 370: 299–302, 1977.
 102. Guzman, F., C. Braun, and R. K. S. Lim. Visceral pain and the pseudaffective response to intra‐arterial injection of bradykinin and other algesic agents. Arch. Int. Pharmacodyn. Ther. 136: 353–384, 1962.
 103. Guzman, F., C. Braun, R. K. S. Lim, G. D. Potter, and D. W. Rodgers. Narcotic and non‐narcotic analgesics which block visceral pain evoked by intra‐arterial injection of bradykinin and other algesic agents. Arch. Int. Pharmacodyn. Ther. 149: 571–588, 1964.
 104. Handwerker, H. O. Pain producing substances. In: Pain and Society, edited by H. W. Kosterlitz and L. Y. Terenius. Weinheim, West Germany: Dahlem Konferenzen, 1980, p. 325–338.
 105. Harpman, J. A., and R. T. J. Allen. Neural activity and polypeptides (Abstract). Br. Med. J. 1: 1043, 1959.
 106. Hensel, H., and A. Iggo. Analysis of cutaneous warm and cold fibers in primates. Pfluegers Arch. 329: 1–8, 1971.
 107. Hertel, H. C., B. Howaldt, and S. Mense. Responses of group IV and group III muscle afferents to thermal stimuli. Brain Res. 113: 201–205, 1976.
 108. Heymans, C., and E. Neil. Reflexogenic Areas of the Cardiovascular System. Boston, MA: Little, Brown, 1958.
 109. Hiss, E., and S. Mense. Evidence for the existence of different receptor sites for algesic agents at the endings of muscular group IV afferent units. Pfluegers Arch. 362: 141–146, 1976.
 110. Hnìk, P., M. Holas, I. Krekule, N. Křìž, J. Mejsnar, V. Smiesko, E. Ujec, and F. Vyskočil. Work‐induced potassium changes in skeletal muscle and effluent venous blood assessed by liquid ion‐exchanger microelectrodes. Pfluegers Arch. 362: 85–94, 1976.
 111. Hnìk, P., O. Hudlickà, J. Kučera, and R. Payne. Activation of muscle afferents by nonproprioceptive stimuli. Am. J. Physiol. 217: 1451–1458, 1969.
 112. Hobbs, S. F. Central command during exercise: parallel activation of the cardiovascular and motor systems by descending command signals. In: Circulation, Neurobiology, and Behavior, edited by O. A. Smith, R. A. Galosy, and S. M. Weiss. Amsterdam: Elsevier, 1982, p. 217–231.
 113. Hollander, A. P., and L. N. Bouman. Cardiac acceleration in man elicited by a muscle‐heart reflex. J. Appl. Physiol. 38: 272–278, 1975.
 114. Hongo, T., and R. W. Ryall. Electrophysiological and microelectrophoretic studies on sympathetic preganglionic neurones in the spinal cord. Acta Physiol. Scand. 68: 96–104, 1966.
 115. Horeyseck, G., and W. Jänig. Reflexes in postganglionic fibres within skin and muscle nerves after mechanical non‐noxious stimulation of skin. Exp. Brain Res. 20: 115–123, 1974.
 116. Horeyseck, G., and W. Jänig. Reflexes in postganglionic fibres within skin and muscle nerves after noxious stimulation of skin. Exp. Brain Res. 20: 125–134, 1974.
 117. Horeyseck, G., and W. Jänig. Reflex activity in postganglionic fibres within skin and muscle nerves elicited by somatic stimuli in chronic spinal cats. Exp. Brain Res. 21: 155–168, 1974.
 118. Horeyseck, G., W. Jänig, F. Kirchner, and V. Thämer. Activation and inhibition of muscle and cutaneous postganglionic neurones to hindlimb during hypothalamically induced vasoconstriction and atropine‐sensitive vasodilation. Pfluegers Arch. 361: 231–240, 1976.
 119. Humphreys, P. W., and A. R. Lind. The blood flow through active and inactive muscles of the forearm during sustained hand‐grip contractions. J. Physiol. London 166: 120–135, 1963.
 120. Hunt, C. C. Relation of function to diameter in afferent fibers of muscle nerves. J. Gen. Physiol. 38: 117–131, 1955.
 121. Hunt, C. C. Handbook of Sensory Physiology. Muscle Receptors. New York: Springer‐Verlag, 1974, vol. III, pt. 2.
 122. Hunt, R. The fall of blood pressure resulting from the stimulation of afferent nerves. Physiologist 18: 381–410, 1895.
 123. Hursh, J. B. Conduction velocity and diameter of nerve fibers. Am. J. Physiol. 127: 131–139, 1939.
 124. Iggo, A. New specific sensory structures in hairy skin. Acta Neuroveg. 24: 175–180, 1963.
 125. Iggo, A. An electrophysiological analysis of afferent fibers in primate skin. Acta Neuroveg. 24: 225–240, 1963.
 126. Iggo, A. Handbook of Sensory Physiology. Somatosensory System. New York: Springer‐Verlag, 1973, vol. II.
 127. Jänig, W. Central organization of somatosympathetic reflexes in vasoconstrictor neurons. Brain Res. 87: 305–312, 1975.
 128. Jänig, W. Reciprocal reaction patterns of sympathetic subsystems with respect to various afferent inputs. In: Integrative Functions of the Autonomic Nervous System, edited by C. McC. Brooks, K. Koizumi, and A. Sato. Amsterdam: Elsevier, 1979, p. 263–274.
 129. Jänig, W. Reactions of sympathetic neurones to noxious stimulation of skin: new experiments and perspectives. In: Schmerzforschung—Schmerzmessung—Brustschmerz, edited by A. Struppler and M. Gessler. New York: Springer‐Verlag, 1981, p. 25–37.
 130. Jänig, W., and H. Kümmel. Functional discrimination of postganglionic neurones to the cat's hindpaw with respect to the skin potentials recorded from the hairless skin. Pfluegers Arch. 371: 217–225, 1977.
 131. Jänig, W., A. Sato, and R. F. Schmidt. Reflexes in postganglionic cutaneous fibres by stimulation of group I to group IV somatic afferents. Pfluegers Arch. 331: 244–256, 1972.
 132. Jünig, W., and R. F. Schmidt. Single unit responses in the cervical sympathetic trunk upon somatic nerve stimulation. Pfluegers Arch. 314: 199–216, 1970.
 133. Jänig, W., and P. Szulczyk. Conduction velocity in spinal descending pathways of baro‐ and chemoreceptor reflex. J. Auton. Nerv. Syst. 1: 149–160, 1979.
 134. Jänig, W., and P. Szulczyk. Functional properties of lumbar preganglionic neurones. Brain Res. 186: 115–131, 1980.
 135. Jänig, W., and P. Szulczyk. The organization of lumbar preganglionic neurons. J. Auton. Nerv. Syst. 3: 177–191, 1981.
 136. Johansson, B. Circulatory responses to stimulation of somatic afferents. Acta Physiol. Scand. Suppl. 198: 1–91, 1962.
 137. Johansson, J. E. Über die Einwirkung der Muskelthätigkeit auf die Athmung und die Herzthätigkeit. Skand. Arch. Physiol. 5: 20–66, 1895.
 138. Kalia, M., S. S. Mei, and F. F. Kao. Central projections from ergoreceptors (C fibers) in muscle involved in cardiopulmonary responses to static exercise. Circ. Res. 48, Suppl. 1: 48–62, 1981.
 139. Kao, F. F. An experimental study of the pathway involved in exercise hyperpnea employing cross‐circulation technique. In: The Regulation of Human Respiration, edited by D. J. C. Cunningham and B. B. Lloyd. Oxford, UK: Blackwell, 1963, p. 461–502.
 140. Kao, F. F., S. Lahiri, C. Wang, and S. S. Mei. Ventilation and cardiac output in exercise; interaction of chemical and work stimuli. Circ. Res. 20, Suppl. 1: 179–191, 1967.
 141. Kao, F. F., and L. H. Ray. Respiratory and circulatory responses of anesthetized dogs to induced muscular work. Am. J. Physiol. 179: 249–254, 1954.
 142. Kao, F. F., and L. H. Ray. Regulation of cardiac output in anesthetized dogs during induced muscular work. Am. J. Physiol. 179: 255–260, 1954.
 143. Kao, F. F., and E. E. Suckling. A method for producing muscular exercise in anesthetized dogs and its validity. J. Appl. Physiol. 18: 194–196, 1963.
 144. Katunsky, A. Y. L., and V. M. Khayutin. The reflex latency and the level of mediation of spinal afferent impulses to the cardiovascular sympathetic neurones. Pfluegers Arch. 298: 294–304, 1968.
 145. Katz, S., and J. H. Perryman. Respiratory and blood pressure responses to stimulation of peripheral afferent nerves. Am. J. Physiol. 208: 993–999, 1965.
 146. Kaufman, M. P., G. A. Iwamoto, J. C. Longhurst, and J. H. Mitchell. Effects of capsaicin and bradykinin on afferent fibers with endings in skeletal muscle. Circ. Res. 50: 133–139, 1982.
 147. Keele, C. A., and D. Armstrong. Substances Producing Pain and Itch. London: Arnold, 1964.
 148. Kirchner, F., A. Sato, and H. Weidinger. Central pathways of reflex discharges in the cervical sympathetic trunk. Pfluegers Arch. 319: 1–11, 1970.
 149. Kirchner, F., A. Sato, and H. Weidinger. Bulbar inhibition of spinal and supraspinal sympathetic reflex discharges. Pfluegers Arch. 326: 324–333, 1971.
 150. Kniffki, K.‐D., S. Mense, and R. F. Schmidt. Mechanism of muscle pain: a comparison with cutaneous nociception. In: Sensory Functions of the Skin in Primates, edited by Y. Zotterman. New York: Pergamon, 1976, p. 463–473.
 151. Kniffki, K.‐D., S. Mense, and R. F. Schmidt. Responses of group IV afferent units from skeletal muscle to stretch, contraction and chemical stimulation. Exp. Brain Res. 31: 511–522, 1978.
 152. Kniffki, K.‐D., S. Mense, and R. F. Schmidt. Muscle receptors with fine afferent fibers which may evoke circulatory reflexes. Circ. Res. 48, Suppl. 1: 25–31, 1981.
 153. Koizumi, K., and C. McC. Brooks. The integration of autonomic system reactions. Rev. Physiol. Biochem. Pharmacol. 67: 1–68, 1972.
 154. Koizumi, K., A. Sato, A. Kaufman, and C. McC Brooks. Studies of sympathetic neuron discharges modified by central and peripheral excitation. Brain Res. 11: 212–224, 1968.
 155. Koizumi, K., H. Seller, A. Kaufman, and C. McC. Brooks. Pattern of sympathetic discharges and their relation to baroreceptor and respiratory activities. Brain Res. 27: 281–294, 1971.
 156. Korner, P. I. Integrative neural cardiovascular control. Physiol. Rev. 51: 312–367, 1971.
 157. Korner, P. I. Central nervous control of autonomic cardiovascular function. In: Handbook of Physiology. The Cardiovascular System. The Heart, edited by R. M. Berne and N. Sperelakis. Bethesda, MD: Am. Physiol. Soc, 1979, sect. 2, vol. I, chapt. 20, p. 691–739.
 158. Kozelka, J. W., J. M. Chung, and R. D. Wurster. Ascending spinal pathways mediating somato‐cardiovascular reflexes. J. Auton. Nerv. Syst. 3: 171–175, 1981.
 159. Kozelka, J. W., and R. D. Wurster. Spinal site of somatic afferents mediating the somatosympathetic reflex in dogs (Abstract). Physiologist 22 (4): 72, 1979.
 160. Krogh, A., and J. Lindhard. The regulation of respiration and circulation during the initial stages of muscular work. J. Physiol. London 47: 112–136, 1913‐14.
 161. Kumada, M., K. Nogami, and K. Sagawa. Modulation of carotid sinus baroreceptor reflex by sciatic nerve stimulation. Am. J. Physiol. 228: 1535–1541, 1975.
 162. Kumazawa, T., and K. Mizumura. The polymodal C‐fiber receptor in the muscle of the dog. Brain Res. 101: 589–593, 1976.
 163. Kumazawa, T., and K. Mizumura. Thin‐fibre receptors responding to mechanical, chemical, and thermal stimulation in the skeletal muscle of the dog. J. Physiol. London 273: 179–194, 1977.
 164. Langford, L. A., and R. E. Coggeshall. Unmyelinated axons in the posterior funiculi. Science 211: 176–177, 1981.
 165. Laporte, Y., P. Bessou, and S. Bouisset. Action réflexe des différents types de fibres afférents d'origine musculaire sur la pression sanguine. Arch. Ital. Biol. 98: 206–221, 1960.
 166. Lasser, R. P., M. R. Schoenfeld, D. F. Allen, and C. K. Friedberg. Reflex circulatory effects elicited by hypertonic and hypotonic solutions injected into femoral and brachial arteries of dogs. Circ. Res. 8: 913–919, 1960.
 167. Lewis, T. Pain in muscular ischemia. Arch. Intern. Med. 49: 713–727, 1932.
 168. Lewis, T. Pain. New York: Macmillan, 1942.
 169. Light, A. R., S. Mense, and E. R. Perl. Spinal terminations of subcutaneous high threshold mechanoreceptors. Soc. Neurosci. Abstr. 5: 725, 1979.
 170. Light, A. R., and E. R. Perl. Reexamination of the dorsal root projection to the spinal dorsal horn including observations on the differential termination of coarse and fine fibers. J. Comp. Neurol. 186: 117–131, 1979.
 171. Light, A. R., and E. R. Perl. Spinal termination of functionally identified primary afferent neurons with slowly conducting myelinated fibers. J. Comp. Neurol. 186: 133–150, 1979.
 172. Lim, R. K. S. Salicylate analgesia. In: The Salicylates: A Critical Bibliographic Review, edited by M. J. H. Smith and P. K. Smith. New York: Wiley, 1966.
 173. Lim, R. K. S., F. Guzman, D. W. Rodgers, K. Goto, C. Braun, G. D. Dickerson, and R. J. Engle. Site of action of narcotic and non‐narcotic analgesics determined by blocking bradykinin‐evoked visceral pain. Arch. Int. Pharmacodyn. Ther. 152: 25–58, 1964.
 174. Lim, R. K. S., C. N. Liu, F. Guzman, and C. Braun. Visceral receptors concerned in visceral pain and the pseudaffective response to intra‐arterial injection of bradykinin and other algesic agents. J. Comp. Neurol. 118: 269–293, 1962.
 175. Lim, R. K. S., D. G. Miller, F. Guzman, D. W. Rodgers, R. W. Rogers, S. K. Wang, P. Y. Chao, and T. Y. Shih. Pain and analgesia evaluated by the intraperitoneal bradykininevoked pain method in man. Clin. Pharmacol. Ther. 8: 521–542, 1967.
 176. Lind, A. R., and G. W. McNicol. Circulatory responses to sustained hand‐grip contractions performed during other exercise, both rhythmic and static. J. Physiol. London 192: 595–607, 1967.
 177. Lind, A. R., G. W. McNicol, R. A. Bruce, H. R. Macdonald, and K. W. Donald. The cardiovascular responses to sustained contractions of a patient with unilaterial syringomyelia. Clin. Sci. 35: 45–53, 1968.
 178. Lind, A. R., G. W. McNicol, and K. W. Donald. Circulatory adjustments to sustained (static) muscular activity. In: Physiological Activity in Health and Disease, edited by K. Erang and K. L. Andersen. Baltimore, MD: Williams & Wilkins, 1966, p. 36–63.
 179. Lind, A. R., S. H. Taylor, P. W. Humphreys, B. M. Ken‐Nelly, and K. W. Donald. The circulatory effects of sustained voluntary muscle contraction. Clin. Sci. 27: 229–244, 1964.
 180. Lindahl, O. Experimental skin pain induced by injection of water‐soluble substances in humans. Acta Physiol. Scand. Suppl. 179: 1–90, 1961.
 181. Lippold, O. C. J., J. G. Nicholls, and J. W. T. Redfearn. A study of the afferent discharge produced by cooling a mammalian muscle spindle. J. Physiol. London 153: 218–231, 1960.
 182. Liu, C. T., R. A. Huggins, and H. E. Hoff. Mechanisms of intra‐arterial K+‐induced cardiovascular and respiratory responses. Am. J. Physiol. 217: 969–973, 1969.
 183. Lloyd, D. P. C. Neuron patterns controlling transmission of ipsilateral hindlimb reflexes in cat. J. Neurophysiol. 6: 293–315, 1943.
 184. Loewy, A. D. Descending pathways to sympathetic and parasympathetic preganglionic neurons. J. Auton. Nerv. Syst. 3: 265–275, 1981.
 185. Loewy, A. D., and S. McKellar. The neuroanatomical basis of central cardiovascular control. Federation Proc. 39: 2495–2503, 1980.
 186. Longhurst, J. C., R. Aung‐Din, and J. H. Mitchell. Static exercise in anesthetized dogs, a cause of reflex alpha‐adrenergic coronary vasoconstriction. Basic Res. Cardiol. 76: 530–535, 1981.
 187. Longhurst, J. C., and J. H. Mitchell. Reflex control of the circulation by afferents from skeletal muscle. In: Cardiovascular Physiology III, edited by A. W. Guyton, Jr. Baltimore, MD: University Park, 1979, vol. 18, p. 125–148. (Int. Rev. Physiol. Ser.).
 188. Longhurst, J. C., J. H. Mitchell, and M. B. Moore. The spinal cord ventral root: an afferent pathway of the hind‐limb pressor reflex in cats. J. Physiol. London 301: 467–476, 1980.
 189. Longhurst, J., and R. Zelis. Cardiovascular responses to local hindlimb hypoxemia: relation to the exercise reflex. Am. J. Physiol. 237 (Heart Circ. Physiol. 6): H359–H365, 1979.
 190. Loven, C. Über die Erweiterung von Arterien in Folge einer Nervenerregung. Ber. K. Sächs Ges. Wiss. Math. Phys. Kl. 18: 85–110, 1866.
 191. Ludbrook, J., I. B. Faris, J. Iannos, G. G. Jamieson, and W. J. Russell. Lack of effect of isometric handgrip exercise on the responses of the carotid sinus baroreceptor reflex in man. Clin. Sci. Mol. Med. 55: 189–194, 1978.
 192. Magoun, H. W., and R. Rhines. An inhibitory mechanism in the bulbar reticular formation. J. Neurophysiol. 9: 165–171, 1946.
 193. Mancia, G., J. Iannos, G. G. Jamieson, R. H. Lawrence, P. R. Sharman, and J. Ludbrook. Effect of isometric hand‐grip exercise on the carotid sinus baroreceptor reflex in man. Clin. Sci. Mol. Med. 54: 33–37, 1978.
 194. Matthews, P. B. C. Mammalian Muscle Receptors and Their Central Actions. London: Arnold, 1972.
 195. Mawdsley, C., and R. F. Mayer. Nerve conduction in alcoholic polyneuropathy. Brain 88: 335–356, 1965.
 196. McCloskey, D. I. Centrally‐generated commands and cardiovascular control in man. Clin. Exp. Hypertens. 3: 369–378, 1981.
 197. McCloskey, D. I., P. B. C. Matthews, and J. H. Mitchell. Absence of appreciable cardiovascular and respiratory responses to muscle vibration. J. Appl. Physiol. 33: 623–626, 1972.
 198. McCloskey, D. I., and J. H. Mitchell. Reflex cardiovascular and respiratory responses originating in exercising muscle. J. Physiol. London 224: 173–186, 1972.
 199. McCloskey, D. I., and K. A. Streatfeild. Muscular reflex stimuli to the cardiovacular system during isometric contractions of muscle groups of different mass. J. Physiol. London 250: 431–441, 1975.
 200. Melcher, A., and D. E. Donald. Maintained ability of carotid baroreflex to regulate arterial pressure during exercise. Am. J. Physiol. 241 (Heart Circ. Physiol. 10): H838–H849, 1981.
 201. Mense, S. Nervous outflow from skeletal muscle following chemical noxious stimulation. J. Physiol. London 267: 75–88, 1977.
 202. Mense, S. Effects of temperature on the discharges of muscle spindles and tendon organs. Pfluegers Arch. 374: 159–166, 1978.
 203. Mense, S. Muskelreceptoren mit dünnen markhaltigen und marklosen afferenten Fasern: Receptive Eigenschaften und mögliche Funktion. Kiel, Federal Republic of Germany: Christian‐Albrechts‐Universität, 1978. (Habilitationsschiift.).
 204. Mense, S. Sensitization of group IV muscle receptors to bradykinin by 5‐hydroxytryptamine and prostaglandin E2. Brain Res. 225: 95–105, 1981.
 205. Mense, S., and R. F. Schmidt. Activation of group IV afferent units from muscle by algesic agents. Brain Res. 72: 305–310, 1974.
 206. Mense, S., and R. F. Schmidt. Muscle pain: which receptors are responsible for the transmission of noxious stimuli? In: Physiological Aspects of Clinical Neurology, edited by F. S. Rose. Oxford, UK: Blackwell, 1977, p. 265–278.
 207. Mense, S., and M. Stahnke. Discharges in muscular group III and IV afferents during contractions of the cat's triceps surae muscle (Abstract). Pfluegers Arch. 373: R69, 1978.
 208. Mense, S., and M. Stahnke. The possible role of group III and IV muscle afferents in the mediation of the pain of intermittent claudication. Pain Abstr. 1: 54, 1978.
 209. Michalski, W. J., and J. J. Séguin. The effects of muscle cooling and stretch on muscle secondary endings in the cat. J. Physiol. London 253: 341–356, 1975.
 210. Mitchell, J. H., D. S. Mierzwiak, K. Wildenthal, W. D. Willis, Jr., and A. M. Smith. Effect on left ventricular performance of stimulation of an afferent nerve from muscle. Circ. Res. 22: 507–516, 1968.
 211. Mitchell, J. H., F. C. Payne III, B. Saltin, and B. Schibye. The role of muscle mass in the cardiovascular response to static contractions. J. Physiol. London 309: 45–54, 1980.
 212. Mitchell, J. H., W. C. Reardon, and D. I. McCloskey. Reflex effects on circulation and respiration from contracting skeletal muscle. Am. J. Physiol. 233 (Heart Circ. Physiol. 2): H374–H378, 1977.
 213. Mitchell, J. H., W. C. Reardon, D. I. McCloskey, and K. Wildenthal. Possible role of muscle receptors in the cardiovascular response to exercise. Ann. NY Acad. Sci. 301: 232–242, 1977.
 214. Mitchell, J. H., B. Saltin, F. C. Payne III, B. Schibye, T. I. Hansen, and J. H. Kristensen. Effect of intensity of effort and absolute tension development on the cardiovascular response during isometric exercise (Abstract). Proc. Int. Congr. Physiol. Sci., 27th, Paris, 1977, vol. 13, p. 517.
 215. Mitchell, J. H., B. Schibye, F. C. Payne III, and B. Saltin. Response of arterial blood pressure to static exercise in relation to muscle mass, force development, and electromyographic activity. Circ. Res. 48, Suppl. 1: 70–75, 1981.
 216. Mitchell, J. H., and K. Wildenthal. Static (isometric) exercise and the heart: physiological and clinical considerations. Annu. Rev. Med. 25: 369–381, 1974.
 217. Miyamoto, J., and J. Alanis. Reflex sympathetic responses produced by activation of vibrational receptors. Jpn. J. Physiol. 20: 725–740, 1970.
 218. Nutter, D. O., and C. W. Wickliffe. Regional vasomotor responses to the somatopressor reflex from muscle. Circ. Res. 48, Suppl. 1: 98–103, 1981.
 219. Ochwadt, B., E. Bücherl, H. Kreuzer, and H. H. Loeschcke. Beeinflussung der Atemsteigerung bei Muskelarbeit durch partiellen neuromuskulären Block (Tubocurarin). Pfluegers Arch. Gesamte Physiol. Menschen Tiere 269: 613–621, 1959.
 220. Okada, H., O. Nakao, and I. Nisida. Effect of sciatic stimulation upon the efferent impulses in the long ciliary nerve of cat. Jpn. J. Physiol. 10: 327–339, 1960.
 221. Paintal, A. S. Functional analysis of group III afferent fibers of mammalian muscles. J. Physiol. London 152: 250–270, 1960.
 222. Patterson, W. D. Circulatory and respiratory changes in response to muscular exercise in man. J. Physiol. London 66: 323–345, 1928.
 223. Paulev, P.‐E. Respiratory and cardiac responses to exercise in man. J. Appl. Physiol. 30: 165–172, 1971.
 224. Pelletier, C. L., and J. T. Shepherd. Relative influence of carotid baroreceptors and muscle receptors in the control of renal and hindlimb circulations. Can. J. Physiol. Pharmacol. 53: 1042–1049, 1975.
 225. Pérez‐González, J. F. Factors determining the blood pressure responses to isometric exercise. Circ. Res. 48, Suppl. 1: 76–86, 1981.
 226. Pérez‐González, J. F., and J. H. Coote. Activity of muscle afferents and reflex circulatory responses to exercise. Am. J. Physiol. 223: 138–143, 1972.
 227. Petro, J. K., A. P. Hollander, and L. N. Bouman. Instantaneous cardiac acceleration in man induced by a voluntary muscle contraction. J. Appl. Physiol. 29: 794–798, 1970.
 228. Petrofsky, J. S., and A. R. Lind. The blood pressure response during isometric exercise in fast and slow twitch skeletal muscle in the cat. Eur. J. Appl. Physiol. Occup. Physiol. 44: 223–230, 1980.
 229. Petrofsky, J. S., C. A. Phillips, and A. R. Lind. The influence of fiber composition, recruitment order and muscle temperature on the pressor response to isometric contractions in skeletal muscle of the cat. Circ. Res. 48, Suppl. 1: 32–36, 1981.
 230. Petrofsky, J. S., C. A. Phillips, M. N. Sawka, D. Hanpeter, A. R. Lind, and D. Stafford. Muscle fiber recruitment and blood pressure response to isometric exercise. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 50: 32–37, 1981.
 231. Ranson, S. W. Afferent paths for visceral reflexes. Physiol. Rev. 1: 477–522, 1921.
 232. Ranson, S. W., and P. R. Billingsley. Afferent spinal paths and the vasomotor reflexes. Studies in vasomotor reflex arcs. VI. Am. J. Physiol. 42: 16–35, 1916.
 233. Réthelyi, M., and J. Szentágothai. Distribution and connections of afferent fibres in the spinal cord. In: Handbook of Sensory Physiology. Somatosensory System, edited by A. Iggo. New York: Springer‐Verlag, 1973, vol. II, p. 207–252.
 234. Rexed, B. A cytoarchitectonic atlas of the spinal cord. J. Comp. Neurol. 100: 297–379, 1954.
 235. Rexed, B., and P. O. Thurman. Calibre spectra of motor and sensory fibers to flexor and extensor muscles. J. Neurophysiol. 11: 133–140, 1948.
 236. Rowell, L. B. Active neurogenic vasodilation in man. In: Vasodilatation, edited by P. M. Vanhoutte and I. Leusen. New York: Raven, 1981, p. 1–17.
 237. Rowell, L. B., P. R. Freund, and S. F. Hobbs. Cardiovascular responses to muscle ischemia in humans. Circ. Res. 48, Suppl. 1: 37–47, 1981.
 238. Rowell, L. B., L. Hermansen, and J. R. Blackmon. Human cardiovascular and respiratory responses to graded muscle ischemia. J. Appl. Physiol. 41: 693–701, 1976.
 239. Rusch, N. J., J. T. Shepherd, R. C. Webb, and P. M. Vanhoutte. Different behavior of the resistance vessels of the human calf and forearm during contralateral isometric exercise, mental stress, and abnormal respiratory movements. Circ. Res. 48, Suppl. 1: 118–130, 1981.
 240. Sato, A. Spinal and supraspinal inhibition of somato‐sympathetic reflexes by conditioning afferent volleys. Pfluegers Arch. 336: 121–133, 1972.
 241. Sato, A. Spinal and medullary reflex components of the somato‐sympathetic reflex discharges evoked by stimulation of the group IV somatic afferents. Brain Res. 51: 307–318, 1973.
 242. Sato, A., A. Kaufman, K. Koizumi, and C. M. Brooks. Afferent nerve groups and sympathetic reflex pathways. Brain Res. 14: 575–587, 1969.
 243. Sato, A., Y. Sato, and R. F. Schmidt. The effects of somatic afferent activity on the heart rate. In: Integrative Functions of the Autonomic Nervous System, edited by C. M. Brooks, K. Koizumi, and A. Sato. Amsterdam: Elsevier, 1979, p. 275–282.
 244. Sato, A., Y. Sato, and R. F. Schmidt. Heart rate changes reflecting modifications of efferent cardiac sympathetic outflow by cutaneous and muscle afferent volleys. J. Auton. Nerv. Syst. 4: 231–247, 1981.
 245. Sato, A., Y. Sato, and R. F. Schmidt. Changes in heart rate and blood pressure upon injection of algesic agents into skeletal muscle. Pfluegers Arch., 393: 31–36, 1982.
 246. Sato, A., and R. F. Schmidt. Spinal and supraspinal components of the reflex discharges into lumbar and thoracic white rami. J. Physiol. London 212: 839–850, 1971.
 247. Sato, A., and R. F. Schmidt. Somatosympathetic reflexes: afferent fibers, central pathways, discharge characteristics. Physiol. Rev. 53: 916–947, 1973.
 248. Sato, A., N. Tsushima, and B. Fujimori. Reflex potentials of lumbar sympathetic trunk with sciatic nerve stimulation in cats. Jpn. J. Physiol. 15: 532–539, 1965.
 249. Schibye, B., J. H. Mitchell, F. C. Payne III, and B. Saltin. Blood pressure and heart rate response to static exercise in relation to electromyographic activity and force development. Acta Physiol. Scand. 113: 61–66, 1981.
 250. Schmidt, R. F., and K. Schönfuss. An analysis of the reflex activity in the cervical sympathetic trunk induced by myelinated somatic afferents. Pfluegers Arch. 314: 175–198, 1970.
 251. Schmidt, R. F., and E. Weller. Reflex activity in the cervical and lumbar sympathetic trunk induced by unmyelinated somatic afferents. Brain Res. 24: 207–218, 1970.
 252. Seals, D. R., R. A. Washburn, P. G. Hanson, P. L. Painter, and F. J. Nagle. Increased cardiovascular response to static contraction of larger muscle groups. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 54: 434–437, 1983.
 253. Sell, R., A. Erdelyi, and H. Schaefer. Untersuchungen über den Einfluss peripherer Nervenreizung auf die sympathische Aktivität. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 267: 566–581, 1958.
 254. Shepherd, J. T., C. G. Blomqvist, A. R. Lind, J. H. Mitchell, and B. Saltin. Static (isometric) exercise: retrospection and introspection. Circ. Res. 48, Suppl. 1: 179–188, 1981.
 255. Sicuteri, F. Vasoneuroactive substances and their implication in vascular pain. Res. Clin. Stud. Headache 1: 6–45, 1967.
 256. Simon, E. Temperature regulation: the spinal cord as a site of extrahypothalamic thermoregulatory functions. Rev. Physiol. Biochem. Pharmacol. 71: 1–76, 1974.
 257. Skoglund, C. R. Vasomotor reflexes from muscle. Acta Physiol. Scand. 50: 311–327, 1960.
 258. Smith, O. A. Reflex and central mechanisms involved in the control of the heart and circulation. Annu. Rev. Physiol. 36: 93–123, 1974.
 259. Stacey, M. J. Free nerve endings in skeletal muscle of the cat. J. Anat. 105: 231–254, 1969.
 260. Staunton, H. P., S. H. Taylor, and K. W. Donald. The effect of vascular occlusion on the pressor response to static muscular work. Clin. Sci. 27: 283–291, 1964.
 261. Streatfeild, K. A., N. S. Davidson, and D. I. McCloskey. Muscular reflex and baroreflex influences on heart rate during isometric contractions. Cardiovasc. Res. 11: 87–93, 1977.
 262. Szulczyk, P. Descending spinal sympathetic pathway utilized by somato‐sympathetic reflex and carotid chemoreflex. Brain Res. 112: 190–193, 1976.
 263. Taira, N., K. Nakayama, and K. Hashimoto. Vocalization response of puppies to intra‐arterial administration of bradykinin and other algesic agents, and mode of actions of blocking agents. Tohoku J. Exp. Med. 96: 365–377, 1968.
 264. Tallarida, G., F. Baldoni, G. Peruzzi, F. Brindisi, G. Raimondi, and M. Sangiorgi. Cardiovascular and respiratory chemoreflexes from the hindlimb sensory receptors evoked by intra‐arterial injection of bradykinin and other chemical agents in the rabbit. J. Pharmacol. Exp. Ther. 208: 319–329, 1979.
 265. Tallarida, G., F. Baldoni, G. Peruzzi, G. Raimondi, M. Massaro, and M. Sangiorgi. Cardiovascular and respiratory reflexes from muscles during dynamic and static exercise. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 50: 784–791, 1981.
 266. Thames, M. D., and F. M. Abboud. Interaction of somatic and cardiopulmonary receptors in control of renal circulation. Am. J. Physiol. 237 (Heart Circ. Physiol. 6): H560–H565, 1979.
 267. Tibes, U. Reflex inputs to the cardiovascular and respiratory centers from dynamically working canine muscles: some evidence for involvement of group III or IV nerve fibers. Circ. Res. 41: 332–341, 1977.
 268. Tuttle, W. W., and S. M. Horvath. Comparison of effects of static and dynamic work on blood pressure and heart rate. J. Appl. Physiol. 10: 294–296, 1957.
 269. Vane, J. R. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin‐like drugs. Nature London New Biol. 231: 232–235, 1971.
 270. Walker, J. L., F. M. Abboud, A. L. Mark, and M. D. Thames. Interaction of cardiopulmonary and somatic reflexes in humans. J. Clin. Invest. 65: 1491–1497, 1980.
 271. Webb‐Peploe, M. M., D. Brender, and J. T. Shepherd. Vascular responses to stimulation of receptors in muscle by capsaicin. Am. J. Physiol. 222: 189–195, 1972.
 272. Weidinger, H., L. Fedina, and H. Kehrel. Der Einfluss von Adrenalin auf die Tätigkeit des “Sympathicus.” Pfluegers Arch. Gesamte Physiol. Menschen Tiere 278: 229–240, 1963.
 273. Werner, G., and V. B. Mountcastle. Neural activity in mechanoreceptive cutaneous afferents: stimulus‐response relations, Weber functions and information transmission. J. Neurophysiol. 28: 359–397, 1965.
 274. Wildenthal, K., D. S. Mierzwiak, and J. H. Mitchell. Acute effects of increased serum osmolality on left ventricular performance. Am. J. Physiol. 216: 898–904, 1969.
 275. Wildenthal, K., D. S. Mierzwiak, N. S. Skinner, Jr, and J. H. Mitchell. Potassium‐induced cardiovascular and ventilatory reflexes from the dog hindlimb. Am. J. Physiol. 215: 542–548, 1968.
 276. Woodworth, R. S., and C. S. Sherrington. A pseudaffective reflex and its spinal path. J. Physiol. London 31: 234–243, 1904.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Jere H. Mitchell, Robert F. Schmidt. Cardiovascular Reflex Control by Afferent Fibers from Skeletal Muscle Receptors. Compr Physiol 2011, Supplement 8: Handbook of Physiology, The Cardiovascular System, Peripheral Circulation and Organ Blood Flow: 623-658. First published in print 1983. doi: 10.1002/cphy.cp020317