Comprehensive Physiology Wiley Online Library

Arterial Baroreflexes in Humans

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Techniques
1.1 Carotid Sinus Massage
1.2 Electrical Stimulation of Carotid Sinus Nerves
1.3 Section or Anesthesia of Carotid Sinus Nerves and Vagi
1.4 Occlusion of Common Carotid Arteries
1.5 Neck Chamber
1.6 Vasoactive Drugs
1.7 Nonselective Techniques
2 Arterial Baroreceptor Control of Heart Rate
2.1 Autonomic Mediation
2.2 Other Properties
2.3 Relationship to Base‐Line R‐R Interval
2.4 Relationship to Respiratory Cycle
3 Arterial Baroreceptor Control of Atrioventricular Conduction and Ventricles
4 Carotid Baroreceptor Control of Blood Pressure
5 Carotid Baroreceptor Influence on Cardiac Output and Total Peripheral Resistance
6 Arterial Baroreceptor Control of Regional Circulations
7 Arterial Baroreceptor Control of Veins
8 Set Point of Carotid Baroreflex
9 Aortic Baroreflexes
10 Factors That Modify Arterial Baroreceptor Control of Circulation
10.1 Age
10.2 Exercise
10.3 Mental Stress
10.4 Sleep
10.5 Anesthesia
10.6 Central Blood Volume and Posture
11 Pathological States
11.1 Hypertension
11.2 Heart Disease
11.3 Carotid Sinus Syndrome
11.4 Other Pathological Conditions
12 Modification of Arterial Baroreflexes by Drugs
12.1 β‐Adrenergic Antagonists
12.2 Cardiac Glycosides
12.3 Antihypertensive Drugs
Figure 1. Figure 1.

Simultaneous record of pressure changes in 1 subject in neck chamber, in tissue adjacent to carotid sinus, in internal jugular vein at level of carotid sinus, and in cervical esophagus. Time trace, 5‐s and 1‐s intervals. Measurements in internal jugular vein were made to validate tissue‐pressure measurements.

From Ludbrook et al.
Figure 2. Figure 2.

Effects of carotid baroreceptor stimuli applied at different times before appearance of P wave on heart (P‐P) interval. •, Response to each stimulus; ○, averages obtained at 0.2‐s intervals. Baroreceptor stimuli induced by neck suction of 60 mmHg for 0.58‐s duration. Data from 1 subject.

From Eckberg
Figure 3. Figure 3.

Effects of carotid baroreceptor stimuli for 5 s on P‐P interval. •, Responses to single stimuli; ▴, averages obtained at 0.5‐s intervals. Baroreceptor stimuli induced by neck suctions of 50 mmHg. Data from 1 subject.

From Eckberg
Figure 4. Figure 4.

Prolongation of P‐P interval evoked by electrical stimulation of carotid sinus nerves for 300 ms. •, Values during or after stimulation; ○, control values in absence of stimulation. Stimulation time indicated by vertical lines immediately below ordinate. Means ± SE from several observations.

From Borst and Karemaker
Figure 5. Figure 5.

Effects on P‐P interval of carotid baroreceptor stimuli applied at 6 different times during respiratory cycle. Baroreceptor stimuli induced by neck suction of 30 mmHg for 0.6 s. Heart interval responses calculated by subtracting maximal effects during stimulation from base‐line values in absence of stimulation. Data are means ± SE for 6 subjects.

From Eckberg et al.
Figure 6. Figure 6.

A: marked depression of increase in heart (R‐R) interval induced by carotid baroreceptor stimulation during hypocapnic hyperventilation. B: lesser depression induced by hyperventilation during isocapnia. From top: tidal volume (v); heart period (H.P.); endtidal O2; endtidal PCO2 (CO2); pressure within neck chamber (mmHg). Neck suction stimuli 1 and 4 applied before and after hyperventilation during resting breathing. Stimuli 2 and 3 applied during hypocapnic hyperventilation, stimulus 5 during isocapnic hyperventilation with increased tidal volume, and stimulus 6 during isocapnic hyperventilation with even more increased tidal volume.

From Trzebski et al.
Figure 7. Figure 7.

Effects of phenylephrine‐induced increases in mean arterial pressure on R‐R, A‐H, and H‐V intervals. Means ± SE from 11 subjects studied for sinus rhythm and during atrial pacing. C, control values; PHE, values during plateau increase in mean arterial pressure induced by phenylephrine.

From Mancia et al. , by permission of the American Heart Association, Inc
Figure 8. Figure 8.

Effects of trinitroglycerin‐induced reductions in mean arterial pressure on R‐R, A‐H, and H‐V intervals. Means ± SE from 9 subjects studied for sinus rhythm (top) and during atrial pacing (bottom). C, control values; TNG, values during plateau decrease in mean arterial pressure induced by trinitroglycerin.

From Mancia et al. , by permission of the American Heart Association, Inc
Figure 9. Figure 9.

Effect of bilateral compression of common carotid artery. Data from 1 subject.

From Roddie and Shepherd
Figure 10. Figure 10.

Unloading of both cardiopulmonary and arterial baroreceptors [lower‐body negative pressure (LBNP) at −40 mmHg] increased both forearm and splanchnic vascular resistances. Simultaneous application of neck suction (NS), performed to minimize decrease in carotid transmural pressure and thus the contribution of carotid baroreflex during LBNP, prevented most splanchnic vasoconstriction but did not significantly attenuate forearm vasoconstriction during LBNP. Results indicate that cardiopulmonary receptors have major influence on forearm vessels, whereas carotid baroreceptors have major influence on splanchnic vessels in humans.

Adapted from Abboud et al.
Figure 11. Figure 11.

Bursts of muscle sympathetic efferent traffic (upper trace) during oscillations in arterial blood pressure (lower trace). More bursts occurred during decreasing than during increasing blood pressure values when latency for reflex sympathetic modulation (1.3 s) was taken into account.

From Sundlöf and Wallin
Figure 12. Figure 12.

Increase in pressure induced by phenylephrine (upper traces) and reduction in pressure induced by bradykinin (lower traces) accompanied by bradycardia and tachycardia, respectively, but by no change in tone of cutaneous veins. Right panel shows reactivity of veins by constriction after deep inspiration. Each line, 1 normal subject.

From Epstein et al. , by copyright permission of The American Society for Clinical Investigation
Figure 13. Figure 13.

Changes in mean arterial pressure (MAP) induced by changes in neck tissue pressure (NTP) outside carotid sinuses. Data are means ± SE of individual regression coefficients in 11 normal subjects for sustained responses to steady neck chamber pressure or suction applications.

From Mancia et al. , by permission of the American Heart Association, Inc
Figure 14. Figure 14.

Changes in heart interval (R‐R interval) with drug‐induced alterations in mean arterial pressure (MAP) and with neck chamber‐induced alterations in carotid transmural pressure (CTP). Means (solid lines) ± SE (dashed lines) of individual regression coefficients taken from 8 normal subjects in whom both techniques were used. Maximal heart interval responses were considered for neck chamber, with changes in CTP calculated by subtracting changes in MAP from changes in tissue pressure outside carotid sinuses. Method described by Korner et al. was used for drug technique. Control MAP and heart interval were 101 ± 5 mmHg and 864 ± 61 ms, respectively, for drug studies and 105 ± 5 mmHg and 791 ± 59 ms for neck chamber studies.

From Mancia et al. , by permission of the American Heart Association, Inc
Figure 15. Figure 15.

Effect of age on baroreflex sensitivity in normotensive and hypertensive subjects. Baroreflex sensitivity expressed (vertical line) as logarithm of slope relating increase in R‐R interval and rise in systolic blood pressure induced by phenylephrine.

From Gribbin et al. , by permission of the American Heart Association, Inc
Figure 16. Figure 16.

Relationship between mean arterial pressure and heart period (R‐R interval) in a group of younger (top) and older (bottom) subjects. Each group includes normotensive, moderately hypertensive, and severely hypertensive subjects. Stimulus‐response curves constructed by increasing (phenylephrine injection) or decreasing (trinitroglycerin injection) mean arterial pressure from base‐line value (large black circle) and by calculating heart interval during steady‐state phase of response. Data are means ± SE for several subjects

From Korner et al.
Figure 17. Figure 17.

Effects of carotid baroreceptor stimulation by neck suction on hemodynamic variables at different levels of dynamic leg exercise in supine position. Data are means for 6 normal subjects. Note well‐preserved blood pressure reductions during baroreceptor stimulation. Heart rate reductions also evident but with some attenuation at greatest exercise level.

From Bevegård and Shepherd , by copyright permission of The American Society for Clinical Investigation
Figure 18. Figure 18.

Slope of linear regression (lines) between increases in systolic blood pressure induced by phenylephrine and resulting lengthening in pulse interval (R‐R) interval. Data from several subjects studied at rest and at progressively increasing work loads (dynamic exercise). Slopes of baroreflex control of heart interval progressively diminish and flatten at greatest exercise levels.

From Bristow et al. , by permission of the American Heart Association, Inc
Figure 19. Figure 19.

Changes in sensitivity of baroreceptor‐heart rate reflex during wakefulness‐sleep cycle in 1 subject. Sensitivity calculated from slope of increase in R‐R interval in response to systolic pressure rise induced by angiotensin injections. Arrows, times of injection; •, slopes. Diagram shows systolic, diastolic, and sometimes mean blood pressure (○) values. Bottom, electroencephalogram (EEG) patterns: greatest level, wakefulness (W); lowest level, rapid‐eye‐movement (REM) sleep; and intermediate levels, slow‐sleep stages (I, II, III, IV).

From Smyth et al. , by permission of the American Heart Association, Inc
Figure 20. Figure 20.

A: prolongation of pulse interval caused by neck suction in 8 supine subjects before (•) and after (▴) propranolol. B: responses of 5 standing subjects before (•) and after (▴) propranolol.

From Eckberg, Abboud, and Mark
Figure 21. Figure 21.

Slope of linear regression (lines) between increases in systolic pressure (mmHg) induced by angiotensin and resulting lengthening of R‐R interval. Data from normal subject (A) and hypertensive subject (B).

From Bristow et al. , by permission of the American Heart Association, Inc
Figure 22. Figure 22.

Carotid baroreceptor influence on blood pressure in 11 normotensive (○), 18 moderately hypertensive (•), 17 severely hypertensive (X) subjects ± SE for mean arterial pressure during control period in each group, respectively. Solid line represents mean of individual regression coefficients relating mean arterial pressure to increased and decreased carotid transmural pressure with respect to control values; dashed lines indicate standard errors of regressions. Data are shown for steady‐state effects of neck chamber, with carotid transmural pressure calculated as difference between mean arterial pressure and tissue pressure outside carotid sinuses. Latter was calculated from variation in value of neck chamber pressure after application of correction factors for loss of pressure transmission through neck tissues.

From Mancia et al. , by permission of the American Heart Association, Inc
Figure 23. Figure 23.

Sensitivity of baroreceptor‐heart rate reflex during arterial baroreceptor stimulation by phenylephrine and arterial baroreceptor deactivation by trinitroglycerin before and after intravenous administration of 0.8 mg lanatoside C. Sensitivity expressed by regression coefficient of relationship between changes in R‐R interval (ms) and changes in systolic arterial pressure. Data are means ± SE.

From Ferrari et al. , by permission of the American Heart Association, Inc
Figure 24. Figure 24.

Changes in mean arterial pressure (MAP) and R‐R interval (HI) induced by carotid baroreceptor stimulation (neck suction, top) and carotid baroreceptor inhibition (neck pressure application, bottom). C, control values; E, early response to variations in neck pressure; SS, steady‐state response to neck chamber variations. Mean values ± SE from 7 subjects, P values refer to differences in response before and after 0.8 mg lanatoside C.

From Ferrari et al. , by permission of the American Heart Association, Inc


Figure 1.

Simultaneous record of pressure changes in 1 subject in neck chamber, in tissue adjacent to carotid sinus, in internal jugular vein at level of carotid sinus, and in cervical esophagus. Time trace, 5‐s and 1‐s intervals. Measurements in internal jugular vein were made to validate tissue‐pressure measurements.

From Ludbrook et al.


Figure 2.

Effects of carotid baroreceptor stimuli applied at different times before appearance of P wave on heart (P‐P) interval. •, Response to each stimulus; ○, averages obtained at 0.2‐s intervals. Baroreceptor stimuli induced by neck suction of 60 mmHg for 0.58‐s duration. Data from 1 subject.

From Eckberg


Figure 3.

Effects of carotid baroreceptor stimuli for 5 s on P‐P interval. •, Responses to single stimuli; ▴, averages obtained at 0.5‐s intervals. Baroreceptor stimuli induced by neck suctions of 50 mmHg. Data from 1 subject.

From Eckberg


Figure 4.

Prolongation of P‐P interval evoked by electrical stimulation of carotid sinus nerves for 300 ms. •, Values during or after stimulation; ○, control values in absence of stimulation. Stimulation time indicated by vertical lines immediately below ordinate. Means ± SE from several observations.

From Borst and Karemaker


Figure 5.

Effects on P‐P interval of carotid baroreceptor stimuli applied at 6 different times during respiratory cycle. Baroreceptor stimuli induced by neck suction of 30 mmHg for 0.6 s. Heart interval responses calculated by subtracting maximal effects during stimulation from base‐line values in absence of stimulation. Data are means ± SE for 6 subjects.

From Eckberg et al.


Figure 6.

A: marked depression of increase in heart (R‐R) interval induced by carotid baroreceptor stimulation during hypocapnic hyperventilation. B: lesser depression induced by hyperventilation during isocapnia. From top: tidal volume (v); heart period (H.P.); endtidal O2; endtidal PCO2 (CO2); pressure within neck chamber (mmHg). Neck suction stimuli 1 and 4 applied before and after hyperventilation during resting breathing. Stimuli 2 and 3 applied during hypocapnic hyperventilation, stimulus 5 during isocapnic hyperventilation with increased tidal volume, and stimulus 6 during isocapnic hyperventilation with even more increased tidal volume.

From Trzebski et al.


Figure 7.

Effects of phenylephrine‐induced increases in mean arterial pressure on R‐R, A‐H, and H‐V intervals. Means ± SE from 11 subjects studied for sinus rhythm and during atrial pacing. C, control values; PHE, values during plateau increase in mean arterial pressure induced by phenylephrine.

From Mancia et al. , by permission of the American Heart Association, Inc


Figure 8.

Effects of trinitroglycerin‐induced reductions in mean arterial pressure on R‐R, A‐H, and H‐V intervals. Means ± SE from 9 subjects studied for sinus rhythm (top) and during atrial pacing (bottom). C, control values; TNG, values during plateau decrease in mean arterial pressure induced by trinitroglycerin.

From Mancia et al. , by permission of the American Heart Association, Inc


Figure 9.

Effect of bilateral compression of common carotid artery. Data from 1 subject.

From Roddie and Shepherd


Figure 10.

Unloading of both cardiopulmonary and arterial baroreceptors [lower‐body negative pressure (LBNP) at −40 mmHg] increased both forearm and splanchnic vascular resistances. Simultaneous application of neck suction (NS), performed to minimize decrease in carotid transmural pressure and thus the contribution of carotid baroreflex during LBNP, prevented most splanchnic vasoconstriction but did not significantly attenuate forearm vasoconstriction during LBNP. Results indicate that cardiopulmonary receptors have major influence on forearm vessels, whereas carotid baroreceptors have major influence on splanchnic vessels in humans.

Adapted from Abboud et al.


Figure 11.

Bursts of muscle sympathetic efferent traffic (upper trace) during oscillations in arterial blood pressure (lower trace). More bursts occurred during decreasing than during increasing blood pressure values when latency for reflex sympathetic modulation (1.3 s) was taken into account.

From Sundlöf and Wallin


Figure 12.

Increase in pressure induced by phenylephrine (upper traces) and reduction in pressure induced by bradykinin (lower traces) accompanied by bradycardia and tachycardia, respectively, but by no change in tone of cutaneous veins. Right panel shows reactivity of veins by constriction after deep inspiration. Each line, 1 normal subject.

From Epstein et al. , by copyright permission of The American Society for Clinical Investigation


Figure 13.

Changes in mean arterial pressure (MAP) induced by changes in neck tissue pressure (NTP) outside carotid sinuses. Data are means ± SE of individual regression coefficients in 11 normal subjects for sustained responses to steady neck chamber pressure or suction applications.

From Mancia et al. , by permission of the American Heart Association, Inc


Figure 14.

Changes in heart interval (R‐R interval) with drug‐induced alterations in mean arterial pressure (MAP) and with neck chamber‐induced alterations in carotid transmural pressure (CTP). Means (solid lines) ± SE (dashed lines) of individual regression coefficients taken from 8 normal subjects in whom both techniques were used. Maximal heart interval responses were considered for neck chamber, with changes in CTP calculated by subtracting changes in MAP from changes in tissue pressure outside carotid sinuses. Method described by Korner et al. was used for drug technique. Control MAP and heart interval were 101 ± 5 mmHg and 864 ± 61 ms, respectively, for drug studies and 105 ± 5 mmHg and 791 ± 59 ms for neck chamber studies.

From Mancia et al. , by permission of the American Heart Association, Inc


Figure 15.

Effect of age on baroreflex sensitivity in normotensive and hypertensive subjects. Baroreflex sensitivity expressed (vertical line) as logarithm of slope relating increase in R‐R interval and rise in systolic blood pressure induced by phenylephrine.

From Gribbin et al. , by permission of the American Heart Association, Inc


Figure 16.

Relationship between mean arterial pressure and heart period (R‐R interval) in a group of younger (top) and older (bottom) subjects. Each group includes normotensive, moderately hypertensive, and severely hypertensive subjects. Stimulus‐response curves constructed by increasing (phenylephrine injection) or decreasing (trinitroglycerin injection) mean arterial pressure from base‐line value (large black circle) and by calculating heart interval during steady‐state phase of response. Data are means ± SE for several subjects

From Korner et al.


Figure 17.

Effects of carotid baroreceptor stimulation by neck suction on hemodynamic variables at different levels of dynamic leg exercise in supine position. Data are means for 6 normal subjects. Note well‐preserved blood pressure reductions during baroreceptor stimulation. Heart rate reductions also evident but with some attenuation at greatest exercise level.

From Bevegård and Shepherd , by copyright permission of The American Society for Clinical Investigation


Figure 18.

Slope of linear regression (lines) between increases in systolic blood pressure induced by phenylephrine and resulting lengthening in pulse interval (R‐R) interval. Data from several subjects studied at rest and at progressively increasing work loads (dynamic exercise). Slopes of baroreflex control of heart interval progressively diminish and flatten at greatest exercise levels.

From Bristow et al. , by permission of the American Heart Association, Inc


Figure 19.

Changes in sensitivity of baroreceptor‐heart rate reflex during wakefulness‐sleep cycle in 1 subject. Sensitivity calculated from slope of increase in R‐R interval in response to systolic pressure rise induced by angiotensin injections. Arrows, times of injection; •, slopes. Diagram shows systolic, diastolic, and sometimes mean blood pressure (○) values. Bottom, electroencephalogram (EEG) patterns: greatest level, wakefulness (W); lowest level, rapid‐eye‐movement (REM) sleep; and intermediate levels, slow‐sleep stages (I, II, III, IV).

From Smyth et al. , by permission of the American Heart Association, Inc


Figure 20.

A: prolongation of pulse interval caused by neck suction in 8 supine subjects before (•) and after (▴) propranolol. B: responses of 5 standing subjects before (•) and after (▴) propranolol.

From Eckberg, Abboud, and Mark


Figure 21.

Slope of linear regression (lines) between increases in systolic pressure (mmHg) induced by angiotensin and resulting lengthening of R‐R interval. Data from normal subject (A) and hypertensive subject (B).

From Bristow et al. , by permission of the American Heart Association, Inc


Figure 22.

Carotid baroreceptor influence on blood pressure in 11 normotensive (○), 18 moderately hypertensive (•), 17 severely hypertensive (X) subjects ± SE for mean arterial pressure during control period in each group, respectively. Solid line represents mean of individual regression coefficients relating mean arterial pressure to increased and decreased carotid transmural pressure with respect to control values; dashed lines indicate standard errors of regressions. Data are shown for steady‐state effects of neck chamber, with carotid transmural pressure calculated as difference between mean arterial pressure and tissue pressure outside carotid sinuses. Latter was calculated from variation in value of neck chamber pressure after application of correction factors for loss of pressure transmission through neck tissues.

From Mancia et al. , by permission of the American Heart Association, Inc


Figure 23.

Sensitivity of baroreceptor‐heart rate reflex during arterial baroreceptor stimulation by phenylephrine and arterial baroreceptor deactivation by trinitroglycerin before and after intravenous administration of 0.8 mg lanatoside C. Sensitivity expressed by regression coefficient of relationship between changes in R‐R interval (ms) and changes in systolic arterial pressure. Data are means ± SE.

From Ferrari et al. , by permission of the American Heart Association, Inc


Figure 24.

Changes in mean arterial pressure (MAP) and R‐R interval (HI) induced by carotid baroreceptor stimulation (neck suction, top) and carotid baroreceptor inhibition (neck pressure application, bottom). C, control values; E, early response to variations in neck pressure; SS, steady‐state response to neck chamber variations. Mean values ± SE from 7 subjects, P values refer to differences in response before and after 0.8 mg lanatoside C.

From Ferrari et al. , by permission of the American Heart Association, Inc
References
 1. Aars, H. Effect of clonidine on aortic diameter and aortic baroreceptor activity. Eur. J. Pharmacol. 20: 52–59, 1972.
 2. Abboud, F. M., D. L. Eckberg, U. J. Johannsen, and A. L. Mark. Carotid and cardiopulmonary baroreceptor control of splanchnic and forearm vascular resistance during venous pooling in man. J. Physiol. London 286: 173–184, 1979.
 3. Abboud, F. M., D. D. Heistad, and A. L. Mark. Effect of lower body negative pressure on capacitance vessels of forearm and calf (Abstract). Federation Proc. 32: 396, 1973.
 4. Abboud, F. M., and J. H. Houston. The effects of aging and degenerative vascular disease on the measurement of arterial rigidity in man. J. Clin. Invest. 40: 933–939, 1961.
 5. Abboud, F. M., and A. L. Mark. Cardiac baroreceptors in circulatory control in humans. In: Cardiac Receptors, edited by R. Hainsworth, C. Kidd, and R. J. Linden. Cambridge, UK: Cambridge Univ. Press, 1979, p. 437–461.
 6. Abraham, A. The structure of baroreceptors in pathological conditions in man. In: Baroreceptors and Hypertension, edited by P. Kezdi. New York: Pergamon, 1967, p. 273–291.
 7. Angell‐James, J. E. The effects of altering mean pressure, pulse pressure and pulse frequency on the impulse in baroreceptor fibres from the aortic arch and right subclavian artery in the rabbit. J. Physiol. London 214: 65–88, 1971.
 8. Angell‐James, J. E. The effects of changes of extramural “intrathoracic” pressure on aortic arch baroreceptors. J. Physiol. London 214: 89–103, 1972.
 9. Angell‐James, J. E., and A. Bobick. Preventive treatment of hypertension and arterial baroreceptor function. In: Prophylactic Approach to Hypertensive Diseases, edited by Y. Yamori. New York: Raven, 1979, p. 259–267.
 10. Angell‐James, J. E., and M. de B. Daly. Effects of graded pulsatile pressure on the reflex vasomotor responses elicited by changes of mean pressure in the perfused carotid sinusaortic arch responses of the dog. J. Physiol. London 214: 51–64, 1971.
 11. Angell‐James, J. E., and M. J. George. Arterial baroreceptor control of heart rate in experimental arterial disease and in hypertension. Int. Res. Commun. Sys. Med. Sci. 5: 534, 1977.
 12. Angell‐James, J. E., and M. J. George. Carotid sinus baroreceptor reflex control of blood pressure and vascular resistance in experimental cardiovascular disease and hypertension. Int. Res. Commun. Sys. Med. Sci. 6: 160, 1978.
 13. Angell‐James, J. E., and J. S. P. Lumley. The effects of carotid endarterectomy on the mechanical properties of the carotid sinus and carotid sinus nerve activity in atherosclerotic patients. Br. J. Surg. 61: 803–810, 1974.
 14. Appenzeller, O., and L. Descarries. Circulatory reflexes in patients with cerebrovascular disease. N. Engl. J. Med. 271: 820–832, 1964.
 15. Armorim, D. S., R. A. Godoy, J. C. Manco, A. Tanaka, and J. Gallo. Effects of acute elevation in blood pressure and of atropine on heart rate in Chagas' disease. Circulation 38: 289–294, 1968.
 16. Baccelli, G., R. Albertini, G. Mancia, and A. Zanchetti. Interactions between sinoaortic reflexes and cardiovascular effects of sleep and emotional behavior in the cat. Circ. Res. 38: 1130–1134, 1976.
 17. Bader, H. Dependence of wall stress in the human thoracic aorta on age and pressure. Circ. Res. 20: 354–361, 1967.
 18. Baker, A. B., H. A. Matzke, and J. R. Brown. Poliomyelitis III: bulbar poliomyelitis. A study of medullary function. Arch. Neurol. Psychiatry 63: 257–281, 1950.
 19. Bannister, R., L. Ardill, and P. Fentem. Defective autonomic control of blood vessels in idiopathic orthostatic hypotension. Brain 90: 725–745, 1967.
 20. Barraclough, M. A., and E. P. Sharpey‐Shafer. Hypotension from absent circulatory reflexes: effects of alcohol, barbiturates, psychotherapeutic drugs, and other mechanisms. Lancet 1: 1121–1126, 1963.
 21. Baskerville, A. L., D. L. Eckberg, and M. A. Thompson. Arterial pressure and pulse interval responses to repetitive carotid baroreceptor stimuli in man. J. Physiol. London 297: 61–71, 1979.
 22. Bath, E., L. E. Lindblad, and G. B. Wallin. Effects of dynamic and static neck suction on muscle nerve sympathetic activity, heart rate, and blood pressure. J. Physiol. London 311: 551–564, 1981.
 23. Beck, W., C. N. Barnard, and V. Schrire. Heart rate after cardiac transplantation. Circulation 40: 437–445, 1969.
 24. Beer, E. L., H. B. K. Boom, and B. Naafs. The combined influence of the stimulus frequency of the vagal nerves and the atrial stimulus interval on the atrio‐ventricular conduction time. Cardiovasc. Res. 11: 47–54, 1977.
 25. Beiser, G. D., R. Zelis, S. E. Epstein, D. T. Mason, and F. Braunwald. The role of skin and muscle resistance vessels in reflex mediated by the baroreceptor system. J. Clin. Invest. 49: 225–231, 1970.
 26. Bellet, S. Clinical pharmacology of antiarrhythmic drugs. Clin. Pharmacol. Ther. 2: 345–358, 1961.
 27. Bennett, T., D. J. Hosking, and J. R. Hampton. Baroreflex sensitivity and responses to the Valsalva manoeuver in subjects with diabetes mellitus. J. Neurol. Neurosurg. Psychiatry 39: 178–183, 1976.
 28. Bennett, T., D. J. Hosking, and J. R. Hampton. Cardiovascular responses to lower body negative pressure in normal subjects and in patients with diabetes mellitus. Cardiovasc. Res. 13: 31–38, 1979.
 29. Bennett, T., D. J. Hosking, and J. R. Hampton. Cardiovascular responses to graded reductions of central blood volume in normal subjects and in patients with diabetes mellitus. Clin. Sci. 58: 193–200, 1979.
 30. Bergel, D. H., I. S. Anand, D. E. Brooks, A. J. MacDermott, R. C. Peveler, J. L. Robinson, and P. Sleight. Carotid sinus nerve mechanics and baroreceptor function in the dog. In: Arterial Baroreceptors and Hypertension, edited by P. Sleight. Oxford, UK: Oxford Univ. Press, 1980, p. 1–5.
 31. Bergel, D. H., R. C. Peveler, J. L. Robinson, and P. Sleight. The measurements of arterial pressure, carotid sinus radius and baroreflex sensitivity in the conscious greyhound (Abstract). J. Physiol. London 292: 65P–66P, 1979.
 32. Bevegård, B. S., and J. T. Shepherd. Circulatory effects of stimulating the carotid arterial stretch receptors in man at rest and during exercise. J. Clin. Invest. 45: 132–142, 1966.
 33. Bevegård, B. S., and J. T. Shepherd. Regulation of the circulation during exercise in man. Physiol. Rev. 47: 178–213, 1967.
 34. Bevegård, S. B., J. Castenfors, and M. Danielson. Carotid baroreceptor function in hypertensive patients. Scand. J. Lab. Invest. 37: 495–501, 1977.
 35. Bevegård, S. B., J. Castenfors, and L. E. Lindblad. Effects of carotid sinus stimulation on cardiac output and peripheral vascular resistance during changes in blood volume distribution in man. Acta Physiol. Scand. 101: 50–57, 1977.
 36. Bevegård, S. B., J. Castenfors, and L. E. Lindblad. Effects of changes in blood volume distribution on circulatory regulation in young men with moderate hypertension. In: Arterial Baroreceptors and Hypertension, edited by P. Sleight. Oxford, UK: Oxford Univ. Press, 1980, p. 493–498.
 37. Bevegård, S. B., J. Castenfors, L. E. Lindblad, and J. Transejo. Blood pressure and heart rate regulating capacity of the carotid sinus during changes in blood volume distribution in man. Acta Physiol. Scand. 99: 300–312, 1977.
 38. Bilgutay, A. M., I. Bilgutay, and C. W. Lillehei. Baropacing. A new concept in the treatment of hypertension. In: Baroreceptors and Hypertension, edited by P. Kezdi. New York: Pergamon, 1967, p. 425–437.
 39. Bilgutay, A. M., and C. W. Lillehei. Treatment of hypertension with an implantable electronic device. J. Am. Med. Assoc. 191: 649–653, 1965.
 40. Bjurstedt, H., G. Rosenhamer, and G. Tyden. Cardiovascular responses to changes in carotid sinus transmural pressure in man. Acta Physiol. Scand. 94: 497–505, 1975.
 41. Bjurstedt, H., G. Rosenhamer, and G. Tyden. Lower body negative pressure and effects of autonomic heart blockade on cardiovascular responses. Acta Physiol. Scand. 99: 353–360, 1977.
 42. Bolton, B. E., E. A. Carmichael, and G. Sturup. Vasoconstriction following deep inspiration. J. Physiol. London 86: 83–94, 1936.
 43. Borst, C. Circulatory Effects of Electrical Stimulation of the Carotid Sinus Nerves in Man. Amsterdam: Univ. of Amsterdam, 1979. PhD thesis.
 44. Borst, C., and J. M. Karemaker. Respiratory modulation of reflex bradycardia evoked by brief carotid sinus nerve stimulation: additive rather than gating mechanisms. In: Arterial Baroreceptors and Hypertension, edited by P. Sleight. Oxford, UK: Oxford Univ. Press, 1980, p. 276–281.
 45. Borst, C., J. M. Karemaker, L. N. Bouman, A. J. Dunning, and F. J. G. Schopman. Optimal frequency of carotid sinus nerve stimulation in treatment of angina pectoris. Cardiovasc. Res. 8: 674–680, 1974.
 46. Bradley, S. E., F. J. Inglefinger, G. P. Bradley, and J. J. Curry. Estimation of hepatic blood flow in man. J. Clin. Invest. 24: 890–897, 1945.
 47. Braunwald, E., S. E. Epstein, G. Glick, A. Wechsler, and N. S. Braunwald. Relief of angina pectoris by electrical stimulation of the carotid sinus nerves. N. Engl. J. Med. 277: 1278–1283, 1967.
 48. Braunwald, E., B. E. Sobel, and N. S. Braunwald. Treatment of paroxysmal supraventricular tachycardia by electrical stimulation. N. Engl. J. Med. 281: 885–887, 1969.
 49. Brender, D., and M. M. Webb‐Peploe. Influence of carotid baroreceptors on different components of the vascular system. J. Physiol. London 205: 257–274, 1969.
 50. Brest, A. N., L. Wiener, and B. Bachrach. Bilateral carotid sinus nerve stimulation in the treatment of hypertension. Am. J. Cardiol. 29: 821–825, 1972.
 51. Bristow, J. D., E. B. Brown, D. J. C. Cunningham, R. C. Goode, M. G. Howson, and P. Sleight. The effects of hypercapnia, hypoxia, and ventilation on the baroreflex regulation of the pulse interval. J. Physiol. London 216: 281–302, 1971.
 52. Bristow, J. D., E. B. Brown, D. J. C. Cunningham, M. G. Howson, M. J. R. Lee, T. G. Pickering, and P. Sleight. The effects of raising alveolar Pco2 and ventilation separately and together on the sensitivity and resetting of the baroreceptor cardiodepressor reflex in man. J. Physiol. London 243: 401–425, 1974.
 53. Bristow, J. D., E. B. Brown, D. J. C. Cunningham, M. G. Howson, E. Strange‐Petersen, T. G. Pickering, and P. Sleight. Effect of bicycling on the baroreflex regulation of pulse interval. Circ. Res. 28: 582–592, 1971.
 54. Bristow, J. D., A. J. Honour, T. G. Pickering, and P. Sleight. Cardiovascular and respiratory changes during sleep in normal and hypertensive subjects. Cardiovasc. Res. 3: 476–485, 1969.
 55. Bristow, J. D., A. J. Honour, G. W. Pickering, P. Sleight, and H. S. Smyth. Diminished baroreflex sensitivity in high blood pressure. Circulation 39: 48–54, 1969.
 56. Bristow, J. D., C. Prys‐Roberts, A. Fisher, T. G. Pickering, and P. Sleight. Effects of anesthesia on baroreflex control of heart rate in man. Anesthesiology 31: 422–428, 1969.
 57. Brooksby, G. A., and D. E. Donald. Dynamic changes in splanchnic blood flow and blood volume in dogs during activation of sympathetic nerves. Circ. Res. 29: 227–238, 1971.
 58. Browse, N. L., D. E. Donald, and J. T. Shepherd. Role of the veins in the carotid sinus reflex. Am. J. Physiol. 210: 1424–1434, 1966.
 59. Bucy, P. C. Carotid sinus nerve in man. Arch. Intern. Med. 58: 418–432, 1936.
 60. Burton, A. C. Physiology and Biophysics of the Circulation. Chicago, IL: Year Book, 1957, 217 p.
 61. Cambridge, D., M. J. Darey, and R. Mathingham. The pharmacology of antihypertensive drugs with special reference to vasodilators, alpha‐adrenergic blocking agents and prazoin. Med. J. Aust. 2: 2–6, 1977.
 62. Carey, R. M., R. G. Dacey, J. A. Jane, H. R. Winn, C. R. Ayers, and G. W. Tyson. Production of sustained hypertension by lesions in the nucleus tractus solitarii of the American foxhound. Hypertension 1: 246–254, 1978.
 63. Carlsten, A., B. Folkow, G. Grimby, C. A. Hamberger, and O. Thulesius. Cardiovascular effects of direct stimulation of the carotid sinus nerves in man. Acta Physiol. Scand. 44: 138–145, 1958.
 64. Castellanos, A., R. J. Sung, D. Cunha, and R. J. Meyerburg. His bundle recordings in paroxysmal atrioventricular block produced by carotid sinus massage. Br. Heart J. 36: 487–491, 1974.
 65. Chen, H. I., C. Y. Chai, C. S. Tung, and H. C. Chen. Modulation of the carotid baroreflex function during volume expansion. Am. J. Physiol. 237 (Heart Circ. Physiol. 6): H153–H158, 1979.
 66. Chidsey, C. A., E. Braunwald, A. G. Morrow, and D. T. Mason. Myocardial norepinephrine concentration in man: effects of reserpine and congestive heart failure. N. Engl. J. Med. 269: 653–658, 1963.
 67. Chidsey, C. A., G. A. Gaiser, E. H. Sonnenblick, J. F. Spann, and E. Braunwald. Cardiac norepinephrine stores in experimental heart failure in the dog. J. Clin. Invest. 43: 2386–2393, 1964.
 68. Cohen, M. V. Ventricular fibrillation precipitated by carotid sinus pressure: case report and review of the literature. Am. Heart J. 84: 681–686, 1972.
 69. Cokkinos, D. V., G. Haralambakis, G. Thalassinos, E. T. Heimanas, J. Demopoulos, N. Voritis, and C. Gordikas. Effects of digitalis on diminished baroreceptor sensitivity in diabetics. Angiology 30: 549–557, 1979.
 70. Coleman, T. G. Arterial baroreflex control of heart rate in the conscious rat. Am. J. Physiol. 238 (Heart Circ. Physiol. 7): H515–H520, 1980.
 71. Collins, G. M., and J. Ludbrook. Behavior of vascular beds in the human upper limb at low perfusion pressure. Circ. Res. 21: 319–325, 1967.
 72. Comroe, J. H., Jr. The peripheral chemoreceptors. In: Handbook of Physiology. Respiration, edited by W. O. Fenn and H. Rahn. Washington, DC: Am. Physiol. Soc, 1964, sect. 3, vol. I, chapt. 23, p. 557–583.
 73. Corcondilas, A., D. E. Donald, and J. T. Shepherd. Assessment by two independent methods of the role of the cardiac output in the pressure response to carotid occlusion. J. Physiol. London 170: 250–262, 1964.
 74. Covell, H. J., C. A. Chidsey, and E. Braunwald. Reduction of the cardiac response to postganglionic sympathetic nerve stimulation in experimental cardiac failure. Circ. Res. 19: 51–56, 1966.
 75. Cowley, A. W., J. F. Liard, and A. C. Guyton. Role of the baroreceptor reflex in daily control of arterial blood pressure and other variables in dogs. Circ. Res. 32: 564–576, 1973.
 76. Cox, R. H., and R. J. Bagshaw. Influence of anesthesia on the response to carotid hypotension in dogs. Am. J. Physiol. 237 (Heart Circ. Physiol. 6): H424–H432, 1979.
 77. Cox, R. H., and R. J. Bagshaw. Effects of pulsations on carotid sinus control of regional arterial hemodynamics. Am. J. Physiol. 238 (Heart Circ. Physiol. 7): H182–H190, 1980.
 78. Crawford, J. H. The influence of the vagus on the heart rate. J. Pharmacol. Exp. Ther. 22: 1–19, 1923.
 79. Cunningham, D. J. C., E. Strange‐Petersen, R. Peto, T. G. Pickering, and P. Sleight. Comparison of the effects of different types of exercise on the baroreflex regulation of heart rate. Acta Physiol. Scand. 86: 444–455, 1972.
 80. Cunningham, D. J. C., E. Strange‐Petersen, T. G. Pickering, and P. Sleight. Effect of hypoxia, hypercapnia, and asphyxia on the baroreceptor cardiac reflex at rest and during exercise in man. Acta Physiol. Scand. 86: 456–465, 1972.
 81. Dampney, R. A. L., M. G. Taylor, and E. M. McLachlan. Reflex effects of stimulation of carotid sinus and aortic baroreceptors on hindlimb vascular resistance in dogs. Circ. Res. 29: 119–127, 1971.
 82. Davidson, N. S., S. Goldner, and D. I. McCloskey. Respiratory modulation of baroreceptor and chemoreceptor reflexes affecting heart rate and cardiac vagal efferent nerve activity. J. Physiol. London 259: 523–530, 1976.
 83. Delius, W., K. E. Hagbarth, A. Hongell, and G. B. Wallin. General characteristics of sympathetic activity in human muscle nerves. Acta Physiol. Scand. 84: 65–81, 1972.
 84. Dement, W., and N. Kleitman. Cyclic variations on EEG during sleep and their relation to eye movements, body mobility, and dreaming. Electroencephalogr. Clin. Neurophysiol. 9: 673–690, 1957.
 85. Donald, D. E., and J. A. Edis. Comparison of aortic and carotid baroreflex in dogs. J. Physiol. London 215: 521–528, 1971.
 86. Dorward, P. K., and P. I. Korner. Effect of d,l‐propranolol on renal sympathetic baroreflex properties and aortic baroreceptor activity. Eur. J. Pharmacol. 52: 61–71, 1978.
 87. Douglas, W., and J. M. Ritchie. Cardiovascular reflexes produced by electrical excitation of non‐medullated afferents in the vagus, carotid sinus, and aortic nerves. J. Physiol. London 134: 167–178, 1956.
 88. Douglas, W., J. M. Ritchie, and W. Schammann. Depressor reflexes from medullated and non‐medullated fibres in the rabbit aortic nerve. J. Physiol. London 132: 187–198, 1956.
 89. Duke, P. C., D. Founes, and J. G. Wade. Halothane depresses baroreceptor control of heart rate in man. Anesthesiology 45: 184–187, 1977.
 90. Duke, P. C., J. G. Wade, R. F. Hickey, and C. P. Larson. The effects of age on baroreceptor function in man. Can. Anaesth. Soc. J. 23: 111–124, 1976.
 91. Dunning, A. J. Electrostimulation of the Carotid Sinus Nerve in Angina Pectoris. Amsterdam: Excerpta Med., 1971. PhD thesis.
 92. Ead, H. W., J. H. Green, and E. Neil. A comparison of the effects of pulsatile and non‐pulsatile blood flow through the carotid sinus on the reflexogenic activity of the sinus baroreceptors in the cat. J. Physiol. London 118: 509–519, 1952.
 93. Eastcott, H. H., G. W. Pickering, and C. G. Rob. Reconstruction of internal carotid artery in a patient with intermittent attacks of hemiplegia. Lancet 2: 994–996, 1954.
 94. Eckberg, D. L. Temporal response patterns of the human sinus node to brief carotid baroreceptor stimuli. J. Physiol. London 258: 769–782, 1976.
 95. Eckberg, D. L. Baroreflex inhibition of the human sinus node: importance of stimulus intensity, duration and rate of pressure change. J. Physiol. London 269: 561–577, 1977.
 96. Eckberg, D. L. Adaptation of the human carotid baroreceptor cardiac reflex. J. Physiol. London 269: 579–589, 1977.
 97. Eckberg, D. L. Carotid baroreflex function in young men with borderline blood pressure elevation. Circulation 59: 632–636, 1979.
 98. Eckberg, D. L. Nonlinearities of the human carotid baroreceptor‐cardiac reflex. Circ. Res. 47: 208–216, 1980.
 99. Eckberg, D. L., F. M. Abboud, and A. L. Mark. Modulation of carotid baroreflex responsiveness in man: effects of posture and propranolol. J. Appl. Physiol. 41: 383–387, 1976.
 100. Eckberg, D. L., M. S. Cavanaugh, A. L. Mark, and F. M. Abboud. A simplified neck suction device for activation of carotid baroreceptors. J. Lab. Clin. Med. 85: 167–173, 1975.
 101. Eckberg, D. L., M. Drabinski, and E. Braunwald. Defective parasympathetic control in patients with heart disease. N. Engl. J. Med. 285: 877–883, 1971.
 102. Eckberg, D. L., G. F. Fletcher, and E. Braunwald. Mechanisms of prolongation of the R‐R interval with electrical stimulation of the carotid sinus nerves in man. Circ. Res. 30: 131–138, 1972.
 103. Eckberg, D. L., Y. T. Kifle, and V. L. Roberts. Phase relationship between normal human respiration and baroreflex responsiveness. J. Physiol. London 304: 489–502, 1980.
 104. Eckberg, D. L., and C. R. Orshan. Respiratory and baroreceptor reflex interactions in man. J. Clin. Invest. 59: 780–785, 1977.
 105. Edis, A. J. Aortic baroreflex function in the dog. Am. J. Physiol. 221: 1352–1357, 1971.
 106. Epstein, S. E., G. D. Beiser, R. E. Goldstein, M. Stampfer, A. S. Wechsler, G. Glick, and E. Braunwald. Circulatory effects of electrical stimulation of the carotid sinus nerves in man. Circulation 40: 269–276, 1969.
 107. Epstein, S. E., G. D. Beiser, R. E. Goldstein, M. Stampfer, A. S. Wechsler, G. Glick, and E. Braunwald. Treatment of angina pectoris by electrical stimulation of the carotid sinus nerves: results in 17 patients with severe angina. N. Engl. J. Med. 280: 971–978, 1969.
 108. Epstein, S. E., G. D. Beiser, M. Stampfer, and E. Braunwald. Role of the venous system in baroreceptor‐mediated reflexes in man. J. Clin. Invest. 47: 139–152, 1968.
 109. Ernsting, J., and D. J. Parry. Some observations on the effects of stimulating the stretch receptors in the carotid artery of man (Abstract). J. Physiol. London 137: 45P–46P, 1957.
 110. Ewing, D. S. Cardiovascular reflexes and autonomic neuropathy. Clin. Sci. Mol. Med. 55: 321–327, 1978.
 111. Ewing, D. S., I. W. Campbell, A. Murray, J. M. M. Nielson, and B. F. Clarke. Immediate heart rate responses to standing: a simple test for autonomic neuropathy in diabetes. Br. Med. J. 1: 145–147, 1978.
 112. Faris, I. B., J. Iannos, G. G. Jamieson, and J. Ludbrook. Comparison of methods for eliciting the baroreceptor heart rate reflex in conscious rabbits. Clin. Exp. Pharmacol. Physiol. 7: 281–291, 1980.
 113. Faris, I. B., J. Iannos, G. G. Jamieson, and J. Ludbrook. The carotid sinus baroreceptor reflex in conscious rabbit. J. Physiol. London 298: 321–331, 1980.
 114. Farrehi, C. Cardiovascular effects of carotid sinus nerve stimulation in resting man. Chest 61: 121–142, 1972.
 115. Ferrari, A., L. Gregorini, M. C. Ferrari, L. Preti, and G. Mancia. Digitalis and baroreceptor reflexes in man. Circulation 63: 279–285, 1981.
 116. Ferrario, C. M., J. W. McCubbin, and I. H. Page. Hemodynamic characteristics of chronic experimental neurogenic hypertension in unanesthetized dogs. Circ. Res. 24: 911–922, 1969.
 117. Finnerty, F. A., L. Witkin, and J. F. Fazekas. Cerebral hemodynamics during cerebral ischemia induced by acute hypotension. J. Clin. Invest. 33: 1227–1232, 1954.
 118. Folkow, B. Importance of adaptive changes in vascular design for establishment of primary hypertension: studies in man and in spontaneously hypertensive rats. Circ. Res. 32: I2–I15, 1973.
 119. Folkow, B., B. Johansson, and B. Lofving. Aspects of functional differentiations of the sympatho‐adrenergic control of the cardiovascular system. Med. Exp. 4: 321–328, 1961.
 120. Franke, H. Über das hyperaktive Carotis‐Sinus‐Syndrom. Acta Neuroveg. 25: 187–203, 1963.
 121. Ford, F. R. Fatal hypertensive crisis following denervation of the carotid sinus for relief of repeated attacks of syncope. Johns Hopkins Med. J. 100: 14–16, 1957.
 122. Friggi, A., A. Chevalier‐Cholat, and S. Torresani. Haemodynamic and baroreceptor responses to beta‐adrenergic blocking agents in rabbits with cardiopulmonary bypass. Eur. J. Pharmacol. 45: 295–300, 1977.
 123. Gammon, G. D. Carotid sinus reflex in patients with hypertension. J. Clin. Invest. 15: 153–161, 1936.
 124. Gauer, O. H., and H. L. Thron. Properties of veins in vivo: integrated effects of their smooth muscle. Physiol. Rev. 42, Suppl. 5: 283–308, 1962.
 125. Geha, A. S., R. E. Klaigner, and A. E. Bane. Bilateral carotid sinus nerve stimulation in the treatment of angina pectoris. Angiology 25: 16–20, 1974.
 126. Gellhorn, E. Cardiovascular reactions in asphyxia and post‐asphyxial state. Am. Heart J. 67: 73–80, 1964.
 127. Gellhorn, E. The significance of the state of the central autonomic nervous system for quantitative and qualitative aspects of some cardiovascular reactions. Am. Heart J. 67: 106–120, 1964.
 128. Gilbert, C. A., and P. M. Stevens. Forearm vascular responses to lower body negative pressure and orthostasis. J. Appl. Physiol. 21: 1265–1272, 1966.
 129. Gilmore, J. P., and I. H. Zucker. Contribution of vagal pathways to the renal responses to head‐out immersion in the non‐human primate. Circ. Res. 42: 263–267, 1978.
 130. Glasser, S. P., R. J. McCarty, and L. A. Iannone. Hyperactive carotid sinus reflex and His bundle electrocardiography. J. Electrocardiol. 7: 71–74, 1974.
 131. Glick, G., and E. Braunwald. Relative roles of the sympathetic and parasympathetic nervous system in the reflex control of heart rate. Circ. Res. 16: 363–375, 1965.
 132. Glick, G., and J. W. Covell. Relative importance of the carotid and aortic baroreceptors in the reflex control of heart rate. Am. J. Physiol. 214: 955–961, 1968.
 133. Goldstein, R. E., G. D. Beiser, M. Stampfer, and S. E. Epstein. Impairment of the autonomically mediated heart rate control in patients with cardiac dysfunction. Circ. Res. 36: 571–578, 1975.
 134. Gozna, E. R., A. E. Marble, A. Shaw, and J. G. Holland. Age‐related changes in the mechanics of the aorta and pulmonary artery of man. J. Appl. Physiol. 36: 407–411, 1974.
 135. Green, H. G., and C. E. Rapela. Blood flow in passive vascular beds. Circ. Res. 14‐15, Suppl. 1: I11–I18, 1964.
 136. Greenberg, T. T., W. H. Richmond, R. A. Stocking, P. D. Gupta, J. P. Meehan, and J. P. Henry. Impaired atrial receptor responses in dogs with heart failure due to tricuspid insufficiency and pulmonary artery stenosis. Circ. Res. 32: 424–433, 1973.
 137. Greisheimer, E. M. The circulatory effects of anesthetics. In: Handbook of Physiology. Circulation, edited by W. F. Hamilton. Washington, DC: Am. Physiol. Soc. 1965, sect. 2, vol. III, chapt. 70, p. 2477–2510.
 138. Gribbin, B., T. G. Pickering, P. Sleight, and R. Peto. Effect of age and high blood pressure on baroreflex sensitivity in man. Circ. Res. 29: 424–431, 1971.
 139. Guazzi, M., A. Libretti, and A. Zanchetti. Tonic reflex regulation of the cat's blood pressure through vagal afferents from the cardiopulmonary region. Circ. Res. 11: 7–16, 1962.
 140. Guo, G. B., M. D. Thames, and F. M. Abboud. Preservation of baroreflex control of lumbar sympathetic nerve activity in renal hypertensive rabbits (Abstract). Clin. Res. 29: 751A, 1981.
 141. Guz, A., M. I. M. Noble, D. Threnchard, H. L. Cochrane, and A. R. Makey. Studies on the vagus nerves in man: their role in respiratory and circulatory control. Clin Sci. 27: 293–304, 1964.
 142. Guz, A., M. I. M. Noble, J. G. Widdicombe, D. Threnchard, W. W. Mushin, and A. R. Makey. The role of vagal and glossopharyngeal afferent nerves in respiratory sensation, control of breathing and arterial pressure regulation in conscious man. Clin. Sci. 30: 161–170, 1966.
 143. Hadjiminas, J., and B. Öberg. Effects of carotid baroreceptor reflexes on venous tone in skeletal muscle and intestine in the cat. Acta Physiol. Scand. 72: 518–532, 1968.
 144. Haeusler, G. Neuronal mechanisms influencing transmission in the baroreceptor reflex arch. In: Progress in Brain Research. Hypertension and Brain Mechanisms, edited by W. De Jong, A. P. Provoost, and A. P. Shapiro. Amsterdam: Elsevier, 1977, vol. 47, p. 95–109.
 145. Hainsworth, R., and F. Karim. Left ventricular inotropic and peripheral vasomotor responses from independent changes in pressure in the carotid sinuses and cerebral arteries in anesthetized dogs. J. Physiol. London 228: 139–155, 1973.
 146. Hainsworth, R., F. Karim, and J. B. Stoker. The influence of aortic baroreceptors on venous tone in the perfused hindlimb of the dog. J. Physiol. London 244: 337–351, 1975.
 147. Hainsworth, R., J. R. Ledsome, and F. Carswell. Reflex responses from aortic baroreceptors. Am. J. Physiol. 218: 423–429, 1970.
 148. Hartzler, C. O., and J. E. Maloney. Cardioinhibitory carotid sinus hypersensitivity. Arch. Intern. Med. 137: 727–731, 1977.
 149. Haymet, B. T., and D. I. McCloskey. Baroreceptor and chemoreceptor influences on heart rate during the respiratory cycle in the dog. J. Physiol. London 245: 699–712, 1975.
 150. Heistad, D. D., F. M. Abboud, A. L. Mark, and P. G. Schmid. Interaction of baroreceptor and chemoreceptor reflexes. Modulation of the chemoreceptor reflex by changes in baroreceptor activity. J. Clin. Invest. 53: 1226–1236, 1974.
 151. Hering, H. E. Die Karotissinus Reflex auf Herz und Gefasse. Leipzig: Steinkopff, 1927, 150 p.
 152. Heron, J. R., E. G. Anderson, and I. M. Noble. Cardiac abnormalities associated with carotid sinus syndrome. Lancet 2: 214–216, 1965.
 153. Heymans, C., and E. Neil. Reflexogenic Areas of the Cardiovascular System. London: Churchill, 1958.
 154. Higgins, C. B., S. F. Vatner, D. L. Eckberg, and E. Braunwald. Alterations in the baroreceptor reflex in conscious dogs with heart failure. J. Clin. Invest. 51: 716–724, 1972.
 155. Holton, P., and J. B. Wood. The effects of bilateral removal of the carotid bodies and denervation of the carotid sinuses in two human subjects. J. Physiol. London 181: 365–378, 1965.
 156. Hossmann, V., G. A. Fitzgerald, and C. T. Dollery. Circadian rhythm of baroreflex reactivity and adrenergic vascular response. Cardiovasc. Res. 14: 125–129, 1980.
 157. Ibrahim, M. M. Localization of lesion in patients with idiopathic orthostatic hypotension. Br. Heart J. 37: 868–872, 1975.
 158. Ito, C. S., and A. M. Scher. Hypertension following denervation of aortic baroreceptors in unanesthetized dogs. Circ. Res. 45: 26–34, 1979.
 159. James, T. N., F. Urthaler, and G. R. Hageman. Reflex heart block. Baroreflex, chemoreflex, and bronchopulmonary reflex causes. Am. J. Cardiol. 45: 1182–1188, 1980.
 160. Johnson, J. M., L. B. Rowell, M. Niederberg, and M. M. Eisman. Human splanchnic and forearm vasoconstrictor responses to reductions of right atrial and aortic pressures. Circ. Res. 34: 515–524, 1974.
 161. Jonzon, A., P. A. Öberg, G. Sedin, and U. Sjöstrand. Studies of blood pressure regulation in the unanesthetized dog. I. The effects of constant‐frequency stimulation of the carotid‐sinus nerves. Pfluegers Arch. 340: 211–228, 1973.
 162. Jose, A. D., and R. R. Taylor. Autonomic blockade by propranolol and atropine to study intrinsic myocardial function in man. J. Clin. Invest. 48: 2029–2031, 1969.
 163. Judy, W. V., and S. K. Farrel. Arterial baroreceptor reflex control of sympathetic nerve activity in the spontaneously hypertensive rat. Hypertension 1: 605–614, 1979.
 164. Julius, S., M. D. Esler, and O. S. Randall. Role of the autonomic nervous system in mild human hypertension. Clin. Sci. Mol. Med. 48: 2435–2525, 1975.
 165. Katona, P. G., and G. O. Barnett. Central origin of asymmetry in the carotid sinus reflex. Ann. NY Acad. Sci. 156: 779–786, 1968.
 166. Kendrick, E., B. Öberg, and G. Wennergren. Extent of engagement of various cardiovascular effectors to alterations in carotid sinus pressure. Acta Physiol. Scand. 86: 410–418, 1972.
 167. Keys, A., and A. Violante. Cardio‐circulatory effects in man of neosynephrin. J. Clin. Invest. 21: 1–12, 1942.
 168. Kezdi, P. Sinoaortic regulatory systems. Arch. Intern. Med. 91: 26–34, 1953.
 169. Kezdi, P. Neurogenic hypertension in man in porphyria. Arch. Intern. Med. 94: 122–130, 1954.
 170. Kirchheim, H. R. Systemic arterial baroreceptor reflexes. Physiol. Rev. 56: 100–176, 1976.
 171. Kirchheim, H., and R. Gross. Hemodynamics of the carotid sinus reflex elicited by bilateral carotid occlusion in the conscious dog. Pfluegers Arch. 327: 203–224, 1971.
 172. Kober, G., and J. O. Arndt. Druck‐durchsnesser‐beziehung der A. Carotis Communis des machen Menschen. Pfluegers Arch. 314: 27–39, 1970.
 173. Kobinger, W., and A. Walland. Evidence for a central activation of a vagal cardiodepressor reflex by clonidine. Eur. J. Pharmacol. 19: 203–209, 1972.
 174. Koch, E., and H. Mies. Chronischer arterieller Hochtruck durch experimentelle Dauerasschaltung der Blutdruckzugler. Krankheitsforschung 7: 241–256, 1929.
 175. Koch‐Weser, J. Nature of inotropic action of angiotensin on ventricular myocardium. Circ. Res. 16: 230–237, 1965.
 176. Koepchen, H. P., H. D. Lux, and P. H. Wagner. Über die Zusammenhange Zwischen zentraler Erregbarkeit, reflektorischem Tonus und Atemrhythuus bei der nervosen Stenerung der Herzfrequenz. Pfluegers Arch. 237: 443–465, 1961.
 177. Koike, H., A. L. Mark, D. D. Heistad, and P. G. Schmid. Influence of cardiopulmonary vagal afferent activity on carotid chemoreceptor and baroreceptor reflexes in the dog. Circ. Res. 37: 422–429, 1975.
 178. Korner, P. I. Integrative neural cardiovascular control. Physiol. Rev. 51: 312–367, 1971.
 179. Korner, P. I., J. R. Oliver, P. Sleight, J. P. Chalmers, and J. S. Robinson. Effects of clonidine on the baroreceptor‐heart rate reflex and on single aortic baroreceptor fibre discharge. Eur. J. Pharmacol. 28: 189–198, 1974.
 180. Korner, P. I., and S. Shaw. Central resetting of the arterial blood pressure control system. In: Cardiovascular Regulation in Health and Disease, edited by C. Bartorelli and A. Zanchetti. Milan, Italy: Istituto di Recerche Cardiovascolari, 1971, p. 143–157.
 181. Korner, P. I., A. M. Tonkin, and J. B. Uther. Reflex and mechanical circulatory effects of graded Valsalva maneuvers in normal man. J. Appl. Physiol. 40: 434–440, 1976.
 182. Korner, P. I., A. M. Tonkin, and J. B. Uther. Valsalva constrictor and heart rate reflexes in subjects with essential hypertension and with normal blood pressure. Clin. Exp. Pharmacol. Physiol. 6: 97–110, 1979.
 183. Korner, P. I., M. J. West, and J. Shaw. Central nervous resetting of baroreceptor reflexes. Aust. J. Exp. Biol. Med. Sci. 51: 53–64, 1973.
 184. Korner, P. I., M. J. West, J. Shaw, and J. B. Uther. Steady‐state properties of the baroreceptor‐heart rate reflex in essential hypertension in man. Clin. Exp. Pharmacol. Physiol. 1: 65–76, 1974.
 185. Koushanpour, E., and J. P. McGee. Effect of mean arterial pressure on carotid sinus baroreceptor response to pulsatile pressure. Am. J. Physiol. 216: 599–603, 1969.
 186. Kramer, R. S., D. T. Mason, and E. Braunwald. Augmented sympathetic neurotransmitter activity in the peripheral vascular bed of patients with congestive heart failure and cardiac norepinephrine depletion. Circulation 38: 629–634, 1968.
 187. Lakatta, E. G. Alterations in the cardiovascular system that occur in advanced age. Federation Proc. 38: 163–167, 1979.
 188. Lampen, H. Über Entzugelungshockdruck bei Polyneuritis. Dtsch. Med. Wochenschr. 74: 536–540, 1949.
 189. Landgren, S., and E. Neil. Chemoreceptor impulse activity following haemorrhage. Acta Physiol. Scand. 23: 158–167, 1951.
 190. Lazarus, J. M., C. L. Hampers, E. G. Lowrie, and J. P. Merril. Baroreceptor activity in normotensive and hypertensive uremic patients. Circulation 47: 1015–1021, 1973.
 191. Learoyd, B. M., and M. G. Taylor. Alterations with age in the viscoelastic properties of human arterial walls. Circ. Res. 18: 278–292, 1966.
 192. Lee, K. D., R. A. Mayon, and R. W. Torrance. The effect of blood pressure upon chemoreceptor discharge to hypoxia. The modification of this effect by the sympathetic adrenal system. Q. J. Exp. Physiol. 49: 171–183, 1964.
 193. Leon, D. F., J. A. Shaver, and J. J. Leonard. Reflex heart rate control in man. Am. Heart J. 80: 729–739, 1970.
 194. Levy, M. N., and P. J. Martin. Neural control of the heart. In: Handbook of Physiology. The Cardiovascular System. The Heart, edited by R. M. Berne and N. Sperelakis. Bethesda, MD: Am. Physiol. Soc, 1979, sect. 2, vol. I, chapt. 16, p. 581–620.
 195. Levy, M. N., and H. Zieske. Synchronization of the cardiac pacemaker with repetitive stimulation of the carotid sinus nerve in the dog. Circ. Res. 30: 634–641, 1972.
 196. Lewis, H. D., and M. Dunn. Orthostatic hypotension syndrome. A case report. Am. Heart J. 74: 396–401, 1967.
 197. Lilley, J. S., S. Golden, and R. A. Stone. Adrenergic regulation of blood pressure in chronic renal failure. J. Clin. Invest. 57: 1190–1200, 1976.
 198. Lindblad, L. E. Influence of age on sensitivity and effector mechanisms of the carotid baroreflex. Acta Physiol. Scand. 101: 43–49, 1977.
 199. Lindblad, L. E. Baroreceptor Reflexes in Man. A Study on Cardiovascular and Neural Effector Mechanisms. Stockholm: Akademisk Avhandling, 1980, p. 1–62.
 200. Lopes, O. V., and J. F. Palmer. Proposed respiratory “gating” mechanism for cardiac slowing. Nature London 264: 454–456, 1976.
 201. Lown, B., and S. A. Levine. The carotid sinus. Clinical value of its stimulation. Circulation 33: 766–789, 1961.
 202. Ludbrook, J., I. B. Faris, J. Iannos, and G. G. Jamieson. Sine‐wave evocation of the carotid baroreceptor reflex in conscious rabbits. In: Arterial Baroreceptors and Hypertension, edited by P. Sleight. Oxford, UK: Oxford Univ. Press, 1980, p. 39–44.
 203. Ludbrook, J., I. B. Faris, J. Iannos, G. G. Jamieson, and W. S. Russell. Lack of effect of isometric handgrip exercise in the responses of the carotid sinus baroreceptor reflex in man. Clin. Sci. Mol. Med. 55: 189–194, 1978.
 204. Ludbrook, J., G. Mancia, A. Ferrari, and A. Zanchetti. The variable‐pressure neck‐chamber method for studying the carotid baroreflex in man. Clin. Sci. Mol. Med. 53: 165–171, 1977.
 205. Ludbrook, J., G. Mancia, and A. Zanchetti. Does the baroreceptor‐heart rate reflex indicate the capacity of the arterial baroreceptors to control blood pressure? Clin. Exp. Pharmacol. Physiol. 7: 499–503, 1980.
 206. Mancia, G. Influence of carotid baroreceptors on vascular responses to carotid chemoreceptor stimulation in dogs. Circ. Res. 36: 270–276, 1975.
 207. Mancia, G., O. Bonazzi, L. Pozzoni, A. Ferrari, M. Gardumi, L. Gregorini, and R. Perondi. Baroreceptor control of atrioventricular conduction in man. Circ. Res. 44: 752–758, 1979.
 208. Mancia, G., D. E. Donald, and J. T. Shepherd. Inhibition of adrenergic outflow to peripheral blood vessels by vagal afferents from the cardiopulmonary region in the dog. Circ. Res. 33: 713–721, 1973.
 209. Mancia, G., A. Ferrari, L. Gregorini, C. Bianchini, L. Terzoli, G. Leonetti, and A. Zanchetti. Methyldopa and neural control of circulation in essential hypertension. Am. J. Cardiol. 45: 1237–1243, 1980.
 210. Mancia, G., A. Ferrari, L. Gregorini, M. C. Ferrari, C. Bianchini, L. Terzoli, G. Leonetti, and A. Zanchetti. Effects of prazosin on autonomic control of circulation in essential hypertension. Hypertension 2: 700–707, 1980.
 211. Mancia, G., A. Ferrari, L. Gregorini, J. Ludbrook, and A. Zanchetti. Baroreceptor control of heart rate in man. In: Neural Mechanisms of Cardiac Arrhythmias, edited by P. J. Schwartz, A. M. Brown, A. Malliani, and A. Zanchetti. New York: Raven, 1978, p. 323–333.
 212. Mancia, G., A. Ferrari, L. Gregorini, G. Parati, G. Pomidossi, G. Bertinieri, G. Grassi, and A. Zanchetti. Blood pressure variability in man: its relation to age, high blood pressure, and baroreflex sensitivity. Clin. Sci. 59: 401s–403s, 1980.
 213. Mancia, G., A. Ferrari, L. Gregorini, G. Parati, G. Pomidossi, and A. Zanchetti. Control of blood pressure by carotid sinus baroreceptors in human beings. Am. J. Cardiol. 44: 895–902, 1979.
 214. Mancia, G., A. Ferrari, L. Gregorini, R. Valentini, J. Ludbrook, and A. Zanchetti. Circulatory reflexes from carotid and extracarotid baroreceptor areas in man. Circ. Res. 41: 309–315, 1977.
 215. Mancia, G., A. Ferrari, L. Gregorini, and A. Zanchetti. Clonidine and carotid baroreflex in essential hypertension. Hypertension 1: 362–370, 1979.
 216. Mancia, G., J. Iannos, G. G. Jamieson, H. H. Lawrence, P. R. Sharman, and J. Ludbrook. The effect of isometric handgrip exercise on the carotid sinus baroreceptor reflex in man. Clin. Sci. Mol. Med. 54: 33–37, 1978.
 217. Mancia, G., G. Leonetti, G. B. Picotti, A. Ferrari, R. D. Golin, L. Gregorini, G. Parati, G. Pomidossi, C. Ravazzani, C. Sala, and A. Zanchetti. Plasma catecholamines and blood pressure responses to the carotid baroreceptor reflex in essential hypertension. Clin. Sci. 57: 165s–167s, 1979.
 218. Mancia, G., J. Ludbrook, A. Ferrari, L. Gregorini, and A. Zanchetti. Baroreceptor reflexes in human hypertension. Circ. Res. 43: 170–177, 1978.
 219. Mancia, G., J. T. Shepherd, and D. E. Donald. Role of cardiac, pulmonary, and carotid mechanoreceptors in the control of hindlimb and renal circulation in dogs. Circ. Res. 37: 200–208, 1975.
 220. Mancia, G., J. T. Shepherd, and D. E. Donald. Interplay among carotid sinus, cardiopulmonary, and carotid body reflexes in dogs. Am. J. Physiol. 230: 19–24, 1976.
 221. Mancia, G., and A. Zanchetti. Cardiovascular regulation during sleep. In: Physiology of Sleep, edited by J. Orem. New York: Academic, 1981, p. 1–55.
 222. Mancia, G., and A. Zanchetti. Hypothalamic control of autonomic functions. In: Handbook of Hypothalamus, edited by P. J. Panksepp and J. Morgane. New York: Dekker, 1981, p. 147–202.
 223. Manco, J. C., L. Gallo, R. A. Godoy, R. G. Fernandes, and D. S. Amorim. Degeneration of cardiac nerves in Chagas' disease. Circulation 40: 879–885, 1969.
 224. Martin, P. Paradoxical dynamic interaction of heart period and vagal activity on atrioventricular conduction in the dog. Circ. Res. 40: 81–89, 1977.
 225. Mason, D. T., and E. Braunwald. Studies on digitalis. X. Effects of ouabain on forearm vascular resistance and venous tone in normal subjects and in subjects with heart failure. J. Clin. Invest. 43: 532–543, 1964.
 226. Mason, D. T., E. Braunwald, J. Ross, and A. J. Morrow. Diagnostic value of the first and second derivatives of the arterial pressure pulse in aortic valve disease and in hypertrophic subaortic stenosis. Circulation 30: 90–100, 1964.
 227. McAllen, R. M., and K. M. Spyer. The baroreceptor input to cardiac vagal motoneurones. J. Physiol. London 282: 365–374, 1978.
 228. McDowell, F. M., and F. Plum. Arterial hypertension associated with acute anterior poliomyelitis. N. Engl. J. Med. 245: 241–246, 1951.
 229. McLain, P. L. Effects of ouabain on spontaneous afferent activity in aortic and carotid sinus nerves of cats. Neuropharmacology 9: 399–402, 1970.
 230. McNamara, H. I., J. M. Sikorski, and H. Clarin. The effects of lower body negative pressure on hand blood flow. Cardiovasc. Res. 3: 284–291, 1969.
 231. McRitchie, R. J., and S. F. Vatner. The role of arterial baroreceptors in mediating the cardiovascular response to a cardiac glycoside in conscious dogs. Circ. Res. 38: 321–330, 1976.
 232. Melcher, A. Carotid baroreflex heart rate control during the active and the assisted breathing cycle in man. Acta Physiol. Scand. 108: 165–171, 1980.
 233. Mertens, H. G. Die Vegetativen Syndrome der Thalliumvergiftung. Klin. Wochenshr. 30: 843–849, 1952.
 234. Millar‐Craig, M. W., C. N. Bishop, and E. B. Raftery. Circadian variations of blood pressure. Lancet 1: 795–797, 1978.
 235. Mott, K. E., and J. C. W. Hagstrom. The pathologic lesions of the cardiac autonomic nervous system in chronic Chagas' myocarditis. Circulation 31: 273–286, 1965.
 236. Mroczek, W. J., W. R. Lee, M. E. David, and F. A. Finnerty. Vasodilator administration in the presence of beta adrenergic blockade. Circulation 53: 985–988, 1976.
 237. Muratori, G. Histopathological observations on the carotid bifurcation in man. Arch. Int. Pharmacol. Ther. 152: 98–105, 1963.
 238. Nakayama, K. Surgical removal of the carotid body for bronchial asthma. Dis. Chest 40: 595–604, 1961.
 239. Nathan, M. A., and D. J. Reis. Chronic labile hypertension produced by lesions of the nucleus tractus solitarii in the cat. Circ. Res. 40: 72–81, 1977.
 240. Nathanson, M. H. Hyperactive cardioinhibitory carotid sinus reflex. Arch. Intern. Med. 77: 492–503, 1946.
 241. Nathanson, M. H., and H. Miller. Clinical observations on a new epinephrine‐like compound, methoxamine. Am. J. Med. Sci. 223: 270–279, 1952.
 242. Neto, J. A. M., B. C. Maciel, L. Gallo, J. C. Manco, J. F. Terra, and D. S. Amorin. Effect of lowering left atrial pressure on arterial baroreflex control of heart rate in patients with congestive heart failure. In: Arterial Baroreceptors and Hypertension, edited by P. Sleight. Oxford, UK: Oxford Univ. Press, 1980, p. 499–509.
 243. Neufeld, H. N., D. Goor, D. Nathan, H. Fischler, and S. Yerusalmi. Stimulation of the carotid baroreceptors using a radiofrequency method. Isr. J. Med. Sci. 1: 630–632, 1965.
 244. Nishith, S. D., L. D. Davis, and W. B. Youmans. Cardioac‐celerator action of angiotensin. Am. J. Physiol. 202: 237–240, 1962.
 245. Norns, A. H., N. W. Shock, and M. J. Yengst. Age changes in heart rate and blood pressure responses to tilting and standardized exercise. Circulation 8: 521–526, 1953.
 246. Nosaka, S., and S. C. Wang. Carotid sinus baroceptor functions in the spontaneously hypertensive rat. Am. J. Physiol. 222: 1079–1084, 1972.
 247. Oberg, B., and S. White. Circulatory effects of interruption and stimulation of cardiac vagal afferents. Acta Physiol. Scand. 80: 383–394, 1970.
 248. Oberg, B., and S. White. Role of vagal cardiac nerves and arterial baroreceptors in the circulatory adjustments to hemorrhage in the cat. Acta Physiol. Scand. 80: 395–403, 1970.
 249. Ott, N. T., R. R. Lorenz, and J. T. Shepherd. Modification of lung‐inflation reflex in rabbits by hypercapnia. Am. J. Physiol. 223: 812–819, 1972.
 250. Ott, N. T., and J. T. Shepherd. Modifications of the aortic and vagal depressor reflexes by hypercapnia in rabbits. Circ. Res. 33: 160–165, 1973.
 251. Page, E. G., J. F. Hickman, H. O. Sieker, H. D. McIntosh, and W. R. Pryor. Reflex vasomotor activity in normal persons and in patients with postural hypotension. Circulation 11: 262–270, 1955.
 252. Pelletier, C. L., D. L. Clement, and J. T. Shepherd. Comparison of afferent activity of aortic and sinus nerves. Circ. Res. 31: 557–568, 1972.
 253. Perlow, M., M. H. Ebert, E. K. Gordon, M. G. Ziegler, C. R. Lake, and T. N. Chase. The circadian variation of catecholamine metabolism in the subhuman primate. Brain Res. 139: 101–113, 1978.
 254. Pickering, T. G., and J. Davis. Estimation of the conduction time of the baroreceptor‐cardiac reflex in man. Cardiovasc. Res. 7: 213–219, 1973.
 255. Pickering, T. G., B. Gribbin, and D. O. Oliver. Baroreflex sensitivity in patients on long‐term haemodialysis. Clin. Sci. 43: 645–657, 1972.
 256. Pickering, T. G., B. Gribbin, and P. Sleight. Comparison of the reflex heart rate response to rising and falling arterial pressure in man. Cardiovasc. Res. 6: 277–283, 1972.
 257. Pickering, T. G., B. Gribbin, E. Strange‐Petersen, D. J. C. Cunningham, and P. Sleight. Comparison of the effects of exercise and posture on the baroreflex in man. Cardiovasc. Res. 5: 582–586, 1971.
 258. Pickering, T. G., B. Gribbin, E. Strange‐Petersen, D. J. C. Cunningham, and P. Sleight. Effects of autonomic blockade on the baroreflex in man at rest and during exercise. Circ. Res. 30: 177–185, 1972.
 259. Pickering, G. W., M. Kissin, and P. Rothechild. Relationship of the carotid sinus mechanism to persistent high blood pressure in man. Clin. Sci. 2: 193–200, 1936.
 260. Plassaras, G. C., E. Brown, J. S. Goei, and A. D. M. Greenfield. Effects of simulated postural blood shifts on the capacity function of the limb vessels (Abstract). Physiologist 6: 255, 1963.
 261. Przybyla, A. C., G. A. Bobb, S. H. Lau, and A. N. Damato. Intracardiac conduction disturbances produced via the carotid chemoreflex. Am. J. Physiol. 222: 959–966, 1972.
 262. Quest, J. A., and R. A. Gillis. Carotid sinus reflex changes produced by digitalis. J. Pharmacol. Exp. Ther. 177: 650–661, 1971.
 263. Quest, J. A., and R. A. Gillis. Effects of digitalis on carotid sinus baroreceptor activity. Circ. Res. 35: 247–255, 1974.
 264. Randall, O. S., M. D. Esler, G. F. Bullock, A. S. Maisel, C. N. Ellis, A. J. Zweifler, and S. Julius. Relationship of age and blood pressure to baroreflex sensitivity and arterial compliance in man. Clin. Sci. Mol. Med. 51: 357s–360s, 1976.
 265. Randall, O. S., M. Esler, B. Culp, S. Julius, and A. Zweifler. Determinants of baroreflex sensitivity in man. J. Lab. Clin. Invest. 91: 514–519, 1978.
 266. Ray, B. S., and H. S. Stewart. Observations on acute surgical aspects of the carotid sinus reflex in man. Surgery 2: 915–938, 1942.
 267. Rees, P. M. Observations on the fine structure and distribution of presumptive baroreceptor nerves at the carotid sinus. J. Comp. Neurol. 131: 517–530, 1967.
 268. Rees, P. M., and P. Jepson. Measurement of arterial geometry and wall composition in the carotid sinus baroreceptor area. Circ. Res. 26: 461–467, 1970.
 269. Reing, C. M., H. Thibodeaux, R. A. Gillis, and P. A. Kot. Influence of baroreceptor reflexes on cardiovascular responses of the dog to acetylstrophanthidin. J. Pharmacol. Exp. Ther. 184: 641–648, 1978.
 270. Resnicoff, S. A., S. P. Harris, S. P. Hampsey, and S. I. Schwartz. Effects of sinus nerve stimulation on arterial resistance and flow patterns of specific vascular beds. Surgery 66: 755–761, 1969.
 271. Ripley, R. C., J. W. Hollifield, and A. S. Nies. Sustained hypertension after section of the glossopharyngeal nerve. Am. J. Cardiol. 62: 297–302, 1977.
 272. Robinson, B. F., S. E. Epstein, G. D. Beiser, and E. Braunwald. Control of heart rate by the autonomic nervous system. Studies in man on the interrelations between baroreceptor mechanisms and exercise. Circ. Res. 19: 400–411, 1966.
 273. Roddie, I. C., and J. T. Shepherd. The effects of carotid artery compression in man with special reference to changes in vascular resistance in the limbs. J. Physiol. London 139: 377–384, 1957.
 274. Roddie, I. C., J. T. Shepherd, and R. F. Whelan. Evidence from venous oxygen saturation measurements that the increase in forearm blood flow during body heating is confined to the skin. J. Physiol. London 134: 444–450, 1956.
 275. Rosenblueth, A., and F. A. Simeone. The interrelations of vagal and accelerator effects on the cardiac rate. Am. J. Physiol. 110: 42–55, 1934.
 276. Rotem, C. E. Carotid sinus nerve stimulation in the management of intractable angina pectoris: four years of follow up. Can. Med. Assoc. J. 110: 258–288, 1974.
 277. Rowell, L. B., J.‐M. R. Detry, J. R. Blackmon, and C. Wyss. Importance of the splanchnic vascular bed in human blood pressure regulation. J. Appl. Physiol. 32: 213–220, 1972.
 278. Rowell, L. B., C. R. Wyss, and G. L. Brengelmann. Sustained human skin and muscle vasoconstriction with reduced baroreceptor activity. J. Appl. Physiol. 34: 639–643, 1973.
 279. Salgado, H. C., and E. M. Krieger. Resetting of the baroreceptor in hypotension in rats. Clin. Sci. Mol. Med. 51: 351s–352s, 1976.
 280. Samueloff, S. L., B. S. Bevegård, and J. T. Shepherd. Temporary arrest of circulation to a limb for the study of venomotor reactions in man. J. Appl. Physiol. 21: 341–346, 1966.
 281. Samueloff, S. L., N. L. Browse, and J. T. Shepherd. Response of capacity vessels in human limbs to head‐up tilt and suction on the lower body. J. Appl. Physiol. 21: 47–54, 1966.
 282. Sano, K., and T. Aiba. Pulse disease: summary of our 62 cases. Jpn. Circ. J. 30: 63–67, 1966.
 283. Saum, W. R., A. M. Brown, and F. M. Tuley. An electrogenic sodium pump and baroreceptor function in normotensive and spontaneously hypertensive rats. Circ. Res. 39: 497–505, 1976.
 284. Scher, A. M. Servoanalysis of carotid sinus reflex effects on peripheral resistance. Circ. Res. 12: 152–162, 1963.
 285. Scherlag, B. J., S. H. Lau, R. H. Helfant, W. D. Berkowitz, E. Stein, and A. N. Damato. Catheter technique for recording His bundle activity in man. Circ. Res. 39: 13–18, 1969.
 286. Schmid, P. G., and F. M. Abboud. Circulatory adjustments to heart failure. In: Heart Failure, edited by A. Fishman. Washington, DC: Hemisphere, 1978, p. 249–260.
 287. Schmid, P. G., H. E. Mayer, A. L. Mark, D. D. Heistad, and F. M. Abboud. Differences in the regulation of vascular resistance in guinea pigs with right and left heart failure. Circ. Res. 41: 85–93, 1977.
 288. Schneiyer, K. Zur Frage der Blutdruckcharakteristik. Pfluegers Arch. Gesamte Physiol., Menschen Tiere 235: 176–183, 1935.
 289. Schwartz, S. L., and L. S. C. Griffith. Reduction of hypertension by electrical stimulation of the carotid sinus nerve. In: Baroreceptors and Hypertension, edited by P. Kezdi. New York: Pergamon, 1967, p. 409–424.
 290. Scroop, G. C., and R. F. Whelan. A central vasomotor action of angiotensin in man. Clin. Sci. 30: 79–90, 1966.
 291. Segel, N., P. Harris, and J. M. Bishop. Effects of synthetic hypertensine on the systemic and pulmonary circulations in man. Clin. Sci. 20: 49–61, 1961.
 292. Sharpey‐Schafer, E. P. Venous tone. Br. Med. J. 2: 1589–1595, 1961.
 293. Sharpey‐Schafer, E. P. Circulatory reflexes in chronic disease of the afferent nervous system. J. Physiol. London 134: 1–10, 1956.
 294. Sharpey‐Schafer, E. P. Effect of respiratory acts on the circulation. In: Handbook of Physiology. Circulation, edited by W. F. Hamilton. Washington, DC: Am. Physiol. Soc, 1965, sect. 2, vol. III, chapt. 52, p. 1875–1886.
 295. Sharpey‐Schafer, E. P., and P. J. Taylor. Absent circulatory reflexes in diabetic neuritis. Lancet 1: 559–562, 1960.
 296. Shepherd, J. T. Nervous control of the blood vessels in the skin. In: Physiology of the Circulation in Human Limbs in Health and Disease. Philadelphia, PA: Saunders, 1963, p. 9–41.
 297. Shepherd, J. T., and P. M. Vanhoutte. Veins and Their Control. London: Saunders, 1975, p. 1–269.
 298. Shimizu, T., and V. S. Bishop. Role of carotid sinus and cardiopulmonary reflexes on left ventricular dP/dt in cats. Am. J. Physiol. 238 (Heart Circ. Physiol. 7): H93–H97, 1980.
 299. Shoukas, A. A., and M. C. Brunner. Mechanism and source of blood volume shifts caused by the carotid sinus baroreceptor reflex. In: Arterial Baroreceptors and Hypertension, edited by P. Sleight. Oxford, UK: Oxford Univ. Press, 1980, p. 130–134.
 300. Shoukas, A. A., and K. Sagawa. Control of total systemic vascular capacitance by the carotid sinus baroreceptor reflex. Circ. Res. 33: 22–33, 1973.
 301. Sigler, L. H. Subjective manifestations of hyperactive carotid sinus reflex. Ann. Intern. Med. 29: 687–697, 1948.
 302. Simon, G., W. Kiowski, and S. Julius. Effect of beta adrenoceptor antagonists on baroreceptor reflex sensitivity in hypertension. Clin. Pharmacol. 22: 293–298, 1977.
 303. Simon, A. C. H., M. E. Safar, Y. A. Weiss, J. M. London, and P. L. Milliez. Baroreflex sensitivity and cardiopulmonary blood volume in normotensive and hypertensive patients. Br. Heart J. 39: 799–805, 1977.
 304. Sleight, P. Reflex control of the heart. Am. J. Cardiol. 44: 889–894, 1979.
 305. Sleight, P., P. Fox, R. Lopez, and D. E. Brooks. The effect of mental arithmetic on blood pressure variability and baroreflex sensitivity in man. Clin. Sci. Mol. Med. 55: 381s–382s, 1978.
 306. Smith, H. L. A consideration on the hyperactive carotid sinus reflex syndrome. Med. Clin. North Am. 31: 841–844, 1947.
 307. Smyth, H. S., P. Sleight, and G. W. Pickering. Reflex regulation of arterial pressure during sleep in man: a quantitative method of assessing baroreflex sensitivity. Circ. Res. 24: 109–121, 1969.
 308. Solti, F., Z. Szabo, G. Kerkovits, G. Buday, E. Bodor, and I. Kalmar. Baropacing of the carotid sinus nerve for treatment of “intractable” hypertension. Z. Kardiol. 64: 368–374, 1975.
 309. Stegemann, J., A. Busert, and D. Brock. Influence of fitness on the blood pressure control system in man. Aerosp. Med. 45: 45–48, 1974.
 310. Sundlöf, G., and G. B. Wallin. Human muscle nerve sympathetic activity at rest. Relationship to blood pressure and age. J. Physiol. London 274: 621–637, 1978.
 311. Takeshita, A., A. L. Mark, D. L. Eckberg, and F. M. Abboud. Effect of central venous pressure on arterial baroreflex control of heart rate. Am. J. Physiol. 236 (Heart Circ. Physiol. 5): H42–H47, 1979.
 312. Takeshita, A., S. Tanaka, A. Kuroiwa, and M. Nakamura. Reduced baroreceptor sensitivity in borderline hypertension. Circulation 51: 738–742, 1975.
 313. Takeshita, A., S. Tanaka, and M. Nakamura. Effects of propranolol on baroreflex sensitivity in borderline hypertension. Cardiovasc. Res. 12: 148–151, 1978.
 314. Takeshita, A., S. Tanaka, Y. Orita, H. Kanaide, and M. Nakamune. Baroreflex sensitivity in patients with Takayasu's aortitis. Circulation 55: 803–806, 1977.
 315. Thames, M. D., and H. A. Kontos. Mechanisms of baroreceptor‐induced changes in heart rate. Am. J. Physiol. 218: 251–256, 1970.
 316. Thomas, J. E. Hyperactive carotid sinus reflex and carotid sinus syndrome. Mayo Clin. Proc. 44: 127–139, 1969.
 317. Thompson, M. A., and D. L. Eckberg. Effects of ouabain upon the carotid baroreceptor reflex in normal man (Abstract). Circulation 54: II‐224, 1976.
 318. Thorén, P. Characteristics of left ventricular receptors with non‐medullated vagal afferents. Circ. Res. 40: 415–421, 1977.
 319. Thorén, P., and S. V. Jones. Characteristics of aortic baroreceptor C‐fibres in the rabbit. Acta Physiol. Scand. 99: 448–456, 1977.
 320. Thorén, P., W. R. Saum, and A. M. Brown. Characteristics of aortic baroreceptors with non‐medullated afferents in the rat. Circ. Res. 40: 231–237, 1977.
 321. Thron, H. L., W. Brechmann, J. Wagner, and K. Keller. Quantitative untersuchungen über die Bedeutung der Gefässdehnungsreceptoren im Rahmen der Kreislaufhomoiostase beim wachen Menschen. Pfluegers Arch. 293: 68–99, 1967.
 322. Tomiyama, O., T. Shiigai, T. Ideura, K. Tonita, Y. Mito, S. Shinohara, and S. Takeuchi. Baroreflex sensitivity in renal failure. Clin. Sci. 58: 21–27, 1980.
 323. Trzebski, A., M. Raczowska, and L. Kubin. Influence of respiratory activity and hypocapnia on the carotid baroreflex in man. In: Arterial Baroreceptors and Hypertension, edited by P. Sleight. Oxford, UK: Oxford Univ. Press, 1980, p. 282–290.
 324. Tuckman, J., T. Reich, A. F. Lyon, M. Mendlowitz, and J. H. Jacobson. Electrical stimulation of the sinus nerves in hyperactive patients. In: Neural Control of Arterial Pressure, edited by J. E. Wood. New York: Am. Heart Assoc., 1968, p. 23–28.
 325. Tuckman, J., S. Slater, and M. Mendlowitz. The role of the carotid sinus reflexes in the hemodynamic regulation in normotensive and hypertensive man. In: Baroreceptors and Hypertension, edited by P. Kezdi. New York: Pergamon, 1967, p. 333–347.
 326. Turner, R., and J. R. Learmouth. Carotid sinus syndrome. Lancet 2: 644–646, 1948.
 327. Turton, M. B., and T. Deegan. Circadian variations in plasma catecholamine Cortisol and immunoreactive insulin concentrations in supine subjects. Clin. Chim. Acta 55: 389–397, 1974.
 328. Tydén, G., H. Samnegård, and L. Thulin. The effects of changes in the carotid sinus baroreceptor activity on the splanchnic blood flow in anesthetized man. Acta Physiol. Scand. 106: 187–189, 1979.
 329. Ueda, H. Clinical and pathological studies of aortitis syndrome. Committee report. Jpn. Heart J. 9: 76–87, 1968.
 330. Varma, S., S. D. Johnsen, D. E. Sherman, and W. B. Youmans. Mechanisms of inhibition of heart rate by phenylephrine. Circ. Res. 8: 1182–1186, 1960.
 331. Vatner, S. F., D. H. Boettcher, G. R. Heyndrick, and R. J. McRitchie. Reduced baroreflex sensitivity with volume loading in conscious dogs. Circ. Res. 37: 236–242, 1975.
 332. Vatner, S. F., D. Franklin, and E. Braunwald. Effects of anesthesia and sleep on circulatory response to carotid sinus nerve stimulation. Am. J. Physiol. 220: 1249–1255, 1971.
 333. Vatner, S. F., D. Franklin, R. L. Van Citters, and E. Braunwald. Effects of carotid sinus nerve stimulation on blood flow distribution in conscious dogs at rest and during exercise. Circ. Res. 27: 495–503, 1970.
 334. Vatner, S. F., C. B. Higgins, D. Franklin, and E. Braunwald. Extent of carotid sinus regulation of the myocardial contractile state in conscious dogs. J. Clin. Invest. 51: 995–1008, 1972.
 335. Verel, D. Postural hypotension. The localization of the lesion. Br. Heart J. 13: 61–67, 1951.
 336. Von Euler, U. S., and G. Liljestrand. The role of the chemoreceptors of the sinus region for the occlusion test in the cat. Acta Physiol. Scand. 319: 319–323, 1943.
 337. Von Wagner, J., J. Wackerbauer, and H. H. Hilger. Arterielles Blutdruck und Herzfrequenzverhalten bei Hypertonikern unter Anderung des transmuralen Druckes im Karotissinusbereich. Z. Kreislauffersch. 57: 703–712, 1968.
 338. Wade, J. G., C. P. Larson, R. E. Hickey, W. K. Ehrenfeld, and J. W. Severinhaus. Effects of carotid endarterectomy on carotid chemoreceptor and baroreceptor function in man. N. Engl. J. Med. 282: 823–829, 1970.
 339. Wallin, G. B., W. Delius, and K. E. Hagbarth. Comparison of sympathetic nerve activity in normotensive and hypertensive subjects. Circ. Res. 33: 9–21, 1973.
 340. Wallin, G. B., and G. Sundlöf. A quantitative study on muscle nerve sympathetic activity in resting normotensive and hypertensive subjects. Hypertension 1: 67–77, 1979.
 341. Wallin, G. B., G. Sundlöf, and W. Delius. The effects of carotid sinus nerve stimulation on muscle and skin nerve sympathetic activity in man. Pfluegers Arch. 358: 101–110, 1975.
 342. Walter, P. F., I. S. Crawley, and E. R. Dorney. Carotid sinus hypersensitivity and syncope. Am. J. Cardiol. 42: 396–403, 1978.
 343. Wang, S. C., and H. L. Borison. An analysis of the carotid sinus cardiovascular reflex mechanism. Am. J. Physiol. 150: 712–721, 1947.
 344. Watkins, P. J., and J. D. Mackay. Cardiac denervation in diabetic neuropathy. Ann. Intern. Med. 92: 304–307, 1980.
 345. Watson, R. D. S., T. S. Stallard, and W. A. Littler. Effects of beta‐adrenoceptor antagonists on sinoaortic baroreflex sensitivity and blood pressure in hypertensive man. Clin. Sci. 57: 241–247, 1979.
 346. Watt, T. B., Jr., and C. S. Burrus. Arterial pressure contour analysis for estimating human vascular properties. J. Appl. Physiol. 40: 171–176, 1976.
 347. Waxman, M. B., and R. W. Wald. Termination of ventricular tachycardia by an increase in cardiac vagal drive. Circulation 56: 385–391, 1977.
 348. Weiss, R. B., R. B. Capps, E. B. Ferris, and D. Munro. Syncope and convulsions due to a hyperactive carotid sinus reflex. Arch. Intern. Med. 58: 407–417, 1936.
 349. Weiss, S., and J. P. Baker. The carotid sinus reflex in health and disease. Its role in causing fainting and convulsions. Medicine 12: 297–345, 1933.
 350. Weiss, T., G. M. Lattin, and K. Engelman. Vagally mediated suppression of premature ventricular contractions in man. Am. Heart J. 89: 700–707, 1975.
 351. Weiss, T., G. Mancia, A. Del Bo, D. Cavoretto, S. Grazi, S. Preti, and P. J. Schwartz. The role of heart rate in the phenylephrine‐induced suppression of premature ventricular beats. Eur. J. Clin. Invest. 9: 230, 1979.
 352. Wennergren, G., R. Little, and B. Öberg. Studies on the central integration of excitatory chemoreceptor influences and inhibitory baroreceptor and cardiac receptor influences. Acta Physiol. Scand. 96: 1–18, 1976.
 353. White, N. J. Heart rate changes on standing in elderly patients with orthostatic hypotension. Clin. Sci. 58: 411–413, 1980.
 354. Widdicombe, J. G. Respiratory reflexes. In: Handbook of Physiology. Respiration, edited by W. O. Fenn and H. Rahn. Washington, DC: Am. Physiol. Soc, 1964, sect. 3, vol I, chapt. 24, p. 585–630.
 355. Wilkins, R. W., and C. N. Duncan. Nature of the arterial hypertension produced in normal subjects by the administration of angiotensin. J. Clin. Invest. 20: 721–738, 1941.
 356. Winder, C. V. Pressoreceptor reflexes from the carotid sinus. Am. J. Physiol. 118: 379–388, 1937.
 357. Woie, L., L. Brorson, and S. B. Olsson. Syncope during carotid sinus massage. Observations on conduction disturbances by atrial pacing, His bundle, and monophasic action potential (MAP) recordings. J. Electrocardiol. 6: 263–266, 1973.
 358. Zanchetti, A. Overview of cardiovascular reflexes in hypertension. Am. J. Cardiol. 44: 912–918, 1979.
 359. Zehr, J. E., A. Hawe, A. G. Tsakiris, G. C. Rastelli, D. C. McGoon, and W. E. Segar. ADH levels following nonhypotensive hemorrhage in dogs with chronic mitral stenosis. Am. J. Physiol. 221: 312–317, 1971.
 360. Zelis, R., C. S. Delea, H. N. Coleman, and D. T. Mason. Arterial sodium content in experimental congestive heart failure. Circulation 41: 213–216, 1970.
 361. Zoller, R. P., A. L. Mark, F. M. Abboud, P. G. Schmid, and D. D. Heistad. The role of low pressure baroreceptors in reflex vasoconstrictor responses in man. J. Clin. Invest. 51: 2967–2972, 1972.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Giuseppe Mancia, Allyn L. Mark. Arterial Baroreflexes in Humans. Compr Physiol 2011, Supplement 8: Handbook of Physiology, The Cardiovascular System, Peripheral Circulation and Organ Blood Flow: 755-793. First published in print 1983. doi: 10.1002/cphy.cp020320