Comprehensive Physiology Wiley Online Library

Development and Growth of the Human Lung

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Lung Morphology
1.1 Gas‐Exchange Region
1.2 Airways
1.3 Blood Vessels
2 Structural Development of the Human Lung
2.1 Embryonic Development
2.2 Fetal Period
2.3 Postnatal Development of Respiratory Tissue—Alveolar Stage
3 Growth of the Lung
3.1 Normal Growth
3.2 Adaptive Growth of Gas‐Exchange Apparatus
4 Final Dimensions of the Human Lung
5 Development of Pulmonary Surfactant System
5.1 Historical Background and Function of Pulmonary Surfactant
5.2 Biochemistry of Pulmonary Surfactant
5.3 Type II Cells and Regulation of Surfactant Production
Figure 1. Figure 1.

Lung with 3 zones: conductive, transitional, and respiratory. A, airways; PA, pulmonary artery; PV, pulmonary vein.

Figure 2. Figure 2.

Light micrograph of gas‐exchanging parenchyma of adult human lung. Delicate tissue framework delineates air spaces; alveoli (x) open into alveolar ducts (da). Note sporadically thickened entrance rings (arrows). Scale, 200 μm; × 41.

Figure 3. Figure 3.

Scanning electron micrograph of alveoli (a) arrangement around alveolar duct (da) of adult human lung. Capillary relief of interalveolar septa clearly visible due to fixation by instillation of glutaraldehyde into airways. Note alveolar entrance ring (arrows). Scale, 100 μm; × 150.

Figure 4. Figure 4.

Electron micrograph of portion of interalveolar septum of adult human lung. Pulmonary capillary (cap) containing plasma and erythrocytes interlaced with connective tissue fibers (cf). a, Alveolar space; epI, nucleus of epithelial type I cell; en, nucleus of endothelial cell; ma, alveolar macrophage. Scale, 5 μm; × 2,550.

Figure 5. Figure 5.

Electron micrograph of fibroblast (f) in human interalveolar septum. Cell contains rough endoplasmic reticulum (er) as sign of active protein synthesis. In a bay elastic fibers (e) and collagen fibrils have been deposited. Note intracytoplasmic filaments anchoring epithelium (arrow), ep, Epithelial type I cell; en, endothelial cell; ma, macrophage. Scale, 1 μm; × 10,000.

Figure 6. Figure 6.

Electron micrograph of thin portion of air‐blood barrier of human lung showing 3‐layered structure with epithelium (ep), basement membrane (bm), and endothelium (en), a, Alveolar space; ec, erythrocyte. Scale, 1 μm; × 16,000.

Figure 7. Figure 7.

A: electron micrograph of alveolar epithelial type I cell (epI) in human lung. Cell body consists merely of nucleus enclosed in very narrow cytoplasmic rim. Cell possesses long and thin cytoplasmic extensions, en, Endothelium; f, cytoplasmic process of fibroblast; p, process of pericyte. Scale, 2 μm; × 7,200. B: electron micrograph of alveolar epithelial type II cell (epII) in human lung. Cell edges are covered by type I cell extensions; free surface shows short microvilli. In cytoplasm, prominent Golgi apparatus (g), few small mitochondria (m), and characteristic lamellar bodies (lb). Scale, 1 μm; × 9,300. C: electron micrograph of alveolar macrophage (ma) attached to underlying epithelium of type I cell (epI) in human lung. In septum, capillaries with erythrocytes (ec) and a leukocyte (lc). Scale, 2 μm; × 4,500. D: electron micrograph of capillary endothelial cell (en) in human lung. As in epithelial type I cells, nucleus is enclosed in thin cytoplasmic rim with very few organelles. On one side, cell body connects neighboring cell with junction; on the other side it tapers into thin cytoplasmic process. f, Cytoplasmic process of fibroblast; p, pericytic process; ma, pseudopodium of macrophage. Scale, 1 μm; × 10,000.

Figure 8. Figure 8.

Scanning electron micrograph of brush cell (br) in distal portion of rat terminal bronchiole. Numerous short microvilli are arranged like a bunch of flowers at top of cell. Neighboring cells are ciliated (c) or Clara cells (arrows). Scale, 2 μm; × 7,200.

Micrograph courtesy of G. Wandel
Figure 9. Figure 9.

Scanning electron micrograph of human alveolar macrophage (ma) close to edge of alveolar entrance ring (▴) and extending numerous filopodia. Note cell borders of epithelial type I cells (arrows). Scale, 1 μm; × 1,400.

Figure 10. Figure 10.

Airway tree with subdivision in conducting, transitional, and respiratory zones. Z, branching order.

From Weibel 360
Figure 11. Figure 11.

Wall structure of large and small conducting airways (A) and their epithelial lining (B). B: basal cells, ciliated cells, goblet cells, and brush cell in trachea and bronchus. In bronchiole, goblet cells are replaced by Clara cells. Mucous blanket carrying particles lies on top of epithelium.

Figure 12. Figure 12.

Early development of human lung in side view (A, B) and ventral view (C‐E); fetal age is indicated by crown‐rump lengths. A: appearance of prospective lung as protrusion in foregut. B: formation of lung bud by distal‐to‐proximal segregation of prospective trachea from foregut by deepening of laryngotracheal grooves (arrows). C: dichotomous branching of lung bud, forming prospective main bronchi. D: prospective main bronchi growing into surrounding mesenchyme. E: left and right lungs formed with their lobar and partly segmental bronchi, u, Upper lobes; m, middle lobe; l, lower lobes.

Figure 13. Figure 13.

Origin and development of pulmonary arteries. A: paired ventral (va) and dorsal (da) aortae interconnected by 6 pairs of aortic arches (I‐VI). Pulmonary arteries (pa) branch off from 6th pair of aortic arches and connect to pulmonary mesenchyme. Diagram is simplified in the sense that the 6 aortic arches are never present simultaneously. B: further development of blood vessels. Some segments of arterial pathway regress and disappear (white areas), others develop further and show preferential growth (dotted areas), a, Aorta; du, ductus arteriosus; eca, external carotid artery; ica, internal carotid artery; pt, pulmonary trunk; sa, subclavian artery.

Figure 14. Figure 14.

Light micrograph of pseudoglandular stage of human fetal lung, gestational age ∼15 wk. Airway tubes are embedded in loose mesenchyme and represent roughly the prospective conductive airways. From mesenchyme underlying the pleura, septa penetrate into pulmonary tissue (arrows); they contain venous vessels and delineate mostly prospective lobules. A broader layer of mesenchyme ensheathes larger aiways (a) and accompanying branches of pulmonary arteries (pa). Scale, 200 μm; × 35.

Figure 15. Figure 15.

Timetable for development of the airway tree, its generations, and typical wall structures. Generation numbers are fitted to the averaged airway tree of Weibel's dichotomous branching model [360; see also Fig. 10]. Dotted area, respiratory portion of airway tree. Most of these respiratory airway generations develop between wk 16 and birth by peripheral branching and growth; a few may develop by centripetal transformation of nonrespiratory into respiratory bronchioles.

Adapted from Bucher and Reid 59
Figure 16. Figure 16.

Phases of epithelial transformation. Pseudoglandular stage: high columnar epithelium, cells rich in glycogen. Canalicular stage: epithelium begins to differentiate into 2 cell types, secretory cells and prospective lining cells, labeled by low position of junctional complex with neighboring cells and close contact with capillaries. Terminal sac stage: differentiation of type I and type II cells; increasing portions of air‐blood barrier are thin.

Adapted from Burri and Weibel 72
Figure 17. Figure 17.

Early saccular stage of human lung. Bronchiole (br) generates 2 transitory airways (ta). Upper branch produces at least 2 transitory saccules (arrows) that are lined by caps of cuboidal epithelium (c) that appear in transections either as tubules or cell clusters. Transitory airways are lined partly by cuboidal and partly by flat epithelium; the latter is present where capillaries (ca and dotted areas) are closely apposed to epithelial lining, p, Pleura with subpleural embryonal connective tissue; a, arteries; v, veins.

Figure 18. Figure 18.

Electron micrograph of interstitial cell (ic) in interalveolar septum of human lung. Cell is actively secreting collagen and elastin into extracellular bays (arrows), er, Rough endoplasmic reticulum; li, lipid droplet; epI, epithelial type I cell; ma, alveolar macrophage. Scale, 0.5 μm; × 16,000.

Figure 19. Figure 19.

Growth of intraluminal arterial diameters of human lung during fetal life and childhood. Data from measurements on arteriograms of lower lobe at hilum and at 75% distance from hilum to periphery.

From Hislop and Reid 178
Figure 20. Figure 20.

Muscular structure of a pulmonary artery toward its distal end. Muscle coat ends in the form of a muscle spiral. In this segment the vessel appears as partially muscular in cross sections.

From Hislop and Reid 178
Figure 21. Figure 21.

A: light micrograph of paraffin section of rat lung 1 day old. Terminal bronchiole (tb) branches into smooth‐walled channels (transitory ducts, td) opening into terminal saccules (ts). Air spaces are smoothly contoured; septa are thick. These terminal airways have often been mistaken as alveoli; direct comparison with an older lung (B), however, reveals their nature. B: light micrograph of paraffin section of rat lung 21 days old. Terminal bronchiole and its branches at the same magnification as in A. Terminal saccules have been partitioned by newly formed septa (secondary septa, arrows) and now represent alveolar sacs (sa). By the same process transitory ducts have been transformed into alveolar ducts (da). Scale, 100 μm; × 160.

Figure 22. Figure 22.

Electron micrograph of ultrastructure of immature primary septum during early postnatal days. Capillary network (cap) is present on both sides of a highly cellular interstitial layer, ic, Nuclei of interstitial cells; epI, nucleus of epithelial type I cell; en, nucleus of endothelial cell; ec, erythrocytes. Scale, 5 μm; × 3,000.

Figure 23. Figure 23.

Quantitative findings in growing rat lung showing volume changes of pulmonary parenchyma and its compartments. Note that increase in parenchymal volume between days 1 and 4 is brought about by the air‐space compartment, the increase between days 4 and 7 by the tissue and blood compartments. The latter period corresponds to phase of most active septal outgrowth.

Data from Burri et al. 67
Figure 24. Figure 24.

A: scanning electron micrograph of gas‐exchange tissue of rat lung 4 days old. Transitory ducts (td) and air spaces in general are rounded; septa are smooth, bv, Blood vessel. B: scanning electron micrograph of pulmonary parenchyma of rat lung 8 days old. Numerous secondary septa have appeared (arrows), dividing air spaces into alveoli (a) and transforming transitory ducts into alveolar ducts (da). Scale, 50 μm; × 280.

Figure 25. Figure 25.

Double logarithmic plot of alveolar (Sa) and capillary (Sc) surface areas against lung volume (VL) in growing rat lung. Triphasic growth pattern with most intense increase in surface area between day 4 and wk 3. r, Correlation coefficient.

Data from Burri et al. 67
Figure 26. Figure 26.

Electron micrograph of secondary crest of rat lung 7 days old with capillaries (cap) on both sides. Central interstitial layer contains interstitial cells (ic) of 2 types: at base, interstitial cells contain lipid droplets (li); toward tip they contain no lipid but form slender cytoplasmic extensions enfolding connective tissue (e, elastin). Capillary walls form closed extensions toward tip of crest (arrows). Scale, 2 μm; × 5,200.

Figure 27. Figure 27.

Formation and capillarization of secondary septa. Capillary meshes are folded up from primary septum present at birth (A) and form secondary septum (B). This increases in height as new capillary segments are formed by sprouting (C, D). At tip of crests increasing amounts of elastic tissue are present. Quadratic lattice, septal tissue; white spaces, capillary lumina; fine dots, closed capillary segments; coarse dots, elastic fibers; black spaces, cells of unknown origin, which seem to participate in lengthening and sprouting of capillaries.

From Burri 65
Figure 28. Figure 28.

Model for structural transformation and maturation of immature interalveolar septum (dotted area, interstitial tissue). Through thinning of interstitium and lengthening of septum with expansion of capillary meshes (arrows), immature structure (left) is transformed into mature form (right). Capillary fusion may complete the picture so that blood flows, e.g., from a to d over b and c.

From Burri 65
Figure 29. Figure 29.

Development of pulmonary capillaries. A: pseudoglandular stage, capillaries are randomly distributed in mesenchyme. B: beginning of canalicular stage, capillaries start to arrange around epithelial tubes, which enlarge to canaliculi. C: canalicular stage, capillaries establish close contact to lining epithelium, which flattens to form thin air‐blood barriers. Widening of canaliculi reduces intervening interstitium so that capillary layers of adjacent air spaces lie closer to each other. D: end of saccular stage, epithelium differentiated in type I and type II cells, intersaccular walls with 2 capillary networks. E: alveolar stage, formation of secondary septa; all septa contain 2 capillary networks; further reduction of interstitial tissue. F: mature lung, capillary layers in primary and secondary septa have fused; at a few places double row may stay; septa have lengthened and narrowed.

Figure 30. Figure 30.

Light micrographs of postnatal structure of gas‐exchange tissue in human and rat, illustrating similarity of alveolization process in both species. A: lung of normal boy 1 mo old who died from sudden infant death. Alveolar ducts (da) show numerous secondary septa (arrows) defining alveoli (a). Secondary and rather thick primary septa possess 2 capillary networks (arrowheads). Epon section 1 μm thick; scale, 50 μm; × 260. B: parenchyma of rat lung 1 wk old. Alveolar ducts much smaller than in human lung (note different magnification) but show same structural pattern. Secondary septa (arrows) demarcating alveoli and double capillary networks (arrowheads) are also visible. Epon section 1 μm thick; scale, 50 μm; × 415.

Micrographs courtesy of A. M. Steiner
Figure 31. Figure 31.

Electron micrographs of secondary septa in infant lung of Fig. 30A. A: relatively low septum with capillary loop passing over edge of crest, cap, Capillaries; en, endothelial cells; ic, interstitial cells. Scale, 2 μm; × 5,200. B: higher secondary septum with double capillary networks (cap). Interstitial layer (int and arrows) swollen and not well preserved due to delay between death and fixation of lung. Scale, 2 μm; × 4,000.

Micrographs courtesy of A. Keller
Figure 32. Figure 32.

Progressive extension with age of muscle coat in arterial walls. Within acinus, muscle is not found before birth. With increasing age muscle coat extends into parenchymal region.

From Hislop and Reid 178
Figure 33. Figure 33.

Quantitative adaptation of rat parenchymal lung structures to altered Po2 Morphometrically determined specific diffusing capacity (DL) of rats in 3 groups: raised for 3 wk at high altitude (JJ), in room air as controls (C), and in O2 chamber with 40% O2 (OC).

From Burri and Weibel 71
Figure 34. Figure 34.

Adaptation of growing mouse lung to increased /body weight (W). Drug‐induced waltzing mice [imino‐ββ′‐dipropionitrile (IDPN)] show a 50% increase in specific /W when compared to their nonwaltzing littermates (C). Specific morphometrically determined pulmonary diffusing capacity (DL/W) was correspondingly increased 3.5 mo after induction of the permanent waltzing syndrome.

From Hugonnaud, Burri, et al. 192
Figure 35. Figure 35.

The per 100 g body wt (shaded bars) and corresponding alveolar surface area (Sa) per 100 g body wt (open bars) in 4 groups of hamsters under different treatments from postnatal wk 6 to 10. T3, triiodothyronine.

Adapted from Thompson 340
Figure 36. Figure 36.

Synthesis of DNA in left lung and right lower lobe of rats subjected to resection of upper and medium lobes of right lung at 3 wk of age. Incorporation of [3H]thymidine into lung DNA expressed as disintegrations per min (or counts) per mg DNA by liquid‐scintillation counting. Note high peaks in lobectomy group and quicker response in right lung. (P. H. Burri, unpublished data.)

Figure 37. Figure 37.

Structure of the 2 most important phospholipids of pulmonary surfactant. A: dipalmitoyl phosphatidylcholine. B: dipalmitoyl phosphatidylglycerol.

Figure 38. Figure 38.

Pathways of phosphatidylcholine and phosphatidylglycerol biosynthesis.

From Perelman et al. 289
Figure 39. Figure 39.

Concentrations of disaturated phosphatidylcholine in lung tissue and alveoli plotted against relative gestational age for rat, rabbit, lamb, monkey, and human. Values are averaged over intervals of 10%–20% of gestation.

From Clements and Tooley 79, by courtesy of Marcel Dekker, Inc
Figure 40. Figure 40.

Effect of cortisol on [1‐14C]palmitate incorporation into lecithin by primary mixed cultures of fetal rabbit lung prepared at gestation days 20–28. Solid line, cultures grown in the presence of cortisol at 5.5 μmol.

From Smith et al. 324, by copyright permission of The American Society for Clinical Investigation
Figure 41. Figure 41.

Effect of cortisol on DNA content of primary fetal rabbit lung cell cultures prepared at gestation days 20–28. Bars, means; brackets, ± 1 SD.

From Smith et al. 324. by copyright permission of The American Society for Clinical Investigation


Figure 1.

Lung with 3 zones: conductive, transitional, and respiratory. A, airways; PA, pulmonary artery; PV, pulmonary vein.



Figure 2.

Light micrograph of gas‐exchanging parenchyma of adult human lung. Delicate tissue framework delineates air spaces; alveoli (x) open into alveolar ducts (da). Note sporadically thickened entrance rings (arrows). Scale, 200 μm; × 41.



Figure 3.

Scanning electron micrograph of alveoli (a) arrangement around alveolar duct (da) of adult human lung. Capillary relief of interalveolar septa clearly visible due to fixation by instillation of glutaraldehyde into airways. Note alveolar entrance ring (arrows). Scale, 100 μm; × 150.



Figure 4.

Electron micrograph of portion of interalveolar septum of adult human lung. Pulmonary capillary (cap) containing plasma and erythrocytes interlaced with connective tissue fibers (cf). a, Alveolar space; epI, nucleus of epithelial type I cell; en, nucleus of endothelial cell; ma, alveolar macrophage. Scale, 5 μm; × 2,550.



Figure 5.

Electron micrograph of fibroblast (f) in human interalveolar septum. Cell contains rough endoplasmic reticulum (er) as sign of active protein synthesis. In a bay elastic fibers (e) and collagen fibrils have been deposited. Note intracytoplasmic filaments anchoring epithelium (arrow), ep, Epithelial type I cell; en, endothelial cell; ma, macrophage. Scale, 1 μm; × 10,000.



Figure 6.

Electron micrograph of thin portion of air‐blood barrier of human lung showing 3‐layered structure with epithelium (ep), basement membrane (bm), and endothelium (en), a, Alveolar space; ec, erythrocyte. Scale, 1 μm; × 16,000.



Figure 7.

A: electron micrograph of alveolar epithelial type I cell (epI) in human lung. Cell body consists merely of nucleus enclosed in very narrow cytoplasmic rim. Cell possesses long and thin cytoplasmic extensions, en, Endothelium; f, cytoplasmic process of fibroblast; p, process of pericyte. Scale, 2 μm; × 7,200. B: electron micrograph of alveolar epithelial type II cell (epII) in human lung. Cell edges are covered by type I cell extensions; free surface shows short microvilli. In cytoplasm, prominent Golgi apparatus (g), few small mitochondria (m), and characteristic lamellar bodies (lb). Scale, 1 μm; × 9,300. C: electron micrograph of alveolar macrophage (ma) attached to underlying epithelium of type I cell (epI) in human lung. In septum, capillaries with erythrocytes (ec) and a leukocyte (lc). Scale, 2 μm; × 4,500. D: electron micrograph of capillary endothelial cell (en) in human lung. As in epithelial type I cells, nucleus is enclosed in thin cytoplasmic rim with very few organelles. On one side, cell body connects neighboring cell with junction; on the other side it tapers into thin cytoplasmic process. f, Cytoplasmic process of fibroblast; p, pericytic process; ma, pseudopodium of macrophage. Scale, 1 μm; × 10,000.



Figure 8.

Scanning electron micrograph of brush cell (br) in distal portion of rat terminal bronchiole. Numerous short microvilli are arranged like a bunch of flowers at top of cell. Neighboring cells are ciliated (c) or Clara cells (arrows). Scale, 2 μm; × 7,200.

Micrograph courtesy of G. Wandel


Figure 9.

Scanning electron micrograph of human alveolar macrophage (ma) close to edge of alveolar entrance ring (▴) and extending numerous filopodia. Note cell borders of epithelial type I cells (arrows). Scale, 1 μm; × 1,400.



Figure 10.

Airway tree with subdivision in conducting, transitional, and respiratory zones. Z, branching order.

From Weibel 360


Figure 11.

Wall structure of large and small conducting airways (A) and their epithelial lining (B). B: basal cells, ciliated cells, goblet cells, and brush cell in trachea and bronchus. In bronchiole, goblet cells are replaced by Clara cells. Mucous blanket carrying particles lies on top of epithelium.



Figure 12.

Early development of human lung in side view (A, B) and ventral view (C‐E); fetal age is indicated by crown‐rump lengths. A: appearance of prospective lung as protrusion in foregut. B: formation of lung bud by distal‐to‐proximal segregation of prospective trachea from foregut by deepening of laryngotracheal grooves (arrows). C: dichotomous branching of lung bud, forming prospective main bronchi. D: prospective main bronchi growing into surrounding mesenchyme. E: left and right lungs formed with their lobar and partly segmental bronchi, u, Upper lobes; m, middle lobe; l, lower lobes.



Figure 13.

Origin and development of pulmonary arteries. A: paired ventral (va) and dorsal (da) aortae interconnected by 6 pairs of aortic arches (I‐VI). Pulmonary arteries (pa) branch off from 6th pair of aortic arches and connect to pulmonary mesenchyme. Diagram is simplified in the sense that the 6 aortic arches are never present simultaneously. B: further development of blood vessels. Some segments of arterial pathway regress and disappear (white areas), others develop further and show preferential growth (dotted areas), a, Aorta; du, ductus arteriosus; eca, external carotid artery; ica, internal carotid artery; pt, pulmonary trunk; sa, subclavian artery.



Figure 14.

Light micrograph of pseudoglandular stage of human fetal lung, gestational age ∼15 wk. Airway tubes are embedded in loose mesenchyme and represent roughly the prospective conductive airways. From mesenchyme underlying the pleura, septa penetrate into pulmonary tissue (arrows); they contain venous vessels and delineate mostly prospective lobules. A broader layer of mesenchyme ensheathes larger aiways (a) and accompanying branches of pulmonary arteries (pa). Scale, 200 μm; × 35.



Figure 15.

Timetable for development of the airway tree, its generations, and typical wall structures. Generation numbers are fitted to the averaged airway tree of Weibel's dichotomous branching model [360; see also Fig. 10]. Dotted area, respiratory portion of airway tree. Most of these respiratory airway generations develop between wk 16 and birth by peripheral branching and growth; a few may develop by centripetal transformation of nonrespiratory into respiratory bronchioles.

Adapted from Bucher and Reid 59


Figure 16.

Phases of epithelial transformation. Pseudoglandular stage: high columnar epithelium, cells rich in glycogen. Canalicular stage: epithelium begins to differentiate into 2 cell types, secretory cells and prospective lining cells, labeled by low position of junctional complex with neighboring cells and close contact with capillaries. Terminal sac stage: differentiation of type I and type II cells; increasing portions of air‐blood barrier are thin.

Adapted from Burri and Weibel 72


Figure 17.

Early saccular stage of human lung. Bronchiole (br) generates 2 transitory airways (ta). Upper branch produces at least 2 transitory saccules (arrows) that are lined by caps of cuboidal epithelium (c) that appear in transections either as tubules or cell clusters. Transitory airways are lined partly by cuboidal and partly by flat epithelium; the latter is present where capillaries (ca and dotted areas) are closely apposed to epithelial lining, p, Pleura with subpleural embryonal connective tissue; a, arteries; v, veins.



Figure 18.

Electron micrograph of interstitial cell (ic) in interalveolar septum of human lung. Cell is actively secreting collagen and elastin into extracellular bays (arrows), er, Rough endoplasmic reticulum; li, lipid droplet; epI, epithelial type I cell; ma, alveolar macrophage. Scale, 0.5 μm; × 16,000.



Figure 19.

Growth of intraluminal arterial diameters of human lung during fetal life and childhood. Data from measurements on arteriograms of lower lobe at hilum and at 75% distance from hilum to periphery.

From Hislop and Reid 178


Figure 20.

Muscular structure of a pulmonary artery toward its distal end. Muscle coat ends in the form of a muscle spiral. In this segment the vessel appears as partially muscular in cross sections.

From Hislop and Reid 178


Figure 21.

A: light micrograph of paraffin section of rat lung 1 day old. Terminal bronchiole (tb) branches into smooth‐walled channels (transitory ducts, td) opening into terminal saccules (ts). Air spaces are smoothly contoured; septa are thick. These terminal airways have often been mistaken as alveoli; direct comparison with an older lung (B), however, reveals their nature. B: light micrograph of paraffin section of rat lung 21 days old. Terminal bronchiole and its branches at the same magnification as in A. Terminal saccules have been partitioned by newly formed septa (secondary septa, arrows) and now represent alveolar sacs (sa). By the same process transitory ducts have been transformed into alveolar ducts (da). Scale, 100 μm; × 160.



Figure 22.

Electron micrograph of ultrastructure of immature primary septum during early postnatal days. Capillary network (cap) is present on both sides of a highly cellular interstitial layer, ic, Nuclei of interstitial cells; epI, nucleus of epithelial type I cell; en, nucleus of endothelial cell; ec, erythrocytes. Scale, 5 μm; × 3,000.



Figure 23.

Quantitative findings in growing rat lung showing volume changes of pulmonary parenchyma and its compartments. Note that increase in parenchymal volume between days 1 and 4 is brought about by the air‐space compartment, the increase between days 4 and 7 by the tissue and blood compartments. The latter period corresponds to phase of most active septal outgrowth.

Data from Burri et al. 67


Figure 24.

A: scanning electron micrograph of gas‐exchange tissue of rat lung 4 days old. Transitory ducts (td) and air spaces in general are rounded; septa are smooth, bv, Blood vessel. B: scanning electron micrograph of pulmonary parenchyma of rat lung 8 days old. Numerous secondary septa have appeared (arrows), dividing air spaces into alveoli (a) and transforming transitory ducts into alveolar ducts (da). Scale, 50 μm; × 280.



Figure 25.

Double logarithmic plot of alveolar (Sa) and capillary (Sc) surface areas against lung volume (VL) in growing rat lung. Triphasic growth pattern with most intense increase in surface area between day 4 and wk 3. r, Correlation coefficient.

Data from Burri et al. 67


Figure 26.

Electron micrograph of secondary crest of rat lung 7 days old with capillaries (cap) on both sides. Central interstitial layer contains interstitial cells (ic) of 2 types: at base, interstitial cells contain lipid droplets (li); toward tip they contain no lipid but form slender cytoplasmic extensions enfolding connective tissue (e, elastin). Capillary walls form closed extensions toward tip of crest (arrows). Scale, 2 μm; × 5,200.



Figure 27.

Formation and capillarization of secondary septa. Capillary meshes are folded up from primary septum present at birth (A) and form secondary septum (B). This increases in height as new capillary segments are formed by sprouting (C, D). At tip of crests increasing amounts of elastic tissue are present. Quadratic lattice, septal tissue; white spaces, capillary lumina; fine dots, closed capillary segments; coarse dots, elastic fibers; black spaces, cells of unknown origin, which seem to participate in lengthening and sprouting of capillaries.

From Burri 65


Figure 28.

Model for structural transformation and maturation of immature interalveolar septum (dotted area, interstitial tissue). Through thinning of interstitium and lengthening of septum with expansion of capillary meshes (arrows), immature structure (left) is transformed into mature form (right). Capillary fusion may complete the picture so that blood flows, e.g., from a to d over b and c.

From Burri 65


Figure 29.

Development of pulmonary capillaries. A: pseudoglandular stage, capillaries are randomly distributed in mesenchyme. B: beginning of canalicular stage, capillaries start to arrange around epithelial tubes, which enlarge to canaliculi. C: canalicular stage, capillaries establish close contact to lining epithelium, which flattens to form thin air‐blood barriers. Widening of canaliculi reduces intervening interstitium so that capillary layers of adjacent air spaces lie closer to each other. D: end of saccular stage, epithelium differentiated in type I and type II cells, intersaccular walls with 2 capillary networks. E: alveolar stage, formation of secondary septa; all septa contain 2 capillary networks; further reduction of interstitial tissue. F: mature lung, capillary layers in primary and secondary septa have fused; at a few places double row may stay; septa have lengthened and narrowed.



Figure 30.

Light micrographs of postnatal structure of gas‐exchange tissue in human and rat, illustrating similarity of alveolization process in both species. A: lung of normal boy 1 mo old who died from sudden infant death. Alveolar ducts (da) show numerous secondary septa (arrows) defining alveoli (a). Secondary and rather thick primary septa possess 2 capillary networks (arrowheads). Epon section 1 μm thick; scale, 50 μm; × 260. B: parenchyma of rat lung 1 wk old. Alveolar ducts much smaller than in human lung (note different magnification) but show same structural pattern. Secondary septa (arrows) demarcating alveoli and double capillary networks (arrowheads) are also visible. Epon section 1 μm thick; scale, 50 μm; × 415.

Micrographs courtesy of A. M. Steiner


Figure 31.

Electron micrographs of secondary septa in infant lung of Fig. 30A. A: relatively low septum with capillary loop passing over edge of crest, cap, Capillaries; en, endothelial cells; ic, interstitial cells. Scale, 2 μm; × 5,200. B: higher secondary septum with double capillary networks (cap). Interstitial layer (int and arrows) swollen and not well preserved due to delay between death and fixation of lung. Scale, 2 μm; × 4,000.

Micrographs courtesy of A. Keller


Figure 32.

Progressive extension with age of muscle coat in arterial walls. Within acinus, muscle is not found before birth. With increasing age muscle coat extends into parenchymal region.

From Hislop and Reid 178


Figure 33.

Quantitative adaptation of rat parenchymal lung structures to altered Po2 Morphometrically determined specific diffusing capacity (DL) of rats in 3 groups: raised for 3 wk at high altitude (JJ), in room air as controls (C), and in O2 chamber with 40% O2 (OC).

From Burri and Weibel 71


Figure 34.

Adaptation of growing mouse lung to increased /body weight (W). Drug‐induced waltzing mice [imino‐ββ′‐dipropionitrile (IDPN)] show a 50% increase in specific /W when compared to their nonwaltzing littermates (C). Specific morphometrically determined pulmonary diffusing capacity (DL/W) was correspondingly increased 3.5 mo after induction of the permanent waltzing syndrome.

From Hugonnaud, Burri, et al. 192


Figure 35.

The per 100 g body wt (shaded bars) and corresponding alveolar surface area (Sa) per 100 g body wt (open bars) in 4 groups of hamsters under different treatments from postnatal wk 6 to 10. T3, triiodothyronine.

Adapted from Thompson 340


Figure 36.

Synthesis of DNA in left lung and right lower lobe of rats subjected to resection of upper and medium lobes of right lung at 3 wk of age. Incorporation of [3H]thymidine into lung DNA expressed as disintegrations per min (or counts) per mg DNA by liquid‐scintillation counting. Note high peaks in lobectomy group and quicker response in right lung. (P. H. Burri, unpublished data.)



Figure 37.

Structure of the 2 most important phospholipids of pulmonary surfactant. A: dipalmitoyl phosphatidylcholine. B: dipalmitoyl phosphatidylglycerol.



Figure 38.

Pathways of phosphatidylcholine and phosphatidylglycerol biosynthesis.

From Perelman et al. 289


Figure 39.

Concentrations of disaturated phosphatidylcholine in lung tissue and alveoli plotted against relative gestational age for rat, rabbit, lamb, monkey, and human. Values are averaged over intervals of 10%–20% of gestation.

From Clements and Tooley 79, by courtesy of Marcel Dekker, Inc


Figure 40.

Effect of cortisol on [1‐14C]palmitate incorporation into lecithin by primary mixed cultures of fetal rabbit lung prepared at gestation days 20–28. Solid line, cultures grown in the presence of cortisol at 5.5 μmol.

From Smith et al. 324, by copyright permission of The American Society for Clinical Investigation


Figure 41.

Effect of cortisol on DNA content of primary fetal rabbit lung cell cultures prepared at gestation days 20–28. Bars, means; brackets, ± 1 SD.

From Smith et al. 324. by copyright permission of The American Society for Clinical Investigation
References
 1. Abe, M., and T. Akino. The conversion of lysolecithin to lecithin in supernatant fractions of various rat tissues: on the distribution of the so‐called Marinetti's enzyme. Tohoku J. Exp. Med. 110: 167–172, 1973.
 2. Adamson, I. Y. R., and D. H. Bowden. Reaction of cultured adult and fetal lungs to prednisone and thyroxine. Arch. Pathol. 99: 80–85, 1973.
 3. Adamson, I. Y. R., and D. H. Bowden. The type 2 cell as progenitor of alveolar epithelial regeneration. A cytodynamic study in mice after exposure to oxygen. Lab. Invest. 30: 35–42, 1974.
 4. Adamson, I. Y. R., and D. H. Bowden. Derivation of type 1 epithelium from type 2 cells in the developing rat lung. Lab. Invest. 32: 736–745, 1975.
 5. Adamson, I. Y. R., and D. H. Bowden. Role of monocytes and interstitial cells in the generation of alveolar macrophages. II. Kinetic studies after carbon loading. Lab. Invest. 42: 518–524, 1980.
 6. Addis, T. Compensatory hypertrophy of the lung after unilateral pneumectomy. J. Exp. Med. 47: 51–56, 1928.
 7. Alcorn, D. G., T. M. Adamson, J. E. Maloney, and P. M. Robinson. A morphologic and morphometric analysis of fetal lung development in the sheep. Anat. Rec. 201: 655–667, 1981.
 8. Alescio, T., and A. Cassini. Induction in vitro of tracheal buds by pulmonary mesenchyme grafted on tracheal epithelium. J. Exp. Zool. 150: 83–94, 1962.
 9. Amy, R. W. M., D. Bowes, P. H. Burri, J. Haines, and W. M. Thurlbeck. Postnatal growth of the mouse lung. J. Anat. 124: 131–151, 1977.
 10. Anderson, H. R., J. A. Anderson, H. O. M. King, and J. E. Cotes. Variations in the lung size of children in Papua, New Guinea: genetic and environmental factors. Ann. Hum. Biol. 5: 209–218, 1978.
 11. Angus, G. E., and W. M. Thurlbeck. Number of alveoli in the human lung. J. Appl. Physiol. 32: 483–485, 1972.
 12. Avery, M. E., and J. Mead. Surface properties in relation to atelectasis and hyaline membrane disease. Am. J. Dis. Child. 95: 517–523, 1959.
 13. Bachofen, M., H. Bachofen, and E. R. Weibel. Lung edema in the adult respiratory distress syndrome. In: Pulmonary Edema, edited by A. P. Fishman and E. M. Renkin. Bethesda, MD: Am. Physiol. Soc., 1979, chapt. 18, p. 241–252.
 14. Bachofen, M., and E. R. Weibel. Basic pattern of tissue repair in human lungs following unspecific injury. Chest 65, Suppl.: 14S–19S, 1974.
 15. Bachofen, M., and E. R. Weibel. Alterations of the gas exchange apparatus in adult respiratory insufficiency associated with septicemia. Am. Rev. Respir. Dis. 116: 589–615, 1977.
 16. Baker, P. T. Human adaptation to high altitude. Science 163: 1149–1156, 1969.
 17. Ballard, P. L. Glucocorticoid receptors in the lung. Federation Proc. 36: 2660–2665, 1977.
 18. Ballard P. L., and R. A. Ballard. Cytoplasmic receptor for glucocorticoids in lung of the human fetus and neonate. J. Clin. Invest. 53: 477–486, 1974.
 19. Ballard, P. L., B. J. Benson, and A. Brehier. Glucocorticoid effects in the fetal lung. Am. Rev. Respir. Dis. 115: 29–36, 1977.
 20. Ballard, P. L., B. J. Benson, A. Brehier, J. P. Carter, B. M. Kriz, and E. C. Jorgensen. Transplacental stimulation of lung development in the fetal rabbit by 3,5‐dimethyl‐3'‐isopropyl‐l‐thyronine. J. Clin. Invest. 65: 1407–1417, 1980.
 21. Barańska, J., and L. M. G. van Golde. Role of lamellar bodies in the biosynthesis of phosphatidylcholine in mouse lung. Biochim. Biophys. Acta 488: 285–293, 1977.
 22. Barnerias, M. J., A. H. Peyrot, L. J. Helmbrecht, M. M. Newman, and A. A. Siebens. Changes in lung following early pneumonectomy (Abstract). Federation Proc. 24: 204, 1965.
 23. Barrow, M. V., C. F. Simpson, and E. J. Miller. Lathyrism: a review. Q. Rev. Biol. 49: 101–128, 1974.
 24. Bartels, H. Freeze‐fracture demonstration of communicating junction between interstitial cells of the pulmonary interalveolar septa. Am. J. Anat. 155: 125–129, 1979.
 25. Bartlett, D., Jr. Postnatal growth of the mammalian lung: influence of exercise and thyroid activity. Respir. Physiol. 9: 50–57, 1970.
 26. Bartlett, D., Jr. Postnatal growth of the mammalian lung: influence of low and high oxygen tensions. Respir. Physiol. 9: 58–64, 1970.
 27. Bartlett, D., Jr., and J. G. Areson. Quantitative lung morphology in Japanese waltzing mice. J. Appl. Physiol: Respirat. Environ. Exercise Physiol 44: 446–449, 1978.
 28. Bartlett, D., Jr., and J. E. Remmers. Effects of high altitude exposure on the lungs of young rats. Respir. Physiol. 13: 116–125, 1971.
 29. Batenburg, J. J. Isolated type II cells from fetal lung as model in studies on the synthesis and secretion of pulmonary surfactant. Lung 158: 177–192, 1980.
 30. Batenburg, J. J., W. J. Longmore, W. Klazinga, and L. M. G. van Golde. Lysolecithin acyltransferase and lysolecithin: lysolecithin acyltransferase in adult rat lung alveolar type II epithelial cells. Biochim. Biosphys. Acta 573: 136–144, 1979.
 31. Batenburg, J. J., and L. M. G. van Golde. Formation of pulmonary surfactant in whole lung and in isolated type II alveolar cells. In: Reviews in Perinatal Medicine, edited by E. M. Scarpelli and E. V. Cosmi. New York: Raven, 1979, vol. 3, p. 73–114.
 32. Bates, D. V., P. T. Macklem, and R. V. Christie. Respiratory Function in Disease: An Introduction to the Integrated Study of the Lung (2nd ed.). Philadelphia, PA: Saunders, 1971.
 33. Bellanti, J. A., L. S. Nerurkar, and B. J. Zeligs. Host defenses in the fetus and neonate: studies of the alveolar macrophage during maturation. Pediatrics 64: 726–739, 1979.
 34. Bernstein, J., S. S. Jang, H. S. Hahn, and J. Kikkawa. Mucopolysaccharide in the pulmonary alveolus. I. Histochemical observations on the development of the alveolar lining layer. Lab. Invest 21: 420–425, 1969.
 35. Bignon, J., F. Jaubert, and M. C. Jaurand. Plasma protein immunocyto‐chemistry and polysaccharide cytochemistry at the surface of alveolar and endothelial cells in the rat lung. J. Histochem. Cytochem. 24: 1076–1084, 1976.
 36. Blackburn, W. R., H. Travers, and D. M. Potter. The role of the pituitary‐adrenal‐thyroid axes in lung differentiation. I. Studies on the cytology and physical properties of anencephalic fetal rat lung. Lab. Invest 26: 306–318, 1972.
 37. Bluemink, J. G., P. van Maurik, and K. A. Lawson. Intimate cell contacts at the epithelial/mesenchymal interface in embryonic mouse lung. J. Ultrastruct. Res. 55: 257–270, 1976.
 38. Boatman, E. S. A morphometric and morphological study of the lungs of rabbits after unilateral pneumonectomy. Thorax 32: 406–417, 1977.
 39. Bohr, C. Ueber die spezifische Tätigkeit der Lungen bei der respiratorischen Gasaufnahme. Scand. Arch. Physiol. 22: 221–280, 1909.
 40. Bowden, D. H., and I. Y. R. Adamson. The pulmonary interstitial cell as immediate precursor of the alveolar macrophage. Am. J. Pathol. 68: 521–528, 1972.
 41. Bowden, D. H., and I. Y. R. Adamson. Adaptive responses of the pulmonary macrophagic system to carbon. I. Kinetic studies. Lab. Invest. 38: 422–429, 1978.
 42. Boyden, E. A. The terminal air sacs and their blood supply in a 37‐day infant lung. Am. J. Anat. 116: 413–427, 1965.
 43. Boyden, E. A. The pattern of the terminal air spaces in a premature infant of 30–32 weeks that lived nineteen and a quarter hours. Am. J. Anat. 126: 31–40, 1969.
 44. Boyden, E. A. The mode of origin of pulmonary acini and respiratory bronchioles in the fetal lung. Am. J. Anat. 141: 317–328, 1974.
 45. Boyden, E. A. Development and growth of the airways. In: Lung Biology in Health and Disease. Development of the Lung, edited by W. A. Hodson. New York: Dekker, 1977, vol. 6, chapt. 1, p. 3–35.
 46. Boyden, E. A., and D. H. Tompsett. The postnatal growth of the lung in the dog. Acta Anat. 47: 185–215, 1961.
 47. Boyden, E. A., and D. H. Tompsett. The changing patterns in the developing lungs of infants. Acta Anat. 61: 164–192, 1965.
 48. Brehier, A., B. J. Benson, M. C. Williams, R. J. Mason, and P. L. Ballard. Corticosteroid induction of phosphatidic acid phosphatase in fetal rabbit lung. Biochem. Biophys. Res. Commun. 77: 883–890, 1977.
 49. Bremer, J. L. Postnatal development of alveoli in the mammalian lung in relation to the problem of the alveolar phagocyte. Contrib. Embryol. 147: 85–119, 1935.
 50. Bremer, J. L. The fate of the remaining lung tissue after lobectomy or pneumonectomy. J. Thorac. Surg. 6: 336–343, 1936–37.
 51. Brody, J. S. Time course of and stimuli to compensatory growth of the lung after pneumonectomy. J. Clin. Invest. 56: 897–904, 1975.
 52. Brody, J. S., and W. J. Buhain. Hormonal influence on post‐pneumonectomy lung growth in the rat. Respir. Physiol. 19: 344–355, 1973.
 53. Brody, J. S., R. Bürki, and N. Kaplan. Deoxyribonucleic acid synthesis in lung cells during compensatory lung growth after pneumonectomy. Am. Rev. Respir. Dis. 117: 307–315, 1978.
 54. Brody, J. S., H. Kagan, and A. Manalo. Lung lysyl oxydase activity: relation to lung growth. Am. Rev. Respir. Dis. 120: 1289–1295, 1979.
 55. Brody, J. S., S. Lahiri, M. Simpser, E. K. Motoyama, and T. Velasquez. Lung elasticity and airway dynamics in Peruvian natives to high altitude. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 42: 245–251, 1977.
 56. Brody, J. S., and C. Vaccaro. Postnatal formation of alveoli: interstitial events and physiologic consequences. Federation Proc. 38: 215–223, 1979.
 57. Broman, I. Zur Kenntnis der Lungenentwicklung. I. Wann und wie entsteht das definitive Lungenparenchym? Anat. Anz. 57: 83–96, 1923.
 58. Brumley, G., and H. van den Bosch. Lysophospholipase—transacylase from rat lung: isolation and partial purification. J. Lipid Res. 18: 523–532, 1977.
 59. Bucher, U., and L. Reid. Development of the intrasegmental bronchial tree: the pattern of branching and development of cartilage at various stages of intra‐uterine life. Thorax 16: 207–218, 1961.
 60. Bucher, U., and L. Reid. Development of the mucus‐secreting elements in human lung. Thorax 16: 219–225, 1961.
 61. Buckingham, S., and M. E. Avery. Time of appearance of lung surfactant in the foetal mouse. Nature London 193: 688–689, 1962.
 62. Buckingham, S., W. F. McNary, Jr., and S. C. Sommers. Pulmonary alveolar cell inclusions: their development in the rat. Science 145: 1191–1193, 1964.
 63. Buckingham, S., W. F. McNary, S. C. Sommers, and J. Rothschild. Is lung an analog of Moogs' developing intestine? I. Phosphatases and pulmonary alveolar differentiation in fetal rabbits (Abstract). Federation Proc. 27: 328, 1968.
 64. Buhain, W. J., and J. S. Brody. Compensatory growth of the lung following pneumonectomy. J. Appl. Physiol. 35: 898–902, 1973.
 65. Burri, P. H. The postnatal growth of the rat lung. III. Morphology. Anat. Rec. 180: 77–98, 1974.
 66. Burri, P. H., L. C. Berger, and H. B. Pfrunder. Early adaptive response of pulmonary parenchyma after bilobectomy in the rat. Experientia 36: 740, 1980.
 67. Burri, P. H., J. Dbaly, and E. R. Weibel. The postnatal growth of the rat lung. I. Morphometry. Anat. Rec. 178: 711–730, 1974.
 68. Burri, P. H., P. Gehr, K. Müller, and E. R. Weibel. Adaptation of the growing lung to increased V.O2. I. IDPN as inducer of hyperactivity. Respir. Physiol. 28: 129–140, 1976.
 69. Burri, P. H., H. B. Pfrunder, and L. C. Berger. Reactive changes in pulmonary parenchyma after bilobectomy: a scanning electron microscopic investigation. Exp. Lung Res. 4: 11–28, 1982.
 70. Burri, P. H., and S. Šehovic. The adaptive response of the rat lung after bilobectomy. Am. Rev. Respir. Dis. 119: 769–777, 1979.
 71. Burri, P. H., and E. R. Weibel. Morphometric estimation of pulmonary diffusion capacity. II. Effect of Po2 on the growing lung, adaptation of the growing rat lung to hypoxia and hyperoxia. Respir. Physiol. 11: 247–264, 1971.
 72. Burri, P. H., and E. R. Weibel. Ultrastructure and morphometry of the developing lung. In: Lung Biology in Health and Disease. Development of the Lung, edited by W. A. Hodson. New York: Dekker, 1977, vol. 6, chapt. 5, p. 215–268.
 73. Campiche, M. A., A. Gautier, E. I. Hernandez, and A. Reymond. An electron microscope study of the fetal development of human lung. Pediatrics 32: 976–994, 1963.
 74. Carson, S. H., H. W. Taeusch, Jr., and M. E. Avery. Inhibition of lung cell division after hydrocortisone injection into fetal rabbits. J. Appl. Physiol. 34: 660–663, 1973.
 75. Chase, W. H. The surface membrane of pulmonary alveolar walls. Exp. Cell Res. 18: 15–28, 1959.
 76. Chevalier, G., and A. J. Collet. In vivo incorporation of choline‐3H, leucine‐3H and galactose‐3H in alveolar type II pneumocytes in relation to surfactant synthesis. A quantitative radioautographic study in mouse by electron microscopy. Anat. Rec. 174: 289–310, 1972.
 77. Christner A., P. Schaaf, C. Meyer, W. Linss, and G. Geyer. Ultrahistochemical study of the carbohydrate cell coat (glycocalyx) in the lung of the rat. Acta Histochem. 38: 121–126, 1970.
 78. Clements, J. A., E. S. Brown, and R. P. Johnson. Pulmonary surface tension and the mucus lining of the lungs: some theoretical considerations. J. Appl. Physiol. 12: 262–268, 1958.
 79. Clements, J. A., and W. H. Tooley. Kinetics of surface‐active material in the fetal lung. In: Lung Biology in Health and Disease. Development of the Lung, edited by W. A. Hodson. New York: Dekker, 1977, vol. 6, chapt. 8, p. 349–366.
 80. Cohn, R. Factors affecting the postnatal growth of the lung. Anat. Rec. 75: 195–205, 1939.
 81. Colacicco, G., A. R. Buckelew, Jr., and E. M. Scarpelli. Protein and lipid‐protein fractions of lung washings: chemical characterization. J. Appl. Physiol. 34: 743–749, 1973.
 82. Cowan, M. J., and R. G. Crystal. Lung growth after unilateral pneumonectomy. Quantitation of collagen synthesis and content. Am. Rev. Respir. Dis. 111: 267–277, 1975.
 83. Crapo, J. D., B. E. Barry, H. A. Foscue, and J. Shelburne. Structural and biochemical changes in rat lungs occurring during exposures to lethal and adaptive doses of oxygen. Am. Rev. Respir. Dis. 122: 123–143, 1980.
 84. Crapo, J. D., B. E. Barry, P. Gehr, and M. Bachofen. Cell numbers and cell characteristics of the normal human lung. Am. Rev. Respir. Dis. 126: 332–337, 1982.
 85. Crocker, T. T., A. Teeter, and B. Nielsen. Postnatal cellular proliferation in mouse and hamster. Cancer Res. 30: 357–361, 1970.
 86. Cudmore, R. E., J. L. Emery, and A. Mithal. Postnatal growth of bronchi and bronchioles. Arch. Dis. Child. 37: 481–484, 1962.
 87. Cunningham, E. I., J. S. Brody, and B. P. Jain. Lung growth induced by hypoxia. J. Appl. Physiol. 37: 362–366, 1974.
 88. Cutz, E., W. Chan, and K. S. Sonstegard. Identification of neuro‐epithelial bodies in rabbit fetal lungs by scanning electron microscopy: a correlative light, transmission and scanning electron microscopic study. Anat. Rec. 192: 459–466, 1978.
 89. Cutz, E., W. Chan, V. Wong, and P. E. Conen. Endocrine cells in rat fetal lungs. Ultrastructural and histochemical study. Lab, Invest 30: 458–464, 1974.
 90. Cutz, E., W. Chan, V. Wong, and P. E. Conen. Ultrastructure and fluorescence histochemistry of endocrine (APUD‐type) cells in tracheal mucosa of human and various animal species. Cell Tissue Res. 158: 425–437, 1975.
 91. Cutz, E., and P. E. Conen. Ultrastructure and cytochemistry of Clara cells. Am. J. Pathol 62: 127–134, 1971.
 92. Cutz, E., and P. E. Conen. Endocrine‐like cells in human fetal lungs: an electron microscopic study. Anat. Rec. 173: 115–122, 1972.
 93. Darrah, H. K., and J. Hedley‐Whyte. Rapid incorporation of palmitate into lung: site and metabolic fate. J. Appl. Physiol. 34: 205–213, 1973.
 94. Das, R. M., and W. M. Thurlbeck. The events in the contralateral lung following pneumonectomy in the rabbit. Lung 156: 165–172, 1979.
 95. Davies, G., and L. Reid. Growth of the alveoli and pulmonary arteries in childhood. Thorax 25: 669–681, 1970.
 96. Dawson, A. B. Further studies on the epiphyses of the albino rat skeleton, with special reference to the vertebral column, ribs, sternum and girdles. Anat. Rec. 34: 351–363, 1927.
 97. Dickie, K. J., G. D. Massaro, V. Marshall, and D. Massaro. Amino acid incorporation into protein of a surface‐active lung fraction. J. Appl. Physiol. 34: 606–614, 1973.
 98. Dingler, E. C. Wachstum der Lunge nach der Geburt. Acta Anat. 32: 1–86, 1958.
 99. Douglas, W. H. J., and K. R. Hitchcock. Organotypic cultures of diploid type II alveolar pneumonocytes: surfactant associated esterase activity. J. Histochem. Cytochem. 27: 852–856, 1979.
 100. Dubreuil, G., A. Lacoste, and R. Raymond. Observations sur le développement du poumon human. Bull. Histol. Appl. Tech. Microsc. 13: 235–245, 1936.
 101. Dunnill, M. S. Postnatal growth of the lung. Thorax 17: 329–333, 1962.
 102. Dunnill, M. S. Quantitative observations on the anatomy of chronic non‐specific lung disease. Med. Thorac. 22: 261–274, 1965.
 103. Egan, E. A., R. M. Nelson, and B. McIntyre. Ventilation induced release of pulmonary surfactant in immature fetal goats (Abstract). Pediatr. Res. 12: 560, 1978.
 104. Ekelund, L., G. Arvidson, H. Emanuelsson, H. Myhrberg, and B. Åstedt. Effect of cortisol on human fetal lung in Organ culture. A biochemical, electron‐microscopic and autoradiographic study. Cell Tissue Res. 163: 263–272, 1975.
 105. Elliott, F. M., and L. Reid. Some new facts about the pulmonary artery and its branching pattern. Clin. Radiol. 16: 193–198, 1965.
 106. Emery, J. L. The postnatal development of alveoli. In: The Anatomy of the Developing Lung, edited by J. Emery. Lavenham, UK: Lavenham, 1967, chapt. 2, p. 8–17.
 107. Emery, J. L., and A. Mithal. The number of alveoli in the terminal respiratory unit of man during late intrauterine life and childhood. Arch. Dis. Child. 35: 544–547, 1960.
 108. Emery, J. L., and P. F. Wilcock. The postnatal development of the lung. Acta Anat. 65: 10–29, 1966.
 109. Engel, S. The structure of the respiratory tissue in the newly‐born. Acta Anat. 19: 353–365, 1953.
 110. Engle, M. J., R. L. Sanders, and W. J. Longmore. Phospholipid composition and acyltransferase activity of lamellar bodies isolated from rat lung. Arch. Biochem. Biophys. 173: 586–595, 1976.
 111. Engle, M. J., L. M. G. van Golde, and K. W. Wirtz. Transfer of phospholipids between subcellular fractions of the lung. FEBS Lett. 86: 277–281, 1978.
 112. Erenberg, A., K. Omori, J. H. Menkes, W. Oh, and D. A. Fisher. Growth and development of the thyroidectomized ovine fetus. Pediatr. Res. 8: 783–789, 1974.
 113. Erenberg, A., M. L. Rhodes, M. M. Weinstein, and R. L. Kennedy. The effect of fetal thyroidectomy on ovine fetal lung maturation. Pediatr. Res. 13: 230–235, 1979.
 114. Etherton, J. E., D. M. Conning, and B. Corrim. Autoradiographical and morphological evidence for apocrine secretion of dipalmitoyl lecithin in the terminal bronchiole of mouse lung. Am. J. Anat. 138: 11–36, 1973.
 115. Evans, M. J., L. J. Cabral, R. J. Stephens, and G. Freeman. Renewal of alveolar epithelium in the rat following exposure to NO2. Am. J. Pathol. 70: 175–198, 1973.
 116. Evans, M. J., L. J. Cabral, R. J. Stephens, and G. Freeman. Transformation of alveolar type 2 cells to type 1 cells following exposure to NO2. Exp. Mol. Pathol. 22: 142–150, 1975.
 117. Evans, M. J., L. J. Cabral‐Anderson, and G. Freeman. Role of the Clara cell in renewal of the bronchiolar epithelium. Lab. Invest 38: 648–655, 1978.
 118. Evans, M. J., N. P. Dekker, L. J. Cabral‐Anderson, and G. Freeman. Quantitation of damage of the alveolar epithelium by means of type 2 cell proliferation. Am. Rev. Respir. Dis: 118: 787–790, 1978.
 119. Ewerbeck, H., H. Helwig, J. W. Reynolds, and R. W. Provenzano. Treatment of idiopathic respiratory distress syndrome with large doses of corticoids (Letter to the editor). Pediatrics 49: 467–468, 1972.
 120. Farrell, P. M., and M. Hamosh. The biochemistry of fetal lung development. Clin. Perinatol. 5: 197–229, 1978.
 121. Farrell, P. M., D. W. Lundgren, and A. J. Adams. Choline kinase and choline phosphotransferase in developing fetal rat lung. Biochem. Biophys. Res. Commun. 57: 696–701, 1974.
 122. Farrell, P. M., and T. E. Morgan. Lecithin biosynthesis in the developing lung. In: Lung Biology in Health and Disease. Development of the Lung, edited by W. A. Hodson. New York: Dekker, 1977, vol. 6, chapt. 7, p. 309–347.
 123. Farrell, P. M., and R. D. Zachman. Induction of choline phosphotransferase and lecithin synthesis in the fetal lung by corticosteroids. Science 179: 297–298, 1973.
 124. Fisch, R. O., M. K. Bilek, L. D. Miller, and R. R. Engel. Physical and mental status at 4 years of age of survivors of the respiratory distress syndrome. Follow‐up report from the collaborative study. J. Pediatr. 86: 497–503, 1975.
 125. Fisher, J. M., and J. D. Simnett. Morphogenetic and proliferative changes in the regenerating lung of the rat. Anat. Rec. 176: 389–396, 1973.
 126. Fitzhardinge, P. M., A. Eisen, C. Lejtenyi, K. Metrakos, and M. Ramsey. Sequelae of early steroid administration to the newborn infant. Pediatrics 53: 877–883, 1974.
 127. Frisancho, R. A. Human growth and pulmonary function of high altitude Peruvian Quechua population. Hum. Biol. 41: 366–379, 1969.
 128. Frisancho, R. A. Functional adaptation to high altitude hypoxia. Science 187: 313–319, 1975.
 129. Frosolono, M. F., B. L. Charms, P. Pawlowski, and S. Slivka. Isolation, characterization, and surface chemistry of a surface‐active fraction from dog lung. J. Lipid Res. 11: 439–457, 1970.
 130. Frosolono, M. F., S. Slivka, and B. L. Charms. Acyltransferase activities in dog lung microsomes. J. Lipid Res. 12: 96–103, 1971.
 131. Fung, Y. C., and S. S. Sobin. Theory of sheet flow in lung alveoli. J. Appl. Physiol. 26: 472–488, 1969.
 132. Gail, D. B., H. Steinkamp, and D. Massaro. Interspecies variation in lung lavage and tissue saturated phosphatidylcholine. Respir. Physiol. 33: 289–297, 1978.
 133. Garcia, A., J. D. Newkirk, and R. D. Mavis. Lung surfactant synthesis: a Ca++‐dependent microsomal phospholipase A2 in the lung. Biochem. Biophys. Res. Commun. 64: 128–135, 1975.
 134. Geelhaar, A., and E. R. Weibel. Morphometric estimation of pulmonary diffusion capacity. III. The effect of increased oxygen consumption in Japanese waltzing mice. Respir. Physiol. 11: 354–366, 1971.
 135. Gehr, P., M. Bachofen, and E. R. Weibel. The normal human lung: ultrastructure and morphometric estimation of diffusion capacity. Respir. Physiol. 32: 121–140, 1978.
 136. Gehr, P., C. Hugonnaud, P. H. Burri, H. Bachofen, and E. R. Weibel. Adaptation of the growing lung to increased V.O2. III. The effect of exposure to cold environment in rats. Respir. Physiol 32: 345–353, 1978.
 137. Gehr, P., D. K. Mwangi, A. Ammann, G. M. O. Maloiy, C. R. Taylor, and E. R. Weibel. Design of the mammalian respiratory system. V. Scaling morphometric pulmonary diffusing capacity to body mass: wild and domestic mammals. Respir. Physiol. 44: 61–86, 1981.
 138. Gehrig, H. Ueber tierexperimentelle Einwirkung von körperlicher Ueberanstrengung und sportlichem Training (Schwimmen) auf die Lungenmorphologie. Würzburg, West Germany: Universität Würzburg, 1951. Inaugural dissertation.
 139. Giannopoulos, G. Glucocorticoid receptors in lung. I. Specific binding of glucocorticoids to cytoplasmic components of rabbit fetal lung. J. Biol. Chem. 248: 3876–3883, 1973.
 140. Giannopoulos, G., S. Mulay, and S. Solomon. Cortisol receptors in rabbit fetal lung. Biochem. Biophys. Res. Commun. 47: 411–418, 1972.
 141. Giannopoulos G., S. Mulay, and S. Solomon. Glucocorticoid receptors in lung. II. Specific binding of glucocorticoids to nuclear components of rabbit fetal lung. J. Biol. Chem. 248: 5016–5023, 1973.
 142. Gil, J., and J. M. McNiff. Interstitial cells at the boundary between alveolar and extraalveolar connective tissue in the lung. J. Ultrastruct Res. 76: 149–157, 1981.
 143. Gil, J., and O. K. Reiss. Isolation and characterization of lamellar bodies and tubular myelin from rat lung homogenates. J. Cell Biol. 58: 152–171, 1973.
 144. Gil, J., and E. R. Weibel. Improvements in demonstration of lining layer of lung alveoli by electron microscopy. Respir. Physiol. 8: 13–36, 1969–70.
 145. Gilden, C., A. Sevanian, D. F. Tierney, S. A. Kaplan, and C. T. Barrett. Regulation of fetal lung phosphatidyl choline synthesis by cortisol: role of glycogen and glucose. Pediatr. Res. 11: 845–848, 1977.
 146. Gluck, L. Administration of corticosteroids to induce maturation of fetal lung. Am. J. Dis. Child. 130: 976–978, 1976.
 147. Gluck, L., M. V. Kulovich, A. I. Eidelman, L. Cordero, and A. F. Khazin. Biochemical development of surface activity in mammalian lung. IV. Pulmonary lecithin synthesis in the human fetus and newborn and etiology of the respiratory distress syndrome. Pediatr. Res. 6: 81–99, 1972.
 148. Gluck, L., M. Sribney, and M. V. Kulovich. The biochemical development of surface activity in mammalian lung. II. The biosynthesis of phospholipids in the lung of the developing rabbit fetus and newborn. Pediatr. Res. 1: 247–265, 1967.
 149. Gnavi, M., E. Pansa, and G. Anselmetti. L'accrescimento e la rigenerazione del polmone (ricerche sperimentali). Minerva Chir. 25: 1491–1504, 1970.
 150. Godinez, R. I., R. L. Sanders, and W. J. Longmore. Phosphatidylglycerol in rat lung. I. Identification as a metabolically active phospholipid in isolated perfused rat lung. Biochemistry 14: 830–834, 1975.
 151. Hage, E. The morphological development of the pulmonary epithelium of human foetuses studied by light‐ and electron microscopy. Z. Anat. Entwicklungsgesch. 140: 271–279, 1973.
 152. Hage, E., J. Hage, and G. Juel. Endocrine‐like cells of the pulmonary epithelium of the human adult lung. Cell Tissue Res. 178: 39–48, 1977.
 153. Hallman, M., B. H. Feldman, E. Kirkpatrick, and L. Gluck. Absence of phosphatidylglycerol (PG) in respiratory distress syndrome in the newborn. Study of the minor surfactant phospholipids in newborns. Pediatr. Res. 11: 714–720, 1977.
 154. Hallman, M., and L. Gluck. Phosphatidylglycerol in lung surfactant. I. Synthesis in rat lung microsomes. Biochem. Biophys. Res. Commun. 60: 1–7, 1974.
 155. Hallman, M., and L. Gluck. The biosynthesis of phosphatidylglycerol in the lung of developing rabbit (Abstract). Federation Proc. 34: 274, 1975.
 156. Hallman, M., and L. Gluck. Phosphatidylglycerol in lung surfactant. II. Subcellular distribution and mechanism of biosynthesis in vitro. Biochim. Biophys. Acta 409: 172–191, 1975.
 157. Hallman, M., and L. Gluck. Phosphatidylglycerol in lung surfactant. III. Possible modifier of surfactant function. J. Lipid Res. 17: 257–262, 1976.
 158. Hallman, M., K. Miyai, and R. M. Wagner. Isolated lamellar bodies from rat lung correlated ultrastructural and biochemical studies. Lab. Invest. 35: 79–86, 1976.
 159. Hallman, M., K. Teramo, K. Kankaanpää, M. V. Kulovich, and L. Gluck. Prevention of respiratory distress syndrome: current view of fetal lung maturity studies. Ann. Clin. Res. 12: 36–44, 1980.
 160. Hansen, J. E., and E. P. Ampaya. Lung morphometry: a fallacy in the use of the counting principle. J. Appl. Physiol. 37: 951–954, 1974.
 161. Hansen, J. E., E. P. Ampaya, G. H. Bryant, and J. J. Navin. Branching pattern of airways and air spaces of a single human terminal bronchiole. J. Appl. Physiol. 38: 983–989, 1975.
 162. Harwood, J. L., R. Desai, P. Hext, T. Teley, and R. Richards. Characterization of pulmonary surfactant from ox, rabbit, rat and sheep. Biochem. J. 151: 707–714, 1975.
 163. Hasleton, P. S. The internal surface area of the adult human lung. J. Anat. 112: 391–400, 1972.
 164. Heath, D., and D. R. Williams. The lung at high altitude. Invest. Cell Pathol. 2: 147–156, 1979.
 165. Hendry, A. T., and F. Possmayer. Pulmonary phospholipid biosynthesis. Properties of a stable microsomal glycerophosphate acyltransferase preparation from rabbit lung. Biochim. Biophys. Acta 369: 156–172, 1974.
 166. Hernandez‐Vasquez, A., J. A. Will, and W. B. Quay. Quantitative characteristics of the Feyrter (APUD) cells of the neonatal rabbit lung in normoxia and chronic hypoxia. Thorax 32: 449–456, 1977.
 167. Hernandez‐Vasquez, A., J. A. Will, and W. B. Quay. Quantitative characteristics of the Feyrter cells and neuro‐epithelial bodies of the fetal rabbit lung in normoxia and short term chronic hypoxia. Cell Tissue Res. 189: 179–186, 1978.
 168. Hieronymi, G. Veränderungen der Lungenstruktur in verschiedenen Lebensaltern. Verh. Dtsch. Ges. Pathol. 44: 129–131, 1960.
 169. Hieronymi, G. Ueber den durch das Alter bedingten Formwandel menschlicher Lungen. Ergeb. Allg. Pathol. Pathol. Anat. 41: 1–62, 1961.
 170. Hijiya, K., Y. Okada, and H. Tankawa. Ultrastructural study of the alveolar brush cell. J. Electron Microsc. 26: 321–329, 1977.
 171. Hilber, H. Experimentell erzeugte Lungenregeneration. Anat. Anz. 78: 189–197, 1934.
 172. Hislop, A. The Fetal and Childhood Development of the Pulmonary Circulation and its Disturbance in Certain Types of Congenital Heart Disease. London: London Univ. Press, 1971. PhD thesis.
 173. Hislop, A., C. P. Muir, M. Jacobsen, G. Simon, and L. Reid. Postnatal growth and function of the pre‐acinar airways. Thorax 27: 265–274, 1972.
 174. Hislop, A., and L. Reid. Intra‐pulmonary arterial development during fetal life—branching pattern and structure. J. Anat. 113: 35–48, 1972.
 175. Hislop, A., and L. Reid. Pulmonary arterial development during childhood: branching pattern and structure. Thorax 28: 129–135, 1973.
 176. Hislop, A., and L. Reid. Fetal and childhood development of the intrapulmonary veins in man—branching pattern and structure. Thorax 28: 313–319, 1973.
 177. Hislop, A., and L. Reid. Development of the acinus in the human lung. Thorax 29: 90–94, 1974.
 178. Hislop, A., and L. Reid. Growth and development of the respiratory system—anatomical development. In: Scientific Foundations of Paediatrics (2nd ed.), edited by J. A. Davis and J. Dobbing. London: Heinemann, 1981, chapt. 20, p. 390–432.
 179. Hitchcock, K. R. Hormones and the lung. I. Thyroid hormones and glucocorticoids in lung development. Anat. Rec. 194: 15–40, 1979.
 180. Hitchcock, K. R. Lung development and the pulmonary surfactant system: hormonal influences. Anat. Rec. 198: 13–34, 1980.
 181. Hitchcock‐O'Hare, K., E. Meymaris, J. Bonaccorso, and S. B. Vanburen. Separation and partial characterization of surface‐active fractions from mouse and rat lung homogenates. Identification of a possible marker system for pulmonary surfactant. J. Histochem. Cytochem. 24: 487–507, 1976.
 182. Hogg, J. C., N. C. Staub, E. H. Bergofsky, and C. E. Vreim. Workshop on the pulmonary endothelial cell. Am. Rev. Respir. Dis. 119: 165–170, 1979.
 183. Hogg, J. C., J. Williams, J. B. Richardson, P. T. Macklem, and W. M. Thurlbeck. Age as a factor in the distribution of lower‐airway conductance and in the pathologic anatomy of obstructive lung disease. N. Engl. J. Med. 282: 1283–1287, 1970.
 184. Holmes, C., and W. M. Thurlbeck. Normal lung growth and response after pneumonectomy in the rat at various ages. Am. Rev. Respir. Dis. 120: 1125–1136, 1979.
 185. Horsfield, K. Postnatal growth of the dog's bronchial tree. Respir. Physiol. 29: 185–191, 1977.
 186. Horsfield, K. Morphometry of the small pulmonary arteries in man. Circ. Res. 42: 593–597, 1978.
 187. Horsfield, K., and G. Cumming. Morphology of the bronchial tree in man. J. Appl. Physiol 24: 373–383, 1968.
 188. Horsfield, K., and G. Cumming. Functional consequences of airway morphology. J. Appl Physiol. 24: 384–390, 1968.
 189. Horsfield, K., G. Dart, D. E. Olson, G. F. Filley, and G. Cumming. Models of the human bronchial tree. J. Appl Physiol 31: 207–217, 1971.
 190. Hounam, R. F., and A. Morgan. Particle deposition. In: Lung Biology in Health and Disease. Respiratory Defense Mechanisms, edited by J. D. Brain, D. F. Proctor, and L. M. Reid. New York: Dekker, 1977, vol. 5, pt. 1, chapt. 5, p. 125–156.
 191. Huang, T. W. Composite epithelial and endothelial basal laminas in human lungs. A structural basis for their separation and apposition in reaction to injury. Am. J. Pathol. 93: 681–692, 1978.
 192. Hugonnaud, C., P. Gehr, E. R. Weibel, and P. H. Burri. Adaptation of the growing lung to increased oxygen consumption. II. Morphometric analysis. Respir. Physiol. 29: 1–10, 1977.
 193. Hung, K. S., M. S. Hertweck, J. D. Hardy, and C. G. Loosli. Innervation of pulmonary alveoli of the mouse lung: an electron microscopic study. Am. J. Anat. 135: 477–495, 1972.
 194. Hung, K. S., and C. G. Loosli. Bronchiolar neuro‐epithelial bodies in the neonatal mouse lungs. Am. J. Anat. 140: 191–200, 1974.
 195. Hurtado, A. Respiratory adaption in the Indian natives of the Peruvian Andes. Studies at high altitude. Am. J. Phys. Anthropol. 17: 137–165, 1932.
 196. Hutchins, G. M., H. M. Haupt, and G. W. Moore. A proposed mechanism for the early development of the human tracheobronchial tree. Anat. Rec. 201: 635–640, 1981.
 197. Jeffery, P. K., and L. M. Reid. The respiratory mucous membrane. In: Lung Biology in Health and Disease. Respiratory Defense Mechanisms, edited by J. D. Brain, D. F. Proctor, and L. M. Reid. New York: Dekker, 1977, vol. 5, pt. 1, chapt. 7, p. 193–245.
 198. Jeffery, P. K., and L. M. Reid. Ultrastructure of airway epithelium and submucosal gland during development. In: Lung Biology In Health and Disease. Development of the Lung, edited by W. A. Hodson. New York: Dekker, 1977, vol. 6, chapt. 3, p. 87–134.
 199. Jobe, A., E. Kirkpatrick, and L. Gluck. Labeling of phospholipids in the surfactant and subcellular fractions of rabbit lung. J. Biol Chem. 253: 3810–3816, 1978.
 200. Jobe, A., E. Kirkpatrick, and L. Gluck. Lecithin appearance and apparent biologic half‐life in term newborn rabbit lung. Pediatr. Res. 12: 669–675, 1978.
 201. Junod, A. F. Metabolism of vasoactive agents in lung. Am. Rev. Respir. Dis. 115: 51–57, 1977.
 202. Kapanci, Y., A. Assimacopoulos, C. Irle, A. Zwahlen, and G. Gabbiani. Contractile interstitial cells in pulmonary alveolar septa: a possible regulator of ventilation/perfusion ratio? J. Cell Biol. 60: 375–392, 1974.
 203. Kapanci, Y., E. R. Weibel, H. P. Kaplan, and F. R. Robinson. Pathogenesis and reversibility of the pulmonary lesions of oxygen toxicity in monkeys. II. Ultrastructural and morphometric studies. Lab. Invest. 20: 101–118, 1969.
 204. Kauffman, S. L. Acceleration of canalicular development in lungs of fetal mice exposed transplacentally to dexamethasone. Lab. Invest 36: 395–401, 1977.
 205. Kauffman, S. L. Proliferation, growth and differentiation of pulmonary epithelium in fetal mouse lung exposed transplacentally to dexamethasone. Lab. Invest 37: 497–501, 1977.
 206. Kauffman, S. L. Cell proliferation in the mammalian lung. Int. Rev. Exp. Pathol 22: 131–191, 1980.
 207. Kauffman, S. L., P. H. Burri, and E. R. Weibel. The postnatal growth of the rat lung. II. Autoradiography. Anat. Rec. 180: 63–76, 1974.
 208. Kerr, G. R., J. Couture, and J. R. Allen. Growth and development of the fetal rhesus monkey. VI. Morphometric analysis of the developing lung. Growth 39: 67–84, 1975.
 209. Kida, K., and W. M. Thurlbeck. The effects of β‐aminopropionitrile on the growing rat lung. Am. J. Pathol 101: 693–710, 1980.
 210. Kikkawa, Y., M. Kaibara, E. K. Motoyama, M. M. Orzalesi, and C. D. Cook. Morphologic development of fetal rabbit lung and its acceleration with cortisol. Am. J. Pathol. 64: 423–442, 1971.
 211. Kikkawa, Y., E. K. Motoyama, and C. D. Cook. The ultrastructure of the lungs of lambs. The relation of osmiophilic inclusions and alveolar lining layer to fetal maturation and experimentally produced respiratory distress. Am. J. Pathol. 47: 877–903, 1965.
 212. Kikkawa, Y., E. K. Motoyama, and L. Gluck. Study of the lungs of fetal and newborn rabbits. Morphologic, biochemical and surface physical development. Am. J. Pathol. 52: 177–209, 1968.
 213. King, R. J. The surfactant system of the lung. Federation Proc. 33: 2238–2247, 1974.
 214. King, R. J. Metabolic fate of the apoproteins of pulmonary surfactant. Am. Rev. Respir. Dis. 115: 73–79, 1977.
 215. King, R. J., and J. Clements. Surface active materials from dog lung. I. Method of isolation. Am. J. Physiol. 223: 707–714, 1972.
 216. King, R. J., and J. Clements. Surface active materials from dog lung. II. Composition and physiological correlations. Am. J. Physiol 223: 715–726, 1972.
 217. King, R. J., and J. Clements. Surface active materials from dog lung. III. Thermal analysis. Am. J. Physiol 223: 727–733, 1972.
 218. King, R. J., D. J. Klass, E. G. Gikas, and J. A. Clements. Isolation of apoproteins from canine surface active material. Am. J. Physiol. 224: 788–795, 1973.
 219. King, R. J., H. Martin, D. Mitts, and F. M. Holmstrom. Metabolism of the apoproteins in pulmonary surfactant. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 42: 483–491, 1977.
 220. Kistler, G. S., P. R. B. Caldwell, and E. R. Weibel. Pulmonary pathology of oxygen toxicity. II. Electron microscopic and morphometric study of rat lungs exposed to 97% O2 at 258 torr (27,000 feet). Aerosp. Med. Res. Lab. 2: 1–14, 1966.
 221. Klaus, M. H., J. A. Clements, and R. J. Havel. Composition of surface‐active material isolated from beef lung. Proc. Natl. Acad. Sci. USA 47: 1858–1859, 1961.
 222. Kotas, R. V., P. M. Farrell, R. E. Ulane, and R. A. Chez. Fetal rhesus monkey lung development: lobar differences and discordances between stability and distensibility. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 43: 92–98, 1977.
 223. Kotas, R. V., O. R. Kling, M. F. Block, J. F. Soodsma, R. D. Harlow, and W. M. Crosby. Response of immature baboon fetal lung to intra‐amniotic betamethasone. Am. J. Obstet. Gynecol. 130: 712–717, 1978.
 224. Kotas, R. V., C. M. LeRoy, and L. K. Hart. Reversible inhibition of lung cell number after glucocorticoid injection into fetal rabbits to enhance surfactant appearance. Pediatrics 53: 358–361, 1974.
 225. Kotas, R. V., E. J. Trainor, C. M. LeRoy, and R. D. Harlow. Discrepancies between the Brockerhoff and Gluck methods of lung lecithin fatty acid analysis. Am. Rev. Respir. Dis. 110: 669–671, 1974.
 226. Kuelbs. Ueber den Einfluss der Bewegung auf den wachsenden und erwachsenen Organismus. Dtsch. Med. Wochenschr. 38: 1916–1920, 1912.
 227. Kuhn, C., III, L. A. Callaway, and F. B. Askin. The formation of granules in the bronchiolar Clara cells of the rat. 1. Electron microscopy. J. Ultrastruct. Res. 49: 387–400, 1974.
 228. Kuhn, C., III, and B. Starcher. The effect of lathyrogens on the evolution of elastase‐induced emphysema. Am. Rev. Respir. Dis. 122: 453–460, 1980.
 229. Lands, W. E. Metabolism of glycerolipids. 2. The enzymatic acylation of lysolecithin. J. Biol. Chem. 235: 2233–2237, 1960.
 230. Langston, C., K. Kida, and W. M. Thurlbeck. Lung growth up to 1 month of postnatal age (Abstract). Lab. Invest 40: 307, 1979.
 231. Langston, C., P. Sachdeva, M. J. Cowan, J. Haines, R. G. Crystal, and W. M. Thurlbeck. Alveolar multiplication in the contralateral lung after unilateral pneumonectomy in the rabbit. Am. Rev. Respir. Dis. 115: 7–13, 1977.
 232. Lauweryns, J. M., and M. Cokelaere. Hypoxia‐sensitive neuro‐epithelial bodies. Intrapulmonary secretory neuroceptors, modulated by the CNS. Z. Zellforsch. Mikrosk. Anat. 145: 521–540, 1973.
 233. Lauweryns, J. M., M. Cokelaere, and P. Theunynck. Neuro‐epithelial bodies in the respiratory mucosa of various mammals. A light optical, histochemical and ultrastructural investigation. Z. Zellforsch. Mikrosk. Anat. 135: 569–592, 1972.
 234. Lauweryns, J. M., M. Cokelaere, P. Theunynck, and M. Deleersnyder. Neuro‐epithelial bodies in mammalian respiratory mucosa: light optical, histochemical and ultrastructural studies. Chest 65, Suppl.: 22S–29S, 1974.
 235. Lauweryns, J. M., and P. Goddeeris. Neuroepithelial bodies in the human child and adult lung. Am. Rev. Respir. Dis. 111: 469–476, 1975.
 236. Lechner, A. J., and N. Banchero. Lung morphometry in guinea pigs acclimated to cold during growth. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 48: 886–891, 1980.
 237. Lechner, A. J., and N. Banchero. Lung morphometry in guinea pigs acclimated to hypoxia during growth. Respir. Physiol 42: 155–169, 1980.
 238. Libi‐Sylora, M., J. Greco, and C. Ferencz. Postnatal growth of the pulmonary arterial tree. Morphologic characteristics. Am. J. Dis. Child. 115: 191–201, 1968.
 239. Liggins, G. C. Premature delivery of foetal lambs infused with glucocorticoids. J. Endocrinol. 45: 515–523, 1969.
 240. Liggins, G. C., and R. N. Howie. A controlled trial of antepartum glucocorticoid treatment for prevention of respiratory distress syndrome in premature infants. Pediatrics 50: 515–525, 1972.
 241. Lindenberg, J. A., A. Brehier, and P. L. Ballard. Triiodothyronine nuclear binding in fetal and adult rabbit lung and cultured lung cells. Endocrinology 103: 1725–1731, 1978.
 242. Longacre, J. J., and R. Johansmann. An experimental study of the fate of the remaining lung following total pneumonectomy. J. Thorac. Surg. 10: 131–149, 1940.
 243. Loosli, C. G., and K. S. Hung. Development of pulmonary innervation. In: Lung Biology in Health and Disease. Development of the Lung, edited by W. A. Hodson. New York: Dekker, 1977, vol. 6, chapt. 6, p. 269–306.
 244. Loosli, C. G., and E. L. Potter. The prenatal development of the human lung. Anat. Rec. 109: 320–321, 1951.
 245. Low, F. N. Electron microscopy of the rat lung. Anat. Rec. 113: 437–443, 1952.
 246. Low, F. N. The pulmonary alveolar epithelium of laboratory mammals and man. Anat. Rec. 117: 241–246, 1953.
 247. Luciano, L., E. Reale, and H. Ruska. Ueber eine “chemorezeptive” Sinneszelle in der Trachea der Ratte. Z. Zellforsch. Mikrosk. Anat. 85: 350–375, 1968.
 248. Luciano, L., E. Reale, and H. Ruska. Bürstenzellen im Alveolarepithel der Rattenlunge. Z. Zellforsch. Mikrosk. Anat. 95: 198–201, 1969.
 249. Macklin, C. C. The pulmonary alveolar mucoid film and the pneumocytes. Lancet 266: 1099–1104, 1954.
 250. Marinetti, G. V., J. Erbland, R. F. Witter, J. Petix, and E. Stoty. Metabolic pathways of lysolecithin in a soluble rat liver system. Biochim. Biophys. Acta 30: 223–230, 1958.
 251. Mashiach, S., G. Barkai, J. Sack, E. Stern, B. Goldman, M. Brish, and D. M. Serr. Enhancement of fetal lung maturity by intra‐amniotic administration of thyroid hormone. Am. J. Obstet. Gynecol. 130: 289–329, 1978.
 252. Massaro, G. D., and D. Massaro. Granular pneumocytes. Electron microscopic radioautographic evidence of intracellular protein transport. Am. Rev. Respir. Dis. 105: 927–931, 1972.
 253. Masters, J. R. W. Epithelial‐mesenchymal interaction during lung development: the effect of mesenchymal mass. Dev. Biol. 51: 98–108, 1976.
 254. Mercurio, A. R., and J. A. G. Rhodin. An electron microscopic study on the type 1 pneumocyte in the cat: differentiation. Am. J. Anat. 146: 255–272, 1976.
 255. Mercurio, A. R., and J. A. G. Rhodin. An electron microscopic study on the type 1 pneumocyte in the cat: pre‐natal morphogenesis. J. Morphol. 156: 141–156, 1978.
 256. Meyrick, B., and L. Reid. The alveolar brush cell in rat lung—a third pneumonocyte. J. Ultrastruct. Res. 23: 71–80, 1968.
 257. Meyrick, B., and L. Reid. Nerves in rat intra‐acinar alveoli: an electron microscopic study. Respir. Physiol. 11: 367–377, 1971.
 258. Meyrick, B., and L. Reid. Ultrastructure of alveolar lining and its development. In: Lung Biology in Health and Disease. Development of the Lung, edited by W. A. Hodson. New York: Dekker, 1977, vol. 6, chapt. 4, p. 135–214.
 259. Mithal, A., and J. L. Emery. The postnatal development of alveoli in premature infants. Arch. Dis. Child. 36: 446–450, 1961.
 260. Moog, F. The functional differentiation of the small intestine. III. The influence of the pituitary‐adrenal system on the differentiation of phosphatase in the duodenum of the suckling mouse. J. Exp. Zool. 124: 329–346, 1953.
 261. Morgan, M. S., and R. Frank. Uptake of pollutant gases by the respiratory system. In: Lung Biology in Health and Disease. Respiratory Defense Mechanisms, edited by J. D. Brain, D. F. Proctor, and L. M. Reid. New York: Dekker, 1977, vol. 5, pt. 1, chapt. 6, p. 157–189.
 262. Motoyama, E. K., M. M. Orzalesi, Y. Kikkawa, M. Kaibara, B. Wu, C. J. Zigas, and C. D. Cook. Effect of cortisol on the maturation of fetal rabbit lungs. Pediatrics 48: 547–555, 1971.
 263. Naeye, R. L. Arterial changes during the perinatal period. Arch. Pathol. 71: 121–128, 1961.
 264. Naeye, R. L. Development of systemic and pulmonary arteries from birth through early childhood. Biol. Neonate 10: 8–16, 1966.
 265. Nattie, E. E., C. W. Wiley, and D. Bartlett, Jr. Adaptive growth of the lung following pneumonectomy in rats. J. Appl. Physiol. 37: 491–495, 1974.
 266. Nerurkar, L. S., B. J. Zeligs, and J. A. Bellanti. Maturation of the rabbit alveolar macrophage during animal development. II. Biochemical and enzymatic studies. Pediatr. Res. 11: 1202–1207, 1977.
 267. Neuhäuser, G. Beitrag zur Morphogenese der Lunge. Anat. Anz. 3, Suppl.: 277–284, 1962.
 268. Neuhäuser, G., and E. C. Dingler. Lungenwachstum im Säuglingsalter (Untersuchungen an der Albinoratte). Z. Anat. Entwicklungsgesch. 123: 32–48, 1962.
 269. Niden, A. H. Bronchiolar and large alveolar cell in pulmonary phospholipid metabolism. Science 158: 1323–1324, 1967.
 270. Nijjar, M. S., and W. M. Thurlbeck. Alterations in enzymes related to adenosine 3', 5'‐monophosphate during compensatory growth of rat lung. Eur. J. Biochem. 105: 403–407, 1980.
 271. Noack, W., and W. Schwarz. Elektronenmikroskopische Untersuchungen über die Entwicklung der Lunge bei Ratten (16. Tag a.p.‐10. Tag p.p.). Z. Anat. Entwicklungsgesch. 134: 343–360, 1971.
 272. O'Hare, K. H. Fine structural observations of ruthenium red binding in developing and adult rat lung. Anat. Rec. 178: 267–288, 1974.
 273. Okano, G., and T. Akino. Changes in the structural and metabolic heterogeneity of phosphatidylcholines in the developing rat lung. Biochim. Biophys. Acta 528: 373–384, 1978.
 274. Oldenborg, V., and L. M. G. van Golde. Activity of cholinephosphotransferase, lysolecithin: lysolecithin acyltransferase and lysolecithin acyltransferase in the developing mouse lung. Biochim. Biophys. Acta 441: 433–442, 1976.
 275. Oldenburg, V., and L. M. G. van Golde. The enzymes of phospatidylcholine biosynthesis in the fetal mouse lung. Biochim. Biophys. Acta 489: 454–465, 1977.
 276. Oppenheimer, J. H. Thyroid hormone action at the cellular level. Science 203: 971–979, 1979.
 277. Orzalesi, M. M., E. K. Motoyama, H. N. Jacobson, Y. Kikkawa, E. O. R. Reynolds, and C. D. Cook. The development of the lungs of lambs. Pediatrics 35: 373–381, 1965.
 278. Oyarzún, M. J., and J. A. Clements. Ventilatory and cholinergic control of pulmonary surfactant in the rabbit. J. Appl. Physiol: Respirat. Environ. Exercise Physiol. 43: 39–45, 1977.
 279. Oyarzún, M. J., and J. A. Clements. Control of lung surfactant by ventilation adrenergic mediators, and prostaglandins in the rabbit. Am. Rev. Respir. Dis. 117: 879–891, 1978.
 280. Paintal, A. S. The mechanism of excitation of type J receptors, and the J reflex. In: Breathing: Hering‐Breuer Centenary Symposium, edited by R. Porter. London: Churchill, 1970, p. 59–76. (Ciba Found. Symp.)
 281. Passero, M. A., S. N. Bhattacharyya, and W. S. Lynn. Origin of hydroxylated glycopeptides isolated from alveolar proteinosis material (Abstract). Clin. Res. 22: 571A, 1974.
 282. Passero, M. A., R. W. Tye, K. H. Kilburn, and W. S. Lynn. Isolation and characterization of two glycoproteins from patients with alveolar proteinosis. Proc. Natl. Acad. Sci. USA 70: 973–976, 1973.
 283. Pattle, R. E. Properties, function and origin of the alveolar lining layer. Nature London 175: 1125–1126, 1955.
 284. Pattle, R. E., and L. C. Thomas. Lipoprotein composition of the film lining the lung. Nature London 189: 844, 1961.
 285. Pearse, A. G. E. The cytochemistry and ultrastructure of polypeptide hormone‐producing cells of the APUD series and the embryologic, physiologic and pathologic implications of the concept. J. Histochem. Cytochem. 17: 303–313, 1969.
 286. Pearson, A. K., and O. P. Pearson. Granular pneumocytes and altitude: a stereological evaluation. Cell Tissue Res. 201: 137–144, 1979.
 287. Pearson, O. P., and A. K. Pearson. A stereological analysis of the ultrastructure of the lungs of wild mice living at low and high altitude. J. Morphol. 150: 359–368, 1976.
 288. Pedley, T. J., R. C. Schroter, and M. F. Sudlow. Gas flow and mixing in the airways. In: Lung Biology in Health and Disease. Bioengineering Aspects of the Lung, edited by J. B. West. New York: Dekker, 1977, vol. 3, chapt. 3, p. 163–265.
 289. Perelman, R. H., M. Engle, and P. Farrell. Perspectives on fetal lung development. Lung 159: 53–80, 1981.
 290. Possmayer, F., G. Duwe, R. Metcalfe, P. J. Stewart‐DeHaan, C. Wong, J. L. Heras, and P. G. R. Harding. Cortisol induction of pulmonary maturation in the rabbit foetus. Its effects on enzymes related to phospholipid biosynthesis and on marker enzymes for subcellular organelles. Biochem. J. 166: 485–494, 1977.
 291. Pump, K. K. Distribution of bronchial arteries in the human lung. Chest 62: 447–451, 1972.
 292. Pysher, T. J., K. D. Konrad, and G. B. Reed. Effects of hydrocortisone and pilocarpine on fetal rat lung explants. Lab. Invest. 37: 588–593, 1977.
 293. Ranga, V., and J. Kleinerman. Interalveolar pores in mouse lungs: regional distribution and alterations with age. Am. Rev. Respir. Dis. 122: 477–481, 1980.
 294. Rannels, D. E., D. M. White, and C. A. Watkins. Rapidity of compensatory lung growth following pneumonectomy in adult rats. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 46: 326–333, 1979.
 295. Rhodin, J. Ultrastructure of the tracheal ciliated mucosa in rat and man. Ann. Otol. Rhinol. Laryngol. 68: 964–974, 1959.
 296. Rienhoff, W. F., F. L. Reichert, and G. E. Heuer. Compensatory changes in the remaining lung following total pneumonectomy. Bull. Johns Hopkins Hosp. 57: 373–383, 1935.
 297. Robinson, M. E., L. N. Y. Wu, G. W. Brumley, and R. H. Lumb. A unique phosphatidylcholine exchange protein isolated from sheep lung. FEBS Lett. 87: 41–44, 1978.
 298. Romanova, L. K., E. M. Leikina, K. K. Antipova, and T. N. Sokolova. The role of function in the restoration of damaged viscera. Ontogenez 2: 479–486, 1971.
 299. Rooney, S. A., P. M. Canavan, and E. K. Motoyama. The identification of phosphatidylglycerol in the rat, rabbit, monkey and human lung. Biochim. Biophys. Acta 360: 56–67, 1974.
 300. Rooney, S. A., L. J. Gobran, P. A. Marino, W. M. Maniscalco, and I. Gross. Effects of betamethasone on phospholipid content, composition and biosynthesis in the fetal rabbit lung. Biochim. Biophys. Acta 572: 64–76, 1979.
 301. Rooney, S. A., I. Gross, L. N. Gassenheimer, and E. K. Motoyama. Stimulation of glycerophosphate phosphatidyltransferase activity in fetal rabbit lung by cortisol administration. Biochim. Biophys. Acta 398: 433–441, 1975.
 302. Rooney, S. A., and E. K. Motoyama. Studies on the biosynthesis of pulmonary surfactant. The role of the methylation pathway of phosphatidylcholine biosynthesis in primate and non‐primate lung. Clin. Chim. Acta 69: 525–531, 1976.
 303. Rooney, S. A., B. A. Page‐Roberts, and E. K. Motoyama. Role of lamellar inclusions in surfactant production: studies on phospholipid composition and biosynthesis in rat and rabbit lung subcellular fractions. J. Lipid Res. 16: 418–425, 1975.
 304. Rooney, S. A., T. S. Wai‐Lee, L. Gobran, and E. K. Motoyama. Phospholipid content, composition and biosynthesis during fetal lung development in the rabbit. Biochim. Biophys. Acta 431: 447–458, 1976.
 305. Saldaña, M., and E. Garcia‐Oyola. Morphometry of the high altitude lung (Abstract). Lab. Invest. 22: 509, 1970.
 306. Sanders, R. L., R. J. Hassett, and A. E. Vatter. Isolation of lung lamellar bodies and their conversion to tubular myelin figures in vitro. Anat. Rec. 198: 485–501, 1980.
 307. Sanders, R. L., and W. J. Longmore. Phosphatidylglycerol in rat lung. II. Comparison of occurrence, composition, and metabolism in surfactant and residual lung fractions. Biochemistry 14: 835–840, 1975.
 308. Sanderson, R. J., G. W. Paul, A. E. Vatter, and G. F. Filley. Morphological and physical basis for lung surfactant action. Respir. Physiol 27: 379–392, 1976.
 309. Schneeberger, E. E. Barrier function of intercellular junctions in adult and fetal lungs. In: Pulmonary Edema, edited by A. P. Fishman and E. M. Renkin. Bethesda, MD: Am. Physiol. Soc., 1979, chapt. 2, p. 21–37.
 310. Schreider, J. P., and O. G. Raabe. Structure of the human respiratory acinus. Am. J. Anat. 162: 221–232, 1981.
 311. Schwinger, G., E. R. Weibel, and H. P. Kaplan. Pulmonary pathology of oxygen toxicity. Part III. Electron microscopic and morphometric study of dog and monkey lungs exposed to 98% O2 at 258 torr for 7 months and followed by 1 month recovery in room air. Aerosp. Med. Res. Lab. Interim Scientific Report, AF 61(052)‐941, January 1967, p. 1–21.
 312. Šerý, Z., E. Keprt, and M. Obručník. Morphometric analysis of late adaptation of the residual lung following pneumonectomy in young and adult rabbits. J. Thorac. Cardiovasc. Surg. 57: 549–557, 1969.
 313. Sherman, M., E. Goldstein, W. Lippert, and R. Wennberg. Neonatal lung defense mechanisms: a study of the alveolar macrophage system in neonatal rabbits. Am. Rev. Respir. Dis. 116: 433–440, 1977.
 314. Short, R. H. D. Alveolar epithelium in relation to growth of the lung. Philos. Trans. R. Soc. London 235: 35–87, 1950.
 315. Short, R. H. D. Aspects of comparative lung growth. Proc. Soc. Biol. 140: 432–441, 1952.
 316. Sieger, L. Pulmonary alveolar macrophages in pre‐ and postnatal rabbits. J. Reticuloendothel. Soc. 23: 389–395, 1978.
 317. Singhal, S., R. Henderson, K. Horsfield, K. Harding, and G. Cumming. Morphometry of the human pulmonary arterial tree. Circ. Res. 33: 190–197, 1973.
 318. Sleigh, M. A. The nature and action of respiratory tract cilia. In: Lung Biology in Health and Disease. Respiratory Defense Mechanisms, edited by J. D. Brain, D. F. Proctor, and L. M. Reid. New York: Dekker, 1977, vol. 5, pt. 1, chapt. 8, p. 247–288.
 319. Smiley, R. H., W. E. Jaques, and G. S. Campbell. Pulmonary vascular changes in lung lobes with reversed pulmonary blood flow. Surgery 59: 529–533, 1966.
 320. Smith, B. T. Cell line A 549: a model system for the study of alveolar type 2 cell function. Am. Rev. Respir. Dis. 115: 285–293, 1977.
 321. Smith, B. T. Lung maturation in the fetal rat: acceleration by injection of fibroblast‐pneumocyte factor. Science 204: 1094–1095, 1979.
 322. Smith, B. T., and W. G. Bogues. Effects of drugs and hormones on lung maturation in experimental animal and man. Pharmacol. Ther. 9: 51–74, 1980.
 323. Smith, B. T., and J. Torday. Factors affecting lecithin synthesis by fetal lung cells in culture. Pediatr. Res. 8: 848–851, 1974.
 324. Smith, B. T., J. S. Torday, and C. J. P. Giroud. Evidence for different gestation‐dependent effects of cortisol on cultured fetal lung cells. J. Clin. Invest. 53: 1518–1526, 1974.
 325. Smith, D. W., A. M. Klein, J. R. Henderson, and N. C. Myrianthopoulos. Congenital hypothyroidism—signs and symptoms in the newborn period. J. Pediatr. 87: 958–962, 1975.
 326. Smith, P., D. Heath, and H. Moosavi. The Clara cell. Thorax 29: 147–163, 1974.
 327. Solomon, S., and D. K. H. Lee. Binding of glucocorticoids in fetal tissue. J. Steroid Biochem. 8: 453–461, 1977.
 328. Sorokin, S. P. A morphologic and cytochemical study on the great alveolar cell. J. Histochem. Cytochem. 14: 884–897, 1967.
 329. Spooner, B. S., and J. M. Faubion. Collagen involvement in branching morphogenesis of embryonic lung and salivary gland. Dev. Biol. 77: 84–102, 1980.
 330. Spooner, B. S., and N. K. Wessells. Mammalian lung development: interactions in primordium formation and bronchial morphogenesis. J. Exp. Zool. 175: 445–454, 1970.
 331. Sterling, K. Thyroid hormone action at the cell level. N. Engl. J. Med. 300: 117–123, 1979.
 332. Stiles, Q. R., B. W. Meyer, G. G. Lindesmith, and J. C. Jones. The effects of pneumonectomy in children. J. Thorac. Cardiovasc. Surg. 58: 394–400, 1969.
 333. Stratton, C. J. The periodicity and architecture of lipid retained and extracted lung surfactant and its origin from multilamellar bodies. Tissue Cell 9: 301–316, 1977.
 334. Taderera, J. V. Control of lung differentiation in vitro. Dev, Biol. 16: 489–512, 1967.
 335. Taira, K., and S. Shibasaki. A fine structure study of the non‐ciliated cells in the mouse tracheal epithelium with special reference to the relation of “brush cells” and “endocrine cells.” Arch. Histol. Jpn. 41: 351–366, 1978.
 336. Takaro, T., H. P. Price, and S. C. Parra. Ultrastructural studies of apertures in the interalveolar septum of the adult human lung. Am. Rev. Respir. Dis. 119: 425–434, 1979.
 337. Ten Have‐Opbroek, A. A. W. Immunological study of lung development in the mouse embryo. II. First appearance of the great alveolar cell, as shown by immunofluorescence microscopy. Dev. Biol. 69: 408–423, 1979.
 338. Ten Have‐Opbroek, A. A. W. The development of the lung in mammals: an analysis of concepts and findings. Am. J. Anat. 162: 201–219, 1981.
 339. Tenney, S. M., and J. E. Remmers. Alveolar dimensions in the lungs of animals raised at high altitude. J. Appl. Physiol. 21: 1328–1330, 1966.
 340. Thompson, M. E. Lung growth in response to altered metabolic demand in hamsters: influence of thyroid function and cold exposure. Respir. Physiol. 40: 335–347, 1980.
 341. Thurlbeck, W. M. Postnatal growth and development of the lung. Am. Rev. Respir. Dis. 111: 803–844, 1975.
 342. Thurlbeck, W. M. Structure of the lungs. In: Respiratory Physiology II, edited by J. G. Widdicombe. Baltimore, MD: University Park, 1977, vol. 14, p. 1–36. (Int. Rev. Physiol. Ser.)
 343. Tiemann, F. Ueber die Sportlunge. Muench. Med. Wochenschr. 83: 1517–1520, 1936.
 344. Tomkeieff, S. I. Linear intercepts, areas and volumes (Letter to the editor). Nature London 155: 24, 1945.
 345. Tsao, F. H. C. Specific transfer of dipalmitoyl phosphatidylcholine in rabbit lung. Biochim. Biophys. Acta 601: 415–426, 1980.
 346. Vaccaro, C., and J. Brody. Ultrastructure of developing alveoli. I. The role of the interstitial fibroblast. Anat. Rec. 192: 467–480, 1978.
 347. Van Furth, R. The origin and turnover of promonocytes, monocytes and macrophages in normal mice. In: Mononuclear Phagocytes, edited by R. Van Furth. Philadelphia, PA: Davis, 1970, p. 151–165.
 348. Van Golde, L. M. G. Metabolism of phospholipids in the lung. Am. Rev. Respir. Dis. 114: 977–1000, 1976.
 349. Van Golde, L. M. G. Metabolism of phospholipids in the lung. In: Lung Disease: State of the Art, 1975–76, edited by J. F. Murray. New York: Am. Lung Assoc., 1978, p. 375–398.
 350. Vidić, B., and P. H. Burri. Quantitative cellular and subcellular changes in the rat type II pneumocyte during early postnatal development. Am. Rev. Respir. Dis. 124: 174–178, 1981.
 351. Von Hayek, H. Die menschliche Lunge (2nd ed.). Berlin: Springer‐Verlag, 1970.
 352. Von Neergaard, K. Neue Auffassungen über einen Grundbegriff der Atemmechanik. Die Retraktionskraft der Lunge, abhängig von der Oberflächenspannung in den Alveolen. Z. Gesamte Exp. Med. 66: 373–394, 1929.
 353. Wagenvoort, C. A., and N. Wagenvoort. Age changes in muscular pulmonary arteries. Arch. Pathol. 79: 524–528, 1965.
 354. Wagenvoort, C. A., and N. Wagenvoort. Arterial anastomoses, bronchopulmonary arteries, and pulmobronchial arteries in perinatal lungs. Lab. Invest. 16: 13–24, 1967.
 355. Wagenvoort, C. A., and N. Wagenvoort. Pulmonary vascular bed: normal anatomy and responses to disease. In: Lung Biology in Health and Disease. Pulmonary Vascular Diseases, edited by K. M. Moser. New York: Dekker, 1979, vol. 14, chapt. 1, p. 1–109.
 356. Wandel, G., L. C. Berger, and P. H. Burri. Quantitative changes in the remaining lung after bilobectomy in the adult rat. Am. Rev. Respir. Dis. 128: 968–972, 1983.
 357. Wanner, A. Clinical aspects of mucociliary transport. Am. Rev. Respir. Dis. 116: 73–125, 1977.
 358. Watson, J. H. L., and G. L. Brinkman. Electron microscopy of the epithelial cells of normal and bronchitic human bronchus. Am. Rev. Respir. Dis. 90: 851–866, 1964.
 359. Weibel, E. R. Die Blutgefässanastomosen in der menschlichen Lunge. Z. Zellforsch. Mikrosk. Anat. 50: 653–692, 1959.
 360. Weibel, E. R. Morphometry of the Human Lung. Heidelberg: Springer‐Verlag, 1963.
 361. Weibel, E. R. Postnatal growth of the lung and pulmonary gas‐exchange capacity. In: Development of the Lung, edited by A. V. S. de Reuck and R. Porter. London: Churchill, 1967, p. 131–148. (Ciba Found. Symp.)
 362. Weibel, E. R. Morphometry of pulmonary circulation. Prog. Respir. Res. 5: 2–12, 1970.
 363. Weibel, E. R. Morphometric estimation of pulmonary diffusion capacity. I. Model and method. Respir. Physiol. 11: 54–75, 1970–71.
 364. Weibel, E. R. The mystery of “non‐nucleated plates” in the alveolar epithelium of the lung explained. Acta Anat. 78: 425–443, 1971.
 365. Weibel, E. R. Morphometric estimation of pulmonary diffusion capacity. V. Comparative morphometry of alveolar lungs. Respir. Physiol 14: 26–43, 1972.
 366. Weibel, E. R. A note on differentiation and divisibility of alveolar epithelial cells. Chest 65, Suppl.: 19S–21S, 1974.
 367. Weibel, E. R. On pericytes, particularly their existence on lung capillaries. Microvasc. Res. 8: 218–235, 1974.
 368. Weibel, E. R., and H. Bachofen. Structural design of the alveolar septum and fluid exchange. In: Pulmonary Edema, edited by A. P. Fishman and E. M. Renkin. Bethesda, MD: Am. Physiol. Soc., 1979, chapt. 1, p. 1–20.
 369. Weibel, E. R., P. Gehr, L. M. Cruz‐Orive, A. E. Müller, D. K. Mwangi, and V. Haussener. Design of the mammalian respiratory system. IV. Morphometric estimation of pulmonary diffusing capacity: critical evaluation of a new sampling method. Respir. Physiol. 44: 39–59, 1981.
 370. Weibel, E. R., and J. Gil. Electron microscopic demonstration of an extracellular duplex lining layer of alveoli. Respir. Physiol. 4: 42–57, 1968.
 371. Weibel, E. R., and J. Gil. Structure‐function relationships at the alveolar level. In: Lung Biology in Health and Disease. Bioengineering Aspects of the Lung, edited by J. B. West. New York: Dekker, 1977, vol. 3, chapt. 1, p. 1–81.
 372. Weibel, E. R., and D. M. Gomez. Architecture of the human lung. Science 137: 577–585, 1962.
 373. Weibel, E. R., G. S. Kistler, and G. Töndury. A stereologic electron microscope study of “tubular myelin figures” in alveolar fluids of rat lungs. Z. Zellforsch. Mikrosk. Anat. 69: 418–427, 1966.
 374. Wessells, N. K. Mammalian lung development: interactions in formation and morphogenesis of tracheal buds. J. Exp. Zool. 175: 455–466, 1970.
 375. Wilcox, B. R., G. F. Murray, M. Friedmann, and R. Pimmel. The effects of early pneumonectomy on the remaining pulmonary parenchyma. Surgery 86: 294–300, 1979.
 376. Williams, M. C. Conversion of lamellar body membranes into tubular myelin in alveoli of fetal rat lungs. J. Cell Biol. 72: 260–277, 1977.
 377. Williams, M. C., and R. J. Mason. Development of the type II cell in the fetal rat lung. Am. Rev. Respir. Dis. 115: 37–47, 1977.
 378. Woldenberg, M. J. Special order in fluvial systems: Horton's laws derived from mixed hexagonal hierarchy of drainage basin areas. Geol. Soc. Am. Bull. 80: 97–112, 1969.
 379. Woodside, G. L., and A. J. Dalton. The ultrastructure of lung tissue from newborn and embryo mice. J. Ultrastruct. Res. 2: 28–54, 1958.
 380. Wu, B., Y. Kikkawa, M. M. Orzalesi, E. K. Motoyama, M. Kaibara, C. J. Zigas, and C. D. Cook. The effect of thyroxine on the maturation of fetal rabbit lungs. Biol. Neonate 22: 161–168 1973.
 381. Wyszogrodski, I., K. Kyei‐Aboagye, H. W. Taeusch, Jr., and M. E. Avery. Surfactant inactivation by hyperventilation: conservation by end‐expiratory pressure. J. Appl. Physiol. 38: 461–466, 1975.
 382. Yoneda, K. Ultrastructural localization of phospholipases in the Clara cell of the rat bronchiole. Am. J. Pathol. 93: 745–752, 1978.
 383. Zachman, R. D. The enzymes of lecithin bio‐synthesis in human newborn lungs. I. Choline kinase. Biol. Neonate 19: 211–219, 1971.
 384. Zachman, R. D. The enzymes of lecithin bio‐synthesis in human newborn lungs. II. Methionine‐activating enzyme and phosphatidyl methyltransferase. Biol. Neonate 20: 448–457, 1972.
 385. Zeligs, B. J., L. S. Nerurkar, and J. A. Bellanti. Maturation of the rabbit alveolar macrophage during animal development. I. Perinatal influx into alveoli and ultrastructure differentiation. Pediatr. Res. 11: 197–208, 1977.
 386. Zeligs, B. J., L. S. Nerurkar, and J. A. Bellanti. Maturation of the rabbit alveolar macrophage during animal development. III. Phagocytic and bactericidal functions. Pediatr. Res. 11: 1208–1211, 1977.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Peter H. Burri. Development and Growth of the Human Lung. Compr Physiol 2011, Supplement 10: Handbook of Physiology, The Respiratory System, Circulation and Nonrespiratory Functions: 1-46. First published in print 1985. doi: 10.1002/cphy.cp030101