Comprehensive Physiology Wiley Online Library

Pulmonary Interstitial Spaces and Lymphatics

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Structure and Composition of Pulmonary Interstitium
1.1 Pulmonary Interstitial Connective Tissues
1.2 Physicochemical Properties of Interstitial Matrix
1.3 Vascular and Extravascular Fluid Compartments in the Lung
1.4 Effect of Increased Hydration on Tissue Fluid Compartments
2 Starling Forces and Lymph Flow
2.1 Theoretical Considerations
2.2 Endothelial Pathways
2.3 Filtration Coefficient
2.4 Capillary Pressure
2.5 Tissue Fluid Pressure
2.6 Estimation of Intra‐Alveolar Fluid Pressure by Analysis of Structure
2.7 Interstitial Compliance
2.8 Interstitial Fluid Pressure Gradients
2.9 Colloid Osmotic Pressure Gradient
2.10 Lymph Flow
2.11 Analyses of Force Changes During Formation of Alveolar Edema: Edema Safety Factor
3 Abnormal Capillary Permeability to Plasma Proteins (Leaky Lung Syndromes)
3.1 α‐Naphthylthiourea
3.2 Hydrochloric Acid Aspiration
3.3 Hemorrhagic Shock
3.4 Septic Shock
3.5 Histamine
3.6 High‐Altitude Pulmonary Edema
3.7 Neurogenic Pulmonary Edema
3.8 Microemboli Vascular Damage
3.9 Oxygen Toxicity
3.10 Other Compounds
3.11 Possible Mechanisms: Superoxide System
4 Sequence and Pathways for Pulmonary Edema Formation
5 Conclusions
Figure 1. Figure 1.

Intra‐alveolar interstitium (IS) showing filaments of proteoglycans throughout the slightly edematous interstitium. CO, bundle of collagen fibers; EP, epithelial barrier. × 6,100.

Micrograph courtesy of J. Gil
Figure 2. Figure 2.

Diagram of the extracellular matrix showing a collagen mesh with interspersed proteoglycans and glycosaminoglycans. Effect of increased hydration on matrix density and intragel dispersion of proteins and small solutes is also shown.

From Parker, Taylor, et al. , by permission of the American Heart Association, Inc
Figure 3. Figure 3.

Effect of increased hydration on hydraulic conductivity of umbilical interstitial matrix. Normal hydration, ∼9 ml H2O/g dry wt.

Adapted from Granger
Figure 4. Figure 4.

Schematic representation of lung fluid compartments. BDW, blood dry weight; BFDW, blood‐free dry weight; Qw, extravascular lung water; VA, albumin interstitial volume; VBW, blood water volume; Vcell, cell volume; VE, albumin‐excluded volume; VI, interstitial volume.

Figure 5. Figure 5.

A: effect of volume expansion on extravascular water (Qw) and diethylenetriamine pentaacetic acid (DTPA) interstitial volume (VI) in dog lung. BFDW, blood‐free dry weight. B: effect of increased pulmonary capillary pressure (Pc) on interstitial volume (ordinate) available to albumin (VAV) and excluded albumin volume (VE) in dog lungs. C: effect of increasing extravascular 99mTc‐DTPA VI on albumin‐excluded volume fraction (FE). Increasing left atrial pressure produced interstitial pulmonary edema.

A from Parker, Taylor, et al. , by permission of the American Heart Association, Inc.; B and C from Parker, Taylor, et al. , by permission of the American Heart Association, Inc
Figure 6. Figure 6.

Schematic representation of continuous and fenestrated capillary walls. 1, Plasmalemmal vesicles; 2, endothelial junctions; 3, transendothelial channels; 4, fenestrations. Diameters of structures are given. Top right, schematic of a transendothelial channel with its related structure and dimensions.

Adapted from Taylor and Granger
Figure 7. Figure 7.

Rate of pulmonary edema formation as a function of left atrial pressure.

From Guyton and Lindsey , by permission of the American Heart Association, Inc
Figure 8. Figure 8.

Lung weight gain curve after elevation of capillary pressure in isolated dog lung (top panel). Slopes were plotted as functions of time with a semilogarithmic plot (bottom panel). Two distinct components are always observed: a rapid blood volume component and a slower capillary filtration component.

From Drake
Figure 9. Figure 9.

A: estimation of capillary pressures (Pc) with alveolar absorptive measurements. Capillary pressure is shown as a function of vertical height. Distance between pulmonary arterial pressure (Ppa) and Pc represents precapillary resistance. Distance between left atrial pressure (Pla) and Pc represents postcapillary resistance. Arrow, transition from zone III to zone II perfusing conditions. Zone III, regions of the lung in which venous pressures exceed alveolar pressures. Zone II, areas in which alveolar pressures exceed venous pressures but not pulmonary arterial pressures. B: regional blood flow and resistances as a function of vertical height. Ra, precapillary resistance; Rt, total vascular resistance; Rv, postcapillary resistance. IV, III, and II: zonal conditions within the lung. Arrows, distance from bottom of the lung at which zonal conditions change. Zone IV, height at which vascular resistance increases after zone III condition.

From Parker, Taylor, et al.
Figure 10. Figure 10.

Schematic representation of balance of forces surrounding an extra‐alveolar vessel. Fo, outward acting stress exerted by alveolar wall attachments; Palv, alveolar gas pressure; Pv, vascular pressure; Pel,w, elastic vessel wall tension; Px, interstitial pressure.

Figure 11. Figure 11.

Calculated perivascular interstitial pressures (Px) relative to pleural pressure (Ppl) as a function of transpulmonary pressure at different vascular pressures (Pv).

From Smith and Mitzner
Figure 12. Figure 12.

Septal fluid pressures (Psf) measured by direct micro‐puncture and calculated from critical pressures for alveolar flooding. Palv alveolar pressure; Ptp, transpulmonary pressure.

Replotted data from Bhattacharya et al. , Lai‐Fook and Beck , and Lai‐Fook and Toporoff
Figure 13. Figure 13.

Rabbit lung alveolar septum preserved by vascular perfusion. A, alveolar space; A‐TI, air‐tissue interface, which appears very smooth; C, capillary; IA‐F, intra‐alveolar cusp fluid; LL, lipid lining layer; TIC, type I alveolar cell; TM, tubular myelin (surfactant), × 6,100.

Micrograph courtesy of J. Gil
Figure 14. Figure 14.

Hilar perivascular pressure [Px(f) ‐ Ppl] as a function of transpulmonary pressure (Ptp). Decreased values of K′ indicate a decreased radial traction exerted on the perivascular interstitial space as edema forms in the lung.

Data from Inoue et al.
Figure 15. Figure 15.

Lung interstitial volume as a function of calculated interstitial fluid pressure (PT). Slope of curve represents total interstitial compliance.

From Drake
Figure 16. Figure 16.

Wick‐catheter measurements of hilar perivascular fluid pressures as a function of lobe weight gain. Lobe A: vascular pressure, 25 cmH2O; transpulmonary pressure, 20 cmH2O. Lobe B: vascular pressure, 20 cmH2O; transpulmonary pressure, 25 cmH2O. Larger changes occur in perivascular fluid pressure during interstitial filling than alveolar flooding.

From Lai‐Fook and Toporoff
Figure 17. Figure 17.

A: schematic representation of fluid pathways (→) and pressure vectors (→) in septa and septal corner regions. B: fluid pathways in whole lung.

Figure 18. Figure 18.

Effect of steady‐state increases in capillary pressure on pressure gradients between septal and extra‐alveolar interstitial fluid, hydraulic conductivity of the septal interstitium, lymph flow, lymph protein concentration, and edema fluid accumulation in both the septal and perivascular interstitium.

From Guyton, Taylor, Drake, and Parker
Figure 19. Figure 19.

Plot of lymph‐to‐plasma concentration ratios (CL/CP) for plasma protein fractions (○, •, □, Δ) and povidone (×). ○, □, ×: CL/CP values obtained from sheep lymphatics by Brigham et al. , Parker et al. , and Boyd et al. , respectively, Δ, CL/CP values obtained from dog lung lymphatics by Parker, Taylor, et al. .

From Taylor and Granger
Figure 20. Figure 20.

A: lymph‐to‐plasma concentration ratios (CL/CP) as a function of lymph flow (JL) for 4 different osmotic reflection coefficient (σ) values. Ps, calculated permeability coefficient‐surface area product. B: CL/CP as a function of JL for 2 different osmotic reflection coefficient values (a) and surface areas (S).

From Taylor, Parker, et al.
Figure 21. Figure 21.

A: 1 − σ as a function of molecular radii for 6 protein fractions. Renkin's method was used to fit points to pore distributions. •, Data points, ×, Differences between data points not falling on 200‐Å curve and the predicted 200‐Å curve; these points (×) were best fitted with an 80‐Å curve. B: lymph‐to‐plasma concentration ratios (CL/CP) as a function of lymph flow from data obtained in sheep lymph by Parker .

A from Parker, Taylor, et al. , by permission of the American Heart Association, Inc.; B from Taylor and Granger
Figure 22. Figure 22.

Concentration ratios of lactate dehydrogenase in lymph and plasma (CL/CP) as a function of the isoelectric point (P1) of the particular isoenzyme of lactate dehydrogenase. The more positive lactate dehydrogenase is more restricted than its more negative isomer.

Adapted from Taylor and Granger
Figure 23. Figure 23.

A: change in plasma‐lymph colloid osmotic pressure gradient in isolated dog lung lymph as a function of change in capillary pressure (ΔPc). B: change in plasma‐lymph colloid osmotic pressure gradient in sheep lungs as a function of change in capillary pressure.

A adapted from Drake ; B from Erdmann et al. , by permission of the American Heart Association, Inc
Figure 24. Figure 24.

Difference in colloid osmotic pressure gradient between plasma and lymph (ΠP — ΠL) when only left atrial pressures were elevated (↑LAP) and when the lung circulation of the sheep was exposed to Pseudomonas aeruginosa, histamine, and endotoxin in the studies of Brigham et al. .

From Taylor, Parker, et al.
Figure 25. Figure 25.

Effect of protein exclusion on tissue colloid osmotic pressure (ΠT) when interstitial volume (V1) is expanded. _____, Decrease in ΠT if no exclusion is present; —–, ΠT when protein is excluded from a portion of the interstitial space. Note that for the same interstitial value, ΠT is lower when exclusion is present.

From Taylor, Parker, et al.
Figure 26. Figure 26.

Lung lymph flow as a function of capillary pressure for controls (○–○) and lungs challenged with Pseudomonas aeruginosa (□—□) and endotoxin (•–•).

Adapted from Brigham
Figure 27. Figure 27.

Lymphatic safety factor as a function of the filtration coefficient (Kf,c). Shaded area, range of Kf,c values determined with weight analyses.

Adapted from Taylor and Drake
Figure 28. Figure 28.

A: pressure gradients for fluid filtration and blood flow as a function of alveolar gas pressure (Palv) when pulmonary perfusing pressure is constant. Pc, capillary pressure; Ppa, pulmonary arterial pressure; Pla, left atrial pressure. Ppa — Palv is considered to be the perfusing gradient; Pc — Palv is the capillary filtration gradient. Flow would cease before pulmonary arterial pressure equaled alveolar gas pressure if all alveolar gas pressure was reflected to the capillary. B: pulmonary artery pressure as a function of time at 4 different levels of positive end‐expiratory pressure (PEEP) in a dog lung perfused at constant blood flow .

B from Permutt
Figure 29. Figure 29.

Starling force analyses in sheep and dog lungs. Change (%) in lymph flow (LF), in colloid osmotic pressure gradient between plasma and tissues (ΠP — ΠT), and in tissue pressure (PT) relative to change in capillary pressures. Numbers below each histogram are maximum change in each tissue force when capillary pressure was increased by 18 mmHg.

Adapted from Taylor
Figure 30. Figure 30.

Lymph‐to‐plasma concentration ratios (CL/CP) for total protein as a function of lymph flow relative to control .

Adapted from Rutili, Parker, Taylor, et al.
Figure 31. Figure 31.

Lymphatic protein clearances ( × CL/CP) after acid aspiration in intact dog lungs. Histograms, protein clearance when capillary pressures were elevated in controls and after acid. Effects of albumin and furosemide on acid‐induced clearance are also shown.

Data from Grimbert, Parker, and Taylor
Figure 32. Figure 32.

Flow diagram of superoxide system showing tissue damage (blocks 8–10), pretreatments to increase free‐radical scavengers (blocks 11–13), tissue hypoxic generation of superoxides (blocks 14–15), direct generation of O2 radicals with hyperoxia (block 7), and generation of arachidonic acid metabolites and subsequent generation of superoxides (blocks 5–6). Circled numbers, proposed sites of actions of different compounds on the generation of superoxides, peroxides, and hydroxyl radicals. Ibuprofen would act at the entry to block 5. Far right, free radicals generated either by tissues or leukocytes are summed and ability of tissues to scavenge free radicals is subtracted. Interplay between generation and scavenging determines whether capillary damage results.

From Taylor and Martin
Figure 33. Figure 33.

Alveolar fluid volume and minimum radius of curvature at air‐liquid interface at different steady‐state interstitial fluid pressures. At a critical fluid pressure of −2 mmHg a stable fluid volume could not be maintained and the alveolus completely filled with fluid.

From Guyton, Taylor, Drake, and Parker


Figure 1.

Intra‐alveolar interstitium (IS) showing filaments of proteoglycans throughout the slightly edematous interstitium. CO, bundle of collagen fibers; EP, epithelial barrier. × 6,100.

Micrograph courtesy of J. Gil


Figure 2.

Diagram of the extracellular matrix showing a collagen mesh with interspersed proteoglycans and glycosaminoglycans. Effect of increased hydration on matrix density and intragel dispersion of proteins and small solutes is also shown.

From Parker, Taylor, et al. , by permission of the American Heart Association, Inc


Figure 3.

Effect of increased hydration on hydraulic conductivity of umbilical interstitial matrix. Normal hydration, ∼9 ml H2O/g dry wt.

Adapted from Granger


Figure 4.

Schematic representation of lung fluid compartments. BDW, blood dry weight; BFDW, blood‐free dry weight; Qw, extravascular lung water; VA, albumin interstitial volume; VBW, blood water volume; Vcell, cell volume; VE, albumin‐excluded volume; VI, interstitial volume.



Figure 5.

A: effect of volume expansion on extravascular water (Qw) and diethylenetriamine pentaacetic acid (DTPA) interstitial volume (VI) in dog lung. BFDW, blood‐free dry weight. B: effect of increased pulmonary capillary pressure (Pc) on interstitial volume (ordinate) available to albumin (VAV) and excluded albumin volume (VE) in dog lungs. C: effect of increasing extravascular 99mTc‐DTPA VI on albumin‐excluded volume fraction (FE). Increasing left atrial pressure produced interstitial pulmonary edema.

A from Parker, Taylor, et al. , by permission of the American Heart Association, Inc.; B and C from Parker, Taylor, et al. , by permission of the American Heart Association, Inc


Figure 6.

Schematic representation of continuous and fenestrated capillary walls. 1, Plasmalemmal vesicles; 2, endothelial junctions; 3, transendothelial channels; 4, fenestrations. Diameters of structures are given. Top right, schematic of a transendothelial channel with its related structure and dimensions.

Adapted from Taylor and Granger


Figure 7.

Rate of pulmonary edema formation as a function of left atrial pressure.

From Guyton and Lindsey , by permission of the American Heart Association, Inc


Figure 8.

Lung weight gain curve after elevation of capillary pressure in isolated dog lung (top panel). Slopes were plotted as functions of time with a semilogarithmic plot (bottom panel). Two distinct components are always observed: a rapid blood volume component and a slower capillary filtration component.

From Drake


Figure 9.

A: estimation of capillary pressures (Pc) with alveolar absorptive measurements. Capillary pressure is shown as a function of vertical height. Distance between pulmonary arterial pressure (Ppa) and Pc represents precapillary resistance. Distance between left atrial pressure (Pla) and Pc represents postcapillary resistance. Arrow, transition from zone III to zone II perfusing conditions. Zone III, regions of the lung in which venous pressures exceed alveolar pressures. Zone II, areas in which alveolar pressures exceed venous pressures but not pulmonary arterial pressures. B: regional blood flow and resistances as a function of vertical height. Ra, precapillary resistance; Rt, total vascular resistance; Rv, postcapillary resistance. IV, III, and II: zonal conditions within the lung. Arrows, distance from bottom of the lung at which zonal conditions change. Zone IV, height at which vascular resistance increases after zone III condition.

From Parker, Taylor, et al.


Figure 10.

Schematic representation of balance of forces surrounding an extra‐alveolar vessel. Fo, outward acting stress exerted by alveolar wall attachments; Palv, alveolar gas pressure; Pv, vascular pressure; Pel,w, elastic vessel wall tension; Px, interstitial pressure.



Figure 11.

Calculated perivascular interstitial pressures (Px) relative to pleural pressure (Ppl) as a function of transpulmonary pressure at different vascular pressures (Pv).

From Smith and Mitzner


Figure 12.

Septal fluid pressures (Psf) measured by direct micro‐puncture and calculated from critical pressures for alveolar flooding. Palv alveolar pressure; Ptp, transpulmonary pressure.

Replotted data from Bhattacharya et al. , Lai‐Fook and Beck , and Lai‐Fook and Toporoff


Figure 13.

Rabbit lung alveolar septum preserved by vascular perfusion. A, alveolar space; A‐TI, air‐tissue interface, which appears very smooth; C, capillary; IA‐F, intra‐alveolar cusp fluid; LL, lipid lining layer; TIC, type I alveolar cell; TM, tubular myelin (surfactant), × 6,100.

Micrograph courtesy of J. Gil


Figure 14.

Hilar perivascular pressure [Px(f) ‐ Ppl] as a function of transpulmonary pressure (Ptp). Decreased values of K′ indicate a decreased radial traction exerted on the perivascular interstitial space as edema forms in the lung.

Data from Inoue et al.


Figure 15.

Lung interstitial volume as a function of calculated interstitial fluid pressure (PT). Slope of curve represents total interstitial compliance.

From Drake


Figure 16.

Wick‐catheter measurements of hilar perivascular fluid pressures as a function of lobe weight gain. Lobe A: vascular pressure, 25 cmH2O; transpulmonary pressure, 20 cmH2O. Lobe B: vascular pressure, 20 cmH2O; transpulmonary pressure, 25 cmH2O. Larger changes occur in perivascular fluid pressure during interstitial filling than alveolar flooding.

From Lai‐Fook and Toporoff


Figure 17.

A: schematic representation of fluid pathways (→) and pressure vectors (→) in septa and septal corner regions. B: fluid pathways in whole lung.



Figure 18.

Effect of steady‐state increases in capillary pressure on pressure gradients between septal and extra‐alveolar interstitial fluid, hydraulic conductivity of the septal interstitium, lymph flow, lymph protein concentration, and edema fluid accumulation in both the septal and perivascular interstitium.

From Guyton, Taylor, Drake, and Parker


Figure 19.

Plot of lymph‐to‐plasma concentration ratios (CL/CP) for plasma protein fractions (○, •, □, Δ) and povidone (×). ○, □, ×: CL/CP values obtained from sheep lymphatics by Brigham et al. , Parker et al. , and Boyd et al. , respectively, Δ, CL/CP values obtained from dog lung lymphatics by Parker, Taylor, et al. .

From Taylor and Granger


Figure 20.

A: lymph‐to‐plasma concentration ratios (CL/CP) as a function of lymph flow (JL) for 4 different osmotic reflection coefficient (σ) values. Ps, calculated permeability coefficient‐surface area product. B: CL/CP as a function of JL for 2 different osmotic reflection coefficient values (a) and surface areas (S).

From Taylor, Parker, et al.


Figure 21.

A: 1 − σ as a function of molecular radii for 6 protein fractions. Renkin's method was used to fit points to pore distributions. •, Data points, ×, Differences between data points not falling on 200‐Å curve and the predicted 200‐Å curve; these points (×) were best fitted with an 80‐Å curve. B: lymph‐to‐plasma concentration ratios (CL/CP) as a function of lymph flow from data obtained in sheep lymph by Parker .

A from Parker, Taylor, et al. , by permission of the American Heart Association, Inc.; B from Taylor and Granger


Figure 22.

Concentration ratios of lactate dehydrogenase in lymph and plasma (CL/CP) as a function of the isoelectric point (P1) of the particular isoenzyme of lactate dehydrogenase. The more positive lactate dehydrogenase is more restricted than its more negative isomer.

Adapted from Taylor and Granger


Figure 23.

A: change in plasma‐lymph colloid osmotic pressure gradient in isolated dog lung lymph as a function of change in capillary pressure (ΔPc). B: change in plasma‐lymph colloid osmotic pressure gradient in sheep lungs as a function of change in capillary pressure.

A adapted from Drake ; B from Erdmann et al. , by permission of the American Heart Association, Inc


Figure 24.

Difference in colloid osmotic pressure gradient between plasma and lymph (ΠP — ΠL) when only left atrial pressures were elevated (↑LAP) and when the lung circulation of the sheep was exposed to Pseudomonas aeruginosa, histamine, and endotoxin in the studies of Brigham et al. .

From Taylor, Parker, et al.


Figure 25.

Effect of protein exclusion on tissue colloid osmotic pressure (ΠT) when interstitial volume (V1) is expanded. _____, Decrease in ΠT if no exclusion is present; —–, ΠT when protein is excluded from a portion of the interstitial space. Note that for the same interstitial value, ΠT is lower when exclusion is present.

From Taylor, Parker, et al.


Figure 26.

Lung lymph flow as a function of capillary pressure for controls (○–○) and lungs challenged with Pseudomonas aeruginosa (□—□) and endotoxin (•–•).

Adapted from Brigham


Figure 27.

Lymphatic safety factor as a function of the filtration coefficient (Kf,c). Shaded area, range of Kf,c values determined with weight analyses.

Adapted from Taylor and Drake


Figure 28.

A: pressure gradients for fluid filtration and blood flow as a function of alveolar gas pressure (Palv) when pulmonary perfusing pressure is constant. Pc, capillary pressure; Ppa, pulmonary arterial pressure; Pla, left atrial pressure. Ppa — Palv is considered to be the perfusing gradient; Pc — Palv is the capillary filtration gradient. Flow would cease before pulmonary arterial pressure equaled alveolar gas pressure if all alveolar gas pressure was reflected to the capillary. B: pulmonary artery pressure as a function of time at 4 different levels of positive end‐expiratory pressure (PEEP) in a dog lung perfused at constant blood flow .

B from Permutt


Figure 29.

Starling force analyses in sheep and dog lungs. Change (%) in lymph flow (LF), in colloid osmotic pressure gradient between plasma and tissues (ΠP — ΠT), and in tissue pressure (PT) relative to change in capillary pressures. Numbers below each histogram are maximum change in each tissue force when capillary pressure was increased by 18 mmHg.

Adapted from Taylor


Figure 30.

Lymph‐to‐plasma concentration ratios (CL/CP) for total protein as a function of lymph flow relative to control .

Adapted from Rutili, Parker, Taylor, et al.


Figure 31.

Lymphatic protein clearances ( × CL/CP) after acid aspiration in intact dog lungs. Histograms, protein clearance when capillary pressures were elevated in controls and after acid. Effects of albumin and furosemide on acid‐induced clearance are also shown.

Data from Grimbert, Parker, and Taylor


Figure 32.

Flow diagram of superoxide system showing tissue damage (blocks 8–10), pretreatments to increase free‐radical scavengers (blocks 11–13), tissue hypoxic generation of superoxides (blocks 14–15), direct generation of O2 radicals with hyperoxia (block 7), and generation of arachidonic acid metabolites and subsequent generation of superoxides (blocks 5–6). Circled numbers, proposed sites of actions of different compounds on the generation of superoxides, peroxides, and hydroxyl radicals. Ibuprofen would act at the entry to block 5. Far right, free radicals generated either by tissues or leukocytes are summed and ability of tissues to scavenge free radicals is subtracted. Interplay between generation and scavenging determines whether capillary damage results.

From Taylor and Martin


Figure 33.

Alveolar fluid volume and minimum radius of curvature at air‐liquid interface at different steady‐state interstitial fluid pressures. At a critical fluid pressure of −2 mmHg a stable fluid volume could not be maintained and the alveolus completely filled with fluid.

From Guyton, Taylor, Drake, and Parker
References
 1. Adair, T. H., D. S. Moffatt, A. W. Paulsen, and A. C. Guyton. Quantitation of changes in lymph protein concentration during lymph node transit. Am. J. Physiol. 243 (Heart Circ. Physiol. 12): H351–H359, 1982.
 2. Adams, F. G., and I. M. Ledingham. The pulmonary manifestations of septic shock. Clin. Radiol. 28: 315–322, 1977.
 3. Agostoni, E. Mechanics of the pleural space. Physiol. Rev. 52: 57–128, 1972.
 4. Agostoni, E., and J. Piiper. Capillary pressure and distribution of vascular resistance in isolated lung. Am. J. Physiol. 202: 1033–1036, 1962.
 5. Agostoni, E., A. Taglietti, and I. Setnikar. Absorption force of the capillaries of the visceral pleura in determination of the intrapleural pressure. Am. J. Physiol. 191: 277–282, 1957.
 6. Albert, R. K., S. Lakshminarayan, T. W. Huang, and J. Butler. Fluid leaks from extra‐alveolar vessels in living dog lungs. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 44: 759–762, 1978.
 7. Anderson, R. R., R. L. Holliday, A. A. Driedger, M. Lefcoe, B. Reid, and W. J. Sibbald. Documentation of pulmonary capillary permeability in the adult respiratory distress syndrome accompanying human sepsis. Am. Rev. Respir. Dis. 119: 869–877, 1979.
 8. Anderson, R. W., and W. C. deVries. Transvascular fluid and protein dynamics in the lung following hemorrhagic shock. J. Surg. Res. 20: 281–290, 1976.
 9. Arfors, K. E., G. Rutili, and E. Svensjö. Microvascular transport of macromolecules in normal and inflammatory conditions. Acta Physiol. Scand. Suppl. 463: 93–103, 1979.
 10. Ashbaugh, D. C., and T. Uzawa. Respiratory and hemodynamic changes after injection of free fatty acids. J. Surg. Res. 8: 417–423, 1968.
 11. Aukland, K., and G. Nicolaysen. Interstitial fluid volume: local regulatory mechanisms. Physiol. Rev. 61: 556–643, 1981.
 12. Bachofen, H., P. Gehr, and E. R. Weibel. Alterations of mechanical properties and morphology in excised rabbit lungs rinsed with a detergent. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 47: 1002–1010, 1979.
 13. Bachofen, M., H. Bachofen, and E. R. Weibel. Lung edema in the adult respiratory distress syndrome. In: Pulmonary Edema, edited by A. P. Fishman and E. M. Renkin. Bethesda, MD: Am. Physiol. Soc., 1979, chapt. 18, p. 241–252.
 14. Baile, E. M., P. D. Paré, R. W. Dahlby, and J. C. Hogg. Regional distribution of extravascular water and hematocrit in the lung. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 46: 937–942, 1979.
 15. Barie, P. S., F. L. Minnear, and A. B. Malik. Increased pulmonary vascular permeability after bone marrow injection in sheep. Am. Rev. Respir. Dis. 123: 648–653, 1981.
 16. Barrios, R., S. Inoue, and J. C. Hogg. Intercellular junctions in “shock lung” A freeze‐fracture study. Lab. Invest. 36: 628–635, 1977.
 17. Bean, J. W., and D. L. Beckman. Centrogenic pulmonary pathology in mechanical head injury. J. Appl. Physiol. 27: 807–812, 1969.
 18. Bean, J. W., D. Zee, and B. Thom. Pulmonary changes with convulsions induced by drugs and oxygen at high pressure. J. Appl. Physiol. 21: 865–872, 1966.
 19. Benjamin, J. J., P. S. Murtagh, D. F. Proctor, H. A. Menkes, and S. Permutt. Pulmonary vascular interdependence in excised dog lobes. J. Appl. Physiol. 37: 887–894, 1974.
 20. Bennett, H. S., J. H. Luft, and J. C. Hampton. Morphological classifications of vertebrate blood capillaries. Am. J. Physiol. 196: 381–390, 1959.
 21. Bergofsky, E. H., and S. Holtzman. A study of the mechanisms involved in the pulmonary arterial pressure response to hypoxia. Circ. Res. 20: 506–519, 1967.
 22. Bessa, S. M., A. P. Dalmasso, and R. L. Goodale Jr.. Studies on the mechanism of endotoxin‐induced increase of alveolocapillary permeability. Proc. Soc. Exp. Biol. Med. 147: 701–705, 1974.
 23. Bevan, D. R. Colloid osmotic pressure. Anaesthesia 35: 263–270, 1980.
 24. Bhattacharya, J., K. Nakahara, and N. C. Staub. Effect of edema on pulmonary blood flow in the isolated perfused dog lung lobe. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 48: 444–449, 1980.
 25. Bhattacharya, J., S. Nanjo, and N. C. Staub. Effect of lung edema on vertical distribution of subpleural connective tissue fluid pressure in isolated perfused dog lung (Abstract). Microvasc. Res. 21: 236, 1981.
 26. Bhattacharya, J., S. Nanjo, and N. C. Staub. Micropuncture measurement of lung microvascular pressure during 5‐HT infusion. J. Appl. Physiol: Respirat. Environ. Exercise Physiol. 52: 634–637, 1982.
 27. Bhattacharya, J., and N. C. Staub. Direct measurements of microvascular pressures in the isolated perfused dog lung. Science 210: 327–328, 1980.
 28. Biddle, T. L., and P. N. Yu. Effect of furosemide on hemodynamics and lung water in acute pulmonary edema secondary to myocardial infarction. Am. J. Cardiol. 43: 86–90, 1979.
 29. Bill, A. Plasma protein dynamics: albumin and IgG capillary permeability, extravascular movement and regional blood flow in unanesthetized rabbits. Acta Physiol. Scand. 101: 28–42, 1977.
 30. Binder, A. S., K. Nakahara, K. Ohkuda, W. Kageler, and N. C. Staub. Effect of heparin or fibrinogen depletion on lung fluid balance in sheep after emboli. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 47: 213–219, 1979.
 31. Blaisdell, F. W., and R. M. Schlobohm. The respiratory distress syndrome: a review. Surgery 74: 251–262, 1973.
 32. Blake, L. H., and N. C. Staub. Pulmonary vascular transport in sheep. A mathematic model. Microvasc. Res. 12: 197–200, 1976.
 33. Bland, R. D., R. H. Demling, S. L. Selinger, and N. C. Staub. Effects of alveolar hypoxia on lung fluid and protein transport in unanesthetized sheep. Circ. Res. 40: 269–274, 1977.
 34. Bø, G., A. Hauge, and G. Nicolaysen. Alveolar pressure and lung volume as determinants of net transvascular fluid filtration. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 42: 476–482, 1977.
 35. Bolton, C., and E. H. Starling. Note on the blood‐pressure and lymph flow in the case of heart disease in the dog. Heart 1: 292–296, 1910.
 36. Boonyaprakob, U., P. M. Taylor, D. W. Watson, V. Waterman, and E. Lopata. Hypoxia and protein clearance from the pulmonary vascular beds of adult dogs and pups. Am. J. Physiol. 216: 1013–1019, 1969.
 37. Bowden, D. H., and I. Y. R. Adamson. Endothelial regeneration as a marker of the differential vascular responses in oxygen‐induced pulmonary edema. Lab. Invest. 30: 350–357, 1974.
 38. Bowers, R. E., K. L. Brigham, and P. J. Owen. Salicylate pulmonary edema: the mechanism in sheep and review of the clinical literature. Am. Rev. Respir. Dis. 115: 261–268, 1977.
 39. Boyd, R. D. H., R. Hill, P. W. Humphreys, I. C. S. Normand, E. O. R. Reynolds, and L. B. Strang. Permeability of lung capillaries to macromolecules in fetal and newborn lambs and sheep. J. Physiol. London 201: 567–588, 1969.
 40. Brace, R. A. The chronically implanted capsule: interstitial fluid pressure and solute concentration measurements. In: Tissue Fluid Pressure and Composition, edited by A. R. Hargens. Baltimore, MD: Williams & Wilkins, 1981, chapt. 24, p. 233–246.
 41. Brace, R. A. Progress toward resolving the controversy of positive vs. negative interstitial fluid pressure. Circ. Res. 49: 281–297, 1981.
 42. Brace, R. A., D. N. Granger, and A. E. Taylor. Analysis of lymphatic protein flux data. II. Effect of capillary heteroporosity on estimates of reflection coefficients and PS products. Microvasc. Res. 14: 215–226, 1977.
 43. Brace, R. A., D. N. Granger, and A. E. Taylor. Analysis of lymphatic protein flux data. III. Use of the nonlinear flux equation to estimate à and PS. Microvasc. Res. 16: 297–303, 1978.
 44. Brace, R. A., and A. C. Guyton. Interstitial pressure: capsule, free fluid, gel fluid, and gel absorption pressure in subcutaneous tissue. Microvasc. Res. 18: 217–228, 1979.
 45. Brace, R. A., A. C. Guyton, and A. E. Taylor. Reevaluation of the needle method for measuring interstitial fluid pressure. Am. J. Physiol. 229: 603–607, 1975.
 46. Bredenberg, C. E. The pulmonary response to hemorrhagic shock: differences between primate and dog. Circ. Shock 6: 165–171, 1979.
 47. Bredenberg, C. E., T. Kazui, and W. R. Webb. Experimental pulmonary edema: the effect of positive end‐expiratory pressure on lung water. Ann. Thorac. Surg. 26: 62–67, 1978.
 48. Brennan, N. J., and M. X. FitzGerald. Anatomically localised re‐expansion pulmonary oedema following pneumothorax drainage. Case report and literature review. Respiration 38: 233–237, 1979.
 49. Bresler, E. H., and L. J. Groome. On equations for combined convective and diffusive transport of neutral solute across porous membranes. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F469–F476, 1981.
 50. Bressack, M. A., and R. D. Bland. Alveolar hypoxia increases lung fluid filtration in unanesthetized newborn lambs. Circ. Res. 45: 111–116, 1980.
 51. Bressack, M. A., D. D. McMillan, and R. D. Bland. Pulmonary oxygen toxicity: increased microvascular permeability to protein in unanesthetized lambs. Lymphology 12: 133–139, 1979.
 52. Brigham, K. L. Pulmonary edema: cardiac and noncardiac. Am. J. Surg. 138: 361–367, 1979.
 53. Brigham, K. L., R. E. Bowers, and J. Haynes. Increased sheep lung vascular permeability caused by Escherichia coli endotoxin. Circ. Res. 45: 292–297, 1979.
 54. Brigham, K. L., R. E. Bowers, and C. R. McKeen. Methylprednisolone prevention of increased lung vascular permeability following endotoxemia in sheep. J. Clin. Invest. 67: 1103–1110, 1981.
 55. Brigham, K. L., R. E. Bowers, and P. J. Owen. Effects of antihistamines on the lung vascular response to histamine in unanesthetized sheep. Diphenhydramine prevention of pulmonary edema and increased permeability. J. Clin. Invest. 58: 391–398, 1976.
 56. Brigham, K. L., T. R. Harris, and P. J. Owen. [14C]urea and [14C]sucrose as permeability indicators in histamine pulmonary edema. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 43: 99–101, 1977.
 57. Brigham, K. L., and P. J. Owen. Mechanism of the serotonin effect on lung transvascular fluid and protein movement in awake sheep. Circ. Res. 36: 761–770, 1975.
 58. Brigham, K. L., W. C. Woolverton, L. H. Blake, and N. C. Staub. Increased sheep lung vascular permeability caused by Pseudomonas bacteremia. J. Clin. Invest. 54: 792–804, 1974.
 59. Brigham, K. L., W. C. Woolverton, and N. C. Staub. Effects of changing hemodynamics on the extra plasma space in the lungs of sheep. Microvasc. Res. 10: 352–359, 1975.
 60. Broderick, T. W., R. T. Reinke, and E. Goldman. Salicylate‐induced pulmonary edema. Am. J. Roentgenol. 127: 865–866, 1976.
 61. Broe, P. J., T. J. K. Toung, S. Margolis, S. Permutt, and J. L. Cameron. Pulmonary injury caused by free fatty acid: evaluation of steroid and albumin therapy. Surgery 89: 582–587, 1981.
 62. Bruderman, I., K. Somers, W. K. Hamilton, W. H. Tooley, and J. Butler. Effect of surface tension on circulation in the excised lungs of dogs. J. Appl. Physiol. 19: 707–712, 1964.
 63. Bruns, R. R., and G. E. Palade. Studies on blood capillaries. II. Transport of ferritin molecules across the wall of muscle capillaries. J. Cell Biol. 37: 277–299, 1968.
 64. Burton, A. C., and D. J. Patel. Effect on pulmonary vascular resistance of inflation of the rabbit lungs. J. Appl. Physiol. 12: 239–246, 1958.
 65. Butler, J. Pulmonary edema. Clin. Sci. 60: 1–4, 1981.
 66. Caldini, P., J. D. Leith, and M. J. Brennan. Effect of continuous positive‐pressure ventilation (CPPV) on edema formation in dog lung. J. Appl. Physiol. 39: 672–679, 1975.
 67. Cameron, J. L., P. Caldini, J. K. Toung, and G. D. Zuidema. Aspiration pneumonia: physiologic data following experimental aspiration. Surgery 72: 238–245, 1972.
 68. Campbell, T., and T. Heath. Intrinsic contractility of lymphatics in sheep and in dogs. Q. J. Exp. Physiol. 58: 207–217, 1973.
 69. Casaburi, R., K. Wasserman, and R. M. Effros. Detection and measurement of pulmonary edema. In: Lung Biology in Health and Disease. Lung Water and Solute Exchange, edited by N. C. Staub. New York: Dekker, 1978, vol. 7, chapt. 11, p. 323–376.
 70. Casley‐Smith, J. R. The fine structure of the tissues and tissue channels. In: Tissue Fluid Pressure and Composition, edited by A. R. Hargens. Baltimore, MD: Williams & Wilkins, 1981, chapt. 11, p. 99–112.
 71. Casley‐Smith, J. R., P. J. O'Donoghue, and K. W. J. Crocker. The quantitative relationships between fenestrae in jejunal capillaries and connective tissue channels: proof of “tunnel capillaries”. Microvasc. Res. 9: 78–100, 1975.
 72. Chen, H. I., and C. Y. Chai. Pulmonary edema and hemorrhage as a consequence of systemic vasoconstriction. Am. J. Physiol. 227: 144–151, 1974.
 73. Chen, H. I., H. J. Granger, and A. E. Taylor. Lymph flow transients following elevation of venous pressure in the dog's hind paw. In: Progress in Lymphology, edited by R. C. Mayall and M. H. Witte. New York: Plenum, 1977, p. 19–26.
 74. Chen, H. I., J. D. Lin, and J. F. Liao. Participation of regional sympathetic outflows in the centrogenic pulmonary pathology. Am. J. Physiol. 240 (Heart Circ. Physiol. 9): H109–H115, 1981.
 75. Chinard, F. P. The alveolar‐capillary barrier: some data and speculations. Microvasc. Res. 19: 1–17, 1980.
 76. Christy, J. H. Pathophysiology of gram‐negative shock. Am. Heart J. 81: 694–701, 1971.
 77. Cintora, I., S. Bessa, R. L. Goodale, G. W. Motsay, and J. W. Borner. Further studies of endotoxin and alveolocapillary permeability. Ann. Surg. 2: 372–375, 1974.
 78. Clark, J. M., and C. J. Lambertsen. Pulmonary oxygen toxicity: a review. Pharmacol. Rev. 23: 38–117, 1971.
 79. Clementi, F., and G. Palade. Intestinal capillaries. I. Permeability to peroxidase and ferritin. J. Cell Biol. 41: 33–58, 1969.
 80. Clementi, F., and G. Palade. Intestinal capillaries. II. Structural effects of EDTA and histamine. J. Cell Biol. 42: 706–714, 1969.
 81. Clements, J. A. Pulmonary edema and permeability of alveolar membrane. Arch. Environ. Health 2: 280–283, 1961.
 82. Clements, J. A., and D. F. Tierney. Alveolar instability associated with altered surface tension. In: Handbook of Physiology. Respiration, edited by W. O. Fenn and H. Rahn. Washington, DC: Am. Physiol. Soc., 1965, sect. 3, vol. 2, chapt. 69, p. 1565–1583.
 83. Collins, J. C., T. R. Harris, C. R. Mckeen, and K. L. Brigham. Increased lung lymph transport without heart failure after coronary ligation in sheep. J. Appl Physiol: Respirat. Environ. Exercise Physiol. 47: 792–797, 1979.
 84. Comper, W. D., and T. C. Laurent. Physiological function of connective tissue polysaccharides. Physiol Rev. 58: 255–315, 1978.
 85. Cottrell, T. S., O. R. Levine, R. M. Senior, J. Wiener, D. Spiro, and A. P. Fishman. Electron microscopic alterations at the alveolar level in pulmonary edema. Circ. Res. 21: 783–797, 1967.
 86. Courtice, F., and P. Korner. Effect of anoxia on pulmonary oedema produced by massive intravenous infusions. Aust. J. Exp. Biol. Med. Sci. 30: 511–526, 1952.
 87. Cowan, G. S. M., Jr., N. C. Staub, and L. H. Edmunds Jr.. Changes in the fluid compartments and dry weights of reim‐planted dog lungs. J. Appl Physiol. 40: 962–970, 1976.
 88. Craddock, P. R., J. Fehr, K. L. Brigham, R. S. Kronenberg, and H. S. Jacob. Complement and leukocyte‐mediated pulmonary dysfunction in hemodialysis. N. Engl. J. Med. 296: 769–774, 1977.
 89. Crapo, J. D., B. E. Barry, H. A. Foscue, and J. Shelburne. Structural and biochemical changes in rat lungs occurring during exposures to lethal and adaptive doses of oxygen. Am. Rev. Respir. Dis. 122: 123–143, 1980.
 90. Crapo, J. D., M. Peters‐Golden, J. Marsh‐Salin, and J. S. Shelburne. Pathologic changes in the lungs of oxygen‐adapted rats: a morphometric analysis. Lab. Invest. 39: 640–653, 1978.
 91. Crapo, J. D., K. Sjostrom, and R. T. Drew. Tolerance and cross‐tolerance using NO2 and O2. I. Toxicology and biochemistry. J. Appl Physiol.: Respirat. Environ. Exercise Physiol 44: 364–369, 1978.
 92. Cunningham, A. L., and J. V. Hurley. Alpha‐naphthylthiourea‐induced pulmonary oedema in the rat: a topographical and electron‐microscope study. J. Pathol. 106: 25–35, 1972.
 93. Curran, P. F., and J. R. MacIntosh. A model system for biological water transport. Nature London 193: 347–348, 1962.
 94. D'Angelo, E., G. Miserocchi, S. Michelini, and E. Agostoni. Local transpulmonary pressure after lobar occlusion. Respir. Physiol. 18: 328–337, 1973.
 95. Dawson, C. A., D. J. Grimm, and J. H. Linehan. Effects of lung inflation on longitudinal distribution of pulmonary vascular resistance. J. Appl Physiol: Respirat. Environ. Exercise Physiol 43: 1089–1092, 1977.
 96. Dawson, C. A., D. J. Grimm, and J. H. Linehan. Influence of hypoxia on the longitudinal distribution of pulmonary vascular resistance. J. Appl. Physiol: Respirat. Environ. Exercise Physiol 44: 493–498, 1978.
 97. Dawson, C. A., R. L. Jones, and L. H. Hamilton. Hemodynamic responses of isolated cat lungs during forward and retrograde perfusion. J. Appl. Physiol 35: 95–102, 1973.
 98. Dawson, C. A., J. H. Linehan, and D. A. Rickaby. Pulmonary microcirculatory hemodynamics. Ann. NY Acad. Sci. 384: 90–106, 1982.
 99. Deen, W. M., and B. Satvat. Determinants of the glomerular filtration of proteins. Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol 10): F162–F170, 1981.
 100. DeFouw, D. O. Morphologic study of the alveolar septa in normal and edematous isolated dog lungs fixed by vascular perfusion. Lab. Invest. 42: 413–419, 1980.
 101. DeFouw, D. O., and P. D. Berendsen. Morphological changes in isolated perfused dog lungs after acute hydrostatic edema. Circ. Res. 43: 72–82, 1978.
 102. Del Maestro, R. F., H. H. Thaw, J. Bjork, M. Planker, and K. E. Arfors. Free radicals as mediators of tissue injury. Acta Physiol Scand. Suppl. 42: 43–58, 1980.
 103. Demling, R. H., G. Niehaus, A. Perea, and J. A. Will. Effect of burn‐induced hypoproteinemia on pulmonary transvascular fluid filtration rate. Surgery 85: 339–343, 1979.
 104. Demling, R. H., G. Niehaus, and J. A. Will. Pulmonary microvascular response to hemorrhagic shock, resuscitation, and recovery. J. Appl. Physiol: Respirat. Environ. Exercise Physiol. 46: 498–503, 1979.
 105. Demling, R. H., R. Proctor, N. Duy, and J. R. Starling. Lung lysosomal enzyme release during hemorrhagic shock and endotoxemia. J. Surg. Res. 28: 269–279, 1980.
 106. Demling, R. H., S. L. Selinger, R. D. Bland, and N. C. Staub. Effect of acute hemorrhagic shock on pulmonary microvascular fluid filtration and protein permeability in sheep. Surgery 77: 512–519, 1975.
 107. Demling, R. H., M. Smith, R. Gunther, J. T. Flynn, and M. H. Gee. Pulmonary injury and prostaglandin production during endotoxemia in conscious sheep. Am. J. Physiol. 240 (Heart Circ. Physiol 9): H348–H353, 1981.
 108. Demling, R. H., N. C. Staub, and L. H. Edmunds Jr.. Effect of end‐expiratory airway pressure on accumulation of extravascular lung water. J. Appl. Physiol. 38: 907–912, 1975.
 109. Derks, C. M., and D. Jacobvitz‐Derks. Embolic pneumopathy induced by oleic acid: a systematic morphological study. Am. J. Pathol 87: 143–158, 1977.
 110. Dikshit, K., J. K. Vyden, J. S. Forrester, K. Chatterjee, R. Prakash, and H. J. C. Swan. Renal and extrarenal hemodynamic effects of furosemide in congestive heart failure after acute myocardial infarction. N. Engl. J. Med. 288: 1087–1090, 1973.
 111. Dikshith, T. S., K. K. Datta, R. B. Raizada, and H. S. Kushwah. Effects of paraquat dichloride in male rabbits. Indian J. Exp. Biol. 17: 926–928, 1979.
 112. Drake, R. E. Changes in Starling Forces During the Formation of Pulmonary Edema. University: Univ. of Mississippi, 1975. Dissertation.
 113. Drake, R., T. Adair, D. Traber, and J. Gabel. Contamination of caudal mediastinal node efferent lymph in sheep. Am. J. Physiol. 241 (Heart Circ. Physiol. 10): H354–H357, 1981.
 114. Drake, R. E., and E. Davis. A corrected equation for the calculation of reflection coefficients (Letter to the editor). Microvasc. Res. 15: 259, 1978.
 115. Drake, R., K. A. Gaar, and A. E. Taylor. Estimation of the filtration coefficient of pulmonary exchange vessels. Am. J. Physiol. 234 (Heart Circ. Physiol. 3): H266–H274, 1978.
 116. Drake, R. E., and J. C. Gabel. Effect of histamine and alloxan on canine pulmonary vascular permeability. Am. J. Physiol. 239 (Heart Circ. Physiol. 8): H96–H100, 1980.
 117. Drake, R. E., J. H. Smith, and J. C. Gabel. Estimation of the filtration coefficient in intact dog lungs. Am. J. Physiol. 238 (Heart Circ. Physiol. 7): H430–H438, 1980.
 118. Drake, R. E., and A. E. Taylor. Tissue and capillary force changes during the formation of intra‐alveolar edema. Progress in Lymphology, edited by R. C. Mayall and M. H. Witte. New York: Plenum, 1977, p. 13–17.
 119. Drinker, C. K. Pulmonary Edema and Inflammation. Cambridge, UK: Cambridge Univ. Press, 1945.
 120. Drinker, C. K., and E. Hardenbergh. Acute effects upon the lungs of dogs of large intravenous doses of alpha‐naphthyl thiourea (ANTU). Am. J. Physiol. 156: 35–43, 1949.
 121. Dumont, A. E., R. H. Clauss, G. E. Reed, and D. A. Tice. Lymph drainage in patients with congestive heart failure: comparison with findings in hepatic cirrhosis. N. Engl. J. Med. 269: 949–952, 1963.
 122. Egan, E. A. Response of alveolar epithelial solute permeability to changes in lung inflation. J. Appl Physiol: Respirat. Environ. Exercise Physiol. 49: 1032–1036, 1980.
 123. Egan, E. A. Lung inflation, lung solute permeability, and alveolar edema. J. Appl. Physiol: Respirat. Environ. Exercise Physiol 53: 121–125, 1982.
 124. Egan, E. A., R. M. Nelson, and I. H. Gessner. Solute permeability of the alveolar epithelium in acute hemodynamic pulmonary edema in dogs. Am. J. Physiol. 233 (Heart Circ. Physiol 2): H80–H86, 1977.
 125. Ehrhart, I. C., and W. F. Hofman. Oleic acid dose‐related edema in isolated canine lung perfused at constant pressure. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 50: 1115–1120, 1981.
 126. Ehrlich, K., P. Seethanathan, and P. Taylor. Isolation of proteoglycans from lung tissue (Abstract). Federation Proc. 38: 653, 1979.
 127. Enjeti, S., P. B. Terry, H. A. Menkes, and R. J. Traystman. Mechanical factors and the regulation of perfusion through atelectatic lung in pigs. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 52: 647–654, 1982.
 128. Eraslan, S., M. D. Turner, and J. D. Hardy. Lymphatic regeneration following lung reimplantation in dogs. Surgery 56: 970–973, 1964.
 129. Erdmann, A. J., T. R. Vaughan, K. L. Brigham, W. C. Woolverton, and N. C. Staub. Effect of increased vascular pressure on lung fluid balance in unanesthetized sheep. Circ. Res. 37: 271–284, 1975.
 130. Euler, U. S. von, and L. Liljestrand. Observations on the pulmonary arterial blood pressures in the cat. Acta Physiol. Scand. 12: 301–320, 1946.
 131. Even, T., J. F. Boisvieux, and A. Lockhard. Biophysical introduction to pulmonary edema. Bull. Physiol‐Pathol. Respir. 7: 1019–1073, 1971.
 132. Fairman, R. P., F. L. Glauser, and R. Falls. Increases in lung lymph and albumin clearance with ethchlorvynol. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 50: 1151–1155, 1981.
 133. Fein, A., R. F. Grossman, J. G. Jones, E. Overland, L. Pitts, J. F. Murray, and N. C. Staub. The value of edema fluid protein measurement in patients with pulmonary edema. Am. J. Med. 67: 32–38, 1979.
 134. Fishman, A. P. Respiratory gases in the regulation of the pulmonary circulation. Physiol. Rev. 41: 214–280, 1961.
 135. Fishman, A. P. Pulmonary edema. The water‐exchanging function of the lung. Circulation 46: 390–408, 1972.
 136. Fishman, A. P. Shock lung: a distinctive nonentity. Circulation 17: 921–923, 1973.
 137. Fishman, A. P. Interstitial pulmonary edema. Acta Cardiol. 19: 177–180, 1974.
 138. Fishman, A. P. (editor). Pulmonary Diseases and Disorders. New York: McGraw‐Hill, 1980.
 139. Fishman, A. P., and G. G. Pietra. Hemodynamic pulmonary edema. In: Pulmonary Edema, edited by A. P. Fishman and E. M. Renkin. Bethesda, MD: Am. Physiol. Soc., 1979, chapt. 6, p. 79–96.
 140. Fishman, A. P., and G. G. Pietra. Stretched pores, blast injury and neurohemodynamic pulmonary edema. Physiologist 23: 53–56, 1980.
 141. Flick, M. R., J. M. Hoeffel, and N. C. Staub. Superoxide dismutase with heparin prevents increased lung vascular permeability during air emboli in sheep. J. Appl. Physiol: Respirat. Environ. Exercise Physiol. 55: 1284–1291, 1983.
 142. Flick, M. R., A. Perel, W. Kageler, and N. C. Staub. Regional extravascular lung water in normal sheep. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 46: 932–936, 1979.
 143. Flick, M. R., A. Perel, and N. C. Staub. Leukocytes are required for increased lung microvascular permeability after microembolization in sheep. Circ. Res. 48: 344–352, 1981.
 144. Folkow, B., and E. Neil. Circulation. New York: Oxford Univ. Press, 1971, p. 399–416.
 145. Fountain, S. W., B. A. Martin, C. E. Musclow, and J. C. Cooper. Pulmonary leukostasis and its relationship to pulmonary dysfunction in sheep and rabbits. Circ. Res. 46: 175–180, 1980.
 146. Fox, R. B., J. R. Hoidal, D. N. Brown, and J. E. Repine. Pulmonary inflammation due to oxygen toxicity: involvement of chemotactic factors and polymorphonuclear leukocytes. Am. Rev. Respir. Dis. 123: 521–523, 1981.
 147. Frank, L., and R. J. Roberts. Endotoxin protection against oxygen‐induced acute and chronic lung injury. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 47: 577–581, 1979.
 148. Frank, L., J. Summerville, and D. Massaro. Protection from oxygen toxicity with endotoxin. Role of the endogenous antioxidant enzymes of the lung. J. Clin. Invest. 65: 1104–1110, 1980.
 149. Friederici, H. H. R. Freeze‐etch observations on interstitial connective tissue. J. Ultrastruct. Res. 24: 269–285, 1968.
 150. Frøkjaer‐Jensen, J. Three‐dimensional organization of plasmalemmal vesicles in endothelial cells. An analysis by serial sectioning of frog mesenteric capillaries. J. Ultrastruct. Res. 73: 9–20, 1980.
 151. Fulton, R. L., and C. E. Jones. The cause of post‐traumatic pulmonary insufficiency in man. Surg. Gynecol. Obstet. 140: 176–186, 1975.
 152. Fung, Y. C., and S. S. Sobin. Theory of sheet flow in lung alveoli. J. Appl. Physiol. 26: 472–488, 1969.
 153. Gaar, K. A., Jr., A. E. Taylor, L. J. Owens, and A. C. Guyton. Effect of capillary pressure and plasma protein on development of pulmonary edema. Am. J. Physiol. 213: 79–82, 1967.
 154. Gaar, K. A., Jr., A. E. Taylor, L. J. Owens, and A. C. Guyton. Pulmonary capillary pressure and filtration coefficient in the isolated perfused lung. Am. J. Physiol. 213: 910–914, 1967.
 155. Gabel, J. C., and R. E. Drake. Pulmonary capillary pressure in intact dog lungs. Am. J. Physiol. 235 (Heart Circ. Physiol. 4): H569–H573, 1978.
 156. Gabel, J. C., R. E. Drake, J. F. Arens, and A. E. Taylor. Unchanged pulmonary capillary filtration coefficients after Escherichia coli endotoxin infusion. J. Surg. Res. 25: 97–104, 1978.
 157. Gardiner, T. H. Quantitative changes in permeability of rat lung epithelium in lung edema. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 44: 576–580, 1978.
 158. Gee, M. H., and A. M. Havill. The relationship between pulmonary perivascular cuff fluid and lung lymph in dogs with edema. Microvasc. Res. 19: 209–216, 1980.
 159. Gee, M. H., and J. A. Spath Jr.. The dynamics of the lung fluid filtration systems in dogs with edema. Circ. Res. 46: 796–801, 1980.
 160. Gee, M. H., and N. C. Staub. Role of bulk fluid flow in protein permeability of the dog lung alveolar membrane. J. Appl. Physiol: Respirat. Environ. Exercise Physiol. 42: 144–149, 1977.
 161. Gee, M. H., and D. O. Williams. Effect of lung inflation on perivascular cuff fluid volume in isolated dog lung lobes. Microvasc. Res. 17: 192–201, 1979.
 162. Gehr, P., and E. R. Weibel. Morphometric estimation of regional differences in the dog lung. J. Appl. Physiol. 37: 648–653, 1974.
 163. Gil, J. Improvements in demonstration of lining layer of lung alveoli by electron microscopy. Respir. Physiol. 8: 13–36, 1969.
 164. Gil, J. Influence of surface forces on pulmonary circulation. In: Pulmonary Edema, edited by A. P. Fishman and E. M. Renkin. Bethesda, MD: Am. Physiol. Soc., 1979, chapt. 4, p. 53–64.
 165. Gil, J., H. Bachofen, P. Gehr, and E. R. Weibel. Alveolar volume‐surface area relation in air‐ and saline‐filled lungs fixed by vascular perfusion. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol 47: 990–1001, 1979.
 166. Gil, J., and E. R. Weibel. Morphologic study of pressure‐volume hysteresis in rat lungs fixed by vascular perfusion. Respir. Physiol. 15: 190–213, 1972.
 167. Gilbert, R. D., J. R. Hessler, D. V. Eitzman, and S. Cassin. Site of pulmonary vascular resistance in fetal goats. J. Appl Physiol 32: 47–53, 1972.
 168. Glauser, F. L., W. R. Smith, A. Caldwell, M. Hoshiko, G. S. Dolan, H. Baer, and N. Olsher. Ethchlorvynol (Placidyl)‐induced pulmonary edema. Ann. Intern. Med. 84: 46–48, 1976.
 169. Glazier, J. B., J. M. B. Hughes, J. E. Maloney, and J. B. West. Vertical gradient of alveolar size in lungs of dogs frozen intact. J. Appl. Physiol. 23: 694–705, 1967.
 170. Glazier, J. B., J. M. B. Hughes, J. E. Maloney, and J. B. West. Measurements of capillary dimensions and blood volume in rapidly frozen lungs. J. Appl. Physiol. 26: 65–76, 1969.
 171. Goetzman, B. W., and M. B. Visscher. The effects of alloxan and histamine on the permeability of the alveolar capillary barrier to albumin. J. Physiol. London 204: 51–61, 1969.
 172. Goldberg, H. S. Effect of lung volume history on rate of edema formation in isolated canine lobe. J. Appl. Physiol: Respirat. Environ. Exercise Physiol. 45: 880–884, 1978.
 173. Goldberg, H. S. Pulmonary interstitial compliance and microvascular filtration coefficient. Am. J. Physiol. 239 (Heart Circ. Physiol. 8): H189–H198, 1980.
 174. Goldberg, H. S., W. Mitzner, and G. Batra. Effect of transpulmonary and vascular pressures on rate of pulmonary edema formation. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 43: 14–19, 1977.
 175. Gorin, A. B., and P. A. Stewart. Differential permeability of endothelial and epithelial barriers to albumin flux. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 47: 1315–1324, 1979.
 176. Gorin, A. B., W. J. Weidner, R. H. Demling, and N. C. Staub. Noninvasive measurement of pulmonary transvascular protein flux in sheep. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 45: 225–233, 1978.
 177. Goshy, M., S. J. Lai‐Fook, and R. E. Hyatt. Perivascular pressure measurements by wick‐catheter technique in isolated dog lobes. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 46: 950–955, 1979.
 178. Granger, D. N., R. E. Parker, E. W. Quillen, R. A. Brace, and A. E. Taylor. Lymph flow transients. In: Lymphology, edited by P. Malek, V. Bartos, H. Weissleder, and M. H. Witte. Stuttgart: Thieme, 1979, p. 61–64.
 179. Granger, D. N., G. Rutili, and J. M. McCord. Superoxide radicals in feline intestinal ischemia. Gastroenterology 81: 22–29, 1981.
 180. Granger, D. N., and A. E. Taylor. Permeability of intestinal capillaries to endogenous macromolecules. Am. J. Physiol. 238 (Heart Circ. Physiol. 7): H457–H464, 1980.
 181. Granger, H. J. Role of the interstitial matrix and lymphatic pump in regulation of transcapillary fluid balance. Microvasc. Res. 18: 209–216, 1979.
 182. Granger, H. J. Physicochemical properties of the extracellular matrix. In: Tissue Fluid Pressure and Composition, edited by A. Hargens. Baltimore, MD: Williams & Wilkins, 1981, chapt. 5, p. 43–62.
 183. Granger, H. J., and A. P. Shepherd. Dynamics and control of the microcirculation. Adv. Biomed. Eng. 7: 1–63, 1979.
 184. Granger, H. J., and A. E. Taylor. Permeability of connective tissue linings isolated from implanted capsules. Circ. Res. 36: 222–228, 1975.
 185. Grauer, S., B. T. Peterson, M. Kuenzig, R. W. Hyde, and S. I. Schwartz. Effect of lung denervation on development of pulmonary edema. Surgery 89: 617–621, 1981.
 186. Greene, D. G. Pulmonary edema. In: Handbook of Physiology. Respiration, edited by W. O. Fenn and H. Rahn. Washington, DC: Am. Physiol. Soc., 1965, sect. 3, vol. II, chapt. 70, p. 1585–1600.
 187. Greenfield, L. J., R. P. Singleton, D. R. McCaffree, and J. J. Coalson. Pulmonary effects of experimental graded aspiration of hydrochloric acid. Ann. Surg. 170: 74–86, 1969.
 188. Grega, G. J., R. M. Daugherty, Jr., J. B. Scott, D. P. Radawski, and F. J. Haddy. Effect of pressure, flow and vasoactive agents on vascular resistance and capillary filtration in canine fetal, newborn and adult lung. Microvasc. Res. 3: 297–307, 1971.
 189. Griffith, B. P., R. G. Carroll, R. L. Hardesty, R. L. Peel, and H. S. Borovetz. Selected lobar injury after infusion of oleic acid. J. Appl. Physiol: Respirat. Environ. Exercise Physiol. 47: 706–711, 1979.
 190. Grimbert, F. A., J. C. Parker, and A. E. Taylor. Increased pulmonary vascular permeability following acid aspiration. J. Appl. Physiol: Respirat. Environ. Exercise Physiol. 51: 335–345, 1981.
 191. Gump, F. E. Lung fluid and solute compartments. In: Lung Biology in Health and Disease. Lung Water and Solute Exchange, edited by N. C. Staub. New York: Dekker, 1978, vol. 7, chapt. 4, p. 75–98.
 192. Guyton, A. C. A concept of negative interstitial pressure based on pressures in implanted perforated capsules. Circ. fies. 12: 399–414, 1963.
 193. Guyton, A. C. Interstitial fluid pressure. II. Pressure‐volume curves of interstitial space. Circ. fies. 16: 452–460, 1965.
 194. Guyton, A. C., B. J. Barber, and D. S. Moffatt. Theory of interstitial pressures. In: Tissue Fluid Pressure and Composition, edited by A. Hargens. Baltimore, MD: Williams & Wilkins, 1981, chapt. 2, p. 11–20.
 195. Guyton, A. C., H. J. Granger, and A. E. Taylor. Interstitial fluid pressure. Physiol. Rev. 51: 527–563, 1971.
 196. Guyton, A. C., and A. E. Lindsey. Effect of elevated left atrial pressure and decreased plasma protein concentration on the development of pulmonary edema. Circ. Res. 7: 649–657, 1959.
 197. Guyton, A. C., K. Scheel, and D. Murphree. Interstitial fluid pressure. III. Its effect on resistance to tissue fluid mobility. Circ. Res. 19: 412–419, 1966.
 198. Guyton, A. C., A. E. Taylor, and R. A. Brace. A synthesis of interstitial fluid regulation and lymph flow. Federation Proc. 35: 1881–1885, 1976.
 199. Guyton, A. C., A. E. Taylor, R. E. Drake, and J. C. Parker. Dynamics of subatmospheric pressure in the pulmonary interstitial fluid. In: Lung Liquids. Amsterdam: Excerpta Med., 1976, p. 77–100. (Ciba Found. Symp. 38.)
 200. Guyton, A. C., A. E. Taylor, and H. J. Granger. Analysis of types of pressure in the pulmonary spaces: interstitial fluid pressure, solid tissue pressure, and total tissue pressure. In: Central Hemodynamics and Gas Exchange, edited by C. Guinini. Basel: Karger, 1971, p. 41–55.
 201. Guyton, A. C., A. E. Taylor, and H. J. Granger. Circulatory Physiology. Dynamics and Control of the Body Fluids. Philadelphia, PA: Saunders, 1975, vol. II, p. 149–193.
 202. Hackett, P. H., C. E. Creagh, R. F. Grover, B. Honigman, C. S. Houston, J. T. Reeves, A. M. Sophocles, and M. Van Hardenbroek. High‐altitude pulmonary edema in persons without the right pulmonary artery. N. Engl. J. Med. 302: 1070–1073, 1980.
 203. Hakim, T. S., C. A. Dawson, and J. H. Linehan. Hemodynamic responses of dog lung lobe to lobar venous occlusion. J. Appl. Physiol: Respirat. Environ. Exercise Physiol 47: 145–152, 1979.
 204. Hakim, T. S., R. P. Michel, and H. K. Chang. Partitioning of pulmonary vascular resistance in dogs by arterial and venous occlusion. J. Appl Physiol: Respirat. Environ. Exercise Physiol. 52: 710–715, 1982.
 205. Hakim, T. S., F. L. Minnear, H. van der Zee, P. S. Barie, and A. B. Malik. Adrenoceptor control of lung fluid and protein exchange. J. Appl. Physiol: Respirat. Environ. Exercise Physiol. 51: 68–72, 1981.
 206. Hakim, T. S., H. van der Zee, and A. B. Malik. Effects of sympathetic nerve stimulation on lung fluid and protein exchange. J. Appl. Physiol: Respirat. Environ. Exercise Physiol. 47: 1025–1030, 1979.
 207. Hales, C. A., D. J. Kanarek, B. Ahluwalia, A. Latty, J. Erdmann, S. Javaheri, and H. Kazemi. Regional edema formation in isolated perfused dog lungs. Circ. Res. 48: 121–127, 1981.
 208. Hales, C. A., L. Sonne, M. Peterson, D. Kong, M. Miller, and W. D. Watkins. Role of thromboxane and prostacyclin in pulmonary vasomotor changes after endotoxin in dogs. J. Clin. Invest. 68: 497–505, 1981.
 209. Hammel, H. T., and P. F. Scholander. Osmosis and Tensile Solvent. New York: Springer‐Verlag, 1976.
 210. Hammerschmidt, D. E. Of lungs and leukocytes. JAMA 244: 2199–2200, 1980.
 211. Hance, A. I., and R. G. Crystal. The connective tissue of lung. Am. Rev. Respir. Dis. 112: 657–720, 1975.
 212. Hargens, A. R. Interstitial osmotic pressures associated with Donnan equilibria. In: Tissue Fluid Pressure and Composition, edited by A. R. Hargens. Baltimore, MD: Williams & Wilkins, 1981, chapt. 8, p. 77–86.
 213. Harris, T. R., and K. L. Brigham. The exchange of small molecules as a measure of normal and abnormal lung microvascular function. Ann. NY Acad. Sci. 384: 417–434, 1982.
 214. Harris, T. R., and R. J. Roselli. A theoretical model of protein, fluid, and small molecule transport in the lung. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 50: 1–14, 1981.
 215. Harrison, L. H., J. J. Beller, L. B. Hinshaw, J. J. Coalson, and L. J. Greenfield. Effects of endotoxin on pulmonary capillary permeability, ultrastructure and surfactant. Surg. Gynecol. Obstet. 129: 723–733, 1969.
 216. Hauge, A., P. K. M. Lunde, and B. A. Waaler. Bradykinin and pulmonary vascular permeability in isolated blood perfused rabbit lungs. In: Hypotensive Peptides, edited by E. G. Erdos, N. Bach, F. Sicuters, and A. F. Wilde. New York: Springer, 1966, p. 385–395.
 217. Hauge, A., and G. Nicolaysen. Studies on transvascular fluid balance and capillary permeability in isolated lungs. Bull. Physio‐Pathol. Respir. 7: 1197–1216, 1971.
 218. Hayatdavoudi, G., J. J. O'Neil, B. E. Barry, B. A. Freeman, and J. D. Crapo. Pulmonary injury in rats following continuous exposure to 60% O2 for 7 days. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 51: 1220–1231, 1981.
 219. Heflin, C., and K. L. Brigham. Prevention by granulocyte depletion of increased vascular permeability of sheep lung following endotoxemia. J. Clin. Invest. 68: 1253–1260, 1981.
 220. Hellems, H. K., F. W. Haynes, L. Dexter, and T. D. Kinney. Pulmonary capillary pressure in animals estimated by venous and arterial catherization. Am. J. Physiol. 155: 98–105, 1948.
 221. Henson, P. M., K. McCarthy, G. L. Larsen, R. O. Webster, P. C. Giclas, R. B. Dreisin, T. E. King, and J. O. Shaw. Complement fragments, alveolar macrophages, and alveolitis. Am. J. Pathol. 97: 93–110, 1979.
 222. Hida, W., H. Inoue, and J. Hildebrandt. Lobe weight gain and vascular, alveolar, and peribronchial interstitial fluid pressures. J. Appl. Physiol: Respirat. Environ. Exercise Physiol. 52: 173–183, 1982.
 223. Hill, S. L., V. B. Elings, and F. R. Lewis. Changes in lung water and capillary permeability following sepsis and fluid overload. J. Surg. Res. 28: 140–150, 1980.
 224. Hogg, J. C. Effect of pulmonary edema on distribution of blood flow in the lung. In: Lung Biology in Health and Disease. Lung Water and Solute Exchange, edited by N. C. Staub. New York: Dekker, 1978, vol. 7, chapt. 7, p. 167–182.
 225. Hogg, J. C., and S. Nepszy. Regional lung volume and pleural pressure gradient estimated from lung density in dogs. J. Appl. Physiol. 27: 198–203, 1969.
 226. Holloway, H., M. Perry, J. Downey, J. Parker, and A. Taylor. Estimation of effective pulmonary capillary pressure in intact lungs. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 54: 846–851, 1983.
 227. Hopewell, P. C., and J. F. Murray. Effects of continuous positive‐pressure ventilation in experimental pulmonary edema. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 40: 568–574, 1976.
 228. Horovitz, J. H., and C. J. Carrico. Lung colloid permeability in hemorrhagic shock. Surg. Forum 23: 6–8, 1972.
 229. Horwitz, A. L., and R. G. Crystal. Content and synthesis of glycosaminoglycans in the developing lung. J. Clin. Invest. 56: 1312–1318, 1975.
 230. Hovig, T., A. Nicolaysen, and G. Nicolaysen. Ultrastructural studies of the alveolar‐capillary barrier in isolated plasma‐perfused rabbit lung. Effects of EDTA and increased pressure. Acta Physiol. Scand. 82: 417–432, 1971.
 231. Howell, J. B. L., S. Permutt, D. F. Proctor, and R. L. Riley. Effect of inflation of the lung on different parts of pulmonary vascular bed. J. Appl. Physiol. 16: 71–76, 1961.
 232. Hughes, J. M. B. Pulmonary interstitial pressure. Bull. Physio‐Pathol. Respir. 7: 1095–1123, 1971.
 233. Hughes, J. M. B. Pulmonary circulation and fluid balance. In: Respiratory Physiology II, edited by J. G. Widdicombe. Baltimore, MD: University Park, 1977, vol. 14, p. 135–184. (Int. Rev. Physiol. Ser.)
 234. Hughes, J. M. B., J. B. Glazier, J. E. Maloney, and J. B. West. Effect of extra‐alveolar vessels on distribution of blood flow in the dog lung. J. Appl. Physiol. 25: 701–712, 1968.
 235. Hultgren, H. N. Furosemide for high altitude pulmonary edema. JAMA 234: 589–590, 1975.
 236. Hultgren, H. N., R. F. Grover, and L. H. Hartley. Abnormal circulatory responses to high altitude in subjects with a previous history of high‐altitude pulmonary edema. Circulation 44: 759–770, 1971.
 237. Hultgren, H. N., and E. A. Marticorena. High altitude pulmonary edema. Epidemiologic observations in Peru. Chest 74: 372–376, 1978.
 238. Hurley, J. V. Current views on the mechanisms of pulmonary oedema. J. Pathol. 125: 59–79, 1978.
 239. Hyman, A. L., and P. J. Kadowitz. Effects of alveolar and perfusion hypoxia and hypercapnia on pulmonary vascular resistance in the lamb. Am. J. Physiol. 228: 397–403, 1975.
 240. Iliff, L. D. Extra‐alveolar vessels and edema development in excised dog lungs. Circ. Res. 28: 524–532, 1971.
 241. Iliff, L. D., R. E. Greene, and J. M. B. Hughes. Effect of interstitial edema on distribution of ventilation and perfusion in isolated lung. J. Appl. Physiol. 33: 462–467, 1972.
 242. Inoue, H., C. Inoue, and J. Hildebrandt. Interstitial fluid pressure (Px(f)) gradients along bronchi in excised dog lobes (Abstract). Federation Proc. 38: 1265, 1979.
 243. Inoue, H., C. Inoue, and J. Hildebrandt. Vascular and airway pressures, and interstitial edema, affect peribronchial fluid pressure. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 48: 177–185, 1980.
 244. Inoue, S., R. P. Michel, and J. C. Hogg. Zonulae occludentes in alveolar epithelium and capillary endothelium of dog lungs studied with the freeze‐fracture technique. J. Ultrastruct. Res. 56: 215–225, 1976.
 245. Johnson, A., and A. B. Malik. Effects of different‐size microemboli on lung fluid and protein exchange. J. Appl. Physiol: Respirat. Environ. Exercise Physiol. 51: 461–464, 1981.
 246. Johnson, A., and A. B. Malik. Pulmonary edema after glass bead microembolization: protective effect of granulocytopenia. J. Appl. Physiol: Respirat. Environ. Exercise Physiol. 52: 155–161, 1982.
 247. Johnson, A., and A. B. Malik. Effect of defibrinogenation on lung fluid and protein exchange after glass bead embolization. J. Appl. Physiol: Respirat. Environ. Exercise Physiol. 53: 895–900, 1982.
 248. Johnson, A., M. V. Tahamont, J. E. Kaplan, and A. B. Malik. Lung fluid balance after pulmonary embolization: effects of thrombin vs. fibrin aggregates. J. Appl. Physiol: Respirat. Environ. Exercise Physiol. 52: 1565–1570, 1982.
 249. Johnson, J. A. Capillary permeability, extracellular space estimation, and lymph flow. Am. J. Physiol. 211: 1261–1263, 1966.
 250. Johnson, K. J., J. C. Fantone III, J. Kaplan, and P. A. Ward. In vivo damage of rat lungs by oxygen metabolites. J. Clin. Invest. 67: 983–993, 1981.
 251. Jones, J. G., M. Berry, G. H. Hulands, J. C. W. Crawley. The time course and degree of change in alveolar capillary membrane permeability induced by aspiration of hydrochloric acid and hypotonic saline. Am. Rev. Respir. Dis. 118: 1007–1013, 1978.
 252. Jones, J. G., R. F. Grossman, M. Berry, G. Slavin, G. H. Hulands, and B. Minty. Alveolar‐capillary membrane permeability. Am. Rev. Respir. Dis. 120: 399–410, 1979.
 253. Jones, J. G., P. Lawler, J. C. W. Lawler, B. D. Minty, G. Hulands, and N. Veall. Increased alveolar epithelial permeability in cigarette smokers. Lancet 1: 66–67, 1980.
 254. Jones, T. A., M. I. Townsley, and W. J. Weidner. Effects of intracranial and left atrial hypertension on lung fluid balance in sheep. J. Appl. Physiol: Respirat. Environ. Exercise Physiol. 52: 1324–1329, 1982.
 255. Kadowitz, P. J., C. A. Gruetter, E. W. Spannhake, and A. L. Hyman. Pulmonary vascular responses to prostaglandins. Federation Proc. 40: 1991–1996, 1981.
 256. Kaplan, H. P., F. R. Robinson, Y. Kapanci, and E. R. Weibel. Pathogenesis and reversibility of the pulmonary lesions of oxygen toxicity in monkeys. Lab. Invest. 20: 44–100, 1969.
 257. Karnovsky, M. J. The ultrastructural basis of transcapillary exchange. J. Gen. Physiol 52: 641–696, 1968.
 258. Katchalsky, A., and P. F. Curran. Nonequilibrium Thermodynamics in Biophysics. Cambridge, MA: Harvard Univ. Press, 1965, chapt. 10, p. 113–132.
 259. Kato, M., and N. C. Staub. Response of small pulmonary arteries to unilobar hypoxia and hypercapnia. Circ. Res. 19: 426–440, 1966.
 260. Katz, S., A. Aberman, U. Frand, I. M. Stein, and M. Fulop. Heroin pulmonary edema. Evidence for increased pulmonary capillary permeability. Am. Rev. Respir. Dis. 106: 472–474, 1972.
 261. Kedem, O., and A. Katchalsky. Thermodynamic analysis of the permeability of biological membranes to non‐electrolytes. Biochim. Biophys. Acta 27: 229–246, 1958.
 262. Kern, D. F. Pulmonary Capillary Permeabilities and Reflection Coefficients. Minneapolis: Univ. of Minnesota, 1981. Thesis.
 263. Kim, K. J., A. M. Critz, and E. E. Crandall. Transport of water and solutes across sheep visceral pleura. Am. Rev. Respir. Dis. 120: 883–892, 1979.
 264. Kimura, T., J. K. Toung, S. Margolis, S. Permutt, and J. L. Cameron. Respiratory failure in acute pancreatitis: a possible role for triglycerides. Ann. Surg. 189: 509–514, 1979.
 265. Kinnebrew, P. S., J. C. Parker, H. J. Falgout, and A. E. Taylor. Pulmonary microvascular permeability following E. coli endotoxin and hemorrhage. J. Appl. Physiol: Respirat. Environ. Exercise Physiol. 52: 403–409, 1982.
 266. Kistler, G. S., P. R. B. Caldwell, and E. R. Weibel. Development of fine structural damage to alveolar and capillary lining cells in oxygen‐poisoned rat lungs. J. Cell Biol. 32: 305–328, 1967.
 267. Kleiner, J. P., and W. P. Nelson. High altitude pulmonary edema—a rare disease? JAMA 234: 491–495, 1975.
 268. Kohler, J. P., C. L. Rice, G. S. Moss, and J. P. Szidon. Alveolar pressure in fluid filled occluded lung segments (Abstract). Federation Proc. 40: 448, 1981.
 269. Kopaniak, M. M., A. C. Issekutz, and H. Z. Movat. Kinetics of acute inflammation induced by E. coli in rabbits. Am. J. Pathol. 98: 485–498, 1980.
 270. Krahl, V. E. Anatomy of the mammalian lung. In: Handbook of Physiology. Respiration, edited by W. O. Fenn and H. Rahn. Washington, DC: Am. Physiol. Soc., 1964, sect. 3, vol. I, chapt. 6, p. 213–284.
 271. Kramer, G., B. A. Harms, R. A. Gunther, E. M. Renkin, and R. H. Demling. The effects of hypoproteinemia on blood‐to‐lymph fluid transport in sheep lung. Circ. Res. 49: 1173–1180, 1981.
 272. Krus, S., B. Maminsk, and J. Nielubowicz. Studies on acute lung lymphatic edema. Pol. Med. Sci. Hist. Bull. 18: 139–147, 1975.
 273. Kuramoto, K., and S. Rodbard. Effects of blood flow and left atrial pressure on pulmonary venous resistance. Circ. Res. 11: 240–246, 1962.
 274. Kwatra, S. K., and R. Viswanathan. Effect of furosemide on altitude tolerance in experimental animals. Respiration 37: 109–113, 1979.
 275. Lahnborg, G., S. Nylen, and C. Sylven. Induced fat embolism in rabbits: effects of defibrinogenation and thrombocytopenia. Eur. Surg. Res. 8: 428–434, 1976.
 276. Lai‐Fook, S. J. A continuum mechanics analysis of pulmonary vascular interdependence in isolated dog lobes. J. Appl. Physiol: Respirat. Environ. Exercise Physiol. 46: 419–429, 1979.
 277. Lai‐Fook, S. J. Interstitial pressure in the lung. In: Tissue Fluid Pressure and Composition, edited by A. R. Hargens. Baltimore, MD: Williams & Wilkins, 1981, chapt. 13, p. 125–134.
 278. Lai‐FooK, S. J. Perivascular interstitial fluid pressure measured by micropipettes in isolated dog lung. J. Appl. Physiol: Respirat. Environ. Exercise Physiol. 52: 9–15, 1982.
 279. Lai‐Fook, S. J., and K. C. Beck. Alveolar liquid pressure measured by micropipettes in isolated dog lung. J. Appl. Physiol: Respirat. Environ. Exercise Physiol. 53: 737–743, 1982.
 280. Lai‐Fook, S. J., and R. E. Hyatt. Effect of parenchyma and length changes on vessel pressure‐diameter behavior in pig lungs. J. Appl. Physiol: Respirat. Environ. Exercise Physiol. 47: 666–669, 1979.
 281. Lai‐Fook, S. J., R. E. Hyatt, and J. R. Rodarte. Effect of parenchymal shear modulus and lung volume on bronchial pressure‐diameter behavior. J. Appl. Physiol: Respirat. Environ. Exercise Physiol. 44: 859–868, 1978.
 282. Lai‐Fook, S. J., and M. J. Kallok. Bronchial‐arterial interdependence in isolated dog lung. J. Appl. Physiol: Respirat. Environ. Exercise Physiol. 52: 1000–1007, 1982.
 283. Lai‐Fook, S. J., and B. Toporoff. Pressure‐volume behavior of perivascular interstitium measured in isolated dog lung. J. Appl. Physiol: Respirat. Environ. Exercise Physiol. 48: 939–946, 1980.
 284. Landis, E. M. Capillary pressure and capillary permeability. Physiol. Rev. 14: 404–481, 1934.
 285. Landis, E. M., and J. R. Pappenheimer. Exchange of substances through the capillary walls. In: Handbook of Physiology. Circulation, edited by W. F. Hamilton. Washington, DC: Am. Physiol. Soc., 1963, sect. 2, vol. II, chapt. 29, p. 961–1034.
 286. Latta, H. Pulmonary edema and pleural effusion produced by acute α‐naphthylthiourea poisoning in rats and dogs. Bull. Johns Hopkins Hosp. 80: 181–197, 1947.
 287. Laurent, T. C. The interaction between polysaccharides and other macromolecules. IX. The exclusion from hyaluronic acid gels and solutions. Biochem. J. 93: 106–112, 1964.
 288. Lauweryns, J. M. The juxta‐alveolar lymphatics in the human adult lung. Am. Rev. Respir. Dis. 102: 877–885, 1970.
 289. Lauweryns, J. M., and J. H. Baert. Alveolar clearance and the role of the pulmonary lymphatics. Am. Rev. Respir. Dis. 115: 625–683, 1977.
 290. Lee, B. C., A. B. Malik, P. S. Barie, and F. L. Minnear. Affect of acute pancreatitis on pulmonary transvascular fluid and protein exchange. Am. Rev. Respir. Dis. 123: 618–621, 1981.
 291. Levine, O. R., R. B. Dell, E. Bone, and A. Hyman. Pulmonary extravascular chloride space and albumin content in adult dogs and puppies. Pediatr. Res. 8: 270–274, 1974.
 292. Levine, O. R., and R. B. Mellins. Effect of gravity on interstitial pressure of the lung in intact dogs. J. Appl. Physiol. 33: 357–361, 1972.
 293. Levine, O. R., R. B. Mellins, R. M. Senior, and A. P. Fishman. The application of Starling's law of capillary exchange to the lungs. J. Clin. Invest. 46: 934–944, 1967.
 294. Levine, O. R., F. Rodriguez‐Martinez, and R. B. Mellins. Fluid filtration in the lung of the intact puppy. J. Appl. Physiol. 34: 683–686, 1973.
 295. Linehan, J. H., C. A. Dawson, and D. A. Rickaby. Distribution of vascular resistance and compliance in a dog lung lobe. J. Appl. Physiol: Respirat. Environ. Exercise Physiol. 53: 158–168, 1982.
 296. Lloyd, T. C. Jr.. Effect of alveolar hypoxia on pulmonary vascular resistance. J. Appl. Physiol. 19: 1086–1094, 1964.
 297. Lopez‐Muniz, R., N. L. Stephens, B. Bromberger‐Barnea, S. Permutt, and R. L. Riley. Critical closure of pulmonary vessels analyzed in terms of Starling resistor model. J. Appl. Physiol. 24: 625–635, 1968.
 298. Low, F. N. Lung interstitium: development, morphology, fluid content. In: Lung Biology in Health and Disease. Lung Water and Solute Exchange, edited by N. C. Staub. New York: Dekker, 1978, vol. 7, chapt. 2, p. 17–48.
 299. Luisada, A. A. Mechanism of neurogenic pulmonary edema. Am. J. Cardiol. 20: 66–68, 1967.
 300. Lunde, P. K. M., and B. A. Waaler. Transvascular fluid balance in the lung. J. Physiol. London 205: 1–18, 1969.
 301. Luterman, A., D. Manwaring, and P. W. Curreri. The role of fibrinogen degradation products in the pathogenesis of the respiratory distress syndrome. Surgery 82: 703–707, 1977.
 302. Machado, D. C., G. M. Bohm, and P. A. Padovan. Comparative study of the ultrastructural alterations in the pulmonary vessels of rats treated with alpha‐naphthylthiourea (ANTU) and ammonium sulfate. J. Pathol. 121: 205–211, 1977.
 303. Machiedo, G. W., C. S. Brown, J. E. Lavigne, and B. F. Rush Jr.. Beneficial effect of prostaglandin E1 in experimental hemorrhagic shock. Surg. Gynecol. Obstet. 143: 433–436, 1976.
 304. Magno, M., B. Atkinson, A. Katz, and A. P. Fishman. Estimation of pulmonary interstitial fluid space compliance in isolated perfused rabbit lung. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 48: 677–683, 1980.
 305. Magno, M., and J. P. Szidon. Hemodynamic pulmonary edema in dogs with acute and chronic lymphatic ligation. Am. J. Physiol. 231: 1777–1782, 1976.
 306. Mahajan, V. K., M. Simon, and G. L. Huber. Re‐expansion pulmonary edema. Chest 75: 192–194, 1979.
 307. Majno, G., V. Gilmore, and M. Leventhal. On the mechanism of vascular leakage caused by histamine‐type medications. Circ. Res. 21: 833–847, 1967.
 308. Majno, G., S. M. Shea, and M. Leventhal. Endothelial contraction induced by histamine‐type mediators. An electron microscopy study. J. Cell Biol. 42: 647–672, 1969.
 309. Malik, A. B. Pulmonary vascular response to increase in intracranial pressure: role of sympathetic mechanisms. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 42: 335–343, 1977.
 310. Malik, A. B., and B. S. L. Kidd. Pulmonary arterial wedge and left atrial pressures and the site of hypoxic pulmonary vasoconstriction. Respiration 33: 123–132, 1976.
 311. Malik, A. B., B. C. Lee, H. van der Zee, and A. Johnson. The role of fibrin in the genesis of pulmonary edema after embolization in dogs. Circ. Res. 45: 120–125, 1979.
 312. Malik, A. B., and N. C. Staub(editors). Ann. NY Acad. Sci. 384: 1–561, 1982.
 313. Malik, A. B., and H. van der Zee. Mechanism of pulmonary edema induced by microembolization in dogs. Circ. Res. 42: 72–79, 1976.
 314. Malik, A. B., and H. van der Zee. Time course of pulmonary vascular response to microembolization. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 43: 51–58, 1977.
 315. Malik, A. B., and H. van der Zee. Lung vascular permeability following progressive pulmonary embolization. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 45: 590–597, 1978.
 316. Malik, A. B., H. van der Zee, and B. C. Lee. Pulmonary transvascular fluid dynamics in sheep during hemorrhage. Lymphology 12: 149–157, 1979.
 317. Manohar, M. What causes the microvascular permeability change in high altitude pulmonary edema? (Letter to the editor). Circ. Res. 44: 873–874, 1979.
 318. Manwaring, D., D. Thorning, and P. W. Curreri. Mechanisms of acute pulmonary dysfunction induced by fibrinogen degradation product D. Surgery 84: 45–54, 1978.
 319. Maron, M. B. Differential effects of histamine on protein permeability in dog lung and forelimb. Am. J. Physiol. 242 (Heart Circ. Physiol. 11): H565–H572, 1982.
 320. Maron, M. B. Modification of lymph during passage through the lymph node: effect of histamine. Am. J. Physiol. 245 (Heart Circ. Physiol. 14): H553–H559, 1983.
 321. Martin, B. A., R. Dahlby, I. Nicholls, and J. C. Hogg. Platelet sequestration in lung with hemorrhagic shock and reinfusion in dogs. J. Appl. Physiol: Respirat. Environ. Exercise Physiol. 50: 1306–1312, 1981.
 322. Martin, D. Mesure des variations de la filtration capillaire pulmonaire au cours de l'hypoxie par l'analyse de la lymphe intrathoracique. Grenoble, France: L'Univ. Scientifique et Medicale de Grenoble, 1981. Dissertation.
 323. Martin, D. J., J. C. Parker, and A. E. Taylor. Simultaneous comparison of tracheobronchial and right duct lymph dynamics in dogs. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 54: 199–207, 1983.
 324. Matalon, S. V., and O. D. Wangensteen. Pulmonary capillary filtration and reflection coefficients in the newborn rabbit. Microvasc. Res. 14: 99–110, 1977.
 325. Matthay, M. A., C. C. Landolt, and N. C. Staub. Differential liquid and protein clearance from the alveoli of anesthetized sheep. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 53: 96–104, 1982.
 326. McCaffree, D. R., B. A. Gray, B. E. Pennock, J. Coalson, C. Bridges, F. B. Taylor, and R. M. Rogers. Role of pulmonary edema in the acute pulmonary response to sepsis. J. Appl. Physiol: Respirat. Environ. Exercise Physiol. 50: 1198–1205, 1981.
 327. Mccord, J. M. Free radicals and inflammation: protection of synovial fluid by superoxide dismutase. Science 185: 529, 1978.
 328. McCord, J. M., and I. Fridovich. The biology and pathology of oxygen radicals. Ann. Intern. Med. 89: 122–127, 1978.
 329. McIntire, L. V., T. S. Dewitz, and P. R. Martin. Effect of antiplatelet drug dipyridamole (RAF) on leukocyte response to mechanical trauma. Trans. Am. Soc. Artif. Intern. Organs 24: 310–374, 1978.
 330. McIntosh, M., and A. Silbergleit. Intravascular platelet neutrophil aggregation in staging of post‐traumatic pulmonary insufficiency. Surg. Forum 27: 176–177, 1976.
 331. McKeen, C. R., K. L. Brigham, R. E. Bowers, and T. R. Harris. Pulmonary vascular effects of fat emulsion infusion in unanesthetized sheep. Prevention by indomethacin. J. Clin. Invest. 61: 1291–1297, 1978.
 332. McNamee, J. E. Restricted dextran transport in the sheep lung lymph preparation. J. Appl. Physiol: Respirat. Environ. Exercise Physiol. 52: 585–590, 1982.
 333. McNamee, J. E., and N. C. Staub. Pore models of sheep lung microvascular barrier using new data on protein tracers. Microvasc. Res. 18: 229–244, 1979.
 334. Mead, J., T. Takishima, and D. Leith. Stress distribution in lungs: a model of pulmonary elasticity. J. Appl. Physiol. 28: 596–608, 1970.
 335. Mellins, R. B., O. R. Levine, R. Skalak, and A. P. Fish‐Man. Interstitial pressure of the lung. Circ. Res. 24: 197–212, 1969.
 336. Menkes, H., D. Lindsay, L. Wood, A. Muir, and P. T. Macklem. Interdependence of lung units in intact dog lungs. J. Appl. Physiol. 32: 681–686, 1972.
 337. Menon, N. D. High altitude pulmonary edema: a clinical study. J. Med. 273: 66–73, 1965.
 338. Meyer, B. J., A. Meyer, and A. C. Guyton. Interstitial fluid pressure. V. Negative pressure in the lung. Circ. Res. 22: 263–271, 1968.
 339. Meyer, E. C., and R. Ottaviano. Right duct distribution volume in dogs. Relationship to pulmonary interstitial volume. Circ. Res. 35: 197–203, 1974.
 340. Meyer, E. C., and R. Ottaviano. Fibrinogen clearance from pulmonary interstitium. Lymphology 12: 208–216, 1979.
 341. Meyer, E. C., and A. Silberberg. In vitro study of the influence of some factors important for any physicochemical characterization of connective tissue in the microcirculation. Microvasc. Res. 8: 263–273, 1974.
 342. Meyhick, B., J. Miller, and L. Reid. Pulmonary oedema induced by ANTU, or by high or low oxygen concentration in rat—an electron microscopic study. Br. J. Exp. Pathol. 53: 347–358, 1972.
 343. Michel, R. P., S. Inoue, and J. C. Hogg. Pulmonary capillary permeability to HRP in dogs: a physiological and morphological study. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 42: 13–21, 1977.
 344. Michel, R. P., M. Laforte, and J. C. Hogg. Physiology and morphology of pulmonary microvascular injury with shock and reinfusion. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 50: 1227–1235, 1981.
 345. Millen, J. E., F. L. Glauser, D. Smeltzer, P. Egan, K. Propst, P. Fischer, L. Dearden, and P. Otis. The role of leukocytes in ethchlorvynol‐induced pulmonary edema. Chest 73: 75–78, 1978.
 346. Minnear, F. L., P. S. Barie, and A. B. Malik. Effects of epinephrine and norepinephrine infusion on lung fluid balance in sheep. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 50: 1353–1357, 1981.
 347. Minnear, F. L., P. S. Barie, and A. B. Malik. Lung fluid and protein exchange in the acute sheep preparation. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 50: 1358–1361, 1981.
 348. Mitzner, W., and J. L. Robotham. Distribution of interstitial compliance and filtration coefficient in canine lung. Lymphology 12: 140–148, 1979.
 349. Molstad, L. S., and A. E. Taylor. Effects of hydrostatic height on pulmonary lymph protein concentration (Abstract). Microvasc. Res. 11: 124, 1976.
 350. Morriss, A. W., R. E. Drake, and J. C. Gabel. Comparison of microvascular filtration characteristics in isolated and intact lungs. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 48: 438–443, 1980.
 351. Muir, A. L., D. L. Hall, P. Despas, and J. C. Hogg. Distribution of blood flow in the lungs in acute pulmonary edema in dogs. J. Appl. Physiol. 33: 763–769, 1972.
 352. Naimark, A., B. W. Kirk, and W. Chernecki. Regional water volume, blood volume, and perfusion in the lung. In: Central Hemodynamics and Gas Exchange, edited by G. Giantini. Torino, Ualy: Minerva Med., 1971, p. 144–160.
 353. Nakahara, K., K. Kimura, M. Maeda, A. Masaoka, and H. Manabe. Quantitative assessment of pulmonary edema induced by ligation of lymphatics in dogs. Med. J. Osaka Univ. 23: 199–214, 1973.
 354. Navar, P. D., and L. G. Navar. Relationship between colloid osmotic pressure and plasma protein concentration in the dog. Am. J. Physiol. 233 (Heart Circ. Physiol. 2): H295–H298, 1977.
 355. Neufeld, G. R., J. J. Williams, D. J. Graves, L. R. Soma, and B. E. Marshall. Pulmonary capillary permeability in man and a canine model of chemical pulmonary edema. Microvasc. Res. 10: 192–207, 1975.
 356. Nicolaysen, G. Intravascular concentrations of calcium and magnesium ions and edema formation in isolated lungs. Acta Physiol. Scand. 81: 325–339, 1971.
 357. Nicolaysen, G. Increase in capillary filtration rate resulting from reduction in the intravascular calcium ion‐concentration. Acta Physiol. Scand. 81: 517–527, 1971.
 358. Nicolaysen, G., P. Aarseth, and B. A. Waaler. Transvascular fluid filtration and intravascular volume in isolated perfused lungs (Abstract). Acta Physiol. Scand. 96: 25A–26A, 1976.
 359. Nicolaysen, G., and A. Hauge. Fluid exchange in the isolated perfused lung. Ann. NY Acad. Sci. 384: 115–125, 1982.
 360. Nicolaysen, G., A. Nicolaysen, and N. Staub. A quantitative radioautographic comparison of albumin concentration in different sized lymph vessels in normal mouse lungs. Microvasc. Res. 10: 138–152, 1975.
 361. Nicolaysen, G., and N. C. Staub. Time course of albumin equilibration in interstitium and lymph of normal mouse lungs. Microvasc. Res. 9: 29–37, 1975.
 362. Nicolaysen, G., B. A. Waaler, and P. Aarseth. On the existence of stretchable pores in the exchange vessels of the isolated rabbit lung preparation. Lymphology 12: 201–207, 1979.
 363. Nicoll, P. A., and A. E. Taylor. Lymphatics and lymph flow. Annu. Rev. Physiol. 39: 73–95, 1977.
 364. Nitta, S., and N. C. Staub. Lung fluids in acute ammonium chloride toxicity and edema in cats and guinea pigs. Am. J. Physiol. 224: 613–617, 1973.
 365. Noble, W. H. Early changes in lung water after haemorrhagic shock in pigs and dogs. Can. Anaesth. Soc. J. 22: 39–49, 1975.
 366. Noble, W. H. Pulmonary edema: a review. Can. Anaesth. Soc. J. 27: 286–302, 1980.
 367. Northrup, W. F., and E. W. Humphrey. Albumin permeability in the pulmonary capillaries. Surg. Forum 28: 224–226, 1978.
 368. Northrup, W. F., and E. W. Humphrey. Effect of hemorrhagic shock on pulmonary vascular permeability to plasma proteins. Surgery 83: 264–273, 1978.
 369. Ogletree, M. L. Pharmacology of prostaglandins in the pulmonary microcirculation. Ann. NY Acad. Sci. 384: 191–206, 1982.
 370. Ogletree, M. L., and K. L. Brigham. Arachidonate raises vascular resistance but not permeability in lungs of awake sheep. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 48: 581–586, 1980.
 371. Ogston, A. G. The spaces in a uniform random suspension of fibers. Trans. Faraday Soc. 54: 1745–1757, 1958.
 372. Ogston, A. G., B. N. Preston, and J. D. Wells. On the transport of compact particles through solutions of chain‐polymers. Proc. R. Soc. London Ser. A 333: 297–316, 1973.
 373. Oppenheimer, L., H. W. Unruh, C. Skoog, and H. S. Goldberg. Transvascular fluid flux measured from intravascular water concentration changes. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 54: 64–72, 1983.
 374. Pain, M. C. F., and J. B. West. Effect of the volume history of the isolated lung on distribution of blood flow. J. Appl. Physiol. 21: 1545–1550, 1966.
 375. Palade, G. E., and R. R. Bruns. Structural modulations of plasmalemmal vesicles. J. Cell Biol. 37: 633–649, 1968.
 376. Palade, G. E., M. Simionescu, and N. Simionescu. Structural aspects of the permeability of the microvascular endothelium. Acta Physiol. Scand. 463: 11–32, 1979.
 377. Pang, L. M., R. B. Mellins, and F. Rodriquez‐Martinez. Effect of acute lymphatic obstruction on fluid accumulation in the chest in dogs. J. Appl. Physiol. 39: 985–989, 1975.
 378. Pappenheimer, J. R., E. M. Renkin, and L. M. Borrero. Filtration, diffusion and molecular sieving through peripheral capillary membranes. A contribution to the pore theory of capillary permeability. Am. J. Physiol. 167: 13–46, 1951.
 379. Pappenheimer, J. R., and A. Soto‐Rivera. Effective osmotic pressure of the plasma proteins and other quantities associated with the capillary circulation in the hindlimbs of cats and dogs. Am. J. Physiol. 152: 471–491, 1948.
 380. Parker, J. C., R. C. Allison, and A. E Taylor. Edema affects intra‐alveolar fluid pressures and interdependence in dog lungs. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 51: 911–921, 1981.
 381. Parker, J. C., M. Crain, F. Grimbert, G. Rutili, and A. E. Taylor. Total lung lymph flow and fluid compartmentation in edematous dog lungs. J. Appl. Physiol: Respirat. Environ. Exercise Physiol. 51: 1268–1277, 1981.
 382. Parker, J. C., H. J. Falgout, F. A. Grimbert, and A. E. Taylor. The effect of increased vascular pressure on albumin excluded volume and lymph flow in the dog lung. Circ. Res. 47: 866–875, 1980.
 383. Parker, J. C., H. J. Falgout, R. E. Parker, D. N. Granger, and A. E. Taylor. The effect of fluid volume loading on exclusion of interstitial albumin and lymph flow in the dog lung. Circ. Res. 45: 440–450, 1979.
 384. Parker, J. C., A. C. Guyton, and A. E. Taylor. Pulmonary interstitial and capillary pressures estimated from intra‐alveolar fluid pressures. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 44: 267–276, 1978.
 385. Parker, J. C., A. C. Guyton, and A. E. Taylor. Pulmonary transcapillary exchange and pulmonary edema. In: Cardiovascular Physiology III, edited by A. C. Guyton and D. B. Young. Baltimore, MD: University Park, 1979, vol. 18, chapt. 7, p. 261–316. (Int. Rev. Physiol. Ser.)
 386. Parker, J. C., P. R. Kvietys, K. P. Ryan, and A. E. Taylor. Comparison of isogravimetric and venous occlusion capillary pressures in isolated dog lungs. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 55: 964–968, 1983.
 387. Parker, J. C., D. J. Martin, G. Rutili, J. McCord, and A. E. Taylor. Prevention of free radical mediated vascular permeability increases in lung using superoxide dismutase. Chest Suppl. 83: 52S–53S, 1983.
 388. Parker, J. C., R. E. Parker, D. N. Granger, and A. E. Taylor. Vertical gradient in regional vascular resistance and pre‐ to postcapillary resistance ratios in the dog lung. Lymphology 12: 191–200, 1979.
 389. Parker, J. C., R. E. Parker, D. N. Granger, and A. E. Taylor. Vascular permeability and transvascular fluid and protein transport in the dog lung. Circ. Res. 48: 549–561, 1981.
 390. Parker, J. C., and A. E. Taylor. Comparison of capsular and intra‐alveolar fluid pressures in the lung. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 52: 1444–1452, 1982.
 391. Parker, R. E., D. N. Granger, and A. E. Taylor. Estimates of isogravimetric capillary pressures during alveolar hypoxia. Am. J. Physiol. 241 (Heart Circ. Physiol. 10): H732–H739, 1981.
 392. Parker, R. E., R. J. Rosseli, T. R. Harris, and K. L. Brigham. Effect of graded increases in pulmonary vascular pressures on lung fluid balance in unanesthetized sheep. Circ. Res. 49: 1164–1172, 1981.
 393. Patlak, C. S., D. A. Goldstein, and J. F. Hoffman. The flow of solute and solvents across a two‐membrane system. J. Theor. Biol. 5: 426–442, 1963.
 394. Pattle, R. E. Surface lining of lung alveoli. Physiol. Rev. 45: 48–79, 1965.
 395. Pattle, R. E. The relation between surface tension and area in the alveolar lining film. J. Physiol. London 269: 591–604, 1977.
 396. Perl, W., P. Chowdhury, and F. P. Chinard. Reflection coefficients of dog lung endothelium to small hydrophilic solutes. Am. J. Physiol. 228: 797–809, 1975.
 397. Permutt, S. Effect of interstitial pressure in the lung on pulmonary circulation. Med. Thorac. 22: 118–131, 1965.
 398. Permutt, S. Mechanical influences on water accumulation in the lungs. In: Pulmonary Edema, edited by A. P. Fishman and E. M. Renkin. Bethesda, MD: Am. Physiol. Soc., 1979, chapt. 13, p. 175–193.
 399. Permutt, S., and P. Caldini. Tissue pressures and fluid dynamics of the lung. Federation Proc. 35: 1876–1880, 1976.
 400. Permutt, S., P. Caldini, H. N. Bane, P. Howard, and R. L. Riley. Liquid pressure versus surface pressure of the esophagus. J. Appl. Physiol. 23: 927–933, 1967.
 401. Permutt, S., J. B. L. Howell, D. F. Procter, and R. L. Riley. Effect of lung inflation on static pressure‐volume characteristics of pulmonary vessels. J. Appl. Physiol. 16: 64–70, 1961.
 402. Permutt, S., and R. L. Riley. Hemodynamics of collapsible vessels with tone: the vascular waterfall. J. Appl. Physiol. 18: 924–932, 1963.
 403. Perry, M. A. Capillary filtration and permeability coefficients calculated from measurements of interendothelial cell junctions in rabbit lung and skeletal muscle. Microvasc. Res. 19: 142–157, 1980.
 404. Perry, M. A., and D. G. Garlick. Permeability and pore radii of pulmonary capillaries in rabbits of different ages. Clin. Exp. Pharmacol. Physiol. 5: 361–377, 1978.
 405. Pietra, G. G., M. Magno, and L. Johns. Morphological and physiological study of the effect of histamine on the isolated perfused rabbit lung. Lymphology 12: 165–176, 1979.
 406. Pietra, G. G., M. Magno, L. Johns, and A. P. Fishman. Bronchial veins and pulmonary edema. In: Pulmonary Edema, edited by A. P. Fishman and E. M. Renkin. Bethesda, MD: Am. Physiol. Soc., 1979, chapt. 14, p. 195–206.
 407. Pietra, G. G., J. P. Szidon, H. A. Carpenter, and A. P. Fishman. Bronchial venular leakage during endotoxin shock. Am. J. Pathol. 77: 387–406, 1974.
 408. Pietra, G. G., J. P. Szidon, M. M. Leventhal, and A. P. Fishman. Hemoglobin as a tracer in hemodynamic pulmonary edema. Science 166: 1643–1646, 1969.
 409. Pietra, G. G., J. P. Szidon, M. M. Leventhal, and A. P. Fishman. Histamine and interstitial pulmonary edema in the dog. Circ. Res. 29: 323–337, 1971.
 410. Pine, M. B., P. M. Beach, T. S. Cottrell, M. Scola, and G. M. Turino. The relationship between right duct lymph flow and extravascular lung water in dogs given α‐naphthylthiourea. J. Clin. Invest. 58: 482–492, 1976.
 411. Pingleton, W. W., J. J. Coalson, and C. A. Guenter. Significance of leukocytes in endotoxic shock. Exp. Mol. Pathol. 22: 183–194, 1975.
 412. Powner, D., J. V. Snyder, and A. Grenvik. Altered pulmonary capillary permeability complicating recovery from diabetic ketoacidosis. Chest 68: 253–255, 1975.
 413. Prather, J. W., D. N. Bowes, D. A. Warrell, and B. W. Zweifach. Comparison of capsule and wick techniques for measurement of interstitial fluid pressure. J. Appl. Physiol. 31: 942–945, 1971.
 414. Prather, J. W., K. A. Gaar, Jr., and A. C. Guyton. Direct continuous recording of plasma colloid osmotic pressure of whole blood. J. Appl. Physiol. 24: 602–605, 1968.
 415. Prichard, J. S., and G. de J. Lee. Measurement of water distribution and transcapillary solute flux in dog lung by external radioactivity counting. Clin. Sci. 57: 145–154, 1979.
 416. Prichard, J. S., B. Rajagopalan, and G. de J. Lee. Trans‐vascular albumin flux and the interstitial water volume in experimental pulmonary oedema in dogs. Clin. Sci. 59: 105–113, 1980.
 417. Prockop, D. J. Collagen, elastin, and proteoglycans: matrix for fluid accumulation in the lung. In: Pulmonary Edema, edited by A. P. Fishman and E. M. Renkin. Bethesda, MD: Am. Physiol. Soc., 1979, chapt. 9, p. 125–135.
 418. Propst, K., J. E. Millen, and F. L. Glauser. The effects of endogenous and exogenous histamine on pulmonary alveolar membrane permeability. Am. Rev. Respir. Dis. 117: 1063–1068, 1978.
 419. Rabin, E. R., and E. C. Meyer. Cardiopulmonary effects of pulmonary venous hypertension with special reference to pulmonary lymphatic flow. Circ. Res. 8: 324–335, 1960.
 420. Raffin, T. A., and E. D. Robin. Paraquat ingestion and pulmonary injury. West. J. Med. 128: 26–34, 1978.
 421. Reese, T. S., and M. J. Karnovsky. Fine structural localization of a blood‐brain barrier to exogenous peroxidase. J. Cell Biol. 34: 207–217, 1969.
 422. Reifenrath, R. The significance of alveolar geometry and surface tension in the respiratory mechanics of the lung. Respir. Physiol. 24: 115–137, 1975.
 423. Renkin, E. M. Lymph as a measure of the composition of interstitial fluid. In: Pulmonary Edema, edited by A. P. Fishman and E. M. Renkin. Bethesda, MD: Am. Physiol. Soc., 1979, chapt. 11, p. 145–159.
 424. Renkin, E. M., P. D. Watson, C. H. Sloop, W. M. Joyner, and F. E. Curry. Transport pathways for fluid and large molecules in microvascular endothelium of the dog's paw. Microvasc. Res. 14: 205–214, 1977.
 425. Rennard, S. I., V. J. Ferrans, K. H. Bradley, and R. G. Crystal. Lung connective tissue. In: Mechanisms in Pulmonary Toxicology, edited by H. Witschi. Cleveland, OH: CRC, 1981.
 426. Repine, J. E., J. W. Eaton, M. W. Anders, J. R. Hoidal, and R. B. Fox. Generation of hydroxyl radical by enzymes, chemicals, and human phagocytes in vitro. Detection with the anti‐inflammatory agent, dimethyl sulfoxide. J. Clin. Invest. 64: 1642–1651, 1979.
 427. Repine, J. E., J. G. White, C. C. Clawson, and B. M. Holmes. Effects of phorbol myristate acetate on the metabolism and ultrastructure of neutrophils in chronic granulomatous disease. J. Clin. Invest. 54: 83–90, 1974.
 428. Rhodes, M. L., D. C. Zavala, and D. Brown. Hypoxic protection in paraquat poisoning. Lab. Invest. 35: 496–500, 1976.
 429. Rice, C. L., C. F. Hobelman, D. A. John, D. E. Smith, J. D. Malley, B. F. Cammack, D. R. James, R. M. Peters, and R. W. Virgilio. Central venous pressure or pulmonary capillary wedge pressure as the determinant of fluid replacement in aortic surgery. Surgery 84: 437–440, 1978.
 430. Richter, C. P. The physiology and cytology of pulmonary edema and pleural effusion produced in rats by ANTU. J. Thorac. Cardiovasc. Surg. 23: 66–91, 1952.
 431. Rippe, B., R. C. Allison, J. C. Parker, and A. E. Taylor. Effects of histamine, serotonin, and norepinephrine on circulation of dog lungs. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 57: 223–232, 1984.
 432. Rippe, B., A. Kamiya, and B. Folkow. Transcapillary passage of albumin, effects of tissue cooling, and of increases in filtration and plasma colloid osmotic pressure. Acta Physiol. Scand. 105: 171–187, 1979.
 433. Robin, E., L. Carey, A. Grenvick, F. Glauser, and K. Gaudio. Capillary leak syndrome with pulmonary edema. Arch. Intern. Med. 130: 66–71, 1972.
 434. Robin, E., C. Cross, and R. Zelis. Pulmonary edema. N. Engl. J. Med. 288: 239–304, 1973.
 435. Roos, A., L. J. Thomas, Jr., E. L. Nagel, and D. C. Prommas. Pulmonary vascular resistance as determined by lung inflation and vascular pressures. J. Appl. Physiol. 16: 77–84, 1961.
 436. Rosenzweig, D. Y., J. M. B. Hughes, and J. B. Glazier. Effects of transpulmonary and vascular pressures on pulmonary blood volume in isolated lung. J. Appl. Physiol. 28: 553–560, 1970.
 437. Russell, J. A., J. Hoeffel, and J. F. Murray. Effect of different levels of positive end‐expiratory pressure on lung water content. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 53: 9–15, 1982.
 438. Rutili, G. Transport of Macromolecules in Subcutaneous Tissue Studied by FITC‐Dextrans. Uppsala, Sweden: Univ. of Uppsala, 1978. Dissertation.
 439. Rutili, G., P. Kvietys, D. Martin, J. C. Parker, and A. E. Taylor. Increased pulmonary microvascular permeability induced by α‐naphthylthiourea. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 52: 1316–1323, 1982.
 440. Sacks, T., C. F. Moldow, P. R. Craddock, T. K. Bowers, and H. S. Jacob. Oxygen radicals mediate endothelial cell damage by complement‐stimulated granulocytes. J. Clin. Invest. 62: 1161–1167, 1978.
 441. Saldeen, T. Trends in microvascular research. The microembolism syndrome. Microvasc. Res. 11: 227–259, 1976.
 442. Sarnoff, S. J., and L. C. Sarnoff. Neurohemodynamics of pulmonary edema. Circulation 6: 51–62, 1952.
 443. Scherzer, H., and P. A. Ward. Lung injury produced by immune complexes of varying composition. J. Immunol. 121: 947–952, 1978.
 444. Schneeberger, E. E. Ultrastructural basis for alveolar‐capillary permeability to protein. In: Lung Liquids. Amsterdam: Excerpta Med., 1976, p. 3–21. (Ciba Found. Symp. 38.)
 445. Schneeberger, E. E. Segmental differentiation of endothelial intercellular junctions in intra‐acinar arteries and veins of the rat lung. Circ. Res. 49: 1102–1111, 1981.
 446. Schneeberger, E. E., and M. J. Karnovsky. The influence of intravascular fluid volume on the permeability of newborn and adult mouse lungs to ultrastructural protein tracers. J. Cell Biol. 49: 319–334, 1971.
 447. Schneeberger, E. E., and M. J. Karnovsky. Substructure of intracellular junctions in freeze‐fractured alveolar‐capillary membranes of mouse lung. Circ. Res. 38: 404–411, 1976.
 448. Scholander, P. F., A. R. Hargens, and S. L. Miller. Negative pressure in the interstitial fluid of animals. Science 161: 321–328, 1968.
 449. Schürch, S., J. Goerke, and J. A. Clements. Direct determination of surface tension in the lung. Proc. Natl. Acad. Sci. USA 73: 4698–4702, 1976.
 450. Scoggin, C. H., T. M. Hyers, J. T. Reeves, and R. F. Grover. High altitude pulmonary edema in children and young adults of Leadville, Colorado. N. Engl. J. Med. 297: 1269–1272, 1977.
 451. Selinger, S. L., R. D. Bland, R. H. Demling, and N. C. Staub. Distribution volumes of [131I]albumin, [14C]sucrose, and 36Cl in sheep lung. J. Appl. Physiol. 39: 773–779, 1975.
 452. Sewell, R. W., J. G. Fewel, F. L. Grover, and K. V. Arom. Experimental evaluation of re‐expansion pulmonary edema. Ann. Thorac. Surg. 26: 126–132, 1978.
 453. Shasby, D. M., R. B. Fox, R. N. Harada, and J. E. Repine. Reduction of the edema of acute hyperoxic lung injury by granulocyte depletion. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 52: 1237–1244, 1982.
 454. Shirley, H. H., Jr., C. G. Wolfram, K. Wasserman, and H. S. Mayerson. Capillary permeability to macromolecules: stretched pore phenomenon. Am. J. Physiol. 190: 189–193, 1957.
 455. Shu, H., R. E. Talcott, S. A. Rice, and E. T. Wei. Lipid peroxidation and paraquat toxicity. Biochem. Pharmacol. 28: 327–331, 1979.
 456. Sibbald, W. J., A. A. Driedger, J. D. Moffat, M. L. Myers, B. A. Reid, and R. L. Holliday. Pulmonary microvascular clearance of radiotracers in human cardiac and noncardiac pulmonary edema. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 50: 1337–1347, 1981.
 457. Sidel, V. W., and A. K. Solomon. Entrance of water into human red cells under an osmotic gradient. J. Gen. Physiol. 41: 243–257, 1957.
 458. Silberberg, A. The significance of hydrostatic pressure in the fluid phase of a structural tissue. In: Tissue Fluid Pressure and Composition, edited by A. R. Hargens. Baltimore, MD: Williams & Wilkins, 1981, chapt. 7, p. 71–76.
 459. Simionescu, M., N. Simionescu, and G. E. Palade. Morphometric data on the endothelium of blood capillaries. J. Cell Biol. 60: 128–137, 1974.
 460. Simionescu, N., M. Simionescu, and G. E. Palade. Permeability of intestinal capillaries. Pathway followed by dextrans and glycogens. J. Cell Biol. 53: 365–392, 1972.
 461. Simionescu, N., M. Simionescu, and G. E. Palade. Structural‐functional correlates in the transendothelial exchange of water soluble macromolecules. Thromb. Res. 8: 257–269, 1976.
 462. Simionescu, N., M. Simionescu, and G. E. Palade. Structural basis of permeability in sequential segments of the microvasculature. II. Pathways followed by microperoxidase across the endothelium. Microvasc. Res. 15: 17–36, 1978.
 463. Simmons, R. L., A. M. Martin, Jr., C. A. Heisterkamp, and T. B. Ducker. Respiratory insufficiency in combat casualties. II. Pulmonary edema following head injury. Ann. Surg. 170: 39–44, 1969.
 464. Simon, R. P., L. L. Bayne, R. F. Tranbaugh, and F. R. Lewis. Elevated pulmonary lymph flow and protein content during status epilepticus in sheep. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 52: 91–95, 1982.
 465. Singh, L, C. C. Kapila, P. K. Khanna, R. B. Nanda, and B. D. P. Rao. High altitude pulmonary edema. Lancet 1: 229–234, 1965.
 466. Smith, H. C., V. F. Gould, F. W. Cheney, and J. Butler. Pathogenesis of hemodynamic pulmonary edema in excised dog lungs. J. Appl. Physiol. 37: 904–911, 1974.
 467. Smith, J. C., and W. Mitzner. Analysis of pulmonary vascular interdependence in excised dog lobes. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 48: 450–467, 1980.
 468. Smith, L. L., and M. S. Rose. A comparison of the effects of paraquat and diquat on the water content of rat lung and the incorporation of thymidine into lung DNA. Toxicology 8: 223–230, 1977.
 469. Smith‐Erichsen, N., and G. Bø. Airway closure and fluid filtration in the lung. Br. J. Anaesth. 51: 475–479, 1979.
 470. Snashall, P. D. Mucopolysaccharide osmotic pressure in the measurement of interstitial pressure. Am. J. Physiol. 232 (Heart Circ. Physiol. 1): H608–H616, 1977.
 471. Snashall, P. D. Pulmonary edema. Br. J. Dis. Chest 74: 2–22, 1980.
 472. Snashall, P. D. Mucopolysaccharide osmotic pressure in the measurement of interstitial pressure. In: Tissue Fluid Pressure and Composition, edited by A. R. Hargens. Baltimore, MD: Williams & Wilkins, 1981, chapt. 6, p. 63–70.
 473. Snashall, P. D., and J. M. B. Hughes. Lung water balance. Reu. Physiol. Biochem. Pharmacol. 89: 5–62, 1981.
 474. Snashall, P. D., S. J. Keyes, B. Morgan, B. Jones, and K. Murphy. Regional extravascular and interstitial lung water in normal dogs. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 49: 547–551, 1980.
 475. Snashall, P. D., K. Nakahara, and N. C. Staub. Estimation of perimicrovascular fluid pressure in isolated perfused dog lung lobes. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 46: 1003–1010, 1979.
 476. Snashall, P. D., W. J. Weidner, and N. C. Staub. Extra‐vascular lung water after extracellular fluid volume expansion in dogs. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 42: 624–629, 1977. 240
 477. Starling, E. H. The influence of mechanical factors on lymph production. J. Physiol. London 10: 14–155, 1894.
 478. Starling, E. H. On the absorption of fluid from the connective tissue spaces. J. Physiol. London 19: 312–326, 1896.
 479. Staub, N. C. Pulmonary edema. Physiol. Rev. 54: 678–811, 1974.
 480. Staub, N. C. The forces regulating fluid filtration in the lungs. Microvasc. Res. 14: 45–55, 1978.
 481. Staub, N. C. Pathways for fluid and solute fluxes in pulmonary edema. In: Pulmonary Edema, edited by A. P. Fishman and E. M. Renkin. Bethesda, MD: Am. Physiol. Soc., 1979, chapt. 8, p. 113–124.
 482. Staub, N. C. Pulmonary edema—hypoxia and overperfusion. N. Engl. J. Med. 201: 1085–1087, 1980.
 483. Staub, N. C. Pulmonary edema due to increased microvascular permeability. Annu. Rev. Med. 32: 291–312, 1981.
 484. Staub, N. C., R. D. Bland, K. L. Brigham, R. Erdmann III, and W. C. Wolverton. Preparation of chronic lung lymph fistulas in sheep. J. Surg. Res. 19: 315–320, 1975.
 485. Staub, N. C., M. Flick, A. Perel, C. Landolt, and T. R. Vaughan Jr., Lung lymph as a reflection of interstitial fluid. In: Tissue Fluid Pressure and Composition, edited by A. R. Hargens. Baltimore, MD: Williams & Wilkins, 1981, chapt. 12, p. 113–123.
 486. Staub, N. C., H. Nagano, and M. L. Pearce. Pulmonary edema in dogs, especially the sequence of fluid accumulation in lungs. J. Appl. Physiol. 22: 227–240, 1967.
 487. Stothert, J. C., J. Weaver, and C. J. Carrico. Lung albumin content after acid aspiration pulmonary injury. J. Surg. Res. 30: 256–261, 1981.
 488. Sutton, J. R., and N. Lassen. Pathophysiology of acute mountain sickness and high altitude pulmonary edema: an hypothesis. Bull. Eur. Physiolpathol. Respir. 15: 1042–1052, 1979.
 489. Szabó, G., and Z. Magyar. Effect of increased systemic venous pressure on lymph pressure and flow. Am. J. Physiol. 212: 1469–1474, 1967.
 490. Szidon, J. P., G. G. Pietra, and A. P. Fishman. The alveolar‐capillary membrane and pulmonary edema. N. Engl. J. Med. 286: 1200–1208, 1972.
 491. Taylor, A. E. Capillary fluid filtration. Starling forces and lymph flow. Circ. Res. 49: 557–575, 1981.
 492. Taylor, A. E., V. S. Bishop, and A. C. Guyton. Permeability of the alveolar membrane to solutes. Circ. Res. 16: 353–362, 1965.
 493. Taylor, A. E., and R. E. Drake. Fluid and protein exchange. In: Lung Biology in Health and Disease. Lung Water and Solute Exchange, edited by N. C. Staub. New York: Dekker, 1978, vol. 7, chapt. 6, p. 129–166.
 494. Taylor, A. E., and K. A. Gaar. Calculation of equivalent pore radii of pulmonary capillary and alveolar membranes. Rev. Argent. Angiol. 111: 25–40, 1969.
 495. Taylor, A. E., and K. A. Gaar Jr. Estimation of equivalent pore radii of pulmonary capillary and alveolar membranes. Am. J. Physiol. 218: 1133–1140, 1970.
 496. Taylor, A. E., and H. Gibson. Concentrating ability of lymphatic vessels. Lymphology 8: 43–49, 1975.
 497. Taylor, A. E., H. Gibson, H. J. Granger, and A. C. Guyton. The interaction between intracapillary and tissue forces in the overall regulation of interstitial fluid volume. Lymphology 6: 192–208, 1973.
 498. Taylor, A. E., and D. N. Granger. Equivalent pore modelling: vesicles, channels, and charge. Federation Proc. 42: 2440–2445, 1983.
 499. Taylor, A. E., and D. N. Granger. Exchange of macromolecules across the microcirculation. In: Handbook of Physiology. The Cardiovascular System. Microcirculation, edited by E. M. Renkin and C. C. Michel. Bethesda, MD: Am. Physiol. Soc., 1984, sect. 2, vol. IV, pt. 1, chapt. 11, p. 467–520.
 500. Taylor, A. E., D. N. Granger, and R. A. Brace. Analysis of lymphatic protein flux data. I. Estimation of the reflection coefficient and permeability surface area product for total protein. Microvasc. Res. 13: 297–313, 1977.
 501. Taylor, A. E., D. N. Granger, and R. A. Brace. Estimation of the reflection coefficient and permeability surface area product using lymphatic protein flux data: problems created by axial pressure gradients (Abstract). Microvasc. Res. 15: 33, 1978.
 502. Taylor, A. E., F. Grimbert, G. Rutili, P. R. Kvietys, and J. C. Parker. Pulmonary edema. In: Tissue Fluid Pressure and Composition, edited by A. R. Hargens. Baltimore, MD: Williams & Wilkins, 1981, chapt. 14, p. 135–143.
 503. Taylor, A. E., and D. Martin. Oxygen radicals and the microcirculation. Physiologist 26: 152–155, 1983.
 504. Taylor, A. E., J. C. Parker, D. N. Granger, N. A. Mortillaro, and G. Rutili. Assessment of capillary permeability using lymphatic protein flux: estimation of the osmotic reflection coefficient. In: The Microcirculation, edited by R. Effros, H. Schmid‐Shonbein, and J. Ditzel. New York: Academic, 1981, p. 19–32.
 505. Taylor, A. E., J. C. Parker, P. R. Kvietys, and M. Perry. Pulmonary interstitium in capillary exchange. Ann. NY Acad. Sci. 384: 148–168, 1982.
 506. Taylor, P. M., U. Boonyaprakob, V. Waterman, D. Watson, and E. Lopata. Clearances of plasma proteins from pulmonary vascular beds of adult dogs and pups. Am. J. Physiol. 213: 441–449, 1967.
 507. Taylor, P. M., U. Boonyaprakob, D. W. Watson, and P. Fireman. Relative efflux of native proteins from the canine pulmonary vascular bed. Am. J. Physiol. 214: 1310–1314, 1968.
 508. Theodore, J., and E. D. Robin. Speculations on neurogenic pulmonary edema. Am. Rev. Respir. Dis. 113: 405–411, 1976.
 509. Tierney, D. F., L. Ayers, and R. S. Kasuyama. Altered sensitivity to oxygen toxicity. Am. Rev. Respir. Dis. 115: 59–66, 1977.
 510. Todd, T. R. J., E. Baile, and J. C. Hogg. Pulmonary capillary permeability during hemorrhagic shock. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 45: 298–306, 1978.
 511. Toung, T. J. K., D. Bordos, D. W. Benson, D. Carter, G. D. Zuidema, S. Permutt, and J. L. Cameron. Aspiration pneumonia: experimental evaluation of albumin and steroid therapy. Ann. Surg. 183: 179–184, 1976.
 512. Toung, T. J., J. L. Cameron, T. Kimura, and S. Permutt. Aspiration pneumonia: treatment with osmotically active agents. Surgery 89: 588–593, 1981.
 513. Toung, T., P. Saharia, S. Permutt, G. D. Zuidema, and J. L. Cameron. Aspiration pneumonia: beneficial and harmful effects of positive end‐expiratory pressure. Surgery 82: 279–283, 1979.
 514. Uhley, H. N., S. E. Leeds, J. J. Sampson, and M. Friedman. Role of pulmonary lymphatics in chronic pulmonary edema. Circ. Res. 11: 966–970, 1962.
 515. Vaage, J., G. Nicolaysen, and B. A. Waaler. Aggregation of blood platelets and increased hydraulic conductivity of pulmonary exchange vessels. Acta Physiol. Scand. 98: 175–184, 1976.
 516. Van der Zee, H., A. B. Malik, B. C. Lee, and T. S. Hakim. Lung fluid and protein exchange during intracranial hypertension and role of sympathetic mechanisms. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 48: 273–280, 1980.
 517. Vaughan, T. R., A. J. Erdmann, K. L. Brigham, W. C. Woolverton, W. J. Weidner, and N. C. Staub. Equilibration of intravascular albumin with lung lymph in unanesthetized sheep. Lymphology 12: 217–223, 1979.
 518. Vijeyarathnam, G. S., and B. Corrin. Fine structural alterations in the lungs of iprindole‐treated rats. J. Pathol. 114: 233–239, 1974.
 519. Visscher, M. D., F. J. Haddy, and G. Stephens. The physiology and pharmacology of lung edema. Pharmacol. Rev. 8: 389–394, 1956.
 520. Viswanathan, R., S. K. Jain, and S. Subramanian. Pulmonary edema of high altitude. Am. Rev. Respir. Dis. 100: 342–349, 1969.
 521. Viswanathan, R., S. K. Jain, S. Subramanian, T. A. V. Subramanian, G. L. Dua, and J. Giri. Pulmonary edema of high altitude. II. Clinical. aerohemodynamic and biochemical studies in a group with history of pulmonary edema at high altitude. Am. Rev. Respir. Dis. 100: 327–341, 1969.
 522. Voelkel, N. F., S. Worthen, J. T. Reeves, P. M. Henson, and R. C. Murphy. Nonimmunological production of leukotrienes induced by platelet‐activating factor. Science 218: 286–288, 1982.
 523. Voss, T. How to get your “juice” flowing. In: Prevention 33: 57–62, 1981.
 524. Vreim, C. E., K. Ohkuda, and N. C. Staub. Proportions of dog lung lymph in the thoracic and right lymph ducts. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 43: 894–898, 1977.
 525. Vreim, C. E., P. D. Snashall, R. H. Demling, and N. C. Staub. Lung lymph and free interstitial fluid protein composition in sheep with edema. Am. J. Physiol. 230: 1650–1653, 1976.
 526. Vreim, C. E., P. D. Snashall, and N. C. Staub. Protein composition of lung fluids in anesthetized dogs with acute cardiogenic edema. Am. J. Physiol. 231: 1466–1469, 1976.
 527. Vreim, C. E., and N. C. Staub. Protein composition of lung fluids in acute alloxan edema in dogs. Am. J. Physiol. 230: 376–379, 1976.
 528. Wagner, E., P. A. Riebens, K. Katsukara, and P. Salisbury. Influence of airway pressures on edema in the isolated dog's lung. Circ. Res. 9: 382–386, 1961.
 529. Wagner, W. W., Jr., L. P. Latham, and R. L. Capen. Capillary recruitment during airway hypoxia: role of pulmonary artery pressure. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 47: 383–387, 1979.
 530. Wangensteen, O. D., E. Lysaker, and P. Savaryn. Pulmonary capillary filtration and reflection coefficients in the adult rabbit. Microvasc. Res. 14: 81–97, 1977.
 531. Warren, M. F., and C. K. Drinker. The flow of lymph from the lungs of the dog. Am. J. Physiol. 136: 207–221, 1942.
 532. Warren, M. F., D. K. Peterson, and C. K. Drinker. The effects of heightened negative pressure in the chest, together with further experiments upon anoxia in increasing the flow of lung lymph. Am. J. Physiol. 137: 641–648, 1942.
 533. Wasiutynski, A., J. Kacki, and W. Olszewski. Studies on acute lung lymphatic edema. Pol. Med. Sci. Hist. Bull. 18: 139–147, 1975.
 534. Webb, W. R., S. D. Wax, K. Kusajima, and T. M. Kamiyama. Microscopic studies of the pulmonary circulation in situ. Surg. Clin. North Am. 54: 1067–1076, 1974.
 535. Wégria, R., H. Zekert, K. E. Walter, R. W. Entrup, C. De Schryver, W. Kennedy, and D. Paiewonsky. Effect of systemic venous pressure on drainage of lymph from thoracic duct. Am. J. Physiol. 204: 284–288, 1963.
 536. Weibel, E. R., and H. Bachofen. Structural design of the alveolar septum and fluid exchange. In: Pulmonary Edema, edited by A. P. Fishman and E. M. Renkin. Bethesda, MD: Am. Physiol. Soc., 1979, chapt. 1, p. 1–20.
 537. Weil, M. H., R. J. Henning, M. Morrissette, and S. Michaels. Relationship between colloid osmotic pressure and pulmonary artery wedge pressure in patients with acute cardiorespiratory failure. Am. J. Med. 64: 643–650, 1978.
 538. Weiser, P. C., and F. Grande. Estimation of fluid shifts and protein permeability during pulmonary edemagenesis. Am. J. Physiol. 227: 1028–1034, 1974.
 539. Wendt, R. P., E. Klein, E. H. Bresler, F. F. Holland, R. M. Serino, and H. Villa. Sieving properties of hemodialysis membranes. J. Membr. Sci. 5: 23–49, 1979.
 540. West, J. B., and C. T. Dollery. Distribution of blood flow and ventilation‐perfusion ratio in the lung, measured with radioactive CO2. J. Appl. Physiol. 15: 405–410, 1960.
 541. West, J. B., C. T. Dollery, and B. E. Heard. Increased pulmonary vascular resistance in the dependent zone of isolated dog lung caused by perivascular edema. Circ. Res. 17: 191–206, 1965.
 542. Whayne, T. F., Jr., and J. W. Severinghaus. Experimental hypoxic pulmonary edema in the rat. J. Appl. Physiol. 25: 729–732, 1968.
 543. Wiederhielm, C. A. The interstitial space. In: Biomechanics: Its Foundations and Objectives, edited by Y. C. Fung, N. Perrone, and M. Anliker. Englewood Cliffs, NJ: Prentice‐Hall, 1972, p. 273–286.
 544. Wiederhielm, C. A. The tissue pressure controversy, a semantic dilemma. In: Tissue Fluid Pressure and Composition, edited by A. R. Hargens. Baltimore, MD: Williams & Wilkins, 1981, chapt. 3, p. 21–34.
 545. Wiederhielm, C. A., J. R. Fox, and D. R. Lee. Ground substance mucopolysaccharides and plasma proteins: their role in capillary water balance. Am. J. Physiol. 230: 1121–1125, 1976.
 546. Williams, M. C., and S. L. Wissig. The permeability of muscle capillaries to horseradish peroxidase. J. Cell Biol. 66: 531–555, 1975.
 547. Wilson, T. A. Parenchymal mechanics at the alveolar level. Federation Proc. 38: 7–10, 1979.
 548. Wilson, T. A. Effect of alveolar wall shape on alveolar water stability (Letter to the editor). J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 50: 222–224, 1981.
 549. Wilson, T. A. Relations among recoil pressure, surface area, and surface tension in the lung. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 50: 921–926, 1981.
 550. Winn, R., B. Nadir, J. Gleisner, and J. Hildebrandt. Chronic lung lymph fistula in the goat. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 48: 399–402, 1980.
 551. Wittmers, L. E. Permeability Characteristics of the Blood‐Gas Barrier. Duluth: Univ. of Minnesota, 1974, p. 164–165. Dissertation.
 552. Wolfe, W. G., and W. C. DeVries. Oxygen toxicity. Annu. Rev. Med. 26: 203–217, 1975.
 553. Woolverton, W. C., K. L. Brigham, and N. C. Staub. Effect of positive pressure breathing on lung lymph flow and water content in sheep. Circ. Res. 42: 550–557, 1978.
 554. Yoffey, J. M., and F. C. Courtice. Lymphatics, Lymph and the Lymphomyeloid Complex. London: Academic, 1970.
 555. Yoneda, K. Anatomic pathway of fluid leakage in fluid‐overload pulmonary edema in mice. Am. J. Pathol. 101: 7–16, 1980.
 556. Zarins, C. K., C. L. Rice, R. M. Peters, and R. W. Virgilio. Lymph and pulmonary response to isobaric reduction in plasma oncotic pressure in baboons. Circ. Res. 43: 925–930, 1978.
 557. Zidulka, A., M. Demedts, S. Nadler, and N. R. Anthonisen. Pleural pressure with lobar obstruction in dogs. Respir. Physiol. 26: 239–248, 1976.
 558. Zweifach, V. W., and A. Silberberg. The interstitial‐lymphatic flow system. In: Cardiovascular Physiology III, edited by A. C. Guyton and D. B. Young. Baltimore, MD: University Park, 1979, vol. 18, chapt. 6, p. 215–260. (Int. Rev. Physiol. Ser.)

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Aubrey E. Taylor, James C. Parker. Pulmonary Interstitial Spaces and Lymphatics. Compr Physiol 2011, Supplement 10: Handbook of Physiology, The Respiratory System, Circulation and Nonrespiratory Functions: 167-230. First published in print 1985. doi: 10.1002/cphy.cp030104