Comprehensive Physiology Wiley Online Library

Protein Turnover in the Lungs

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Protein Turnover in Nonpulmonary Tissues and Cells
2 Physiological Importance of Protein Turnover
3 Methods of Studying Protein Turnover in the Lung
4 Precursor Pools
5 Effect of Proteolysis on Extracellular Specific Radioactivity
6 Amino Acid Compartmentation in Perfused Lung
7 Protein Turnover Rates
8 Regulation of General Protein Turnover
8.1 Diet
8.2 Hormones
9 Degradation of General Lung Proteins
10 Regulation of Protein Degradation
10.1 Exogenous Amino Acids
10.2 Hypoxia
10.3 Interaction Between Exogenous Amino Acids and Hypoxia
10.4 Potential Physiological Importance of Interaction Between Amino Acids and Hypoxia
10.5 Glucose and Insulin
11 Connective Tissue Proteins of the Lung
11.1 Collagen
11.2 Elastin
12 Pulmonary Fibrosis
13 Proteases and Protease Inhibitors
14 Hyperoxia and Protein Synthesis
15 Protein Turnover in Pulmonary Macrophages
15.1 Choice of Precursor Amino Acid
15.2 Precursor Pools
15.3 Protein Degradation
15.4 Phagocytosis and Protein Turnover
15.5 Substrates and Protein Turnover
15.6 Other Factors Affecting Protein Turnover in Pulmonary Macrophages
Figure 1. Figure 1.

Correlation of enzymes, lectin, and elastin with postnatal anatomical development of rat lung. Left: acetylcholinesterase, lectin, and elastin. Right: angiotensin‐converting enzyme and carbonic anhydrase activity.

From Powell and Whitney
Figure 2. Figure 2.

Effect of perfusate phenylalanine concentration on incorporation of radioactive amino acids into protein by rat lung perfused in situ. Perfusate contained 10–690 μM phenylalanine and either (A) [14C]phenylalanine (specific radioactivity 320 dpm/nmol; perfusions of 180 min) or (B) [14C]histidine (specific radioactivity 850 dpm/nmol; perfusions of 60 min). •, Perfusate equilibrated with O2:CO2 (19:1). ▄, □, Perfusate equilibrated with O2:N2:CO2 (4:15:1).

From Watkins and Rannels
Figure 3. Figure 3.

Effect of perfusate phenylalanine concentration on specific radioactivity of intracellular phenylalanine in perfused lungs. Rat lungs were perfused in situ for 60 (▄) or 180 (□) min. Data were plotted with perfusate phenylalanine concentration measured at end of perfusion period.

From Watkins and Rannels
Figure 4. Figure 4.

Effect of perfusate phenylalanine concentration on estimates of protein synthesis. Rat lungs were perfused in situ for 60 min with [14C]phenylalanine. Rates of protein synthesis were calculated with specific radioactivity of intracellular or extracellular perfusate phenylalanine or of tRNA‐bound phenylalanine at the end of perfusion period.

Data from Watkins and Rannels
Figure 5. Figure 5.

Time course of intracellular and medium concentration of phenylalanine. In each experiment lung slices were incubated with or without enough cycloheximide to inhibit protein synthesis by >90%.

From Thet et al.
Figure 6. Figure 6.

Time course of specific radioactivity of perfusate phenylalanine. Rat lungs were perfused in situ with either 0.086 or 0.69 mM perfusate phenylalanine.

Data from Watkins and Rannels
Figure 7. Figure 7.

Scheme for compartmentation of extracellular phenylalanine in lung tissue.

Figure 8. Figure 8.

RNA concentration of pig tissues plotted against fractional rate of protein synthesis (k8) of these tissues. Pig lung is 4th value from right, d, Day.

From Garlick et al.
Figure 9. Figure 9.

Time course of release of [14C]phenylalanine into perfusate by isolated perfused rat lung. Amounts of released label are expressed as percent of initial acid‐insoluble radioactivity.

From Chiang et al.
Figure 10. Figure 10.

Protein degradation at different O2 concentrations. Lungs of rats were exposed in vivo during room air breathing to [14C]phenylalanine for 10 min and then perfused and ventilated for 90 min with concentrations of O2 indicated and in presence of rat plasma concentrations of amino acids plus 10 mM nonradioactive phenylalanine and 5.5 mM glucose. In A, bars represent rates of protein degradation during min 15–45. In B, bars represent rates of protein degradation during min 45–90. 10 → 95, Lungs were ventilated with 10% O2 during 0–45 min and 95% O2 during 45–90 min.

From Chiang et al.
Figure 11. Figure 11.

Degradation in vitro at different O2 concentrations of proteins labeled in vivo during 5 h.

From Chiang et al.
Figure 12. Figure 12.

Effect of used perfusate and lactate on protein degradation. Rat lungs were labeled with [14C]phenylalanine as described in legend of Fig. . Cont., control; lungs perfused with fresh medium and ventilated with 95% O2. Shaded bars, values from lungs perfused with used medium, i.e., medium initially used to perfuse unlabeled lungs for 90 min that were ventilated with 0% O2 or 95% O2. In some experiments the pH of used medium from hypoxic lungs was adjusted to 7.4 before it was used to study proteolysis (designated pH adjusted). Lactate, fresh medium identical to control medium but with exogenous (50 mM) lactate. In all experiments, regardless of medium used, lungs were ventilated with 95% O2.

From Chiang et al.
Figure 13. Figure 13.

Changes in rabbit lung weight and collagen and body weight with age.

From Crystal
Figure 14. Figure 14.

Effect of right pneumonectomy in rabbits on collagen in remaining left lung.

From Cowan and Crystal
Figure 15. Figure 15.

Effect of right pneumonectomy in rabbits on collagen and protein synthesis in remaining left lung.

From Cowan and Crystal
Figure 16. Figure 16.

Time course of effect of in vivo hyperoxia on L‐[U‐14C]leucine incorporation into protein by rat lung slices.

From Massaro and Massaro


Figure 1.

Correlation of enzymes, lectin, and elastin with postnatal anatomical development of rat lung. Left: acetylcholinesterase, lectin, and elastin. Right: angiotensin‐converting enzyme and carbonic anhydrase activity.

From Powell and Whitney


Figure 2.

Effect of perfusate phenylalanine concentration on incorporation of radioactive amino acids into protein by rat lung perfused in situ. Perfusate contained 10–690 μM phenylalanine and either (A) [14C]phenylalanine (specific radioactivity 320 dpm/nmol; perfusions of 180 min) or (B) [14C]histidine (specific radioactivity 850 dpm/nmol; perfusions of 60 min). •, Perfusate equilibrated with O2:CO2 (19:1). ▄, □, Perfusate equilibrated with O2:N2:CO2 (4:15:1).

From Watkins and Rannels


Figure 3.

Effect of perfusate phenylalanine concentration on specific radioactivity of intracellular phenylalanine in perfused lungs. Rat lungs were perfused in situ for 60 (▄) or 180 (□) min. Data were plotted with perfusate phenylalanine concentration measured at end of perfusion period.

From Watkins and Rannels


Figure 4.

Effect of perfusate phenylalanine concentration on estimates of protein synthesis. Rat lungs were perfused in situ for 60 min with [14C]phenylalanine. Rates of protein synthesis were calculated with specific radioactivity of intracellular or extracellular perfusate phenylalanine or of tRNA‐bound phenylalanine at the end of perfusion period.

Data from Watkins and Rannels


Figure 5.

Time course of intracellular and medium concentration of phenylalanine. In each experiment lung slices were incubated with or without enough cycloheximide to inhibit protein synthesis by >90%.

From Thet et al.


Figure 6.

Time course of specific radioactivity of perfusate phenylalanine. Rat lungs were perfused in situ with either 0.086 or 0.69 mM perfusate phenylalanine.

Data from Watkins and Rannels


Figure 7.

Scheme for compartmentation of extracellular phenylalanine in lung tissue.



Figure 8.

RNA concentration of pig tissues plotted against fractional rate of protein synthesis (k8) of these tissues. Pig lung is 4th value from right, d, Day.

From Garlick et al.


Figure 9.

Time course of release of [14C]phenylalanine into perfusate by isolated perfused rat lung. Amounts of released label are expressed as percent of initial acid‐insoluble radioactivity.

From Chiang et al.


Figure 10.

Protein degradation at different O2 concentrations. Lungs of rats were exposed in vivo during room air breathing to [14C]phenylalanine for 10 min and then perfused and ventilated for 90 min with concentrations of O2 indicated and in presence of rat plasma concentrations of amino acids plus 10 mM nonradioactive phenylalanine and 5.5 mM glucose. In A, bars represent rates of protein degradation during min 15–45. In B, bars represent rates of protein degradation during min 45–90. 10 → 95, Lungs were ventilated with 10% O2 during 0–45 min and 95% O2 during 45–90 min.

From Chiang et al.


Figure 11.

Degradation in vitro at different O2 concentrations of proteins labeled in vivo during 5 h.

From Chiang et al.


Figure 12.

Effect of used perfusate and lactate on protein degradation. Rat lungs were labeled with [14C]phenylalanine as described in legend of Fig. . Cont., control; lungs perfused with fresh medium and ventilated with 95% O2. Shaded bars, values from lungs perfused with used medium, i.e., medium initially used to perfuse unlabeled lungs for 90 min that were ventilated with 0% O2 or 95% O2. In some experiments the pH of used medium from hypoxic lungs was adjusted to 7.4 before it was used to study proteolysis (designated pH adjusted). Lactate, fresh medium identical to control medium but with exogenous (50 mM) lactate. In all experiments, regardless of medium used, lungs were ventilated with 95% O2.

From Chiang et al.


Figure 13.

Changes in rabbit lung weight and collagen and body weight with age.

From Crystal


Figure 14.

Effect of right pneumonectomy in rabbits on collagen in remaining left lung.

From Cowan and Crystal


Figure 15.

Effect of right pneumonectomy in rabbits on collagen and protein synthesis in remaining left lung.

From Cowan and Crystal


Figure 16.

Time course of effect of in vivo hyperoxia on L‐[U‐14C]leucine incorporation into protein by rat lung slices.

From Massaro and Massaro
References
 1. Airhart, J., J. A. Arnold, C. A. Bulman, And R. B. Low. Protein synthesis in pulmonary macrophages. Source of amino acids for leucyl‐tRNA. Biochim. Biophys. Acta 653: 108–117, 1981.
 2. Airhart, J., J. Kelley, J. E. Brayden, R. B. Low, And W. S. Stirewalt. An ultramicromethod of amino acid analysis: application to studies of protein metabolism in cultured cells. Anal. Biochem. 96: 45–55, 1979.
 3. Airhart, J., A. Vidrich, And E. A. Khairallah. Compartmentation of free amino acids for protein synthesis in rat liver. Biochem. J. 140: 539–548, 1974.
 4. Amenta, J. S., F. M. Baccino, And M. J. Sargus. Cell protein degradation in cultured rat embryo fibroblasts. Suppression by vinblastine of the enhanced proteolysis by serum‐deficient media. Biochim. Biophys. Acta 451: 511–516, 1976.
 5. Amenta, J. S., M. J. Sargus, And S. C. Brocher. Protein synthesis and degradation in growth regulation in rat embryo fibroblasts: role of fast‐turnover and slow‐turnover protein. J. Cell. Physiol. 105: 51–61, 1980.
 6. Andrews, T. M., R. Goldthorp, And R. W. E. Watts. Fluorometric measurement of the phenylalanine content of human granulocytes. Clin. Chim. Acta 43: 379–387, 1973.
 7. Arias, I. M., D. Doyle, And R. T. Schimke. Studies on the synthesis and degradation of proteins of the endoplasmic reticulum of rat liver. J. Biol. Chem. 244: 3303–3315, 1969.
 8. Augustine, S. L., and R. W. Swick. Turnover of total proteins and ornithine aminotransferase during liver regeneration in rats. Am. J. Physiol. 238 (Endocrinol. Metab. 1): E46–E52, 1980.
 9. Ayuso‐Parrilla, M. S., A. Martín‐Reguero, J. Pérez‐DÍAZ, And R. Parrilla. Role of glucagon on the control of hepatic protein synthesis and degradation in the rat in vivo. J. Biol. Chem. 251: 7785–7790, 1976.
 10. Baugh, R. J. and J. Travis. Human leukocyte granule elastase: rapid isolation and characterization. Biochemistry 15: 836–841, 1976.
 11. Beatty, K., J. Bieth, And J. Travis. Kinetics of association of serine proteinases with native and oxidized a‐1–proteinase inhibitor and α‐1‐antichymotrypsin. J. Biol. Chem. 255: 3931–3934, 1980.
 12. Benditt, E. P., W. S. Burroughs, C. H. Steffee, And L. E. Frazier. Studies in amino acid utilization. IV. The minimum requirements of the indispensable amino acids for maintenance of the adult well nourished male albino rat. J. Nutr. 40: 335–350, 1950.
 13. Bernheim, F., and M. L. C. Bernheim. The nitrogen metabolism of rat tissue slices under various conditions. J. Biol. Chem. 163: 203–209, 1946.
 14. Bienkowski, R. S., M. J. Cowan, J. A. McDonald, And R. G. Crystal. Degradation of newly synthesized collagen. J. Biol. Chem. 253: 4356–4363, 1978.
 15. Blackwood, C. E., Y. Hosannah, E. Perman, S. Keller, And I. Mandl. Experimental emphysema in rats: elastolytic titer of inducing enzyme as determinant of the response. Proc. Soc. Exp. Biol. Med. 114: 450–454, 1973.
 16. Blondin, J., R. Rosenberg, And A. Janoff. An inhibitor in human lung macrophages active against human neutrophil elastase. Am. Rev. Respir. Dis. 106: 477–479, 1972.
 17. Bond, J. S. Relationship between inactivation of an enzyme by acid or lysosomal extracts and its in vivo degradation rate (Abstract). Federation Proc. 34: 651, 1975.
 18. Borsook, H., and G. L. Keighley. The “continuing” metabolism of nitrogen in animals. Proc. R. Soc. London Ser. B 118: 488–521, 1935.
 19. Boucek, R. J., N. L. Noble, And A. Marks. Age and the fibrous proteins of the human lung. Gerontologia 5: 150–157, 1961.
 20. Bradley, K., S. McConnell‐Breul, And R. G. Crystal. Lung collagen heterogeneity. Proc. Natl. Acad. Sci. USA 71: 2828–2832, 1974.
 21. Bradley, K., S. McConnell‐Breul, And R. G. Crystal. Collagen in the human lung. Quantitation of rates of synthesis and partial characterization of composition. J. Clin. Invest. 55: 543–550, 1975.
 22. Bradley, K. H., S. D. McConnell, And R. G. Crystal. Lung collagen composition and synthesis. Characterization and changes with age. J. Biol. Chem. 249: 2674–2683, 1974.
 23. Bradley, M. O., J. F. Dice, L. Hayflick, And R. T. Schimke. Protein alterations in aging WI‐38 cells as determined by proteolytic susceptibility. Exp. Cell Res. 96: 103–112, 1975.
 24. Bradley, M. O., L. Hayflick, And R. T. Schimke. Protein degradation in human fibroblasts (WI‐38). Effects of aging, viral transformation, and amino acid analogs. J. Biol. Chem. 251: 3521–3529, 1976.
 25. Bresnick, E., E. D. Mayfield, And H. Mossé. Increased activity of enzymes for de novo pyrimidine biosynthesis after orotic acid administration. Mol. Pharmacol. 4: 173–180, 1968.
 26. Bresnick, E., S. S. Williams, And H. Mossé. Rates of turnover of deoxythymidine kinase and of its template RNA in regenerating and control liver. Cancer Res. 27: 469–475, 1967.
 27. Brody, J. S., H. Kagan, And A. Manalo. Lung lysyl oxidase activity: relation to lung growth. Am. Rev. Respir. Dis. 120: 1289–1295, 1979.
 28. Brostrom, C. O. and H. Jeffay. Protein catabolism in rat liver homogenates. A re‐evaluation of the energy requirement for protein catabolism. J. Biol. Chem. 245: 4001–4008, 1970.
 29. Bucker, N. L. R. Regeneration of mammalian liver. Int. Rev. Cytol. 15: 245–300, 1963.
 30. Burri, P. H., and E. R. Weibel. Ultrastructure and morphometry of the developing lung. In: Lung Biology in Health and Disease. Development of the Lung, edited by W. A. Hodson. New York: Dekker, 1977, vol. 6, p. 215–268.
 31. Carp, H. and A. Janoff. Possible mechanisms of emphysema in smokers. In vitro suppression of serum elastase‐inhibitory capacity by fresh cigarette smoke and its prevention by antioxidants. Am. Rev. Respir. Dis. 118: 617–621, 1978.
 32. Carp, H. and A. Janoff. In vitro suppression of serum elastase‐inhibitory capacity by phagocytosing polymorphonuclear leukocytes. J. Clin. Invest. 63: 793–797, 1979.
 33. Carp, H. and A. Janoff. Inactivation of bronchial mucous proteinase inhibitor by cigarette smoke and phagocyte‐derived oxidants. Exp. Lung Res. 1: 225–237, 1980.
 34. Chiang, M.‐J., F. Kishi, P. Whitney, And D. Massaro. Proteolysis in the rat lung: hypoxia and evidence for an inhibitor of proteolysis. Am. J. Physiol. 241 (Endocrinol. Metab. 4): E101–E107, 1981.
 35. Chiang, M.‐J. and D. Massaro. Protein metabolism in lung. II. Influence of amino acids and glucose on protein degradation. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 47: 1058–1061, 1979.
 36. Chiang, M.‐J., P. Whitney, Jr., And D. Massaro. Protein metabolism in lung: use of isolated perfused lung to study protein degradation. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 47: 72–78, 1979.
 37. Chiang, M.‐J., P. Whitney, Jr., And D. Massaro. Proteolysis in the lung: modulation by amino acids and hypoxia (Abstract). Am. Rev. Respir. Dis. 123: 216A, 1981.
 38. Christensen, H. N., and A. M. Culler. Effects of nonmetabolizable analogs on the distribution of amino acids in the rat. Biochim. Biophys. Acta 150: 237–252, 1968.
 39. Chua, B., R. L. Kao, D. E. Rannels, And H. E. Morgan. Inhibition of protein degradation by anoxia and ischemia in perfused rat hearts. J. Biol. Chem. 254: 6617–6623, 1979.
 40. Chung, E., E. M. Keele, And E. J. Miller. Isolation and characterization of the cyanogen bromide peptides from α1 (III) chain of human collagen. Biochemistry 13: 3459–3464, 1974.
 41. Chvapil, M., C. D. Eskelson, V. Stiffel, And J. A. Owen. Early changes in the chemical composition of the rat lung after silica administration. Arch. Environ. Health 34: 402–406, 1979.
 42. Clark, J. G., J. E. Overton, B. A. Marino, J. Uitto, And B. C. Starcher. Collagen biosynthesis in bleomycin‐induced pulmonary fibrosis in hamsters. J. Lab. Clin. Med. 96: 943–953, 1980.
 43. Clark, J. G., B. C. Starcher, And J. Uitto. Bleomycin‐induced synthesis of type I procollagen by human lung and skin fibroblasts. Biochim. Biophys. Acta 631: 359–370, 1980.
 44. Clark, M. G., C. J. Beinlich, E. E. Mckee, J. A. Lins, And H. E. Morgan. Relationship between alkaline proteolytic activity and protein degradation in rat heart. Federation Proc. 39: 26–30, 1980.
 45. Cohen, A. B. The effects of in vivo and in vitro oxidative damage to purified alpha1‐antitrypsin and to the enzyme‐inhibiting activity of plasma. Am. Rev. Respir. Dis. 119: 953–960, 1979.
 46. Collins, J. F., and R. G. Crystal. Characterization of cell‐free synthesis of collagen by lung polysomes in a heterologous system. J. Biol. Chem. 250: 7332–7342, 1975.
 47. Collins, J. F., B. McCullough, J. J. Coalson, And W. G. Johanson JR.. Bleomycin‐induced diffuse interstitial pulmonary fibrosis in baboons. II. Further studies on connective tissue changes. Am. Rev. Respir. Dis. 123: 305–312, 1981.
 48. Cowan, M. J., and R. G. Crystal. Lung growth after unilateral pneumonectomy: quantitation of collagen synthesis and content. Am. Rev. Respir. Dis. 111: 267–277, 1975.
 49. Crie, J. S. and K. Wildenthal. Influence of acidosis and lactate on protein degradation in adult and fetal hearts. J. Mol. Cell. Cardiol. 12: 1065–1074, 1980.
 50. Crystal, R. G. Lung collagen: definition, diversity, and development. Federation Proc. 33: 2248–2255, 1974.
 51. Crystal, R. G., J. E. Gadek, V. J. Ferrnas, J. D. Fulmer, B. R. Line, And G. W. Hunninghake. Interstitial lung disease: current concepts of pathogenesis, staging and therapy. Am. J. Med. 70: 542–568, 1981.
 52. Dannenberg, A. M., Jr., And E. L. Smith. Proteolytic enzymes of lung. J. Biol. Chem. 215: 45–54, 1955.
 53. Dannenberg, A. M., Jr., And E. L. Smith. Action of proteinase I of bovine lung. Hydrolysis of the oxidized ã chain of insulin; polymer formation from amino acid esters. J. Biol. Chem. 215: 55–66, 1955.
 54. David, M., and Y. Avi‐Dor. Stimulation of protein synthesis in cultured heart muscle cells by glucose. Biochem. J. 150: 405–411, 1975.
 55. Del Mar, E. G., J. W. Brodick, M. C. Geokas, And C. Largman. Effect of oxidation of methionine in a peptide substrate for human elastase. A model for inactivation of α1‐protease inhibitor. Biochem. Biophys. Res. Commun. 88: 346–350, 1979.
 56. Dice, J. F., P. J. Dehlinger, And R. T. Schimke. Studies on the correlation between size and relative degradation rate of soluble proteins. J. Biol. Chem. 248: 4220–4228, 1973.
 57. Dice, J. F., and A. L. Goldberg. Degradative rates of proteins are related to their isoelectric points (Abstract). Federation Proc. 34: 651, 1975.
 58. Dice, J. F., and A. L. Goldberg. Relationship between in vivo degradative rates and isoelectric points of proteins. Proc. Natl. Acad. Sci. USA 72: 3893–3897, 1975.
 59. Dice, J. F., C. D. Walker, B. Byrne, And A. Cardiel. General characteristics of protein degradation in diabetes and starvation. Proc. Natl. Acad. Sci. USA 75: 2093–2097, 1979.
 60. Dubick, M. A., R. B. Rucker, J. A. Last, L. O. Lollini, And C. E. Cross. Elastin turnover in murine lung after repeated ozone exposure. Toxicol. Appl. Pharmacol. 58: 203–210, 1981.
 61. Eagle, H., K. A. Piez, And M. Levy. The intracellular amino acid concentrations required for protein synthesis in cultured human cells. J. Biol. Chem. 236: 2039–2042, 1961.
 62. Elwyn, D. H., W. J. Launder, H. C. Parikh, And E. M. Wise, JR. Roles of plasma and erythrocytes in interorgan transport of amino acids in dogs. Am. J. Physiol. 222: 1333–1342, 1972.
 63. Epstein, D., S. Elias‐Bishko, And A. Hershko. Requirement for protein synthesis in the regulation of protein breakdown in cultured hepatoma cells. Biochemistry 14: 5199–5204, 1975.
 64. Epstein, E. H., Jr., And N. H. Munderloh. Isolation and characterization of CNBr peptides of human α1(III)3 collagen and tissue distribution of α1(I)2α2 and α1(III)3 collagens. J. Biol. Chem. 250: 9304–9312, 1975.
 65. Eriksson, S. Studies in alpha‐1‐antitrypsin deficiency. Acta Med. Scand. Suppl. 432: 1–85, 1965.
 66. Eyre, D. R. Collagen: molecular diversity in the body's protein scaffold. Science 207: 1315–1322, 1980.
 67. Fan, D., P. Parker, And D. Massaro. Protein synthesis by attached pulmonary macrophages. Effect of phagocytosis. Biochim. Biophys. Acta 699: 98–109, 1982.
 68. Faridy, E. E. Effect of food and water deprivation on surface activity of lungs of rats. J. Appl. Physiol. 29: 493–498, 1970.
 69. Feigelson, P., T. Dashman, And F. Margolis. The half‐lifetime of induced tryptophan peroxidase in vivo. Arch. Biochem. Biophys. 85: 478–482, 1959.
 70. Fisher, H. Protein and amino acid requirements of the laboratory rabbit. Lab. Anim. Sci. 26: 659–663, 1976.
 71. Flaim, K. E., J. B. Li, And L. S. Jefferson. Protein turnover in rat skeletal muscle: effects of hypophysectomy and growth hormone. Am. J. Physiol. 234 (Endocrinol. Metab. Gastrointest. Physiol. 3): E38–E43, 1978.
 72. Fleck, A., J. Shepherd, And H. N. Munro. Protein synthesis in rat liver: influence of amino acids in diet on microsomes and polysomes. Science 150: 628–629, 1965.
 73. Foster, J. A., C. B. Rich, S. Fletcher, S. R. Karr, M. D. Desa, T. Oliver, And A. Przybyla. Elastin biosynthesis in chick embryonic lung tissue. Comparison to chick aortic elastin. Biochemistry 20: 3528–3535, 1981.
 74. Frank, L., J. R. Bucher, And R. J. Roberts. Oxygen toxicity in neonatal and adult animals of various species. J. Appl. Physiol: Respirat. Environ. Exercise Physiol. 45: 699–704, 1978.
 75. Frank, L., and R. J. Roberts. Endotoxin protection against oxygen‐induced acute and chronic lung injury. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 47: 577–581, 1979.
 76. Frank, L., J. Summerville, And D. Massaro. Protection from oxygen toxicity with endotoxin. J. Clin. Invest. 65: 1104–1110, 1980.
 77. Frank, L., D. Wood, And R. J. Roberts. Effect of diethyl‐dithiocarbamate on oxygen toxicity and lung enzyme activity in immature and adult rats. Biochem. Pharmacol. 27: 251–254, 1978.
 78. Frank, L., J. Yam, And R. J. Roberts. The role of endotoxin in protection of adult rats from oxygen‐induced lung toxicity. J. Clin. Invest. 61: 269–275, 1978.
 79. Fridovich, I. Superoxide dismutases. Adv. Enzymol. 41: 35–97, 1974.
 80. Fridovich, I. Oxygen radicals, hydrogen peroxide and oxygen toxicity. In: Free Radicals in Biology, edited by W. A. Pryor. New York: Academic, 1976, vol. I, p. 239–277.
 81. Fridovich, I. The biology of oxygen radicals. Science 201: 875–880, 1978.
 82. Fritz, P. J., E. S. Vesell, E. L. White, And K. M. Pruitt. The role of synthesis and degradation in determining tissue concentrations of lactase dehydrogenase‐5. Proc. Natl. Acad. Sci. USA 62: 558–565, 1969.
 83. Fruton, J. S. On the proteolytic enzymes of animal tissues. V. Peptidases of skin, lung and serum. J. Biol. Chem. 166: 721–738, 1946.
 84. Fulks, R. M., J. B. Li, And A. L. Goldberg. Effects of insulin, glucose, and amino acids on protein turnover in rat diaphragm. J. Biol. Chem. 250: 290–298, 1975.
 85. Fulmer, J. D., R. S. Bienkowski, M. J. Cowan, S. D. Breul, K. M. Bradley, V. J. Ferrans, W. C. Roberts, And R. G. Crystal. Collagen concentration and rates of synthesis in idiopathic pulmonary fibrosis. Am. Rev. Respir. Dis. 122: 289–301, 1980.
 86. Gacad, G., K. Dickie, And D. Massaro. Protein synthesis in lung: influence of starvation on amino acid incorporation into protein. J. Appl. Physiol. 33: 381–384, 1972.
 87. Gacad, G. and D. Massaro. Hyperoxia: influence on lung mechanics and protein synthesis. J. Clin. Invest. 52: 559–565, 1973.
 88. Gadek, J. E., G. A. Fells, And R. G. Crystal. Cigarette smoking induces functional antiprotease deficiency in the lower respiratory tract of humans. Science 206: 1315–1316, 1979.
 89. Gadek, J. E., G. A. Fells, D. G. Wright, And R. G. Crystal. Human neutrophil elastase functions as a type III collagen “collagenase” Biochem. Biophys. Res. Commun. 95: 1815–1822, 1980.
 90. Gadek, J. E., J. A. Kelman, G. A. Fells, S. E. Weinberger, A. L. Horwitz, H. Y. Reynolds, J. D. Fulmer, And R. G. Crystal. Collagenase in the lower respiratory tract of patients with idiopathic pulmonary fibrosis. N. Engl. J. Med. 301: 737–742, 1979.
 91. Gail, D. B. and D. Massaro. Oxygen consumption by rat lung after in vivo hyperoxia. Am. Rev. Respir. Dis. 113: 889–892, 1976.
 92. Gail, D. B., G. D. Massaro, And D. Massaro. Influence of fasting on the lung. J. Appl. Physiol: Respirat. Environ. Exercise Physiol. 42: 88–92, 1977.
 93. Ganschow, R., and R. T. Schimke. Independent genetic control of the catalytic activity and the rate of degradation of catalase in mice. J. Biol. Chem. 244: 4649–4658, 1969.
 94. Garlick, P. J., T. L. Burk, And R. W. S Wick. Protein synthesis and RNA in tissues of the pig. Am. J. Physiol 230: 1108–1112, 1976.
 95. Giri, S. N., L. W. Schwartz, M. A. Hollinger, M. E. Freywald, M. J. Schiedt, And J. E. Zuckerman. Biochemical and structural alterations of hamster lungs in response to intratracheal administration of bleomycin. Exp. Mol Pathol 33: 1–14, 1980.
 96. Glass, R. D. and D. Doyle. On the measurement of protein turnover in animal cells. J. Biol. Chem. 247: 5234–5242, 1972.
 97. Goldberg, A. L. Correlation between rates of degradation of bacterial proteins in vivo and their sensitivity to proteases. Proc. Natl. Acad. Sci. USA 69: 2640–2644, 1972.
 98. Goldberg, A. L., and J. F. Dice. Intracellular protein degradation in mammalian and bacterial cells. Annu. Rev. Biochem. 43: 835–869, 1974.
 99. Goldberg, A. L., E. M. Howell, J. B. Li, S. B. Martel, And W. F. Prouty. Physiological significance of protein degradation in animal and bacterial cells. Federation Proc. 33: 1112–1120, 1974.
 100. Goldberg, A. L., and A. C. St. John. Intracellular protein degradation in mammalian and bacterial cells. Pt. 2. Annu. Rev. Biochem. 45: 747–803, 1976.
 101. Goodridge, A. G., and T. G. Adelman. Regulation of malic enzyme synthesis by insulin, triiodothyronine and glucagon in liver cells in culture. J. Biol. Chem. 251: 3027–3032, 1976.
 102. Grand, R. J., and P. R. Gross. Independent stimulation of secretion and protein synthesis in rat parotid glands. J. Biol. Chem. 244: 5608–5615, 1969.
 103. Greenberg, D., S. A. Lyons, And J. Last. Paraquat‐induced changes in the rate of collagen biosynthesis by rat lung ex‐plants. J. Lab. Clin. Med. 92: 1033–1042, 1978.
 104. Gregorio, C. A. and D. Massaro. Influence of insulin on amino acid uptake by lung slices. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 42: 216–220, 1977.
 105. Gross, I., S. A. Rooney, And J. B. Warshar. The inhibition of enzymes related to pulmonary fatty acid and phospholipid synthesis by dietary deprivation in the rat. Biochem. Biophys. Res. Commun. 64: 59–63, 1975.
 106. Gross, P., M. A. Babyak, E. Tolker, And M. Kaschak. Enzymatically produced pulmonary emphysema. A preliminary report. J. Occup. Med. 6: 481–484, 1964.
 107. Gross, P., E. A. Pfitzer, E. Tolker, M. A. Babyak, And M. Kaschak. Experimental emphysema. Its production with papain in normal and silicotic rats. Arch. Environ. Health 11: 50–58, 1965.
 108. Gunn, J. M., F. J. Ballard, And R. W. Hanson. Influence of hormones and medium composition on the degradation of phosphoenolpyruvate carboxykinase (GTP) and total protein in Reuber H35 cells. J. Biol. Chem. 251: 3586–3593, 1976.
 109. Guttman, H. N. Oxygen inhibition of antibody synthesis (Abstract). J. Cell Biol. 55: 100a, 1972.
 110. Haber, P., F. Kummer, And H. Ludwig. Lung elasticity in juvenile‐onset diabetes mellitus. Am. Rev. Respir. Dis. 116: 544–546, 1977.
 111. Haies, D. M., J. Gil, And E. R. Weibel. Morphometric study of rat lung cells. I. Numerical and dimensional characteristics of parenchymal cell population. Am. Rev. Respir. Dis. 123: 533–541, 1981.
 112. Halme, J., J. Uitto, K. Kahanpää, P. Karhunen, And S. Lindy. Protocollagen proline hydroxylase activity in experimental pulmonary fibrosis of rats. J. Lab. Clin. Med. 75: 535–541, 1970.
 113. Hammer, J. A., III, and D. E. Rannels. Effects of halothane on protein synthesis and degradation in rabbit pulmonary macrophages. Am. Rev. Respir. Dis. 124: 50–55, 1981.
 114. Hammer, J. A., III, and D. E. Rannels. Protein turnover in pulmonary macrophages. Biochem. J. 198: 53–65, 1981.
 115. Hance, A. J., K. Bradley, And R. G. Crystal. Lung collagen heterogeneity. Synthesis of type I and type III collagen by rabbit and human lung cells in culture. J. Clin. Invest. 57: 102–111, 1976.
 116. Hass, M. A., L. Frank, And D. Massaro. The effect of bacterial endotoxin on synthesis of (Cu, Zn) superoxide dismutase in lungs of oxygen‐exposed rats. J. Biol. Chem. 257: 9379–9383, 1982.
 117. Hauschka, P. V., and P. M. Gallop. Elastin biosynthesis in mouse lung (Abstract). Federation Proc. 33: 1536, 1974.
 118. Hesterberg, T. W., and J. A. Last. Ozone‐induced acute pulmonary fibrosis in rats. Prevention of increased rates of collagen synthesis by methylprednisolone. Am. Rev. Respir. Dis. 123: 47–54, 1981.
 119. Hildebran, J., J. Airhart, W. S. Stirewalt, And R. B. Low. Absolute rates of protein and collagen synthesis in cultured human lung fibroblasts (Abstract). Am. Rev. Respir. Dis. 121, Suppl.: 353A, 1980.
 120. Hill, J. M. and D. Malamud. Decreased protein catabolism during stimulated growth. FEBS Lett. 46: 308–311, 1974.
 121. Hochstrasser, K., H. Haendle, R. Reichert, E. Werle, And S. Schwarz. Über Vorkommen und Eigenschaften eines Proteaseninhibitors in menschlichen Nasensekret. Hoppe‐Seyler's Z. Physiol. Chem. 352: 954–958, 1971.
 122. Hochstrasser, K., R. Reichert, S. Schwarz, And E. Werle. Isolierung und Charackterisierung eines Proteaseninhibitors aus menschlichen Bronchialsekret. Hoppe‐Seykr's Z. Physiol. Chem. 353: 221–226, 1972.
 123. Hod, Y., and A. Hershko. Relationship of the pool of intracellular valine to protein synthesis and degradation in cultured cells. J. Biol. Chem. 251: 4458–4467, 1976.
 124. Hoffman, L., O. O. Blumenfeld, R. B. Mondshine, And S. S. Park. Effect of dl‐penicillamine on fibrous proteins of rat lung. J. Appl. Physiol. 33: 42–46, 1972.
 125. Hoffman, L., R. B. Mondshine, And S. S. Park. Effect of dl‐penicillamine on elastic properties of rat lung. J. Appl. Physiol. 30: 508–511, 1971.
 126. Hogg, J. C., S. J. Nepazy, P. T. Macklem, And W. M. Thurlbeck. Elastic properties of the centrilobular emphysematous space. N. Engl. J. Med. 48: 1306–1312, 1969.
 127. Holian, A., and R. P. Daniele. Release of oxygen products from lung macrophages by N‐formyl peptides. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 50: 736–740, 1981.
 128. Holzer, H., and P. C. Heinrich. Control of proteolysis. Annu. Rev. Biochem. 49: 63–92, 1980.
 129. Hopgood, M. F., M. C. Clark, And F. J. Ballard. Inhibition of protein degradation in isolated hepatocytes. Biochem. J. 164: 399–407, 1977.
 130. Hunninghake, G. W., J. M. Davidson, S. Rennard, S. Szapiel, J. E. Gadek, And R. G. Crystal. Elastin fragments attract macrophage precursors to diseased site in pulmonary emphysema. Science 212: 925–927, 1981.
 131. Hussain, M. Z., J. C. Belton, And R. S. Bhatnagar. Macromolecular synthesis in organ cultures of neonatal rat lung. In Vitro 14: 740–745, 1978.
 132. Hussain, M. Z., and R. S. Bhatnagar. Involvement of superoxide in the paraquat‐induced enhancement of lung collagen synthesis in organ culture. Biochem. Biophys. Res. Commun. 89: 71–76, 1979.
 133. Hussain, M. Z., C. E. Cross, M. G. Mustafa, And R. S. Bhatnagar. Hydroxyproline contents and prolyl hydroxylase activities in lungs of rats exposed to low levels of ozone. Life Sci. 18: 897–904, 1976.
 134. Ihnen, J. and G. Kalnitsky. Lung proteases and protease inhibitors. In: Intracellular Protein Catabolism, edited by V. Turk and N. Marks. New York: Plenum, 1977, vol. II, p. 259–269.
 135. Ilan, J. and M. Singer. Sampling of the leucine pool from the growing peptide chain: difference in leucine specific activity of peptidyl‐transfer RNA from free and membrane‐bound polysomes. J. Mol. Biol. 91: 39–51, 1975.
 136. Janoff, A. Anatomic emphysema produced in mice by lysosome‐containing fractions from human alveolar macrophages (Abstract). Federation Proc. 31: 254, 1972.
 137. Janoff, A. Inhibition of human granulocyte elastase by serum α1‐antitrypsin. Am. Rev. Respir. Dis. 105: 121–122, 1972.
 138. Janoff, A. Granulocyte elastase: role in arthritis and in pulmonary emphysema. In: Neutral Proteases of Human Polymorphonuclear Leukocytes. Biochemistry, Physiology, and Clinical Significance, edited by K. Havemann and A. Janoff. Baltimore, MD: Urban & Schwarzenberg, 1978, p. 390–418.
 139. Janoff, A., H. Carp, D. K. Lee, And R. T. Drew. Cigarette smoke inhalation decreased α1‐antitrypsin activity in rat lung. Science 206: 1313–1314, 1979.
 140. Janoff, A., R. Rosenberg, And M. Galdston. Elastase‐like esteroprotease activity in human and rabbit alveolar macrophage granules. Proc. Soc. Exp. Biol. Med. 136: 1054–1058, 1971.
 141. Janoff, A., B. Sloan, G. Weinbaum, B. Damiano, R. A. Sandhaus, J. Elias, And P. Kimbel. Experimental emphysema induced by human neutrophil elastase. Am. Rev. Respir. Dis. 115: 461–478, 1977.
 142. Janoff, A., R. White, H. Carp, S. Harel, R. Dearing, And D. Lee. Lung injury induced by leukocytic proteases. Am. J. Pathol. 97: 111–136, 1979.
 143. Jefferson, L. S., D. E. Rannels, B. L. Munger, And H. E. Morgan. Insulin in the regulation of protein turnover in heart and skeletal muscle. Federation Proc. 33: 1098–1104, 1974.
 144. Johanson, W., Jr., And A. K. Pierce. Effects of elastase, collagenase, and papain on structure and function of rat lungs in vitro. J. Clin. Invest. 51: 288–293, 1972.
 145. John, R. and J. Thomas. Chemical compositions of elastins isolated from aortas and pulmonary tissues of humans of different ages. Biochem. J. 127: 261–269, 1972.
 146. Johnson, A., and F. A. Andrews. Lung scleroproteins in age and emphysema. Chest 57: 239–244, 1970.
 147. Joyner, L. R., and D. Massaro. The oxygen consumption of rabbit lung slices after pneumothorax. Am. Rev. Respir. Dis. 116: 537–540, 1977.
 148. Kaplan, P. D., C. Kuhn, And J. A. Pierce. The induction of emphysema with elastase. I. The evolution of the lesion and influence of serum. J. Lab. Clin. Med. 82: 349–356, 1973.
 149. Karlinsky, J. B., G. L. Snider, C. Franzblau, P. J. Stone, And F. G. Hoppin, JR. In vitro effects of elastase and collagenase on mechanical properties of hamster lungs. Am. Rev. Respir. Dis. 113: 769–777, 1976.
 150. Keller, G. H., and J. M. Taylor. Effect of hypophysectomy on the synthesis of rat liver albumin. J. Biol. Chem. 251: 3768–3773, 1976.
 151. Kelley, J., R. A. Newman, And J. N. Evans. Bleomycin‐induced pulmonary fibrosis in the rat. J. Lab. Clin. Med. 96: 954–964, 1980.
 152. Khairallah, E. A., and G. E. Mortimore. Assessment of protein turnover in perfused rat liver. J. Biol. Chem. 251: 1375–1384, 1976.
 153. Khurana, M., And A. H. Niden. Experimental model to study the development of pulmonary fibrosis (Abstract). Am. Rev. Respir. Dis. 113: 245A, 1976.
 154. King, R. J., and J. A. Clements. Surface active materials from dog lung. II. Composition and physiological correlations. Am. J. Physiol. 223: 715–726, 1972.
 155. Kipnis, D. M., E. Reiss, And E. Helmreich. Functional heterogeneity of the intracellular amino acid pool in mammalian cells. Biochim. Biophys. Acta 51: 519–524, 1961.
 156. Kline, D. L. A procedure for the study of factors which affect the nitrogen metabolism of isolated tissues: hormonal influences. Endocrinology 45: 596–604, 1949.
 157. Kramps, J. A., C. Franken, C. J. L. M. Meijer, And J. H. Dijkman. Localization of low molecular weight protease inhibitor in serous secretory cells of the respiratory tract. J. Histochem. Cytochem. 29: 712–719, 1981.
 158. Kuhn, C., III, and R. M. Senior. The role of elastases in the development of emphysema. Lung 155: 185–197, 1978.
 159. Kuhn, C., III, Y. Shiu‐Yeh, M. Chraplyvy, H. E. Linder, And R. M. Senior. The induction of emphysema with elastase. II. Changes in connective tissue. Lab. Invest. 34: 372–380, 1976.
 160. Kunstling, T. R., R. A. Goodwin, Jr., And R. M. Des Prez. Diffuse interstitial pulmonary fibrosis (cryptogenic fibrosing alveolitis). South. Med. J. 69: 479–487, 1976.
 161. Kuttan, R., M. Lafranconi, I. G. Sipes, E. Meezan, And K. Brendel. Effect of paraquat treatment on prolyl hydroxylase activity and collagen synthesis of rat lung and kidney. Res. Commun. Chem. Pathol. Pharmacol. 25: 257–268, 1979.
 162. Lajtha, A., J. Toth, K. Fumimoto, And H. C. Agrawal. Turnover of myelin proteins in mouse brain in vivo. Biochem. J. 164: 323–329, 1977.
 163. Last, J. A., and D. B. Greenberg. Ozone‐induced alterations in collagen metabolism of rat lungs. II. Long‐term exposures. Toxicol. Appl. Pharmacol. 55: 108–114, 1980.
 164. Last, J. A., D. B. Greenberg, And W. L. Castleman. Ozone‐induced alterations in collagen metabolism of rat lungs. Toxicol. Appl. Pharmacol. 51: 247–258, 1979.
 165. Laurell, C. B. and S. Eriksson. The electrophoretical α1‐globulin pattern of serum in alpha1 antitrypsin deficiency. Scand. J. Clin. Lab. Invest. 15: 132–140, 1963.
 166. Law, M. P., S. Hornsey, And S. B. Field. Collagen content of lungs of mice after x‐ray irradiation. Radiat. Res. 65: 60–70, 1976.
 167. Layman, D. L., L. Sokoloff, And E. J. Miller. Collagen synthesis by articular chondrocytes in monolayer culture. Exp. Cell Res. 73: 107–112, 1972.
 168. Ledford, B. E., R. W. Warner, And R. A. Cochran. Albumin synthesis in cultured hepatoma cells. Regulation by essential amino acids. Biochim. Biophys. Acta 475: 90–95, 1977.
 169. Leffingwell, C. M., and R. B. Low. Protein biosynthesis by the pulmonary alveolar macrophage. Am. Rev. Respir. Dis. 112: 349–359, 1975.
 170. Levine, E. A., R. M. Senior, And J. V. Butler. The elastase activity of alveolar macrophages: measurements using synthesis substrates and elastin. Am. Rev. Respir. Dis. 112: 349–359, 1975.
 171. Li, J. B., J. E. Higgins, And L. S. Jefferson. Changes in protein turnover in skeletal muscle in response to fasting. Am. J. Physiol. 236 (Endocrinol. Metab. Gastrointest. Physiol. 5): E222–E228, 1979.
 172. Lin, E. C. C., and W. E. Knox. Adaption of the rat liver tyrosine‐α‐ketoglutarate transaminase. Biochim. Biophys. Acta 26: 85–88, 1957.
 173. Loftfield, R. B. and A. Harris. Participation of free amino acids in protein synthesis. J. Biol. Chem. 219: 151–159, 1956.
 174. Longmore, W. J., and J. T. Mourning. Lactate production in isolated perfused rat lung. Am. J. Physiol. 231: 351–354, 1976.
 175. Lönnerholm, G. Carbonic anhydrase in the lung. Acta Physiol. Scand. 108: 197–199, 1980.
 176. Low, R. B. Protein biosynthesis by the pulmonary alveolar macrophage: conditions of assay and the effects of cigarette smoke extracts. Am. Rev. Respir. Dis. 110: 466–477, 1974.
 177. Low, R. B. Macromolecule synthesis by alveolar macrophages: response to a phagocytic load. J. Reticubendothel. Soc. 22: 99–109, 1977.
 178. MacDonald, M. L., and R. W. Swock. The effect of protein depletion and repletion in muscle‐protein turnover in the chick. Biochem. J. 194: 811–819, 1981.
 179. Madia, A. M., S. J. Rozovski, And H. M. Kagan. Changes in lung lysyl oxidase activity in streptozotocin‐diabetes and in starvation. Biochim. Biophys. Acta 585: 481–487, 1979.
 180. Madri, J. A. and H. Furthmayr. Isolation and tissue location of type AB collagen from normal lung parenchyma. Am. J. Pathol. 94: 323–331, 1979.
 181. Madri, J. A. and H. Furthmayr. Collagen polymorphism in the lung. Human Pathol. 11: 353–366, 1980.
 182. Mainardi, C. L., S. N. Dixit, And A. H. Kang. Degradation of type IV (basement membrane) collagen by a proteinase isolated from human polymorphonuclear leukocyte granules. J. Biol. Chem. 255: 5435–5441, 1980.
 183. Mainardi, C. L., D. L. Hasty, J. M. Seyer, And A. H. Kang. Specific cleavage of human type III collagen by human polymorphonuclear leukocyte elastase. J. Biol. Chem. 255: 12006–12010, 1980.
 184. Majerus, P. W. and R. Kolburn. Acetyl coenzyme A carboxylase. The roles of synthesis and degradation in regulation of enzyme levels in rat liver. J. Biol. Chem. 244: 6254–6262, 1969.
 185. Marco, V., B. Mass, D. R. Meranze, G. Weinbaum, And P. Kimbel. Induction of experimental emphysema in dogs using leukocyte homogenates. Am. Rev. Respir. Dis. 104: 595–598, 1971.
 186. Marver, H. S., A. Collins, D. P. Tschudy, And M. Recheigl, Jr. à‐Aminolaevulinic acid synthetase. II. Induction in rat liver. J. Biol. Chem. 241: 4323–4329, 1966.
 187. Mass, B., T. Ikeda, D. R. Meranze, G. Weinbaum, And P. Kimbel. Deduction of experimental emphysema cellular and species specificity. Am. Rev. Respir. Dis. 106: 308–391, 1972.
 188. Massaro, D. Protein synthesis in lung: recovery from exposure to hyperoxia. J. Appl. Physiol. 35: 32–34, 1973.
 189. Massaro, D., K. Kelleher, G. Massaro, And H. Yeager, JR. Alveolar macrophages: depression of protein synthesis during phagocytosis. Am. J. Physiol. 218: 1533–1539, 1970.
 190. Massaro, G. D. and D. Massaro. Hyperoxia: a stereological ultrastructural examination of its influence on cytoplasmic components of the pulmonary granular pneumocyte. J. Clin. Invest. 52: 566–570, 1973.
 191. Massaro, G. D. and D. Massaro. Adaption to hyperoxia. Influence on protein synthesis by lung and on granular pneumocyte ultrastructure. J. Clin. Invest. 53: 705–709, 1974.
 192. Matiorri, D. and R. Ruscitto. Age‐related changes of accuracy and efficiency of protein synthesis machinery in rat. Biochim. Biophys. Acta 475: 96–102, 1977.
 193. McKee, E. E., J. V. Cheung, D. E. Rannels, And H. E. Morgan. Measurement of the rate of protein synthesis and compartmentation of heart phenylalanine. J. Biol. Chem. 253: 1030–1040, 1978.
 194. McLees, B. D., G. Schleiter, And S. R. Pinnel. Isolation of type III collagen from human adult parenchymal lung tissue. Biochemistry 16: 185–190, 1977.
 195. Merlie, J. P., S. Heinemann, B. Einarson, And J. M. Lindstrom. Degradation of acetylcholine receptor in diaphragms of rats with experimental autoimmune myasthenia gravis. J. Biol. Chem. 254: 6328–6332, 1979.
 196. Miller, E. J. Biochemical characteristics and biological significance of the genetically‐distinct collagens. Mol. Cell. Bio‐chem. 13: 165–192, 1976.
 197. Millward, D. J., and P. J. Garlick. The pattern of protein turnover in the whole animal and the effect of dietary variations. Proc. Nutr. Soc. 31: 257–263, 1972.
 198. Misra, H. P. and I. Fridovich. The generation of superoxide radical during the autoxidation of ferredoxins. J. Biol. Chem. 246: 6886–6890, 1971.
 199. Moore, S., and W. H. Stein. Procedures for the chromatographic determination of amino acids on four per cent cross‐linked sulfonated polystyrene resins. J. Biol. Chem. 211: 893–906, 1954.
 200. Morgan, H. E. Effects of hypophysectomy, growth hormone and thyroid on protein turnover in heart. J. Biol. Chem. 250: 4556–4561, 1975.
 201. Morgan, H. E., B. H. L. Chua, E. O. Fuller, And D. Siehl. Regulation of protein synthesis and degradation during in vitro cardiac work. Am. J. Physiol. 238 (Endocrinol. Metab. 1): E431–E442, 1980.
 202. Morgan, H. E., D. C. N. Earl, A. Broadus, E. B. Wolpert, K. E. Giger, And L. S. Jefferson. Regulation of protein synthesis in heart muscle. I. Effect of amino acid levels on protein synthesis. J. Biol. Chem. 246: 2152–2162, 1971.
 203. Moriyama, A. and T. Takahashi. Studies on the distribution of acid proteases in primate lungs and other tissues by diethylaminoethyl‐cellulose chromatography. J. Biochem. Tokyo 87: 737–743, 1980.
 204. Mortimore, G. E., and C. E. Mondon. Inhibition by insulin of valine turnover in liver. Evidence for a general control of proteolysis. J. Biol. Chem. 245: 2375–2383, 1970.
 205. Mortimore, G. E., K. H. Woodside, And J. E. Henry. Compartmentation of free valine and its relation to protein turnover in perfused rat liver. J. Biol. Chem. 247: 2776–2784, 1972.
 206. Mueller, P., C. Lemmen, S. Gay, K. von Der Mark, And K. Kuhn. Biosynthesis of collagen by chondrocytes in vitro. In: Extracellular Matrix Influences on Gene Expression, edited by H. C. Slavkin and R. C. Gruelich. New York: Academic, 1975, p. 293–302.
 207. Munro, H. N. Evolution of protein metabolism in mammals. In: Mammalian Protein Metabolism, edited by H. N. Munro. New York: Academic, 1969, vol. III, chapt. 25, p. 133–182.
 208. Nagaishi, C. Functional Anatomy and Histology of the Lung. Baltimore, MD: University Park, 1972.
 209. Nye, R. N. Studies on the pneumonic exudate. V. The relation of pneumonic lung protease activity to hydrogen ion concentration, and a consideration of the origin of the enzyme. J. Exp. Med. 35: 153–160, 1922.
 210. Ohlsson, K. Neutral leukocyte proteases and elastase inhibited by plasma alpha‐1‐antitrypsin. Scand. J. Lab. Clin. Med. 28: 251–253, 1971.
 211. Ohlsson, K. and I. Olsson. The neutral proteases of human granulocytes. Isolation and partial characterization of granulocyte elastases. Eur. J. Biochem. 42: 519–527, 1974.
 212. Ohlsson, K. and H. Tegner. Inhibition of elastase from granulocytes by the low molecular weight bronchial protease inhibitor. Scand. J. Clin. Lab. Invest. 36: 437–445, 1976.
 213. Ohlsson, K., H. Tegner, And U. Akesson. Isolation and partial characterization of a low molecular weight acid‐stable protease inhibitor from human bronchial secretion. Hoppe‐Seyler's Z. Physiol. Chem. 358: 583–589, 1977.
 214. Owens, R. A., L. Wu‐Schyong, G. I. Glover, And J. M. Gunn. Inhibition of protein turnover in human lung cells by pepstatin and tripeptide analogs of pepstatin. Biochem. Pharmacol. 28: 1263–1266, 1979.
 215. Partridge, S. M., H. F. Davis, And G. S. Adair. The chemistry of connective tissues. 3. Composition of the soluble proteins derived from elastin. Biochem. J. 61: 21–30, 1955.
 216. Paskin, N., and R. J. Mayer. The role of enzyme degradation in enzyme turnover during tissue differentiation. Biochim. Biophys. Acta 47: 1–10, 1977.
 217. Paz, M. A., D. A. Keith, H. P. Traverso, And P. M. Gallop. Isolation, purification, and cross‐linking profiles of elastin from lung and aorta. Biochemistry 15: 4912–4918, 1976.
 218. Pearson, O. P., and A. K. Pearson. A stereological analysis of the ultrastructure of the lungs of wild mice living at low and high altitude. J. Morphol. 150: 359–368, 1976.
 219. Phan, S. M., R. S. Thrall, And P. Ward. Bleomycin‐induced pulmonary fibrosis in rats: biochemical demonstration of increased rate of collagen synthesis. Am. Rev. Respir. Dis. 121: 501–506, 1980.
 220. Pickrell, J. A., D. V. Harris, S. A. Benjamin, R. C. Cuddihy, R. C. Pfleger, And J. L. Mauderly. Pulmonary collagen metabolism after lung injury from inhaled 90y in fused clay particles. Exp. Mol. Pathol. 25: 70–81, 1976.
 221. Pickrell, J. A., D. V. Harris, F. F. Hahn, J. J. Belasich, And R. J. Jones. Biological alterations resulting from chronic lung irradiation. III. Effect of partial 30CO thoracic irradiation upon pulmonary collagen metabolism and fractionation in Syrian hamsters. Radiat. Res. 62: 133–144, 1975.
 222. Pickrell, J. A., D. V. Harris, R. C. Pfleger, S. A. Benjamin, J. J. Belasich, R. K. Jones, And R. D. Mcclellan. Biological alterations resulting from chronic lung irradiation. II. Connective tissue alterations following inhalation of 144Ce fused clay aerosol in beagle dogs. Radiat. Res. 63: 299–309, 1975.
 223. Pierce, J. A., H. Besnick, And P. H. Henry. Collagen and elastin metabolism in the lungs, skin, and bones of adult rats. J. Lab. Clin. Med. 69: 485–493, 1967.
 224. Pierce, J. A., and R. V. Ebert. Fibrous network of the lung and its change with age. Thorax 20: 469–475, 1965.
 225. Pierce, J. A., and J. B. Hocott. Studies on the collagen and elastin content of the human lung. J. Clin. Invest. 39: 8–14, 1960.
 226. Pine, M. J. Turnover intracellular proteins. Annu. Rev. Microbiol. 26: 103–126, 1972.
 227. Poole, D. B. and M. Wibo. Protein degradation in culture cells. J. Biol. Chem. 248: 6221–6226, 1973.
 228. Powell, J. T., and P. L. Whitney. Postnatal development of rat lung. Changes in lung lectin, elastin, acetylcholinesterase and other enzymes. Biochem. J. 188: 1–8, 1980.
 229. Ramachandran, G. N. and C. Ramakrishnan. Molecular structure. In: Biochemistry of Collagen, edited by G. N. Ramachandran and C. Ramakrishnan. New York: Plenum, 1976, p. 45–84.
 230. Rannels, D. E., A. C. Hjalmarson, And H. E. Morgan. Effects of noncarbohydrate substrates on protein synthesis in muscle. Am. J. Physiol. 226: 528–539, 1974.
 231. Rannels, D. E., R. H. Sahms, And C. A. Watkins. Effects of starvation and diabetes on protein synthesis in lung. Am. J. Physiol.: 236 (Endocrinol. Metab. Gastrointest. Physiol. 5): E421–E428, 1979.
 232. Rechcigl, M., Jr., And W. E. Heston. Genetic regulation of enzyme activity in mammalian system by the alteration of the rates of enzyme degradation. Biochem. Biophys. Res. Commun. 27: 119–124, 1967.
 233. Regier, J. C., and F. C. Kafatos. Microtechnique for determining the specific activity of radioactive intracellular leucine and applications to in vivo studies of protein synthesis. J. Biol. Chem. 246: 6480–6488, 1971.
 234. Regier, J. C., and F. C. Kafatos. Absolute rates of protein synthesis in sea urchins with specific activity measurements of radioactive leucine and leucyl‐tRNA. Dev. Biol. 57: 270–283, 1977.
 235. Reilly, C.F., and J. Travis. The degradation of human lung elastin by neutrophil proteinases. Biochim. Biophys. Acta 621: 147–157, 1980.
 236. Reiser, K. M., and J. A. Last. Pulmonary fibrosis in experimental acute respiratory disease. Am. Rev. Respir. Dis. 123: 58–63, 1981.
 237. Righetti, P., E. P. Little, And G. Wolf. Reutilization of amino acids in protein synthesis by HeLa cells. J. Biol. Chem. 246: 5724–5732, 1971.
 238. Rillema, J. A., and B. E. Linebaugh. Characteristics of the insulin stimulation of DNA, RNA, and protein metabolism in cultured human mammary carcinoma cells. Biochim. Biophys. Acta 475: 74–89, 1977.
 239. Robinson, J. G. The nature of the amino acid pool used for protein synthesis in cultured, androgen‐responsive tumor cells. Exp. Cell Res. 106: 239–246, 1977.
 240. Rodriguez, R. J., R. R. White, R. M. Senior, And E. A. Levine. Elastase release from human alveolar macrophages. Comparison between smokers and nonsmokers. Science 198: 313–314, 1977.
 241. Rose, W. C., M. J. Oesterling, And M. Womack. Comparative growth on diets containing ten and nineteen amino acids, with further observations upon the role of glutamic and aspartic acids. J. Biol. Chem. 176: 753–762, 1948.
 242. Rosenberg, L. E., S. J. Downing, And S. Segal. Extracellular space estimation in rat kidney slices using C14 saccharides and phlorizin. Am. J. Physiol. 202: 800–804, 1962.
 243. Rubin, I. B. and G. Goldstein. An ultrasensitive isotope dilution method for the determination of l‐amino acids. Anal. Biochem. 33: 244–254, 1970.
 244. Sahebjami, H., and C. L. Vassallo. Influence of starvation on enzyme‐induced emphysema. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 48: 284–288, 1980.
 245. Sahebjami, H., C. L. Vassallo, And J. A. Wirman. Lung mechanics and ultrastructure in prolonged starvation. Am. Rev. Respir. Dis. 117: 77–83, 1978.
 246. Scadding, J. G. Diffuse pulmonary alveolar fibrosis. Thorax 29: 271–281, 1974.
 247. Schiessler, H., E. Fink, And H. Fritz. Acid‐stable proteinase inhibitors from human seminal plasma. Methods Enzymol. 45: 847–859, 1976.
 248. Schimke, R. T. The importance of both synthesis and degradation in the control of arginase levels in rat liver. J. Biol. Chem. 239: 3808–3817, 1964.
 249. Schimke, R. T. Regulation of protein degradation in mammalian tissues. In: Mammalian Protein Metabolism, edited by H. N. Munro and J. B. Allison. New York: Academic, 1970, vol. 4, p. 177–228.
 250. Schimke, R. T. Control of enzyme levels in animal tissues. Adv. Enzymol. 37: 135–187, 1973.
 251. Schimke, R. T. The synthesis and degradation of membrane proteins. In: Advances in Cytopharmacology, edited by B. Ceccarellu, F. Clements, and J. Meldolesi. New York: Raven, 1974, vol. 2, p. 63–69.
 252. Schimke, R. T. and D. Doyle. Control of enzyme levels in animal tissues. Annu. Rev. Biochem. 39: 929–976, 1970.
 253. Schimke, R. T., E. W. Sweeney, And C. M. Berlin. Studies on the stability in vivo and in vitro of rat liver tryptophan pyrrolase. J. Biol. Chem. 240: 4609–4620, 1965.
 254. Schneible, P. A., J. Airhart, And R. B. Low. Differential compartmentation of leucine for oxidation and for protein synthesis in cultured skeletal muscle. J. Biol. Chem. 256: 4888–4894, 1981.
 255. Schoenheimer, R. The Dynamic State of Body Constituents. Cambridge, MA: Harvard Univ. Press, 1949.
 256. Schuyler, M. R., D. E. Niewoehner, S. R. Inkley, And R. Kohn. Abnormal lung elasticity in juvenile diabetes mellitus. Am. Rev. Respir. Dis. 113: 37–41, 1976.
 257. Scornik, O. A. and V. Botbol. Role of changes in protein degradation in the growth of regenerating livers. J. Biol. Chem. 251: 2801–2897, 1976.
 258. Seethanathan, P., B. Radharkrishnamurthy, E. R. Dalferes, Jr., And G. S. Berenson. The composition of connective tissue macromolecules from bovine respiratory system. Respir. Physiol. 24: 347–354, 1975.
 259. Segal, H. L. Mechanism and regulation of protein turnover in animal cells. Curr. Top. Cell. Regul. 11: 183–210, 1976.
 260. Senior, R. M., P. D. Kaplan, C. Kuhn, And H. E. Linder. Enzyme‐induced emphysema. In: Fundamental Problems of Cystic Fibrosis and Related Diseases, edited by J. A. Mangos and R. C. Talamo. New York: Stratton, 1973, p. 183–194.
 261. Seyer, J. M., E. T. Hutcheson, And A. H. Kang. Collagen polymorphism in idiopathic chronic pulmonary fibrosis. J. Clin. Invest. 57: 1498–1507, 1976.
 262. Shakespeare, V., and J. H. Buchanan. Increased degradation rates of protein in aging human fibroblasts and in cells treated with an amino acid analog. Exp. Cell Res. 100: 1–8, 1976.
 263. Shin, H. S., R. Snyderman, E. Friedman, A. Mellors, And M. M. Mayer. Chemotactic and anaphylatoxic fragment cleaved from the fifth component of guinea pig complement. Science 162: 361–363, 1968.
 264. Sidransky, H., D. S. Sarma, M. Bongiono, And E. Verney. Effect of dietary tryptophan on hepatic polysomes and protein synthesis in fasted mice. J. Biol. Chem. 243: 1123–1132, 1968.
 265. Simpson, M. V. The release of labeled amino acids from the proteins of rat liver slices. J. Biol. Chem. 201: 143–154, 1953.
 266. Singh, H. and G. Kalnitsky. Separation of a new α‐N‐benzoylarginine‐ã‐naphthylamide hydrolase from cathepsin B1. J. Biol. Chem. 253: 4319–4326, 1978.
 267. Singh, H. and G. Kalnitsky. α‐N‐benzoylarginine‐ã‐naphthylamide hydrolase, an aminoendopeptidase from rabbit lung. J. Biol. Chem. 255: 369–374, 1980.
 268. Snider, G. L., J. A. Hayes, C. Franzblau, H. M. Kagavy, P. S. Stone, And A. L. Korthy. Relationship between elastolytic activity and experimental emphysema‐inducing properties of papain preparations. Am. Rev. Respir. Dis. 110: 254–262, 1974.
 269. Snyderman, R., H. S. Shin, And A. M. Dannenberg, JR. Macrophage proteinase and inflammation: the production of chemotactic activity from the fifth component of complement by macrophage proteinase. J. Immunol. 109: 896–898, 1972.
 270. Sogawa, K. and K. Takahashi. The structure and function of acid protease. VII. Distribution and some properties of acid protease in monkey tissues. J. Biochem. 81: 423–429, 1977.
 271. Sogawa, K. and K. Takahashi. Cathepsins D from rhesus monkey lung: purification and characterization. J. Biochem. 88: 619–633, 1980.
 272. Speake, B. K., R. Dits, And R. J. Mayer. Regulation of enzyme turnover during tissue differentiation. Studies on the effects of hormones on the runover of fatty acid synthetase in rabbit mammary gland in organ culture. Biochem. J. 148: 309–320, 1975.
 273. Stachfield, J. E., and J. D. Yager. Insulin effects on protein synthesis and secretion in primary cultures of amphibian hepatocytes. J. Cell. Physiol. 100: 279–290, 1979.
 274. Stanley, N. N., R. Alper, E. L. Cunningham, N. S. Cherniak, And N. A. Kefalides. Effects of a molecular change in collagen on lung structure and mechanical function. J. Clin. Invest. 55: 1195–1201, 1975.
 275. Starcher, B. C., C. Kuhn, And J. E. Overton. Increased elastin and collagen content in the lungs of hamsters receiving an intratracheal injection of bleomycin. Am. Rev. Respir. Dis. 117: 299–305, 1978.
 276. Stedman, R. L. The chemical composition of tobacco and tobacco smoke. Chem. Rev. 68: 153–207, 1968.
 277. Steinberg, D. and M. Vaughan. Intracellular protein degradation in vitro. Biochim. Biophys. Acta 19: 584–585, 1956.
 278. Stevens, J. B., and A. P. Autor. Induction of superoxide dismutase by oxygen in neonatal rat lung. J. Biol. Chem. 252: 3509–3514, 1974.
 279. Taylor, J. C., and J. P. Crawford. Purification and preliminary characterization of human leukocyte elastase. Arch. Biochem. Biophys. 169: 91–101, 1975.
 280. Thet, L. A., M. D. Delaney, C. A. Gregorio, And D. Massaro. Protein metabolism by rat lung: influence of fasting, glucose, and insulin. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 43: 463–467, 1977.
 281. Thrall, R. S., J. R. Mccormick, R. M. Jack, R. A. McReynolds, And P. A. Ward. Bleomycin‐induced pulmonary fibrosis in the rat. Inhibition by indomethacin. Am. J. Pathol. 95: 117–127, 1979.
 282. Tonge, B. L. Effect of tobacco smoke condensate on the aerial oxidation of cysteine. Nature London 194: 284–285, 1962.
 283. Tourian, A., J. Goddard, And T. T. Puck. Phenylalanine hydroxylase activity in mammalian cells. J. Cell. Physiol. 73: 159–170, 1969.
 284. Turino, G. M., R. V. Lourenço, And G. H. Mccracken. Role of connective tissues in large pulmonary airways. J. Appl. Physiol. 25: 645–653, 1968.
 285. Tweto, J. and D. Doyle. Turnover of iodinated plasma membrane proteins of hepatoma tissue cultured cells. In: Intracellular Protein Turnover, edited by R. T. Schimke and N. Katunuma. New York: Academic, 1975, p. 295–308.
 286. Twumasi, D. Y., and I. E. Liener. Proteases from purulent sputum. Purification and properties of the elastase and chymotrypsin‐like enzymes. J. Biol. Chem. 252: 1917–1926, 1977.
 287. Udenfriend, S., and J. R. Cooper. The enzymatic conversion of phenylalanine to tyrosine. J. Biol. Chem. 194: 503–511, 1952.
 288. Ulrich, F. Effects of trypsin on protein synthesis in macrophages. Exp. Cell Res. 101: 267–277, 1976.
 289. Ulrich, F. Washing macrophage suspensions inhibits protein synthesis. Proc. Soc. Exp. Biol. Med. 155: 13–18, 1977.
 290. Van Venrooij, W. J., H. Moonen, And L. Van Loon‐Klaasen. Source of amino acids used for protein synthesis in HeLa cells. Eur. J. Biochem. 50: 297–304, 1974.
 291. Vidrich, A., J. Airhart, M. K. Bruno, And E. A. Khairallah. Compartmentation of free amino acids for protein biosynthesis. Influence of diurnal changes in hepatic amino acid concentrations on the composition of the precursor pool charging aminoacyltransfer ribonucleic acid. Biochem. J. 162: 257–266, 1977.
 292. Wallner, O. and H. Fritz. Characterization of an acid‐stable proteinase inhibitor in human cervical mucus. Hoppe‐Seyler's Z. Physiol. Chem. 355: 709–715, 1974.
 293. Warburton, M. J., and B. Poole. Effect of medium composition on protein degradation and DNA synthesis in rat embryo fibroblasts. Proc. Natl. Acad. Sci. USA 74: 2427–2431, 1977.
 294. Ward, P. A., and L. J. Newman. A neutrophil chemotactic factor from human C5. J. Immunol. 102: 93–99, 1969.
 295. Ward, W. F., and G. E. Mortimore. Compartmentation of intracellular amino acids in rat liver. J. Biol. Chem. 253: 3581–3587, 1978.
 296. Waterlow, J. C., P. J. Garlick, And D. J. Millward. Protein Turnover in Mammalian Tissues and in the Whole Body. Amsterdam: North‐Holland, 1978.
 297. Watkins, C. A., and D. E. Rannels. Measurement of protein synthesis in rat lungs perfused in situ. Biochem. J. 188: 269–278, 1980.
 298. Watkins, S., M. G. Clark, A. W. Rogers, M. F. Hopgood, And F. J. Ballard. Degradation of extracellular protein by the isolated perfused rat liver. A biochemical and autoradiographic study. Exp. Cell Res. 119: 111–117, 1979.
 299. Webb, W. R., and T. H. Burford. Studies on the reexpanded lung after prolonged atelectasis. Arch. Surg. Chicago 66: 801–809, 1953.
 300. Weinbaum, G., M. Takamoto, B. Sloan, And P. Kimbel. Lung antiproteinase: a potential defense against emphysema development. Am. Rev. Respir. Dis. 113: 245–248, 1976.
 301. Weiss, C., and M. L. Boyar‐Manstein. On the mechanism of liquefaction of tubercles. I. The behavior of endocellular proteinases in tubercles developing in the lungs of rabbits. Am. Rev. Tuberc. 63: 694–705, 1961.
 302. Werb, A. and J. Aggeler. Proteases induce secretion of collagenase and plasminogen activator by fibroblasts. Proc. Natl. Acad. Sci. USA 75: 1839–1843, 1978.
 303. Werb, Z. and S. Gordan. Elastase secretion by stimulated macrophages. Characterization and regulation. J. Exp. Med. 142: 361–377, 1975.
 304. Wessels, N. K., and J. H. Cohen. Effects of collagenase on developing epithelia in vitro: lung, ureteric bud, and pancreas. Dev. Biol. 18: 294–309, 1968.
 305. Wilde, C. J., N. Paskin, J. Saxton, And R. J. Mayer. Protein degradation during terminal cytodifferentiation. Biochem. J. 192: 311–320, 1980.
 306. Williams, I. H., P. H. Sugden, And H. E. Morgan. Use of aromatic amino acids as monitors of protein turnover. Am. J. Physiol. 240 (Endocrinol. Metab. 3): E677–E681, 1981.
 307. Woodside, K. H. Inhibition of liver protein degradation by cycloheximide (Abstract). Federation Proc. 34: 651, 1975.
 308. Woodside, K. H. Inhibition of hepatic protein degradation by inhibitors of macromolecular assembly (Abstract). Federation Proc. 35: 283, 1976.
 309. Woodside, K. H., and D. Massaro. Degradation of endogenous protein by rabbit pulmonary macrophages. J. Appl. Physiol: Respirat. Environ. Exercise Physiol. 47: 79–86, 1979.
 310. Woodside, K. H., and G. E. Mortimore. Suppression of protein turnover by amino acids in the perfused rat liver. J. Biol. Chem. 247: 6474–6481, 1972.
 311. Woodside, K. H., W. F. Ward, And G. E. Mortimore. Effects of glucagon on general protein degradation and synthesis in perfused rat liver. J. Biol. Chem. 249: 5458–5463, 1974.
 312. Yam, J., L. Frank, And R. J. Roberts. Oxygen toxicity: comparison of lung biochemical responses in neonatal and adult rats. Pediatr. Res. 12: 115–119, 1978.
 313. Yeager, H., Jr. Alveolar cells: depressant effect of cigarette smoke on protein synthesis. Proc. Soc. Exp. Biol. Med. 131: 247–250, 1969.
 314. Yoshida, A., G. Stamatoyannopoulos, And A. G. Motulsky. Negro variant of glucose‐6‐phosphate dehydrogenase deficiency (A‐) in man. Science 155: 97–99, 1967.
 315. Yu, S. Y., N. R. Keller, And A. Yoxhida. Biosynthesis of insoluble elastin in hamster lungs during elastase‐emphysema. Proc. Soc. Exp. Biol. Med. 157: 369–373, 1978.
 316. Zak, R., A. F. Martin, And R. Blough. Assessment of protein turnover by use of radioisotopic tracers. Physiol. Rev. 59: 407–447, 1979.
 317. Zimmerberg, J., O. Greengard, And W. E. Knox. Peptidyl proline hydroxylase in adult, developing, and neoplastic rat tissues. Cancer Res. 35: 1009–1014, 1975.
 318. Zuckerman, J. E., M. A. Hollinger, And S. N. Giri. Evaluation of antifibrotic drugs in bleomycin‐induced pulmonary fibrosis in hamsters. J. Pharmacol. Exp. Ther. 213: 425–431, 1980.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Donald Massaro. Protein Turnover in the Lungs. Compr Physiol 2011, Supplement 10: Handbook of Physiology, The Respiratory System, Circulation and Nonrespiratory Functions: 277-308. First published in print 1985. doi: 10.1002/cphy.cp030107