Comprehensive Physiology Wiley Online Library

Lipid Synthesis and Surfactant Turnover in the Lungs

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Lipid Composition of Lung Tissue
1.1 Parenchyma
1.2 Alveolar Type II Cells
1.3 Pulmonary Surfactant
2 Metabolic Pathways of Lipids in Lung Tissue
2.1 Phosphatidylcholine
2.2 Phosphatidylglycerol
2.3 Other Lipids in Surfactant
2.4 Enzymes of Lipid Synthesis
3 Regulation of Surfactant Metabolism
3.1 Regulation of Synthesis and Storage of Surfactant Components
3.2 Regulation of Secretion of Surfactant Components
3.3 Regulation of Clearance of Surfactant Components
3.4 Relationship Between Protein and Lipid Metabolism
4 Compartmental Analysis in Studies of Surfactant Turnover
Figure 1. Figure 1.

Type II alveolar epithelial cell fixed in situ by vascular perfusion. Prefixation with 2.5% glutaraldehyde in 0.2 M sodium cacadylate, pH 7.4, followed by postfixation with 1% osmium tetroxide. × 14,250. Inset: cytoplasmic region containing several lamellar bodies, × 26,400.

Figure 2. Figure 2.

Schema for isolation of pulmonary surfactant from alveolar lavage fluid. Extracellular fluid is recovered from lung by gently instilling 0.1 M NaCl containing 3 mM Ca2+ and Mg2+ buffered to pH 7.4 into tracheobronchial tree.

From King and Clements
Figure 3. Figure 3.

A: formation of tubular myelin lattice structure in fetal rats, 21 days gestational age. Particles are seen on membrane layers extending into regular lattice, × 81,000. B: small particles (arrow) present within many corners of lattice; however, structures connecting them to membranes are not resolved. × 138,000.

From Williams
Figure 4. Figure 4.

Major pathways used for phosphatidylcholine synthesis.

From King
Figure 5. Figure 5.

Proposed lung cell pathways for restructuring unsaturated phosphatidylcholines to dipalmitoyl phosphatidylcholine.

From King
Figure 6. Figure 6.

Proposed metabolic pathway used by type II cells to synthesize phosphatidylglycerol in pulmonary surfactant.

Figure 7. Figure 7.

Tracheal flux of surfactant and plasma corticoid levels in fetal lambs as functions of gestational age.

From Mescher et al.
Figure 8. Figure 8.

Specific activities of dipalmitoyl phosphatidylcholine (○) and apolipoprotein A (•) in alveolar epithelial type II cells from rat lung.

From King and Martin
Figure 9. Figure 9.

Specific activities of dipalmitoyl phosphatidylcholine (○) and apolipoprotein A (•) in surfactant purified from alveolar lavage fluid.

From King and Martin
Figure 10. Figure 10.

Labeling of 2 principal proteins in alveolar lavage fluid of rat pulmonary surfactant by radioactive leucine.

From King and Martin


Figure 1.

Type II alveolar epithelial cell fixed in situ by vascular perfusion. Prefixation with 2.5% glutaraldehyde in 0.2 M sodium cacadylate, pH 7.4, followed by postfixation with 1% osmium tetroxide. × 14,250. Inset: cytoplasmic region containing several lamellar bodies, × 26,400.



Figure 2.

Schema for isolation of pulmonary surfactant from alveolar lavage fluid. Extracellular fluid is recovered from lung by gently instilling 0.1 M NaCl containing 3 mM Ca2+ and Mg2+ buffered to pH 7.4 into tracheobronchial tree.

From King and Clements


Figure 3.

A: formation of tubular myelin lattice structure in fetal rats, 21 days gestational age. Particles are seen on membrane layers extending into regular lattice, × 81,000. B: small particles (arrow) present within many corners of lattice; however, structures connecting them to membranes are not resolved. × 138,000.

From Williams


Figure 4.

Major pathways used for phosphatidylcholine synthesis.

From King


Figure 5.

Proposed lung cell pathways for restructuring unsaturated phosphatidylcholines to dipalmitoyl phosphatidylcholine.

From King


Figure 6.

Proposed metabolic pathway used by type II cells to synthesize phosphatidylglycerol in pulmonary surfactant.



Figure 7.

Tracheal flux of surfactant and plasma corticoid levels in fetal lambs as functions of gestational age.

From Mescher et al.


Figure 8.

Specific activities of dipalmitoyl phosphatidylcholine (○) and apolipoprotein A (•) in alveolar epithelial type II cells from rat lung.

From King and Martin


Figure 9.

Specific activities of dipalmitoyl phosphatidylcholine (○) and apolipoprotein A (•) in surfactant purified from alveolar lavage fluid.

From King and Martin


Figure 10.

Labeling of 2 principal proteins in alveolar lavage fluid of rat pulmonary surfactant by radioactive leucine.

From King and Martin
References
 1. Abe, M., and T. Akino. Comparison of metabolic heterogeneity of glycerolipids in rat lung and liver. Tohoku J. Exp. Med. 106: 343–355, 1972.
 2. Abrams, M. E. Isolation and quantitative estimation of pulmonary surface‐active lipoprotein. J. Appl. Physiol. 21: 718–720, 1966.
 3. Akino, T., and M. Abe. Recent advances on the phospholipid metabolism of the lung: biosynthetic pathways of dipalmitoyl lecithin. A review. J. Jpn. Med. Soc. Biol. Interface 8: 2–18, 1977.
 4. Balint, J. A., D. A. Beeler, E. C. Kyriakides, and D. H. Treble. Studies on the biosynthesis of pulmonary surfactant lecithin. Chest 67, Suppl. 2: 21S–22S, 1975.
 5. Balint, J. A., E. C. Kyriakides, and D. A. Beeler. Fatty acid desaturation in lung: inhibition by unsaturated fatty acids. J. Lipid Res. 21: 868–873, 1980.
 6. Ballard, P. L., B. J. Benson, A. Brehier, J. P. Carter, B. M. Kriz, and E. C. Jorgensen. Transplacental stimulation of lung development in the fetal rabbit by 3,5‐dimethyl‐3′‐isopropyl‐l‐thyronine. J. Clin. Invest. 65: 1407–1417, 1980.
 7. Baranska, J., and L. M. G. van Golde. Role of lamellar bodies in the biosynthesis of phosphatidylcholine in mouse lung. Biochim. Biophys. Acta 488: 285–293, 1977.
 8. Baritussio, A., and J. A. Clements. Acute effects of pulmonary artery occlusion on the pool of alveolar surfactant. Respir. Physiol. 45: 323–331, 1981.
 9. Baritussio, A., G. Enzi, D. de Biasi, M. Schiavon, L. Allegra, and E. M. Inelmen. The elastic properties of the lung in hyperlipidemias. In: Diabetes, Obesity and Hyperlipidemias, edited by G. Crepaldi, P. J. Lefebvre, and K. L. M. M. Alberti. London: Academic, 1978, p. 325–329.
 10. Baritussio, A., G. Enzi, E. M. Inelman, M. Schiavon, F. de Biasi, L. Allegra, F. Ursini, and G. Baldo. Altered surfactant synthesis and function in rats with diet‐induced hyperlipidemia. Metabolism 29: 503–510, 1980.
 11. Baritussio, A. G., M. W. Magoon, J. Goerke, and J. A. Clements. Precursor‐product relationship between rabbit type II cell lamellar bodies and alveolar surface‐active material. Surfactant turnover time. Biochim. Biophys. Acta 666: 382–393, 1981.
 12. Batenburg, J. J., W. J. Longmore, and L. M. G. van Golde. The synthesis of phosphatidylcholine by adult rat lung alveolar type II epithelial cells in primary culture. Biochim. Biophys. Acta 529: 160–170, 1978.
 13. Baxter, C. F., G. Rouser, and G. Simon. Variations among vertebrates of lung phospholipid class composition. Lipids 4: 243–244, 1968.
 14. Beckman, D. L., and K. F. Mason. Sympathetic influence on the dynamic lung compliance. Life Sci. 12: 43–48, 1973.
 15. Benson, B. J. Properties of an acid phosphatase in pulmonary surfactant. Proc. Natl. Acad. Sci. USA 77: 808–811, 1980.
 16. Berry, E. M., J. R. Edmunds, and J. H. Wyllie. Release of prostaglandin E2 and unidentified factors from ventilated lungs. Br. J. Surg. 58: 189–192, 1971.
 17. Bhattacharyya, S. N., and W. S. Lynn. Structural characterization of a glycoprotein isolated from alveoli of patients with alveolar proteinosis. J. Biol. Chem. 254: 5191–5198, 1979.
 18. Bhattacharyya, S. N., M. A. Passero, R. P. Diaugustine, and W. S. Lynn. Isolation and characterization of two hydroxyproline‐containing glycoproteins from normal animal lung lavage and lamellar bodies. J. Clin. Invest. 55: 914–920, 1975.
 19. Bhattacharyya, S. N., M. C. Rose, M. G. Lynn, C. MacLeod, M. Alberts, and W. S. Lynn. Isolation and characterization of a unique glycoprotein from lavage of chicken lungs and lamellar organelles. Am. Rev. Respir. Dis. 114: 843–850, 1976.
 20. Bolande, R. P., and M. H. Klaus. The morphologic demonstration of an alveolar lining layer and its relationship to pulmonary surfactant. Am. J. Pathol. 45: 449–463, 1964.
 21. Bonsen, P. P. M., G. H. de Haas, W. A. Pieterson, and L. L. M. van Deenen. Studies on phospholipase A and its zymogen from porcine pancreas. IV. The influence of chemical modification of the lecithin structure on substrate properties. Biochim. Biophys. Acta 270: 364–382, 1972.
 22. Brehier, A., B. J. Benson, M. C. Williams, R. J. Mason, and P. L. Ballard. Corticosteroid induction of phosphatidic acid phosphatase in fetal rabbit lung. Biochem. Biophys. Res. Commun. 77: 883–890, 1977.
 23. Bremer, J., and D. M. Greenberg. Methyl transferring enzyme system of microsomes in the biosynthesis of lecithin (phosphatidylcholine). Biochim. Biophys. Acta 46: 205–216, 1961.
 24. Brown, E. S. Isolation and assay of dipalmityl lecithin in lung extracts. Am. J. Physiol. 207: 402–406, 1964.
 25. Brown, L. A. S., and W. J. Longmore. Adrenergic and cholinergic regulation of lung surfactant secretion in the isolated perfused rat lung and in the alveolar type II cell in culture. J. Biol. Chem. 256: 66–72, 1981.
 26. Brumley, G. W., B. Tuggle, L. Luxner, and J. D. Crapo. Disaturated phosphatidylcholine in rat lungs with altered numbers of type II alveolar epithelial cells. Am. Rev. Respir. Dis. 119: 461–470, 1979.
 27. Burnell, J. M., E. C. Kyriakides, R. H. Edmonds, and J. A. Balint. The relationship of fatty acid composition and surface activity of lung extracts. Respir. Physiol. 32: 195–206, 1978.
 28. Bygrave, F. L., and R. M. C. Dawson. Phosphatidylcholine biosynthesis and choline transport in the anaerobic Protozoon Entodinium caudatum Biochem. J. 160: 481–490, 1976.
 29. Casola, P. G., A. Yeung, G. F. Fellows, and F. Possmayer. Pulmonary phosphatidic acid phosphatase: evidence for a membrane‐bound phosphatidic acid‐dependent activity associated with the high speed supernatant of rat lung. Biochem. Biophys. Res. Commun. 82: 627–633, 1978.
 30. Chapman, D., R. M. Williams, and B. D. Ladbrooke. Physical studies of phospholipid. VI. Thermotropic and lyotropic mesomorphism of some 1,2‐diacylphosphatidylcho‐lines (lecithins). Chem. Phys. Lipids 1: 445–475, 1967.
 31. Chevalier, G., and A. J. Collet. In vivo incorporation of choline‐3H, leucine‐3H, and galactose‐3H in alveolar type II pneumonocytes in relation to surfactant synthesis. A quantitative radioautographic study in mouse by electron microscopy. Anat. Rec. 174: 289–310, 1972.
 32. Chi, E. Y., J. L. Prueitt, and D. Lagunoff. Abnormal lamellar bodies in type II pneumocytes and increased lung surface active material in the beige mouse (Letter to the editor). J. Histochem. Cytochem. 23: 863–868, 1975.
 33. Clements, J. A. Surface phenomena in relation to pulmonary function. Physiologist 5: 11–28, 1962.
 34. Clements, J. A. The alveolar lining layer. In: Development of the Lung, edited by A. V. S. de Reuck and R. Porter. London: Churchill, 1967, p. 202–237.
 35. Clements, J. A., R. F. Hustead, R. P. Johnson, and I. Gribetz. Pulmonary surface tension and alveolar stability. J. Appl. Physiol. 16: 444–450, 1961.
 36. Clements, J. A., and R. J. King. Composition of surface active material. In: Lung Biology in Health and Disease. The Biochemical Basis of Pulmonary Function, edited by R. G. Crystal. New York: Dekker, vol. 2, 1976, p. 363–383.
 37. Clements, J. A., J. Nellenbogen, and H. J. Trahan. Pulmonary surfactant and evolution of the lungs. Science 169: 603–604, 1970.
 38. Colacicco, G., M. K. Basu, A. K. Ray, M. Wittner, and R. M. Rosenbaum. Effects of prostaglandins E2 and F2α on lecithin biosynthesis by cultured lung cells. Prostaglandins 14: 283–294, 1977.
 39. Colacicco, G., A. R. Buckelew, Jr., and E. M. Scarpelli. Protein and lipid‐protein fractions of lung washings: chemical characterization. J. Appl. Physiol. 34: 743–749, 1973.
 40. Collet, A. J., and G. Chevalier. Morphological aspects of type II alveolar pneumonocytes following treatment with puromycin in vivo. Am. J. Anat. 148: 275–294, 1977.
 41. Collins, J. F., and R. G. Crystal. Protein synthesis. In: Lung Biology in Health and Disease. The Biochemical Basis of Pulmonary Function, edited by R. G. Crystal. New York: Dekker, vol. 2, 1976, p. 171–212.
 42. Corbet, A. J. S., P. Flax, and A. J. Rudolph. Role of autonomic nervous system controlling surface tension in fetal rabbit lungs. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 43: 1039–1045, 1977.
 43. Davies, J. T., and E. K. Rldeal. Interfacial Phenomena. New York: Academic, 1961.
 44. Dermer, G. B. The fixation of pulmonary surfactant for electron microscopy. II. Transport of surfactant through the air‐blood barrier. J. Ultrastruct. Res. 31: 229–246, 1970.
 45. Dobbs, L. G., and R. J. Mason. Pulmonary alveolar type II cells isolated from rats: release of phosphatidylcholine in response to beta‐adrenergic stimulation. J. Clin. Invest. 63: 378–387, 1978.
 46. Duck‐Chong, C. G. The isolation of lamellar bodies and their membranous content from rat lung, lamb tracheal fluid and human amniotic fluid. Life Sci. 22: 2025–2030, 1978.
 47. Engle, M. J., R. L. Sanders, and W. J. Longmore. Phospholipid composition and acyl‐transferase activity of lamellar bodies isolated from rat lung. Arch. Biochem. Biophys. 173: 586–594, 1976.
 48. Erbland, J. F., and G. V. Marinetti. The enzymatic acylation and hydrolysis of lysolecithin. Biochim. Biophys. Acta 106: 128–138, 1965.
 49. Faridy, E. E. Effect of food and water deprivation on surface activity of lungs of rats. J. Appl. Physiol. 29: 493–498, 1970.
 50. Faridy, E. E. Effect of distension on release of surfactant in excised dogs' lungs. Respir. Physiol. 27: 99–114, 1976.
 51. Faridy, E. E., S. Permutt, and R. L. Riley. Effect of ventilation on surface forces in excised dogs' lungs. J. Appl. Physiol. 21: 1453–1462, 1966.
 52. Farrell, P. M. Fetal lung development and the influence of glucocorticoids on pulmonary surfactant. J. Steroid Biochem. 8: 463–470, 1977.
 53. Farrell, P. M., D. W. Lundgren, and A. J. Adams. Choline kinease and choline phosphotransferase in developing fetal rat lung. Biochem. Biophys. Res. Commun. 57: 696–701, 1974.
 54. Feldman, D. A., C. R. Kovac, P. L. Dranginis, and P. A. Weinhold. The role of phosphatidylglycerol in the activation of CTP:phosphocholine cytidylyltransferase from rat lung. J. Biol. Chem. 253: 4980–4986, 1978.
 55. Ferreira, S. H., and J. R. Vane. Prostaglandins: their disappearance from and release into the circulation. Nature London 216: 868–873, 1967.
 56. Finley, T. N., S. A. Pratt, A. J. Ladman, L. Brewer, and M. B. McKay. Morphological and lipid analysis of the alveolar lining material in dog lung. J. Lipid Res. 9: 357–365, 1968.
 57. Finley, T. N., W. H. Tooley, E. W. Swenson, R. E. Gardner, and J. A. Clements. Pulmonary surface tension in experimental atelectasis. Am. Rev. Respir. Dis. 89: 372–378, 1964.
 58. Fisher, H. K., M. H. Hyman, and S. J. Ashcraft. Alveolar surfactant phospholipids are not cleared via trachea (Abstract). Federation Proc. 38: 1373, 1979.
 59. Forrest, J. B. The effect of hyperventilation on pulmonary surface activity. Br. J. Anaesth. 44: 313–320, 1972.
 60. Frosolono, M. F., B. L. Charms, R. Pawlowski, and S. Slivka. Isolation, characterization and surface chemistry of a surface‐active fraction from dog lung. J. Lipid Res. 11: 439–457, 1970.
 61. Fujiwara, T. Biochemical aspects of pulmonary alveolar surface lining layer. Acta Pathol. Jpn. 22: 805–810, 1972.
 62. Gail, D. B., G. D. Massaro, and D. Massaro. Influence of cycloheximide on the lung. J. Appl. Physiol. 38: 623–629, 1975.
 63. Gail, D. B., G. D. Massaro, and D. Massaro. Influence of fasting on the lung. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 42: 88–92, 1977.
 64. Galdston, M., D. O. Shah, and G. Y. Shinowara. Isolation and characterization of a lung lipoprotein surfactant. J. Colloid Interface Sci. 29: 319–334, 1969.
 65. Gassenheimer, L. N., and R. A. Rhoades. Influence of forced ventilation on substrate metabolism in the perfused rat lung. J. Appl. Physiol. 37: 224–227, 1974.
 66. Gassenheimer, L., R. A. Rhoades, and R. W. Scholz. In vivo incorporation of 14C‐l‐palmitate and 3H‐U‐glucose into lung lecithin. Respir. Physiol. 15: 268–275, 1972.
 67. Geiger, K., M. L. Gallagher, and J. Hedley‐Whyte. Cellular distribution and clearance of aerosolized dipalmitoyl lecithin. J. Appl. Physiol. 39: 759–766, 1975.
 68. Gikas, E. G., R. J. King, E. J. Mescher, A. C. G. Platzker, J. A. Kitterman, P. L. Ballard, B. J. Benson, W. H. Tooley, and J. A. Clements. Radioimmunoassay of pulmonary surface active material in the tracheal fluid of fetal lamb. Am. Rev. Respir. Dis. 115: 587–594, 1977.
 69. Gil, J., and O. K. Reiss. Isolation and characterization of lamellar bodies and tubular myelin from rat lung homogenates. J. Cell Biol. 58: 152–171, 1973.
 70. Godinez, R. I., R. L. Sanders, and W. J. Longmore. Phosphatidylglycerol in rat lung. I. Identification as a metabolically active phospholipid in isolated perfused rat lung. Biochemistry 14: 830–834, 1975.
 71. Goerke, J., and J. A. Clements. Alveolar surface tension and lung surfactant. In: Handbook of Physiology. The Respiratory System. Mechanics of Breathing, edited by P. T. Macklem and J. Mead. Bethesda, MD: Am. Physiol. Soc., in press.
 72. Goldenberg, V. E., S. Buckingham, and S. C. Sommers. Pulmonary alveolar lesions in vagotomized rats. Lab. Invest. 16: 693–700, 1967.
 73. Goldenberg, V. E., S. Buckingham, and S. C. Sommers. Pilocarpine stimulation of granular pneumocyte secretion. Lab. Invest. 20: 147–158, 1969.
 74. Greenleaf, R. D., R. J. Mason, and M. C. Williams. Isolation of alveolar type II cells by centrifugal elutriation. In Vitro 15: 673–684, 1979.
 75. Gross, I. Nutritional and hormonal influences on lung phospholipid metabolism. Federation Proc. 36: 2665–2669, 1977.
 76. Gross, I., C. M. Wilson, L. D. Ingleson, A. Brehier, and S. A. Rooney. The influence of hormones on the biochemical development of fetal rat lung in organ culture. I. Estrogen. Biochim. Biophys. Acta 575: 375–383, 1979.
 77. Hallman, M., and B. L. Epstein. Role of myo‐inositol in the synthesis of phosphatidylglycerol and phosphatidylinositol in the lung. Biochem. Biophys. Res. Commun. 92: 1151–1159, 1980.
 78. Hallman, M., B. L. Epstein, and L. Gluck. Analysis of labeling and clearance of lung surfactant phospholipids in rabbit. Evidence of bidirectional surfactant flux between lamellar bodies and alveolar lavage. J. Clin. Invest. 68: 742–751, 1981.
 79. Hallman, M., and L. Gluck. Phosphatidylglycerol in lung surfactant. II. Subcellular distribution and mechanism of biosynthesis in vitro. Biochim. Biophys. Acta 409: 172–191, 1975.
 80. Hallman, M., and L. Gluck. Phosphatidylglycerol in lung surfactant. III. Possible modifier of surfactant function. J. Lipid Res. 17: 257–262, 1976.
 81. Hamosh, M., and P. Hamosh. The effect of prolactin on the lecithin content of fetal rabbit lung. J. Clin. Invest. 59: 1001–1005, 1977.
 82. Hass, M. A., and W. J. Longmore. Surfactant cholesterol metabolism of the isolated perfused rat lung. Biochim. Biophys. Acta 573: 166–174, 1979.
 83. Hassett, R. J., R. L. Sanders, A. E. Vatter, and O. K. Reiss. Lamellar bodies: isolation from rat lung, stability and conversion to tubular myelin figures (Abstract). Federation Proc. 36: 615, 1977.
 84. Heath, M. F., and W. Jacobson. Phospholipases A1 and A2 in lamellar inclusion bodies of the alveolar epithelium of rabbit lung. Biochim. Biophys. Acta 441: 443–452, 1976.
 85. Hedqvist, P. Basic mechanisms of prostaglandin action on autonomic neurotransmission. Annu. Rev. Pharmacol. Toxicol. 17: 259–279, 1977.
 86. Heppleston, A. G., K. Fletcher, and I. Wyatt. Abnormalities of lung lipids following inhalation of quartz. Experientia 28: 938–939, 1972.
 87. Hildebran, J. N., J. Goerke, and J. A. Clements. Pulmonary surface film stability and composition. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 47: 604–611, 1979.
 88. Hildebran, J. N., J. Goerke, and J. A. Clements. Surfactant release in excised rat lung is stimulated by air inflation. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 51: 905–910, 1981.
 89. Hill, P. Effect of a cholesterol‐biosynthesis inhibitor on the fatty acid composition of phospholipids in the serum and tissue of rats. Biochem. J. 98: 696–701, 1966.
 90. Hill, P., and E. Greselin. Lung phospholipids: biochemical and histologic changes induced by the cholesterol‐biosynthesis inhibitor AY‐9944. Toxicol. Appl. Pharmacol. 11: 245–256, 1967.
 91. Hirata, F., and J. Axelrod. Phospholipid methylation and biological signal transmission. Science 209: 1082–1090, 1980.
 92. Hoffman, L. Isolation and inclusion bodies from rabbit lung parenchyma. J. Cell Physiol. 79: 65–72, 1972.
 93. Holden, K. R., W. R. Harlan, Jr., and S. Said. Failure of near‐lethal inhibition of protein synthesis to alter pulmonary surfactant. Johns Hopkins Med. J. 126: 337–343, 1970.
 94. Hong, S. C., R. Polsky‐Cynkin, and L. Levine. Stimulation of prostaglandin biosynthesis by vasoactive substances in methylcholanthrene‐transformed mouse BALB/3T3. J. Biol. Chem. 251: 776–780, 1976.
 95. Hung, K. S., M. S. Hertweck, J. D. Hardy, and C. G. Loosli. Innervation of pulmonary alveoli of the mouse lung: an electron microscopic study. Am. J. Anat. 135: 477–496, 1972.
 96. Jacobs, H., A. Jobe, M. Ikegami, and S. Jones. Surfactant phosphatidylcholine source, fluxes, and turnover times in 3‐day‐old, 10‐day‐old, and adult rabbits. J. Biol. Chem. 257: 1805–1810, 1982.
 97. Jain, M. K. Role of cholesterol in biomembranes and related systems. Curr. Top. Membr. Transp. 6: 1–57, 1975.
 98. Jimenez, J. M., and J. M. Johnston. Fetal lung maturation. IV. The release of phosphatidic acid phosphohydrolase and phospholipids into human amniotic fluid. Pediatr. Res. 10: 767–769, 1976.
 99. Jobe, A. The labelling and biological half‐life of phosphatidylcholine in subcellular fractions of rabbit lung. Biochim. Biophys. Acta 489: 440–453, 1977.
 100. Jobe, A., E. Kirkpatrick, and L. Gluck. Labelling of phospholipids in the surfactant and subcellular fractions of rabbit lung. J. Biol. Chem. 253: 3810–3816, 1978.
 101. Jobe, A., A. Kirkpatrick, and L. Gluck. Lecithin appearance and apparent biologic half‐life in term newborn rabbit lung. Pediatr. Res. 12: 669–675, 1978.
 102. Katyal, S. L., and B. Lombardi. Effects of dietary choline and N,N‐dimethylaminoethanol on lung phospholipid and surfactant of newborn rats. Pediatr. Res. 12: 952–955, 1978.
 103. Katyal, S. L., and G. Singh. An immunological study of the apoproteins of rat lung surfactant. Lab. Invest. 40: 562–567, 1979.
 104. Kennedy, E. P. The metabolism and function of complex lipids. Harvey Led. 57: 143–171, 1962.
 105. Khosla, S. S., L. I. Gobran, and S. A. Rooney. Stimulation of phosphatidylcholine synthesis by 17/3‐estradiol in fetal rabbit lung. Biochim. Biophys. Acta 617: 282–290, 1980.
 106. Kikkawa, Y., and E. Motoyama. Effect of AY‐9944, a cholesterol biosynthesis inhibitor, on fetal lung development and on the development of type II alveolar epithelial cells. Lab. Invest. 28: 48–54, 1973.
 107. Kikkawa, Y., and K. Yoneda. The type II epithelial cell of the lung. I. Method of isolation. Lab. Invest. 30: 76–84, 1974.
 108. King, R. J. The surfactant system of the lung. Federation Proc. 33: 2238–2247, 1974.
 109. King, R. J. Metabolic fate of the apoproteins of pulmonary surfactant. Am. Rev. Respir. Dis. 115: 587–593, 1977.
 110. King, R. J. Utilization of alveolar epithelial type II cells for the study of pulmonary surfactant. Federation Proc. 38: 2637–2643, 1979.
 111. King, R. J., and J. A. Clements. Surface active materials from dog lung. I. Method of isolation. Am. J. Physiol. 223: 707–714, 1972.
 112. King, R. J., and J. A. Clements. Surface active materials from dog lung. II. Composition and physiological correlations. Am. J. Physiol. 223: 715–726, 1972.
 113. King, R. J., E. G. Gikas, J. Ruch, and J. A. Clements. The radioimmunoassay of pulmonary surface active material in sheep lung. Am. Rev. Respir. Dis. 110: 273–281, 1974.
 114. King, R. J., D. J. Klass, E. G. Gikas, and J. A. Clements. Isolation of the apoproteins from canine surface active material. Am. J. Physiol. 224: 788–795, 1973.
 115. King, R. J., and M. C. MacBeth. Physico‐chemical properties of dipalmitoyl phosphatidylcholine after interaction with an apoprotein of pulmonary surfactant. Biochim. Biophys. Acta 557: 86–101, 1979.
 116. King, R. J., and M. C. MacBeth. Interaction of the lipid and protein components of pulmonary surfactant. Role of phosphatidylglycerol and calcium. Biochim. Biophys. Acta 647: 159–168, 1981.
 117. King, R. J., and H. Martin. Intracellular metabolism of the apoproteins of pulmonary surfactant in rat lung. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 48: 812–820, 1980.
 118. King, R. J., and H. Martin. Effects of inhibiting protein synthesis on the secretion of surfactant by type II cells in primary culture. Biochim. Biophys. Acta 663: 289–301, 1981.
 119. King, R. J., H. Martin, D. Mitts, and F. M. Holmstrom. Metabolism of the apoproteins in pulmonary surfactant. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 42: 483–491, 1977.
 120. King, R. J., J. Ruch, E. G. Gikas, A. C. G. Platzker, and R. K. Creasy. Appearance of apoproteins of pulmonary surfactant in human amniotic fluid. J. Appl. Physiol. 39: 735–741, 1975.
 121. Klein, R. M., and S. Margolis. Purification of pulmonary surfactant by ultracentrifugation. J. Appl. Physiol. 25: 654–658, 1968.
 122. Kotas, R. V., and M. E. Avery. Accelerated appearance of pulmonary surfactant in the fetal rabbit. J. Appl. Physiol. 30: 358–361, 1971.
 123. Kuhn, C. The cells of the lung and their organelles. In: Lung Biology in Health and Disease. The Biochemical Basis of Pulmonary Functon, edited by R. G. Crystal. New York: Dekker, vol. 2, 1976, p. 3–48.
 124. Kuhn, C., F. Györkey, B. E. Levine, and J. Ramirez‐R Pulmonary alveolar proteinosis. A study using enzyme histochemistry, electron microscopy, and surface tension measurement. Lab. Invest. 15: 492–509, 1966.
 125. Kyriakides, E. C., D. A. Beeler, R. H. Edmonds, and J. A. Balint. Alterations in phosphatidylcholine species and their reversal in pulmonary surfactant during essential fatty‐acid deficiency. Biochim. Biophys. Acta 431: 399–407, 1976.
 126. Lands, W. E. M. Metabolism of glycerolipids. II. The enzymatic acylation of lysolecithin. J. Biol. Chem. 235: 2233–2237, 1960.
 127. Lau, M.‐J., and K. M. W. Keough. Lipid composition of lung and lung lavage fluid from map turtles (Malaclemys geographica) maintained at different environmental temperatures. Can. J. Biochem. 59: 208–219, 1981.
 128. Lawson, E. E., E. R. Brown, J. S. Torday, H. W. Madansky, and D. L. Taeusch, Jr. The effect of epinephrine on tracheal fluid flow and surfactant efflux in fetal sheep. Am. Rev. Respir. Dis. 118: 1023–1026, 1978.
 129. Liggins, G. C. Premature parturition after infusion of corticotrophin or cortisol into foetal lambs. J. Endocrinol. 42: 323–329, 1968.
 130. Liggins, G. C., J. A. Kitterman, G. A. Campos, J. A. Clements, C. S. Forster, C. H. Lee, and R. K. Creasy. Pulmonary maturation in the hypophysectomised ovine fetus. Differential responses to adrenocorticotrophin and cortisol. J. Dev. Physiol. 3: 1–14, 1981.
 131. Longmore, W. J., V. Oldenburg, and L. M. G. van Golde. Phospholipase A2 in rat‐lung microsomes: substrate specificity towards endogenous phosphatidylcholines. Biochim. Biophys. Acta 572: 452–460, 1979.
 132. Lynn, W. S., S. C. Sahu, and S. N. Bhattacharyya. Secretory alveolar glycoproteins (alveolyns). In: Le lavage bronchoalvéolaire chez l'homme, edited by G. Biserte, J. Chrétien, and C. Voisin. Paris: INSERM, 1979, p. 17–26.
 133. Magoon, M. W., A. G. Baritussio, J. Goerke, and J. A. Clements. Precursor‐product (PP) relationship between rabbit type II cell lamellar bodies (LB) and alveolar surface active material (SAM) and SAM turnover time (τ) (Abstract). Federation Proc. 40: 407, 1981.
 134. Mason, R. J. Lipid metabolism. In: Lung Biology in Health and Disease. The Biochemical Basis of Pulmonary Function, edited by R. G. Crystal. New York: Dekker, vol. 2, 1976, p. 127–169.
 135. Mason, R. J., and L. G. Dobbs. Synthesis of phosphatidylcholine and phosphatidylglycerol by alveolar type II cells in primary culture. J. Biol. Chem. 255: 5101–5107, 1980.
 136. Mason, R. J., G. Huber, and M. Vaughan. Synthesis of dipalmitoyl lecithin by alveolar macrophages. J. Clin. Invest. 51: 68–73, 1972.
 137. Mason, R. J., M. C. Williams, R. D. Greenleaf, and J. A. Clements. Isolation and properties of type II alveolar cells from rat lung. Am. Rev. Respir. Dis. 115: 1015–1026, 1977.
 138. Massaro, D. In vivo protein secretion by lung. Evidence for active secretion and interspecies differences. J. Clin. Invest. 56: 263–271, 1975.
 139. Massaro, D., and G. D. Massaro. Synthesis, intracellular transport, and secretion of macromolecules by the lung. In: Lung Biology in Health and Disease. The Biochemical Basis of Pulmonary Function, edited by R. G. Crystal. New York: Dekker, vol. 2, 1976, p. 389–416.
 140. McClenahan, J. B., and A. Urtnowski. Effect of ventilation on surfactant, and its turnover rate. J. Appl. Physiol. 23: 215–220, 1967.
 141. Mead, J., and C. Collier. Relation of volume history of lungs to respiratory mechanics in anesthetized dogs. J. Appl. Physiol. 14: 669–678, 1959.
 142. Mescher, E. J., A. C. G. Platzker, P. L. Ballard, J. A. Kitterman, J. A. Clements, and W. H. Tooley. Ontogeny of tracheal fluid, pulmonary surfactant, and plasma corticoids in the fetal lamb. J. Appl. Physiol. 39: 1017–1021, 1975.
 143. Metcalfe, I. L., G. Enhorning, and F. Possmayer. Pulmonary surfactant‐associated proteins: their role in the expression of surface activity. J. Appl. Physiol: Respirat. Environ. Exercise Physiol. 49: 34–41, 1980.
 144. Meyrick, B., and L. Reid. Nerves in rat intra‐acinar alveoli: an electron microscopic study. Respir. Physiol. 11: 367–377, 1971.
 145. Morgan, T. E. Isolation and characterization of lipid N‐methyl‐transferase from dog lung. Biochim. Biophys. Acta 178: 21–34, 1969.
 146. Morgan, T. E., and B. C. Morgan. Surfactant synthesis, storage, and release by alveolar cells. In: Respiratory Distress Syndrome, edited by C. A. Villee, D. B. Villee, and J. Zuckerman. New York: Academic, 1973, p. 117–127.
 147. Munder, P. G., M. Modollel, E. Ferber, and H. Fischer. The relationship between macrophages and adjuvant activity. In: Mononuclear Phagocytes, edited by R. van Furth. Oxford, UK: Blackwell, 1970, p. 445–460.
 148. Naimark, A. Pulmonary blood flow and the incorporation of palmitate‐I‐C14 by dog lung in vivo. J. Appl. Physiol. 21: 1292–1298, 1966.
 149. Naimark, A. Cellular dynamics and lipid metabolism in the lung. Federation Proc. 32: 1967–1971, 1973.
 150. Nielsen, H. C., and J. S. Torday. Sex differences in fetal rabbit pulmonary surfactant production. Pediatr. Res. 15: 1245–1247, 1981.
 151. Nielsen, H. C., H. M. Zinman, and J. S. Torday. Dihydrotestosterone (DHT) inhibits fetal pulmonary surfactant production in vivo. Pediatr. Res. 15: 728, 1981.
 152. Ohno, K., T. Akino, and T. Fujiwara. Phospholipid metabolism in perinatal lung. In: Reviews in Perinatal Medicine, edited by E. M. Scarpelli and E. V. Cosmi. New York: Raven, 1978, p. 227–318.
 153. Oldenburg, V., and L. M. G. van Golde. Activity of cholinephosphotransferase, lysolecithin:lysolecithin acyltransferase and lysolecithin acyltransferase in the developing mouse lung. Biochim. Biophys. Acta 441: 433–442, 1976.
 154. Oldenburg, V., and L. M. G. van Golde. The enzymes of phosphatidylcholine biosynthesis in the fetal mouse lung. Effects of dexamethasone. Biochim. Biophys. Acta 489: 454–465, 1977.
 155. Olsen, D. B. Neurohumoral‐hormonal secretory stimulation of pulmonary surfactant in the rat (Abstract). Physiologist 15: 230, 1972.
 156. Op den Kamp, J. A. F., M. T. Kauerz, and L. L. M. van Deenen. Action of pancreatic phospholipase A2 on phosphatidylcholine bilayers in different physical states. Biochim. Biophys. Acta 406: 169–177, 1975.
 157. Oyarzuan, M. J., and J. A. Clements. Ventilatory and cholinergic control of pulmonary surfactant in the rabbit. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 43: 39–45, 1977.
 158. Oyarzuan, M. J., and J. A. Clements. Control of lung surfactant by ventilation, adrenergic mediators, and prostaglandins in the rabbit. Am. Rev. Respir. Dis. 117: 879–891, 1978.
 159. Oyarzuan, M. J., J. A. Clements, and A. Baritussio. Ventilation enhances pulmonary alveolar clearance of radioactive dipalmitoyl phosphatidylcholine in liposomes. Am. Rev. Respir. Dis. 121: 709–721, 1980.
 160. Pagano, R. E., and J. N. Weinstein. Interactions of liposomes with mammalian cells. Annu. Rev. Biophys. Bioeng. 7: 435–468, 1978.
 161. Page‐Roberts, B. A. Preparation and partial characterization of a lamellar body fraction from rat lung. Biochim. Biophys. Acta 260: 334–338, 1972.
 162. Papahadjopoulos, D., G. Poste, and B. E. Schaeffer. Fusion of mammalian cells of unilamellar lipid vesicles: influence of lipid surface charge, fluidity and cholesterol. Biochim. Biophys. Acta 323: 23–42, 1973.
 163. Passero, M. A., R. W. Tye, K. H. Kilburn, and W. S. Lynn. Isolation and characterization of two glycoproteins from patients with alveolar proteinosis. Proc. Natl. Acad. Sci. USA 70: 973–976, 1973.
 164. Pfleger, R. C., and H. G. Thomas. Beagle dog pulmonary surfactant lipids. Arch. Intern. Med. 127: 863–872, 1971.
 165. Platzker, A. C. G., J. A. Kitterman, E. J. Mescher, J. A. Clements, and W. H. Tooley. Surfactant in the lung and tracheal fluid of the fetal lamb and acceleration of its appearance by dexamethasone. Pediatrics 56: 554–561, 1975.
 166. Possmayer, F., P. Casola, F. Chang, S. Hill, I. L. Metcalf, P. J. Stewart‐Dehaan, T. Wong, J. las Heras, E. B. Gammal, and P. G. Harding. Glucocorticoid induction of pulmonary maturation in the rabbit fetus. The effect of maternal injection of betamethasone on the activity of enzymes in fetal lung. Biochim. Biophys. Acta 574: 197–211, 1979.
 167. Pratt, S. A., T. N. Finley, M. H. Smith, and A. J. Ladman. A comparison of alveolar macrophages and pulmonary surfactant(?) obtained from the lung of human smokers and non‐smokers by endobronchial lavage. Anat. Rec. 163: 497–508, 1969.
 168. Ramirez‐R, J., and W. R. Harlan, Jr. Pulmonary alveolar proteinosis. Nature and origin of alveolar lipid. Am. J. Med. 45: 502–512, 1968.
 169. Rescigno, A., and G. Segre. Drug and Tracer Kinetics. Waltham, MA: Blaisdell, 1966.
 170. Rhoades, R. A. Influence of starvation on the lung: effect on glucose and palmitate utilization. J. Appl. Physiol. 38: 513–516, 1975.
 171. Rooney, S. A., P. M. Canavan, and E. K. Motoyama. The identification of phosphatidylglycerol in the rat, rabbit, monkey, and human lung. Biochim. Biophys. Acta 360: 56–57, 1974.
 172. Rooney, S. A., L. Gobran, I. Gross, T. S. Wai‐Lee, L. L. Nardone, and E. S. Motoyama. Studies on pulmonary surfactant. Effects of cortisol administration on lung phospholipid content, composition, and biosynthesis. Biochim. Biophys. Acta 450: 121–130, 1976.
 173. Rooney, S. A., P. A. Marino, L. I. Gobran, I. Gross, and J. B. Warshaw. Thyrotropin‐releasing hormone increases the amount of surfactant in lung lavage from fetal rabbits. Pediatr. Res. 13: 623–625, 1979.
 174. Rooney, S. A., B. A. Page‐Roberts, and E. K. Motoyama. Role of lamellar inclusions in surfactant production: studies on phospholipid composition and biosynthesis in rat and rabbit lung subcellular fractions. J. Lipid Res. 16: 418–425, 1975.
 175. Rooney, S. A., T. S. Wai‐Lee, L. Gobran, and E. K. Motoyama. Phospholipid content, composition, and biosynthesis during fetal lung development in the rabbit. Biochim. Biophys. Acta 431: 447–458, 1976.
 176. Rosen, S. H., B. Castleman, and A. A. Liebow. Pulmonary alveolar proteinosis. N. Engl. J. Med. 258: 1123–1142, 1958.
 177. Ryan, J. W., R. S. Niemeyer, and U. Ryan. Metabolism of prostaglandin F1α in the pulmonary circulation. Prostaglandins 10: 101–108, 1975.
 178. Sahu, S., R. P. DiAugustine, and W. S. Lynn. Lipids found in pulmonary lavage of patients with alveolar proteinosis and in rabbit lung lamellar organelles. Am. Rev. Respir. Dis. 114: 177–185, 1976.
 179. Said, S. I., W. R. Harlan, Jr., G. W. Burke, and C. M. Elliott. Surface tension, metabolic activity, and lipid composition of alveolar cells in washings from normal dog lungs and after pulmonary artery ligation. J. Clin. Invest. 47: 336–343, 1968.
 180. Said, S. I., S. Kitamura, and C. Vreim. Prostaglandins: release from the lung during mechanical ventilation at large tidal volumes. J. Clin. Invest. 51: 83a–84a, 1972.
 181. Saunders, B. S., J. W. Shepard, Jr., A. Jobe, K. Miyai, K. M. Moser, and L. Gluck. Alveolar CO2 tension as a mediator of lamellar body release in experimental left pulmonary artery occlusion. Chest 72: 411–412, 1977.
 182. Scarpelli, E. M., S. Condorelli, G. Colacicco, and E. Cosmi. Lamb fetal pulmonary fluid. II. Fate of phosphatidylcholine. Pediatr. Res. 9: 195–201, 1975.
 183. Schneider, W. J., and D. E. Vance. Effect of choline deficiency on the enzymes that synthesize phosphatidylcholine and phosphatidylethanolamine in rat liver. Eur. J. Biochem. 85: 181–187, 1978.
 184. Scholz, R. W., B. M. Woodward, and R. A. Rhoades. Utilization in vitro and in vivo of glucose and glycerol by rat lung. Am. J. Physiol. 223: 991–996, 1972.
 185. Searle, G. L. The use of isotope turnover techniques in the study of carbohydrate metabolism in man. Clin. Endocrinol. Metab. 5: 783–804, 1976.
 186. Severinghaus, J. W., E. W. Swenson, T. N. Finley, M. T. Lategola, and J. Williams. Unilateral hypoventilation produced in dogs by occluding one pulmonary artery. J. Appl. Physiol. 16: 53–60, 1961.
 187. Shelley, S. A., M. V. L'Heureux, and J. U. Balis. Characterization of lung surfactant factors promoting formation of artifactual lipid‐protein complexes. J. Lipid Res. 16: 224–234, 1975.
 188. Shepard, C. W. Basic Principles of the Tracer Method. New York: Wiley, 1962.
 189. Shepard, J. W., Jr., K. Miyai, and K. M. Moser. Depletion and repletion of lamellar bodies from type II alveolar pneumocytes following unilateral pulmonary artery balloon occlusion (U.P.A.B.O.) and reperfusion (Abstract). Federation Proc. 36: 541, 1977.
 190. Smith, D. S., U. Smith, and J. W. Ryan. Freeze‐fractured lamellar body membranes of the rat lung great alveolar cell. Tissue Cell 4: 457–468, 1972.
 191. Smith, F. B., and Y. Kikkawa. The type II epithelial cells of the lung. V. Synthesis of phosphatidylglycerol in isolated type II cells and pulmonary alveolar macrophages. Lab. Invest. 40: 172–177, 1980.
 192. Smith, F. B., Y. Kikkawa, C. A. Diglio, and R. C. Dalen. The type II epithelial cells of the lung. VI. Incorporation of 3H‐choline and 3H‐palmitate into lipids of cultured type II cells. Lab. Invest. 42: 296–301, 1980.
 193. Smith, R., and C. Tanford. The critical micelle concentration of l‐α‐dipalmitoylphosphatidylcholine in water and water‐methanol solutions. J. Mol. Biol. 67: 75–83, 1972.
 194. Spicer, S., A. Sato, R. Vincent, M. Eguchi, and K. C. Poon. Lysosome enlargement in the Chediak‐Higashi syndrome. Federation Proc. 40: 1451–1455, 1981.
 195. Spitzer, H. L., and J. M. Johnston. Characterization of phosphatidate phosphohydrolase activity associated with isolated lamellar bodies. Biochim. Biophys. Acta 531: 275–285, 1978.
 196. Spitzer, H. L., and J. R. Norman. The biosynthesis and turnover of surfactant lecithin and protein. Arch. Intern. Med. 127: 429–435, 1971.
 197. Stern, W., C. Kovac, and P. A. Weinhold. Activity and properties of CTP:choline phosphate cytidylyltransferase in adult and fetal rat lung. Biochim. Biophys. Acta 441: 280–293, 1976.
 198. Stratton, C. J. The three‐dimensional aspect of mammalian lung multi‐lamellar bodies. Tissue Cell 8: 693–712, 1976.
 199. Sueishi, K., and B. J. Benson. Isolation of a major apoprotein of canine and murine pulmonary surfactant: biochemical and immunochemical characteristics. Biochim. Biophys. Acta 665: 442–453, 1981.
 200. Thet, L. A., L. B. Clerch, and D. Massaro. Relation of changes in sedimentation of surfactant(s) to volume history of lungs and changes in respiratory mechanics (Abstract). Clin. Res. 26: 455A, 1978.
 201. Thomas, T., Jr., and R. A. Rhoades. Incorporation of palmitate‐1‐14C into lung tissue and “alveolar” lecithin. Am. J. Physiol. 219: 1535–1538, 1970.
 202. Tierney, D. F., J. A. Clements, and H. J. Trahan. Rates of replacement of lecithin and alveolar instability in rat lungs. Am. J. Physiol. 213: 671–676, 1967.
 203. Tooley, W., R. Gardner, N. Thung, and T. Finley. Factors affecting the surface tension of lung extracts (Abstract). Federation Proc. 20: 428, 1961.
 204. Torday, J. S., H. C. Nielsen, M. De M. Fencl, and M. E. Avery. Sex differences in fetal lung maturation. Am. Rev. Respir. Dis. 123: 205–208, 1981.
 205. Toshima, N., T. Akino, and K. Ohno. Turnover time of lecithin in lung tissue and alveolar wash of rat. Tohoku J. Exp. Med. 108: 265–277, 1972.
 206. Vance, D. E., and P. C. Choy. How is phosphatidylcholine biosynthesis regulated? Trends Biochem. Sci. 4: 145–148, 1979.
 207. Vance, D. E., E. M. Trip, and H. B. Paddon. Poliovirus increases phosphatidylcholines biosynthesis in HeLa cells by stimulation of the rate‐limiting reaction catalyzed by CTP:phosphocholine cytidylyltransferase. J. Biol. Chem. 255: 1064–1069, 1980.
 208. Van Golde, L. M. G. Metabolism of phospholipids in the lung. Am. Rev. Respir. Dis. 114: 977–1000, 1976.
 209. Webb, H. H., and D. F. Tierney. Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures. Protection by positive end‐expiratory pressure. Am. Rev. Respir. Dis. 110: 556–565, 1974.
 210. Weibel, E. R., P. Gehr, D. Haies, J. Gil, and M. Bachofen. The cell population of the normal lung. In: Lung Cells in Disease, edited by A. Bouhuys. Amsterdam: Elsevier, 1976, p. 3–16.
 211. Williams, M. C. Conversion of lamellar body membranes into tubular myelin in alveoli of fetal rat lungs. J. Cell Biol. 72: 260–277, 1977.
 212. Williams, M. C. Freeze‐fracture studies of tubular myelin and lamellar bodies in fetal and adult rat lungs. J. Ultrastruct. Res. 44: 352–361, 1978.
 213. Williams, M. C., and B. J. Benson. Immunocytochemical localization and identification of the major surfactant protein in adult rat lung. J. Histochem. Cytochem. 29: 291–305, 1981.
 214. Wyszogrodski, I., K. Kyei‐Aboagye, H. W. Taeusch, Jr., and M. E. Avery. Surfactant inactivation by hyperventilation: conservation by end‐expiratory pressure. J. Appl. Physiol. 38: 461–466, 1975.
 215. Wyszogrodski, I., and H. W. Taeusch, Jr. Prolonged sympathetic activation and pulmonary surfactant: absence of effect in anesthetized cats. Am. Rev. Respir. Dis. 111: 619–622, 1975.
 216. Wyszogrodski, I., H. W. Taeusch, Jr., and M. E. Avery. Isoxsuprine induced alterations of pulmonary pressure‐volume relationships in premature rabbits. Am. J. Obstet. Gynecol. 119: 1107–1111, 1974.
 217. Yeagle, P. L., R. B. Martin, A. K. Lala, H. Lin, and K. Block. Differential effects of cholesterol and lanosterol on artificial membranes. Proc. Natl. Acad. Sci. USA 74: 4924–4926, 1977.
 218. Young, S. L., S. A. Kremers, J. S. Apple, J. D. Crapo, and G. W. Brumley. Rat lung surfactant kinetics: biochemical and morphometric correlation. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 51: 248–253, 1981.
 219. Young, S. L., and D. F. Tierney. Dipalmitoyl lecithin secretion and metabolism by the rat lung. Am. J. Physiol. 222: 1539–1544, 1972.
 220. Zilversmit, D. B., C. Entenman, and M. Fishler. On the calculation of “turnover time” and “turnover rate” from experiments involving the use of labeled agents. J. Gen. Physiol. 26: 325–331, 1942.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Richard J. King, John A. Clements. Lipid Synthesis and Surfactant Turnover in the Lungs. Compr Physiol 2011, Supplement 10: Handbook of Physiology, The Respiratory System, Circulation and Nonrespiratory Functions: 309-336. First published in print 1985. doi: 10.1002/cphy.cp030108