Comprehensive Physiology Wiley Online Library

Processing of Angiotensin and Other Peptides by the Lungs

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Historical Background
2 Pulmonary Metabolism
2.1 Angiotensin I
2.2 Bradykinin
2.3 Angiotensin II
2.4 Angiotensin III
2.5 Angiotensin‐Converting Enzyme: Kininase II
2.6 Cellular and Subcellular Sites of Relevant Pulmonary Enzymes
2.7 Immunocytochemistry
2.8 Pulmonary Endothelial Cells as a Model System
2.9 Clinical Implications
2.10 Actions of Peptide Hormones on Lungs
2.11 Other Peptides
3 Discussion and Future Directionsa
Figure 1. Figure 1.

A: transverse section of a pulmonary capillary endothelial cell. At the level of the alveolar capillary unit, processing of vasoactive substances is likely to be maximal. Cells are extremely thin but present a vast surface area that is further enhanced by caveolae and surface projections. B: immunocytochemical localization of angiotensin‐converting enzyme on plasma membrane of a pulmonary endothelial cell in culture including caveolae (arrow) and projection (*). The endothelial surface is not only extensive but contains specific enzymes accessible to circulating substrates. C: vasoactive peptides are not only inactivated during circulation through the lungs but also exert effects on pulmonary vascular tone. The mechanism is not fully understood; however, some pulmonary vessels, in this case a small pulmonary artery ∼200 μm in diameter, exhibit structural interactions known as myoendothelial junctions (*) between endothelial and smooth muscle layers. D: with current technology for large‐scale, long‐term culture, pulmonary endothelial cells are propagated on micro‐carrier beads in roller bottles. E: surface replicas of plasma membrane of endothelial cells illustrate the true unfractured face normally exposed to circulating substrates. Particles of various sizes are evident, but identification of specific enzymatic or receptor sites awaits future studies.

From Ryan


Figure 1.

A: transverse section of a pulmonary capillary endothelial cell. At the level of the alveolar capillary unit, processing of vasoactive substances is likely to be maximal. Cells are extremely thin but present a vast surface area that is further enhanced by caveolae and surface projections. B: immunocytochemical localization of angiotensin‐converting enzyme on plasma membrane of a pulmonary endothelial cell in culture including caveolae (arrow) and projection (*). The endothelial surface is not only extensive but contains specific enzymes accessible to circulating substrates. C: vasoactive peptides are not only inactivated during circulation through the lungs but also exert effects on pulmonary vascular tone. The mechanism is not fully understood; however, some pulmonary vessels, in this case a small pulmonary artery ∼200 μm in diameter, exhibit structural interactions known as myoendothelial junctions (*) between endothelial and smooth muscle layers. D: with current technology for large‐scale, long‐term culture, pulmonary endothelial cells are propagated on micro‐carrier beads in roller bottles. E: surface replicas of plasma membrane of endothelial cells illustrate the true unfractured face normally exposed to circulating substrates. Particles of various sizes are evident, but identification of specific enzymatic or receptor sites awaits future studies.

From Ryan
References
 1. Ackerly, J. A., M. J. Peach, E. D. Vaughan, Jr., and A. W. Glenn. Formation of [Des‐Asp1]angiotensin I by the perfused rat lung. Endocrinology 107: 1699–1704, 1980.
 2. Aiken, J. W., and J. R. Vane. Intrarenal prostaglandin release attenuates the renal vasoconstrictor activity of angiotensin. J. Pharmacol. Exp. Ther. 184: 678–687, 1972.
 3. Alexander, J. M., M. D. Nyby, and K. A. Jasberg. Effect of angiotensin on hypoxic pulmonary vasoconstriction in isolated dog lung. J. Appl. Physiol. 41: 84–88, 1976.
 4. Antonaccio, M. J. Angiotensin converting enzyme (ACE) inhibitors. Annu. Rev. Pharmacol. Toxicol. 22: 57–87, 1982.
 5. Armstrong, J. M, N. Lattimer, S. Moncada, and J. R. Vane. Comparison of the vasodepressor effects of prostacyclin and 6‐oxo‐prostaglandin F1α with those of prostaglandin E2 in rats and rabbits. Br. J. Pharmacol. 62: 125–130, 1978.
 6. Bakhle, Y. S. Conversion of angiotensin I to angiotensin II by cell‐free extracts of dog lung. Nature London 220: 919–921, 1968.
 7. Bakhle, Y. S. Converting enzyme: in vitro measurement and properties. In: Handbook of Experimental Pharmacology. Angiotensin, edited by I. H. Page and F. M. Bumpus. Berlin: Springer‐Verlag, 1974, vol. 37, p. 41–80.
 8. Bakhle, Y. S., A. M. Reynard, and J. R. Vane. Metabolism of the angiotensins in isolated perfused tissues. Nature London 222: 956–959, 1969.
 9. Bakhle, Y. S., and J. R. Vane. Pharmacokinetic function of the pulmonary circulation. Physiol. Rev. 54: 1007–1045, 1974.
 10. Baum, M. D., and P. A. Kot. Response of pulmonary vascular segments to angiotensin and norepinephrine. J. Thorac. Cardiovasc. Surg. 63: 322–328, 1972.
 11. Bayley, T., J. A. Clements, and A. J. Osbahr. Pulmonary and circulatory effects of fibrinopeptides. Circ. Res. 21: 469–485, 1967.
 12. Biron, P., L. Campeau, and P. David. Fate of angiotensin I and II in the human pulmonary circulation. Am. J. Cardiol. 24: 544–547, 1969.
 13. Biron, P., and C. G. Huggins. Pulmonary activation of synthetic angiotensin I. Life Sci. 7: 965–970, 1968.
 14. Blair‐West, J. R., J. P. Coghlan, D. A. Denton, J. W. Funder, B. A. Scoggins, and R. D. Wright. The effect of the heptapeptide (2–8) and hexapeptide (3–8) fragments of angiotensin II on aldosterone secretion. J. Clin. Endocrinol. Metab. 32: 575–578, 1971.
 15. Block, E. R., and S. A. Stalcup. Metabolic functions of the lung. Of what clinical relevance? Chest 2: 215–223, 1982.
 16. Blumberg, A. L., S. E. Denny, G. R. Marshall, and P. Needleman. Blood vessel‐hormone interactions: angiotensin, bradykinin, and prostaglandins. Am. J. Physiol. 232 (Heart Circ. Physiol. 1): H305–H310, 1977.
 17. Braun‐Menendez, E., J. C. Fasciolo, L. F. Leloir, and J. M. Munoz. La substancia hipertensora de la sagre del rinon isquemiado. Rev. Soc. Argent. Biol. 15: 420, 1939.
 18. Bumpus, F. M., R. Smeby, I. H. Page, and P. A. Khairallah. Distribution and metabolic fate of angiotensin II and various derivatives. Can. Med. Assoc. J. 90: 190–193, 1964.
 19. Buonassisi, V., and J. C. Venter. Hormone and neurotransmitter receptors in an established vascular endothelial cell line. Proc. Natl. Acad. Sci. USA 73: 1612–1616, 1976.
 20. Caldwell, P. R. B., H. J. Wigger, M. Das, and R. L. Soffer. Angiotensin‐Converting enzyme: effect of antienzyme antibody in vivo. FEBS Lett. 63: 82–84, 1976.
 21. Catravas, J. D., and C. N. Gillis. Metabolism of [3H]‐benzoyl‐phenylalanyl‐alanyl‐proline by pulmonary angiotensin converting enzyme in vivo: effects of bradykinin, SQ14225 or acute hypoxia. J. Pharmacol. Exp. Ther. 217: 263–270, 1981.
 22. Chamberlain, J., N. L. Browse, D. G. Gibson, and J. A. Gleeson. Angiotensin and reno‐portal anastomosis. Br. Med. J. 2: 1507–1508, 1964.
 23. Chiu, A. T., and M. J. Peach. Stimulation of aldosterone biosynthesis by angiotensin heptapeptide (Abstract). Federation Proc. 32: 765, 1973.
 24. Chiu, A. T., J. W. Ryan, U. S. Ryan, and F. E. Dorer. A sensitive radiochemical assay for angiotensin‐converting enzyme (kininase II). Biochem. J. 149: 297–300, 1975.
 25. Chiu, A. T., J. W. Ryan, J. M. Stewart, and F. E. Dorer. Formation of angiotensin III by angiotensin‐converting enzyme. Biochem. J. 155: 189–192, 1976.
 26. Comroe, J. H. Physiology of Respiration. Chicago, IL: Year Book, 1974.
 27. Crutchley, D. J., J. W. Ryan, U. S. Ryan, G. H. Fisher, and S. M. Paul. Effects of bradykinin and its homologs on the metabolism of arachidonate of endothelial cells. Adv. Exp. Med. Biol. 156: 527–532, 1983.
 28. Cummiskey, J., N. Petit, and G. Yu. Effects of chronic hypoxia on pulmonary artery endothelial cells in vitro (Abstract). Am. Rev. Respir. Dis. 125: 266, 1982.
 29. Cushman, D. W., and H. S. Cheung. A simple substrate for assay of dog lung angiotensin converting enzyme (Abstract). Federation Proc. 28: 799, 1969.
 30. Cushman, D. W., and H. S. Cheung. Spectrophotometric assay and properties of the angiotensin‐converting enzyme of rabbit lung. Biochem. Pharmacol. 20: 1637–1648, 1971.
 31. Del Vecchio, P. J., J. W. Ryan, A. Chung, and U. S. Ryan. Capillaries of adrenal cortex possess aminopeptidase A and angiotensin converting enzyme. Biochem. J. 186: 605–608, 1980.
 32. Dent, R. I., B. Levine, H. Hirsch, H. James, and J. E. Fischer. Changes in plasma gastrin levels during isolated perfusions of canine lung and kidney. J. Surg. Res. 14: 353–358, 1973.
 33. Dent, R. I., B. Levine, J. H. James, H. Hirsch, and J. E. Fischer. Effects of isolated perfused canine lung and kidney on gastrin heptadecapeptide. Am. J. Physiol. 225: 1038–1044, 1973.
 34. Dexter, L. The hypertensinase content of plasma of normal, hypertensive and nephrectomized dogs. Ann. Intern. Med. 17: 447–450, 1942.
 35. Dorer, F. E., J. R. Kahn, K. E. Lentz, M. Levine, and L. T. Skeggs. Angiotensin converting enzyme: method of assay and partial purification. Anal. Biochem. 33: 102–103, 1970.
 36. Dorer, F. E., J. R. Kahn, K. E. Lentz, M. Levine, and L. T. Skeggs. Purification and properties of angiotensin‐converting enzyme from hog lung. Circ. Res. 31: 356–366, 1972.
 37. Dorer, F. E., J. R. Kahn, K. E. Lentz, M. Levine, and L. T. Skeggs. Hydrolysis of bradykinin by angiotensin converting enzyme. Circ. Res. 34: 823–827, 1974.
 38. Doyle, A. E. Studies on the metabolism of angiotensin. Postgrad. Med. J. 44: 31–35, 1968.
 39. Dzau, V. J., W. S. Colucci, G. H. Williams, G. Curfman, L. Meggs, and N. K. Hollenberg. Sustained effectiveness of converting‐enzyme inhibition in patients with severe congestive heart failure. N. Engl. J. Med. 302: 1373–1379, 1980.
 40. Editorial. Inhibitors of angiotensin 1 converting enzyme for treating hypertension. Brit. Med. J. 281: 630–631, 1980.
 41. Elliott, D. F., G. P. Lewis, and E. W. Horton. The structure of bradykinin—a plasma kinin from blood. Biochem. Biophys. Res. Commun. 3: 87–91, 1960.
 42. Elliott, D. F., and W. S. Peart. The amino acid sequence in a hypertensin. Biochem. J. 65: 246, 1957.
 43. Erdös, E. G. Conversion of angiotensin I to angiotensin II. Am. J. Med. 60: 749–759, 1976.
 44. Erdös, E. G., A. G. Renfew, E. M. Sloane, and J. R. Wohler. Enzymatic studies on bradykinin and similar peptides. Ann. NY Acad. Sci. 104: 222–235, 1963.
 45. Erdös, E. G., and H. Y. T. Yang. Bradykinin, kallidin and kallikrein. In: Handbook of Experimental Pharmacology. Bradykinin, Kallidin and Kallikrein, edited by E. G. Erdös. Berlin: Springer‐Verlag, 1970, vol. 25, p. 289–323.
 46. Evans, J. C., D. D. Reeder, and J. C. Thompson. Inactivation of gastrin and pentagastrin by tissue slices. Proc. Soc. Exp. Biol. Med. 143: 168–170, 1973.
 47. Fasciolo, J. C., L. F. Leloir, J. M. Munoz, and E. Braun‐Menendez. La hipertensinasa, su dosaje y dostribucion. Rev. Soc. Argent. Biol. 16: 643, 1940.
 48. Feldberg, W., and G. P. Lewis. Further studies on the effects of peptides on the suprarenal medulla of cats. J. Physiol. London 178: 239–251, 1965.
 49. Ferreira, S. H. A bradykinin‐potentiating factor (BPF) present in the venom of Bothrops jararaca. Br. J. Pharmacol. Chemother. 24: 163–169, 1965.
 50. Ferreira, S. H., and J. R. Vane. Half‐lives of peptides and a‐mines in the circulation. Nature London 215: 1237–1240, 1967.
 51. Ferreira, S. H., and J. R. Vane. Prostaglandins. Their disappearance from and release into the circulation. Nature London 216: 868–873, 1967.
 52. Fishman, A. P. Nonrespiratory functions of the lungs. Chest 72: 84–89, 1977.
 53. Fishman, A. P., and G. G. Pietra. Handling of bioactive materials by the lung. Pt. 1. N. Engl. J. Med. 291: 884–890, 1974.
 54. Fishman, A. P., and G. G. Pietra. Handling of bioactive materials by the lung. Pt. 2. N. Engl. J. Med. 291: 953–959, 1974.
 55. Gavras, H., H. R. Brunner, J. H. Laragh, J. E. Sealey, I. Gavras, and R. A. Vukovich. An angiotensin converting‐enzyme inhibitor to identify and treat vasoconstrictor and volume factors in hypertensive patients. N. Engl. J. Med. 291: 817–821, 1974.
 56. Gillis, C. N., and J. A. Roth. Pulmonary disposition of circulating vasoactive hormones. Biochem. Pharmacol. 25: 2547–2553, 1976.
 57. Gimbrone, M. A., and R. Alexander. Insulin receptors in cultured human vascular endothelial cells (Abstract). Circulation 56: 809, 1977.
 58. Gimbrone, M. A., R. S. Cotran, and J. Folkman. Human vascular endothelial cells in culture. J. Cell Biol. 60: 673–684, 1974.
 59. Goffinet, J. A., and P. J. Mulrow. Estimation of angiotensin clearance by an in vivo assay (Abstract). Clin. Res. 11: 408, 1963.
 60. Greenbaum, L. M., and K. S. Kim. The kinin forming and kininase activities of rabbit polymorphonuclear leucocytes. Br. J. Pharmacol. Chemother. 27: 230–238, 1967.
 61. Habliston, D. L., C. Whitaker, M. A. Hart, U. S. Ryan, and J. W. Ryan. Isolation and culture of endothelial cells from the lungs of small animals. Am. Rev. Respir. Dis. 119: 853–868, 1979.
 62. Hart, M. A., and U. S. Ryan. Surface replicas of pulmonary endothelial cells in culture. Tissue Cell 10: 441–449, 1978.
 63. Hayes, L. W., C. A. Goguen, S. F. Ching, and L. L. Slakey. Angiotensin‐Converting enzyme: accumulation in medium from cultured endothelial cells. Biochem. Biophys. Res. Commun. 82: 1147–1153, 1978.
 64. Heinemann, H. O., and A. P. Fishman. Nonrespiratory functions of mammalian lung. Physiol. Rev. 49: 1–47, 1969.
 65. Hirschman, J., and R. Boucek. Angiographic evidence of pulmonary vasomotion in the dog. Br. Heart J. 25: 375–381, 1963.
 66. Hodge, R. L., K. K. F. Ng, and J. R. Vane. Disappearance of angiotensin from the circulation of the dog. Nature London 215: 138–141, 1967.
 67. Huggins, C. G., and N. S. Thampi. A simple method for the determination of angiotensin I converting enzyme. Life Sci. 7: 633–639, 1968.
 68. Igic, R., E. G. Erdös, H. S. Yeh, K. Sorrels, and T. Nakajima. Angiotensin I converting enzyme of the lung. Circ. Res. 31, Suppl. 2: 51–61, 1972.
 69. Igic, R., H. S. Yeh, K. Sorrels, and E. G. Erdös. Cleavage of active peptides by a lung enzyme. Experientia 28: 135–136, 1972.
 70. Itskovitz, H. D., and L. Miller. Differential studies of angiotensinase activities from several tissue sources. Am. J. Med. Sci. 254: 659–666, 1967.
 71. Jaffe, E. A., R. L. Nachman, C. G. Becker, and C. R. Minick. Culture of human endothelial cells derived from umbilical veins. J. Clin. Invest. 52: 2745–2756, 1973.
 72. Johnson, D. C., and J. W. Ryan. Degradation of angiotensin II by a carboxypeptidase of rabbit liver. Biochim. Biophys. Acta 160: 196–203, 1968.
 73. Junod, A. F. Metabolism, production, and release of hormones and mediators in the lungs. Am. Rev. Respir. Dis. 112: 93–108, 1975.
 74. Kitabchi, A. E., and F. B. Stentz. Degradation of insulin and proinsulin by various organ homogenates of rat. Diabetes 21: 1091–1101, 1972.
 75. Korman, M. G., J. Hansky, B. C. Ritchie, J. M. Watts, and J. E. Maloney. Disappearance of gastrin across the lung. Aust. J. Exp. Biol. Med. Sci. 51: 679–687, 1973.
 76. Krieger, E. M., H. C. Salgado, C. J. Assan, L. L. J. Greene, and S. H. Ferreira. Potential screening test for detection of over‐activity of renin‐angiotensin system. Lancet 1: 269–271, 1971.
 77. Laragh, J. H., M. Angers, W. G. Kelly, and S. Lieberman. Hypotensive agents and pressor substances: the effects of epinephrine, norepinephrine, angiotensin II and others on the secretory rate of aldosterone in man. J. Am. Med. Assoc. 174: 234–240, 1960.
 78. Leary, W. P., and J. G. Ledingham. Removal of angiotensin by isolated perfused organs of the rat. Nature London 222: 959–960, 1969.
 79. Lentz, K. E., L. T. Skeggs, K. R. Woods, J. R. Kahn, and N. P. Shumway. The amino acid composition of hypertensin II and its biochemical relationship to hypertensin I. J. Exp. Med. 104: 183–191, 1956.
 80. Makhlouf, G. M., J. P. McManus, and W. I. Card. Action of gastrin II on gastric secretion in man. In: Gastrin, edited by M. I. Grossman. Berkeley: Univ. of California Press, 1966, p. 139–169.
 81. McCaa, R. E., J. E. Hall, and C. S. McCaa. The effects of angiotensin I converting enzyme inhibitors on arterial blood pressure and urinary sodium excretion: role of the renal renin‐angiotensin and kallikrein‐kinin systems. Circ. Res. 43: 132–139, 1978.
 82. Methot, A. L., P. Meyer, P. Biron, M. F. Lorain, G. Lagrue, and P. Milliez. Hepatic inactivation of angiotensin. Nature London 203: 531–532, 1964.
 83. Ng, K. K. F., and J. R. Vane. Conversion of angiotensin I to angiotensin II. Nature London 216: 762–766, 1967.
 84. Ng, K. K. F., and J. R. Vane. Fate of angiotensin I in the circulation. Nature London 218: 144–150, 1968.
 85. Ng, K. K. F., and J. R. Vane. Some properties of angiotensin converting enzyme in the lung in vivo. Nature London 225: 1142–1144, 1970.
 86. Oates, J. A., W. A. Pettinger, and R. B. Doctor. Evidence for the release of bradykinin in carcinoid syndrome. J. Clin. Invest. 45: 173–179, 1966.
 87. Oehme, P., S. Katzwinkel, W. E. Vogt, and H. Niedrich. Retarded enzymatic degradation of heterologous eledoisin sequences. Experientia 29: 947–948, 1973.
 88. Ondetti, M. A., B. Rubin, and D. W. Cushman. Design of specific inhibitors of angiotensin converting enzyme: a new class of orally active hypertensive agents. Science 196: 441–444, 1977.
 89. Oparil, S., C. A. Sanders, and E. Haber. In‐vivo and in‐vitro conversion of angiotensin I to angiotensin II in dog blood. Circ. Res. 26: 591–599, 1970.
 90. Oparil, S., S. Winternitz, V. Gould, M. Baerwald, and P. Szidon. Effect of hypoxia on the conversion of angiotensin I to II in the isolated perfused rat lung. Biochem. Pharmacol. 31: 1375–1379, 1982.
 91. Osborne, M. J., A. D'Auriac, P. Meyer, and M. Worcel. Mechanism of extraction of angiotensin II in coronary and renal circulations. Life Sci. 9: 859–867, 1970.
 92. Page, I. H., and O. M. Helmer. A crystalline pressor substance (angiotonin) resulting from the reaction between renin and renin‐activator. J. Exp. Med. 71: 29–42, 1940.
 93. Page, I. H., and J. W. McCubbin. Renal Hypertension. Chicago, IL: Year Book, 1968, chapt. 2.
 94. Peart, W. S. The renin‐angiotensin system. Pharmacol. Rev. 17: 143–182, 1965.
 95. Piper, P. J., and J. R. Vane. The release of prostaglandins from the lung and other tissues. Ann. NY Acad. Sci. 180: 363–385, 1971.
 96. Pugatch, E. M. J., and A. M. Saunders. A new technique for making Häutchen preparations of unfixed aortic endothelium. J. Atheroscler. Res. 8: 735–738, 1968.
 97. Rhodin, J. A. G. The ultrastructure of mammalian arterioles and precapillary sphincters. J. Ultrastruct. Res. 18: 181–223, 1967.
 98. Richardson, J. B., and A. Beaulnes. The cellular site of action of angiotensin. J. Cell Biol. 51: 419–432, 1971.
 99. Roblero, J., J. W. Ryan, and J. M. Stewart. Assay of kinins by their effects on blood pressure. Res. Commun. Chem. Pathol. Pharmacol. 6: 207–212, 1973.
 100. Rocha e Silva, M., W. T. Beraldo, and G. Rosenfeld. Bradykinin, a hypotensive and smooth muscle stimulating factor released from plasma globulin by snake venoms and by trypsin. Am. J. Physiol. 156: 261–273, 1949.
 101. Rowe, G. G., S. Afonson, C. A. Castillo, F. Lioy, J. E. Lugo, and C. W. Crumpton. The systemic and coronary hemodynamic effects of synthetic bradykinin. Am. Heart J. 65: 656–663, 1963.
 102. Rubenstein, A. H., S. Zwi, and K. Miller. Insulin and the lung. Diabetologia 4: 236–238, 1968.
 103. Ryan, J. W. The fate of angiotensin II. In: Handbook of Experimental Pharmacology. Angiotensin, edited by I. H. Page and F. M. Bumpus. New York: Springer‐Verlag, 1974, vol. 37, p. 81–110.
 104. Ryan, J. W. Processing of endogenous polypeptides by the lungs. Annu. Rev. Physiol. 44: 241–255, 1982.
 105. Ryan, J. W., and A. Chung. A new class of inhibitors of angiotensin converting enzyme. Adv. Exp. Med. Biol. 156: 1138–1139, 1983.
 106. Ryan, J. W., A. Chung, L. C. Martin, and U. S. Ryan. New substrates for the radioassay of angiotensin converting enzyme of endothelial cells in culture. Tissue Cell 10: 555–562, 1978.
 107. Ryan, J. W., A. R. Day, D. R. Schultz, U. S. Ryan, A. Chung, D. I. Marlborough, and F. E. Dorer. Localization of angiotensin converting enzyme (kininase II). I. Preparation of antibody‐heme‐octapeptide conjugates. Tissue Cell 8: 111–124, 1976.
 108. Ryan, J. W., R. S. Niemeyer, and D. W. Goodwin. Metabolic fates of bradykinin, angiotensin I, adenine nucleotides and prostaglandins E1 and F1α in the pulmonary circulation. Adv. Exp. Med. Biol. 21: 259–266, 1972.
 109. Ryan, J. W., R. S. Niemeyer, D. W. Goodwin, U. Smith, and J. M. Stewart. Metabolism of (8‐l‐[14C]phenylalanine)‐angiotensin I in the pulmonary circulation. Biochem. J. 125: 921–923, 1971.
 110. Ryan, J. W., J. Roblero, and J. M. Stewart. Inactivation of bradykinin in the pulmonary circulation. Biochem. J. 110: 795–797, 1968.
 111. Ryan, J. W., J. Roblero, and J. M. Stewart. Inactivation of bradykinin in the rat lung. Adv. Exp. Med. Biol. 8: 263–272, 1970.
 112. Ryan, J. W., and U. S. Ryan. Metabolic activities of plasma membrane and caveolae of pulmonary endothelial cells with a note on pulmonary prostaglandin synthetase. In: Lung Metabolism, edited by A. F. Junod and R. de Haller. New York: Academic, 1975, p. 399–424.
 113. Ryan, J. W., and U. S. Ryan. Biochemical and morphological aspects of the actions and metabolism of kinins. In: Chemistry and Biology of the Kallikrein‐Kinin System in Health and Disease, edited by J. J. Pisano and K. F. Austen. Washington, DC: US Govt. Printing Office, 1976, chapt. 41, p. 315–333. (Fogarty Int. Proc. 27.)
 114. Ryan, J. W., and U. S. Ryan. Is the lung a para‐endocrine organ? Am. J. Med. 63: 595–603, 1977.
 115. Ryan, J. W., and U. S. Ryan. Pulmonary endothelial cells. Federation Proc. 36: 2683–2691, 1977.
 116. Ryan, J. W., and U. S. Ryan. Metabolic functions of the pulmonary vascular endothelium. Adv. Vet. Sci. Comp. Med. 26: 79–98, 1982.
 117. Ryan, J. W., and U. S. Ryan. Endothelial surface enzymes and the dynamic processing of plasma substrates. Int. Rev. Exp. Pathol. 26: 1–43, 1983.
 118. Ryan, J. W., U. S. Ryan, D. R. Schultz, C. Whitaker, A. Chung, and F. E. Dorer. Subcellular localization of pulmonary angiotensin converting enzyme (kininase II). Biochem. J. 146: 497–499, 1975.
 119. Ryan, J. W., and U. Smith. A rapid, simple method for isolating pinocytotic vesicles and plasma membrane of lung. Biochim. Biophys. Acta 249: 177–180, 1971.
 120. Ryan, J. W., U. Smith, and R. S. Niemeyer. Angiotensin I: metabolism by plasma membrane of lung. Science 176: 64–66, 1972.
 121. Ryan, J. W., J. M. Stewart, W. P. Leary, and J. G. Ledingham. Metabolism of angiotensin I in the pulmonary circulation. Biochem. J. 120: 221–223, 1970.
 122. Ryan, U. S. Structural bases for metabolic activity. Annu. Rev. Physiol. 44: 223–239, 1982.
 123. Ryan, U. S. Culture of pulmonary endothelial cells on micro‐carriers. In: Biology of the Endothelial Cell, edited by E. A. Jaffe. The Hague, The Netherlands: Nijhoff, 1983, chapt. 4, p. 34–50.
 124. Ryan, U. S. New uses for endothelial cell culture. BioEssays 1: 114–116, 1984.
 125. Ryan, U. S., E. Clements, D. Habliston, and J. W. Ryan. Isolation and culture of pulmonary endothelial cells. Tissue Cell 10: 535–554, 1978.
 126. Ryan, U. S., D. C. Lehotay, and J. W. Ryan. Effects of bradykinin and angiotensin II on pulmonary endothelial cells in culture. Adv. Exp. Med. Biol. 156: 767–774, 1983.
 127. Ryan, U. S., M. Mortara, and C. Whitaker. Methods for microcarrier culture of bovine pulmonary artery endothelial cells avoiding the use of enzymes. Tissue Cell 12: 619–635, 1980.
 128. Ryan, U. S., and J. W. Ryan. Correlations between the fine structure of the alveolar‐capillary unit and its metabolic activities. In: Lung Biology in Health and Disease. Metabolic Functions of the Lung, edited by Y. S. Bakhle and J. R. Vane. New York: Dekker, 1977, vol. 4, chapt. 7, p. 197–232.
 129. Ryan, U. S., and J. W. Ryan. Vital and functional activities of endothelial cells. In: Pathobiology of the Endothelial Cell, edited by H. L. Nossel and H. J. Vogel. New York: Academic, 1982, p. 455–469.
 130. Ryan, U. S., J. W. Ryan, D. R. Schultz, and F. E. Dorer. Localization of pulmonary angiotensin converting enzyme (Abstract). J. Cell Biol. 63: 294a, 1974.
 131. Ryan, U. S., J. W. Ryan, and C. Whitaker. How do kinins affect vascular tone? In: Kinins—II. Biochemistry, Pathobiology and Clinical Aspects, edited by S. Fujii, H. Moriya, and T. Suzuki. New York: Plenum, 1979, p. 375–391.
 132. Ryan, U. S., J. W. Ryan, C. Whitaker, and A. Chiu. Localization of angiotensin converting enzyme (kininase II). II. Immunocytochemistry and immunofluorescence. Tissue Cell 8: 125–145, 1976.
 133. Ryan, U. S., L. A. White, M. Lopez, and J. W. Ryan. Use of microcarriers to isolate and culture pulmonary microvascular endothelium. Tissue Cell 14: 597–606, 1982.
 134. Sander, G. E., and C. G. Huggins. Subcellular enzyme in rabbit lung. Nature London New Biol. 230: 27–29, 1971.
 135. Saperstein, L. A., R. K. Reed, and E. W. Page. The site of angiotonin destruction. J. Exp. Med. 83: 425–439, 1946.
 136. Schlessinger, J., Y. Shechter, M. C. Willingham, and I. Pastan. Direct visualization of binding, aggregation and internalization of insulin and epidermal growth factor on living fibroblastic cells. Proc. Natl. Acad. Sci. USA 75: 2659–2663, 1978.
 137. Schroder, E., and K. Lubke. Linear peptides. A. Tissue hormones (kinin hormones). In: The Peptides, translated by E. Gross. New York: Academic, 1966, vol. 2, chapt. 1, p. 109–120.
 138. Semple, P. F., and J. J. Morton. Angiotensin II and angiotensin III in rat blood. Circ. Res. 38, Suppl. II: 122–126, 1976.
 139. Skeggs, L. T., J. R. Kahn, and N. P. Shumway. The preparation and function of the hypertensin‐converting enzyme. J. Exp. Med. 103: 295–299, 1956.
 140. Smith, U., and J. W. Ryan. An electron microscopic study of the vascular endothelium as a site for bradykinin and adenosine‐5′‐triphosphate inactivation in rat lung. Adv. Exp. Med. Biol. 8: 249–262, 1970.
 141. Smith, U., and J. W. Ryan. Pinocytotic vesicles of the pulmonary endothelial cell. Chest 59: 12S–15S, 1971.
 142. Smith, U., and J. W. Ryan. Electron microscopy of endothelial and epithelial components of the lungs: correlations of structure and function. Federation Proc. 32: 1957–1966, 1973.
 143. Soffer, R. L. Angiotensin‐Converting enzyme and the regulation of vasoactive peptides. Annu. Rev. Biochem. 45: 73–94, 1976.
 144. Suffer, R. L. Angiotensin converting enzyme. In: Biochemical Regulation of Blood Pressure, edited by R. L. Soffer. New York: Wiley, 1981, p. 123–164.
 145. Stalcup, S. A., P. J. Leuenberger, J. S. Lipset, M. M. Osman, J. M. Cerreta, R. B. Mellins, and G. M. Turino. Impaired angiotensin conversion and bradykinin clearance in experimental canine pulmonary emphysema. J. Clin. Invest. 67: 201–209, 1981.
 146. Stalcup, S. A., J. S. Lipset, P. M. Legant, P. J. Leuenberger, and R. B. Mellins. Inhibition of converting enzyme activity by acute hypoxia in dogs. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 46: 227–234, 1979.
 147. Stalcup, S. A., J. S. Lipset, J. M. Woan, P. Leuenberger, and R. B. Mellins. Inhibition of angiotensin converting enzyme activity in cultured endothelial cells by hypoxia. J. Clin. Invest. 63: 966–976, 1979.
 148. Szidon, P., N. Bairey, and S. Oparil. Effect of acute hypoxia on the pulmonary conversion of angiotensin I to angiotensin II in dogs. Circ. Res. 46: 221–226, 1980.
 149. Tierney, D. F. Lung metabolism and biochemistry. Annu. Rev. Physiol. 36: 209–231, 1974.
 150. Tsai, B. S., M. J. Peach, M. C. Khosla, and F. M. Bumpus. Synthesis and evaluation of [Des‐Asp1] angiotensin I as a precursor for [Des‐Asp1]angiotensin II (angiotensin III). J. Med. Chem. 18: 1180–1183, 1975.
 151. Turker, R. K., M. Yamamoto, F. M. Bumpus, and P. A. Khairallah. Lung perfusion with angiotensin I and II. Evidence of release myotropic and inhibitory substances. Circ. Res. 28: 559–597, 1971.
 152. Vane, J. R. The release and fate of vaso‐active hormones in the circulation. Br. J. Pharmacol. 35: 209–242, 1969.
 153. Vane, J. R. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin‐like drugs. Nature London New Biol. 231: 232–235, 1971.
 154. Vane, J. R. Introduction. In: Metabolic Activities of the Lung. Amsterdam: Excerpta Med., 1980, p. 1–10. (Ciba Found. Symp. 78.)
 155. Voelkel, N. F., J. G. Gerber, I. F. McMurty, A. S. Nies, and J. T. Reeves. Release of vasodilator prostaglandin, PGI2, from isolated rat lung during vasoconstriction. Circ. Res. 48: 207–213, 1981.
 156. Wong, P. Y. K., N. A. Terragno, and J. C. McGiff. Dual effects of bradykinin on prostaglandin metabolism: relationship to the dissimilar vascular actions of kinins. Prostaglandins 13: 1113–1125, 1977.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Una S. Ryan. Processing of Angiotensin and Other Peptides by the Lungs. Compr Physiol 2011, Supplement 10: Handbook of Physiology, The Respiratory System, Circulation and Nonrespiratory Functions: 351-364. First published in print 1985. doi: 10.1002/cphy.cp030110