Comprehensive Physiology Wiley Online Library

Forebrain and Midbrain Influence on Respiration

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Respiratory Effects of Stimulation
1.1 Inhibitory Effects
1.2 Excitatory Effects
2 Descending Pathways
2.1 Anatomical Studies
2.2 Electrophysiological Studies
2.3 Termination on Medullary Respiratory Neurons
2.4 Termination on Respiratory Motoneurons
3 Physiological Respiratory Adjustments
3.1 Tonic Respiratory Drive From Mesencephalon and Diencephalon
3.2 Cortical Inhibition
4 Respiratory Effects of Mental Activity
4.1 Thought, Attention, and Emotion
4.2 Voluntary Control of Respiration
5 Conclusion
Figure 1. Figure 1.

Respiratory inhibitory (top) and facilitatory (bottom) effects of electrical stimulation of cerebral cortex of cat. Rise in blood pressure (upper trace) was elicited by stimulation of inhibitory area of orbital gyrus. Respiratory acceleration was obtained from pericruciate gyrus (sensorimotor area).

From Smith 145. In: Journal of Neurophysiology, 1938. Courtesy of Charles C Thomas, Publisher, Springfield, Illinois
Figure 2. Figure 2.

Routes by which inhibitory pathways from area 13 reach mesencephalic tegmentum of cat.

From Turner 155
Figure 3. Figure 3.

Cat brain stem regions (stippled areas) from which stimulation produces excitation of respiration combined with electroencephalogram arousal and other concomitants of general alerting reaction. CGL, corpus geniculatus lateralis; CGM, corpus geniculatus medialis; CI, capsula interna; CP, commissura posterior; Cqa, corpus quadrigeminum anticum; Ddt, decussatio dorsalis tegmenti; Dvt, decussatio ventralis tegmenti; En, nucleus entopedoncularis; F, fornix; GP, globus pallidus; IP, ganglio interpedoncularis; Lm, lemniscus medialis; MD, nucleus medialis thalami; Mm, nucleus mammilaris medialis; Nc, nucleus caudatus; NR, nucleus ruber; P, pons; Ped, pes pedonculus; Put, putamen; PV, nucleus paraventricularis; R, nucleus reticulatus thalami; SN, substantia nigra; TO, tractus opticus; VA, nucleus anteroventralis thalami; ZI, zona incerta.

From Cohen and Hugelin 36
Figure 4. Figure 4.

Changes in phrenic pattern of discharge in response to mesencephalic reticular stimulation produced by modifying alveolar CO2 tension in curarized low encéphale isolé cat preparation. Respiratory patterns during reticular stimulation are identical in A, B, and C, but depending on prestimulation pattern, stimulation increases (A) or reduces (B, C) respiratory rate. , fractional concentration of CO2 in alveolar gas. Horizontal bars (c), duration of prestimulation control cycle.

From Cohen and Hugelin 36
Figure 5. Figure 5.

General arousal reaction on mesencephalic reticular stimulation in locally anesthetized, vagotomized, low encéphale isolé cat preparation. Note inhibition of polysynaptic jaw‐opening reflex (JOR), enhanced amplitude of integrated phrenic nerve discharge (Phr), and electrocorticogram (ECG) desynchronization. Repetitive electrical stimulation at 300 Hz delivered during time indicated by signal on bottom trace. Effects were maximum during 1st seconds of stimulation and decreased progressively to steady level in 2nd part. Steady level was attributed to cortical inhibitory influence because effects were suppressed by diencephalic transection.

From Hugelin and Cohen 83
Figure 6. Figure 6.

Comparison of cortical regions influencing respiration in cat. A: areas from which single shock evokes complex phrenic phasic response. Dots, dominant excitatory response; open circles, dominant inhibitory response; shaded area, intermediate response. B: topography of regions from which repetitive stimulation elicits inhibition (dots) or acceleration (lines). Closest stippling and lines, areas from which responses were most easily obtained.

A from Planche 125; B from Smith 145. In: Journal of Neurophysiology, 1938. Courtesy of Charles C Thomas, Publisher, Springfield, Illinois
Figure 7. Figure 7.

Different phrenic phasic responses to single‐shock cortical stimulation. A: dominant excitatory response on pericruciate excitation. B: dominant inhibitory response on orbital gyrus stimulation. C: intermediate response on stimulation of point between excitatory and inhibitory areas. Above each recording, 1‐4 designate successive excitatory responses. Identical responses were recorded homo‐ and contralaterally. Arrows indicate stimulation time.

Adapted from Planche 126
Figure 8. Figure 8.

Dissociation of bulbospinal respiratory drive mediated by crossed descending tract and reticulospinal facilitation mediated by direct pathway. A: spontaneous inspiratory electromyogram activity of left and right diaphragms and external and internal intercostal muscles. B: tonic discharge produced by stimulating medial gigantocellular reticular field at point indicated by dot A. C: after midline incision from C2 to obex, respiratory activity is suppressed on both sides, whereas reticular stimulation still produces tonic discharge of respiratory muscles through direct and crossed pathways left intact by limited midline incision.

From Sears 142
Figure 9. Figure 9.

Increase in respiratory rate (upper curves) and rectal temperature (lower curves) in response to external body warming. Filled circles, normal deep breaths; open circles, polypnea; crosses, panting (open mouth, moving jaw, and salivation). Top: intact cat. Bottom: 45 days after bilateral hypothalmic electrolytic lesion.

From Hess and Stoll 74
Figure 10. Figure 10.

Topography of hypothalamic region from which electrical stimulation elicits thermal polypnea and panting in goat. A: parasagittal section through preoptic area and hypothalamus. Cross‐hatched area, responsive region. B: frontal section through hypothalamus caudal to anterior commissure. Filled circles, points from which polypnea was elicited; open circles, points from which stimulation was ineffective. C.a., commissura anterior; C.f.d., columna fornicis descendens; Ch.o., chiasma opticum; C.m., corpus mammillare; Inf., infundibulum; P.C., pedunculus cerebri; V. d'A., tractus Vicq d'Azyr; 3, 3rd ventricle.

From Andersson et al. 6
Figure 11. Figure 11.

Effects on respiratory rate, ear surface temperature, and shivering of electrical stimulation of heat‐sensitive hypothalamic area of goat before and after body temperature was artificially lowered. Double line on lower curve indicates panting.

From Andersson et al. 6
Figure 12. Figure 12.

Inversion of inspiratory discharge pattern from slowly increasing type to slowly decreasing type during thermal polypnea. Top: phrenic discharge before (top trace) and during (bottom trace) hypothalamic heating. Bottom: inspiration‐triggered time histogram of bulbospinal neuron, recorded in ventral bulbar respiratory nucleus during normopnea (left) and during thermal polypnea (right).

Adapted from Dussardier et al. 47
Figure 13. Figure 13.

Phrenic discharge at different alveolar CO2 levels: A, 8.9%; B, 5.3%; C, 3.4%; D, 2.2%. Top traces, phrenic potentials after integration with resistance‐capacitance integrating circuit; bottom traces, directly recorded phrenic potentials.

From Cohen 34
Figure 14. Figure 14.

Schematic diagram of sagittal section of chronic cat brain showing region essential to decorticate panting (dotted area). Transection AA did not eliminate decorticate panting, which was suppressed after BB section. H, habenula; SC, superior colliculus; IC, inferior colliculus; OC, optic chiasma; CM, corpus mammilare; E, epiphysis.

From Lilienthal and Otenasek 96
Figure 15. Figure 15.

Different effects of hypoxia on ventilation (group mean) under conscious control conditions (filled symbols) and after decortication (open symbols). Partial pressure of O2 was controlled throughout hypoxia exposure at level indicated in parentheses. f, Respiratory frequency; VT, tidal volume; VE, expired minute ventilation; , alveolar partial pressure of O2.

From Tenney and Ou 152
Figure 16. Figure 16.

Schematic diagram of principal excitatory (+) and inhibitory (‐) pathways in hypoxic ventilatory control. PCR, peripheral chemoreceptor.

From Tenney et al. 153
Figure 17. Figure 17.

Effects of attention test on human cardiac frequency (FC), pneumotachograph (dV/dt), expired CO2 fraction (FEco2), tidal volume (VT), electrodermogram (EDG), and 3 electroencephalogram (EEG) traces. Instructions were given to subject at 1st mark of bottom trace, and task began at 2nd mark. OP, occipitoparietal lead; FF, frontofrontal lead.

From Gautier 166
Figure 18. Figure 18.

Electromyogram (EMG) of inspiratory and expiratory intercostal muscles during singing of a sustained tone (2 lower traces). Upper trace, airflow; 2nd trace, spirogram expressed as percent vital capacity (% VC).

From Sears and Newsom Davis 143


Figure 1.

Respiratory inhibitory (top) and facilitatory (bottom) effects of electrical stimulation of cerebral cortex of cat. Rise in blood pressure (upper trace) was elicited by stimulation of inhibitory area of orbital gyrus. Respiratory acceleration was obtained from pericruciate gyrus (sensorimotor area).

From Smith 145. In: Journal of Neurophysiology, 1938. Courtesy of Charles C Thomas, Publisher, Springfield, Illinois


Figure 2.

Routes by which inhibitory pathways from area 13 reach mesencephalic tegmentum of cat.

From Turner 155


Figure 3.

Cat brain stem regions (stippled areas) from which stimulation produces excitation of respiration combined with electroencephalogram arousal and other concomitants of general alerting reaction. CGL, corpus geniculatus lateralis; CGM, corpus geniculatus medialis; CI, capsula interna; CP, commissura posterior; Cqa, corpus quadrigeminum anticum; Ddt, decussatio dorsalis tegmenti; Dvt, decussatio ventralis tegmenti; En, nucleus entopedoncularis; F, fornix; GP, globus pallidus; IP, ganglio interpedoncularis; Lm, lemniscus medialis; MD, nucleus medialis thalami; Mm, nucleus mammilaris medialis; Nc, nucleus caudatus; NR, nucleus ruber; P, pons; Ped, pes pedonculus; Put, putamen; PV, nucleus paraventricularis; R, nucleus reticulatus thalami; SN, substantia nigra; TO, tractus opticus; VA, nucleus anteroventralis thalami; ZI, zona incerta.

From Cohen and Hugelin 36


Figure 4.

Changes in phrenic pattern of discharge in response to mesencephalic reticular stimulation produced by modifying alveolar CO2 tension in curarized low encéphale isolé cat preparation. Respiratory patterns during reticular stimulation are identical in A, B, and C, but depending on prestimulation pattern, stimulation increases (A) or reduces (B, C) respiratory rate. , fractional concentration of CO2 in alveolar gas. Horizontal bars (c), duration of prestimulation control cycle.

From Cohen and Hugelin 36


Figure 5.

General arousal reaction on mesencephalic reticular stimulation in locally anesthetized, vagotomized, low encéphale isolé cat preparation. Note inhibition of polysynaptic jaw‐opening reflex (JOR), enhanced amplitude of integrated phrenic nerve discharge (Phr), and electrocorticogram (ECG) desynchronization. Repetitive electrical stimulation at 300 Hz delivered during time indicated by signal on bottom trace. Effects were maximum during 1st seconds of stimulation and decreased progressively to steady level in 2nd part. Steady level was attributed to cortical inhibitory influence because effects were suppressed by diencephalic transection.

From Hugelin and Cohen 83


Figure 6.

Comparison of cortical regions influencing respiration in cat. A: areas from which single shock evokes complex phrenic phasic response. Dots, dominant excitatory response; open circles, dominant inhibitory response; shaded area, intermediate response. B: topography of regions from which repetitive stimulation elicits inhibition (dots) or acceleration (lines). Closest stippling and lines, areas from which responses were most easily obtained.

A from Planche 125; B from Smith 145. In: Journal of Neurophysiology, 1938. Courtesy of Charles C Thomas, Publisher, Springfield, Illinois


Figure 7.

Different phrenic phasic responses to single‐shock cortical stimulation. A: dominant excitatory response on pericruciate excitation. B: dominant inhibitory response on orbital gyrus stimulation. C: intermediate response on stimulation of point between excitatory and inhibitory areas. Above each recording, 1‐4 designate successive excitatory responses. Identical responses were recorded homo‐ and contralaterally. Arrows indicate stimulation time.

Adapted from Planche 126


Figure 8.

Dissociation of bulbospinal respiratory drive mediated by crossed descending tract and reticulospinal facilitation mediated by direct pathway. A: spontaneous inspiratory electromyogram activity of left and right diaphragms and external and internal intercostal muscles. B: tonic discharge produced by stimulating medial gigantocellular reticular field at point indicated by dot A. C: after midline incision from C2 to obex, respiratory activity is suppressed on both sides, whereas reticular stimulation still produces tonic discharge of respiratory muscles through direct and crossed pathways left intact by limited midline incision.

From Sears 142


Figure 9.

Increase in respiratory rate (upper curves) and rectal temperature (lower curves) in response to external body warming. Filled circles, normal deep breaths; open circles, polypnea; crosses, panting (open mouth, moving jaw, and salivation). Top: intact cat. Bottom: 45 days after bilateral hypothalmic electrolytic lesion.

From Hess and Stoll 74


Figure 10.

Topography of hypothalamic region from which electrical stimulation elicits thermal polypnea and panting in goat. A: parasagittal section through preoptic area and hypothalamus. Cross‐hatched area, responsive region. B: frontal section through hypothalamus caudal to anterior commissure. Filled circles, points from which polypnea was elicited; open circles, points from which stimulation was ineffective. C.a., commissura anterior; C.f.d., columna fornicis descendens; Ch.o., chiasma opticum; C.m., corpus mammillare; Inf., infundibulum; P.C., pedunculus cerebri; V. d'A., tractus Vicq d'Azyr; 3, 3rd ventricle.

From Andersson et al. 6


Figure 11.

Effects on respiratory rate, ear surface temperature, and shivering of electrical stimulation of heat‐sensitive hypothalamic area of goat before and after body temperature was artificially lowered. Double line on lower curve indicates panting.

From Andersson et al. 6


Figure 12.

Inversion of inspiratory discharge pattern from slowly increasing type to slowly decreasing type during thermal polypnea. Top: phrenic discharge before (top trace) and during (bottom trace) hypothalamic heating. Bottom: inspiration‐triggered time histogram of bulbospinal neuron, recorded in ventral bulbar respiratory nucleus during normopnea (left) and during thermal polypnea (right).

Adapted from Dussardier et al. 47


Figure 13.

Phrenic discharge at different alveolar CO2 levels: A, 8.9%; B, 5.3%; C, 3.4%; D, 2.2%. Top traces, phrenic potentials after integration with resistance‐capacitance integrating circuit; bottom traces, directly recorded phrenic potentials.

From Cohen 34


Figure 14.

Schematic diagram of sagittal section of chronic cat brain showing region essential to decorticate panting (dotted area). Transection AA did not eliminate decorticate panting, which was suppressed after BB section. H, habenula; SC, superior colliculus; IC, inferior colliculus; OC, optic chiasma; CM, corpus mammilare; E, epiphysis.

From Lilienthal and Otenasek 96


Figure 15.

Different effects of hypoxia on ventilation (group mean) under conscious control conditions (filled symbols) and after decortication (open symbols). Partial pressure of O2 was controlled throughout hypoxia exposure at level indicated in parentheses. f, Respiratory frequency; VT, tidal volume; VE, expired minute ventilation; , alveolar partial pressure of O2.

From Tenney and Ou 152


Figure 16.

Schematic diagram of principal excitatory (+) and inhibitory (‐) pathways in hypoxic ventilatory control. PCR, peripheral chemoreceptor.

From Tenney et al. 153


Figure 17.

Effects of attention test on human cardiac frequency (FC), pneumotachograph (dV/dt), expired CO2 fraction (FEco2), tidal volume (VT), electrodermogram (EDG), and 3 electroencephalogram (EEG) traces. Instructions were given to subject at 1st mark of bottom trace, and task began at 2nd mark. OP, occipitoparietal lead; FF, frontofrontal lead.

From Gautier 166


Figure 18.

Electromyogram (EMG) of inspiratory and expiratory intercostal muscles during singing of a sustained tone (2 lower traces). Upper trace, airflow; 2nd trace, spirogram expressed as percent vital capacity (% VC).

From Sears and Newsom Davis 143
References
 1. Abrahams, V. C., S. M. Hilton, and A. W. Zbrozyna. The role of active muscle vasodilatation in the alerting stage of the defence reaction. J. Physiol. London 171: 189–202, 1964.
 2. Allikmets, L. K. Behavioral reactions to electrical stimulation of amygdala in cats (in Russian). Zh. Vyssh. Nervn. Deyat. Im. I. P. Pavlova 16: 1082, 1966.
 3. Aminoff, M. J., and T. A. Sears. Spinal integration of segmental, cortical and breathing inputs to thoracic respiratory motoneurones. J. Physiol. London 215: 557–575, 1971.
 4. Anand, B. K., and S. Dua. Circulatory and respiratory changes induced by electrical stimulation of limbic system (visceral brain). J. Neurophysiol. 19: 393–400, 1956.
 5. Andersen, P., and T. A. Sears. Medullary activation of intercostal fusimotor and alpha motoneurones. J. Physiol. London 209: 739–755, 1970.
 6. Andersson, B., R. Grant, and S. Larsson. Central control of heat loss mechanisms in the goat. Acta Physiol. Scand. 37: 261–280, 1956.
 7. Bailey, P., and W. H. Sweet. Effects on respiration, blood pressure and gastric motility of stimulation of orbital surface of frontal lobe. J. Neurophysiol. 3: 276–281, 1940.
 8. Baltrop, D. The relation between body temperature and respiration (Abstract). J. Physiol. London 125: 19P, 1954.
 9. Barbour, H. G. Die Wirkung unmitelbarer Erwarmung und Abkühlung der Warmzentra auf die Korpen‐temperature. Arch. Exp. Pathol. Pharmakol. 70: 1–26, 1912.
 10. Bard, P. A diencephalic mechanism for the expression of rage with special reference to the sympathetic nervous system. Am. J. Physiol. 84: 490–515, 1928.
 11. Bazett, H. C., and J. B. S. Haldane. Some effects of hot baths on man. J. Physiol. London 124: 4–5, 1921.
 12. Bechbache, R. R., and J. Duffin. The entrainment of breathing frequency by exercise rhythm. J. Physiol. London 272: 553–561, 1977.
 13. Benussi, V. Die Atmungsymptome der Lüge. Arch. Ges. Psychol. 31: 244–273, 1924.
 14. Bertrand, F., and A. Hugelin. Respiratory synchronizing function of nucleus parabrachialis medialis: pneumotaxic mechanisms. J. Neurophysiol. 34: 189–207, 1971.
 15. Biscoe, T. J., and S. R. Sampson. An analysis of the inhibition of phrenic motoneurones which occurs on stimulation of some cranial nerve afferents. J. Physiol. London 209: 375–393, 1970.
 16. Bizzi, E., A. Libretti, A. Malliani, and A. Zanchetti. Reflex chemoceptive excitation of diencephalic sham rage behavior. Am. J. Physiol. 200: 923–926, 1961.
 17. Bligh, J. The relationship between the temperature in the rectum and of the blood in the bicarotid trunk of the calf during exposure to heat stress. J. Physiol. London 136: 393–403, 1957.
 18. Bonvallet, M., M. Audisio, and A. Hugelin. Facteurs réticulaires et corticaux des modifications de l'excitabilité des motoneurones au cours de l'hypoxie aigue. J. Physiol. Paris 51: 454–455, 1959.
 19. Bonvallet, M., and E. Gary‐Bobo. Changes in phrenic activity and heart rate elicited by localized stimulation of amygdala and adjacent structures. Electroencephalogr. Clin. Neurophysiol. 32: 1–16, 1972.
 20. Bonvallet, M., and A. Hugelin. Influence de la formation réticulaire et du cortex cérébral sur l'excitabilité motrice au cours de l'hypoxie. Electroencephalogr. Clin. Neurophysiol. 13: 270–284, 1961.
 21. Bonvallet, M., A. Hugelin, and P. Dell. Sensibilité comparée du système réticulé activateur ascendant et du centre respiratoire aux gaz du sang et à l'adrénaline. J. Physiol. Paris 47: 651–654, 1955.
 22. Bonvallet, M., A. Hugelin, and P. Dell. Milieu intérieur et activité automatique des cellules réticulaires mésencéphaliques. J. Physiol. Paris 48: 403–406, 1956.
 23. Bouhuys, A. Lung volumes and breathing patterns in wind‐instrument players. J. Appl. Physiol. 19: 967–975, 1964.
 24. Bouhuys, A., D. F. Proctor, and J. Mead. Kinetic aspects of singing. J. Appl. Physiol. 21: 483–496, 1966.
 25. Bradley, G. W., C. Von Euler, I. Marttila, and B. Roos. Steady state effects of CO2 and temperature on the relationship between lung volume and inspiratory duration (Hering‐Breuer threshold curve). Acta Physiol. Scand. 92: 351–363, 1974.
 26. Brener, J., and D. Hothersall. Paced respiration and heart rate control. Psychophysiology 4: 1–6, 1967.
 27. Brown, H. W., and F. Plum. The neurologic basis of Cheyne‐Stokes respiration. Am. J. Med. 30: 849–860, 1961.
 28. Bunn, J. C., and J. Mead. Control of ventilation during speech. J. Appl. Physiol. 31: 870–872, 1971.
 29. Caille, D., J. F. Vibert, F. Bertrand, H. Gromysz, and A. Hugelin. Pentobarbitone effects on respiration related units; selective depression of bulbopontine reticular neurones. Respir. Physiol. 36: 201–216, 1979.
 30. Caille, D., J. F. Vibert, and A. Hugelin. Apneusis and apnea after parabrachial or Kölliker‐Fuse N. lesion; influence of wakefulness. Respir. Physiol. 45: 79–95, 1981.
 31. Cajal, S. R. Histologie du système nerveux de l'homme et des vertébrés. Paris: Maloine, 2 vol., 1909.
 32. Chapot, G. Action de la température et de Faco2 sur les décharges du nerf phrénique. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 296: 196–201, 1927.
 33. Christiani, A. Ueber Athmungsnerven und Athmungscentren. Arch. Anat. Physiol. Physiol. Abt.: 295–296, 1880.
 34. Clark, G., H. W. Magoun, and S. W. Ranson. Hypothalamic regulation of body temperature. J. Neurophysiol. 2: 61–80, 1939.
 35. Cohen, M. I. Respiratory periodicity in the paralyzed, vagotomized cat: hypocapnic polypnea. Am. J. Physiol. 206: 845–854, 1964.
 36. Cohen, M. I., and P. M. Gootman. Spontaneous and evoked oscillations in respiratory and sympathetic discharge. Brain Res. 16: 265–268, 1969.
 37. Cohen, M. I., and A. Hugelin. Suprapontine reticular control of intrinsic respiratory mechanisms. Arch. Ital. Biol. 103: 317–334, 1965.
 38. Colle, J., and J. Massion. Effet de la stimulation du cortex moteur sur l'activité électrique des nerfs phréniques et médians. Arch. Int. Physiol. 66: 496–514, 1958.
 39. Corda, M., C. Von Euler, and G. Lennerstrand. Reflex and cerebellar influences on alpha and on rhythmic and tonic gamma activity in the intercostal muscle. J. Physiol. London 184: 898–923, 1966.
 40. Cotes, J. E. The role of body temperature in controlling ventilation during exercise in one normal subject breathing oxygen. J. Physiol. London 129: 554–563, 1955.
 41. Critchlow, V., and C. Von Euler. Intercostal muscle spindle activity and its motor control. J. Physiol. London 184: 820–847, 1963.
 42. Dixon, M., J. G. Widdicombe, and J. C. Wise. Laryngeal calibre during hyperthermia in cats. Respir. Physiol. 20: 371–377, 1974.
 43. Draper, M. H., P. Ladefoged, and D. Whitteridge. Respiratory muscles in speech. J. Speech Hear. Res. 2: 16–27, 1959.
 44. Draper, M. H., P. Ladefoged, and D. Whitteridge. Expiratory pressures and air flow during speech. Br. Med. J. 2: 1837–1843, 1960.
 45. Duffin, J., and C. H. Hockman. Limbic forebrain and midbrain modulation and phase‐switching of expiratory neurons. Brain Res. 39: 235–239, 1972.
 46. Duron, B. Postural and ventilatory functions of intercostal muscles. Acta Neurobiol. Exp. 33: 355–380, 1973.
 47. Duron, B., and M. C. Caillol. Activité électrique des muscles intercostaux au cours du frisson thermique chez le chat anesthésié. J. Physiol. Paris 63: 523–538, 1971.
 48. Dussardier, M., R. Monteau, and G. Hilaire. Changes in the activity of respiratory neurones induced by thermal polypnea. In: Respiration Centres and Afferent Systems, edited by B. Duron. Paris: INSERM, 1976, p. 85–93.
 49. Eklund, G., C. Von Euler, and S. Rutkowski. Spontaneous and reflex activity of intercostal gamma motoneurones. J. Physiol. London 171: 139–163, 1964.
 50. Eliason, S., B. Folkow, P. Lindgren, and B. Üvnas. Activation of sympathetic vasodilator nerves to the skeletal muscles in the cat by hypothalamic stimulation. Acta Physiol. Scand. 23: 333–351, 1951.
 51. Euler, C. von, F. Herrero, and I. Wexler. Control mechanisms determining rate and depth of respiratory movements. Respir. Physiol. 10: 93–108, 1970.
 52. Euler, C. von, and T. Trippenbach. Temperature effects on the inflation reflex during expiratory time in the cat. Acta Physiol. Scand. 96: 338–350, 1976.
 53. Evans, M. H. Stimulation of the rabbit hypothalamus: caudal projections to respiratory and cardiovascular centres. J. Physiol. London 260: 205–222, 1976.
 54. Evans, M. H., and P. A. Pepler. Respiratory effects mapped by focal stimulation in the rostral brain stem of the anaesthetised rabbit. Brain Res. 75: 41–57, 1974.
 55. Fernandez de Molina, A., and R. W. Hunsperger. Central representation of affective reactions in forebrain and brain stem: electrical stimulation of amygdala, stria terminalis and adjacent structures. J. Physiol. London 145: 251–265, 1959.
 56. Fink, B. R. Influence of cerebral activity in wakefulness on regulation of breathing. J. Appl. Physiol. 16: 15–20, 1961.
 57. Fink, B. R., R. Katz, H. Reinhold, and A. Schoolman. Suprapontine mechanisms in regulation of respiration. Am. J. Physiol. 202: 217–220, 1962.
 58. Fruhmann, G. Hypersomnia with primary hypoventilation syndrome following CO2 pulmonale (Ondine's curse syndrome). Bull. Physio‐Pathol. Respir. 8: 1173–1179, 1972.
 59. Gary‐Bobo, E., and M. Bonvallet. Réponses associées incrémentales corticales et oculaires d'origine amygdalienne. Electroencephalogr. Clin. Neurophysiol. 29: 473–487, 1970.
 60. Gautier, H. Effets comparés de stimulations respiratoires spécifiques et de l'activité mentale sur la forme du spiro‐gramme de l'homme. J. Physiol. Paris 61: 31–44, 1969.
 61. Gautier, H. Respiratory and heart rate responses to auditory stimulations. Physiol. Behav. 8: 327–332, 1972.
 62. Gautier, H., and A. Hugelin. Effets comparés de l'asphyxie et du réveil sur les décharges inspiratoires et expiratoires. C. R. Soc. Biol. 159: 1923–1925, 1965.
 63. Gieu, J. D., and J. D. Hardy. Integrative activity of preoptic units. I: response to local and peripheral temperature changes. J. Physiol. Paris 63: 253–256, 1971.
 64. Golla, F. L., and S. Antonovitch. The respiratory rhythm in its relation to the mechanism of thought. Brain 52: 491–509, 1929.
 65. Grozinger, B., J. Kriebel, and H. H. Kornhüber. Respiration correlated brain potentials. J. Interdiscip. Cycle Res. 5: 287–294, 1974.
 66. Grunstein, M. M., W. M. Fisk, L. A. Leiter, and J. Milic‐Emili. Effect of body temperature on respiratory frequency in anesthetized cats. J. Appl. Physiol. 34: 154–159, 1973.
 67. Haldane, J. S. The influence of high air temperatures. J. Hyg. 5: 494–513, 1905.
 68. Hardy, J. S. Physiology of temperature regulation. Physiol. Rev. 41: 521–606, 1961.
 69. Hayward, J. N. Functional and morphological aspects of hypothalamic neurons. Physiol. Rev. 57: 574–658, 1977.
 70. Heim, E., P. H. Knapp, L. Vachon, G. G. Globus, and S. Nemetz. Emotion, breathing and speech. J. Psychosom. Res. 12: 261–274, 1968.
 71. Hess, W. R. Beitrage zur Physiologie des Hirnstamms. II. Teil. Das Zwischchenhirn und die Regulation von Kreislauf und Atmung. Leipzig, Germany: Thieme, 1938.
 72. Hess, W. R. Vegetative Funktionen und Zwischenhirn. Helv. Physiol. Pharmacol. Acta Suppl. 5: 1–89, 1947.
 73. Hess, W. R. Das Zwischenhirn. Syndrome, Lokalisationen, Funktionen. Basel: Schwabe, 1954.
 74. Hess, W. R., and M. Brugger. Das subkortikale Zentrum der affektiven Abwehrreaktion. Helv. Physiol. Pharmacol. Acta 1: 33–52, 1943.
 75. Hess, W. R., and H. R. Müller. Einflüsse des Mittel und Zwischenhirns auf die Atmung. Helv. Physiol. Pharmacol. Acta 4: 347–358, 1946.
 76. Hess, W. R., and W. Stoll. Experimenteller Beitrag betreffend die Regulierung der Körpertemperatur. Helv. Physiol. Pharmacol. Acta 2: 461–480, 1944.
 77. Hey, E. N., B. B. Lloyd, B. J. C. Cunningham, M. G. M. Jukes, and D. P. G. Bolton. Effects of various respiratory stimuli on the depth and frequency of breathing in man. Respir. Physiol. 1: 193–205, 1966.
 78. Heyman, A., R. I. Birchfield, and H. O. Sieker. Effects of bilateral cerebral infarction on respiratory center sensitivity. Neurology 8: 694–700, 1958.
 79. Hilaire, G., and R. Monteau. Activité des motoneurones phréniques au cours de la polypnée thermique ou hypocapnique. J. Physiol. Paris 68: 193–203, 1974.
 80. Hockman, C. H., J. Duffin, A. H. Rupert, and B. R. Vachon. Phase switching of respiration induced by central gray and hippocampal stimulation in the cat. J. Neural Transm. 35: 327–335, 1974.
 81. Hord, D. J., L. C. Johnson, and A. Lubin. Differential effect of the law of initial value (L.I.V.) on autonomic variables. Psychophysiology 1: 79–87, 1964.
 82. Hugelin, A. Bodily changes during arousal, attention and emotion. In: Limbic System Mechanisms and Autonomic Function, edited by C. Hockman. Springfield, IL: Thomas, 1972, p. 202–212.
 83. Hugelin, A., and M. Bonvallet. Tonus cortical et contrôle de la facilitation motrice d'origine réticulaire. J. Physiol. Paris 49: 1171–1200, 1957.
 84. Hugelin, A., M. Bonvallet, and P. Dell. Activation réticulaire et corticale d'origine chémoceptive au cours de l'hypoxie. Electroencephalogr. Clin. Neurophysiol. 2: 325–340, 1959.
 85. Hugelin, A., and M. I. Cohen. The reticular activating system and respiratory regulation in the cat. Ann. NY Acad. Sci. 109: 586–603, 1963.
 86. Jung‐Caillol, M. C., and B. Duron. Number of neuromuscular spindles and electrical activity of the respiratory muscles. In: Respiratory Centres and Afferent Systems, edited by B. Duron. Paris: INSERM, 1976, p. 165–173.
 87. Kaada, B. R. Somato‐motor, autonomic and electrocorticographic responses to electrical stimulation of “rhinencephalic” and other structures in primates, cats and dogs. Acta Physiol. Scand. Suppl. 83: 38–89, 1951.
 88. Kaada, B. R., K. H. Pribram, and J. A. Epstein. Respiratory and vascular responses in monkeys from temporal pole, insula, orbital surface and cingulate gyrus. A preliminary report. J. Neurophysiol. 12: 347–356, 1949.
 89. Kabat, H. Electrical stimulation of points in the forebrain and midbrain: the resultant alterations in respiration. J. Comp. Neurol. 64: 187–208, 1936.
 90. Kabat, H., H. W. Magoun, and S. W. Ranson. Electrical stimulation of points in the interior of the forebrain and midbrain: the resultant alterations in blood pressure. Arch. Neurol. Psychiatry 34: 931–955, 1935.
 91. Kastella, K. G., H. A. Spurgeon, and G. K. Weiss. Respiratory‐related neurons in anterior hypothalamus of the cat. Am. J. Physiol. 227: 710–713, 1974.
 92. Klatt, D. H., K. N. Stevens, and J. Mead. Studies of articulatory activity and airflow during speech. Ann. NY Acad. Sci. 155: 42–54, 1968.
 93. Kremer, W. F. Autonomic and somatic reactions induced by stimulation of the cingular gyrus in dogs. J. Neurophysiol. 10: 371–379, 1947.
 94. Kumagai, H., F. Sakai, A. Sakuma, and T. Hukuhara. Relationship between activity of respiratory center and EEG. In: Progress in Brain Research. Correlative Neurosciences. Fundamental Mechanisms, edited by T. Tokizane and J. P. Schadé. Amsterdam: Elsevier, 1966, vol. 21A, p. 88–111.
 95. Kuypers, H. G. J. M. An anatomical analysis of cortico‐bulbar connexions to the pons and lower brain stem in the cat. J. Anat. 92: 198–218, 1958.
 96. Landes, E. M., W. L. Long, J. W. Dunn, C. L. Jackson, and U. Meyer. Studies on the effects of baths on man. III. Effects of hot baths on respiration, blood and urine. Am. J. Physiol. 76: 35–48, 1926.
 97. Landis, C., and L. E. Wiley. Changes in blood pressure during deception. J. Comp. Psychol. 6: 1–19, 1926.
 98. Lilienthal, J. L., and F. J. Otenasek. Decorticate polypneic panting in the cat. Bull. Johns Hopkins Hosp. 61: 101–124, 1937.
 99. Lugaresi, E. La “maledizione di ondine” il disturbo del respiro e del sonno nell ipoventilazione alveolare primara. Sist. Nerv. 20: 27–37, 1968.
 100. MacGamble, E. A. Attention and thoracic breathing. Am. J. Psychol. 16: 261–292, 1905.
 101. MacLean, P. D. Some psychiatric implications of physiological studies on fronto‐temporal portion of limbic system (visceral brain). Electroencephalogr. Clin. Neurophysiol. 4: 407–418, 1952.
 102. MacLean, P. D., and J. M. R. Delgado. Electrical and chemical stimulation of fronto‐temporal portion of limbic system in the waking animal. Electroencephalogr. Clin. Neurophysiol. 5: 91–100, 1953.
 103. Magni, R., and W. D. Willis. Subcortical and peripheral control of brain stem reticular neurons. Arch. Ital. Biol. 102: 434–448, 1964.
 104. Magnus, O., and H. J. Lammers. The amygdaloid nuclear complex. Folia Psychiatr. Neurol. Jpn. 59: 555–582, 1956.
 105. Magoun, H. W. Caudal and cephalic influences of the brain stem reticular formation. Physiol. Rev. 30: 459–474, 1950.
 106. Magoun, H. W., F. Harrison, J. R. Brobeck, and S. W. Ranson. Activation of heat loss mechanisms by local heating of the brain. J. Neurophysiol. 1: 101–114, 1938.
 107. Martin, H. N., and W. B. Booker. The influence of stimulation of the mid‐brain upon the respiratory rhythm of the mammal. J. Physiol. London 1: 370–376, 1878.
 108. Massion, J. Postural function of respiratory muscles. In: Respiratory Centres and Afferent Systems, edited by B. Duron. Paris: INSERM, 1976, p. 175–181.
 109. Massion, J., M. Meulders, and J. Colle. Fonction posturale des muscles respiratoires. Arch. Int. Physiol. Biochim. 68: 314–326, 1960.
 110. Meulders, M., J. Massion, and J. Colle. Influence du lobe antérieur du cervelet sur l'activité tonique et respiratoire des muscles intercostaux. Arch. Ital. Biol. 98: 430–440, 1960.
 111. Mills, J. N. Hyperpnea induced by forced breathing. J. Physiol. London 105: 95–116, 1946.
 112. Monnier, M. Les centres bulbaires de la régulation posturale des mouvements respiratoires chez le chat. Arch. Int. Physiol. 47: 133–148, 1938.
 113. Monnier, M. Physiologie des formations réticulées. II. Respiration. Effets de l'excitation faradique du bulbe chez le chat. Rev. Neurol. Paris 69: 517–523, 1938.
 114. Monnier, M. Physiologie du tronc cérébral. Le rôle du système réticulaire dans l'organisation de la motricité extrapyramidale. Ergeb. Physiol. Biol. Chem. Exp. Pharmakol. 45: 321–422, 1944.
 115. Monteau, R., and G. Hilaire. Modifications d'activité des motoneurones laryngés lors de l'installation de la polypnée thermique. J. Physiol. Paris 68: 331–342, 1974.
 116. Monteau, R., and G. Hilaire. Modification d'activité des neurones respiratoires bulbaires lors de l'installation de la polypnée thermique. J. Physiol. Paris 72: 205–231, 1976.
 117. Monteau, R., and G. Hilaire. Activité des motoneurons intercostaux pendant la polypnée thermique. J. Physiol. Paris 72: 931–937, 1976.
 118. Monteau, R., and G. Hilaire. Recyclage de l'inspiration et polypnée par stimulation électrique de l'hypothalamus. J. Physiol. Paris 73: 1057–1079, 1977.
 119. Monteau, R., G. Hilaire, and C. Ouedraogo. Contribution à l'étude de la fonction ventilatoire au cours de la polypnée thermique ou hypocapnique. J. Physiol. Paris 68: 97–120, 1974.
 120. Naquet, R. Sur les fonctions du rhinencéphale, d'aprés les résultats de sa stimulation chez le chat. Marseille, France: Université de Marseille, 1953. Thesis.
 121. Nathan, P. W. The descending respiratory pathway in man. J. Neurol. Neurosurg. Psychiatry 26: 487–499, 1963.
 122. Newsom Davis, J. N. An experimental study of hiccup. Brain 93: 851–872, 1970.
 123. Newsom Davis, J. N., and F. Plum. Separation of descending spinal pathways to respiratory motoneurons. Exp. Neurol. 34: 78–94, 1972.
 124. Newsom Davis, J. N., and T. A. Sears. The proprioceptive reflex control of the intercostal muscles during their voluntary activation. J. Physiol. London 209: 711–738, 1970.
 125. Phillips, C. G., and R. Porter. Corticospinal Neurones: Their Role in Movement. London: Academic, 1977.
 126. Phillipson, E. A., C. E. Sullivan, D. J. C. Read, E. Murphy, and L. F. Kozar. Ventilatory and waking responses to hypoxia in sleeping dogs. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 44: 512–520, 1978.
 127. Planche, D. Commande corticale de la respiration. Etude au niveau du nerf phrénique et des neurones respiratoires bulbaires. Marseille, France: Université de Provence, 1971. Thèse doctorat de 3′ème cycle.
 128. Planche, D. Effets de la stimulation du cortex cérébral sur l'activité du nerf phrénique. J. Physiol. Paris 64: 31–56, 1972.
 129. Planche, D., and A. L. Bianchi. Modification de l'activité des neurones respiratoires bulbaires provoquée par stimulation corticale. J. Physiol. Paris 64: 69–76, 1972.
 130. Pleschka, K. Interaction of CO2 and thermal stimuli in panting. J. Physiol. Paris 63: 383–386, 1971.
 131. Pleschka, K., and S. C. Wang. The activity of respiratory neurons before and during panting in the cat. Pfluegers Arch. 353: 303–315, 1975.
 132. Plum, F. Neurological integration of behavioural and metabolic control of breathing. In: Breathing: Hering‐Breuer Centenary Symposium, edited by R. Porter. London: Churchill, 1970, p. 159–174. (Ciba Found. Symp.).
 133. Poirier, L. J., and E. Shulman. Anatomical basis for the influence of the temporal lobe on respiration and cardiovascular activity. J. Comp. Neurol. 100: 99–109, 1954.
 134. Pool, J. L., and J. Ransohoff. Autonomic effects on stimulating rostral portion of cingulate gyri in man. J. Neurophysiol. 12: 385–392, 1949.
 135. Ranson, S. W., H. Kabat, and H. W. Magoun. Autonomic responses to electrical stimulation of hypothalamus, preoptic region and septum. Arch. Neurol. Psychiatry 33: 467–477, 1935.
 136. Ranson, S. W., and H. W. Magoun. Respiratory and pupillary reactions induced by stimulation of the hypothalamus. Arch. Neurol. Psychiatry 29: 1179–1194, 1933.
 137. Redgate, E. S. Inspiratory area excitability and the hypothalamus. Am. J. Physiol. 198: 1299–1303, 1960.
 138. Redgate, E. S. Hypothalamus and respiratory minute volume. Am. J. Physiol. 198: 1304–1306, 1960.
 139. Remmers, J. E. Inhibition of inspiratory activity by intercostal muscle afferents. Respir. Physiol. 10: 358–383, 1970.
 140. Rijlant, P. l'inhibition de la respiration par l'excitation du cortex cérébral. C. R. Soc. Biol. 134: 247–252, 1940.
 141. Ruckmick, C. A. The Psychology of Feeling and Emotion. New York: McGraw‐Hill, 1936.
 142. Sears, T. A. Efferent discharges in alpha and fusimotor fibres of intercostal nerves of the cat. J. Physiol. London 174: 295–313, 1964.
 143. Sears, T. A. Investigations on respiratory motoneurones of the thoracic spinal cord. In: Progress in Brain Research. Physiology of Spinal Neurons, edited by J. C. Eccles and J. P. Schadé. Amsterdam: Elsevier, 1964, vol. 12, p. 259–272.
 144. Sears, T. A. Pathways of supraspinal regulating activity of respiratory motoneurones. In: Muscular Afferents and Motor Control, edited by R. Granit. Stockholm: Almqvist & Wiksell, 1966, p. 187–196.
 145. Sears, T. A., and J. N. Newsom Davis. The control of respiratory muscles during voluntary breathing. Ann. NY Acad. Sci. 155: 183–190, 1968.
 146. Simpson, D. D. Patterns of respiratory behavior. Physiol. Psychol. 1: 141–146, 1973.
 147. Smith, W. K. The representation of respiratory movements in the cerebral cortex. J. Neurophysiol. 1: 55–68, 1938.
 148. Smith, W. K. The functional significance of the rostral cingular cortex as revealed by its responses to electrical excitation. J. Neurophysiol. 8: 241–255, 1945.
 149. Spencer, W. G. The effect produced upon respiration by faradic excitation of the cerebrum in monkey, cat, dog and rabbit. Philos. Trans. R. Soc. London Ser. B 185: 609–657, 1894.
 150. Stoerring, G. Experimentelle Beitraege zur Lehre vom Gefuehl. Arch. Ges. Psychol. 6: 316–356, 1906.
 151. Ström, G. Influence of local thermal stimulation of the hypothalamus of the cat on cutaneous blood flow and respiratory rate. Acta Physiol. Scand. Suppl. 70: 47–76, 1950.
 152. Sullivan, C. E. Breathing in sleep. In: Physiology in Sleep, edited by J. Orem and C. D. Barnes. New York: Academic, 1980, p. 213–272.
 153. Tan, E. S. Brain stem regions for stimulus‐bound and stimulus‐related respiration. Exp. Neurol. 17: 517–528, 1967.
 154. Tenney, S. M., and L. C. Ou. Ventilatory response of decorticate and decerebrate cats to hypoxia and CO2. Respir. Physiol. 29: 81–92, 1977.
 155. Tenney, S. M., P. Scotto, L. C. Ou, D. Bartlett, Jr. and J. E. Remmers. Suprapontine influences on hypoxic ventilatory control. In: High Altitude Physiology: Cardiac and Respiratory Aspects, edited by R. Porter and J. Knight. London: Churchill Livingstone, 1971, p. 89–102. (Ciba Found. Symp.).
 156. Tenney, S. W., and W. M. St. John. Is there localized cerebral cortical influence on hypoxic ventilatory response? Respir. Physiol. 41: 227–232, 1980.
 157. Turner, E. A. Cerebral control of respiration. Brain 77: 448–486, 1954.
 158. Ursin, H., and B. R. Kaada. Functional localization within the amygdaloid complex in the cat. Electroencephalogr. Clin. Neurophysiol. 12: 1–20, 1960.
 159. Vibert, J. F., D. Caille, F. Bertrand, H. Gromysz, and A. Hugelin. Ascending projection from the respiratory centre to mesencephalon and diencephalon. Neurosci. Lett. 11: 29–33, 1979.
 160. Whalen, W. J. Some effects of hyperventilation on respiratory patterns. Am. J. Physiol. 183: 445–450, 1955.
 161. Wall, P. D., P. Glees, and J. F. Fulton. Corticofugal connexions of posterior orbital surface in rhesus monkey. Brain 74: 66–71, 1951.
 162. Widdicombe, J. G., and A. Winning. Effects of hypoxia, hypercapnia and changes in body temperature on the pattern of breathing in cats. Respir. Physiol. 21: 203–221, 1974.
 163. Wilder, J. Stimulus and Response: The Law of Initial Value. New York: Wright, 1967.
 164. Wilke, J. T., R. W. Lansing, and C. A. Rogers. Entrainment of respiration to repetitive finger tapping. Physiol. Psychol. 3: 345–349, 1975.
 165. Woodworth, R. S., and H. Scholsberg. Experimental Psychology. New York: Holt, 1954.
 166. Zbrozyna, A. W. The anatomical basis of the patterns of autonomic and behavioural effects via the amygdala. In: Progress in Brain Research. The Rhinencephalon and Related Structures, edited by W. Bargmann and J. P. Schadé. Amsterdam: Elsevier, 1963, vol. 3, p. 50–70.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

André Hugelin. Forebrain and Midbrain Influence on Respiration. Compr Physiol 2011, Supplement 11: Handbook of Physiology, The Respiratory System, Control of Breathing: 69-91. First published in print 1986. doi: 10.1002/cphy.cp030202