Comprehensive Physiology Wiley Online Library

Reflex Responses to Chemoreceptor Stimulation

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Historical Background
1.1 Beginnings
1.2 New Discoveries
2 Peripheral Chemoreceptors and Their Stimuli
2.1 Carotid Body Chemoreceptors
2.2 Aortic Body Chemoreceptors
2.3 Pulmonary Chemoreceptors
3 Conditioning of Afferent Stimulus from Peripheral Chemoreceptors
3.1 Receptor Responses to Environmental and Other Factors
3.2 Autonomic Input Into Carotid Body
3.3 Stimulus Profile
3.4 Timing of Stimulus
3.5 Other Afferent Stimuli Modifying Chemoreceptor Input
3.6 Effect of Central Nervous System Milieu on Neural Activity from Peripheral Chemoreceptors
4 Reflex Responses of Ventilatory Apparatus to Peripheral Chemoreceptor Stimulation
4.1 Factors Affecting Efferent Component of Response
4.2 Reflex Response of Static Lung Volumes
4.3 Reflex Dynamic Ventilatory Responses
4.4 Other Elements of Ventilatory Apparatus
4.5 Glomectomy and Asthma
5 Reflex Cardiovascular Responses to Peripheral Chemoreceptor Stimulation
5.1 Brain Stem and Autonomic Neural Output to Cardiovascular System
5.2 Reflex Changes in Cardiovascular Mechanical Variables
6 Other Reflex Responses to Peripheral Chemoreceptor Stimulation
6.1 Adrenal Cortex
6.2 Release of Norepinephrine From the Heart
6.3 Erythropoiesis
Figure 1. Figure 1.

Title pages of 3 earliest dissertations on the carotid body. Though Albrecht von Haller presided at first 2 presentations, actual presenters were Hartwig Taube (left panel) and Matthias Berckelmann (middle panel). Right panel: 1797 edition by Ernst Philipp Andersch of his father's earlier work that had been lost.

From Pick 356
Figure 2. Figure 2.

Gross structure and response of carotid body as presented by C. J. F. Heymans in his Nobel Lecture of December 12, 1945. He received the Nobel Prize in Physiology or Medicine in 1938 “for the discovery of the role played by the sinus and aortic mechanisms in the regulation of respiration.” Left panel: neural pathways from cardioaortic and carotid sinus zones. Right panel: pneumogram of chloralose‐anesthetized dog (A) and of blood pressure and cardiac rate (B). Time is in 3‐s intervals. Acetylcholine (0.1 mg) applied to chemoreceptors of glomus caroticum resulted in marked reflex hyperpnea and bradycardia.

From Heymans 198
Figure 3. Figure 3.

Single‐fiber chemoreceptor response to decreases in arterial O2 content in cat. Left panel: mean response (±SE) of 4 single carotid chemoreceptor fibers to decreases in O2 content of arterial blood (; vol %) achieved by either decreasing fraction of inspired O2 (hypoxic hypoxia) or by adding CO to the inspirate (CO hypoxia). Inset: response [impulses/s (IPS)] of single carotid chemoreceptor fiber to lowering of by adding CO. CTL, control; , partial pressure of O2 in arterial blood (mmHg); COHb, percent carboxyhemoglobin; , partial pressure of CO2 in arterial blood (mmHg); pHa, negative logarithm of H+ concentration in arterial blood; FBP, femoral arterial blood pressure (mmHg); A–D: blood samples taken at various times; RA, room air. To assure that fiber was not dead, cat was ventilated on 10% O2; fiber showed brisk increase in neural activity. Right panel: mean response of 3 single aortic chemoreceptor fibers to decreases in achieved as with carotid body responses. Though aortic body's response is larger in percent of control, control IPS is usually much lower for aortic fibers than for carotid fibers (cf. insets and Fig. 7). Inset: response of single aortic chemoreceptor fiber to lowering of by adding CO.

Courtesy of R. S. Fitzgerald and G. A. Dehghani
Figure 4. Figure 4.

Effects on single‐fiber activity of increases in at decreasing levels of . At low levels of , neural activity approaches zero regardless of value. On the assumption that normocapnia for cats is = 34–37 Torr, data show that response is linear as is lowered and that multiplicative interaction of O2 and CO2 still operates at these values.

From Lahiri and DeLaney 254
Figure 5. Figure 5.

Statistical analyses of responses of 10 recordings from carotid chemoreceptors (left panel) and 5 recordings from aortic chemoreceptors (right panel) to increases in at different levels of . The 3 levels (torr) for carotid responses were (bottom to top) >470, 105–115, and 54–58. The 4 levels (mmHg) for aortic responses were (bottom to top) >350, 93–97, 66–71, and 39–45. Responses were analyzed first by analysis of variance, and then individual means were grouped by Duncan new multiple‐range technique. All points within brackets (a–g or a–e) are statistically indistinguishable from each other but are significantly different (P < 0.05) from all other points on graph.

From Fitzgerald and Dehghani 142
Figure 6. Figure 6.

Effect of intravenous dopamine infusion on responses of carotid chemoreceptors to changes in . Each data point, mean of 2 measurements from 1 cat. Variability between measurements was small. Total count of 3 afferents is plotted against . •, ▴, Without dopamine; Δ, effect of dopamine at = 24.9 mmHg. Dopamine suppressed stimulation of chemoreceptors by hypoxia.

From Lahiri et al. 264
Figure 7. Figure 7.

Single aortic and carotid chemoreceptor steady‐state responses to changes in at constant level of . Recordings were simultaneous in each of 4 cats. It is apparent that in the same animal the response of aortic chemoreceptors to hypoxia or hypercapnia is less than that of carotid chemoreceptors.

From Lahiri et al. 262
Figure 8. Figure 8.

Effect of induced hypotension on aortic and carotid chemoreceptor activity. Top to bottom: tracheal ; arterial blood pressure (Psa); tracheal ; aortic body chemoreceptor activity, imp · s−1 and impulses; carotid body chemoreceptor activity, imp · s−1 and impulses.

Courtesy of S. Lahiri
Figure 9. Figure 9.

Variables in ventilatory responses to hypercapnia and hypoxia. Slope was derived from providing subjects with 7% CO2 in O2 for rebreathing. Ventilation was measured against rising . Isocapnic hypoxia was generated by manipulating gas mixtures. Variable A is from = + A/( −30), where is the inspired minute volume and is at high where extrapolated slope approaches zero; it represents shape of hyperbolic curve and therefore hypoxic response. The greater the response, the higher the A value 236. Height of bar equals mean value. Thiopental provoked parallel depression of hypoxic and hypercapnic responses. Halothane totally abolished response to hypoxia.

From Knill et al. 235
Figure 10. Figure 10.

Dose response (mean ± SE) of awake goats to intravenous bolus injections of dopamine at various inspired O2 levels (). Responses are expressed as ventilation ratio (VR30), which is minute ventilation () measured over 30‐s period after injection divided by control . Responses when was 0.14 and 1.0 were significantly lower than when was 0.21.

From Bisgard et al. 45
Figure 11. Figure 11.

Ventilatory response of anesthetized dog to 3 different stimulus profiles bilaterally delivered to carotid bodies from infusion apparatus. Left panel: response (VR, ventilation ratio) at given point during stimulus application divided by control level of ventilation to step decrease in (•, = 35.3 mmHg; ○, = 43.6 mmHg). Middle panel: VR and mean during ramp perfusion into common carotid arteries. Right panel: mean VR during 6‐s hypoxic pulse train perfusions into common carotid arteries (3 s at 32.5 mmHg and 3 s at 92.4 mmHg). These response patterns differ from patterns produced by same 3 techniques with hypercapnic blood.

From Dutton et al. 117
Figure 12. Figure 12.

Examples of carotid chemoreceptor fiber activity in cat showing little periodicity in its autocorrelogram but distinct rhythmicity when cross‐correlated with respiratory cycle reference pulse. Breathing mixture was air in A, 8% CO2 + 20% O2 + 72% N2 in B, and 10% O2 + 90% N2 in C. With hypercapnia, degree of variation of cross‐correlogram pattern decreases, whereas with hypoxia there is still significant respiratory modulation even though mean interspike interval is approximately that obtained with hypercapnia. Hence, when CO2 is steady but O2 is fluctuating, chemoreceptor discharge is steady, but when CO2 is fluctuating and O2 is steady, chemoreceptor discharge fluctuates.

From Gehrich and Moore 161
Figure 13. Figure 13.

Effect of injections of saline equilibrated with 100% CO2 given via catheter in root of aorta in 1 cat. A: small injection causes brief drop in pH of similar amplitude to spontaneous respiratory oscillations. Though sinus nerve discharge appears unaffected, tidal volume (inspiration upward) is increased for 1 breath. B: large injection causes drop in pH 4–5 times amplitude of pH oscillations and causes obvious burst of firing and increase in 1 inspiratory tidal volume. Vertical divisions are seconds.

From Band et al. 15
Figure 14. Figure 14.

Summary of data from 3 dogs showing effect on breathing rhythm of progressively removing afferent inputs. f, Breathing frequency; Te, expiratory duration that includes duration of expiratory airflow (1–3 s) and expiratory pause; Ti, duration of inspiration; W, wakefulness; S, slow‐wave sleep; S + VB, slow‐wave sleep and vagal blockade; S + VB + O2, slow‐wave sleep, vagal blockade, and 1 breath of 100% O2. Open columns, normal pH; stippled columns, during chronic metabolic alkalosis. For W, S, and S + VB, values are means ± 1 SE of 10–30 separate studies. Values in each study were based on means of 8–10 consecutive breaths. Values for S + VB + O2 are means ± 1 SE of 11–18 individual measurements of first respiratory cycle after inhalation of 100% O2. For S + VB + O2 during alkalosis, n = 4 for dog 1 and n = 1 for dog 2. Largest depression in f in sequence of maneuvers comes when sleeping animal had vagi blocked, whereas ventilation did not follow this pattern.

From Sullivan et al. 412
Figure 15. Figure 15.

Relationship between carotid perfusion pressure (which reflects degree of baroreceptor activity) and minute ventilation during stimulation of carotid chemoreceptors with 1 and 3 μg nicotine and no chemoreceptor stimulation. Slopes were calculated from data from 8 dogs with vagus nerves intact. Slopes during chemoreceptor stimulation are significantly different from slope with no chemoreceptor stimulation.

From Heistad et al. 193
Figure 16. Figure 16.

Mean (±SE) ventilatory responses (V, Vt, and changes in these variables) of 6 cats with left carotid sinus nerve sectioned and right carotid artery perfused with autologous blood from extracorporeal circuit with of 33 mmHg and of either 42.8 mmHg (•) or 21.4 mmHg (○); 3 different gas mixtures were presented for inspiration, creating 3 different values. P, significance of differences between observed responses at different levels of . Vt,hyp and Vhyp, Vt and ventilation during hypoxic perfusion of right carotid body; Vt,contr and Vcontr, Vt and ventilation during control conditions. At of 30.6 mmHg, stimulation of right carotid body with hypoxic blood ( of 42.8 mmHg) could increase Vt by 34% and V by 42%. However, when rose to 54.7 mmHg and central chemoreceptor afferent activity increased so that Vt increased from 18.4 to 35.9 ml/kg and V increased from 432.4 to 906.0 ml · kg−1 · min−1, then hypoxic perfusion of right carotid body could further increase Vt by only 8% and V by only 8%. This is considered a hypoadditive interaction of respiratory drives at level of integration of peripheral and central afferents.

From Giese et al. 165
Figure 17. Figure 17.

Response curves of ventilation, tidal volume, and frequency to increases in at decreasing levels of before and after bilateral coagulation of brain stem intermediate chemosensitive area S in 2 cats. Values for partial pressures are in kPa (1 kPa ≈ 7.5 mmHg). Data show that peripheral chemoreceptor drive can guarantee ventilation in absence of central chemosensitive drive, but interaction between central and peripheral chemoreceptor activity affects ventilation by greatly increasing slope of response to increases in , clearly a multiplicative interaction between peripheral and central chemosensitivities. Before coagulation, ventilatory response of cat to increasing on background of decreasing is not clearly multiplicative. One cat (bottom graph) seems to show multiplicative interaction between O2 and CO2 whereas the other cat (top graph) does not.

From Schlaefke et al. 393
Figure 18. Figure 18.

Effect of acute hypoxia on functional residual capacity (FRC) in intact rats, rats with vagal blockade, and rats with vagal and carotid body nerve blockade.

From Barer et al. 19
Figure 19. Figure 19.

Ventilatory response to NaCN (50 μg/kg iv) before (C) and after peripheral chemoreceptor denervation in 6 unanesthetized ponies. Limited but significant recovery of function was present 22 mo after denervation. Sectioning of aortic nerve nearly eliminated ventilatory response to NaCN. Data strongly suggest that aortic chemoreceptors become functional in time‐dependent manner after carotid body denervation.

From Bisgard et al. 44
Figure 20. Figure 20.

Ventilation per kilogram body wt as function of . Mean values (±SD) of 4 cats in which response curves were determined before (Δ) and after (∇) vagotomy and after subsequent sinus neurotomy (□). Slope was reduced 42.3% with no significant change in intercept.

From Berkenbosch et al. 31
Figure 21. Figure 21.

Cat under light pentobarbitone anesthesia. A: transient effects on Ti‐vs.‐Vt relationships showing typical hysteresis loop in response to step changes in inhaled CO2 concentration. B: Corresponding Ti‐vs.‐Te relationships. +, Response to rapid increase in from 3.8% (breathing air) to 8.0%; Δ, response back to breathing air with alveolar CO2 fraction () of 3.8%.

From Bradley et al. 62
Figure 22. Figure 22.

Relationship between inspiratory duration (Ti) and tidal volume (Vt) resulting from 3 types of respiratory drive in cat with intact vagus nerves, o, Rebreathing O2; x, rebreathing air; Δ, breathing 8% O2 in N2. In each case, cat was first hyperventilated to apnea. These findings are similar to those of Hey et al. 197 in humans. Differential changes in functional residual capacity (FRC) would likely provoke a different pattern in Ti‐vs.‐Vt responses to stimuli; in humans, FRC has been reported to increase with both hypoxia and hypercapnia 157; it has not been measured in cats during hypercapnia.

From Widdicombe and Winning 439
Figure 23. Figure 23.

Comparison of changes in activity of individual medullary and pontine respiratory units in response to equivalent changes in peak integrated phrenic activity resulting from carotid chemoreceptor stimulation and hyperoxic hypercapnia. For each graph, percentage alterations in number of spikes per respiratory cycle (f/cycle) achieved during hyperoxic hypercapnia are plotted vs. f/cycle changes obtained for same respiratory unit during carotid chemoreceptor stimulation. Stippled and cross‐hatched areas contain units for which f/cycle was unaltered or declined during carotid chemoreception stimulation and hypercapnia, respectively. Lines of identity are drawn in each panel. D‐I, dorsal respiratory nucleus inspiratory units; V‐I, ventral respiratory nucleus inspiratory units; V‐E, ventral respiratory nucleus expiratory units.

From St. John 383
Figure 24. Figure 24.

Effects of hypercapnia and hypoxia on relationship between minute phrenic activity (neural analogue of minute ventilation) and peak phrenic activity in nerve bursts (top panel), expiratory time (middle panel), and inspiratory time (bottom panel) in absence of breathing movements in representative animal with intact vagi. At any level of minute phrenic activity above base‐line level, peak phrenic activity and inspiratory and expiratory times were all less, and therefore respiratory frequency was greater during hypoxia than during hypercapnia.

From Ledlie et al. 272
Figure 25. Figure 25.

Effect of carotid chemoreceptor stimulation on cardiac sympathetic nerve discharge. At signal, 0.2 ml of NaCN solution (50 μ/ml) was injected through right thyroid artery in open‐chest cat anesthetized with urethan (250 mg/kg) and chloralose (30 mg/kg) and artificially ventilated. A: control; B: heart electrically paced, blood pressure kept artificially constant. Top trace to bottom trace: BP, arterial blood pressure; MBP, mean arterial pressure; HR, heart rate; CSN, integrated discharge activity of right cardiac sympathetic nerve; PhN, activity of right phrenic nerve.

From Montarolo et al. 324
Figure 26. Figure 26.

Effects in cat with intact vagi on sympathetic nerve activities of chemoreceptor stimulation by injection of lobeline (10 μg) into carotid sinus (CS) of either side. A and B: normal conditions. C and D: blood pressure kept constant by stabilization; blood volume (BV) is shown as grams moved from circulatory system to extracorporeal reservoir in maintaining blood pressure constant. BP, femoral artery pressure; HR, heart rate; L‐VNA (R‐VNA), integrated activity from left (right) sympathetic vertebral nerve; L‐CNA (R‐CNA), integrated activity from left (right) sympathetic cardiac nerve; CS‐chemoreceptors, carotid body. Selective stimulation of a given carotid body provokes inhibition of activity in ipsilateral cardiac nerve.

From Kollai et al. 240
Figure 27. Figure 27.

Changes in plasma ACTH and in Cortisol secretion rate at 10 and 20 min after exposure to hypoxia (mean ± SE). svHH, spontaneous ventilation and normocapnic hypoxic hypoxia; cvHH, controlled ventilation and normocapnic hypoxic hypoxia; cvCOH, controlled ventilation and normocapnic CO hypoxia; HH on COH, hypoxic hypoxia with elevated carboxyhemoglobin. Circles above bars, significant response (P < 0.05). Group I (control, n = 6) was maintained normoxic and normocapnic and showed no changes in any variables.

From Raff et al. 369


Figure 1.

Title pages of 3 earliest dissertations on the carotid body. Though Albrecht von Haller presided at first 2 presentations, actual presenters were Hartwig Taube (left panel) and Matthias Berckelmann (middle panel). Right panel: 1797 edition by Ernst Philipp Andersch of his father's earlier work that had been lost.

From Pick 356


Figure 2.

Gross structure and response of carotid body as presented by C. J. F. Heymans in his Nobel Lecture of December 12, 1945. He received the Nobel Prize in Physiology or Medicine in 1938 “for the discovery of the role played by the sinus and aortic mechanisms in the regulation of respiration.” Left panel: neural pathways from cardioaortic and carotid sinus zones. Right panel: pneumogram of chloralose‐anesthetized dog (A) and of blood pressure and cardiac rate (B). Time is in 3‐s intervals. Acetylcholine (0.1 mg) applied to chemoreceptors of glomus caroticum resulted in marked reflex hyperpnea and bradycardia.

From Heymans 198


Figure 3.

Single‐fiber chemoreceptor response to decreases in arterial O2 content in cat. Left panel: mean response (±SE) of 4 single carotid chemoreceptor fibers to decreases in O2 content of arterial blood (; vol %) achieved by either decreasing fraction of inspired O2 (hypoxic hypoxia) or by adding CO to the inspirate (CO hypoxia). Inset: response [impulses/s (IPS)] of single carotid chemoreceptor fiber to lowering of by adding CO. CTL, control; , partial pressure of O2 in arterial blood (mmHg); COHb, percent carboxyhemoglobin; , partial pressure of CO2 in arterial blood (mmHg); pHa, negative logarithm of H+ concentration in arterial blood; FBP, femoral arterial blood pressure (mmHg); A–D: blood samples taken at various times; RA, room air. To assure that fiber was not dead, cat was ventilated on 10% O2; fiber showed brisk increase in neural activity. Right panel: mean response of 3 single aortic chemoreceptor fibers to decreases in achieved as with carotid body responses. Though aortic body's response is larger in percent of control, control IPS is usually much lower for aortic fibers than for carotid fibers (cf. insets and Fig. 7). Inset: response of single aortic chemoreceptor fiber to lowering of by adding CO.

Courtesy of R. S. Fitzgerald and G. A. Dehghani


Figure 4.

Effects on single‐fiber activity of increases in at decreasing levels of . At low levels of , neural activity approaches zero regardless of value. On the assumption that normocapnia for cats is = 34–37 Torr, data show that response is linear as is lowered and that multiplicative interaction of O2 and CO2 still operates at these values.

From Lahiri and DeLaney 254


Figure 5.

Statistical analyses of responses of 10 recordings from carotid chemoreceptors (left panel) and 5 recordings from aortic chemoreceptors (right panel) to increases in at different levels of . The 3 levels (torr) for carotid responses were (bottom to top) >470, 105–115, and 54–58. The 4 levels (mmHg) for aortic responses were (bottom to top) >350, 93–97, 66–71, and 39–45. Responses were analyzed first by analysis of variance, and then individual means were grouped by Duncan new multiple‐range technique. All points within brackets (a–g or a–e) are statistically indistinguishable from each other but are significantly different (P < 0.05) from all other points on graph.

From Fitzgerald and Dehghani 142


Figure 6.

Effect of intravenous dopamine infusion on responses of carotid chemoreceptors to changes in . Each data point, mean of 2 measurements from 1 cat. Variability between measurements was small. Total count of 3 afferents is plotted against . •, ▴, Without dopamine; Δ, effect of dopamine at = 24.9 mmHg. Dopamine suppressed stimulation of chemoreceptors by hypoxia.

From Lahiri et al. 264


Figure 7.

Single aortic and carotid chemoreceptor steady‐state responses to changes in at constant level of . Recordings were simultaneous in each of 4 cats. It is apparent that in the same animal the response of aortic chemoreceptors to hypoxia or hypercapnia is less than that of carotid chemoreceptors.

From Lahiri et al. 262


Figure 8.

Effect of induced hypotension on aortic and carotid chemoreceptor activity. Top to bottom: tracheal ; arterial blood pressure (Psa); tracheal ; aortic body chemoreceptor activity, imp · s−1 and impulses; carotid body chemoreceptor activity, imp · s−1 and impulses.

Courtesy of S. Lahiri


Figure 9.

Variables in ventilatory responses to hypercapnia and hypoxia. Slope was derived from providing subjects with 7% CO2 in O2 for rebreathing. Ventilation was measured against rising . Isocapnic hypoxia was generated by manipulating gas mixtures. Variable A is from = + A/( −30), where is the inspired minute volume and is at high where extrapolated slope approaches zero; it represents shape of hyperbolic curve and therefore hypoxic response. The greater the response, the higher the A value 236. Height of bar equals mean value. Thiopental provoked parallel depression of hypoxic and hypercapnic responses. Halothane totally abolished response to hypoxia.

From Knill et al. 235


Figure 10.

Dose response (mean ± SE) of awake goats to intravenous bolus injections of dopamine at various inspired O2 levels (). Responses are expressed as ventilation ratio (VR30), which is minute ventilation () measured over 30‐s period after injection divided by control . Responses when was 0.14 and 1.0 were significantly lower than when was 0.21.

From Bisgard et al. 45


Figure 11.

Ventilatory response of anesthetized dog to 3 different stimulus profiles bilaterally delivered to carotid bodies from infusion apparatus. Left panel: response (VR, ventilation ratio) at given point during stimulus application divided by control level of ventilation to step decrease in (•, = 35.3 mmHg; ○, = 43.6 mmHg). Middle panel: VR and mean during ramp perfusion into common carotid arteries. Right panel: mean VR during 6‐s hypoxic pulse train perfusions into common carotid arteries (3 s at 32.5 mmHg and 3 s at 92.4 mmHg). These response patterns differ from patterns produced by same 3 techniques with hypercapnic blood.

From Dutton et al. 117


Figure 12.

Examples of carotid chemoreceptor fiber activity in cat showing little periodicity in its autocorrelogram but distinct rhythmicity when cross‐correlated with respiratory cycle reference pulse. Breathing mixture was air in A, 8% CO2 + 20% O2 + 72% N2 in B, and 10% O2 + 90% N2 in C. With hypercapnia, degree of variation of cross‐correlogram pattern decreases, whereas with hypoxia there is still significant respiratory modulation even though mean interspike interval is approximately that obtained with hypercapnia. Hence, when CO2 is steady but O2 is fluctuating, chemoreceptor discharge is steady, but when CO2 is fluctuating and O2 is steady, chemoreceptor discharge fluctuates.

From Gehrich and Moore 161


Figure 13.

Effect of injections of saline equilibrated with 100% CO2 given via catheter in root of aorta in 1 cat. A: small injection causes brief drop in pH of similar amplitude to spontaneous respiratory oscillations. Though sinus nerve discharge appears unaffected, tidal volume (inspiration upward) is increased for 1 breath. B: large injection causes drop in pH 4–5 times amplitude of pH oscillations and causes obvious burst of firing and increase in 1 inspiratory tidal volume. Vertical divisions are seconds.

From Band et al. 15


Figure 14.

Summary of data from 3 dogs showing effect on breathing rhythm of progressively removing afferent inputs. f, Breathing frequency; Te, expiratory duration that includes duration of expiratory airflow (1–3 s) and expiratory pause; Ti, duration of inspiration; W, wakefulness; S, slow‐wave sleep; S + VB, slow‐wave sleep and vagal blockade; S + VB + O2, slow‐wave sleep, vagal blockade, and 1 breath of 100% O2. Open columns, normal pH; stippled columns, during chronic metabolic alkalosis. For W, S, and S + VB, values are means ± 1 SE of 10–30 separate studies. Values in each study were based on means of 8–10 consecutive breaths. Values for S + VB + O2 are means ± 1 SE of 11–18 individual measurements of first respiratory cycle after inhalation of 100% O2. For S + VB + O2 during alkalosis, n = 4 for dog 1 and n = 1 for dog 2. Largest depression in f in sequence of maneuvers comes when sleeping animal had vagi blocked, whereas ventilation did not follow this pattern.

From Sullivan et al. 412


Figure 15.

Relationship between carotid perfusion pressure (which reflects degree of baroreceptor activity) and minute ventilation during stimulation of carotid chemoreceptors with 1 and 3 μg nicotine and no chemoreceptor stimulation. Slopes were calculated from data from 8 dogs with vagus nerves intact. Slopes during chemoreceptor stimulation are significantly different from slope with no chemoreceptor stimulation.

From Heistad et al. 193


Figure 16.

Mean (±SE) ventilatory responses (V, Vt, and changes in these variables) of 6 cats with left carotid sinus nerve sectioned and right carotid artery perfused with autologous blood from extracorporeal circuit with of 33 mmHg and of either 42.8 mmHg (•) or 21.4 mmHg (○); 3 different gas mixtures were presented for inspiration, creating 3 different values. P, significance of differences between observed responses at different levels of . Vt,hyp and Vhyp, Vt and ventilation during hypoxic perfusion of right carotid body; Vt,contr and Vcontr, Vt and ventilation during control conditions. At of 30.6 mmHg, stimulation of right carotid body with hypoxic blood ( of 42.8 mmHg) could increase Vt by 34% and V by 42%. However, when rose to 54.7 mmHg and central chemoreceptor afferent activity increased so that Vt increased from 18.4 to 35.9 ml/kg and V increased from 432.4 to 906.0 ml · kg−1 · min−1, then hypoxic perfusion of right carotid body could further increase Vt by only 8% and V by only 8%. This is considered a hypoadditive interaction of respiratory drives at level of integration of peripheral and central afferents.

From Giese et al. 165


Figure 17.

Response curves of ventilation, tidal volume, and frequency to increases in at decreasing levels of before and after bilateral coagulation of brain stem intermediate chemosensitive area S in 2 cats. Values for partial pressures are in kPa (1 kPa ≈ 7.5 mmHg). Data show that peripheral chemoreceptor drive can guarantee ventilation in absence of central chemosensitive drive, but interaction between central and peripheral chemoreceptor activity affects ventilation by greatly increasing slope of response to increases in , clearly a multiplicative interaction between peripheral and central chemosensitivities. Before coagulation, ventilatory response of cat to increasing on background of decreasing is not clearly multiplicative. One cat (bottom graph) seems to show multiplicative interaction between O2 and CO2 whereas the other cat (top graph) does not.

From Schlaefke et al. 393


Figure 18.

Effect of acute hypoxia on functional residual capacity (FRC) in intact rats, rats with vagal blockade, and rats with vagal and carotid body nerve blockade.

From Barer et al. 19


Figure 19.

Ventilatory response to NaCN (50 μg/kg iv) before (C) and after peripheral chemoreceptor denervation in 6 unanesthetized ponies. Limited but significant recovery of function was present 22 mo after denervation. Sectioning of aortic nerve nearly eliminated ventilatory response to NaCN. Data strongly suggest that aortic chemoreceptors become functional in time‐dependent manner after carotid body denervation.

From Bisgard et al. 44


Figure 20.

Ventilation per kilogram body wt as function of . Mean values (±SD) of 4 cats in which response curves were determined before (Δ) and after (∇) vagotomy and after subsequent sinus neurotomy (□). Slope was reduced 42.3% with no significant change in intercept.

From Berkenbosch et al. 31


Figure 21.

Cat under light pentobarbitone anesthesia. A: transient effects on Ti‐vs.‐Vt relationships showing typical hysteresis loop in response to step changes in inhaled CO2 concentration. B: Corresponding Ti‐vs.‐Te relationships. +, Response to rapid increase in from 3.8% (breathing air) to 8.0%; Δ, response back to breathing air with alveolar CO2 fraction () of 3.8%.

From Bradley et al. 62


Figure 22.

Relationship between inspiratory duration (Ti) and tidal volume (Vt) resulting from 3 types of respiratory drive in cat with intact vagus nerves, o, Rebreathing O2; x, rebreathing air; Δ, breathing 8% O2 in N2. In each case, cat was first hyperventilated to apnea. These findings are similar to those of Hey et al. 197 in humans. Differential changes in functional residual capacity (FRC) would likely provoke a different pattern in Ti‐vs.‐Vt responses to stimuli; in humans, FRC has been reported to increase with both hypoxia and hypercapnia 157; it has not been measured in cats during hypercapnia.

From Widdicombe and Winning 439


Figure 23.

Comparison of changes in activity of individual medullary and pontine respiratory units in response to equivalent changes in peak integrated phrenic activity resulting from carotid chemoreceptor stimulation and hyperoxic hypercapnia. For each graph, percentage alterations in number of spikes per respiratory cycle (f/cycle) achieved during hyperoxic hypercapnia are plotted vs. f/cycle changes obtained for same respiratory unit during carotid chemoreceptor stimulation. Stippled and cross‐hatched areas contain units for which f/cycle was unaltered or declined during carotid chemoreception stimulation and hypercapnia, respectively. Lines of identity are drawn in each panel. D‐I, dorsal respiratory nucleus inspiratory units; V‐I, ventral respiratory nucleus inspiratory units; V‐E, ventral respiratory nucleus expiratory units.

From St. John 383


Figure 24.

Effects of hypercapnia and hypoxia on relationship between minute phrenic activity (neural analogue of minute ventilation) and peak phrenic activity in nerve bursts (top panel), expiratory time (middle panel), and inspiratory time (bottom panel) in absence of breathing movements in representative animal with intact vagi. At any level of minute phrenic activity above base‐line level, peak phrenic activity and inspiratory and expiratory times were all less, and therefore respiratory frequency was greater during hypoxia than during hypercapnia.

From Ledlie et al. 272


Figure 25.

Effect of carotid chemoreceptor stimulation on cardiac sympathetic nerve discharge. At signal, 0.2 ml of NaCN solution (50 μ/ml) was injected through right thyroid artery in open‐chest cat anesthetized with urethan (250 mg/kg) and chloralose (30 mg/kg) and artificially ventilated. A: control; B: heart electrically paced, blood pressure kept artificially constant. Top trace to bottom trace: BP, arterial blood pressure; MBP, mean arterial pressure; HR, heart rate; CSN, integrated discharge activity of right cardiac sympathetic nerve; PhN, activity of right phrenic nerve.

From Montarolo et al. 324


Figure 26.

Effects in cat with intact vagi on sympathetic nerve activities of chemoreceptor stimulation by injection of lobeline (10 μg) into carotid sinus (CS) of either side. A and B: normal conditions. C and D: blood pressure kept constant by stabilization; blood volume (BV) is shown as grams moved from circulatory system to extracorporeal reservoir in maintaining blood pressure constant. BP, femoral artery pressure; HR, heart rate; L‐VNA (R‐VNA), integrated activity from left (right) sympathetic vertebral nerve; L‐CNA (R‐CNA), integrated activity from left (right) sympathetic cardiac nerve; CS‐chemoreceptors, carotid body. Selective stimulation of a given carotid body provokes inhibition of activity in ipsilateral cardiac nerve.

From Kollai et al. 240


Figure 27.

Changes in plasma ACTH and in Cortisol secretion rate at 10 and 20 min after exposure to hypoxia (mean ± SE). svHH, spontaneous ventilation and normocapnic hypoxic hypoxia; cvHH, controlled ventilation and normocapnic hypoxic hypoxia; cvCOH, controlled ventilation and normocapnic CO hypoxia; HH on COH, hypoxic hypoxia with elevated carboxyhemoglobin. Circles above bars, significant response (P < 0.05). Group I (control, n = 6) was maintained normoxic and normocapnic and showed no changes in any variables.

From Raff et al. 369
References
 1. Adachi, H., H. W. Strauss, H. Ochi, and H. N. Wagner, Jr. The effect of hypoxia on the regional distribution of cardiac output in the dog. Circ. Res. 39: 314–319, 1976.
 2. Adams, J. M., F. M. Attinger, and E. O. Attinger. Medullary and carotid chemoreceptor interaction for mild stimuli. Pfluegers Arch. 374: 39–45, 1978.
 3. Adams, W. E. The Comparative Morphology of the Carotid Body and Carotid Sinus. Springfield, IL: Thomas, 1958.
 4. Aggarwal, D., H. T. Milhorn, Jr., and L. Y. Lee. Role of the carotid chemoreceptors in the hyperpnea of exercise in the cat. Respir. Physiol. 26: 147–155, 1976.
 5. American Thoracic Society. A statement by the committee on therapy. Am. Rev. Respir. Dis. 97: 486–489, 1968.
 6. Andersch, C. S. Tractatio anatomico‐physiologico de nervis humani corporis aliquibus, edited by E. P. Andersch. Regiomonti, Germany: Fasch, 1797.
 7. Angell‐James, J. E., and M. de B. Daly. The interaction of reflexes elicited by stimulation of carotid body chemoreceptors and receptors in the nasal mucosa affecting respiration and pulse interval in the dog. J. Physiol. London 229: 133–149, 1973.
 8. Arias‐Stella, J., and J. Valcarcel. The human carotid body at high altitudes. Pathol. Microbiol. 39: 292–297, 1973.
 9. Attinger, F. M. L., E. O. Attinger, D. Cooperson, and W. Gottschalk. Interaction between carotid sinus mechanoreceptor and chemoreceptor reflex loops. Pfluegers Arch. 363: 255–261, 1976.
 10. Badger, D. W. Erythrokinetics in Dogs Chronically Exposed to 3800 Meters Altitude and Returned to Sea Level. Berkeley: Univ. of California, 1964. Dissertation.
 11. Bainton, C. R. Canine ventilation after acid‐base infusions, exercise, and carotid body denervation. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 44: 28–35, 1978.
 12. Band, D. M., I. R. Cameron, and S. J. G. Semple. Oscillations in arterial pH with breathing in the cat. J. Appl. Physiol. 26: 261–267, 1969.
 13. Band, D. M., I. R. Cameron, and S. J. G. Semple. Effect of different methods of CO2 administration on oscillations of arterial pH in the cat. J. Appl. Physiol. 26: 268–273, 1969.
 14. Band, D. M., I. R. Cameron, and S. J. G. Semple. The effect on respiration of abrupt changes in carotid artery pH and Pco2 in the cat. J. Physiol. London 211: 479–494, 1970.
 15. Band, D. M., M. McClelland, D. L. Phillips, K. B. Saunders, and C. B. Wolff. Sensitivity of the carotid body to within‐breath changes in arterial Pco2. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 45: 768–777, 1978.
 16. Band, D. M., P. Willshaw, and C. B. Wolff. The speed of response of the carotid body chemoreceptor. In: Morphology and Mechanisms of Chemoreceptors, edited by A. S. Paintal. New Delhi: Navchetan, 1976, p. 197–207.
 17. Band, D. M., and C. B. Wolff. Respiratory oscillations in discharge frequency of chemoreceptor afferents in sinus nerve of anaesthetised cats at normal and low arterial oxygen tensions. J. Physiol. London 282: 1–6, 1978.
 18. Banzett, R. B., and R. E. Burger. Response of avian intrapulmonary chemoreceptors to venous CO2 and ventilatory gas flow. Respir. Physiol. 29: 63–72, 1977.
 19. Barer, G. R., J. Herget, P. J. M. Sloan, and A. J. Suggett. The effect of acute and chronic hypoxia on thoracic gas volume in anaesthetised rats. J. Physiol. London 277: 177–192, 1978.
 20. Barnard, P., R. Zhang, N. Smatresk, M. Pokorski, A. Mokashi, and S. Lahiri. Carotid chemoreceptor and ventilatory responses in chronically hypoxic cats (Abstract). Physiologist 24 (4): 114, 1981.
 21. Bates, D., and T. M. Sundt, Jr. The relevance of peripheral baroreceptors and chemoreceptors to regulation of cerebral blood flow in the cat. Circ. Res. 38: 488–493, 1976.
 22. Belenky, D. A., T. A. Standaert, and D. E. Woodrum. Maturation of hypoxic ventilatory response of the newborn lamb. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 47: 927–930, 1979.
 23. Bellville, J. W., W. S. Howland, J. C. Seed, and R. W. Houde. The effect of sleep on the respiratory response to carbon dioxide. Anesthesiology 20: 628–634, 1959.
 24. Bellville, J. W., B. J. Whipp, R. D. Kaufman, G. D. Swanson, K. A. Aqleh, and D. M. Wiberg. Central and peripheral chemoreflex loop gain in normal and carotid body‐resected subjects. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 46: 843–853, 1979.
 25. Bencini, A. Reduction of reflex bronchotropic impulses as a result of carotid body surgery. Int. Surg. 54: 415–423, 1970.
 26. Berckelmann, M. L. D. De nervorum in arterias imperio. Göttingen, Germany: Vandenhoeck, 1744.
 27. Berger, A. J. The distribution of the cat's carotid sinus nerve afferent and efferent cell bodies using the horseradish peroxidase technique. Brain Res. 190: 309–320, 1980.
 28. Berger, A. J., and R. A. M. Mitchell. Lateralized phrenic nerve responses to stimulating respiratory afferents in the cat. Am. J. Physiol. 230: 1314–1320, 1976.
 29. Berger, A. J., R. A. M. Mitchell, and J. W. Severinghaus. Regulation of respiration. N. Engl. J. Med. 297: 194–201, 1977.
 30. Berger, W., K. Berger, J. Berndt, and K. Giese. Interaction of peripheral and central respiratory drives in cats. I. Effects of sodium cyanide as a peripheral chemoreceptor stimulus at different levels of CSF pH. Pfluegers Arch. 374: 205–210, 1978.
 31. Berkenbosch, A., J. van Dissel, C. N. Olievier, J. de Goede, and J. Heeringa. The contribution of the peripheral chemoreceptors to the ventilatory response to CO2 in anesthetized cats during hyperoxia. Respir. Physiol. 37: 381–390, 1979.
 32. Bernards, J. A., and J. F. Sisterman. Transient changes in lung ventilation by brief stimulation of the carotid bodies in the dog. Acta Physiol. Pharmacol. Neerl. 15: 28–29, 1969.
 33. Bianchi, A. L., and J. C. Barillot. Effects of anesthesia on activity patterns of respiratory neurones. In: The Regulation of Respiration During Sleep and Anesthesia, edited by R. S. Fitzgerald, H. Gautier, and S. Lahiri. New York: Plenum, 1978, p. 17–22.
 34. Biscoe, T. J. Carotid body: structure and function. Physiol. Rev. 51: 437–495, 1971.
 35. Biscoe, T. J., G. W. Bradley, and M. J. Purves. The relation between carotid body chemoreceptor discharge, carotid sinus pressure and carotid body venous flow. J. Physiol. London 208: 99–120, 1970.
 36. Biscoe, T. J., and R. H. Millar. Effects of inhalation anaesthetics on carotid body chemoreceptor activity. Br. J. Anaesth. 40: 2–12, 1968.
 37. Biscoe, T. J., and M. J. Purves. Observation on the rhythmic variations in the cat carotid body chemoreceptor activity which has the same period as respiration. J. Physiol. London 190: 389–412, 1967.
 38. Biscoe, T. J., and M. J. Purves. Observations on carotid body chemoreceptor activity and cervical sympathetic discharge in the cat. J. Physiol. London 190: 413–424, 1967.
 39. Biscoe, T. J., and M. J. Purves. Factors affecting the cat carotid chemoreceptor and cervical sympathetic activity with special reference to passive hind‐limb movement. J. Physiol. London 190: 425–441, 1967.
 40. Biscoe, T. J., M. J. Purves, and S. R. Sampson. Types of nervous activity which may be recorded from the carotid sinus nerve in the sheep foetus. J. Physiol. London 202: 1–23, 1969.
 41. Biscoe, T. J., M. J. Purves, and S. R. Sampson. The frequency of nerve impulses in single carotid body chemoreceptor afferent fibres recorded in vivo with intact circulation. J. Physiol. London 208: 121–131, 1970.
 42. Biscoe, T. J., and S. R. Sampson. Rhythmical and non‐rhythmical spontaneous activity recorded from the central cut end of the sinus nerve. J. Physiol. London 196: 327–338, 1968.
 43. Bisgard, G. E., H. G. Alvarez, and R. F. Grover. Decreased ventilatory response to hypoxia during acute polycythemia in the calf. Respir. Physiol. 7: 369–382, 1969.
 44. Bisgard, G. E., H. V. Forster, and J. P. Klein. Recovery of peripheral chemoreceptor function after denervation in ponies. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 49: 964–970, 1980.
 45. Bisgard, G. E., H. V. Forster, J. P. Klein, M. Manohar, and V. A. Bullard. Depression of ventilation by dopamine in goats—effects of carotid body excision. Respir. Physiol. 40: 379–392, 1980.
 46. Bisgard, G. E., H. V. Forster, J. A. Orr, D. D. Buss, C. A. Rawlings, and B. Rasmussen. Hypoventilation in ponies after carotid body denervation. J. Appl. Physiol. 40: 184–190, 1976.
 47. Bisgard, G. E., and J. H. K. Vogel. Hypoventilation and pulmonary hypertension in calves after carotid body excision. J. Appl. Physiol. 31: 431–437, 1971.
 48. Black, A. M. S., N. W. Goodman, B. S. Nail, P. S. Rao, and R. W. Torrance. The significance of the timing of chemoreceptor impulses for their effect upon respiration. Acta Neurobiol. Exp. 33: 139–147, 1973.
 49. Black, A. M. S., D. I. McCloskey, and R. W. Torrance. The responses of carotid body chemoreceptors in the cat to sudden changes of hypercapnic and hypoxic stimuli. Respir. Physiol. 13: 36–49, 1971.
 50. Black, A. M. S., and R. W. Torrance. Chemoreceptor effects in the respiratory cycle (Abstract). J. Physiol. London 189: 59P–61P, 1967.
 51. Black, A. M. S., and R. W. Torrance. Respiratory oscillations in chemoreceptor discharge in the control of breathing. Respir. Physiol. 13: 221–237, 1971.
 52. Blesa, M. I., S. Lahiri, W. J. Rashkind, and A. P. Fishman. Normalization of the blunted ventilatory response to acute hypoxia in congenital cyanotic heart disease. N. Engl. J. Med. 296: 237–241, 1977.
 53. Boddy, K., G. S. Dawes, R. Fisher, S. Pinter, and J. S. Robinson. Foetal respiratory movements, electrocortical and cardiovascular responses to hypoxemia and hypercapnia in sheep. J. Physiol. London 243: 599–618, 1974.
 54. Bolme, P., K. Fuxe, T. Hökfelt, and M. Goldstein. Studies on the role of dopamine in cardiovascular and respiratory control: central versus peripheral mechanisms. In: Advances in Biochemical Psychopharmacology, edited by E. Costa and G. L. Gessa. New York: Raven, 1977, vol. 16, p. 281–290.
 55. Bouckaert, J., K. S. Crimson, C. Heymans, and A. Samaan. Sur le mécanisme de l'influence de l'hypoxémie sur la respiration et la circulation. Arch. Int. Pharmacodyn. Ther. 65: 63–100, 1941.
 56. Bouverot, P. Control of breathing in birds compared with mammals. Physiol. Rev. 58: 604–655, 1978.
 57. Bouverot, P., and R. S. Fitzgerald. Role of arterial chemoreceptors in controlling lung volume in the dog. Respir. Physiol. 7: 203–215, 1969.
 58. Bouverot, P., R. Flandrois, R. Pucinelli, and P. Dejours. Étude du rôle dés chémorécepteurs artériels dans la regulation de la respiration pulmonaire chez le chien éveillé. Arch. Int. Pharmacodyn. Ther. 157: 253–271, 1965.
 59. Bouverot, P., N. Hill, and Y. Jammes. Ventilatory responses to CO2 in intact and chronically chemodenervated Pekin ducks. Respir. Physiol. 22: 137–156, 1974.
 60. Bouverot, P., and P. Sébert. O2‐chemoreflex drive of ventilation in awake birds at rest. Respir. Physiol. 37: 201–218, 1979.
 61. Bowes, G., S. M. Andrey, L. F. Kozar, and E. A. Phillipson. Role of the carotid chemoreceptors in regulation of inspiratory onset. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 52: 863–868, 1982.
 62. Bradley, G. W., C. Von Euler, I. Marttila, and B. Roos. Transient and steady state effects of CO2 on mechanisms determining rate and depth of breathing. Acta Physiol. Scand. 92: 341–350, 1974.
 63. Brady, J., and E. Ceruti. Chemoreceptor reflexes in the newborn infant: effects of varying degrees of hypoxia on heart rate and ventilation in a warm environment. J. Physiol. London 184: 631–645, 1966.
 64. Braunwald, E., J. Ross, Jr., R. L. Kahler, T. E. Gaffney, A. Goldblatt, and D. T. Mason. Reflex control of the systemic venous bed: effects on venous tone of vasoactive drugs and of baroreceptor and chemoreceptor stimulation. Circ. Res. 12: 539–550, 1963.
 65. Browse, N. L., and J. T. Shepherd. Response of veins of canine limb to aortic and carotid chemoreceptor stimulation. Am. J. Physiol. 210: 1435–1441, 1966.
 66. Bystrzcka, E., B. S. Nail, and M. J. Purves. Central and peripheral neural respiratory activity in the mature sheep fetus and newborn lamb. Respir. Physiol. 25: 199–215, 1975.
 67. Chen, I. L., and R. D. Yates. Ultrastructural studies of vagal paraganglia in Syrian hamsters. Z. Zellforsch. Mikrosk. Anat. 108: 309–323, 1970.
 68. Cherniack, N. S., C. Von Euler, I. Homma, and F. F. Kao. Graded changes in central chemoreceptor input by local temperature changes on the ventral surface of the medulla. J. Physiol. London 287: 191–211, 1979.
 69. Chernick, V. Fetal breathing movements. Semin. Perinatol. 1: 339–342, 1977.
 70. Chernick, V. Onset of breathing at birth. Semin. Perinatol. 1: 343–346, 1977.
 71. Chiodi, H. Respiratory adaptations to chronic high altitude hypoxia. J. Appl. Physiol. 10: 81–87, 1957.
 72. Clark, F. J., and C. Von Euler. On the regulation of depth and rate of breathing. J. Physiol. London 222: 267–295, 1972.
 73. Coleridge, H., J. C. G. Coleridge, and A. Howe. A search for pulmonary arterial chemoreceptors in the cat, with a comparison of the blood supply of the aortic bodies in the newborn and adult animal. J. Physiol. London 191: 353–374, 1967.
 74. Coles, D. R., F. Duff, W. H. T. Shepherd, and R. F. Whelan. The effect on respiration of infusions of adrenaline and noradrenaline into the carotid and vertebral arteries in man. Br. J. Pharmacol. 11: 346–350, 1956.
 75. Comroe, J. H., Jr. The location and function of the chemoreceptors of the aorta. Am. J. Physiol. 127: 176–191, 1939.
 76. Comroe, J. H., Jr. The peripheral chemoreceptors. In: Handbook of Physiology. Respiration, edited by W. O. Fenn and H. Rahn. Washington, DC: Am. Physiol. Soc., 1964, sect. 3, vol. I, chapt. 23, p. 557–583.
 77. Comroe, J. H., Jr., and L. Mortimer. The respiratory and cardiovascular responses of temporally separated aortic and carotid bodies to cyanide, nicotine, phenyldiguanide and serotonin. J. Pharmacol. Exp. Ther. 146: 33–41, 1964.
 78. Comroe, J. H., Jr., and C. F. Schmidt. The part played by reflexes from the carotid body in the chemical regulation of respiration in the dog. Am. J. Physiol. 121: 75–97, 1938.
 79. Cotes, J. E., M. J. Saunders, and J. Sengupta. Functional residual capacity in man during altered chemical drive to respiration (Abstract). J. Physiol. London 270: 42P–43P, 1977.
 80. Cropp, G. J. A., and J. H. Comroe, Jr. Role of mixed venous blood Pco2 in respiratory control. J. Appl. Physiol. 16: 1029–1033, 1961.
 81. Cross, B. A., B. J. B. Grant, A. Guz, P. W. Jones, S. J. G. Semple, and R. P. Stidwill. Dependence of phrenic moto‐neurone output on the oscillatory component of arterial blood gas composition. J. Physiol. London 290: 163–184, 1979.
 82. Cross, C. E., P. A. Rieben, C. I. Barron, and P. F. Salisbury. Effects of arterial hypoxia on the heart and circulation: an integrative study. Am. J. Physiol. 205: 963–970, 1963.
 83. Cunningham, D. J. C. The control system regulating breathing in man. Q. Rev. Biophys. 6: 433–483, 1973.
 84. Cunningham, D. J. C., D. B. Drysdale, and J. I. Jensen. The use of transients in the study of the interactions of chemical drives to breathing (Abstract). J. Physiol. London 256: 10P–11P, 1976.
 85. Cunningham, D. J. C., E. N. Hey, and B. B. Lloyd. The effect of intravenous infusion of noradrenaline on the respiratory response to carbon dioxide in man. Q. J. Exp. Physiol. 43: 394–399, 1958.
 86. Cunningham, D. J. C., E. N. Hey, J. M. Patrick, and B. B. Lloyd. The effect of noradrenaline infusion on the relation between pulmonary ventilation and alveolar Po2 and Pco2 in man. Ann. NY Acad. Sci. 109: 756–770, 1963.
 87. Curran, W. S., and W. G. B. Graham. Long term effects of glomectomy. Follow‐up of a double‐blind study. Am. Rev. Respir. Dis. 103: 566–568, 1971.
 88. Daly, M. de B., J. L. Hazzledine, and A. Howe. Reflex respiratory and peripheral vascular responses to stimulation of the isolated perfused aortic arch chemoreceptors of the dog. J. Physiol. London 177: 300–322, 1965.
 89. Daly, M. de B., P. I. Korner, J. E. Angell‐James, and J. R. Oliver. Cardiovascular‐respiratory reflex interactions between carotid bodies and upper‐airways receptors in the monkey. Am. J. Physiol. 234 (Heart Circ. Physiol. 3): H293–H299, 1978.
 90. Daly, M. de B., and B. H. Robinson. An analysis of the reflex systemic vasodilator response elicited by lung inflation in the dog. J. Physiol. London 195: 387–406, 1968.
 91. Daly, M. de B., and M. J. Scott. The effect of hypoxia on the heart rate of the dog with special reference to the contributions of the carotid body chemoreceptors. J. Physiol. London 145: 440–446, 1959.
 92. Davies, R. O., and M. W. Edwards, Jr. Distribution of carotid body chemoreceptor afferents in the medulla of the cat. Brain Res. 64: 451–454, 1973.
 93. Davies, R. O., and S. Lahiri. Absence of carotid chemoreceptor response during hypoxic exercise in the cat. Respir. Physiol. 18: 92–100, 1973.
 94. Davis, B., R. Chinn, D. Popovac, J. G. Widdicombe, and J. Nadel. Hypoxia stimulates mucous gland secretion via a carotid body reflex in dogs (Abstract). Am. Rev. Respir. Dis. 121: 332, 1980.
 95. Dawes, G. S., and J. H. Comroe, Jr. Chemoreflexes from the heart and lungs. Physiol. Rev. 34: 167–201, 1954.
 96. Dawes, G. S., S. L. B. Duncan, B. V. Lewis, C. L. Merlet, J. B. Owen‐Thomas, and J. T. Reeves. Hypoxaemia and aortic chemoreceptor function in foetal lambs. J. Physiol. London 201: 105–116, 1969.
 97. Dawes, G. S., H. E. Fox, B. M. Leduc, G. C. Liggins, and R. T. Richards. Respiratory movements and rapid eye movement sleep in the foetal lamb. J. Physiol. London 220: 119–143, 1972.
 98. Deane, B. M., A. Howe, and M. Morgan. Abdominal vagal paraganglia: distribution and comparison with carotid body in the rat. Acta Anat. 93: 19–28, 1975.
 99. De Castro, F. Sur la structure et l'innervation de la glande intercarotidienne (glomus caroticum) de l'homme et des man‐nifères, et sur un nouveau système d'innervation autonome du nerf glossopharyngien. Ètudes anatomiques et experimentales. Trab. Lab. Invest. Biol. Univ. Madrid 24: 365–432, 1926.
 100. De Castro, F. Sur la structure et l'innervation du sinus carotidien de l'homme et des mammifères. Nouveaux faits sur l'innervation et la fonction du glomus caroticum. Ètudes anatomiques et physiologiques. Trab. Lab. Invest. Biol. Univ. Madrid 25: 331–380, 1928.
 101. De Castro, F. Sur la structure de la synapse dans les chémorecepteurs: leur méchanisme d'excitation et rôle dans la circulation sanguine locale. Acta Physiol. Scand. 22: 14–43, 1951.
 102. De Geest, H., M. N. Levy, and H. Zieske. Reflex effects of cephalic hypoxia, hypercapnia, and ischemia upon ventricular contractility. Circ. Res. 17: 349–358, 1965.
 103. De Groat, W. C., I. Nadelhaft, C. Morgan, and T. Schauble. The central origin of efferent pathways in the carotid sinus nerve of the cat. Science 205: 1017–1018, 1979.
 104. Dejours, P. Chemoreflexes in breathing. Physiol. Rev. 42: 335–358, 1962.
 105. Dejours, P. Control of respiration in muscular exercise. In: Handbook of Physiology. Respiration, edited by W. O. Fenn and H. Rahn. Washington, DC: Am. Physiol. Soc., 1964, sect. 3, vol. I, chapt. 25, p. 631–648.
 106. Dejours, P., Y. La Brousse, J. Raynaud, and A. Teillac. Stimulus oxygène chémoréflexe de la ventilation à basse altitude (50 m) chez l'homme. I. Au repos. J. Physiol. Paris 49: 115–120, 1957.
 107. De Laney, R. G., and S. Lahiri. Neonatal hypoxia and the development of attenuated ventilatory sensitivity to hypoxia (Abstract). Federation Proc. 31: 390, 1972.
 108. Delpierre, S., C. Guillot, and M. Fornaris. Interaction between vagal and chemoreceptors afferents in ventilatory response to transient hypercapnia (awake rabbits). Arch. Int. Physiol. Biochim. 86: 135–143, 1978.
 109. Derenne, J.‐P., J. Couture, S. Iscoe, W. A. Whitelaw, and J. Milic‐Emili. Occlusion pressures in men rebreathing CO2 under methoxyflurane anesthesia. J. Appl. Physiol. 40: 805–814, 1976.
 110. Dixon, M., M. Szereda‐Przestaszewska, J. G. Widdicombe, and J. C. M. Wise. Studies on laryngeal calibre during stimulation of peripheral and central chemoreceptors, pneumathorax and increased respiratory loads. J. Physiol. London 239: 347–363, 1974.
 111. Donnelly, D. F., E. J. Smith, and R. E. Dutton. Neural response of carotid chemoreceptors following dopamine blockade. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 50: 172–177, 1981.
 112. Downes, J. J., and C. J. Lambertsen. Dynamic characteristics of ventilatory depression in man on abrupt administration of O2. J. Appl. Physiol. 21: 447–453, 1966.
 113. Downing, S. E., J. H. Mitchell, and A. G. Wallace. Cardiovascular responses to ischemia, hypoxia, and hypercapnia of the central nervous system. Am. J. Physiol. 204: 881–887, 1963.
 114. Dutton, R. E., R. S. Fitzgerald, and N. Gross. Ventilatory response to square‐wave forcing of carbon dioxide at the carotid bodies. Respir. Physiol. 4: 101–108, 1968.
 115. Dutton, R. E., W. A. Hodson, D. G. Davies, and V. Chernick. Ventilatory adaptation to a step change in Pco2 at the carotid bodies. J. Appl. Physiol. 23: 195–202, 1967.
 116. Dutton, R. E., W. A. Hodson, D. G. Davies, and A. Fenner. Effect of the rate of rise of carotid body Pco2 on the time course of ventilation. Respir. Physiol. 3: 367–379, 1967.
 117. Dutton, R. E., E. J. Smith, P. K. Ghatak, and D. G. Davies. Dynamics of the respiratory controller during carotid body hypoxia. J. Appl. Physiol. 35: 844–850, 1973.
 118. Edelman, N. H., N. S. Cherniack, S. Lahiri, E. Richards, and A. P. Fishman. The effects of abnormal sympathetic nervous function upon the ventilation responses in hypoxia. J. Clin. Invest. 49: 1153–1165, 1970.
 119. Edelman, N. H., S. Lahiri, L. Brando, N. S. Cherniack, and A. P. Fishman. The blunted ventilation response to hypoxia in cyanotic congenital heart disease. N. Engl. J. Med. 282: 405–411, 1970.
 120. Edwards, C. W. The carotid bodies in animals at high altitudes. Pathol. Microbiol. 39: 298–304, 1973.
 121. Edwards, M. W., Jr., R. O. Davies, and S. Lahiri. Halothane depresses the response of carotid body chemoreceptors to hypoxia and hypercapnia in the cat (Abstract). Federation Proc. 39: 828, 1980.
 122. Eisele, J. H., C. E. Cross, D. C. Rausch, C. J. Kurpershoek, and R. F. Zelis. Abnormal respiratory control in acquired dysautonomia. N. Engl. J. Med. 285: 366–368, 1971.
 123. Eisele, J. H., J. Pegg, and J. W. Severinghaus. Ventilatory response to hypoxia in acutely polycythemic dogs. J. Appl. Physiol. 26: 757–759, 1969.
 124. Eldridge, F. L. The importance of timing on the respiratory effects of intermittent carotid sinus nerve stimulation. J. Physiol. London 222: 297–318, 1972.
 125. Eldridge, F. L. The importance of timing on the respiratory effects of intermittent carotid body chemoreceptor stimulation. J. Physiol. London 222: 319–333, 1972.
 126. Eldridge, F. L. Expiratory effects of brief carotid sinus nerve and carotid body stimulations. Respir. Physiol. 26: 395–410, 1976.
 127. Eldridge, F. L. Central nervous system and chemoreceptor factors in control of breathing. Chest 73: 256–258, 1978.
 128. Eldridge, F. L., and P. Gill‐Kumar. Central respiratory effects of carbon dioxide, and carotid sinus nerve and muscle afferents. J. Physiol. London 300: 75–87, 1980.
 129. Eldridge, F. L., P. Gill‐Kumar, and D. E. Milhorn. Input‐output relationships of central neural circuits involved in respiration in cats. J. Physiol. London 311: 81–95, 1981.
 130. Elsner, R., J. E. Angell‐James, and M. de B. Daly. Carotid body chemoreceptor reflexes and their interactions in the seal. Am. J. Physiol. 232 (Heart Circ. Physiol. 1): H517–H525, 1977.
 131. Euler, C. von. Time dependent changes in responsiveness to inflations and deflations of the lungs during inspiration and expiration: their significance for the control of depth and rate of breathing. Arch. Fisiol. 69: 424–432, 1972.
 132. Euler, C. Von, F. Herrero, and I. Wexler. Control mechanisms determining rate and depth of respiratory movements. Respir. Physiol. 10: 93–108, 1970.
 133. Euler, U. S. Von, G. Liljestrand, And Y. Zotterman. The excitation mechanism of the chemoreceptors of the carotid body. Skand. Arch. Physiol. 83: 132–152, 1939.
 134. Evans, R. J. C., M. K. Benson, and D. T. D. Hughes. Abnormal chemoreceptor response to hypoxia in patients with tabes dorsalis. Br. Med. J. 1: 530–531, 1971.
 135. Eyzaguirre, C., R. S. Fitzgerald, S. Lahiri, and P. Zapata. Arterial chemoreceptors. In: Handbook of Physiology. Peripheral Circulation and Organ Blood Flow, edited by J. T. Shepherd and F. M. Abboud. Bethesda, MD: Am. Physiol. Soc., 1983, sect. 2, vol. III, pt. 2, chapt. 16, p. 557–621.
 136. Eyzaguirre, C., and J. Lewin. Chemoreceptor activity of the carotid body of the cat. J. Physiol. London 159: 222–237, 1961.
 137. Fedde, M. R. Intrapulmonary CO2 receptors and their role in the control of avian respiration. In: Advances in Physiological Sciences. Respiration, edited by I. Hutas and L. A. Debreczeni. Budapest: Akad. Kiado, 1981, vol. 10, p. 147–154.
 138. Fedorchuk, Y. S. Influence upon the electrical activity of skeletal muscles by the stimulation of the carotid body. Leningrad, USSR: Univ. of Leningrad, 1957. Dissertation.
 139. Fencl, V., T. B. Miller, and J. R. Pappenheimer. Studies on the respiratory response to disturbances of acid‐base balance, with deductions concerning the ionic composition of cerebral interstitial fluid. Am. J. Physiol. 210: 459–472, 1966.
 140. Fitzgerald, R. S. Relationships between tidal volume and phrenic nerve activity during hypercapnia and hypoxia. Acta Neurobiol. Exp. 33: 419–425, 1973.
 141. Fitzgerald, R. S. Single fiber chemoreceptor responses of aortic and carotid bodies. In: Morphology and Mechanisms of Chemoreceptors, edited by A. S. Paintal. New Delhi: Navchetan, 1976, p. 27–35.
 142. Fitzgerald, R. S., and G. A. Dehghani. Neural responses of the cat carotid and aortic bodies to hypercapnia and hypoxia. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 52: 596–601, 1982.
 143. Fitzgerald, R. S., F. Garfinkel, E. Silbergeld, and S. Loscutoff. Factors in the interpretation of mouth occlusion pressure during measurements of chemosensitivity. Chest 70: 145–149, 1976.
 144. Fitzgerald, R. S., P. Garger, C. Hauer, H. Raff, and L. Fechter. Effect of hypoxia and hypercapnia on catecholamine content in cat carotid body. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 54: 1408–1413, 1983.
 145. Fitzgerald, R. S., H. Gautier, and S. Lahiri. The Regulation of Respiration During Sleep and Anesthesia. New York: Plenum, 1978, p. 151–231.
 146. Fitzgerald, R. S., and J. W. C. Johnson. Progesterone and the carotid body (Abstract). Physiologist 18: 214, 1975.
 147. Fitzgerald, R. S., L. M. Leitner, and M. J. Liaubet. Carotid chemoreceptor response to intermittent or sustained stimulation in the cat. Respir. Physiol. 6: 395–402, 1969.
 148. Fitzgerald, R. S., and D. C. Parks. Effect of hypoxia on carotid chemoreceptor response to carbon dioxide in cats. Respir. Physiol. 12: 218–229, 1971.
 149. Fitzgerald, R. S., H. Raff, P. Garger, A. Anand, and S. I. Said. Vasoactive intestinal polypeptide (VIP) and the carotid body. In: Arterial Chemoreceptors, edited by C. Belmonte, D. Pallot, H. Acker, and S. Fidone. Leicester, UK: Leicester Univ. Press, 1981, p. 289–298.
 150. Fitzgerald, R. S., and R. J. Traystman. Peripheral chemoreceptors and the cerebral vascular response to hypoxemia. Federation Proc. 39: 2674–2677, 1980.
 151. Fitzgerald, R. S., J. T. Zajtchuk, R. W. B. Penman, and J. F. Perkins, Jr. Ventilatory response to transient perfusion of carotid chemoreceptors. Am. J. Physiol. 207: 1305–1313, 1964.
 152. Fordyce, W. E., and F. S. Grodins. Ventilatory responses to intravenous and airway CO2 administration in anesthetized dogs. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. Physiol. 48: 337–346, 1980.
 153. Forster, H. V., G. E. Bisgard, and J. P. Klein. Effect of peripheral chemoreceptor denervation on acclimatization of goats during hypoxia. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 50: 392–398, 1981.
 154. Forster, H. V., G. E. Bisgard, B. Rasmussen, J. A. Orr, D. D. Buss, and M. Manohar. Ventilatory control in peripheral chemoreceptor‐denervated ponies during chronic hypoxemia. J. Appl. Physiol. 41: 878–885, 1976.
 155. Gabriel, M., and H. Seller. Interaction of baroreceptor afferents from carotid sinus and aorta at the nucleus tractus solitarii. Pfluegers Arch. 318: 7–20, 1970.
 156. Garcia, A., and N. S. Cherniack. Integrated phrenic activity in hypercapnia and hypoxia. Anesthesiology 28: 1029–1035, 1967.
 157. Garfinkel, F., and R. S. Fitzgerald. The effect of hyperoxia, hypoxia and hypercapnia on FRC and occlusion pressure in human subjects. Respir. Physiol. 33: 241–250, 1978.
 158. Gautier, H. Effects of hypoxia and hypercapnia on ventilatory pattern of chronic cats before and after vagotomy (Abstract). Bull. Physio‐Pathol. Respir. 11: 89P–90P, 1975.
 159. Gautier, H. Pattern of breathing during hypoxia or hypercapnia of the awake or anesthetized cat. Respir. Physiol. 27: 193–206, 1976.
 160. Gautier, H., and M. Bonora. Effects of carotid body denervation on respiratory pattern of awake cats. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 46: 1127–1131, 1979.
 161. Gehrich, J. L., and G. P. Moore. Statistical analysis of cyclic variations in carotid body chemoreceptor activity. J. Appl. Physiol. 35: 642–648, 1973.
 162. Gernandt, B. E. A study of the respiratory reflexes elicited from the aortic and carotid bodies. Acta Physiol. Scand. Suppl. 35: 1–81, 1946.
 163. Gesell, R., J. Lapides, and M. Levin. The interaction of central and peripheral chemical control of breathing. Am. J. Physiol. 130: 155–170, 1940.
 164. Gesell, R., and F. White. Recruitment of muscular activity and the central neuron after‐discharge of hyperpnea. Am. J. Physiol. 122: 48–56, 1938.
 165. Giese, K., J. Berndt, and W. Berger. Interaction of central and peripheral respiratory drives in cats. II. Peripheral and central interaction of hypoxia and hypercapnia. Pfluegers Arch. 374: 211–217, 1978.
 166. Gilfillan, R. S., G. M. Cuthbertson, J. T. Hansen, and N. Pace. Surgical excision of the canine carotid bodies and denervation of the aortic bodies. J. Surg. Res. 7: 457–463, 1967.
 167. Gill, P. K., and M. Kuno. Properties of phrenic motoneurones. J. Physiol. London 168: 258–273, 1963.
 168. Glick, G., W. H. Plauth, Jr., and E. Braunwald. Circulatory response to hypoxia in unanesthetized dogs with and without cardiac denervation. Am. J. Physiol. 207: 753–758, 1964.
 169. Glogowska, M., P. S. Richardson, J. G. Widdicombe, and A. J. Winning. The role of the vagus nerves, peripheral chemoreceptors and other afferent pathways in the genesis of augmented breaths in cats and rabbits. Respir. Physiol. 16: 179–196, 1972.
 170. Goldberg, A. M., A. P. Lentz, and R. S. Fitzgerald. Neurotransmitter mechanisms in the carotid body: absence of ACh in the carotid sinus nerve. Brain Res. 140: 374–377, 1978.
 171. Gonzalez, C., and S. Fidone. Increased release of 3H‐dopamine during low O2 stimulation of rabbit carotid body in vitro. Neurosci. Lett. 6: 95–99, 1977.
 172. Gonzalez, F., Jr., W. E. Fordyce, and F. S. Grodins. Mechanism of respiratory responses to intravenous NaHCO3, HC1, and KCN. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 43: 1075–1079, 1977.
 173. Goodman, N. W., and B. S. Nail. Oscillatory behaviour and randomness of firing of chemoreceptor fibers in the cat. Brain Res. 59: 379–383, 1973.
 174. Goodman, N. W., B. S. Nail, and R. W. Torrance. Oscillation in the discharge of single carotid chemoreceptor fibers of the cat. Respir. Physiol. 20: 251–269, 1974.
 175. Gothe, B., M. D. Altose, M. D. Goldman, and N. S. Cherniack. Effect of quiet sleep on resting and CO2‐stimulated breathing in humans. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 50: 724–730, 1981.
 176. Grandt, B., and S. J. G. Semple. Mechanisms whereby oscillations in arterial carbon dioxide tension might affect pulmonary ventilation. In: Morphology and Mechanisms of Chemoreceptors, edited by A. S. Paintal. New Delhi: Navchetan, 1976, p. 191–196.
 177. Grant, W. Influence of carotid body removal on polycythemia and arterial oxygen saturation during discontinuous anoxia. Am. J. Physiol. 164: 226–233, 1951.
 178. Greco, E. C., Jr., W. E. Fordyce, F. Gonzalez, Jr., P. Reischl, and F. S. Grodins. Respiratory responses to intravenous and intrapulmonary CO2 in awake dogs. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 45: 109–114, 1978.
 179. Grodins, F. S. Exercise hyperpnea. The ultra secret. In: Advances in Physiological Sciences. Respiration, edited by I. Hutas and L. A. Debreczeni. Budapest: Akad. Kiado, 1981, vol. 10, p. 243–251.
 180. Grunstein, M. M., J. P. Derenne, and J. Milic‐Emili. Control of depth and frequency of breathing during baroreceptor stimulation in cats. J. Appl. Physiol. 39: 395–404, 1975.
 181. Grunstein, M. M., W. M. Fisk, L. A. Leiter, and J. Milic‐Emili. Effect of body temperature on respiratory frequency in anesthetized cats. J. Appl. Physiol. 34: 154–159, 1973.
 182. Guazzi, M., and E. D. Freis. Sino‐aortic reflexes and arterial pH, Po2, and Pco2 in wakefulness and sleep. Am. J. Physiol. 217: 1623–1627, 1969.
 183. Guz, A., M. I. M. Noble, J. G. Widdicombe, D. Trenchard, and W. W. Mushin. The effect of bilateral block of vagus and glossopharyngeal nerves on the ventilatory response to CO2 of conscious man. Respir. Physiol. 1: 206–210, 1966.
 184. Haldane, J. S., J. C. Meakins, and J. G. Priestley. The respiratory response to anoxaemia. J. Physiol. London 52: 420–432, 1919.
 185. Haldane, J. S., and J. G. Priestley. The regulation of lung ventilation. J. Physiol. London 32: 225–266, 1905.
 186. Hanbauer, I., and S. Hellstrom. The regulation of dopamine and noradrenaline in the rat carotid body and its modification by denervation and by hypoxia. J. Physiol. London 282: 21–34, 1978.
 187. Harned, H. S., Jr., C. A. Griffin III, W. S. Berryhill, Jr., L. G. MacKinney, and K. Sugioka. Role of carotid chemoreceptors in the initiation of effective breathing of the lamb at term. Pediatrics 39: 329–336, 1967.
 188. Harris, A. S. Inspiratory tonus in anoxia. Am. J. Physiol. 143: 140–147, 1945.
 189. Hatcher, J. D., L. K. Chiu, and D. B. Jennings. Anemia as a stimulus to aortic and carotid chemoreceptors in the cat. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 44: 696–702, 1978.
 190. Heath, D., C. Edwards, and P. Harris. Postmortem size and structure of the human carotid body. Thorax 25: 129–140, 1970.
 191. Heath, D., C. Edwards, M. Winson, and P. Smith. Effects on the right ventricle, pulmonary vasculature, and carotid bodies of the rat of exposure to, and recovery from, simulated high altitude. Thorax 28: 24–28, 1973.
 192. Heeringa, J., A. Berkenbosch, J. de Goede, and C. N. Olievier. Relative contribution of central and peripheral chemoreceptors to the ventilatory response to CO2 during hyperoxia. Respir. Physiol. 37: 365–379, 1979.
 193. Heistad, D. D., F. M. Abboud, A. L. Mark, and P. G. Schmid. Effect of baroreceptor activity in ventilatory response to chemoreceptor stimulation. J. Appl. Physiol. 39: 411–416, 1975.
 194. Heistad, D. D., and M. L. Marcus. Total and regional cerebral blood flow during stimulation of carotid baroreceptors. Stroke 7: 239–243, 1976.
 195. Heistad, D. D., M. L. Marcus, J. C. Ehrhardt, and F. M. Abboud. Effect of stimulation of carotid chemoreceptors on total and regional cerebral blood flow. Circ. Res. 38: 20–25, 1976.
 196. Herrington, R. T., H. S. Harned, Jr., J. I. Ferreiro, and C. A. Griffin III. The role of the central nervous system in perinatal respiration: studies of chemoregulatory mechanisms in the term lamb. Pediatrics 47: 857–864, 1971.
 197. Hey, E. N., B. B. Lloyd, D. J. C. Cunningham, M. G. M. Jukes, and D. P. G. Bolton. Effects of various respiratory stimuli on the depth and frequency of breathing in man. Respir. Physiol. 1: 193–205, 1966.
 198. Heymans, C. J. F. The part played by vascular presso‐ and chemoreceptors in respiratory control. In: Nobel Lectures—Physiology or Medicine (1922–1941). Amsterdam: Elsevier, 1965, p. 460–481.
 199. Heymans, C. J. F., and J. J. Bouckaert. Sinus caroticus and respiratory reflexes. Cerebral blood flow and respiration. Adrenaline apnoea. J. Physiol. London 69: 13–14, 1930.
 200. Heymans, J. F., and C. Heymans. Sur les modifications directes et sur la regulation réflexe de l'activité du centre respiratoire de la tête isolée du chien. Arch. Int. Pharmacodyn. Ther. 33: 273–372, 1927.
 201. Hickey, R. F., H. E. Fourcade, E. I. Eger, C. P. Larson, S. H. Bahlman, W. C. Stevens, G. A. Gregory, and N. T. Smith. The effects of ether, halothane, and forane on apneic threshold in man. Anesthesiology 35: 32–37, 1971.
 202. Hirshman, C. A., R. E. McCullough, P. J. Cohen, and J. V. Weil. Depression of hypoxic ventilatory response by halothane, enflurane, and isoflurane in dogs. Br. J. Anaesth. 49: 957–963, 1977.
 203. Hollinshead, W. H. Chemoreceptors in the abdomen. J. Comp. Neurol. 74: 269–283, 1941.
 204. Hollinshead, W. H. The function of the abdominal chemoreceptors of the rat and mouse. Am. J. Physiol. 147: 654–660, 1946.
 205. Hornbein, T. F., A. J. Griffo, and A. Roos. Quantitation of chemoreceptor activity: interrelation of hypoxia and hypercapnia. J. Neurophysiol. 24: 561–568, 1961.
 206. Hornbein, T. F., and A. Roos. Specificity of H ion concentration as a carotid chemoreceptor stimulus. J. Appl. Physiol. 18: 580–584, 1963.
 207. Hornbein, T. F., and J. W. Severinghaus. Carotid chemoreceptor response to hypoxia and acidosis in cats living at high altitude. J. Appl. Physiol. 27: 837–839, 1969.
 208. Hornbein, T. F., and S. C. Sorenson. Ventilatory response to hypoxia and hypercapnia in cats living at high altitude. J. Appl. Physiol. 27: 834–836, 1969.
 209. Howard, P., B. Bromberger‐Barnea, R. S. Fitzgerald, and H. N. Bane. Ventilatory responses to peripheral nerve stimulation at different times in the respiratory cycle. Respir. Physiol. 7: 389–398, 1969.
 210. Howell, J. B. L., and B. W. Peckett. Studies of the elastic properties of the thorax of supine anaesthetised, paralysed human subjects. J. Physiol. London 136: 1–19, 1957.
 211. Hugelin, A. Regional effects of nembutal anesthesia on brain stem respiratory neurones. In: The Regulation of Respiration During Sleep and Anesthesia, edited by R. S. Fitzgerald, H. Gautier, and S. Lahiri. New York: Plenum, 1978, p. 5–15.
 212. Hurtado, A. Animals in high altitudes: resident man. In: Handbook of Physiology. Adaptation to the Environment, edited by D. B. Dill. Washington, DC: Am. Physiol. Soc., 1964, sect. 4, chapt. 54, p. 843–860.
 213. James, I. M., and L. MacDonnell. The role of baroreceptors and chemoreceptors in the regulation of the cerebral circulation. Clin. Sci. Mol. Med. 49: 465–471, 1975.
 214. Jansen, A. H. Peripheral chemoreceptor function in the fetus. Semin. Perinatol. 1: 327–337, 1977.
 215. Jansen, A. H., and V. Chernick. Cardiorespiratory response to central cyanide in fetal sheep. J. Appl. Physiol. 37: 18–21, 1974.
 216. Jansen, A. H., S. Ioffe, B. J. Russell, and V. Chernick. Effect of carotid chemoreceptor denervation on breathing in utero and after birth. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 51: 630–633, 1981.
 217. Janzer, R. C., and J. Schneider. The influence of chronically hypoxemic states on human carotid body structure and cardiac hypertrophy. Virchows Arch. A 376: 75–87, 1977.
 218. Javaheri, S., L. Herrera, and H. Kazemi. Ventilatory drive in acute metabolic acidosis. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 46: 913–918, 1979.
 219. Javaheri, S., and H. Kazemi. Mechanisms of respiratory control in metabolic acidosis (Abstract). Clin. Res. 26: 538A, 1978.
 220. Joels, N., and E. Neil. The influence of anoxia and hypercapnia separately and in combination, on chemoreceptor impulse discharge (Abstract). J. Physiol. London 155: 45P–46P, 1961.
 221. Joels, N., and H. White. The contribution of the arterial chemoreceptors to the stimulation of respiration by adrenaline and noradrenaline in the cat. J. Physiol. London 197: 1–23, 1968.
 222. Jones, D. R., W. K. Milsom, and G. R. J. Gabbott. The role of intrapulmonary, systemic, and central chemoreceptors in the ventilatory response to CO2 in the duck. Physiologist 22 (4): 64, 1979.
 223. Kaehny, W. D., and J. T. Jackson. Respiratory response to HCl acidosis in dogs after carotid body denervation. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 46: 1138–1142, 1979.
 224. Kahler, R. L., A. Goldblatt, and E. Braunwald. The effects of acute hypoxia on the systemic venous and arterial system and myocardial contractile force. J. Clin. Invest. 41: 1553–1563, 1962.
 225. Kalia, M., and R. O. Davies. A neuroanatomical search for glossopharyngeal efferents to the carotid body using the retrograde transport of horseradish peroxidase. Brain Res. 149: 477–481, 1978.
 226. Kaplan, H. R., G. J. Grega, G. P. Sherman, and J. P. Buckley. Central and reflexogenic cardiovascular actions of prostaglandin E1. Int. J. Neuropharmacol. 8: 15–24, 1969.
 227. Kashani, M., and A. L. Haigh. The effects of vagotomy on ventilation and blood gas composition in dog, sheep and rabbit. Q. J. Exp. Physiol. 60: 285–298, 1972.
 228. Katsaros, B. Die Rolle der Chemoreceptoren des Carotisgebiets der narkotisierten Katze für die Antwort der Atmung auf isolierte Änderung der Wasserstoffionen‐Konzentrationen und des CO2‐Drucks des Blutes. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 282: 157–178, 1965.
 229. Katsaros, B. Evidence for the existance of a respiratory drive of unknown origin conducted in the carotid sinus nerves. In: Arterial Chemoreceptors, edited by R. W. Torrance. Oxford, UK: Blackwell, 1968, p. 357–369.
 230. Kellogg, R. H., and A. H. Mines. Acute hypoxia fails to effect FRC in man. Physiologist 18: 275, 1975.
 231. Kiwull, P., H. Kiwull‐Schöne, and W. Klatt. Interaction of central and peripheral respiratory drives: differentiation between the role of stimuli and afferents. In: Acid‐Base Homeostasis of the Brain Extracellular Fluid and the Respiratory Control System, edited by H. H. Loeschcke. Stuttgart, West Germany: Thieme, 1976, p. 146–156.
 232. Kiwull, P., and W. Wiemer. Der Einfluss der Vagusaus‐schaltung auf die Wirkung der Elektrischen Sinusnervenreizung. Pfluegers Arch. 330: 15–27, 1971.
 233. Kiwull, P., W. Wiemer, and H. Schöne. The role of the carotid chemoreceptors in the CO2‐hyperpnea under hyperoxia. Pfluegers Arch. 336: 171–186, 1972.
 234. Kiwull‐Schöne, H., and P. Kiwull. The role of the vagus nerves in the ventilatory response to lowered Pao2 with intact and eliminated carotid chemoreflexes. Pfluegers Arch. 381: 1–9, 1979.
 235. Knill, R. L., J. L. Clement, and A. W. Gelb. Ventilatory responses mediated by peripheral chemoreceptors in anesthetized man. In: The Regulation of Respiration During Sleep and Exercise, edited by R. S. Fitzgerald, H. Gautier, and S. Lahiri. New York: Plenum, 1978, p. 67–77.
 236. Knill, R. L., and A. W. Gelb. Ventilatory responses to hypoxia and hypercapnia during halothane sedation and anesthesia in man. Anesthesiology 49: 244–251, 1978.
 237. Knill, R. L., P. H. Manninen, and J. L. Clement. Ventilation and chemoreflexes during enflurane sedation and anaesthesia in man. Can. Anaesth. Soc. J. 26: 353–360, 1979.
 238. Koepchen, H. P., D. Klussendorf, and U. Philipp. Mechanism of central transmission of respiratory reflexes. Acta Neurobiol. Exp. 33: 287–299, 1973.
 239. Kollai, M., and K. Koizumi. Differential responses in sympathetic outflow evoked by chemoreceptor activation. Brain Res. 138: 159–165, 1977.
 240. Kollai, M., K. Koizumi, and C. McC. Brooks. Nature of differential sympathetic discharges in chemoreceptor reflexes. Proc. Natl. Acad. Sci. USA 75: 5239–5243, 1978.
 241. Kolobow, T., L. Gattinoni, T. A. Tomlinson, and J. E. Pierce. Control of breathing using an extracorporeal membrane lung. Anesthesiology 46: 138–141, 1977.
 242. Kolobow, T., L. Gattinoni, T. Tomlinson, and J. E. Pierce. An alternative to breathing. J. Thorac. Cardiovasc. Surg. 75: 261–266, 1978.
 243. Kontos, H. A., H. P. Mauck, Jr., D. W. Richardson, and J. L. Patterson, Jr. Mechanism of circulatory responses to systemic hypoxia in the anesthetized dog. Am. J. Physiol. 209: 397–403, 1965.
 244. Kontos, H. A., G. W. Vetrovec, and D. W. Richardson. Role of carotid chemoreceptors in circulatory response to hypoxia in dogs. J. Appl. Physiol. 28: 561–565, 1970.
 245. Korner, P. I. The role of the arterial chemoreceptors and baroreceptors in the circulatory response to hypoxia of the rabbit. J. Physiol. London 180: 279–303, 1965.
 246. Krahl, V. E. The glomus pulmonale: its location and microscopic anatomy. In: Pulmonary Structure and Function, edited by A. V. S. DeReuck and M. O'Connor. London: Churchill, 1962, p. 53–69. (Ciba Found. Symp.).
 247. Krasney, J. A. Regional circulatory responses to arterial hypoxia in the anesthetized dog. Am. J. Physiol. 220: 699–704, 1971.
 248. Krasney, J. A., M. G. Magno, M. G. Levitsky, R. C. Koehler, and D. G. Davies. Cardiovascular responses to arterial hypoxia in awake sinoaortic‐denervated dogs. J. Appl. Physiol. 35: 733–738, 1973.
 249. Kreuzer, F. Respiratory fluctuations of oxygen pressure in alveolar air and arterial blood. In: Oxygen Measurements in Biology and Medicine, edited by J. P. Payne and D. W. Hill. London: Butterworths, 1975, p. 139–160.
 250. Kreuzer, F. Transmission of alveolar oxygen pressure oscillations. In: Morphology and Mechanisms of Chemoreceptors, edited by A. S. Paintal. New Delhi: Navchetan, 1976, p. 176–190.
 251. Lack, E. E. Carotid body hypertrophy in patients with cystic fibrosis and cyanotic congenital heart disease. Hum. Pathol. 8: 39–51, 1977.
 252. Lahiri, S. Physiological responses and adaptations to high altitude. In: Environmental Physiology II, edited by D. Robertshaw. Baltimore, MD: University Park, 1977, vol. 15, p. 217–251. (Int. Rev. Physiol. Ser.).
 253. Lahiri, S. Dopamine and chemoreception in carotid and aortic bodies. In: Arterial Chemoreceptors, edited by C. Belmonte, D. Pallot, H. Acker, and S. Fidone. Leicester, UK: Leicester Univ. Press, 1981, p. 277–288.
 254. Lahiri, S., and R. G. DeLaney. Stimulus interaction in the responses of carotid body chemoreceptor single afferent fibers. Respir. Physiol. 24: 249–266, 1975.
 255. Lahiri, S., and R. G. DeLaney. Relationship between carotid chemoreceptor activity and ventilation in the cat. Respir. Physiol. 24: 267–286, 1975.
 256. Lahiri, S., and R. G. DeLaney. The nature of response of single chemoreceptor fibers of carotid body to changes in arterial Po2 and Pco2‐H+. In: Morphology and Mechanisms of Chemoreceptors, edited by A. S. Paintal. New Delhi: Navchetan, 1976, p. 18–24.
 257. Lahiri, S., R. G. DeLaney, J. S. Brody, M. Simpser, T. Velasquez, E. K. Motoyama, and C. Polgar. Relative role of environmental and genetic factors in respiratory adaptation to high altitude. Nature London 261: 133–135, 1976.
 258. Lahiri, S., and R. Gelfand. Mechanisms of acute ventilatory responses. In: Lung Biology in Health and Disease. Regulation of Breathing, edited by T. F. Hornbein. New York: Dekker, 1981, vol. 17, pt. II, chapt. 12, p. 773–843.
 259. Lahiri, S., R. Gelfand, A. Mokashi, and T. Nishino. Significance of peripheral chemoreceptor response and adaptation in the regulation of breathing. In: The Regulation of Respiration During Sleep and Anesthesia, edited by R. S. Fitzgerald, H. Gautier, and S. Lahiri. New York: Plenum, 1978, p. 343–353.
 260. Lahiri, S., and J. S. Milledge. Sherpa physiology. Nature London 207: 610–612, 1965.
 261. Lahiri, S., A. Mokashi, R. G. DeLaney, and A. P. Fishman. Arterial Po2 and Pco2 stimulus threshold for carotid chemoreceptors and breathing. Respir. Physiol. 34: 359–375, 1978.
 262. Lahiri, S., A. Mokashi, E. Mulligan, and T. Nishino. Comparison of aortic and carotid chemoreceptor responses to hypercapnia and hypoxia. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 51: 55–61, 1981.
 263. Lahiri, S., E. Mulligan, T. Nishino, A. Mokashi, and R. O. Davies. Relative responses of aortic body and carotid body chemoreceptors to carboxyhemoglobinemia. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 50: 580–586, 1981.
 264. Lahiri, S., T. Nishino, A. Mokashi, and E. Mulligan. Interaction of dopamine and haloperidol with O2 and CO2 chemoreception in carotid body. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 49: 45–51, 1980.
 265. Lahiri, S., T. Nishino, E. Mulligan, and A. Mokashi. Relative latency of responses of chemoreceptor afferents from aortic and carotid bodies. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 48: 362–369, 1980.
 266. Lahiri, S., M. Pokorski, and R. O. Davies. Augmentation of carotid body chemoreceptor responses by isoproterenol in the cat. Respir. Physiol. 44: 351–364, 1981.
 267. Laidler, P., and J. M. Kay. The effect of chronic hypoxia on the number and nuclear diameter of type I cells in the carotid bodies of rats. Am. J. Pathol. 79: 311–320, 1975.
 268. Lambertsen, C. J., S. J. G. Semple, M. G. Smyth, and R. Gelfand. H+ and Pco2 as chemical factors in respiratory and cerebral circulatory control. J. Appl. Physiol. 16: 473–484, 1961.
 269. Lau, C. Role of respiratory chemoreceptors in adrenocortical activation. Am. J. Physiol. 221: 602–606, 1971.
 270. Lauweryns, J. M., and M. Cokelaere. Hypoxia‐sensitive neuro‐epithelial bodies intrapulmonary secretory neuroreceptors, modulated by CNS. Z. Zellforsch. Mikrosk. Anat. 145: 521–540, 1973.
 271. Lawson, E. E., T. G. Waldrop, and F. L. Eldridge. Naloxone enhances respiratory output in cats. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 47: 1105–1111, 1979.
 272. Ledlie, J. F., S. G. Kelsen, N. S. Cherniack, and A. P. Fishman. Effects of hypercapnia and hypoxia on phrenic nerve activity and respiratory timing. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 51: 732–738, 1981.
 273. Lee, K. D., R. A. Mayou, and R. W. Torrance. The effect of blood pressure upon chemoreceptor discharge to hypoxia, and the modifications of this effect by the sympathetic adrenal system. Q. J. Exp. Physiol. 49: 171–183, 1964.
 274. Lee, L.‐Y., and H. T. Milhorn, Jr. Central ventilatory responses to O2 and CO2 at three levels of carotid chemoreceptor stimulation. Respir. Physiol. 25: 319–333, 1975.
 275. Le François, R., H. Gautier, and P. Pasquis. Ventilatory oxygen drive in acute and chronic hypoxia. Respir. Physiol. 4: 217–228, 1968.
 276. Leusen, I. R. Chemosensitivity of the respiratory center. Influence of changes in the H+ and total buffer concentrations in the cerebral ventricles on respiration. Am. J. Physiol. 176: 45–51, 1954.
 277. Levitsky, M. G., J. C. Newell, J. A. Krasney, and R. E. Dutton. Chemoreceptor influence on pulmonary blood flow during unilateral hypoxia in dogs. Respir. Physiol. 31: 345–356, 1977.
 278. Lewis, S. M. Awake baboon's ventilatory response to venous and inhaled CO2 loading. J. Appl. Physiol. 39: 417–422, 1975.
 279. Limet, R., E. Chabi, K. M. A. Welch, and J. H. Kennedy. Cardiac norepinephrine output during carotid body stimulation. Arch. Int. Physiol. Biochim. 84: 277–284, 1976.
 280. Linton, R. A. F., R. Miller, and I. R. Cameron. Ventilatory response to CO2 inhalation and intravenous infusion of hypercapnic blood. Respir. Physiol. 26: 383–394, 1976.
 281. Linton, R. A. F., R. Miller, and I. R. Cameron. Role of Pco2 oscillations and chemoreceptors in ventilatory response to inhaled and infused CO2. Respir. Physiol. 29: 201–210, 1977.
 282. Lipski, J., R. M. McAllen, and K. M. Spyer. The carotid chemoreceptor input to the respiratory neurones of the nucleus tractus solitarius. J. Physiol. London 269: 797–810, 1977.
 283. Lipski, J., R. M. McAllen, and A. Trzebski. Carotid baroreceptor and chemoreceptor inputs onto single medullary neurones. Brain Res. 107: 132–136, 1976.
 284. Llados, F., and P. Zapata. Effects of adrenoceptor stimulating and blocking agents on carotid body chemosensory inhibition. J. Physiol. London 274: 501–509, 1978.
 285. Lloyd, B. B. The interactions between hypoxia and other ventilatory stimuli. In: Proc. Int. Symp. on Cardiovascular and Respiratory Effects of Hypoxia, edited by J. D. Hatcher and D. B. Jennings. Basel: Karger, 1966, p. 146–165.
 286. Loeschcke, H. H. (editor). Acid‐Base Homeostasis of the Brain Extracellular Fluid and the Respiratory Control System. Stuttgart, West Germany: Thieme, 1976.
 287. Loeschcke, H. H., R. A. Mitchell, B. Katsaros, J. F. Perkins, and A. Konig. Interaction of intracranial chemosensitivity with peripheral afferents to the respiratory centers. Ann. NY Acad. Sci. 109: 651–660, 1963.
 288. Lugliani, R., B. J. Whipp, C. Seard, and K. Wasserman. Effects of bilateral carotid body resection on ventilatory control at rest and during exercise in man. N. Engl. J. Med. 285: 1105–1111, 1971.
 289. Lugliani, R., B. J. Whipp, B. Winter, K. R. Tanaka, and K. Wasserman. The role of the carotid body in erythropoiesis in man. N. Engl. J. Med. 285: 1112–1114, 1971.
 290. Lundberg, D., G. R. Breese, and R. A. Mueller. Dopaminergic interaction with the respiratory control system in the rat. Eur. J. Pharmacol. 54: 153–159, 1979.
 291. Luschka, H. Über die drusenartige Natur der sogenannten Ganglion intercaroticum. Arch. Anat. Physiol. Wiss. Med. 405–414, 1862.
 292. Lynne‐Davies, P., A. R. MacNeil, C. M. Couves, and B. J. Sproule. Immediate effect of glomectomy in bronchial asthma. J. Asthma Res. 7: 183–189, 1970.
 293. MacGowan, W. A. L. Removal of the carotid body for asthma. Dis. Chest 51: 278–281, 1967.
 294. Maloney, J. E., T. M. Adamson, V. Brodecky, M. H. Dowling, and B. C. Ritchie. Modification of respiratory center output in the unanesthetized fetal sheep “in utero.” J. Appl. Physiol. 39: 552–558, 1975.
 295. Marotta, S. F. Roles of aortic and carotid chemoreceptors in activating the hypothalamo‐hypophyseal‐adrenocortical system during hypoxia. Proc. Soc. Exp. Biol. Med. 141: 915–922, 1972.
 296. Marshall, E. K., Jr., and M. Rosenfeld. Depression of respiration by oxygen. J. Pharmacol. Exp. Ther. 57: 437–457, 1936.
 297. Mascarro, J. A., and R. D. Yates. A review of abdominal paraganglia: ultrastructure, mitotic cells, catecholamine release, innervation, light and dark cells, vascularity. In: Electronmicroscopic Concepts of Secretion: Ultrastructure of Endocrinol and Reproductive Organs, edited by M. Hess. New York: Wiley, 1975, p. 435–452.
 298. Matsumoto, S., T. Nagao, A. Ibi, and T. Nakajima. Effects of carotid body chemoreceptor stimulation by dopamine on ventilation. Arch. Int. Pharmacodyn. Ther. 245: 145–155, 1980.
 299. Matsuura, S. Chemoreceptor properties of glomus tissue found in the carotid region of the cat. J. Physiol. London 235: 57–73, 1973.
 300. Mayer, A. Ueber ein neuentdeckes Ganglion im Winkel der aüssern und innern Carotis, bei'm Menschen und den Sàugethieren (Ganglion intercaroticum). Notizen Gebiete Nat.‐Heilk. 36: 8–9, 1833.
 301. McCaffrey, T. V., and E. B. Kern. Response of nasal airway resistance to hypercapnia and hypoxia in the dog. Acta Oto‐Laryngol. 87: 545–553, 1979.
 302. McCaffrey, T. V., and E. B. Kern. Laryngeal regulation of airway resistance. I. Chemoreceptor reflexes. Ann. Otol. Rhinol. Laryngol. 89: 209–214, 1980.
 303. McCloskey, D. I. Carbon dioxide and the carotid body. In: Arterial Chemoreceptors, edited by R. W. Torrance. Oxford, UK: Blackwell, 1968, p. 279–292.
 304. McCloskey, D. I. Mechanisms of autonomic control of carotid chemoreceptor activity. Respir. Physiol. 25: 53–61, 1975.
 305. McCloskey, D. I., and R. W. Torrance. Autoregulation of blood flow in the carotid body. Respir. Physiol. 13: 23–35, 1971.
 306. McDonald, D., and R. W. Blewett. Location and size of carotid body‐like organs (paraganglia) in rats revealed by the permeability of their blood vessels to Evans blue dye. J. Neurocytol. 10: 607–643, 1981.
 307. McQueen, D. S. The effect of some prostaglandins on respiration in rats and cats (Abstract). Br. J. Pharmacol. 45: 147P–148P, 1972.
 308. McQueen, D. S. Effects of substance P on carotid chemoreceptor activity in the cat. J. Physiol. London 302: 31–47, 1980.
 309. McQueen, D. S., and C. Belmonte. The effects of prostaglandins E2, A2, and F2α on carotid baroreceptors and chemoreceptors. Q. J. Exp. Physiol. 59: 63–71, 1974.
 310. McQueen, D. S., and C. Eyzaguirre. Effects of temperature on carotid chemoreceptor and baroreceptor activity. J. Neurophysiol. 37: 1287–1296, 1974.
 311. McQueen, D. S., and A. Ungar. On the direct and crossed components of reflex responses to unilateral stimulation of the carotid body chemoreceptors in the dog. J. Physiol. London 219: 1–16, 1971.
 312. McRitchie, R. J., and S. W. White. Role of trigeminal, olfactory, carotid sinus and aortic nerves in the respiratory and circulatory response to nasal inhalation of cigarette smoke and other irritants in the rabbit. Aust. J. Exp. Biol. Med. Sci. 52: 127–140, 1974.
 313. Mei, S., D. Gort, and F. Kao. The investigation of respiratory effects of progesterone in cross‐circulated dogs (Abstract). Federation Proc. 36: 489, 1977.
 314. Milledge, J. S., and S. Lahiri. Respiratory control in low‐landers and in Sherpa highlanders at altitude. Respir. Physiol. 2: 310–322, 1967.
 315. Miller, J. P., D. J. C. Cunningham, B. B. Lloyd, and J. M. Young. The transient respiratory effects in man of sudden changes in alveolar CO2 in hypoxia and in high oxygen. Respir. Physiol. 20: 17–31, 1974.
 316. Miller, M. J., and S. M. Tenney. Hyperoxic hyperventilation in carotid‐deafferented cats. Respir. Physiol. 23: 23–30, 1975.
 317. Miller, M. J., and S. M. Tenney. Hypoxia‐induced tachypnea in carotid‐deafferented cats. Respir. Physiol. 23: 31–39, 1975.
 318. Mills, E., and T. A. Slotkin. Catecholamine content of the carotid body in cats ventilated with 8–40% oxygen. Life Sci. 16: 1555–1562, 1975.
 319. Miserocchi, G. Role of peripheral and central chemosensitive afferents in the control of depth and frequency of breathing. Respir. Physiol. 26: 101–111, 1976.
 320. Mitchell, R. A. The regulation of respiration in metabolic acidosis and alkalosis. In: Cerebrospinal Fluid and the Regulation of Respiration, edited by C. McC. Brooks, F. Kao, and B. B. Lloyd. Oxford, UK: Blackwell, 1965, p. 109–131.
 321. Mitchell, R. A., and A. J. Berger. Neural regulation of respiration. Am. Rev. Respir. Dis. 111: 206–224, 1975.
 322. Mitzner, W., Y. K. Ngeow, and N. Caguicla. Optimization of high‐frequency ventilation (HFV) (Abstract). Federation Proc. 40: 384, 1981.
 323. Miura, M., and D. J. Reis. The role of the solitary and paramedian reticular nuclei in mediating cardiovascular reflex responses from carotid baro‐ and chemoreceptors. J. Physiol. London 223: 525–548, 1972.
 324. Montarolo, P. G., M. Passatore, and F. Raschi. Carotid chemoreceptor influence on cardiac sympathetic nerve discharge. Experientia 32: 480–481, 1976.
 325. Morgan, M., R. J. Pack, and A. Howe. Structure of cells and nerve endings in abdominal vagal paraganglia of the rat. Cell Tissue Res. 169: 467–484, 1976.
 326. Morrill, C. G., J. R. Meyer, and J. V. Weil. Hypoxic ventilatory depression in dogs. J. Appl. Physiol. 38: 143–146, 1975.
 327. Nadel, J. A., and J. G. Widdicombe. Effect of changes in blood gas tensions and carotid sinus pressure on tracheal volume and total lung resistance to airflow. J. Physiol. London 163: 13–33, 1962.
 328. Nakayama, K. Surgical removal of the carotid body for bronchial asthma. Dis. Chest 40: 595–604, 1961.
 329. Natsui, T. The effects of hypothermia on the ventilatory response to hypoxia and hypercapnia in dogs (Abstract). Pfluegers Arch. 314: 156, 1970.
 330. Neil, E., and R. G. O'Regan. The effects of electrical stimulation of the distal end of the cut sinus and aortic nerves on peripheral arterial chemoreceptor activity in the cat. J. Physiol. London 215: 15–32, 1971.
 331. Neil, E., and R. G. O'Regan. Efferent and afferent activity recorded from few fibre preparations of otherwise intact sinus and aortic nerves. J. Physiol. London 215: 33–47, 1971.
 332. Nielsen, M., and H. Smith. Studies on the regulation of respiration in acute hypoxia. Acta Physiol. Scand. 24: 293–313, 1952.
 333. Nims, L. F., and C. Marshall. Blood pH in vivo. I. Changes due to respiration. Yale J. Biol. Med. 10: 445–448, 1938.
 334. Nishino, T., and S. Lahiri. Effects of dopamine on chemoreflexes in breathing. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 50: 892–897, 1981.
 335. Noble, M. I. M., D. Trenchard, and A. Guz. Effect of changes in Paco2 and Pao2 on cardiac performance in conscious dogs. J. Appl. Physiol. 22: 147–152, 1966.
 336. Nonidez, J. F. The aortic (depressor) nerve and its associated epithelioid body, the glomus aorticum. Am. J. Anat. 57: 259–301, 1935.
 337. Osborne, J. L., G. S. Mitchell, and F. Powell. Ventilatory responses to CO2 in the chicken: intrapulmonary and systemic chemoreceptors. Respir. Physiol. 30: 369–382, 1977.
 338. Ou, L. C., and S. M. Tenney. Adrenocortical function in rats chronically exposed to high altitude. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 47: 1185–1187, 1979.
 339. Overholt, R. H. Glomectomy for asthma. Dis. Chest 40: 605–610, 1961.
 340. Paintal, A. S. Mechanisms of stimulation of aortic chemoreceptors by natural stimuli and chemical substances. J. Physiol. London 189: 63–84, 1967.
 341. Paintal, A. S., and R. Riley. Responses of aortic chemoreceptors. J. Appl. Physiol. 21: 543–548, 1966.
 342. Pappenheimer, J. R. Sleep and respiration of rats during hypoxia. J. Physiol. London 266: 191–207, 1977.
 343. Pappenheimer, J. R., V. Fencl, S. R. Heisey, and D. Held. Role of cerebral fluids in control of respiration as studied in unanesthetized goats. Am. J. Physiol. 208: 436–450, 1965.
 344. Paulo, L. G., G. D. Fink, B. L. Roh, and J. W. Fisher. Influence of carotid body ablation on erythropoietin production in rabbits. Am. J. Physiol. 224: 442–444, 1973.
 345. Pearse, A. G. E., J. M. Polak, F. W. B. Rost, J. Fontaine, C. Le Lievre, and N. Le Douarin. Demonstration of the neural crest origin of type I (APUD) cells in the avian carotid body, using a cytochemical marker system. Histochemie 34: 191–203, 1973.
 346. Pelletier, C. L., and J. T. Shepherd. Venous responses to stimulation of carotid chemoreceptors by hypoxia and hypercapnia. Am. J. Physiol. 223: 97–103, 1972.
 347. Perkins, J. R. Jr. The contribution of the peripheral respiratory chemoreceptors to pulmonary ventilation—a historical and experimental approach. In: Arterial Chemoreceptors, edited by R. W. Torrance. Oxford, UK: Blackwell, 1968, p. 335–355.
 348. Peyser, E., A. Sass‐Kortsák, and F. Verzár. Influence of O2 content of inspired air on total lung volume. Am. J. Physiol. 163: 111–117, 1950.
 349. Phillips, R. W., and H. P. Kintner. Results of glomectomy in chronic obstructive pulmonary disease: a four year follow‐up report of 57 cases. Chest 58: 358–362, 1970.
 350. Phillipson, E. A. Vagal control of breathing pattern independent of lung inflation in conscious dogs. J. Appl Physiol. 37: 183–189, 1974.
 351. Phillipson, E. A. Respiratory adaptations in sleep. Annu. Rev. Physiol. 40: 133–156, 1978.
 352. Phillipson, E. A., J. Duffin, and J. D. Cooper. Critical dependence of respiratory rhythmicity on metabolic CO2 load. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 50: 45–54, 1981.
 353. Phillipson, E. A., R. F. Hickey, C. R. Bainton, and J. A. Nadel. Effect of vagal blockade on regulation of breathing in conscious dogs. J. Appl. Physiol. 29: 475–479, 1970.
 354. Phillipson, E. A., E. Murphy, and L. F. Kozar. Regulation of respiration in sleeping dogs. J. Appl. Physiol. 40: 688–693, 1976.
 355. Phillipson, E. A., C. E. Sullivan, D. J. C. Read, E. Murphy, and L. F. Kozar. Ventilatory and waking responses to hypoxia in sleeping dogs. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 44: 512–520, 1978.
 356. Pick, J. The discovery of the carotid body. J. Hist. Med. 14: 61–72, 1959.
 357. Pokorski, M., and S. Lahiri. Effects of naloxone on carotid body chemoreception and ventilation in the cat. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 51: 1533–1538, 1981.
 358. Pokorski, M., and S. Lahiri. Inhibition of aortic chemoreceptor responses by metabolic alkalosis in the cat. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 53: 75–80, 1982.
 359. Ponte, J., and M. J. Purves. Types of afferent nervous activity which may be measured in the vagus nerve of the sheep foetus. J. Physiol. London 229: 51–76, 1973.
 360. Ponte, J., and M. J. Purves. Frequency response of carotid body chemoreceptors in the cat to changes of Paco2, Pao2 and pHa. J. Appl. Physiol. 37: 635–647, 1974.
 361. Ponte, J., and M. J. Purves. The role of the carotid body chemoreceptors and carotid sinus baroreceptors in the control of cerebral blood vessels. J. Physiol. London 237: 315–340, 1974.
 362. Ponte, J., and M. J. Purves. Carbon dioxide and venous return and their interaction as stimuli to ventilation in the cat. J. Physiol. London 274: 455–475, 1978.
 363. Price, H. L., and J. Widdicombe. Actions of cyclopropane on carotid sinus baroreceptors and carotid body chemoreceptors. J. Pharmacol. Exp. Ther. 135: 233–239, 1962.
 364. Purves, M. J. The effect of eliminating fluctuations of gas tensions in arterial blood on carotid chemoreceptor activity and respiration (Abstract). J. Physiol. London 186: 63P, 1966.
 365. Purves, M. J. Fluctuations of arterial oxygen tension which have the same period as respiration. Respir. Physiol. 1: 281–296, 1966.
 366. Purves, M. J. Do vasomotor nerves significantly regulate cerebral blood flow? Circ. Res. 43: 485–493, 1978.
 367. Purves, M. J., and T. J. Biscoe. Development of chemoreceptor activity. Br. Med. Bull. 22: 56–60, 1966.
 368. Quest, J. A., and G. L. Gebber. Modulation of baroreceptor reflexes by somatic afferent nerve stimulation. Am. J. Physiol. 222: 1251–1259, 1972.
 369. Raff, H., S. P. Tzankoff, and R. S. Fitzgerald. ACTH and Cortisol responses to hypoxia in dogs. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 51: 1257–1260, 1981.
 370. Raff, H., S. P. Tzankoff, and R. S. Fitzgerald. Chemoreceptor involvement in Cortisol responses to hypoxia in ventilated dogs. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 52: 1092–1096, 1982.
 371. Reed, D. J., and R. H. Kellogg. Effect of sleep on CO2 stimulation of breathing in acute and chronic hypoxia. J. Appl. Physiol. 15: 1135–1138, 1960.
 372. Reed, D. J., and R. H. Kellogg. Effect of sleep on hypoxic stimulation of breathing at sea level and altitude. J. Appl. Physiol. 15: 1130–1134, 1960.
 373. Rehder, K. Effects of anesthesia and muscle paralysis on the mechanics of the respiratory system. In: The Regulation of Respiration During Sleep and Anesthesia, edited by R. S. Fitzgerald, H. Gautier, and S. Lahiri. New York: Plenum, 1978, p. 125–134.
 374. Richardson, P. S., and J. G. Widdicombe. The role of the vagus nerve in the ventilatory responses to hypercapnia and hypoxia in anesthetized and unanesthetized rabbits. Respir. Physiol. 7: 122–135, 1969.
 375. Riedstra, J. W. Influence of central and peripheral Pco2 (pH) on the ventilatory response to hypoxic chemoreceptor stimulation. Acta Physiol. Pharmacol. Need. 12: 407–452, 1963.
 376. Rigatto, H. A critical analysis of the development of peripheral and central respiratory chemosensitivity during the neonatal period. In: Central Nervous Control Mechanisms in Breathing, edited by C. Von Euler and H. Lagercrantz. Oxford, UK: Pergamon, 1978, p. 137–147.
 377. Rosenstein, R., L. E. McCarthy, and H. L. Borison. Rate versus depth of breathing independent of alveolar oxygen in decerebrate cats. Respir. Physiol. 19: 80–87, 1973.
 378. Rosenstein, R., L. E. McCarthy, and H. L. Borison. Influence of hypoxia on tidal volume response to CO2 in decerebrate cats. Respir. Physiol. 20: 239–250, 1974.
 379. Said, S. I., and V. Mutt. Polypeptide with broad biological activity: isolation from the small intestine. Science 169: 1217–1218, 1970.
 380. St. John, W. M. Differing responses to hypercapnia and hypoxia following pneumotaxic center ablation. Respir. Physiol. 23: 1–9, 1975.
 381. St. John, W. M. Integration of peripheral and central chemoreceptor stimuli by pontine and medullary respiratory centers. Federation Proc. 36: 2421–2427, 1977.
 382. St. John, W. M. Differential alteration by hypercapnia and hypoxia of the apneustic respiratory pattern in decerebrate cats. J. Physiol. London 287: 467–491, 1979.
 383. St. John, W. M. Respiratory neuron responses to hypercapnia and carotid chemoreceptor stimulation. J. Appl Physiol.: Respirat. Environ. Exercise Physiol. 51: 816–822, 1981.
 384. St. John, W. M., and D. Bartlett, Jr. Comparison of phrenic motoneuron responses to hypercapnia and isocapnic hypoxia. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 46: 1096–1102, 1979.
 385. St. John, W. M., and S. C. Wang. Integration of chemoreceptor stimuli by caudal pontile and rostral medullary sites. J. Appl. Physiol. 41: 612–622, 1976.
 386. St. John, W., and S. G. Wang. Alteration from apneusis to more regular rhythmic respiration in decerebrate cats. Respir. Physiol. 31: 96–106, 1977.
 387. St. John, W. M., and S. C. Wang. Response of medullary respiratory neurons to hypercapnia and isocapnic hypoxia. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 43: 812–821, 1977.
 388. Sampson, S. R. Pharmacology of feedback inhibition of carotid body chemoreceptors in the cat. In: The Peripheral Arterial Chemoreceptors, edited by M. J. Purves. London: Cambridge Univ. Press, 1975, p. 207–220.
 389. Sampson, S. R., and T. J. Biscoe. Efferent control of the carotid body chemoreceptor. Experientia 26: 261–262, 1970.
 390. Sampson, S. R., and R. Hainsworth. Responses of aortic body chemoreceptors of the cat to physiological stimuli. Am. J. Physiol. 222: 953–958, 1972.
 391. Santiago, T. V., E. Guerra, A. K. Sinha, and N. H. Edelman. Brain blood flow and ventilation during eupnic and hypoxic sleep (Abstract). Clin. Res. 28: 431A, 1980.
 392. Saunders, N. A., M. F. Betts, L. D. Pengelly, and A. S. Rebuck. Changes in lung mechanics induced by acute isocapnic hypoxia. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 42: 413–419, 1977.
 393. Schlaefke, M. E., W. R. See, A. Herker‐See, and H. H. Loeschcke. Respiratory response to hypoxia and hypercapnia after elimination of central chemosensitivity. Pfluegers Arch. 381: 241–248, 1979.
 394. Sears, T. A. The respiratory motoneurone: integration at spinal segmental level. In: Breathlessness, edited by J. B. L. Howell and E. J. M. Campbell. Oxford, UK: Blackwell, 1966, p. 33–47.
 395. Severinghaus, J. W., C. R. Bainton, and A. Carcelen. Respiratory insensitivity to hypoxia in chronically hypoxic man. Respir. Physiol. 1: 308–334, 1966.
 396. Severinghaus, J. W., and R. D. Crawford. Carotid chemoreceptor role in CSF alkalosis. In: The Regulation of Respiration During Sleep and Anesthesia, edited by R. S. Fitzgerald, H. Gautier, and S. Lahiri. New York: Plenum, 1978, p. 163–172.
 397. Shannon, R. Respiratory frequency control during hypercapnia in vagotomized, anesthetized cats. Respir. Physiol. 27: 357–367, 1976.
 398. Share, L., and M. N. Levy. Effect of carotid chemoreceptor stimulation on plasma antidiuretic hormone titer. Am. J. Physiol. 210: 157–161, 1966.
 399. Sharpey‐Schafer, E. P. Circulatory reflexes in chronic disease of the afferent nervous system. J. Physiol. London 134: 1–10, 1956.
 400. Siesjö, B. K., and S. C. Sorensen. Ion Homeostasis of the Brain. New York: Academic, 1971.
 401. Sjöstrand, U. Summary of experimental and clinical features of high‐frequency positive‐pressure ventilation (HFPPV). Acta Anaesthesiol. Scand. Suppl. 64: 165–178, 1977.
 402. Smatresk, N., S. Lahiri, M. Pokorski, and P. Barnard. Augmented efferent inhibition of carotid body chemoreceptors in chronically hypoxic cats (Abstract). Physiologist 24 (4): 114, 1981.
 403. Smatresk, N., A. Mokashi, and S. Lahiri. Modulation of aortic body chemoreceptor responses to hypoxia by dopamine before and after pargyline (Abstract). Federation Proc. 40: 566, 1981.
 404. Smith, C. A., and R. H. Kellogg. Ventilatory response of goats to transient changes in CO2 and O2 during acute hypoxia. Respir. Physiol. 24: 163–171, 1975.
 405. Smith, P. G., and E. Mills. Restoration of reflex ventilatory response to hypoxia after removal of carotid bodies in the cat. Neuroscience 5: 573–580, 1980.
 406. Smith, P., H. Moosavi, M. Winson, and D. Heath. The influence of age and sex on the response of the right ventricle, pulmonary vasculature and carotid bodies to hypoxia in rats. J. Pathol. 112: 11–18, 1974.
 407. Sorensen, S. C., and A. H. Mines. Ventilatory responses to acute and chronic hypoxia in goats after sinus nerve section. J. Appl. Physiol. 28: 832–835, 1970.
 408. Stein, R. B. Some implications of the variability in chemoreceptor discharge. In: Arterial Chemoreceptors, edited by R. W. Torrance. Oxford, UK: Blackwell, 1968, p. 205–210.
 409. Stockley, R. A. The estimation of the resting reflex hypoxic drive to respiration in normal man. Respir. Physiol. 31: 217–230, 1977.
 410. Stransky, A., M. Szereda‐Przestaszewska, and J. G. Widdicombe. Changes in laryngeal calibre due to vagal lung reflexes and peripheral chemoreceptor stimulation (Abstract). J. Physiol. London 224: 88P–89P, 1972.
 411. Stremel, R. W., D. J. Huntsman, R. Casaburi, B. J. Whipp, and K. Wasserman. Control of ventilation during intravenous CO2 loading in the awake dog. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 44: 311–316, 1978.
 412. Sullivan, C. E., L. F. Kozar, E. Murphy, and E. A. Phillipson. Primary role of respiratory afferents in sustaining breathing rhythm. J. Appl. Physiol. 45: 11–17, 1978.
 413. Sutton, J. R., C. S. Houston, A. L. Mansell, M. D. McFadden, P. M. Hackett, J. R. A. Rigg, and A. C. P. Powles. Effect of acetazolamide on hypoxemia during sleep at high altitude. N. Engl. J. Med. 301: 1329–1331, 1979.
 414. Swanson, G., B. J. Whipp, R. D. Kaufman, K. A. Aqleh, B. Winter, and J. W. Bellville. Effect of hypercapnia on hypoxic ventilatory drive in normal and carotid body‐resected man. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 45: 971–977, 1978.
 415. Sylvester, J. T., S. M. Scharf, R. D. Gilbert, R. S. Fitzgerald, and R. J. Traystman. Hypoxic and CO hypoxia in dogs: hemodynamics, carotid reflexes, and catecholamines. Am. J. Physiol. 236 (Heart Circ. Physiol. 5): H22–H28, 1979.
 416. Taube, H. W. L. De vera nervi intercostalis origine. Göttingen, Germany: Vandenhoeck, 1743, p. 20.
 417. Tenney, S. M., and J. G. Brooks III. Carotid bodies, stimulus interaction and ventilatory control in unanesthetized goats. Respir. Physiol. 1: 211–224, 1966.
 418. Tenney, S. M., and L. C. Ou. Hypoxic ventilatory response of cats at high altitude: an interpretation of “blunting.” Respir. Physiol. 30: 185–199, 1977.
 419. Tramezzani, J. H., E. Morita, and S. R. Chiochio. The carotid body as a neuroendocrine organ involved in the control of erythropoiesis. Proc. Natl. Acad. Sci. USA 68: 52–55, 1971.
 420. Traystman, R. J., and R. S. Fitzgerald. Cerebrovascular response to hypoxia in baroreceptor‐ and chemoreceptor‐denervated dogs. Am. J. Physiol. 241 (Heart Circ. Physiol. 10): H724–H731, 1981.
 421. Tusiewicz, K., A. C. Bryan, and A. B. Froese. Contributions of changing rib cage‐diaphragm interactions to the ventilatory depression of halothane anesthesia. Anesthesiology 47: 327–337, 1977.
 422. Ungar, A., and P. Bouverot. The ventilatory responses of conscious dogs to isocapnic oxygen tests. A method of exploring the central component of respiratory drive and its dependence on O2 and CO2. Respir. Physiol. 39: 183–197, 1980.
 423. Velasquez, T., C. Martinez, W. Pezzia, and N. Gallardo. Ventilatory effects of oxygen in high altitude natives. Respir. Physiol. 5: 211–220, 1968.
 424. Viana, A. P. The role of the carotid body chemoreceptors in the respiratory effects of digoxin. Arch. Int. Pharmacodyn. Ther. 208: 94–101, 1974.
 425. Wade, J. G., C. P. Larson, R. F. Hickey, W. K. Ehrenfeld, and J. W. Severinghaus. Effect of carotid endarterectomy on carotid chemoreceptor and baroreceptor function in man. N. Engl. J. Med. 282: 823–829, 1970.
 426. Wasserman, K., R. A. Mitchell, A. J. Berger, R. Casaburi, and J. A. Davies. Mechanism of the isoproterenol hyperpnea in the cat. Respir. Physiol. 38: 359–376, 1979.
 427. Wasserman, K., B. J. Whipp, R. Casaburi, D. J. Huntsman, J. Castagna, and R. Lugliani. Regulation of arterial Pco2 during intravenous CO2 loading. J. Appl. Physiol. 38: 651–656, 1975.
 428. Wasserman, K., B. J. Whipp, and J. Castagna. Cardiodynamic hyperpnea: hyperpnea secondary to cardiac output increase. J. Appl. Physiol. 36: 457–464, 1974.
 429. Wasserman, K., B. J. Whipp, S. N. Koyal, and M. G. Cleary. Effect of carotid body resection on ventilatory and acid‐base control during exercise. J. Appl. Physiol. 39: 354–358, 1975.
 430. Weil, J. V., E. Byrne‐Quinn, I. E. Sodal, G. F. Filley, and R. F. Grover. Acquired attenuation of chemoreceptor function in chronically hypoxic man at high altitude. J. Clin. Invest. 50: 186–195, 1971.
 431. Weil, J. V., M. H. Kryger, and C. H. Scoggin. Sleep and breathing at high altitude. In: Sleep Apnea Syndromes, edited by C. Guilleminault and W. C. Dement. New York: Liss, 1978, p. 119–123.
 432. Weiskopf, R. B., L. W. Raymond, and J. W. Severinghaus. Effects of halothane on canine respiratory responses to hypoxia with and without hypercarbia. Anesthesiology 41: 350–359, 1974.
 433. Weiss, H. R., and J. Salzano. Formation of whole number ratios of heart rate and breathing frequency. J. Appl. Physiol. 29: 350–354, 1970.
 434. Weissman, M. L., B. J. Whipp, D. J. Huntsman, and K. Wasserman. Role of neural afferents from working limbs in exercise hyperpnea. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 49: 239–248, 1980.
 435. Welsh, M. J., D. D. Heistad, and F. M. Abboud. Effect of dopamine on ventilation in man. J. Clin. Invest. 61: 708–713, 1978.
 436. Westbrook, P. R., S. E. Stubbs, A. D. Sessler, K. Rehder, and R. E. Hyatt. Effects of anesthesia and muscle paralysis on respiratory mechanics in normal man. J. Appl. Physiol. 34: 81–86, 1973.
 437. Whelan, R. F., and I. M. Young. The effect of adrenaline and noradrenaline infusions on respiration in man. Br. J. Pharmacol. 8: 98–102, 1953.
 438. Whipp, B. J., D. B. Drysdale, D. J. C. Cunningham, and E. S. Strange. The interaction of peripheral and intracranial chemoreceptor respiratory drive in man studied by transients (Abstract). Bull. Eur. Physiopathol. Respir. 12: 254P–255P, 1976.
 439. Widdicombe, J. G., and A. Winning. Effects of hypoxia, hypercapnia and changes in body temperature on the pattern of breathing in cats. Respir. Physiol. 21: 203–221, 1974.
 440. Wiemer, W., and P. Kiwull. Die Interferenz zentraler und peripherer mechanismen bei die chemischen steuerung der atmung. Acta Neuroveg. 28: 289–312, 1966.
 441. Wiemer, W., and P. Kiwull. Der Einfluss des Paco2 auf die Wirkung der sinusnervenreizung bei intakten und ausgeschalteten Nn. vagi. Pfluegers Arch. 330: 28–44, 1971.
 442. Wiemer, W., and P. Kiwull. The role of the vagus nerves in the respiratory response to CO2 under hyperoxic conditions. Pfluegers Arch. 336: 147–170, 1972.
 443. Wiemer, W., N. Ott, and H. Winterstein. Reflektorische und zentrale Anteile der O2‐Mangel‐und CO2‐Hyperpnoe des Kaninschens. Z. Biol. Munich 114: 230–264, 1963.
 444. Winn, R., J. R. Hildebrandt, and J. Hildebrandt. Cardiorespiratory responses following isoproterenol injection in rabbits. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 47: 352–359, 1979.
 445. Winslow, J.‐B. Exposition anatomique de la structure du corps humain. Paris: Desprez and Desessartz, 1732, p. 463.
 446. Winson, M., and D. Heath. The carotid bodies in anemia. Arch. Pathol. 96: 58–60, 1973.
 447. Winter, B. Bilateral carotid body resection for asthma and emphysema. Int. Surg. 57: 458–466, 1972.
 448. Winterstein, H., and E. Fromter. Die zentrale Angriffspunkt der Vagushemmung. Z. Biol. Munich 112: 58–66, 1960.
 449. Wolff, C. B. The effects on breathing of alternate breaths of air and carbon dioxide‐rich gas mixture in anesthetized cats. J. Physiol London 268: 483–491, 1977.
 450. Wood, J. G., A. W. Frankland, and J. G. Eastcoff. Bilateral removal of carotid bodies for asthma. Thorax 20: 570–573, 1965.
 451. Yacoub, O., D. Doell, M. Kryger, and N. R. Anthonisen. Depression of hypoxic ventilatory response by nitrous oxide. Anesthesiology 45: 385–389, 1976.
 452. Yamamoto, W. S. Computer simulation of experiments in responses to intravenous and inhaled CO2. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 50: 835–843, 1981.
 453. Yamamoto, W. S., and M. W. Edwards, Jr. Homeostasis of carbon dioxide during intravenous infusion of carbon dioxide. J. Appl. Physiol 15: 807–818, 1960.
 454. Yokota, H., and F. Kreuzer. Alveolar to arterial transmission of oxygen fluctuations due to respiration in anesthetized dogs. Pfluegers Arch. 340: 290–306, 1973.
 455. Young, I. M. Some observations on the mechanism of adrenaline hyperpnea. J. Physiol. London 137: 374–395, 1957.
 456. Zwillich, C. W., M. R. Natalino, F. D. Sutton, and J. V. Weil. Effects of progesterone on chemosensitivity in normal men. J. Lab. Clin. Med. 92: 262–269, 1978.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Robert S. Fitzgerald, Sukhamay Lahiri. Reflex Responses to Chemoreceptor Stimulation. Compr Physiol 2011, Supplement 11: Handbook of Physiology, The Respiratory System, Control of Breathing: 313-362. First published in print 1986. doi: 10.1002/cphy.cp030210