Comprehensive Physiology Wiley Online Library

Reflexes Evoked from Tracheobronchial Tree and Lungs

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Afferent Endings in Tracheobronchial Tree and Lungs
1.1 Slowly Adapting Pulmonary Stretch Receptors
1.2 Rapidly Adapting Stretch (Irritant) Receptors
1.3 Pulmonary and Bronchial C‐Fibers
2 Reflexes
2.1 Reflexes Evoked by Volume Changes
2.2 Reflexes Evoked by Chemicals
Figure 1. Figure 1.

Schematic drawing of slowly adapting pulmonary stretch receptor in rat bronchus wall based on light and electron microscopy. Receptor is supplied by myelinated fiber (mf). Bundle of nonmyelinated fibers (n) and their terminals (sy) accompany the stretch receptor and are believed to be efferent. cf, Collagen fiber; ef, elastic network; sm, smooth muscle; e, respiratory epithelium.

From von During et al.
Figure 2. Figure 2.

Camera lucida drawing of terminal arborization of a myelinated fiber in bronchial epithelium of dog. This is believed to represent typical appearance of rapidly adapting (irritant) receptor .

From Elftman
Figure 3. Figure 3.

Response of rapidly adapting (irritant) receptor in dog to inflation of lung at successively increasing rates of airflow.

From Pack . Reproduced, with permission, from the Annual Review of Physiology, Volume 43. © 1981 by Annual Reviews, Inc
Figure 4. Figure 4.

Response of irritant receptor to right atrial injection of histamine acid phosphate 100 μg · kg−1 (at signal in uppermost record of each section) in vagotomized, paralyzed, and artificially ventilated rabbit. A: before administration of 50 μg of isoprenaline to prevent bronchoconstriction. B: after administration. After isoprenaline, response of irritant receptor (large action potentials) is reduced to a few impulses. In A, interval of 5.5 s between upper two traces and 20.5 s between lower two. In B, corresponding intervals were 4 s and 20 s. Origin of small action potentials visible in both A and B is not recorded. Vt, tidal volume; BP, blood pressure.

From Mills et al.
Figure 5. Figure 5.

Response of rapidly adapting (irritant) receptor (large spikes) and C‐fiber ending (small spikes) to prostaglandins in open‐chest artificially ventilated dog. Both endings were located in lower lobe of left lung. A: before right atrial injection of prostaglandin F (4 μg·kg−1). B: 16 s after injection. Interval of 6 min between B and C. C and D: before and 42 s after right atrial injection of prostaglandin E2 (20 μg·kg−1), respectively. From top to bottom in each record: 1‐s time trace; ECG, electrocardiogram; AP, action potentials recorded from filament of left vagus nerve; Pt, tracheal pressure.

From Coleridge et al. . Reprinted by permission from Nature London, Vol. 264, p. 451–453, © 1976 MacMillan Journals Limited
Figure 6. Figure 6.

Response of rapidly adapting receptor (large spikes) and bronchial C‐fiber (small spikes) to bradykinin in open‐chest artificially ventilated dog. Both endings were located in left lung. Bradykinin (1 μg·kg−1) was injected into left atrium at signal in A. Records A and B are continuous. AP, action potentials recorded from left vagus nerve; ABP, arterial blood pressure; Pt, tracheal pressure.

From Kaufman et al.
Figure 7. Figure 7.

Top: technique for stimulating bronchial C‐fibers in dog by injecting small amounts of bradykinin (BK) into right bronchial artery and for examining reflex effects on airway smooth muscle by recording tension in upper tracheal segment. Each lateral cut edge of tracheal segment (TS) is attached by threads to light but rigid plastic bar. One bar is attached to fixed metal rod and the other to an isometric force transducer (FT). Segment is innervated only by superior laryngeal nerves (SLN); recurrent laryngeal nerves (RLN) are cut. Right bronchial artery (Br A) lies dorsal (dotted line) to right lung root. Smaller diagram on left depicts right bronchial artery stemming from intercostal artery (Int A), which arises from descending thoracic aorta (Ao). Bradykinin injected retrogradely into intercostal artery passes into bronchial artery. Each cervical vagus nerve (VN) is placed on a cooling platform (CP). Bottom: effect of injecting 1.5 μg of BK on activity in right vagal filament containing 3 bronchial C‐fibers with endings in right lung. AP, action potentials; ABP, arterial blood pressure; Pt, tracheal pressure. Time, 1 s. [From Kaufman et al. .]

From Roberts et al.
Figure 8. Figure 8.

Comparison in dog of effects on breathing frequency of reinflation of lung in steps after passive deflation (control) and after collapse by suction (collapsed lung) during cardiopulmonary bypass. Breathing frequency is measured from phrenic neurogram. Airway pressure is increased in steps of 1.25 mmHg from 0 to 7.5 mmHg after passive lung deflation and from 0 to 10 mmHg after collapse by suction. In former case changes in breathing frequency are linearly related to airway pressure, and in latter case transmural pressure of ∼6 mmHg is required before changes in frequency are obtained; at this point collapsed peripheral segments of lung are reinflated.

From Nilsestuen et al.
Figure 9. Figure 9.

Effect of SO2‐induced block of slowly adapting stretch receptors on breathing pattern in rabbit compared with effect of vagotomy. BP, blood pressure; Vt, tidal volume (with some integrator drift); Ptp, transpulmonary pressure; V, airflow.

From Davies et al.
Figure 10. Figure 10.

Effect of SO2‐induced block of slowly adapting stretch receptors on deflation reflex in rabbits, i.e., on reflex involving selective stimulation of rapidly adapting (irritant) receptors . A 40‐ml pneumothorax is induced during horizontal bars. Top: control; note tachypnea and augmented breath. Bottom: block of slowly adapting stretch receptors. Note absence of tachypnea but prolongation of inspiratory time at onset of pneumothorax and augmented breath at removal. BP, blood pressure; Vt, tidal volume.

From Davies et al.
Figure 11. Figure 11.

Effect of intravenous injection of 150 μg of phenyl diguanide (top) and 150 μg of histamine acid phosphate (bottom) on blood pressure (BP), tidal volume (Vt), and phrenic action potentials in cat. Chemical was injected at first signal and was washed in with saline at second signal. Note prompt onset of apnea and subsequent rapid shallow breathing after injection of phenyl diguanide. Note also delayed onset of rapid shallow breathing and augmented breath after injection of histamine. Cardiac slowing occurred after both injections but was delayed after injection of histamine.

From Winning and Widdicombe
Figure 12. Figure 12.

Effect on breathing pattern of 150 μg of phenyl diguanide and histamine acid phosphate given intravenously to cat first made hypopneic by being hyperventilated to apnea and then rebreathing O2 to cause hypercapnic hyperpnea. Vagus nerves were intact. A: relationship between tidal volume (Vt) and inspiratory time (Ti). ○, Control relationship produced by rebreathing O2 after apnea; •, rebreathing O2 after phenyl diguanide had been injected in preceding apneic period; +, rebreathing O2 after similar injection of histamine. B: relationship between Ti and expiratory time (Te), x, Control eupneic breaths; ○, control hyperpneic breaths (rebreathing O2); ▴, breaths produced by histamine during eupnea; +, breaths produced by histamine during hyperpnea; •, breaths produced by phenyl diguanide during eupnea; ▪, breaths produced by phenyl diguanide during hyperpnea.

From Winning and Widdicombe
Figure 13. Figure 13.

Effect of injecting bradykinin into right bronchial artery on smooth muscle tone in upper tracheal segment of dog. Recurrent laryngeal nerves are cut so that segment is innervated only by superior laryngeal nerves. (See Fig. for diagram of preparation.) A‐E: bradykinin (1.5 μg) is injected into bronchial artery at signal. A: both vagi at 36°C. B: vagi cooled to 7°C. Note increase in base‐line tension. C: vagi cooled to 0°‐1°C. Note decrease in base‐line tension. D: vagi rewarmed. Between D and E: both cervical vagus nerves are cut. E: response to bradykinin is abolished by vagotomy. F: tracheal contraction can still be evoked reflexly when carotid bodies are stimulated by ventilating lungs with 5% O2 in N2 (At all other times in A‐F, lungs are ventilated with 50% O2 in air.) In A and D, initial base‐line tracheal tension is set at 50 g; it is not adjusted in B, C, or E. Note changes in tracheal pressure; lungs briefly hyperinflated between A and B and between C and D. Reduced response after vagal cooling to 7°C (A, B) is not caused by blockade of myelinated vagal afferents but by temperature‐dependent decrease in firing frequency in afferent C‐fibers . Vagal temp., temperature of cervical vagus nerves; ABP, arterial blood pressure; HR, heart rate; Tr tension, tracheal tension in grams above resting base‐line tension; Pt, tracheal pressure.

From Roberts et al.


Figure 1.

Schematic drawing of slowly adapting pulmonary stretch receptor in rat bronchus wall based on light and electron microscopy. Receptor is supplied by myelinated fiber (mf). Bundle of nonmyelinated fibers (n) and their terminals (sy) accompany the stretch receptor and are believed to be efferent. cf, Collagen fiber; ef, elastic network; sm, smooth muscle; e, respiratory epithelium.

From von During et al.


Figure 2.

Camera lucida drawing of terminal arborization of a myelinated fiber in bronchial epithelium of dog. This is believed to represent typical appearance of rapidly adapting (irritant) receptor .

From Elftman


Figure 3.

Response of rapidly adapting (irritant) receptor in dog to inflation of lung at successively increasing rates of airflow.

From Pack . Reproduced, with permission, from the Annual Review of Physiology, Volume 43. © 1981 by Annual Reviews, Inc


Figure 4.

Response of irritant receptor to right atrial injection of histamine acid phosphate 100 μg · kg−1 (at signal in uppermost record of each section) in vagotomized, paralyzed, and artificially ventilated rabbit. A: before administration of 50 μg of isoprenaline to prevent bronchoconstriction. B: after administration. After isoprenaline, response of irritant receptor (large action potentials) is reduced to a few impulses. In A, interval of 5.5 s between upper two traces and 20.5 s between lower two. In B, corresponding intervals were 4 s and 20 s. Origin of small action potentials visible in both A and B is not recorded. Vt, tidal volume; BP, blood pressure.

From Mills et al.


Figure 5.

Response of rapidly adapting (irritant) receptor (large spikes) and C‐fiber ending (small spikes) to prostaglandins in open‐chest artificially ventilated dog. Both endings were located in lower lobe of left lung. A: before right atrial injection of prostaglandin F (4 μg·kg−1). B: 16 s after injection. Interval of 6 min between B and C. C and D: before and 42 s after right atrial injection of prostaglandin E2 (20 μg·kg−1), respectively. From top to bottom in each record: 1‐s time trace; ECG, electrocardiogram; AP, action potentials recorded from filament of left vagus nerve; Pt, tracheal pressure.

From Coleridge et al. . Reprinted by permission from Nature London, Vol. 264, p. 451–453, © 1976 MacMillan Journals Limited


Figure 6.

Response of rapidly adapting receptor (large spikes) and bronchial C‐fiber (small spikes) to bradykinin in open‐chest artificially ventilated dog. Both endings were located in left lung. Bradykinin (1 μg·kg−1) was injected into left atrium at signal in A. Records A and B are continuous. AP, action potentials recorded from left vagus nerve; ABP, arterial blood pressure; Pt, tracheal pressure.

From Kaufman et al.


Figure 7.

Top: technique for stimulating bronchial C‐fibers in dog by injecting small amounts of bradykinin (BK) into right bronchial artery and for examining reflex effects on airway smooth muscle by recording tension in upper tracheal segment. Each lateral cut edge of tracheal segment (TS) is attached by threads to light but rigid plastic bar. One bar is attached to fixed metal rod and the other to an isometric force transducer (FT). Segment is innervated only by superior laryngeal nerves (SLN); recurrent laryngeal nerves (RLN) are cut. Right bronchial artery (Br A) lies dorsal (dotted line) to right lung root. Smaller diagram on left depicts right bronchial artery stemming from intercostal artery (Int A), which arises from descending thoracic aorta (Ao). Bradykinin injected retrogradely into intercostal artery passes into bronchial artery. Each cervical vagus nerve (VN) is placed on a cooling platform (CP). Bottom: effect of injecting 1.5 μg of BK on activity in right vagal filament containing 3 bronchial C‐fibers with endings in right lung. AP, action potentials; ABP, arterial blood pressure; Pt, tracheal pressure. Time, 1 s. [From Kaufman et al. .]

From Roberts et al.


Figure 8.

Comparison in dog of effects on breathing frequency of reinflation of lung in steps after passive deflation (control) and after collapse by suction (collapsed lung) during cardiopulmonary bypass. Breathing frequency is measured from phrenic neurogram. Airway pressure is increased in steps of 1.25 mmHg from 0 to 7.5 mmHg after passive lung deflation and from 0 to 10 mmHg after collapse by suction. In former case changes in breathing frequency are linearly related to airway pressure, and in latter case transmural pressure of ∼6 mmHg is required before changes in frequency are obtained; at this point collapsed peripheral segments of lung are reinflated.

From Nilsestuen et al.


Figure 9.

Effect of SO2‐induced block of slowly adapting stretch receptors on breathing pattern in rabbit compared with effect of vagotomy. BP, blood pressure; Vt, tidal volume (with some integrator drift); Ptp, transpulmonary pressure; V, airflow.

From Davies et al.


Figure 10.

Effect of SO2‐induced block of slowly adapting stretch receptors on deflation reflex in rabbits, i.e., on reflex involving selective stimulation of rapidly adapting (irritant) receptors . A 40‐ml pneumothorax is induced during horizontal bars. Top: control; note tachypnea and augmented breath. Bottom: block of slowly adapting stretch receptors. Note absence of tachypnea but prolongation of inspiratory time at onset of pneumothorax and augmented breath at removal. BP, blood pressure; Vt, tidal volume.

From Davies et al.


Figure 11.

Effect of intravenous injection of 150 μg of phenyl diguanide (top) and 150 μg of histamine acid phosphate (bottom) on blood pressure (BP), tidal volume (Vt), and phrenic action potentials in cat. Chemical was injected at first signal and was washed in with saline at second signal. Note prompt onset of apnea and subsequent rapid shallow breathing after injection of phenyl diguanide. Note also delayed onset of rapid shallow breathing and augmented breath after injection of histamine. Cardiac slowing occurred after both injections but was delayed after injection of histamine.

From Winning and Widdicombe


Figure 12.

Effect on breathing pattern of 150 μg of phenyl diguanide and histamine acid phosphate given intravenously to cat first made hypopneic by being hyperventilated to apnea and then rebreathing O2 to cause hypercapnic hyperpnea. Vagus nerves were intact. A: relationship between tidal volume (Vt) and inspiratory time (Ti). ○, Control relationship produced by rebreathing O2 after apnea; •, rebreathing O2 after phenyl diguanide had been injected in preceding apneic period; +, rebreathing O2 after similar injection of histamine. B: relationship between Ti and expiratory time (Te), x, Control eupneic breaths; ○, control hyperpneic breaths (rebreathing O2); ▴, breaths produced by histamine during eupnea; +, breaths produced by histamine during hyperpnea; •, breaths produced by phenyl diguanide during eupnea; ▪, breaths produced by phenyl diguanide during hyperpnea.

From Winning and Widdicombe


Figure 13.

Effect of injecting bradykinin into right bronchial artery on smooth muscle tone in upper tracheal segment of dog. Recurrent laryngeal nerves are cut so that segment is innervated only by superior laryngeal nerves. (See Fig. for diagram of preparation.) A‐E: bradykinin (1.5 μg) is injected into bronchial artery at signal. A: both vagi at 36°C. B: vagi cooled to 7°C. Note increase in base‐line tension. C: vagi cooled to 0°‐1°C. Note decrease in base‐line tension. D: vagi rewarmed. Between D and E: both cervical vagus nerves are cut. E: response to bradykinin is abolished by vagotomy. F: tracheal contraction can still be evoked reflexly when carotid bodies are stimulated by ventilating lungs with 5% O2 in N2 (At all other times in A‐F, lungs are ventilated with 50% O2 in air.) In A and D, initial base‐line tracheal tension is set at 50 g; it is not adjusted in B, C, or E. Note changes in tracheal pressure; lungs briefly hyperinflated between A and B and between C and D. Reduced response after vagal cooling to 7°C (A, B) is not caused by blockade of myelinated vagal afferents but by temperature‐dependent decrease in firing frequency in afferent C‐fibers . Vagal temp., temperature of cervical vagus nerves; ABP, arterial blood pressure; HR, heart rate; Tr tension, tracheal tension in grams above resting base‐line tension; Pt, tracheal pressure.

From Roberts et al.
References
 1. Abe, K., N. Watanabe, N. Kumagi, T. Mouri, T. Seki, and K. Yoshinaga. Circulating plasma kinin in patients with bronchial asthma. Experientia 23: 626–627, 1967.
 2. Adrian, E. D. Afferent impulses in the vagus and their effect on respiration. J. Physiol. London 79: 332–358, 1933.
 3. Agostoni, E., J. E. Chinnock, M. de B. Daly, and J. G. Murray. Functional and histological studies of the vagus nerve and its branches to the heart, lungs and abdominal viscera in the cat. J. Physiol. London 135: 182–205, 1957.
 4. Amdur, M. O. The physiological response of guinea pigs to atmospheric pollutants. Int. J. Air Pollut. 1: 170–183, 1959.
 5. Anand, A., and A. S. Paintal. Reflex effects following selective stimulation of J receptors in the cat. J. Physiol. London 299: 553–572, 1980.
 6. Anrep, G. V., W. Pascual, and R. Rossler. Respiratory variations of the heart rate. I. The reflex mechanism of the respiratory arrhythmia. Proc. R. Soc. London Ser. B 119: 191–217, 1936.
 7. Armstrong, D. J., and J. C. Luck. A comparative study of irritant and type J receptors in the cat. Respir. Physiol. 21: 47–60, 1974.
 8. Armstrong, D. J., J. C. Luck, and V. M. Martin. The effect of emboli upon intrapulmonary receptors in the cat. Respir. Physiol. 26: 41–54, 1976.
 9. Armstrong, D. J., and S. A. Miller. Intrapulmonary C‐fibres contribute to the afferent arm of the vagally mediated responses to right atrial injections of prostacyclin into rabbits (Abstract). J. Physiol. London 310: 65P–66P, 1981.
 10. Balchum, O. J., J. Dybicki, and G. R. Meneely. Pulmonary resistance and compliance with concurrent radioactive sulfur distribution in dogs breathing S35O2. J. Appl. Physiol. 15: 62–66, 1960.
 11. Banister, J., G. Fegler, and C. Hebb. Initial respiratory responses to the intratracheal inhalation of phosgene or ammonia. Q. J. Exp. Physiol. 35: 233–250, 1950.
 12. Banzett, R. B., H. M. Coleridge, and J. C. G. Coleridge. I. Pulmonary‐CO2 ventilatory reflex in dogs: effective range of CO2 and results of vagal cooling. Respir. Physiol. 34: 121–134, 1978.
 13. Bartlett, D., Jr., P. Jeffery, G. Sant'Ambrogio, and J. C. M. Wise. Location of stretch receptors in the trachea and bronchi of the dog. J. Physiol. London 258: 409–420, 1976.
 14. Bartlett, D., Jr., and G. Sant'Ambrogio. Effects of local and systemic hypercapnia on the discharge of stretch receptors in the airways of the dog. Respir. Physiol. 26: 91–99, 1976.
 15. Bartlett, D., Jr., G. Sant'Ambrogio, and J. C. M. Wise. Transduction properties of tracheal stretch receptors. J. Physiol. London 258: 421–432, 1976.
 16. Bartlett, D., Jr., and W. M. St. John. Adaptation of pulmonary stretch receptors in different mammalian species. Respir. Physiol. 37: 303–312, 1979.
 17. Bartoli, A., E. Bystrzycka, A. Guz, S. K. Jain, M. I. M. Noble, and D. W. Trenchard. Studies of the pulmonary vagal control of central respiratory rhythm in the absence of breathing movements. J. Physiol. London 230: 449–465, 1973.
 18. Bartoli, A., B. A. Cross, A. Guz, A. Huszczuk, and R. Jefferies. The effect of varying tidal volume on the associated phrenic motoneurone output: studies of vagal and chemical feedback. Respir. Physiol. 25: 135–155, 1975.
 19. Bartoli, A., B. A. Cross, A. Guz, S. K. Jain, M. I. M. Noble, and D. W. Trenchard. The effect of carbon dioxide in the airways and alveoli on ventilation; a vagal reflex studied in the dog. J. Physiol. London 240: 91–109, 1974.
 20. Bergren, D. R., and S. R. Sampson. Characterization of intrapulmonary rapidly adapting receptors of guinea pigs. Respir. Physiol. 47: 83–95, 1982.
 21. Bland, S., L. Lazerou, G. Dyck, and R. M. Cherniak. The influence of the “chest wall” on respiratory rate and depth. Respir. Physiol. 3: 47–54, 1967.
 22. Bleecker, E. R., D. J. Cotton, S. P. Fischer, P. D. Graf, W. M. Gold, and J. A. Nadel. The mechanism of rapid, shallow breathing after inhaling histamine aerosol in exercising dogs. Am. Rev. Respir. Dis. 114: 909–916, 1976.
 23. Boushey, H. A., M. J. Holtzman, J. R. Sheller, and J. A. Nadel. Bronchial hyperreactivity. Am. Rev. Respir. Dis. 121: 389–413, 1980.
 24. Boushey, H. A., P. S. Richardson, and J. G. Widdicombe. Reflex effects of laryngeal irritation on the pattern of breathing and total lung resistance. J. Physiol. London 224: 501–513, 1972.
 25. Bradley, G. W. Control of the breathing pattern. In: Respiratory Physiology II, edited by J. G. Widdicombe. Baltimore, MD: University Park, 1977, vol. 14, p. 185–217. (Int. Rev. Physiol. Ser.).
 26. Bradley, G. W., M. I. M. Noble, and D. Trenchard. The direct effect on pulmonary stretch receptor discharge produced by changing lung carbon dioxide concentration in dogs on cardiopulmonary bypass and its action on breathing. J. Physiol. London 261: 359–373, 1976.
 27. Bradley, G. W., and N. Scheurmier. The transduction properties of tracheal stretch receptors in vitro. Respir. Physiol. 31: 365–375, 1977.
 28. Breuer, J. Die Selbststeuerung der Athmung durch den Nervus vagus. Sitzungsber. Akad. Wiss. Wien 58: 909–937, 1868.
 29. Brodie, T. G. The immediate action of an intravenous injection of blood‐serum. J. Physiol. London 26: 48–71, 1900.
 30. Brodie, T. G., and A. E. Russell. On reflex cardiac inhibition. J. Physiol. London 26: 92–106, 1900.
 31. Brown, A. M., W. R. Saum, and S. Yasui. Baroreceptor dynamics and their relationship to afferent fiber type and hypertension. Circ. Res. 42: 694–702, 1978.
 32. Bucher, K. Pathophysiology and pharmacology of cough. Pharmacol. Rev. 10: 43–58, 1958.
 33. Burger, R. E., J. L. Osborne, and R. B. Banzett. Intrapulmonary chemoreceptors in Gallus domesticus: adequate stimulus and functional localization. Respir. Physiol. 22: 87–97, 1974.
 34. Burgess, P. R., and E. R. Perl. Cutaneous mechanoreceptors and nociceptors. In: Handbook of Sensory Physiology. Somatosensory System, edited by A. Iggo. New York: Springer‐Verlag, 1973, vol. II, chapt. 2, p. 29–78.
 35. Bystrzycka, E. K., and B. S. Nail. CO2 sensitivity of stretch receptors in the marsupial lung. Respir. Physiol. 39: 111–119, 1980.
 36. Cahill, J. M., E. O. Attinger, and J. J. Byrne. Ventilatory responses to embolization of lung. J. Appl. Physiol. 16: 469–472, 1961.
 37. Cassidy, S. S., W. L. Eschenbacher, and R. L. Johnson, Jr. Reflex cardiovascular depression during unilateral lung hyperinflation in the dog. J. Clin. Invest. 64: 620–626, 1979.
 38. Chambers, M. R., K. H. Andres, M. von During, and A. Iggo. The structure and function of the slowly adapting type II mechanoreceptor in hairy skin. Q. J. Exp. Physiol. 57: 417–445, 1972.
 39. Churchill, E. D., and O. Cope. The rapid shallow breathing resulting from pulmonary congestion and edema. J. Exp. Med. 49: 531–537, 1929.
 40. Coleridge, H. M., and J. C. G. Coleridge. Afferent vagal C‐fibers in the dog lung: their discharge during spontaneous breathing, and their stimulation by alloxan and pulmonary congestion. In: Krogh Centenary Symposium on Respiratory Adaptations, Capillary Exchange and Reflex Mechanisms, edited by A. S. Paintal and P. Gill‐Kumar. Delhi: Vallabhbhai Patel Chest Inst., 1977, p. 393–406.
 41. Coleridge, H. M., and J. C. G. Coleridge. Impulse activity in afferent vagal C‐fibres with endings in the intrapulmonary airways of dogs. Respir. Physiol. 29: 125–142, 1977.
 42. Coleridge, H. M., and J. C. G. Coleridge. Afferent fibers involved in defense reflexes from the respiratory tract. In: Advances in Physiological Science, edited by I. Hutás and L. A. Debreczeni. Budapest: Akad. Kiado, 1981, vol. 10, p. 467–477.
 43. Coleridge, H. M., J. C. G. Coleridge, D. G. Baker, K. H. Ginzel, and M. A. Morrison. Comparison of the effects of histamine and prostaglandin on afferent C‐fiber endings and irritant receptors in the intrapulmonary airways. Adv. Exp. Med. Biol. 99: 291–305, 1978.
 44. Coleridge, H. M., J. C. G. Coleridge, and R. B. Banzett. II. Effect of CO2 on afferent vagal endings in the canine lung. Respir. Physiol. 34: 135–151, 1978.
 45. Coleridge, H. M., J. C. G. Coleridge, K. H. Ginzel, D. G. Baker, R. B. Banzett, and M. A. Morrison. Stimulation of ‘irritant’ receptors and afferent C‐fibres in the lungs by prostaglandins. Nature London 264: 451–453, 1976.
 46. Coleridge, H. M., J. C. G. Coleridge, and C. Kidd. Role of the pulmonary arterial baroreceptors in the effects produced by capsaicin in the dog. J. Physiol. London 170: 272–285, 1964.
 47. Coleridge, H. M., J. C. G. Coleridge, and J. C. Luck. Pulmonary afferent fibres of small diameter stimulated by capsaicin and by hyperinflation of the lungs. J. Physiol. London 179: 248–262, 1965.
 48. Coleridge, H. M., J. C. G. Coleridge, J. C. Luck, and J. Norman. The effect of four volatile anaesthetic agents on the impulse activity of two types of pulmonary receptor. Br. J. Anaesth. 40: 484–492, 1968.
 49. Coleridge, H. M., J. C. G. Coleridge, and A. M. Roberts. Rapid shallow breathing evoked by selective stimulation of bronchial C‐fibres in dogs. J. Physiol. London 340: 415–433, 1983.
 50. Coleridge, H. M., A. M. Roberts, and J. C. G. Coleridge. Effect of vagal cooling on activity in lung afferent fibers in dogs (Abstract). Federation Proc. 41: 986, 1982.
 51. Coleridge, J. C. G., and H. M. Coleridge. Afferent C‐fibers and cardiorespiratory chemoreflexes. Am. Rev. Respir. Dis. 115: 251–260, 1977.
 52. Coleridge, J. C. G., and H. M. Coleridge. Chemoreflex regulation of the heart. In: Handbook of Physiology. The Cardiovascular System. The Heart, edited by R. M. Berne and N. Sperelakis. Bethesda, MD: Am. Physiol. Soc., 1979, sect. 2, vol. I, chapt. 18, p. 653–676.
 53. Coleridge, J. C. G., and H. M. Coleridge. Afferent vagal C‐fibre innervation of the lungs and airways and its functional significance. Rev. Physiol. Biochem. Pharmacol. 99: 1–110, 1984.
 54. Coleridge, J. C. G., H. M. Coleridge, A. M. Roberts, M. P. Kaufman, and D. G. Baker. Tracheal contraction and relaxation initiated by lung and somatic afferents in dogs. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 52: 984–990, 1982.
 55. Costantin, L. L. Effect of pulmonary congestion on vagal afferent activity. Am. J. Physiol. 196: 49–53, 1959.
 56. Cotton, D. J., E. R. Bleecker, S. P. Fischer, P. D. Graf, W. M. Gold, and J. A. Nadel. Rapid, shallow breathing after Ascaris suum antigen inhalation: role of vagus nerves. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 42: 101–106, 1977.
 57. Cromer, S. P., R. H. Young, and A. C. Ivy. On the existence of afferent respiratory impulses mediated by the stellate ganglia. Am. J. Physiol. 104: 468–475, 1933.
 58. Crosfill, M. L., and J. G. Widdicombe. Physical characteristics of the chest and lungs and the work of breathing in different mammalian species. J. Physiol. London 158: 1–14, 1961.
 59. Cross, K. W., M. Klaus, W. H. Tooley, and K. Weisser. The response of the new‐born baby to inflation of the lungs. J. Physiol. London 151: 551–565, 1960.
 60. Culver, G. A., and H. Rahn. Reflex respiratory stimulation by chest compression in the dog. Am. J. Physiol. 168: 686–693, 1952.
 61. d'Angelo, E., G. Miserocchi, and E. Agostoni. Effect of rib cage or abdomen compression at iso‐lung volume on breathing pattern. Respir. Physiol. 28: 161–177, 1976.
 62. Das, R. M., P. K. Jeffery, and J. G. Widdicombe. The epithelial innervation of the lower respiratory tract of the cat. J. Anat. 126: 123–131, 1978.
 63. Das, R. M., P. K. Jeffery, and J. G. Widdicombe. Experimental degeneration of intra‐epithelial nerve fibres in cat airways. J. Anat. 128: 259–263, 1979.
 64. Davenport, P. W., D. T. Frazier, and F. W. Zechman, Jr. The effect of the resistive loading of inspiration and expiration on pulmonary stretch receptor discharge. Respir. Physiol. 43: 299–314, 1981.
 65. Davenport, P. W., L.‐Y. Lee, K. Lee, L. K. Yu, R. Miller, and D. T. Frazier. Effect of bronchoconstriction on the firing behavior of pulmonary stretch receptors. Respir. Physiol. 46: 295–307, 1981.
 66. Davenport, P. W., F. B. Sant'Ambrogio, and G. Sant'Ambrogio. Adaptation of tracheal stretch receptors. Respir. Physiol. 44: 339–349, 1981.
 67. Davies, A., M. Dixon, D. Callanan, A. Huszczuk, J. G. Widdicombe, and J. C. M. Wise. Lung reflexes in rabbits during pulmonary stretch receptor block by sulphur dioxide. Respir. Physiol. 34: 83–101, 1978.
 68. Davis, B., A. M. Roberts, H. M. Coleridge, and J. C. G. Coleridge. Reflex tracheal gland secretion evoked by stimulation of bronchial C‐fibers in dogs. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 53: 985–991, 1982.
 69. Davis, H. L., W. S. Fowler, and E. H. Lambert. Effect of volume and rate of inflation and deflation on transpulmonary pressure and response of pulmonary stretch receptors. Am. J. Physiol. 187: 558–566, 1956.
 70. Dawes, G. S., and J. H. Comroe, Jr. Chemoreflexes from the heart and lungs. Physiol. Rev. 34: 167–201, 1954.
 71. Dawes, G. S., J. C. Mott, and J. G. Widdicombe. Respiratory and cardiovascular reflexes from the heart and lungs. J. Physiol. London 115: 258–291, 1951.
 72. Dawes, G. S., J. C. Mott, and J. G. Widdicombe. Chemoreceptor reflexes in the dog and the action of phenyl diguanide. Arch. Int. Pharmacodyn. Ther. 90: 203–222, 1952.
 73. DeKock, M. A., J. A. Nadel, S. Zwi, H. J. H. Colebatch, and C. R. Olsen. New method for perfusing bronchial arteries: histamine bronchoconstriction and apnea. J. Appl. Physiol. 21: 185–194, 1966.
 74. Delmore, G., and E. A. Koller. The role of augmented breaths (sighs) in bronchial asthma attacks. Pfluegers Arch. 372: 1–6, 1977.
 75. Delpierre, S., C. Grimaud, Y. Jammes, and N. Mei. Changes in activity of vagal bronchopulmonary C fibres by chemical and physical stimuli in the cat. J. Physiol. London 316: 61–74, 1981.
 76. Deshpande, S. S., and M. S. Devanandan. Reflex inhibition of monosynaptic reflexes by stimulation of type J pulmonary endings. J. Physiol. London 206: 345–357, 1970.
 77. Dimarco, A. F., C. von Euler, J. R. Romaniuk, and Y. Yamamoto. Low threshold facilitation of inspiration by lung volume increments. Acta Physiol. Scand. 109: 343–344, 1980.
 78. Dixon, M., D. M. Jackson, and I. M. Richards. The effect of a respiratory tract infection on histamine‐induced changes in lung mechanics and irritant receptor discharge in dogs. Am. Rev. Respir. Dis. 120: 843–848, 1979.
 79. Dixon, M., D. M. Jackson, and I. M. Richards. The effects of histamine, acetylcholine and 5‐hydroxytryptamine on lung mechanics and irritant receptors in the dog. J. Physiol. London 287: 393–403, 1979.
 80. Downing, S. E. Reflex effects of acute hypertension in the pulmonary vascular bed of the dog. Yale J. Biol. Med. 30: 43–56, 1957.
 81. Elftman, A. G. The afferent and parasympathetic innervation of the lungs and trachea of the dog. Am. J. Anat. 72: 1–28, 1943.
 82. Fastier, F. N., M. A. McDowall, and H. Wall. Pharmacological properties of phenyldiguanide and other amidine derivatives in relation to those of 5‐hydroxytryptamine. Br. J. Pharmacol. 14: 527–535, 1959.
 83. Fedde, M. R. Peripheral control of avian respiration. Federation Proc. 29: 1664–1673, 1970.
 84. Ferrer, P., and E. A. Koller. Über die Vagusafferenzen des Meerschweinchens und ihre Bedeutung für die Spontanatmung. Helv. Physiol. Pharmacol. Acta 26: 365–387, 1969.
 85. Fillenz, M., and J. G. Widdicombe. Receptors of the lungs and airways. In: Handbook of Sensory Physiology. Enteroceptors, edited by E. Neil. New York: Springer‐Verlag, 1972, vol. III, pt. 1, chapt. 3, p. 81–112.
 86. Fillenz, M., and R. I. Woods. Sensory innervation of the airways. In: Breathing: Hering‐Breuer Centenary Symposium, edited by R. Porter. London: Churchill, 1970, p. 101–107.
 87. Fisher, A. W. F. The intrinsic innervation of the trachea. J. Anat. 98: 117–124, 1964.
 88. Fishman, N. H., E. A. Phillipson, and J. A. Nadel. Effect of differential vagal cold blockade on breathing pattern in conscious dogs. J. Appl. Physiol. 34: 754–758, 1973.
 89. Fox, B., T. B. Bull, and A. Guz. Innervation of alveolar walls in the human lung: an electron microscopic study. J. Anat. 131: 683–692, 1980.
 90. Frankstein, S. I. Neural control of respiration. In: Breathing: Hering‐Breuer Centenary Symposium, edited by R. Porter. London: Churchill, 1970, p. 53–58.
 91. Frankstein, S. I., and Z. N. Sergeeva. Tonic activity of lung receptors in normal and pathological states. Nature London 210: 1054–1055, 1966.
 92. Frankstein, S. I., Z. N. Sergeeva, and T. I. Sergeeva. An extravagal respiratory reflex from nociceptors of the lungs. Bull. Exp. Biol. Med. 85: 425–426, 1978.
 93. Franz, D. N., and A. Iggo. Conduction failure in myelinated and non‐myelinated axons at low temperatures. J. Physiol. London 199: 319–345, 1968.
 94. Garcia Leme, J. Bradykinin‐system. In: Handbook of Experimental Pharmacology. Inflammation, edited by J. R. Vane and S. H. Ferreira. Berlin: Springer‐Verlag, 1978, vol. 25, pt. 1, p. 464–522.
 95. Ginzel, K. H., and E. Eldred. Relief of decerebrate rigidity by viscero‐somatic reflex action. Proc. West. Pharmacol. Soc. 12: 41–44, 1969.
 96. Ginzel, K. H., and E. Eldred. Reflex depression of somatic motor activity from heart, lungs and carotid sinus. In: Krogh Centenary Symposium on Respiratory Adaptations, Capillary Exchange and Reflex Mechanisms, edited by A. S. Paintal and P. Gill‐Kumar. Delhi: Vallabhbhai Patel Chest Inst., 1977, p. 358–394.
 97. Ginzel, K. H., E. Eldred, and J. A. Estavillo. Depression of α‐motoneuron activity by excitation of visceral afferents in the cardiopulmonary region. Int. J. Neurosci. 4: 203–214, 1972.
 98. Glogowska, M., P. S. Richardson, J. G. Widdicombe, and A. J. Winning. The role of the vagus nerves, peripheral chemoreceptors and other afferent pathways in the genesis of augmented breaths in cats and rabbits. Respir. Physiol. 16: 179–196, 1972.
 99. Gold, W. M., G.‐F. Kessler, and D. Y. C. Yu. Role of vagus nerves in experimental asthma in allergic dogs. J. Appl. Physiol. 33: 719–725, 1972.
 100. Grunstein, M. M., M. Hazucha, J. Sörli, and J. Milic‐Emili. Effect of SO2 on control of breathing in anesthetized cats. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 43: 844–851, 1977.
 101. Guz, A. Control of ventilation in man with special reference to abnormalities in asthma. In: Asthma. Physiology, Immunopharmacology, and Treatment, edited by M. L. Lichtenstein and K. F. Austen. New York: Academic, 1977, p. 211–222.
 102. Guz, A. Respiratory sensations in man. Br. Med. Bull. 33: 175–177, 1977.
 103. Guz, A., M. I. M. Noble, J. H. Eisele, and D. Trenchard. The role of vagal inflation reflexes in man and other animals. In: Breathing: Hering‐Breuer Centenary Symposium, edited by R. Porter. London: Churchill, 1970, p. 17–40.
 104. Guz, A., M. I. M. Noble, J. H. Eisele, and D. Trenchard. Experimental results of vagal block in cardiopulmonary disease. In: Breathing: Hering‐Breuer Centenary Symposium, edited by R. Porter. London: Churchill, 1970, p. 315–329.
 105. Guz, A., and D. W. Trenchard. The role of non‐myelinated vagal afferent fibres from the lungs in the genesis of tachypnoea in the rabbit. J. Physiol. London 213: 345–371, 1971.
 106. Hahn, H. L., H. G. Johnson, A. W. Chow, P. D. Graf, and J. A. Nadel. Reflex stimulation of submucosal gland secretion by sulfur dioxide (Abstract). Federation Proc. 41: 1509, 1982.
 107. Hahn, H. L., K. Sasaki, and J. A. Nadel. Effects of sulfur dioxide on ventilation in conscious dogs (Abstract). Am. Rev. Respir. Dis. 125: 220, 1982.
 108. Hall, M. Lectures on the Nervous System and Its Diseases. Philadelphia, PA: Carey & Hart, 1836, p. 19–47.
 109. Hammouda, M., and W. H. Wilson. The presence in the vagus of fibres transmitting impulses augmenting the frequency of respiration. J. Physiol. London 83: 292–312, 1935.
 110. Hammouda, M., and W. H. Wilson. Reflex slowing of respiration accompanying changes in the intrapulmonary pressure. J. Physiol. London 88: 284–297, 1936.
 111. Hammouda, M., and W. H. Wilson. Reflex acceleration of respiration arising from excitation of the vagus or its terminations in the lungs. J. Physiol. London 94: 497–524, 1939.
 112. Hánaĉek, J., J. G. Widdicombe, and J. Korpás. Stretch receptors of the lung and their effect on lung defensive reflexes. Proc. Int. Congr. Physiol. Sci., 28th, Budapest, 1980, vol. 14, p. 460.
 113. Head, H. On the regulation of respiration. I. Experimental. J. Physiol. London 10: 1–70, 1889.
 114. Head, H. On the regulation of respiration. II. Theoretical. J. Physiol. London 10: 279–290, 1889.
 115. Hering, E., and J. Breuer. Die Selbststeuerung der Athmung durch den Nervus vagus. Sitzungsber. Akad. Wiss. Wien 57: 672–677, 1868.
 116. Holmes, R., and R. W. Torrance. Afferent fibres of the stellate ganglion. Q. J. Exp. Physiol. 44: 271–281, 1959.
 117. Homberger, A.‐C. Beitrag zum Nachweis von Kollapsafferenzen im Lungenvagus des Kaninchens. Helv. Physiol. Pharmacol. Acta 26: 97–118, 1968.
 118. Honjin, R. On the nerve supply of the lung of the mouse, with special reference to the structure of the peripheral vegetative nervous system. J. Comp. Neurol. 105: 587–625, 1956.
 119. Honjin, R. Experimental degeneration of the vagus and its relation to the nerve supply of the lung of the mouse, with special reference to the crossing innervation of the lung by the vagi. J. Comp. Neurol. 106: 1–19, 1956.
 120. Hung, K.‐S., M. S. Hertweck, J. D. Hardy, and C. G. Loosli. Electron microscopic observations of nerve endings in the alveolar walls of mouse lungs. Am. Rev. Respir. Dis. 108: 328–333, 1973.
 121. Hung, K.‐S., M. S. Hertweck, J. D. Hardy, and C. G. Loosli. Ultrastructure of nerves and associated cells in bronchiolar epithelium of the mouse lung. J. Ultrastruct. Res. 43: 426–437, 1973.
 122. Igler, F. O., E. J. Zuperku, S. R. Peters, R. V. Purtock, R. L. Coon, and J. P. Kampine. Changes in ventilation in response to alterations of airway and alveolar Pco2 (Abstract). Physiologist 18: 258, 1975.
 123. Jabonero, V., and J. Sabadell. Die sensible innervation der glatten Muskulatur der Luftwege. Z. Mikrosk. Anat. Forsch. 86: 213–243, 1972.
 124. Jain, S. K., S. Subramanian, D. B. Julka, and A. Guz. Search for evidence of lung chemoreflexes in man: study of respiratory and circulatory effects of phenyldiguanide and lobeline. Clin. Sci. 42: 163–177, 1972.
 125. Jain, S. K., D. Trenchard, F. Reynolds, M. I. M. Noble, and A. Guz. The effect of local anaesthesia of the airway on respiratory reflexes in the rabbit. Clin. Sci. 44: 519–538, 1973.
 126. Jammes, Y., E. Fornaris, N. Mei, and E. Barrat. Afferent and efferent components of the bronchial vagal branches in cats. J. Auton. Nerv. Syst. 5: 165–176, 1982.
 127. Jammes, Y., and N. Mei. Assessment of the pulmonary origin of bronchoconstrictor vagal tone. J. Physiol. London 291: 305–316, 1979.
 128. Jeffery, P., and L. Reid. Intra‐epithelial nerves in normal rat airways: a quantitative electron microscopic study. J. Anat. 114: 35–45, 1973.
 129. Jones, J. G., R. Lemen, and P. D. Graf. Changes in airway calibre following pulmonary venous congestion. Br. J. Anaesth. 50: 743–752, 1978.
 130. Kalia, M. Effects of certain cerebral lesions on the J reflex. Pfluegers Arch. 343: 297–308, 1973.
 131. Kalia, M., A. S. Paintal, and H. P. Koepchen. Motor behavioural responses to J‐receptor stimulation in an awake walking cat. Pfluegers Arch. 339, Suppl.: R80, 1973.
 132. Karczewski, W., and J. G. Widdicombe. The role of the vagus nerves in the respiratory and circulatory responses to intravenous histamine and phenyl diguanide in rabbits. J. Physiol. London 201: 271–291, 1969.
 133. Karczewski, W., and J. G. Widdicombe. The role of the vagus nerves in the respiratory and circulatory reactions to anaphylaxis in rabbits. J. Physiol. London 201: 293–304, 1969.
 134. Kaufman, M. P., H. M. Coleridge, J. C. G. Coleridge, and D. G. Baker. Bradykinin stimulates afferent vagal C‐fibers in intrapulmonary airways of dogs. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 48: 511–517, 1980.
 135. Kaufman, M. P., H. M. Coleridge, J. C. G. Coleridge, and D. G. Baker. Differential sensitivity of bronchial and pulmonary C‐fibers in dogs to bradykinin, histamine and serotonin (Abstract). Federation Proc. 39: 828, 1980.
 136. Kaufman, M. P., G. A. Iwamoto, J. H. Ashton, and S. S. Cassidy. Responses to inflation of vagal afferents with endings in the lungs of dogs. Circ. Res. 51: 525–531, 1982.
 137. Keele, C. A., and D. Armstrong. Substances Producing Pain and Itch. London: Arnold, 1964.
 138. Kessler, G.‐F., J. H. M. Austin, P. D. Graf, G. Gamsu, and W. M. Gold. Airway constriction in experimental asthma in dogs: tantalum bronchographic studies. J. Appl. Physiol. 35: 703–708, 1973.
 139. Knowlton, G. C., and M. G. Larrabee. A unitary analysis of pulmonary volume receptors. Am. J. Physiol. 147: 100–114, 1946.
 140. Koepchen, H. P., M. Kalia, D. Sommer, and D. Klüssendorf. Action of type J afferents on the discharge pattern of medullary respiratory neurons. In: Krogh Centenary Symposium on Respiratory Adaptations, Capillary Exchange and Reflex Mechanisms, edited by A. S. Paintal and P. Gill‐Kumar. Delhi: Vallabhbhai Patel Chest Inst., 1977, p. 407–425.
 141. Koller, E. A., and P. Ferrer. Studies on the role of the lung deflation reflex. Respir. Physiol. 10: 172–183, 1970.
 142. Koller, E. A., and P. Ferrer. Discharge patterns of the lung stretch receptors and activation of deflation fibres in anaphylactic bronchial asthma. Respir. Physiol. 17: 113–126, 1973.
 143. Kostreva, D. R., E. J. Zuperku, G. L. Hess, R. L. Coon, and J. P. Kampine. Pulmonary afferent activity recorded from sympathetic nerves. J. Appl. Physiol. 39: 37–40, 1975.
 144. Krauhs, J. M. Structure of rat aortic baroreceptors and their relationship to connective tissue. J. Neurocytol. 8: 401–414, 1979.
 145. Lahiri, S., E. Mulligan, T. Nishino, and A. Mokashi. Aortic body chemoreceptor responses to changes in Pco2 and Po2 in the cat. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 47: 858–866, 1979.
 146. Larrabee, M. G., and G. C. Knowlton. Excitation and inhibition of phrenic motoneurones by inflation of the lungs. Am. J. Physiol. 147: 90–99, 1946.
 147. Larsell, O. Nerve terminations in the lung of the rabbit. J. Comp. Neurol. 33: 105–131, 1921.
 148. Larsell, O. The ganglia, plexuses, and nerve‐terminations of the mammalian lung and pleura pulmonalis. J. Comp. Neurol. 35: 97–132, 1922.
 149. Larsell, O., and G. E. Burget. The effects of mechanical and chemical stimulation of the tracheo‐bronchial mucous membrane. Am. J. Physiol. 70: 311–321, 1924.
 150. Larsell, O., and R. S. Dow. The innervation of the human lung. Am. J. Anat. 52: 125–146, 1933.
 151. Lauweryns, J. M., and M. Cokelaere. Hypoxia‐sensitive neuro‐epithelial bodies. Intrapulmonary secretory neuroreceptors, modulated by the CNS. Z. Zellforsch. Mikrosk. Anat. 145: 521–540, 1973.
 152. Lee, L.‐Y., C. Dumont, T. D. Djokic, T. E. Menzel, and J. A. Nadel. Mechanism of rapid, shallow breathing after ozone exposure in conscious dogs. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 46: 1108–1114, 1979.
 153. Lloyd, T. C., Jr. Reflex effects of lung inflation and inhalation of halothane, ether, and ammonia. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 45: 212–218, 1978.
 154. Lloyd, T. C., Jr. Effects of extrapulmonary airway distension on breathing in anesthetized dogs. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 46: 890–896, 1979.
 155. Lloyd, T. C., Jr., and J. A. Cooper. Failure of tracheal distension to inhibit breathing in anesthetized dogs. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 48: 794–798, 1980.
 156. Lynn, B. Cutaneous hyperalgesia. Br. Med. Bull. 33: 103–108, 1977.
 157. Marlot, D., J. P. Mortola, and B. Duron. Functional localization of pulmonary stretch receptors in the newborn kitten (Abstract). Physiologist 24 (4): 115, 1981.
 158. Marshall, R., and J. G. Widdicombe. The activity of pulmonary stretch receptors during congestion of the lungs. Q. J. Exp. Physiol. 43: 320–330, 1958.
 159. Meyrick, B., and L. Reid. Nerves in rat intra‐acinar alveoli: an electron microscopic study. Respir. Physiol. 11: 367–377, 1971.
 160. Mills, J. E., H. Sellick, and J. G. Widdicombe. Activity of lung irritant receptors in pulmonary microembolism, anaphylaxis and drug‐induced bronchoconstrictions. J. Physiol. London 203: 337–357, 1969.
 161. Mills, J. E., H. Sellick, and J. G. Widdicombe. Epithelial irritant receptors in the lungs. In: Breathing: Hering‐Breuer Centenary Symposium, edited by R. Porter. London: Churchill, 1970, p. 77–92.
 162. Mills, J. E., and J. G. Widdicombe. Role of the vagus nerves in anaphylaxis and histamine‐induced bronchoconstrictions in guinea pigs. Br. J. Pharmacol. 39: 724–731, 1970.
 163. Miserocchi, G., J. Mortola, and G. Sant'Ambrogio. Localization of pulmonary stretch receptors in the airways of the dog. J. Physiol. London 235: 775–782, 1973.
 164. Miserocchi, G., and G. Sant'ambrogio. Distribution of pulmonary stretch receptors in the intrapulmonary airways of the dog. Respir. Physiol. 21: 71–75, 1974.
 165. Miserocchi, G., and G. Sant'Ambrogio. Responses of pulmonary stretch receptors to static pressure inflations. Respir. Physiol. 21: 77–85, 1974.
 166. Miserocchi, G., T. Trippenbach, M. Mazzarelli, N. Jaspar, and M. Hazucha. The mechanism of rapid shallow breathing due to histamine and phenyldiguanide in cats and rabbits. Respir. Physiol. 32: 141–153, 1978.
 167. Mitchell, G. S., B. A. Cross, T. Hiramoto, and P. Scheid. Effects of intrapulmonary CO2 and airway pressure on phrenic activity and pulmonary stretch receptor discharge in dogs. Respir. Physiol. 41: 29–48, 1980.
 168. Mortola, J. P., and G. Sant'Ambrogio. Mechanics of the trachea and behaviour of its slowly adapting stretch receptors. J. Physiol. London 286: 577–590, 1979.
 169. Mortola, J. P., G. Sant'Ambrogio, and M. G. Clement. Localization of irritant receptors in the airways of the dog. Respir. Physiol. 24: 107–114, 1975.
 170. Morton, D. R., K. P. Klassen, and G. M. Curtis. The clinical physiology of the human bronchi. II. The effect of vagus section upon pain of tracheobronchial origin. Surgery 30: 800–809, 1951.
 171. Mustafa, M. E. K. Y., and M. J. Purves. The effect of CO2 upon discharge from slowly adapting stretch receptors in the lungs of rabbits. Respir. Physiol. 16: 197–212, 1972.
 172. Nadel, J. A. Airways: autonomic regulation and airway responsiveness. In: Bronchial Asthma, edited by E. B. Weiss and M. S. Segal. Boston, MA: Little, Brown, 1976, p. 155–162.
 173. Nadel, J. A., H. Salem, B. Tamplin, and Y. Tokiwa. Mechanism of bronchoconstriction during inhalation of sulphur dioxide. J. Appl. Physiol. 20: 164–167, 1965.
 174. Nilsestuen, J. O., R. L. Coon, F. O. Igler, E. J. Zuperku, and J. P. Kampine. Breathing frequency responses to pulmonary CO2 in an isolated lobe of the canine lung. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 47: 1201–1206, 1979.
 175. Nilsestuen, J. O., R. L. Coon, M. Woods, and J. P. Kampine. Location of lung receptors mediating the breathing frequency response to pulmonary CO2. Respir. Physiol. 45: 343–355, 1981.
 176. Noble, M. I. M., J. H. Eisele, D. Trenchard, and A. Guz. Effect of selective peripheral nerve blocks on respiratory sensations. In: Breathing: Hering‐Breuer Centenary Symposium, edited by R. Porter. London: Churchill, 1970, p. 233–246.
 177. Pack, A. I. Sensory inputs to the medulla. Annu. Rev. Physiol. 43: 73–90, 1981.
 178. Pack, A. I., and R. G. Delaney. Response of pulmonary rapidly adapting receptors during lung inflation. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 55: 955–963, 1983.
 179. Pack, A. I., R. G. Delaney, and A. P. Fishman. Augmentation of phrenic neural activity by increased rates of lung inflation. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 50: 149–161, 1981.
 180. Paintal, A. S. Impulses in vagal afferent fibres from specific pulmonary deflation receptors. The response of these receptors to phenyl diguanide, potato starch, 5‐hydroxytryptamine and nicotine, and their role in respiratory and cardiovascular reflexes. Q. J. Exp. Physiol. 40: 89–111, 1955.
 181. Paintal, A. S. The location and excitation of pulmonary deflation receptors by chemical substances. Q. J. Exp. Physiol. 42: 56–71, 1957.
 182. Paintal, A. S. Effects of drugs on vertebrate mechanoreceptors. Pharmacol. Rev. 16: 341–380, 1964.
 183. Paintal, A. S. Block of conduction in mammalian myelinated nerve fibres by low temperatures. J. Physiol. London 180: 1–19, 1965.
 184. Paintal, A. S. Mechanism of stimulation of aortic chemoreceptors by natural stimuli and chemical substances. J. Physiol. London 189: 63–84, 1967.
 185. Paintal, A. S. Mechanism of stimulation of type J pulmonary receptors. J. Physiol. London 203: 511–532, 1969.
 186. Paintal, A. S. The mechanism of excitation of type J receptors, and the J reflex. In: Breathing: Hering‐Breuer Centenary Symposium, edited by R. Porter. London: Churchill, 1970, p. 59–71.
 187. Paintal, A. S. Vagal sensory receptors and their reflex effects. Physiol. Rev. 53: 159–227, 1973.
 188. Paintal, A. S. Fluid pump of type J receptors of the cat (Abstract). J. Physiol. London 238: 53P–54P, 1974.
 189. Paintal, A. S., and K. Ravi. The relative location of low‐ and higher‐threshold pulmonary stretch receptors (Abstract). J. Physiol. London 307: 50P–51P, 1980.
 190. Phillipson, E. A., N. H. Fishman, R. F. Hickey, and J. A. Nadel. Effect of differential vagal blockade on ventilatory response to CO2 in awake dogs. J. Appl. Physiol. 34: 759–763, 1973.
 191. Phillipson, E. A., E. Murphy, L. F. Kozar, and R. K. Schultze. Role of vagal stimuli in exercise ventilation in dogs with experimental pneumonitis. J. Appl. Physiol. 39: 76–85, 1975.
 192. Phipps, R. J., and P. S. Richardson. The effects of irritation at various levels of the airway upon tracheal mucus secretion in the cat. J. Physiol. London 261: 563–581, 1976.
 193. Pórszász, J., G. Such, and K. Pórszász‐Gibiszer. Circulatory and respiratory chemoreflexes. I. Analysis of the site of action and receptor types of capsaicine. Acta Physiol. Acad. Sci. Hung. 12: 189–205, 1957.
 194. Ranson, S. W., and H. K. Davenport. Sensory unmyelinated fibers in the spinal nerves. Am. J. Anat. 48: 331–353, 1931.
 195. Rao, S. V., F. B. Sant'Ambrogio, and G. Sant'Ambrogio. Respiratory reflexes evoked by tracheal distension. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 50: 421–427, 1981.
 196. Raybould, H. E., and N. J. W. Russell. Afferent activity in pulmonary vagal C‐fibres reflexly increases respiratory rate during hypercapnia in the anaesthetized rabbit (Abstract). J. Physiol. London 326: 60P–61P, 1982.
 197. Remmers, J. E., and D. Bartlett, Jr. Reflex control of expiratory airflow and duration. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 42: 80–87, 1977.
 198. Reynolds, L. B., Jr. Characteristics of an inspiration‐augmenting reflex in anesthetized cats. J. Appl. Physiol. 17: 683–688, 1962.
 199. Reynolds, L. B., Jr., and M. D. Hilgeson. Increase in breathing frequency following the reflex deep breath in anesthetized cats. J. Appl. Physiol. 20: 491–495, 1965.
 200. Rhodin, J. A. G. Ultrastructure and function of the human tracheal mucosa. Am. Rev. Respir. Dis. 93: 1–15, 1966.
 201. Roberts, A. M., D. J. Armstrong, H. M. Coleridge, and J. C. G. Coleridge. Paradoxical tracheal contraction produced by bronchodilator prostaglandins PGE2 and PGI2 (Abstract). Federation Proc. 40: 595, 1981.
 202. Roberts, A. M., H. M. Coleridge, and J. C. G. Coleridge. Reciprocal action of pulmonary stretch receptors and lung C‐fibers on tracheal smooth muscle tone in dogs (Abstract). Federation Proc. 41: 986, 1982.
 203. Roberts, A. M., H. L. Hahn, H. D. Schultz, J. A. Nadel, H. M. Coleridge, and J. C. G. Coleridge. Afferent vagal C‐fibers are responsible for the reflex airway constriction and secretion evoked by pulmonary administration of SO2 in dogs (Abstract). Physiologist 25: 226, 1982.
 204. Roberts, A. M., M. P. Kaufman, D. G. Baker, J. K. Brown, H. M. Coleridge, and J. C. G. Coleridge. Reflex tracheal contraction induced by stimulation of bronchial C‐fibers in dogs. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 51: 485–493, 1981.
 205. Roumy, M., and L.‐M. Leitner. Localization of stretch and deflation receptors in the airways of the rabbit. J. Physiol. Paris 76: 67–70, 1980.
 206. Russell, J. A., and B. Bishop. Vagal afferents essential for abdominal muscle activity during lung inflation in cats. J. Appl. Physiol. 41: 310–315, 1976.
 207. Russell, J. A., and S. J. Lai‐Fook. Reflex bronchoconstriction induced by capsaicin in the dog. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 47: 961–967, 1979.
 208. Russell, N. J. W., and D. Trenchard. Non‐myelinated vagal lung receptors in the rabbit (Abstract). J. Physiol. London 300: 31P, 1980.
 209. Russell, N. J. W., and D. Trenchard. Chemoreflexes of pulmonary origin elicited by sodium dithionite in the anaesthetized rabbit (Abstract). J. Physiol. London 310: 63P–64P, 1981.
 210. Sampson, S. R. Sensory neurophysiology of airways. Am. Rev. Respir. Dis. 115: 107–115, 1977.
 211. Sampson, S. R., and E. H. Vidruk. Properties of “irritant” receptors in canine lung. Respir. Physiol. 25: 9–22, 1975.
 212. Sampson, S. R., and E. H. Vidruk. Chemical stimulation of rapidly adapting receptors in the airways. Adv. Exp. Med. Biol. 99: 281–290, 1978.
 213. Sant'Ambrogio, F. B., and G. Sant'Ambrogio. Circulatory accessibility of nervous receptors localised in the tracheobronchial tree. Respir. Physiol. 49: 49–73, 1982.
 214. Sant'Ambrogio, G. Information arising from the tracheobronchial tree of mammals. Physiol. Rev. 62: 531–569, 1982.
 215. Sant'Ambrogio, G., E. Camporesi, H. Sellick, and J. Mortola. Respiratory changes induced by the immediate block of nervous conduction in the vagus nerves. Q. J. Exp. Physiol. 57: 207–212, 1972.
 216. Sant'Ambrogio, G., and G. Miserocchi. Functional localization of pulmonary stretch receptors in the airways of the cat. Arch. Fisiol. 70: 3–9, 1973.
 217. Sant'Ambrogio, G., G. Miserocchi, and J. Mortola. Transient responses of pulmonary stretch receptors in the dog to inhalation of carbon dioxide. Respir. Physiol. 22: 191–197, 1974.
 218. Sant'Ambrogio, G., and J. Mortola. Behavior of slowly adapting stretch receptors in the extrathoracic trachea of the dog. Respir. Physiol. 31: 377–385, 1977.
 219. Sant'Ambrogio, G., J. E. Remmers, W. J. de Groot, G. Callas, and J. P. Mortola. Localisation of rapidly adapting receptors in the trachea and main stem bronchus of the dog. Respir. Physiol. 33: 359–366, 1978.
 220. Sant'Ambrogio, G., F. B. Sant'Ambrogio, and A. Davies. Coughing to irritation of the tracheo‐bronchial tree and the larynx after sulphur dioxide inhalation in rabbits and dogs (Abstract). Physiologist 23 (4): 88, 1980.
 221. Sapru, H. N., R. N. Willette, and A. J. Krieger. Stimulation of pulmonary J‐receptors by an enkephalin‐analog. J. Pharmacol. Exp. Ther. 217: 228–234, 1981.
 222. Satchell, G. H. The J reflex in fish. In: Krogh Centenary Symposium on Respiratory Adaptations, Capillary Exchange and Reflex Mechanisms, edited by A. S. Paintal and P. Gill‐Kumar. Delhi: Vallabhbhai Patel Chest Inst., 1977, p. 432–438.
 223. Schmidt, T., and H. H. Wellhoner. The reflex influence of a group of slowly conducting vagal afferents on α and γ discharges in cat intercostal nerves. Pfluegers Arch. 318: 335–345, 1970.
 224. Schoener, E. P., and H. M. Frankel. Effect of hyperthermia and Paco2 on the slowly adapting pulmonary stretch receptor. Am. J. Physiol. 222: 68–72, 1972.
 225. Sellick, H., and J. G. Widdicombe. The activity of lung irritant receptors during pneumothorax, hyperpnoea and pulmonary vascular congestion. J. Physiol. London 203: 359–381, 1969.
 226. Sellick, H., and J. G. Widdicombe. Vagal deflation and inflation reflexes mediated by lung irritant receptors. Q. J. Exp. Physiol. 55: 153–163, 1970.
 227. Sellick, H., and J. G. Widdicombe. Stimulation of lung irritant receptors by cigarette smoke, carbon dust, and histamine aerosol. J. Appl. Physiol. 31: 15–19, 1971.
 228. Shanes, A. M. Electrochemical aspects of physiological and pharmacological action in excitable cells. Pharmacol. Rev. 10: 59–273, 1958.
 229. Sheldon, M. I., and J. F. Green. Evidence for pulmonary CO2 chemosensitivity: effects on ventilation. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 52: 1192–1197, 1982.
 230. Simonsson, B. G., B.‐E. Skoogh, N. P. Bergh, R. Andersson, and N. Svedmyr. In vivo and in vitro effect of bradykinin on bronchial motor tone in normal subjects and patients with airways obstruction. Respiration 30: 378–388, 1973.
 231. Smith, A. P., and M. F. Cuthbert. The response of normal and asthmatic subjects to prostaglandins E2 and F2α by different routes, and their significance in asthma. In: Advances in Prostaglandin and Thromboxane Research, edited by B. Samuelsson and R. Paoletti. New York: Raven, 1976, vol. 1, p. 449–459.
 232. Spencer, H., and D. Leof. The innervation of the human lung. J. Anat. 98: 599–609, 1964.
 233. Steffensen, E. H., J. M. Brookhart, and R. Gesell. Proprioceptive respiratory reflexes of the vagus nerve. Am. J. Physiol. 119: 517–526, 1937.
 234. Tenney, S. M., and T. W. Lamb. Physiological consequences of hypoventilation and hyperventilation. In: Handbook of Physiology. Respiration, edited by W. O. Fenn and H. Rahn. Washington, DC: Am. Physiol. Soc., 1965, sect. 3, vol. II, chapt. 37, p. 979–1010.
 235. Toh, C. C., T. S. Lee, and A. K. Kiang. The pharmacological actions of capsaicin and analogues. Br. J. Pharmacol. 10: 175–182, 1955.
 236. Torrance, R. W., and D. Whitteridge. Technical aids in the study of respiratory reflexes (Abstract). J. Physiol. London 107: 6P–7P, 1948.
 237. Trenchard, D. Role of pulmonary stretch receptors during breathing in rabbits, cats and dogs. Respir. Physiol. 29: 231–246, 1977.
 238. Trenchard, D., D. Gardner, and A. Guz. Role of pulmonary vagal afferent nerve fibres in the development of rapid shallow breathing in lung inflammation. Clin. Sci. 42: 251–263, 1972.
 239. Vidruk, E. H., H. L. Hahn, J. A. Nadel, and S. R. Sampson. Mechanisms by which histamine stimulates rapidly adapting receptors in dog lungs. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 43: 397–402, 1977.
 240. Von During, M., K. H. Andres, and J. Iravani. The fine structure of the pulmonary stretch receptor in the rat. Z. Anat. Entwicklungsgesch. 143: 215–222, 1974.
 241. Waaler, B. A. The effect of bradykinin in an isolated perfused dog lung preparation. J. Physiol. London 157: 475–483, 1961.
 242. Wasserman, M. A. Bronchopulmonary responses to prostaglandin F2α, histamine and acetylcholine in the dog. Eur. J. Pharmacol. 32: 146–155, 1975.
 243. Whitteridge, D. Multiple embolism of the lung and rapid shallow breathing. Physiol. Rev. 30: 475–486, 1950.
 244. Whitteridge, D., and E. Bülbring. Changes in activity of pulmonary receptors in anaesthesia and their influence on respiratory behavior. J. Pharmacol. Exp. Ther. 81: 340–359, 1944.
 245. Widdicombe, J. G. Respiratory reflexes from the trachea and bronchi of the cat. J. Physiol. London 123: 55–70, 1954.
 246. Widdicombe, J. G. Receptors in the trachea and bronchi of the cat. J. Physiol. London 123: 71–104, 1954.
 247. Widdicombe, J. G. Respiratory reflexes excited by inflation of the lungs. J. Physiol. London 123: 105–115, 1954.
 248. Widdicombe, J. G. The site of pulmonary stretch receptors in the cat. J. Physiol. London 125: 336–351, 1954.
 249. Widdicombe, J. G. Respiratory reflexes. In: Handbook of Physiology. Respiration, edited by W. O. Fenn and H. Rahn. Washington, DC: Am. Physiol. Soc., 1964, sect. 3, vol. I, chapt. 24, p. 585–630.
 250. Widdicombe, J. G. Action potentials in parasympathetic and sympathetic efferent fibres to the trachea and lungs of dogs and cats. J. Physiol. London 186: 56–88, 1966.
 251. Widdicombe, J. G. Head's paradoxical reflex. Q. J. Exp. Physiol. 52: 44–50, 1967.
 252. Widdicombe, J. G. Reflex control of breathing. In: Respiratory Physiology I, edited by J. G. Widdicombe. Baltimore, MD: University Park, 1974, vol. 2, p. 273–301. (Int. Rev. Physiol. Ser.).
 253. Widdicombe, J. G. Reflexes from the lungs in the control of breathing. In: Recent Advances in Physiology, edited by R. J. Linden. London: Churchill, 1974, p. 239–278.
 254. Widdicombe, J. G. Defensive mechanisms of the respiratory system. In: Respiratory Physiology II, edited by J. G. Widdicombe. Baltimore, MD: University Park, 1977, vol. 14, p. 291–315. (Int. Rev. Physiol. Ser.).
 255. Widdicombe, J. G. Some experimental models of acute asthma. J. R. Coll. Physicians London 11: 141–155, 1977.
 256. Widdicombe, J. G. Studies on afferent airway innervation. Am. Rev. Respir. Dis. 115: 99–105, 1977.
 257. Widdicombe, J. G. Nervous receptors in the respiratory tree and lungs. In: Lung Biology in Health and Disease. Regulation of Breathing, edited by T. Hornbein. New York: Dekker, 1981, vol. 17, pt. 1, chapt. 6, p. 429–472.
 258. Widdicombe, J. G., D. C. Kent, and J. A. Nadel. Mechanism of bronchoconstriction during inhalation of dust. J. Appl. Physiol. 17: 613–616, 1962.
 259. Widdicombe, J. G., and J. A. Nadel. Reflex effects of lung inflation on tracheal volume. J. Appl. Physiol. 18: 681–686, 1963.
 260. Winning, A. J., and J. G. Widdicombe. The effect of lung reflexes on the pattern of breathing in cats. Respir. Physiol. 27: 253–266, 1976.
 261. Yoshida, M., I. Alkalay, H. H. Rotman, and P. Kimbel. Pulmonary vascular changes following air embolism in the dog. Arch. Int. Physiol. Biochim. 86: 317–325, 1978.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

H. M. Coleridge, J. C. G. Coleridge. Reflexes Evoked from Tracheobronchial Tree and Lungs. Compr Physiol 2011, Supplement 11: Handbook of Physiology, The Respiratory System, Control of Breathing: 395-429. First published in print 1986. doi: 10.1002/cphy.cp030212