Comprehensive Physiology Wiley Online Library

Control of Breathing in Birds

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Structure of Avian Respiratory System
2 Factors that Affect Breathing
2.1 Respiratory Gases
2.2 Other Factors
3 Afferent Pathways Mediating Respiratory Stimuli
3.1 Chemoreceptors
3.2 Other Receptors
4 Involvement of Receptor Systems in Chemical Control of Breathing
4.1 Vagal Afferents
4.2 Carotid Bodies and O2 Sensitivity
4.3 Sensitivity to CO2
5 Central Respiratory Areas
6 Respiration in Special Conditions
6.1 Breathing at Elevated Metabolism
6.2 Breathing in Hot Environments
6.3 Respiration and Diving
6.4 Respiration at High Altitude
7 Conclusions: Control of Breathing in Birds Versus Mammals
Figure 1. Figure 1.

Structure of avian respiratory system comprising lung and air sacs (AS). Unpaired cervical and paired clavicular and cranial thoracic air sacs constitute cranial group (connections with medioventral secondary bronchi); paired caudal thoracic and abdominal air sacs form caudal group (connections with main bronchus). Gas exchanging parabronchi connect mediodorsal and medioventral secondary bronchi; airflow through them is from former to latter during both respiratory phases (arrow, upper right). Periparabronchial tissue contains meshwork of air capillaries contacting blood capillaries enroute from peripheral arterioles to venules that lie close to parabronchial lumen and drain collected blood to veins in periphery. Serial multicapillary system formed by blood (and air) capillaries along parabronchus is basis for crosscurrent model describing parabronchial gas exchange.

From Scheid 260
Figure 2. Figure 2.

Functional characteristics of intrapulmonary chemoreceptor (IPC) in duck 108. A: single‐unit discharge is shown at various levels of lung gas CO2 partial pressure (Pico,) in unidirectional ventilation during low (3 cmH2O, left) and high (10 cmH2O, right) intrapulmonary pressure (Pip). Increasing inspiratory partial pressure of CO2 (Pico,) reversibly suppresses receptor discharge, but changes in Pip remain without effect. B: receptor discharge (middle) and corresponding instantaneous discharge frequency (upper) are displayed in response to sudden stepdown and backup in Pico2. Receptor response occurs within first second after changing Pico2. C: IPC responds to rhythmic changes in Pico2 during tidal pump ventilation.

Figure 3. Figure 3.

Response characteristics of mechanoreceptor (A, B) and intrapulmonary chemoreceptor (IPC) (C, D) recorded in unidirectionally ventilated duck 109. Step decrease in lung CO2 concentration (Fico2) without changing intrapulmonary pressure (Pip) yields no response in mechanoreceptor (A) but elicits short‐latency increase in IPC activity (instantaneous discharge frequency, fdis) with dynamic overshoot (C). On the other hand, changing Pip without affecting Fico2 results in distinct change in fdis in mechanoreceptor (B) and no consistent response in IPC (D).



Figure 1.

Structure of avian respiratory system comprising lung and air sacs (AS). Unpaired cervical and paired clavicular and cranial thoracic air sacs constitute cranial group (connections with medioventral secondary bronchi); paired caudal thoracic and abdominal air sacs form caudal group (connections with main bronchus). Gas exchanging parabronchi connect mediodorsal and medioventral secondary bronchi; airflow through them is from former to latter during both respiratory phases (arrow, upper right). Periparabronchial tissue contains meshwork of air capillaries contacting blood capillaries enroute from peripheral arterioles to venules that lie close to parabronchial lumen and drain collected blood to veins in periphery. Serial multicapillary system formed by blood (and air) capillaries along parabronchus is basis for crosscurrent model describing parabronchial gas exchange.

From Scheid 260


Figure 2.

Functional characteristics of intrapulmonary chemoreceptor (IPC) in duck 108. A: single‐unit discharge is shown at various levels of lung gas CO2 partial pressure (Pico,) in unidirectional ventilation during low (3 cmH2O, left) and high (10 cmH2O, right) intrapulmonary pressure (Pip). Increasing inspiratory partial pressure of CO2 (Pico,) reversibly suppresses receptor discharge, but changes in Pip remain without effect. B: receptor discharge (middle) and corresponding instantaneous discharge frequency (upper) are displayed in response to sudden stepdown and backup in Pico2. Receptor response occurs within first second after changing Pico2. C: IPC responds to rhythmic changes in Pico2 during tidal pump ventilation.



Figure 3.

Response characteristics of mechanoreceptor (A, B) and intrapulmonary chemoreceptor (IPC) (C, D) recorded in unidirectionally ventilated duck 109. Step decrease in lung CO2 concentration (Fico2) without changing intrapulmonary pressure (Pip) yields no response in mechanoreceptor (A) but elicits short‐latency increase in IPC activity (instantaneous discharge frequency, fdis) with dynamic overshoot (C). On the other hand, changing Pip without affecting Fico2 results in distinct change in fdis in mechanoreceptor (B) and no consistent response in IPC (D).

References
 1. Abdalla, A. B., and A. S. King. The afferent and efferent myelinated fibers of the avian cervical vagus. J. Anat. 128: 135‐142, 1979.
 2. Abdel‐Magied, E. M., and A. S. King. The topographical anatomy and blood supply of the carotid body region of the domestic fowl. J. Anat. 126: 535‐546, 1978.
 3. Adams, W. E. The Comparative Morphology of the Carotid Body and Carotid Sinus. Springfield, IL: Thomas, 1958.
 4. Åkerman, B., B. Andersson, E. Fabricius, and L. Svensson. Observations on central regulation of body temperature and of food and water intake in the pigeon (Columba livia). Acta Physiol. Scand. 50: 328‐336, 1960.
 5. Altland, P. D. Altitude tolerance of chickens and pigeons. J. Appl. Physiol. 16: 141‐143, 1961.
 6. Andersen, H. T. Depression of metabolism in the duck during experimental diving. Acta Physiol Scand. 46: 234‐239, 1959.
 7. Andersen, H. T. A note on the composition of alveolar air in the diving duck. Acta Physiol. Scand. 46: 240‐243, 1959.
 8. Andersen, H. T. Physiological adaptations in diving vertebrates. Physiol. Rev. 46: 212‐243, 1966.
 9. Andersen, H. T., B. E. Hustvedt, and A. Lövö. Acid‐base changes in diving ducks. Acta Physiol. Scand. 63: 128‐132, 1965.
 10. Andersen, H. T., and A. Lövö. The effect of carbon dioxide on the respiration of avian divers (ducks). Comp. Biochem. Physiol. 12: 451‐456, 1964.
 11. Andersen, H. T., and A. Lövö. Indirect estimation of partial pressure of oxygen in arterial blood of diving ducks. Respir. Physiol 2: 163‐167, 1967.
 12. Bamford, O. S., and D. R. Jones. On the initiation of apnoea and some cardiovascular responses to submergence in ducks. Respir. Physiol 22: 199‐216, 1974.
 13. Bamford, O. S., and D. R. Jones. The effects of asphyxia on afferent activity recorded from the cervical vagus in the duck. Pfluegers Arch. 366: 95‐99, 1976.
 14. Bamford, O. S., and D. R. Jones. Respiratory and cardiovascular interactions in ducks: the effect of lung denervation on the initiation of and recovery from some cardiovascular responses to submergence. J. Physiol. London 259: 575‐596, 1976.
 15. Banzett, R. B., and R. E. Burger. Response of avian intrapulmonary chemoreceptors to venous CO2 and ventilatory gas flow. Respir. Physiol. 29: 63‐72, 1977.
 16. Barker, M. R., R. E. Burger, and P. C. G. Nye. Respiratory inhibition from chicken intrapulmonary chemoreceptors reduced by increasing rate of repetitive Pco2 changes. Q. J. Exp. Physiol. 6: 367‐376, 1981.
 17. Barnas, G. M., J. A. Estavillo, F. B. Mather, and R. E. Burger. The effect of CO2 and temperature on respiratory movements in the chicken. Respir. Physiol. 43: 315‐325, 1981.
 18. Barnas, G. M., F. B. Mather, and M. R. Fedde. Are avian intrapulmonary CO2 receptors chemically modulated mechanoreceptors or chemoreceptors? Respir. Physiol. 35: 237‐243, 1978.
 19. Bech, C., K. Johansen, and G. M. O. Maloiy. Ventilation and expired gas composition in the flamingo, Phoenicopterus ruber, during normal respiration and panting. Physiol. Zool. 52: 313‐328, 1979.
 20. Bennett, T. The adrenergic innervation of the pulmonary vasculature, the lung and the thoracic aorta, and on the presence of aortic bodies in the domestic fowl (Gallus gallus domesticus L.) Z. Zellforsch. Mikrosk. Anat. 114: 117‐134, 1971.
 21. Berger, M. Energiewechsel von Kolibris beim Schwirrflug unter Höhenbedingungen. J. Ornithol. 115: 273‐288, 1974.
 22. Berger, M. Oxygen consumption and power of hovering hummingbirds at varying barometric and oxygen pressures (Abstract). Naturwissenschaften 61: 407, 1974.
 23. Berger, M., Ventilation in the hummingbird Colibri coruscans during altitude hovering. In: Respiratory Function in Birds. Adult and Embryonic, edited by J. Piiper. Berlin: Springer‐Verlag, 1978, p. 85‐88.
 24. Berger, M., and J. S. Hart. Die Atmung beim Kolibri Amazilia fimbriata während des Schwirrfluges bei verschiedenen Umgebungstemperaturen. J. Comp. Physiol. 81: 363‐380, 1972.
 25. Berger, M., and J. S. Hart. Physiology and energetics of flight. In: Avian Biology, edited by D. S. Farner and J. R. King. New York: Academic, 1974, vol. 4, p. 415‐477.
 26. Berger, P. J. Changes in ventilatory flow rate in ducks in response to a single inspiration of air containing 5% CO2. Respir. Physiol. 43: 241‐248, 1981.
 27. Berger, P. J., R. D. Tallman, Jr., and A. L. Kunz. Discharge of intrapulmonary chemoreceptors and its modulation by rapid Fico2 changes in decerebrate ducks. Respir. Physiol 42: 123‐130, 1980.
 28. Bernstein, M. H. Ventilation and respiratory evaporation in the flying crow, Corvus ossifragus. Respir. Physiol. 26: 371‐382, 1976.
 29. Besch, E. L., R. R. Burton, and A. H. Smith. Influence of chronic hypoxia on blood gas tensions and pH in domestic fowl. Am. J. Physiol. 220: 1379‐1382, 1971.
 30. Besch, E. L., and H. Kadono. Cardiopulmonary responses to acute hypoxia in domestic fowl. In: Respiratory Function in Birds. Adult and Embryonic, edited by J. Piiper. Berlin: Springer‐Verlag, 1978, p. 71‐78.
 31. Black, C. P., and S. M. Tenney. Oxygen transport during progressive hypoxia in high‐altitude and sea‐level waterfowl. Respir. Physiol 39: 217‐239, 1980.
 32. Black, C. P., S. M. Tenney, and M. van Kroonenburg. Oxygen transport during progressive hypoxia in bar‐headed geese (Anser indicus) acclimatized to sea level and 5600 meters. In: Respiratory Function in Birds. Adult and Embryonic, edited by J. Piiper. Berlin: Springer‐Verlag, 1978, p. 79‐83.
 33. Blankart, R. Zur Charakterisierung der vagalen Atmungssteuerung der Taube. Helv. Physiol. Acta 18: 35‐42, 1960.
 34. Boggs, D. F., and D. L. Kilgore, Jr. Ventilatory response to CO2 in a burrow‐dwelling bird (Abstract). Federation Proc. 39: 1061, 1980.
 35. Boggs, D. F., and D. L. Kilgore, Jr.. Ventilatory responses to hypoxic hypercarbia in the burrowing owl and bobwhite (Abstract). Am. Zool. 20: 871, 1980.
 36. Boon, J. K., M. R. Fedde, and P. Scheid. A method for localizing intrapulmonary chemoreceptors in the parabronchial mantle of the duck. Comp. Biochem. Physiol A 72: 463‐468, 1982.
 37. Boon, J. K., W. D. Kuhlmann, and M. R. Fedde. Control of respiration in the chicken: effects of venous CO2 loading. Respir. Physiol. 39: 169‐181, 1980.
 38. Bouverot, P. Control of breathing in birds compared with mammals. Physiol. Rev. 58: 604‐655, 1978.
 39. Bouverot, P., D. Douguet, and P. Sébert. Role of the arterial chemoreceptors in ventilatory and circulatory adjustments to hypoxia in awake Pekin ducks. J. Comp. Physiol. 133: 177‐186, 1979.
 40. Bouverot, P., and G. Hildwein. Combined effects of hypoxia and moderate heat load on ventilation in awake Pekin ducks. Respir. Physiol. 35: 373‐384, 1978.
 41. Bouverot, P., G. Hildwein, and D. Le Goff. Evaporative water loss, respiratory pattern, gas exchange and acid‐base balance during thermal panting in Pekin ducks exposed to moderate heat. Respir. Physiol. 21: 255‐269, 1974.
 42. Bouverot, P., G. Hildwein, and P. Oulhen. Ventilatory and circulatory O2 convection at 4000 m in pigeon at neutral or cold temperature. Respir. Physiol. 28: 371‐385, 1976.
 43. Bouverot, P., N. Hill, and Y. Jammes. Ventilatory responses to CO2 in intact and chronically chemodenervated Pekin ducks. Respir. PhysioL 22: 137‐156, 1974.
 44. Bouverot, P., and L.‐M. Lettner. Arterial chemoreceptors in the domestic fowl. Respir. Physiol. 15: 310‐320, 1972.
 45. Bouverot, P., and P. Sébert. O2‐chemoreflex drive of ventilation in awake birds at rest. Respir. Physiol. 37: 201‐218, 1979.
 46. Brackenbury, J. H. Experimentally induced antagonism of chemical and thermal reflexes in the respiratory system of fully conscious chickens. Respir. Physiol. 34: 377‐384, 1978.
 47. Brackenbury, J. H. Respiration and production of sounds by birds. Biol Rev. 55: 363‐378, 1980.
 48. Brackenbury, J. H., and P. Avery. Energy consumption and ventilatory mechanisms in the exercising fowl. Comp. Biochem. Physiol. A 66: 439‐445, 1980.
 49. Brackenbury, J. H., P. Avery, and M. Gleeson. Respiration in exercising fowl. I. Oxygen consumption, respiratory rate and respired gases. J. Exp. Biol. 93: 317‐325, 1981.
 50. Brackenbury, J. H., M. Gleeson, and P. Avery. Respiration in exercising fowl. II. Respiratory water loss and heat balance. J. Exp. Biol. 93: 327‐332, 1981.
 51. Brown, C. M., V. Molony, A. S. King, and R. D. Cook. Fibre size and conduction velocity in the vagus of the domestic fowl (Gallus domesticus). Acta Anat. 83: 451‐460, 1972.
 52. Bucher, K., and P. Baettig. Some special respiratory effects of CO2 in pigeons. Agents Actions 5: 378‐382, 1975.
 53. Burger, R. E. Pulmonary chemosensitivity in the domestic fowl (Abstract). Federation Proc. 27: 328, 1968.
 54. Burger, R. E. Respiratory gas exchange and control in the chicken. Poult. Sci. 59: 2654‐2665, 1980.
 55. Burger, R. E., M. R. Barker, P. C. G. Nye, and F. L. Powell. Effects of intrapulmonary chemoreceptors in perfused and non‐perfused lungs. In: Respiratory Function in Birds. Adult and Embryonic, edited by J. Piiper. Berlin: Springer‐Verlag, 1978, p. 156‐163.
 56. Burger, R. E., J. C. G. Coleridge, H. M. Coleridge, P. C. G. Nye, F. L. Powell, C. Ehlers, and R. B. Banzett. Chemoreceptors in the paleopulmonic lung of the emu: discharge patterns during cyclic ventilation. Respir. Physiol. 28: 249‐259, 1976.
 57. Burger, R. E., and J. A. Estavillo. The alteration of CO2 respiratory sensitivity in chickens by thoracic visceral denervation. Respir. Physiol. 32: 251‐263, 1978.
 58. Burger, R. E., J. Estavillo, J. Osborne, P. J. Stoll, and W. Wallace. Low‐impedance tungsten microelectrode for recording from sensory ganglia. IEEE Trans. Biomed. Eng. 20: 378‐380, 1973.
 59. Burger, R. E., and F. W. Lorenz. Artificial respiration in birds by unidirectional air flow. Poult. Sci. 39: 236‐237, 1960.
 60. Burger, R. E., P. C. G. Nye, F. L. Powell, C. Ehlers, M. Barker, and M. R. Fedde. Response to CO2 of intrapulmonary chemoreceptors in the emu. Respir. Physiol. 28: 315‐324, 1976.
 61. Burger, R. E., J. L. Osborne, and R. B. Banzett. Intrapulmonary chemoreceptors in Gallus domesticus: adequate stimulus and functional localization. Respir. Physiol. 22: 87‐97, 1974.
 62. Burton, R. R., E. L. Besch, and A. H. Smith. Effect of chronic hypoxia on the pulmonary arterial blood pressure of the chicken. Am. J. Physiol. 214: 1438‐1442, 1968.
 63. Burton, R. R., and A. H. Smith. Effect of polycythemia and chronic hypoxia on heart mass in the chicken. J. Appl. Physiol. 22: 782‐785, 1967.
 64. Butler, P. J. The effect of progressive hypoxia on the respiratory and cardiovascular systems of the chicken. J. Physiol. London 191: 309‐324, 1967.
 65. Butler, P. J. The effect of progressive hypoxia on the respiratory and cardiovascular systems of the pigeon and duck. J. Physiol. London 201: 527‐538, 1970.
 66. Butler, P. J., The use of radio telemetry in the studies of diving and flying of birds. In: A Handbook on Biotelemetry and Radio Tracking, edited by C. J. Amlaner and D. W. Mac‐Donald. Oxford, UK: Pergamon, 1980, p. 569‐577.
 67. Butler, P. J., and D. R. Jones. Onset of and recovery from diving bradycardia in ducks. J. Physiol. London 196: 255‐272, 1968.
 68. Butler, P. J., and M. P. Osborne. The effect of cervical vagotomy (decentralization) on the ultrastructure of the carotid body of the duck, Anas platyrhynchos. Cell Tissue Res. 163: 491‐502, 1975.
 69. Butler, P. J., and E. W. Taylor. The effect of hypercapnic hypoxia, accompanied by different levels of lung ventilation, on heart rate in the duck. Respir. Physiol. 19: 176‐187, 1973.
 70. Butler, P. J., and E. W. Taylor. Responses of the respiratory and cardiovascular systems of chickens and pigeons to changes in Pao2 and Paco2. Respir. Physiol. 21: 351‐363, 1974.
 71. Butler, P. J., N. H. West, and D. R. Jones. Respiratory and cardiovascular responses of the pigeon to sustained, level flight in a wind‐tunnel. J. Exp. Biol. 71: 7‐26, 1977.
 72. Butler, P. J., and A. J. Woakes. Changes in heart rate and respiratory frequency during natural behaviour of ducks, with particular reference to diving. J. Exp. Biol. 79: 283‐300, 1979.
 73. Cain, S. M., and J. E. Dunn II.. Transient arterial lactic acid changes in unanesthetized dogs at 21,000 ft. Am. J. Physiol. 206: 1437‐1440, 1964.
 74. Calder, W. A., and K. Schmidt‐Nielsen. Evaporative cooling and respiratory alkalosis in the pigeon. Proc. Natl. Acad. Sci. USA 55: 750‐756, 1966.
 75. Calder, W. A., and K. Schmidt‐Nielsen. Panting and blood carbon dioxide in birds. Am. J. Physiol. 215: 477‐482, 1968.
 76. Callanan, D., M. Dixon, J. G. Widdicombe, and J. C. M. Wise. Responses of geese to inhalation of irritant gases and injections of phenyl diguanide. Respir. Physiol. 22: 157‐166, 1974.
 77. Carey, C., and M. L. Morton. Aspects of circulatory physiology of mountain and lowland birds. Comp. Biochem. Physiol. A 54: 61‐74, 1976.
 78. Chiang, M. J., P. J. Berger, and A. L. Kunz. A study of the effect of SO2 on pacing and intrapulmonary chemoreceptor discharge in the domestic fowl. Respir. Physiol. 33: 229‐239, 1978.
 79. Chowdhary, D. S. A comparative study of the carotid body and carotid sinus of vertebrates. II. The carotid body and “carotid sinus” of the fowl (Gallus domesticus). Edinburgh: Univ. of Edinburgh, 1953. PhD thesis.
 80. Cohen, D. H. The hyperstriatal region of the avian forebrain: a lesion study of possible functions, including its role in cardiac and respiratory conditioning. J. Comp. Neurol. 131: 559‐570, 1967.
 81. Cohen, D. H., and L. H. Pitts. The hyperstriatal region of the avian forebrain: somatic and autonomic responses to electrical stimulation. J. Comp. Neurol. 131: 323‐336, 1967.
 82. Cohen, D. H., and A. M. Schnall. Medullary cells of origin of vagal cardioinhibitory fibers in the pigeon. II. Electrical stimulation of the dorsal motor nucleus. J. Comp. Neurol. 140: 321‐342, 1970.
 83. Colacino, J. M., D. H. Hector, and K. Schmidt‐Nielsen. Respiratory responses of ducks to simulated altitude. Respir. Physiol. 29: 265‐281, 1977.
 84. Cook, R. D., and A. S. King. A neurite‐receptor complex in the avian lung, electron microscopical observations. Experientia 25: 1162‐1164, 1969.
 85. Crank, W. D., W. D. Kuhlmann, and M. R. Fedde. Functional localization of avian intrapulmonary CO2 receptors within the parabronchial mantle. Respir. Physiol. 41: 71‐85, 1980.
 86. Crawford, E. C., Jr., and G. Kampe. Resonant panting in pigeons. Comp. Biochem. Physiol. A 40: 549‐552, 1971.
 87. Dawson, W. R. Avian physiology. Annu. Rev. Physiol. 37: 441‐465, 1975.
 88. Dawson, W. R., and J. W. Hudson. Birds. In: Comparative Physiology of Thermoregulation. Invertebrates and Non‐mammalian Vertebrates, edited by G. C. Whittow. New York: Academic, 1970, vol. I, p. 223‐310.
 89. Dejours, P. Intérět méthodologique de l'étude d'un organisme vivant à la phase initiale de rupture d'un équilibre physiologique. C. R. Acad. Sci. 245: 1946‐1948, 1957.
 90. Dejours, P., Control of respiration in muscular exercise. In: Handbook of Physiology. Respiration, edited by W. O. Fenn and H. Rahn. Washington, DC: Am. Physiol. Soc., 1964, sect. 3, vol. I, chapt. 25, p. 631‐648.
 91. Dejours, P. Principles of Comparative Respiratory Physiology (2nd ed). Amsterdam: North‐Holland, 1981.
 92. Dooley, M. S., and T. Koppányi. The control of respiration in the domestic duck (Anas boscas). J. Pharmacol. Exp. Ther. 36: 507‐518, 1929.
 93. Duncker, H.‐R. The lung air sac system of birds. Ergeb. Anat. Entwicklungsgesch. 45: 1‐171, 1971.
 94. Duncker, H.‐R. Structure of avian lungs. Respir. Physiol. 14: 44‐63, 1972.
 95. Duncker, H.‐R. Structure of the avian respiratory tract. Respir. Physiol. 22: 1‐19, 1974.
 96. Durkovic, R. G., and D. H. Cohen. Effect of caudal midbrain lesions on conditioning of heart‐ and respiratory‐rate responses in the pigeon. J. Comp. Physiol. Psychol. 69: 329‐338, 1964.
 97. Eaton, J. A., Jr., M. R. Fedde, and R. E. Burger. Sensitivity to inflation of the respiratory system in the chicken. Respir. Physiol. 11: 167‐177, 1971.
 98. Estavillo, J., and R. E. Burger. Cardiac afferent activity in depressor nerve of the chicken. Am. J. Physiol. 225: 1063‐1066, 1973.
 99. Estavillo, J., and R. E. Burger. Avian cardiac receptors: activity changes by blood pressure, carbon dioxide, and pH. Am. J. Physiol. 225: 1067‐1071, 1973.
 100. Estavillo, J. A., and M. L. Youther. The effect of middle cardiac nerve stimulation upon the respiratory response to Paco2 in the chicken. In: Respiratory Function in Birds. Adult and Embryonic, edited by J. Piiper. Berlin: Springer‐Verlag, 1978, p. 175‐181.
 101. Eyzaguirre, C., and H. Koyano. Effects of hypoxia, hypercapnia, and pH on the chemoreceptor activity of the carotid body in vitro. J. Physiol. London 178: 385‐409, 1965.
 102. Fedde, M. R. Peripheral control of avian respiration. Federation Proc. 29: 1664‐1673, 1970.
 103. Fedde, M. R., Respiration. In: Avian Physiology (3rd ed.), edited by P. D. Sturkie. Berlin: Springer‐Verlag, 1976, p. 122‐145.
 104. Fedde, M. R., and R. E. Burger. A gas heating and humidifying accessory for the unidirectional respirator. Poult. Sci. 41: 679, 1962.
 105. Fedde, M. R., and R. E. Burger. Death and pulmonary alteration following bilateral cervical vagotomy in the fowl. Poult. Sci. 42: 1236‐1246, 1963.
 106. Fedde, M. R., R. E. Burger, and R. L. Kitchell. The effect of anesthesia and age on respiration following bilateral, cervical vagotomy in the fowl. Poult. Sci. 42: 1212‐1223, 1963.
 107. Fedde, M. R., R. E. Burger, and R. L. Kitchell. Localization of vagal afferents involved in the maintenance of normal avian respiration. Poult. Sci. 42: 1224‐1236, 1963.
 108. Fedde, M. R., R. N. Gatz, H. Slama, and P. Scheid. Intrapulmonary CO2 receptors in the duck. I. Stimulus specificity. Respir. Physiol. 22: 99‐114, 1974.
 109. Fedde, M. R., R. N. Gatz, H. Slama, and P. Scheid. Intrapulmonary CO2 receptors in the duck. II. Comparison with mechanoreceptors. Respir. Physiol. 22: 115‐121, 1974.
 110. Fedde, M. R., J. P. Kiley, F. L. Powell, and P. Scheid. Intrapulmonary CO2 receptors and control of breathing in ducks: effects of prolonged circulation time to carotid bodies and brain. Respir. Physiol. 47: 121‐140, 1982.
 111. Fedde, M. R., and W. D. Kuhlmann. Intrapulmonary carbon dioxide sensitive receptors: amphibians to mammals. In: Respiratory Function in Birds. Adult and Embryonic, edited by J. Piiper. Berlin: Springer‐Verlag, 1978, p. 33‐50.
 112. Fedde, M. R., and W. D. Kuhlmann. Response to inhalation of low CO2 partial pressures in the chicken (Abstract). Physiologist 22: (4): 36, 1979.
 113. Fedde, M. R., W. D. Kuhlmann, and P. Scheid. Intrapulmonary receptors in the Tegu lizard: I. Sensitivity to CO2. Respir. Physiol. 29: 35‐48, 1977.
 114. Fedde, M. R., and D. F. Peterson. Intrapulmonary receptor response to changes in airway‐gas composition in Gallus domesticus. J. Physiol. London 209: 609‐625, 1970.
 115. Fedde, M. R., and P. scheid. Intrapulmonary CO2 receptors in the duck. IV. Discharge pattern of the population during a respiratory cycle. Respir. Physiol. 26: 223‐227, 1976.
 116. Feigl, E., and B. Folkow. Cardiovascular responses in “diving” and during brain stimulation in ducks. Acta Physiol. Scand. 57: 99‐110, 1963.
 117. Fowle, A. S. E., and S. Weinstein. Effect of cutaneous electric shock on ventilatory response of birds to carbon dioxide. Am. J. Physiol. 210: 293‐298, 1966.
 118. Fu, S. K., T. Chen, and K. T. Tcheng. Studies of the glomera aortica of the Great Reed Warbler and the von Schrenck's Little Bittern. Acta Zool. Sin. 14: 297‐299, 1962.
 119. Geiser, J., R. K. Gratz, T. Hiramoto, and P. Scheid. Ventilation and gas exchange in ducks at elevated metabolic rate (Abstract). Proc. Int. Congr. Physiol. Sci., 28th, Budapest, 1980, vol. 14, p. 430.
 120. Gjedde, A., J. J. Caronna, B. Hindfelt, and F. Plum. Whole‐brain blood flow and oxygen metabolism in the rat during nitrous oxide anesthesia. Am. J. Physiol. 229: 113‐118, 1975.
 121. Graham, J. D. P. Respiratory reflexes in the fowl. J. Physiol. London 97: 525‐532, 1940.
 122. Granholm, L., L. Lukjanova, and B. F. Siesjö. Evidence of cerebral hypoxia in pronounced hyperventilation. Scand. J. Clin. Lab. Invest. 22, Suppl. 102: 4:C, 1968.
 123. Grubb, B., J. M. Colacino, and K. Schmidt‐Nielsen. Cerebral blood flow in birds: effect of hypoxia. Am. J. Physiol. 234 (Heart Circ. Physiol. 3): H230‐H234, 1978.
 124. Grubb, B., C. D. Mills, J. M. Colacino, and K. Schmidt‐Nielsen. Effect of arterial carbon dioxide on cerebral blood flow in ducks. Am. J. Physiol. 232 (Heart Circ. Physiol. 1): H596‐H601, 1977.
 125. Guz, A. Regulation of respiration in man. Annu. Rev. Physiol. 37: 303‐323, 1975.
 126. Harper, A. M. The inter‐relationship between Paco2 and blood pressure in the regulation of blood flow through the cerebral cortex. Acta Neurol Scand. Suppl. 14: 94‐103, 1965.
 127. Henry, J. D., and M. R. Fedde. Pulmonary circulation time in the chicken. Poult. Sci. 49: 1286‐1290, 1970.
 128. Hiestand, W. A., and W. C. Randall. Species differentiation in the respiration of birds following carbon dioxide administration and the location of inhibitory receptors in the upper respiratory tract. J. Cell. Comp. Physiol. 17: 333‐340, 1941.
 129. Hiestand, W. A., and W. C. Randall. Influence of proprioceptive vagal afferents on panting and accessory panting movements in mammals and birds. Am. J. Physiol. 138: 12‐15, 1942.
 130. Hodges, R. D., A. S. King, D. Z. King, and E. I. French. The general ultrastructure of the carotid body of the domestic fowl. Cell Tissue Res. 162: 483‐497, 1975.
 131. Hudson, D. M., and M. H. Bernstein. Respiratory ventilation during steady‐state flight in the white‐necked raven, Corvus cryptoleucus (Abstract). Federation Proc. 37: 472, 1978.
 132. Hunt, J. The Conquest of Everest. New York: Dutton, 1954.
 133. Johansen, K., and T. Aakhus. Central cardiovascular responses to submersion asphyxia in the duck. Am. J. Physiol. 205: 1167‐1171, 1963.
 134. Johnston, A. M., and M. G. M. Jukes. The respiratory response of the decerebrate domestic hen to inhaled carbon dioxide‐air mixture (Abstract). J. Physiol. London 184: 38P‐39P, 1966.
 135. Jones, D. R. Avian afferent vagal activity related to respiratory and cardiac cycles. Comp. Biochem. Physiol. 28: 961‐965, 1969.
 136. Jones, D. R. The control of breathing in birds with particular reference to the initiation and maintenance of diving apnea. Federation Proc. 35: 1975‐1982, 1976.
 137. Jones, D. R., and O. S. Bamford. Open‐loop respiratory chemosensitivity in chickens and ducks. Am. J. Physiol. 230: 861‐867, 1976.
 138. Jones, D. R., and G. F. Holeton. Cardiac output of ducks during diving. Comp. Biochem. Physiol. A 41: 639‐645, 1972.
 139. Jones, D. R., and G. F. Holeton. Cardiovascular and respiratory responses of ducks to progressive hypocapnic hypoxia. J. Exp. Biol. 56: 657‐666, 1972.
 140. Jones, D. R., and K. Johansen. The blood vascular system of birds. In: Avian Biology, edited by D. S. Farner and J. R. King. New York: Academic, 1972, vol. 2, p. 157‐285.
 141. Jones, D. R., and M. J. Purves. Arterial chemoreceptors and the diving response in the duck (Abstract). J. Physiol. London 203: 41P‐42P, 1969.
 142. Jones, D. R., and M. J. Purves. The carotid body in the duck and the consequences of its denervation upon the cardiac responses to immersion. J. Physiol. London 211: 279‐294, 1970.
 143. Jones, D. R., and M. J. Purves. The effect of carotid body denervation upon the respiratory response to hypoxia and hypercapnia in the duck. J. Physiol. London 211: 295‐309, 1970.
 144. Jones, D. R., and N. H. West. The contribution of arterial chemoreceptors and baroreceptors to diving reflexes in birds. In: Respiratory Function in Birds. Adult and Embryonic, edited by J. Piiper. Berlin: Springer‐Verlag, 1978, p. 95‐104.
 145. Jukes, M. G. M., Control of respiration. In: Physiology and Biochemistry of the Domestic Fowl, edited by D. J. Bell and B. M. Freeman. New York: Academic, 1971, vol. 1, p. 171‐185.
 146. Kiley, J. P., W. D. Kuhlmann, and M. R. Fedde. Respiratory and cardiovascular responses to exercise in the duck. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 47: 827‐833, 1979.
 147. King, A. S., Afferent pathways in the vagus and their influence on avian breathing: a review. In: Physiology of the Domestic Fowl, edited by C. Horton‐Smith and E. C. Amoroso. Edinburgh: Oliver & Boyd, 1966, p. 302‐310.
 148. King, A. S., D. Z. King, R. D. Hodges, and J. Henry. Synaptic morphology of the carotid body of the domestic fowl. Cell Tissue Res. 162: 459‐473, 1975.
 149. King, A. S., J. McLelland, R. D. Cook, D. Z. King, and C. Walsh. The ultrastructure of afferent nerve endings in the avian lung. Respir. Physiol. 22: 21‐40, 1974.
 150. King, A. S., J. McLelland, V. Molony, D. Bowsher, M. Mortimer, and S. S. White. On vagal afferent control of avian breathing (Abstract). J. Anat. 104: 182, 1968.
 151. King, A. S., J. McLelland, V. Molony, and M. F. Mortimer. Respiratory afferent activity in the avian vagus: eupnoea, inflation and deflation (Abstract). J. Physiol. London 201: 35P‐36P, 1969.
 152. King, A. S., and V. Molony. The anatomy of respiration. In: Physiology and Biochemistry of the Domestic Fowl, edited by D. J. Bell and B. M. Freeman. New York: Academic, 1971, vol. 1, p. 93‐169.
 153. King, A. S., V. Molony, J. McLelland, D. R. Bowsher, and M. F. Mortimer. Afferent respiratory pathways in the avian vagus. Experientia 24: 1017‐1018, 1968.
 154. Klentz, R. D., and M. R. Fedde. Hydrogen sulfide: effects on avian respiratory control and intrapulmonary CO2 receptors. Respir. Physiol. 32: 355‐367, 1978.
 155. Kobayashi, S. Comparative cytological studies of the carotid body. 2. Ultrastructure of the synapses on the chief cell. Arch. Histol. Jpn. 33: 397‐420, 1971.
 156. Kooyman, G. L., J. P. Schroeder, D. G. Greene, and V. A. Smith. Gas exchange in penguins during simulated dives to 30 and 68 m. Am. J. Physiol. 225: 1467‐1471, 1973.
 157. Kotilainen, P. V., and P. T. S. Putkonen. Respiratory and cardiovascular responses to electrical stimulation of the avian brain with emphasis on inhibitory mechanisms. Acta Physiol. Scand. 90: 358‐369, 1974.
 158. Kreithen, M. L., and W. T. Keeton. Detection of changes in atmospheric pressure by the homing pigeon, Columba livia. J. Comp. Physiol. 89: 73‐82, 1974.
 159. Kunz, A. L., T. Kawashiro, and P. Scheid. Study of CO2 sensitive vagal afferents in the cat lung. Respir. Physiol. 27: 347‐355, 1976.
 160. Kunz, A. L., and D. A. Miller. Pacing of avian respiration with CO2 oscillation. Respir. Physiol. 22: 167‐177, 1974.
 161. Kunz, A. L., and D. A. Miller. Effect of feedback delay upon the apparent damping ratio of the avian respiratory control system. Respir. Physiol. 22: 179‐189, 1974.
 162. Lack, D. The height of bird migration. Br. Birds 53: 5‐10, 1960.
 163. Lasiewski, R. C., Respiratory function in birds. In: Avian Biology, edited by D. S. Farner and J. R. King. New York: Academic, 1972, vol. 2, p. 287‐342.
 164. Laybourne, R. C. Collision between a vulture and an aircraft at an altitude of 37,000 ft. Wilson Bull 86: 461‐462, 1974.
 165. Leitner, L.‐M. Pulmonary mechanoreceptor fibres in the vagus of the domestic fowl. Respir. Physiol 16: 232‐244, 1972.
 166. Leitner, L.‐M., and M. Roumy. Vagal afferent activities related to the respiratory cycle in the duck: sensitivity to mechanical, chemical and electrical stimuli. Respir. Physiol 22: 41‐56, 1974.
 167. Leitner, L.‐M., M. Roumy, and M. J. Miller. Motor responses triggered by diving and by mechanical stimulation of the nostrils and of the glottis of the duck. Respir. Physiol. 21: 385‐392, 1974.
 168. Lillo, R. S., and D. R. Jones. Effect of cardiovascular variables on hyperpnea during recovery from diving in ducks. J. Appl. Physiol: Respirat. Environ. Exercise Physiol 52: 206‐215, 1982.
 169. Linderoth, L. S., Jr.. A wind tunnel for bird flight studies at high altitudes. J. Appl. Physiol. 39: 501‐502, 1975.
 170. Linsley, J. G., and R. E. Burger. Respiratory and cardiovascular responses in the hyperthermic domestic cock. Poult. Sci. 43: 291‐305, 1964.
 171. Lord, R. D., Jr., F. C. Bellrose, and W. W. Cochran. Radiotelemetry of the respiration of a flying duck. Science 137: 39‐40, 1962.
 172. Lutz, P. L., and K. Schmidt‐Nielsen. Effect of simulated altitude on blood gas transport in the pigeon. Respir. Physiol. 30: 383‐388, 1977.
 173. Macklem, P. T., P. Bouverot, and P. Scheid. Measurement of the distensibility of the parabronchi in duck lungs. Respir. Physiol. 38: 23‐35, 1979.
 174. Magno, M. Cardio‐respiratory responses to carotid body stimulation with NaCN in the chicken. Respir. Physiol. 17: 220‐226, 1973.
 175. Manville, R. H. Altitude record for mallard (Abstract). Wilson Bull. 75: 92, 1963.
 176. Marder, J., and Z. Arad. The acid base balance of Abdim's stork (Sphenorhynchus abdimii) during thermal panting. Comp. Biochem. Physiol. A 51: 887‐889, 1975.
 177. Marder, J., Z. Arad, and M. Gafni. The effect of high ambient temperature on acid‐base balance of panting Bedouin fowl (Gallus domesticus). Physiol. Zool 47: 180‐189, 1974.
 178. McLelland, J., R. D. Cook, and A. S. King. Nerves in the exchange area of the avian lung. Acta Anat. 83: 7‐16, 1972.
 179. Menuam, B., and S. A. Richards. Observations on the sites of respiratory evaporation in the fowl during thermal panting. Respir. Physiol 25: 39‐52, 1975.
 180. Miller, D. A., Effect of stretch on the respiratory pattern of a chicken. In: Respiratory Function in Birds. Adult and Embryonic, edited by J. Piiper. Berlin: Springer‐Verlag, 1978, p. 188‐195.
 181. Miller, D. A. A CO2 threshold mechanism in a closed‐loop avian respiratory system. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 48: 1029‐1034, 1980.
 182. Miller, D. A., and A. L. Kunz. Avian ventilatory responses to dynamic CO2 signals. J. Appl. Physiol. 39: 129‐134, 1975.
 183. Miller, D. A., and A. L. Kunz. Evidence that a cyclic rise in avian pulmonary CO2 triggers the next inspiration. Respir. Physiol. 31: 193‐202, 1977.
 184. Miller, D. A., and A. L. Kunz. Initiation of each avian inspiration by a CO2 threshold mechanism. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 47: 233‐239, 1979.
 185. Milsom, W. K., and D. R. Jones. Are reptilian pulmonary receptors mechano‐ or chemosensitive? Nature London 261: 327‐328, 1976.
 186. Milsom, W. K., D. R. Jones, and G. R. J. Gabbott. On chemoreceptor control of ventilatory responses to CO2 in un‐anesthetized ducks. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 50: 1121‐1128, 1981.
 187. Mitchell, G. S., B. A. Cross, T. Hiramoto, and P. Scheid. Effects of intrapulmonary CO2 and airway pressure on phrenic activity and pulmonary stretch receptor discharge in dogs. Respir. Physiol. 41: 29‐48, 1980.
 188. Mitchell, G. S., and J. L. Osborne. Avian intrapulmonary chemoreceptors: respiratory response to a step decrease in Pco2. Respir. Physiol. 33: 251‐261, 1978.
 189. Mitchell, G. S., and J. L. Osborne. Ventilatory responses to carbon dioxide inhalation after vagotomy in chickens. Respir. Physiol. 37: 81‐88, 1979.
 190. Molony, V. Some characteristics of the CO2‐sensitive receptors present in the lower respiratory tract of the chicken (Abstract). J. Physiol. London 219: 35P‐36P, 1971.
 191. Molony, V. A study of vagal afferent activity in phase with breathing and its role in the control of breathing in Gallus domesticus. Liverpool, UK: Univ. of Liverpool, 1972. PhD thesis.
 192. Molony, V. Classification of vagal afferents firing in phase with breathing in Gallus domesticus. Respir. Physiol. 22: 57‐76, 1974.
 193. Molony, V., W. Graf, and P. Scheid. Effects of CO2 on pulmonary air flow resistance in the duck. Respir. Physiol. 26: 333‐349, 1976.
 194. Muratori, G. Ricerche istologiche sull' innervazione del glomo carotico. Arch. Ital. Anat. Embryol. 30: 573‐602, 1932.
 195. Murillo‐Ferrol, N. L. The development of the carotid body in Gallus domesticus. Acta Anat. 68: 102‐126, 1967.
 196. Murrish, D. E. Respiratory heat and water exchange in penguins. Respir. Physiol. 19: 262‐270, 1973.
 197. Necker, R. Temperature‐sensitive ascending neurons in the spinal cord of pigeons. Pfluegers Arch. 353: 275‐286, 1975.
 198. Nightingale, T. E. Barbiturate anesthesia and CO2 sensitivity in chickens (Abstract). Physiologist 18: 333, 1975.
 199. Nightingale, T. E. Equithesin anesthesia and respiration in chickens (Abstract). Federation Proc. 34: 430, 1975.
 200. Nightingale, T. E. Comparison of cardiopulmonary parameters in awake and anesthetized chickens. Poult. Sci. 56: 147‐153, 1977.
 201. Nightingale, T. E., and M. R. Fedde. Ventilatory response to altered venous carbon dioxide loads in Gallus domesticus (Abstract). Poult. Sci. 50: 1612, 1971.
 202. Nisbet, I. C. T. Measurements with radar of the height of nocturnal migration over Cape Cod, Massachusetts. Bird Banding 34: 57‐67, 1963.
 203. Noel, J. The Story of Everest. Boston, MA: Little, Brown, 1927.
 204. Nonidez, J. F. The presence of depressor nerves in the aorta and carotid of birds. Anat. Rec. 62: 47‐73, 1935.
 205. Nye, P. C. G., and R. E. Burger. Chicken intrapulmonary chemoreceptors: discharge at static levels of intrapulmonary carbon dioxide and their location. Respir. Physiol. 33: 299‐322, 1978.
 206. Orr, J. B., and A. Watson. Study of the respiratory mechanism in the duck. J. Physiol. London 46: 337‐348, 1913.
 207. Osborne, J. L. Carbon‐dioxide‐sensitive pulmonary afferent neurons in Gallus domesticus; static and dynamic response characteristics. Davis: Univ. of California 1971. PhD thesis.
 208. Osborne, J. L., and R. E. Burger. Static and dynamic response characteristics of CO2‐sensitive chemoreceptors in the avian lung (Abstract). Physiologist 14: 205, 1970/71.
 209. osborne, J. L., and R. E. Burger. Intrapulmonary chemoreceptors in Gallus domesticus. Respir. Physiol. 22: 77‐85, 1974.
 210. Osborne, J. L., R. E. Burger, and P. J. Stoll. Dynamic responses of CO2‐sensitive avian intrapulmonary chemoreceptors. Am. J. Physiol. 233 (Regulatory Integrative Comp. Physiol. 2): R15‐R22, 1977.
 211. Osborne, J. L., and G. S. Mitchell. Regulation of arterial Pco2 during inhalation of CO2 in chickens. Respir. Physiol. 31: 357‐364, 1977.
 212. Osborne, J. L., and G. S. Mitchell. Intrapulmonary and systemic CO2‐chemoreceptor interaction in the control of avian respiration. Respir. Physiol. 33: 349‐357, 1978.
 213. Osborne, J. L., and G. S. Mitchell. Ventilatory responses during arterial homeostasis of Pco2 at low levels of inspired carbon dioxide. In: Respiratory Function in Birds. Adult and Embryonic, edited by J. Piiper. Berlin: Springer‐Verlag, 1978, p. 168‐174.
 214. Osborne, J. L., G. S. Mitchell, and F. Powell. Ventilatory responses to CO2 in the chicken: intrapulmonary and systemic chemoreceptors. Respir. Physiol. 30: 369‐382, 1977.
 215. Osborne, M. P., and P. J. Butler. New theory for receptor mechanism of carotid body chemoreceptors. Nature London 254: 701‐703, 1975.
 216. Parker, T. K., P. C. G. Nye, P. J. Stoll, and R. E. Burger. Respiratory response of intact Gallus domesticus to sinusoidally varying inhaled carbon dioxide. Comput. Programs Biomed. 6: 101‐107, 1976.
 217. Pearson, R. The Avian Brain. New York: Academic, 1972.
 218. Peek, F. W., and R. E. Phillips. Repetitive vocalizations evoked by local electrical stimulation of avian brains. II. Anesthetized chickens (Gallus gallus). Brain Behav. Evol. 4: 417‐438, 1971.
 219. Pennycuick, C. J. Animal Flight. London: Arnold, 1972.
 220. Pennycuick, C. J., Mechanics of flight. In: Avian Biology, edited by D. S. Farner and J. R. King. New York: Academic, 1975, vol. 5, p. 1‐75.
 221. Peterson, D. F., and M. R. Fedde. Receptors sensitive to carbon dioxide in lungs of chicken. Science 162: 1499‐1501, 1968.
 222. Peterson, D. F., and M. R. Fedde. Avian intrapulmonary CO2‐sensitive receptors: a comparative study. Comp. Biochem. Physiol. A 40: 425‐430, 1971.
 223. Peterson, D. F., and T. E. Nightingale. Functional significance of thoracic vagal branches in the chicken. Respir. Physiol. 27: 267‐275, 1976.
 224. Pickwell, G. W. Energy metabolism in ducks during submergence asphyxia: assessment by a direct method. Comp. Biochem. Physiol. 27: 455‐485, 1968.
 225. Piiper, J., (editor)., Comparative physiology of respiration in vertebrates. Respir. Physiol. 14: 1‐236, 1972.
 226. Piiper, J. (editor)., Respiratory Function in Birds. Adult and Embryonic. Berlin: Springer‐Verlag, 1978.
 227. Piiper, J., and P. Scheid. Gas transport efficacy of gills, lungs and skin: theory and experimental data. Respir. Physiol. 23: 209‐221, 1975.
 228. Piiper, J., and P. Scheid. Oxygen exchange in the metazoa. In: Oxygen and Living Processes, edited by D. L. Gilbert. Berlin: Springer‐Verlag, 1981, p. 150‐176.
 229. Powell, F. L., M. R. Barker, and R. E. Burger. Ventilatory response to the Pco2 profile in chicken lungs. Respir. Physiol. 41: 307‐321, 1980.
 230. Powell, F. L., M. R. Fedde, R. K. Gratz, and P. Scheid. Ventilatory response to CO2 in birds. I. Measurements in the unanesthetized duck. Respir. Physiol. 35: 349‐359, 1978.
 231. Powell, F. L., R. K. Gratz, and P. Scheid. Response of intrapulmonary chemoreceptors in the duck to changes in Pco2 and pH. Respir. Physiol. 35: 65‐77, 1978.
 232. Rahn, H., Gas transport from the external environment to the cell. In: Development of the Lung, edited by A. V. S. De Reuck and R. Porter. London: Churchill, 1967, p. 3‐23. (Ciba Found. Symp.).
 233. Rahn, H., Adaptation of the avian embryo to altitude. In: Respiratory Adaptations. Capillary Exchange and Reflex Mechanisms, edited by A. S. Paintal and P. Gill‐Kumar. Delhi: Univ. of Delhi Press, 1977, p. 94‐104.
 234. Rahn, H., and B. J. Howell. The OH−/H+ concept of acid‐base balance: historical development. Respir. Physiol. 33: 91‐97, 1978.
 235. Ramirez, J. M., and M. H. Bernstein. Compound ventilation during thermal panting in pigeons: a possible mechanism for minimizing hypocapnic alkalosis. Federation Proc. 35: 2562‐2565, 1976.
 236. Rautenberg, W. Die Bedeutung der zentral‐nervösen Ther‐mosensitivität für die Temperaturregulation der Taube. Z. Vgl. Physiol. 62: 235‐266, 1969.
 237. Rautenberg, W., B. May, R. Necker, and G. Rosner. Control of panting by thermosensitive spinal neurons in birds. In: Respiratory Function in Birds. Adult and Embryonic, edited by J. Piiper. Berlin: Springer‐Verlag, 1978, p. 204‐210.
 238. Rautenberg, W., R. Necker, and B. May. Thermoregulatory responses of the pigeon to changes of the brain and the spinal cord temperatures. Pfluegers Arch. 338: 31‐42, 1972.
 239. Ray, P. J., and M. R. Fedde. Responses to alterations in respiratory Po2 and Pco2 in the chicken. Respir. Physiol. 6: 135‐143, 1969.
 240. Reeves, R. B. The interaction of body temperature and acid‐base balance in ectothermic vertebrates. Annu. Rev. Physiol. 39: 559‐586, 1977.
 241. Reeves, R. B., and H. Rahn. Patterns in vertebrate acid‐base regulation. In: Evolution of Respiratory Processes, edited by S. C. Wood and C. Lenfant. New York: Dekker, 1979, p. 225‐252.
 242. Reivich, M. Arterial Pco2 and cerebral hemodynamics. Am. J. Physiol. 206: 25‐35, 1964.
 243. Richards, S. A. Vagal control of thermal panting in mammals and birds. J. Physiol. London 199: 89‐101, 1968.
 244. Richards, S. A. Vagal function during respiration and the effects of vagotomy in the domestic fowl (Gallus domesticus). Comp. Biochem. Physiol. 29: 955‐964, 1969.
 245. Richards, S. A. The biology and comparative physiology of thermal panting. Biol. Rev. 45: 223‐264, 1970.
 246. Richards, S. A. The role of hypothalamic temperature in the chicken exposed to heat. J. Physiol. London 211: 341‐358, 1970.
 247. Richards, S. A. Brain stem control of polypnoea in the chicken and pigeon. Respir. Physiol. 11: 315‐326, 1971.
 248. Richards, S. A. The significance of changes in the temperature of the skin and body core of the chicken in the regulation of heat loss. J. Physiol. London 216: 1‐10, 1971.
 249. Richards, S. A., and P. Avery. Central nervous mechanisms regulating thermal panting. In: Respiratory Function in Birds. Adult and Embryonic, edited by J. Piiper. Berlin: Springer‐Verlag, 1978, p. 196‐203.
 250. Richards, S. A., and A. H. Sykes. The effects of hypoxia, hypercapnia and asphyxia in the domestic fowl (Gallus domesticus). Comp. Biochem Physiol. 21: 691‐701, 1967.
 251. Rogers, F. T. Experimental studies on the brain stem. III. The effects on reflex activities of wide variations in body temperature caused by lesions of the thalamus. J. Comp. Neurol. 31: 17‐35, 1919.
 252. Rogers, F. T. Studies on the brain stem. I. Regulation of body temperature in the pigeon and its relation to certain cerebral lesions. Am. J. Physiol. 49: 271‐283, 1919.
 253. Rogers, F. T. Studies on the brain stem. XI. The effects of artificial stimulation and of traumatism of the avian thalamus. Am J. Physiol. 86: 639‐650, 1928.
 254. Rogers, F. T., and S. D. Wheat. Studies on the brain stem. V. Carbon dioxide excretion after destruction of optic thalamus and reflex functions of the thalamus in body temperature regulation. Am. J. Physiol. 57: 218‐227, 1921.
 255. Rosner, G. Response of hypothalamic neurons to thermal stimulation of spinal cord and skin in pigeons (Abstract). Pfluegers Arch. 368, Suppl.: R29, 1977.
 256. Rostorfer, H. H., and R. H. Rigdon. The relation of blood oxygen transport to resistance to anoxia in chicks and ducklings. Biol. Bull 92: 23‐30, 1947.
 257. Saalfeld, E. V. Untersuchungen über das Hachein bei Tauben. Z. Vgl. Physiol. 23: 727‐743, 1936.
 258. Salt, G. W., and E. Zeuthen. The respiratory system. In: Biology and Comparative Physiology of Birds, edited by A. J. Marshall. New York: Academic, 1960, vol. 1, p. 363‐409.
 259. Scheid, P. (editor)., Receptors and control of respiration in birds. Respir. Physiol. 22: 1‐216, 1974.
 260. Scheid, P. Mechanisms of gas exchange in bird lungs. Rev. Physiol. Biochem. Pharmacol. 86: 137‐186, 1979.
 261. Scheid, P. Respiration and control of breathing in birds. Physiologist 22: (5): 60‐64, 1979.
 262. Scheid, P., Respiration and control of breathing. In: Avian Biology, edited by D. S. Farner and J. R. King. New York: Academic, 1982, vol. 6, p. 405‐453.
 263. Scheid, P., R. K. Gratz, F. L. Powell, and M. R. Fedde. Ventilatory response to CO2 in birds. II. Contribution by intrapulmonary CO2 receptors. Respir. Physiol. 35: 361‐372, 1978.
 264. Scheid, P., W. D. Kuhlmann, and M. R. Fedde. Intrapulmonary receptors in the Tegu lizard. II. Functional characteristics and localization. Respir. Physiol. 29: 49‐62, 1977.
 265. Scheid, P., H. Slama, R. N. Gatz, and M. R. Fedde. Intrapulmonary CO2 receptors in the duck. III. Functional localization. Respir. Physiol. 22: 123‐136, 1974.
 266. Schmidt‐Nielsen, K. How birds breathe. Sci. Am 225: 72‐79, 1971.
 267. Schmidt‐Nielsen, K. How Animals Work. Cambridge, UK: Cambridge Univ. Press, 1972.
 268. Schmidt‐Nielsen, K., Recent advances in avian respiration. In: Avian Physiology, edited by M. Peaker. London: Academic, 1975, p. 33‐47.
 269. Schmidt‐Nielsen, K. Animal Physiology: Adaptation and Environment (2nd ed.). Cambridge, UK: Cambridge Univ. Press, 1979.
 270. Schmidt‐Nielsen, K., J. Kanwisher, R. C. Lasiewski, J. E. Cohn, and W. L. Bretz. Temperature regulation and respiration in the ostrich. Condor 71: 341‐352, 1969.
 271. Sebert, P. Do birds possess a central CO2‐H+ ventilatory stimulus (Abstract)? IRCS Med. Sci. Libr. Compend. 6: 444, 1978.
 272. Sébert, P. Mise en évidence de l'action centrale du stimulus CO2‐[H+] de la ventilation chez le canard Péking. J. Physiol. Paris 75: 901‐909, 1979.
 273. Simon, E. Temperature regulation: the spinal cord as a site of extrahypothalamic thermoregulatory functions. Rev. Physiol. Biochem. Pharmacol 71: 1‐76, 1974.
 274. Sinha, M. P. Vagal control of respiration as studied in the pigeon. Helv. Physiol. Acta 16: 58‐72, 1958.
 275. Swan, L. W. The ecology of the high Himalayas. Sci. Am. 205: 68‐78, 1961.
 276. Swan, L. W. Goose of the Himalayas. Nat. Hist. 79: 68‐75, 1970.
 277. tallman, R. D., Jr., and F. S. Grodins. Intrapulmonary CO2 receptors and ventilatory response to lung CO2 loading. J. Appl. Physiol: Respirat. Environ. Exercise Physiol. 52: 1272‐1277, 1982.
 278. Tallman, R. D., Jr., and A. L. Kunz. Changes in breathing pattern mediated by intrapulmonary CO2 receptors in chickens. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 52: 162‐167, 1982.
 279. Tallman, R. D., Jr., A. L. Kunz, and D. A. Miller. Effect of timing of Fico2 changes on ventilatory period in domestic fowl. Am. J. Physiol. 237 (Regulatory Integrative Comp. Physiol. 6): R260‐R265, 1979.
 280. Tcheng, K. T. Receptors of the pulmonary artery in birds. Acta Biol. Szeged Hung. 9: 281‐289, 1963.
 281. Tcheng, K T., T. Y. Chen, and S. K. Fu. Intramural baroreceptors of the pulmonary arteries in birds. Sci. Sin. 14: 938‐940, 1965.
 282. Tcheng, K., and S. Fu. The structure and innervation of the aortic body of the yellow‐breasted bunting. Sci. Sin. 11: 221‐232, 1962.
 283. Tcheng, K., S. Fu, and T. Chen. Supracardial encapsulated receptors of the aorta and the pulmonary artery in birds. Sci. Sin. 12: 73‐81, 1963.
 284. Tenney, S. M., A synopsis of breathing mechanisms. In: Evolution of Respiratory Processes. A Comparative Approach, edited by S. C. Wood and C. Lenfant. New York: Dekker, 1979, p. 51‐106.
 285. Tenney, S. M., and D. Bartlett, Jr., Some comparative aspects of the control of breathing. In: Regulation of Breathing, edited by T. F. Hornbein. New York: Dekker, 1981, pt. 1, p. 67‐101.
 286. Terni, G. Il simpatico cervicale degli anmioti. Z. Anat. Entwicklungsgesch. 96: 289‐426, 1931.
 287. Tibes, U. Reflex inputs to the cardiovascular and respiratory centers from dynamically working canine muscles. Circ. Res. 41: 332‐341, 1977.
 288. Tomlinson, J. T. Breathing of birds in flight. Condor 65: 514‐516, 1963.
 289. Tomlinson, J. T., and R. S. McKinnon. Pigeon wing‐beats synchronized with breathing (Abstract). Condor 59: 401, 1957.
 290. Torre‐Bueno, J. R., Respiration during flight in birds. In: Respiratory Function in Birds. Adult and Embryonic, edited by J. Piiper. Berlin: Springer‐Verlag, 1978, 89‐94.
 291. Torre‐Bueno, J. R., and J. Larochelle. The metabolic cost of flight in unrestrained birds. J. Exp. Biol. 75: 223‐229, 1978.
 292. Tschorn, R. R., and M. R. Fedde. Effects of carbon monoxide on avian intrapulmonary carbon dioxide‐sensitive receptors. Respir. Physiol. 20: 313‐324, 1974.
 293. Tucker, V. A. Oxygen consumption of a flying bird. Science 154: 150‐151, 1966.
 294. Tucker, V. A. Respiratory physiology of house sparrows in relation to high‐altitude flight. J. Exp. Biol. 48: 55‐66, 1968.
 295. Tucker, V. A. Respiratory exchange and evaporative water loss in the flying budgerigar. J. Exp. Biol. 48: 67‐87, 1968.
 296. Tucker, V. A. The energetics of bird flight. Sci. Am. 220: 70‐78, 1969.
 297. Tucker, V. A., Energetics of natural avian flight. In: Avian Energetics, edited by R. A. Paynter. Cambridge, MA: Nuttall Ornithol. Club, 1974, p. 298‐333.
 298. Vedyaev, F. P. Role of striatal and thalamic structures in CNS of birds in control of respiration and functional characteristics. Federation Proc. 23: T1075‐T1079, 1964.
 299. Whipp, B. J., The control of exercise hyperpnea. In: Regulation of Breathing, edited by T. F. Hombein. New York: Dekker, 1981, pt. 2, p. 1069‐1139.
 300. White, F. N. Comparative aspects of vertebrate cardiorespiratory physiology. Annu. Rev. Physiol. 40: 471‐499, 1978.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Peter Scheid, Johannes Piiper. Control of Breathing in Birds. Compr Physiol 2011, Supplement 11: Handbook of Physiology, The Respiratory System, Control of Breathing: 815-832. First published in print 1986. doi: 10.1002/cphy.cp030226