Comprehensive Physiology Wiley Online Library

Static Behavior of the Respiratory System

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Lung Volumes
2 Volume‐Pressure Relations of Respiratory System During Relaxation
2.1 Total Respiratory System
2.2 Chest Wall and Lung
2.3 Effects of Gravity and Posture
2.4 Changes Throughout Life Span
3 Volume‐Pressure Relations of Respiratory System During Static Muscular Efforts
3.1 Alveolar Pressure
3.2 Abdominal and Thoracic Pressures
4 Factors Limiting Volume Extremes
4.1 Upper Volume Extreme
4.2 Lower Volume Extreme
Figure 1. Figure 1.

Subdivisions of lung volume.

From Pappenheimer et al.
Figure 2. Figure 2.

Static volume‐pressure curve of total respiratory system (Prs) during relaxation in sitting posture, with spirogram showing subdivisions of lung volume. Curve was extended to include full vital capacity (VC) range by means of externally applied pressures. IC, inspiratory capacity; ERV, expiratory reserve volume; RV, residual volume. Broken lines, volume change during relaxation against an obstruction due to gas compression at TLC and expansion at RV.

Adapted from Rohrer by Agostoni and Mead
Figure 3. Figure 3.

Static volume‐pressure Curves of lung (PL), chest wall (PW), and total respiratory system (Prs) during relaxation in sitting posture. Large arrows, static forces of lung and chest wall (dimensions of arrows are not to scale). Horizontal broken lines, volume for each drawing.

Adapted from Rahn et al. by Agostoni and Mead
Figure 4. Figure 4.

Volume changes of chest wall (ΔVW) and of lung (ΔVL) when volume of gas is introduced into both pleural spaces so that pleural pressure changes from −5 to −2 cmH2O. Position of chest wall (W) moves from point a to a' and that of lung (L) moves from b to b' as indicated by arrows. ΔPW, change in pressure across chest wall; ΔPL, change in transpulmonary pressure.

Adapted from Fenn by Agostoni and Mead
Figure 5. Figure 5.

Static volume‐pressure hysteresis of total respiratory system (rs), lung (L), and chest wall (W). Volume shifts (arrowheads) were produced by gradually changing pressure at the mouth relative to that at body surface; a complete cycle took ∼1 min during which the subject attempted to relax respiratory muscles as completely as possible. Volume changes were measured with body plethsymograph. Pleural pressure was estimated from esophageal pressure measurements.

Adapted from Agostoni and Mead
Figure 6. Figure 6.

Pressures contributed by various parts of respiratory system in sitting and supine postures. Top: volume‐pressure relations of chest wall (PW), diaphragm (Pdi), and abdomen (Pab); open circles, resting volume of respiratory system. Bottom: volume‐pressure relations of chest wall, lung (PL), and total respiratory system (Prs).

Adapted from Agostoni and Mead
Figure 7. Figure 7.

Probable distribution of pressures in rib cage (Prc), lung (PL), abdomen (Pab), and diaphragm (Pdi) at the end of spontaneous expiration in upright and lateral postures. Figure takes into account effect of gravity on chest wall and lung and is based on data for humans and animals. Transdiaphragmatic pressure (Pdi) = Pab – PL.

From Agostoni
Figure 8. Figure 8.

Pulmonary subdivisions in various postures (A), during tilting (B), and as function of body height (C). In instances where residual volume (RV) was not determined it was assumed to be 20% of total lung capacity (TLC) in upright posture. A: standing (; J. Mead, unpublished observations); seated erect ; seated erect, arms supported ; seated leaning forward, arms supported ; on hands and knees ; prone ; supine . B: triangles ; all remaining points (J. Mead, unpublished observations). Dotted (supported at shoulders) and broken lines (supported by ankles) are average values for 5 subjects. Values of TLC and RV are for individual subjects. C: seated ; ranges are SE for groups of 10 subjects; broken line is fit by eye; supine .

From Agostoni and Mead
Figure 9. Figure 9.

Volume‐pressure curves of relaxed chest wall with subject sitting in air (solid line), submerged to the xiphoid process (broken line), and submerged to neck (dotted line). Open circles, end of spontaneous expirations. Volume‐pressure curve of lung is not appreciably changed during subversion, and therefore volume‐pressure curve of relaxed respiratory system during submersion undergoes same shift as that of chest wall. Volume differences at upper end of curves are due partly to larger compression of gas and partly to a decreased upper limit of VC occurring during submersion.

From Agostoni et al.
Figure 10. Figure 10.

Lung volume vs. alveolar pressure during maximum static inspiratory and expiratory efforts and during relaxation in upright posture (solid lines). Broken lines, pressure contributed by muscles (Pmus). Prs, total respiratory system pressure.

Adapted from Rohrer by Agostoni and Mead
Figure 11. Figure 11.

Volume‐pressure relations of respiratory system during maximum static inspiratory and expiratory efforts made by upright males of different ages.

From Cook et al.
Figure 12. Figure 12.

Lung volume vs. pressure above (solid lines) and below (broken lines) diaphragmatic dome during maximum static inspiratory, expiratory, and expulsive efforts.

Adapted from Agostoni and Rahn by Agostoni


Figure 1.

Subdivisions of lung volume.

From Pappenheimer et al.


Figure 2.

Static volume‐pressure curve of total respiratory system (Prs) during relaxation in sitting posture, with spirogram showing subdivisions of lung volume. Curve was extended to include full vital capacity (VC) range by means of externally applied pressures. IC, inspiratory capacity; ERV, expiratory reserve volume; RV, residual volume. Broken lines, volume change during relaxation against an obstruction due to gas compression at TLC and expansion at RV.

Adapted from Rohrer by Agostoni and Mead


Figure 3.

Static volume‐pressure Curves of lung (PL), chest wall (PW), and total respiratory system (Prs) during relaxation in sitting posture. Large arrows, static forces of lung and chest wall (dimensions of arrows are not to scale). Horizontal broken lines, volume for each drawing.

Adapted from Rahn et al. by Agostoni and Mead


Figure 4.

Volume changes of chest wall (ΔVW) and of lung (ΔVL) when volume of gas is introduced into both pleural spaces so that pleural pressure changes from −5 to −2 cmH2O. Position of chest wall (W) moves from point a to a' and that of lung (L) moves from b to b' as indicated by arrows. ΔPW, change in pressure across chest wall; ΔPL, change in transpulmonary pressure.

Adapted from Fenn by Agostoni and Mead


Figure 5.

Static volume‐pressure hysteresis of total respiratory system (rs), lung (L), and chest wall (W). Volume shifts (arrowheads) were produced by gradually changing pressure at the mouth relative to that at body surface; a complete cycle took ∼1 min during which the subject attempted to relax respiratory muscles as completely as possible. Volume changes were measured with body plethsymograph. Pleural pressure was estimated from esophageal pressure measurements.

Adapted from Agostoni and Mead


Figure 6.

Pressures contributed by various parts of respiratory system in sitting and supine postures. Top: volume‐pressure relations of chest wall (PW), diaphragm (Pdi), and abdomen (Pab); open circles, resting volume of respiratory system. Bottom: volume‐pressure relations of chest wall, lung (PL), and total respiratory system (Prs).

Adapted from Agostoni and Mead


Figure 7.

Probable distribution of pressures in rib cage (Prc), lung (PL), abdomen (Pab), and diaphragm (Pdi) at the end of spontaneous expiration in upright and lateral postures. Figure takes into account effect of gravity on chest wall and lung and is based on data for humans and animals. Transdiaphragmatic pressure (Pdi) = Pab – PL.

From Agostoni


Figure 8.

Pulmonary subdivisions in various postures (A), during tilting (B), and as function of body height (C). In instances where residual volume (RV) was not determined it was assumed to be 20% of total lung capacity (TLC) in upright posture. A: standing (; J. Mead, unpublished observations); seated erect ; seated erect, arms supported ; seated leaning forward, arms supported ; on hands and knees ; prone ; supine . B: triangles ; all remaining points (J. Mead, unpublished observations). Dotted (supported at shoulders) and broken lines (supported by ankles) are average values for 5 subjects. Values of TLC and RV are for individual subjects. C: seated ; ranges are SE for groups of 10 subjects; broken line is fit by eye; supine .

From Agostoni and Mead


Figure 9.

Volume‐pressure curves of relaxed chest wall with subject sitting in air (solid line), submerged to the xiphoid process (broken line), and submerged to neck (dotted line). Open circles, end of spontaneous expirations. Volume‐pressure curve of lung is not appreciably changed during subversion, and therefore volume‐pressure curve of relaxed respiratory system during submersion undergoes same shift as that of chest wall. Volume differences at upper end of curves are due partly to larger compression of gas and partly to a decreased upper limit of VC occurring during submersion.

From Agostoni et al.


Figure 10.

Lung volume vs. alveolar pressure during maximum static inspiratory and expiratory efforts and during relaxation in upright posture (solid lines). Broken lines, pressure contributed by muscles (Pmus). Prs, total respiratory system pressure.

Adapted from Rohrer by Agostoni and Mead


Figure 11.

Volume‐pressure relations of respiratory system during maximum static inspiratory and expiratory efforts made by upright males of different ages.

From Cook et al.


Figure 12.

Lung volume vs. pressure above (solid lines) and below (broken lines) diaphragmatic dome during maximum static inspiratory, expiratory, and expulsive efforts.

Adapted from Agostoni and Rahn by Agostoni
References
 1. Agostoni, E. Volume‐pressure relationships of the thorax and lung in the newborn. J. Appl. Physiol. 14: 909–913, 1959.
 2. Agostoni, E. Diaphragm activity and thoracoabdominal mechanics during positive pressure breathing. J. Appl. Physiol. 17: 215–220, 1962.
 3. Agostoni, E. Statics. In: The Respiratory Muscles: Mechanics and Neural Control, edited by E. J. M. Campbell, E. Agostoni, and J. Newsom Davis. London: Lloyd‐Luke, 1970, p. 48–79.
 4. Agostoni, E., and W. O. Fenn. Velocity of muscle shortening as a limiting factor in respiratory air flow. J. Appl. Physiol. 15: 349–353, 1960.
 5. Agostoni, E., G. Gurtner, G. Torri, and H. Rahn. Respiratory mechanics during submersion and negative‐pressure breathing. J. Appl. Physiol. 21: 251–258, 1966.
 6. Agostoni, E., and J. Mead. Statics of the respiratory system. In: Handbook of Physiology. Respiration, edited by W. O. Fenn and H. Rahn. Washington, DC: Am. Physiol. Soc., 1964, sect. 3, vol. I, chapt. 13, p. 387–409.
 7. Agostoni, E., and P. Mognoni. Deformation of the chest wall during breathing efforts. J. Appl. Physiol. 21: 1827–1832, 1966.
 8. Agostoni, E., P. Mognoni, G. Torri, and A. Ferrario‐Agostoni. Static features of the passive rib cage and abdomen‐diaphragm. J. Appl. Physiol. 20: 1187–1193, 1965.
 9. Agostoni, E., P. Mognoni, G. Torri, and G. Miserocchi. Forces deforming the rib cage. Respir. Physiol. 2: 105–117, 1966.
 10. Agostoni, E., and H. Rahn. Abdominal and thoracic pressures at different lung volumes. J. Appl. Physiol. 15: 1087–1092, 1960.
 11. Agostoni, E., G. Sant'Ambrogio, and H. Del Portillo Carrasco. Electromyography of the diaphragm in man and transdiaphragmatic pressure. J. Appl. Physiol. 15: 1093–1097, 1960.
 12. Agostoni, E., A. Taglietti, A. Ferrario‐Agostoni, and I. Setnikar. Mechanical aspects of the first breath. J. Appl. Physiol. 13: 344–348, 1958.
 13. Agostoni, E., and G. Torri. Diaphragm contraction as a limiting factor to maximum expiration. J. Appl. Physiol. 17: 427–428, 1962.
 14. Alarly, A. B., and K. B. Carrol. Pulmonary ventilation in pregnancy. Br. J. Obstet. Gynaecol. 85: 518–524, 1978.
 15. Anderson, S. D., J. D. S. McEvoy, and S. Bianco. Changes in lung volumes and airway resistance after exercise in asthmatic subjects. Am. Rev. Respir. Dis. 106: 30–37, 1972.
 16. Asmussen, E., E. H. Christensen, and T. Sjöstrand. Über die Abhängigkeit der Lungenvolumen von der Blutverteilung. Skand. Arch. Physiol. 82: 193–200, 1939.
 17. Avery, M. E., and C. D. Cook. Volume‐pressure relationships of lungs and thorax in fetal, newborn, and adult goats. J. Appl. Physiol. 16: 1034–1038, 1961.
 18. Bahnson, H. T. The Effect of a Valsalva Maneuver Upon Changes in the Vital Capacity Volume of the Lung. Dayton, OH: Wright‐Patterson AFB, 1951, p. 518. (Tech. Rep. 6528.).
 19. Baldwin, E. de F., A. Cournand, and D. W. Richards, Jr. Pulmonary insufficiency. I. Physiological classification, clinical methods of analysis, standard values in normal subjects. Medicine Baltimore 27: 243–278, 1948.
 20. Bateman, J. B. Studies of lung capacities and intrapulmonary mixing: normal lung capacities. J. Appl. Physiol. 3: 133–142, 1950.
 21. Bernstein, J. Zur Entstehung der Aspiration der Thorax bei der Geburt. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 28: 229–242, 1882.
 22. Black, L. F., and R. E. Hyatt. Maximal respiratory pressures: normal values and relationship to age and sex. Am. Rev. Respir. Dis. 99: 696–702, 1969.
 23. Bland, R. D., D. D. McMillan, M. A. Bressack, and L. Dong. Clearance of liquid from lungs of newborn rabbits. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 49: 171–177, 1980.
 24. Briscoe, W. A. Lung volumes. In: Handbook of Physiology. Respiration, edited by W. O. Fenn and H. Rahn. Washington, DC: Am. Physiol. Soc., 1965, sect. 3, vol. II, chapt. 53, p. 1345–1379.
 25. Buchthal, F., and P. Rosenfalck. Elastic properties of striated muscle. In: Tissue Elasticity, edited by J. W. Remington. Washington, DC: Am. Physiol. Soc., 1957, p. 73–93.
 26. Burger, E. J., Jr., and P. Macklem. Airway closure: demonstration by breathing 100% O2 at low lung volumes and by N2 washout. J. Appl. Physiol. 25: 139–148, 1968.
 27. Butler, J. The adaptation of the relaxed lungs and chest wall to changes in volume. Clin. Sci. 16: 421–433, 1957.
 28. Butler, J., and B. H. Smith. Pressure‐volume relationships of the chest in the completely relaxed anesthetized patient. Clin. Sci. 16: 125–146, 1957.
 29. Byrd, R. B., and R. E. Hyatt. Maximal respiratory pressures in chronic obstructive lung disease. Am. Rev. Respir. Dis. 98: 848–856, 1968.
 30. Campbell, E. J. M. An electromyographic study of the role of the abdominal muscles in breathing. J. Physiol. London 117: 222–233, 1952.
 31. Campbell, E. J. M., and J. H. Green. The variations in intra‐abdominal pressure and the activity of the abdominal muscles during breathing; a study in man. J. Physiol. London 122: 282–290, 1953.
 32. Cherniack, R. M., and E. Brown. A simple method for measuring total respiratory compliance: normal values for males. J. Appl. Physiol. 20: 87–91, 1965.
 33. Cohn, J. E., and H. D. Donoso. Mechanical properties of lung in normal men over 60 years old. J. Clin. Invest. 42: 1406–1410, 1963.
 34. Colville, P., C. Shugg, and B. G. Ferris, Jr. Effects of body tilting on respiratory mechanics. J. Appl. Physiol. 9: 19–24, 1956.
 35. Cook, C. D., and J. F. Hamann. Relation of lung volumes to height in healthy persons between the ages of 5 and 38 years. J. Pediatr. 59: 710–714, 1961.
 36. Cook, C. D., J. Mead, and M. M. Orzalesi. Static volume‐pressure characteristics of the respiratory system during maximal efforts. J. Appl. Physiol. 19: 1016–1022, 1964.
 37. Cook, C. D., J. M. Sutherland, S. Segal, R. B. Cherry, J. Mead, M. B. McIlroy, and C. A. Smith. Studies of the respiratory physiology in the newborn infant. III. Measurements of mechanics of respiration. J. Clin. Invest. 36: 440–448, 1957.
 38. Craig, A. B., Jr. Effects of position on the expiratory reserve volume of the lungs. J. Appl. Physiol. 15: 59–61, 1960.
 39. Craig, A. B., Jr., and M. Dvorak. Expiratory reserve volume and vital capacity of the lungs during immersion in water. J. Appl. Physiol. 38: 5–9, 1975.
 40. D'Angelo, E. Cranio‐caudal rib cage distortion with increasing inspiratory airflow in man. Respir. Physiol. 44: 215–237, 1981.
 41. Davis, C., E. J. M. Campbell, P. Openshaw, N. B. Pride, and G. Woodroof. Importance of airway closure in limiting maximal expiration in normal man. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 48: 695–701, 1980.
 42. Delhez, L., J.‐M. Petit, and G. Milic‐Emili. Influence des muscles expirateurs dans la limitation de l'inspiration. (Etude electromyographique chez l'homme.) Rev. Franc. Etud. Clin. Biol. 4: 815–818, 1959.
 43. Delhez, L., J. Troquet, J. Damoiseau, F. Pirnay, R. Deroanne, and J.‐M. Petit. Influence des modalités D'exécution des maneuvres D'expiration forcée et D'hyperpression thoraco‐abdominale sur l'activité électrique du diaphragme. Arch. Int. Physiol. Biochem. 72: 76–94, 1964.
 44. De Troyer, A., and J. Bastenier‐Geens. Effects of neuromuscular blockade on respiratory mechanics in conscious man. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 47: 1162–1168, 1979.
 45. De Troyer, A., and M. Estenne. Limitations of measurement of transdiaphragmatic pressure in detecting diaphragmatic weakness. Thorax 36: 169–174, 1981.
 46. Dittmer, D. S., and R. M. Grebe (editors). Handbook of Respiration. Philadelphia, PA: Saunders, 1958, p. 28–40.
 47. Douglas, W. W., K. Rehder, F. M. Beynen, A. D. Sessler, and H. M. Marsh. Improved oxygenation in patients with acute respiratory failure: the prone position. Am. Rev. Respir. Dis. 115: 559–566, 1977.
 48. Dow, P. The venous return as a factor affecting the vital capacity. Am. J. Physiol. 127: 793–795, 1939.
 49. Duomarco, J. L., and R. Rimini. La presion intra‐abdominal en el hombre. Buenos Aires: El Ateneo, 1947.
 50. Fenn, W. O. Mechanics of respiration. Am. J. Med. 10: 77–91, 1951.
 51. Fenn, W. O. The pressure‐volume diagram of the breathing mechanism. In: Handbook of Respiratory Physiology, edited by W. M. Boothby. Randolph AFB, TX: USAF School of Aviation Medicine, 1954, p. 19–27.
 52. Fink, B. R., S. Ngai, and D. A. Holaday. Effect of air flow resistance on ventilation and respiratory muscle activity. J. Am. Med. Assoc. 168: 2245–2249, 1958.
 53. Fisher, J. T., and J. P. Mortola. Statics of the respiratory system in newborn mammals. Respir. Physiol. 41: 155–172, 1980.
 54. Fowler, R. C., M. Guillet, and H. Rahn. Lung Volume Changes With Positive and Negative Pulmonary Pressures. Wright‐Patterson AFB, OH: 1951, p. 522–528. (Tech. Rep. 6528.).
 55. Frank, N. R., J. Mead, and B. G. Ferris, Jr. The mechanical behaviour of the lungs in healthy elderly persons. J. Clin. Invest. 36: 1680–1687, 1957.
 56. Freedman, S., A. E. Tattersfield, and N. B. Pride. Changes in lung mechanics during asthma induced by exercise. J. Appl. Physiol. 38: 974–982, 1975.
 57. Froese, A. B., and A. C. Bryan. Effects of anesthesia and paralysis on diaphragmatic mechanics in man. Anesthesiology 41: 242–255, 1974.
 58. Gee, J. B. L., B. S. Packer, J. E. Millen, and E. D. Robin. Pulmonary mechanics during pregnancy. J. Clin. Invest. 46: 945–952, 1967.
 59. Gil, J., and E. R. Weibel. Morphological study of pressure‐volume hysteresis in rat lungs fixed by vascular perfusion. Respir. Physiol. 15: 190–213, 1972.
 60. Gilson, J. C., and P. Hugh‐Jones. The measurement of total lung volume and breathing capacity. Clin. Sci. 7: 185–216, 1949.
 61. Glaser, E. M. The effect of cooling and warming on the vital capacity, forearm and hand volume, and skin temperature of man. J. Physiol. London 109: 421–429, 1949.
 62. Gold, W. M., H. S. Kaufman, and J. A. Nadel. Elastic recoil of the lungs in chronic asthmatic patients before and after therapy. J. Appl. Physiol. 23: 433–438, 1967.
 63. Greifenstein, F. E., R. M. King, S. S. Latch, and J. H. Comroe, Jr. Pulmonary function studies in healthy men and women 50 years and older. J. Appl. Physiol. 4: 641–648, 1952.
 64. Hamilton, W. F., and J. P. Mayo. Changes in the vital capacity when the body is immersed in water. Am. J. Physiol. 141: 51–53, 1944.
 65. Hamilton, W. F., and A. B. Morgan. Mechanism of the postural reduction in vital capacity in relation to orthopnea and storage of blood in the lungs. Am. J. Physiol. 99: 526–533, 1932.
 66. Heaf, P. J. D., and F. J. Prime. The mechanical aspects of artificial pneumothorax. Lancet 2: 468–470, 1954.
 67. Heaf, P. J. D., and F. J. Prime. The compliance of the thorax in normal human subjects. Clin. Sci. 15: 319–327, 1956.
 68. Hedenstierna, G., L. Bindslev, J. Santesson, and O. P. Norlander. Airway closure in each lung of anesthetized human subjects. J. Appl. Physiol.: Respir. Environ. Exercise Physiol. 50: 55–64, 1981.
 69. Helliesen, P. J., C. D. Cook, L. Friedlander, and S. Agathon. Studies of respiratory physiology in children. I. Mechanics of respiration and lung volume in 85 normal children 5 to 17 years of age. Pediatrics 22: 80–93, 1958.
 70. Hepper, N. G. G., L. F. Black, and W. S. Fowler. Relationships of lung volume to height and arm span in normal subjects and in patients with spinal deformity. Am. Rev. Respir. Dis. 91: 356–362, 1965.
 71. Hepper, N. G. G., W. S. Fowler, and H. F. Helmholz, Jr. Relationship of height to lung volume in healthy men. Dis. Chest 37: 314–320, 1960.
 72. Hong, S. K., P. Cerretelli, J. C. Cruz, and H. Rahn. Mechanics of respiration during submersion in water. J. Appl. Physiol. 27: 535–538, 1969.
 73. Hong, S. K., E. Y. Ting, and H. Rahn. Lung volumes at different depths of submersion. J. Appl. Physiol. 15: 550–553, 1960.
 74. Howell, J. B. L., and B. W. Peckett. Studies of the elastic properties of the thorax of supine anesthetized paralyzed human subjects. J. Physiol. London 136: 1–19, 1957.
 75. Humphreys, P. W., I. C. S. Normand, E. O. R. Reynolds, and L. B. Strang. Pulmonary lymph flow and the uptake of liquid from the lungs of the lamb at the start of breathing. J. Physiol. London 193: 1–29, 1967.
 76. Hurtado, A., and W. W. Fray. Studies of total pulmonary capacity and its subdivisions. III. Changes with body posture. J. Clin. Invest. 12: 825–832, 1933.
 77. Hutchinson, J. On the capacity of the lungs and on the respiratory functions, with a view of establishing a precise and easy method of detecting disease by the spirometer. Med. Chir. Trans. London 29: 137–252, 1846.
 78. Jarrett, A. S. Effect of immersion on intrapulmonary pressure. J. Appl. Physiol. 20: 1261–1266, 1965.
 79. Johansen, S. H., M. Jørgensen, and S. Molbech. Effect of tubocurarine on respiratory and nonrespiratory muscle power in man. J. Appl. Physiol. 19: 990–994, 1964.
 80. Johnson, L. F., Jr., and J. Mead. Volume‐pressure relationships during pressure breathing and voluntary relaxation. J. Appl. Physiol. 18: 505–508, 1963.
 81. Jørgensen, M., S. Molbech, and S. H. Johansen. Effect of decamethonium on head lift, hand grip, and respiratory muscle power in man. J. Appl. Physiol. 21: 509–512, 1966.
 82. Jouasset, D. Normalisation des épreuves fonctionnelles respiratoires dans les pays de la Communauté Européenne du Charbon et de l'Acier. Poumon Coeur 10: 1145–1159, 1960.
 83. Kaltreider, N. L., W. W. Fray, and H. van Hyde. The effect of age on the total pulmonary capacity and its subdivisions. Am. Rev. Tuberc. 37: 662–689, 1938.
 84. Karlberg, P. Breathing and its control in premature infants. In: Physiology of Prematurity, edited by J. T. Lanman. New York: Macy, 1957, p. 77–150.
 85. Kelling, G. Untersuchungen über die Spannungzustände der Bauchwand, der Magen und der Darmwand. Z. Biol. 44: 161–258, 1903.
 86. Kory, R. C., R. Collahan, and H. G. Boren. The Veterans Administration‐Army cooperative study of pulmonary function. Am. J. Med. 30: 243–258, 1961.
 87. Landowne, M., and R. W. Stacy. Glossary of terms. In: Tissue Elasticity, edited by J. W. Remington. Washington, DC: Am. Physiol. Soc., 1957, p. 191–201.
 88. Leith, D. E., and M. Bradley. Ventilatory muscle strength and endurance training. J. Appl. Physiol. 41: 508–516, 1976.
 89. Leith, D. E., and J. Mead. Mechanisms determining residual volume of the lungs in normal subjects. J. Appl. Physiol. 23: 221–227, 1967.
 90. Mains, R. C., F. W. Zechman, and F. S. Musgrave. Pulmonary mechanics with a simulated postural blood redistribution. Respir. Physiol. 5: 288–301, 1968.
 91. Mead, J. Mechanical properties of lungs. Physiol. Rev. 41: 281–330, 1961.
 92. Mead, J., and J. Milic‐Emili. Theory and methodology in respiratory mechanics with glossary of symbols. In: Handbook of Physiology. Respiration, edited by W. O. Fenn and H. Rahn. Washington, DC: Am. Physiol. Soc., 1964, sect. 3, vol. I, chapt. 11, p. 363–376.
 93. Mead, J., J. Milic‐Emili, and J. M. Turner. Factors limiting depth of a maximal inspiration in human subjects. J. Appl. Physiol. 18: 295–296, 1963.
 94. Melissinos, C. G., M. Goldman, E. Bruce, E. Elliot, and J. Mead. Chest wall shape during forced expiratory maneuvers. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 50: 84–93, 1981.
 95. Milic‐Emili, J., J. A. M. Henderson, M. B. Dolovich, D. Trop, and K. Kaneko. Regional distribution of inspired gas in the lung. J. Appl. Physiol. 21: 749–759, 1966.
 96. Milic‐Emili, J., M. M. Orzalesi, C. D. Cook, and J. M. Turner. Respiratory thoraco‐abdominal mechanics in man. J. Appl. Physiol. 19: 217–223, 1964.
 97. Mills, J. N. The influence upon the vital capacity of procedures calculated to alter the volume of blood in the lungs. J. Physiol. London 110: 207–216, 1949.
 98. Mills, J. N. The nature of the limitation of maximal inspiratory and expiratory efforts. J. Physiol. London 111: 376–381, 1950.
 99. Milne, J. A. The respiratory response to pregnancy. Postgrad. Med. J. 55: 318–324, 1979.
 100. Mittman, C., N. H. Edelman, A. H. Norris, and N. W. Shock. Relationship between chest wall and pulmonary compliance and age. J. Appl. Physiol. 20: 1211–1216, 1965.
 101. Mognoni, P., F. Saibene, G. Sant'Ambrogio, and E. Agostoni. Dynamics of the maximal contraction of the respiratory muscles. Respir. Physiol. 4: 193–202, 1968.
 102. Mognoni, P., G. Torri, and E. Agostoni. Confronto della relazione volume‐pressione del sistema respiratorio ottenuta con diversi procedimenti. AttiAccad. Naz. Lincei. 38: 925–928, 1965.
 103. Moreno, F., and H. A. Lyons. Effect of body posture on lung volumes. J. Appl. Physiol. 16: 27–29, 1961.
 104. Morse, M., F. W. Schultz, and D. E. Cassels. The lung volume and its subdivisions in normal boys 10–17 years of age. J. Clin. Invest. 31: 380–391, 1952.
 105. Mosler, E., and S. Balsamoff. Über den Valsalva‐versuch. Klin. Wochenschr. 3: 491–495, 1924.
 106. Muller, N., G. Volgyesi, L. Becker, M. H. Bryan, and A. C. Bryan. Diaphragmatic muscle tone. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 47: 279–284, 1979.
 107. Naimark, A., and R. M. Cherniack. Compliance of the respiratory system and its components in health and obesity. J. Appl. Physiol. 15: 377–382, 1960.
 108. Needham, C. D., M. C. Rogan, and I. McDonald. Normal standards for lung volumes, intrapulmonary gas‐mixing, and maximum breathing capacity. Thorax 9: 313–325, 1954.
 109. Nims, R. G., E. H. Conner, and J. H. Comroe, Jr. The compliance of the human thorax in anesthetized patients. J. Clin. Invest. 34: 744–750, 1955.
 110. Norris, A. H., N. W. Shock, M. Landowne, and J. A. Falzone. Pulmonary function studies: age differences in lung volumes and bellows functions. Gerontologia 11: 379–387, 1956.
 111. Olinsky, A., M. H. Bryan, and A. C. Bryan. Influence of lung inflation on respiratory control in neonates. J. Appl. Physiol. 36: 426–429, 1974.
 112. Pappenheimer, J. R., J. H. Comroe, Jr., A. Cournand, J. K. W. Ferguson, G. F. Filley, W. S. Fowler, J. S. Gray, H. F. Helmholz, Jr., A. B. Otis, H. Rahn, and R. L. Riley. Standardization of definitions and symbols in respiratory physiology. Federation Proc. 9: 602–615, 1950.
 113. Pemberton, J., and E. G. Flanagan. Vital capacity and timed vital capacity in normal men over forty. J. Appl. Physiol. 9: 291–296, 1956.
 114. Peress, L., G. Sybrecht, and P. T. Macklem. The mechanism of increase in total lung capacity during acute asthma. Am. J. Med. 61: 165–169, 1976.
 115. Permutt, S., and H. B. Martin. Static pressure‐volume characteristics of lungs in normal males. J. Appl. Physiol. 15: 819–825, 1960.
 116. Pierce, J. A., and R. V. Ebert. The elastic properties of the lungs in the aged. J. Lab. Clin. Med. 51: 63–71, 1958.
 117. Polgar, G., and T. R. Weng. The functional development of the respiratory system from the period of gestation to adulthood. Am. Rev. Respir. Dis. 120: 625–695, 1979.
 118. Rahn, H., W. O. Fenn, and A. B. Otis. Daily variations of vital capacity, residual air and expiratory reserve including a study of the residual air method. J. Appl. Physiol. 1: 725–736, 1949.
 119. Rahn, H., A. B. Otis, L. E. Chadwick, and W. O. Fenn. The pressure‐volume diagram of the thorax and lung. Am. J. Physiol. 146: 161–178, 1946.
 120. Rehder, K., D. J. Hatch, A. D. Sessler, H. M. Marsh, and W. S. Fowler. Effects of general anesthesia, muscle paralysis, and mechanical ventilation on pulmonary nitrogen clearance. Anesthesiology 35: 591–601, 1971.
 121. Rehder, K., A. D. Sessler, and H. M. Marsh. General anesthesia and the lung. Am. Rev. Respir. Dis. 112: 541–563, 1975.
 122. Remington, J. W. Hysteresis loop behavior of the aorta and other extensible tissues. Am. J. Physiol. 180: 83–95, 1955.
 123. Remington, J. W. (editor). Tissue Elasticity. Washington, DC: Am. Physiol. Soc., 1957.
 124. Richards, C. C., and L. Bachman. Lung and chest wall compliance of apneic paralyzed infants. J. Clin. Invest. 40: 273–278, 1961.
 125. Ringqvist, T. The ventilatory capacity in healthy subjects. An analysis of causal factors with special reference to the respiratory forces. Scand. J. Clin Lab. Invest. Suppl. 88: 5–179, 1966.
 126. Robertson, C. H., Jr., C. M. Engle, and M. E. Bradley. Lung volumes in man immersed to the neck: dilution and plethysmographic techniques. J. Appl. Physiol: Respirat. Environ. Exercise Physiol. 44: 679–682, 1978.
 127. Robinson, S. Experimental studies of physical fitness in relation to age. Arbeitsphysiologie 10: 251–323, 1938.
 128. Rodarte, J. R., L. W. Burgher, R. E. Hyatt, and K. Rehder. Lung recoil and gas trapping during oxygen breathing at low lung volumes. J. Appl. Physiol. 43: 138–143, 1977.
 129. Rodarte, J. R., and R. E. Hyatt. Effect of acute exposure to CO2 on lung mechanics in normal man. Respir. Physiol. 17: 135–145, 1973.
 130. Rohrer, F. Der Zusammenhang der Atemkräfte und ihre Abhängigkeit vom Dehnungszustand der Atmungsorgane. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 165: 419–444, 1916.
 131. Sant'Ambrogio, G., D. T. Frazier, M. F. Wilson, and E. Agostoni. Motor innervation and pattern of activity of cat diaphragm. J. Appl. Physiol. 18: 43–46, 1963.
 132. Saunders, N. A., J. R. A. Rigg, L. D. Pengelly, and E. J. M. Campbell. Effect of curare on maximum static PV relationships of the respiratory system. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 44: 589–595, 1978.
 133. Sharp, J. T., W. S. Druz, R. C. Balagot, V. R. Bandelin, and J. Danon. Total respiratory compliance in infants and children. J. Appl. Physiol. 29: 775–779, 1970.
 134. Sharp, J. T., F. N. Johnson, N. B. Goldberg, and P. van Lith. Hysteresis and stress adaptation in the human respiratory system. J. Appl. Physiol. 23: 487–497, 1967.
 135. Sjöstrand, T. Über die Bedeutung der Lungen als Blutdepot beim Menschen. Acta Physiol. Scand. 2: 231–248, 1941.
 136. Song, S. H., D. H. Kang, B. S. Kang, and S. K. Hong. Lung volumes and ventilatory responses to high CO2 and low O2 in the ama. J. Appl. Physiol. 18: 466–470, 1963.
 137. Taylor, A. The contribution of the intercostal muscles to the effort of respiration in man. J. Physiol. London 151: 390–402, 1960.
 138. Tenney, S. M. Fluid volume redistribution and thoracic volume changes during recumbency. J. Appl. Physiol. 14: 129–132, 1959.
 139. Thompson, L. J., and M. McCally. Role of transpharyngeal pressure gradients in determining intrapulmonary pressure during immersion. Aerosp. Med. 38: 931–935, 1967.
 140. Turner, J. M., J. Mead, and M. E. Wohl. Elasticity of human lungs in relation to age. J. Appl. Physiol. 25: 664–671, 1968.
 141. Van de Woestijne, K. P. Influence of forced inflations on the creep of lungs and thorax in the dog. Respir. Physiol. 3: 78–89, 1967.
 142. Van Lith, P., M. Barrocas, R. A. Nelson, and J. T. Sharp. Effect of hypnosis on total respiratory compliance. J. Appl. Physiol. 27: 804–806, 1969.
 143. Van Lith, P., F. N. Johnson, and J. T. Sharp. Respiratory elastances in relaxed and paralyzed states in normal and abnormal men. J. Appl. Physiol. 23: 475–486, 1967.
 144. Vellody, V. P., M. Nassery, W. S. Druz, and J. T. Sharp. Effects of body position change on thoracoabdominal motion. J. Appl. Physiol: Respirat. Environ. Exercise Physiol. 45: 581–589, 1978.
 145. Wade, O. L., and J. C. Gilson. The effect of posture on diaphragmatic movement and vital capacity in normal subjects with a note on spirometry as an aid in determining radiological chest volumes. Thorax 6: 103–126, 1951.
 146. Weinberger, S. E., S. T. Weiss, W. R. Cohen, J. W. Weiss, and T. S. Johnson. Pregnancy and the lung. Am. Rev. Respir. Dis. 121: 559–581, 1980.
 147. Westbrook, P. R., S. E. Stubbs, A. D. Sessler, K. Rehder, and R. E. Hyatt. Effects of anesthesia and muscle paralysis on respiratory mechanics in normal man. J. Appl. Physiol. 34: 81–86, 1973.
 148. Whitfield, A. G. W., J. A. H. Waterhouse, and W. M. Arnott. The total lung volume and its subdivisions. A study in physiological norms. I. Basic data. Br. J. Soc. Med. 4: 1–25, 1950.
 149. Woolcock, A. J., and J. Read. Lung volumes in exacerbations of asthma. Am. J. Med. 41: 259–273, 1966.
 150. Zechman, F. W., F. S. Musgrave, R. C. Mains, and J. E. Cohn. Respiratory mechanics and pulmonary diffusing capacity with lower body negative pressure. J. Appl. Physiol. 22: 247–250, 1967.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Emilio Agostoni, Robert E. Hyatt. Static Behavior of the Respiratory System. Compr Physiol 2011, Supplement 12: Handbook of Physiology, The Respiratory System, Mechanics of Breathing: 113-130. First published in print 1986. doi: 10.1002/cphy.cp030309