Comprehensive Physiology Wiley Online Library

Oscillation Mechanics of the Respiratory System

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Modeling the Respiratory System as a Linear System
1.1 Models
1.2 Elemental Equations
1.3 Sinusoidal Forcing and Complex Impedance
1.4 Continuity and Compatibility Conditions
1.5 General Formulation of System Models
1.6 System Functions
1.7 Equivalent Circuits
1.8 Distributed‐Parameter Models
2 History
3 Experimental Methods
3.1 Equipment
3.2 Inputs and Data Processing
3.3 Upper Airway Variability and Shunt
4 Frequency Responses Below 100 HZ
4.1 Total Respiratory System
4.2 Input Impedance Forcing at the Airway Opening
4.3 Transfer Impedance Forcing at the Chest
4.4 Transfer Impedance Forcing at the Mouth
4.5 Pressure and Flow Transfer Functions
4.6 Lung Impedance
4.7 Chest Wall Impedance
4.8 Airway Impedance
5 Frequency Responses Above 100 HZ
5.1 Wave Propagation in the Airways
5.2 Input Impedance Forcing at the Airway Opening
5.3 Pressure Transfer Functions
5.4 Airway Area by Acoustic Reflections
6 Clinical Applications
6.1 Pulmonary Function in Children
6.2 Obstructive Lung Diseases
6.3 Restrictive Lung Diseases
6.4 Miscellaneous Lung Diseases
Figure 1. Figure 1.

Rohrer relation (Eq. ) taken as an example of nonlinear pressure‐flow relations linearized for small departures about any given bias flow rate (). Oscillatory resistance for slow oscillations is the local tangent slope of the pressure‐flow curve. For long straight tubes, slope at is the Poiseuille flow resistance.

Figure 2. Figure 2.

A: sinusoidal strip‐chart recording of flow (bottom) imagined to be the projection of a rotating ray of length (top). B: as in the case of flow, pressure may be thought of as the projection of a rotating ray of length Pao(ω). Phase angle between pressure and flow is Φrs. C: impedance may be decomposed into real and imaginary parts or into magnitude and phase. D: Pao(t) vs. (t) yields a Lissajous ellipse, from which impedance components may be deduced.

Figure 3. Figure 3.

A: simple series model of the respiratory system. B: impedance vector at several frequencies. Components of impedance vector: real (resistive) component (C); imaginary (reactive) component (D); magnitude (E); phase angle (F).

Figure 4. Figure 4.

Model of T network accounting for airway impedance (Zaw), tissue impedance (Zt), and gas compression (Zg). Forcing may be at mouth, body surface, or both. Either generator may be short‐circuited (no pressure difference) or open‐circuited (no flow) to deal with the case of a single input. Note the sign convention for flows: continuity applied at node PA (alveolar pressure) requires . Raw, airway resistance; Iaw, airway inertance; Rt, tissue resistance; It, tissue inertance; Ct, tissue compliance; Cg, gas compressibility; PB, barometric pressure; , alveolar gas flow.

Figure 5. Figure 5.

Equivalent circuits for one‐port systems (A) and two‐port systems (B).

Figure 6. Figure 6.

An airway of length L may be divided into infinitesimal segments of length dx. The equivalent circuit for such a segment incorporates airway inertance (Iaw) and viscous resistance (Raw) as series elements. Shunt elements can be subdivided into the gas compressibility pathway, consisting of gas compressibility (Cg) and gas thermal conductance (Gt), and the wall distension pathway, consisting of airway wall elastance (Eaww), inertance (Iaww), and resistance (Raww).

Figure 7. Figure 7.

Pressure and flow generators: reciprocating pump to apply pressure variations at the chest (A); loudspeaker to apply pressure variations at the mouth (B); loudspeakers arranged in series and in parallel to obtain larger pressures and volume changes (C).

Figure 8. Figure 8.

Model of T network including the airways (complex impedance Zaw), tissues (lung plus chest wall, complex impedance Zt), and compressible alveolar gas (complex impedance Zg). Functional arrangement of the compartments depends on where the pressure variations are applied. Equations on right express relationships between measured impedance and that of the compartments when the output variable is airway opening (A), body surface (B), and gas compression flow (C).

Adapted from Peslin et al.
Figure 9. Figure 9.

A: modulus (|Zrs|), phase angle (θrs), and real (real [Zrs] or equivalent resistance) and imaginary (imag[Zrs] or equivalent reactance) parts of the relationship between transrespiratory pressure and flow when pressure is varied at the mouth, . Data from 9 healthy humans. [Upper part from Michaelson et al. ; lower part from E. D. Michaelson, unpublished observations.] B: modulus (|Zrs|), phase angle (θrs), and real (real [Zrs]) and imaginary (imag[Zrs]) parts of the total respiratory input impedance observed at 5 lung volumes in a healthy human.

Adapted from Michaelson et al.
Figure 10. Figure 10.

Model proposed by Michaelson et al. to interpret input impedance measurements. The lung, distal to central airways [upper airway resistance (Ruaw) and inertance (Iuaw)], is represented by 2 resistance‐inertance‐compliance pathways arranged in parallel; also featured are the properties of extrathoracic airway walls [mouth resistance (Rm), inertance (Im), and compliance (Cm)] and chest wall compliance (Cw).

From Michaelson et al. , by copyright permission of The American Society for Clinical Investigation
Figure 11. Figure 11.

Transfer impedance forcing at the chest, [Pbs/(–)]Pao=0. Modulus (|Z|), phase angle (θ), and real (real[Z]) and imaginary (imag[Z]) parts of the relationship between transrespiratory pressure and flow when pressure is varied around the chest. Data from 5 healthy humans. Note that – is the flow out of the mouth according to sign convention of Figs. and .

Upper part adapted from Peslin et al.
Figure 12. Figure 12.

Real (real[Z]) and imaginary (imag[Z]) parts of total respiratory input impedance (continuous lines), lung impedance (dashed line), and an approximation to chest wall impedance (dotted lines) at 3 levels of vital capacity: 70% (open circles), 40% (closed circles), and 25% (triangles). Average values in 15 healthy subjects ±1 SD.

From Nagels et al.
Figure 13. Figure 13.

Measured and theoretically determined phase velocity for an excised canine trachea with static distending pressure of zero.

From Guelke and Bunn
Figure 14. Figure 14.

Measured input impedance components of human at tracheostomy opening.

From Ishizaka et al.
Figure 15. Figure 15.

Measured and theoretically determined transfer functions of alveolar pressure to airway opening pressure in excised canine lung.

From Fredberg
Figure 16. Figure 16.

Pressure distribution along the tracheobronchial tree varying with oscillatory frequency. Glottis corresponds to x = 0; open circles correspond to locations of successive bifurcations. As a result of standing waves, the pressure does not fall monotonically from glottis to alveolus except at low frequencies

From Fredberg and Moore
Figure 17. Figure 17.

Airway area by acoustic reflection (solid lines) yields good agreement with radiographic determinations (filled circles) of tracheal area (top). G, glottis; S, sternal notch; C, carina. Result is accurate with light gases (HeO2, top and middle) but erroneous when air is employed (bottom). Dashed lines indicate ±1 SD.

From Fredberg et al.


Figure 1.

Rohrer relation (Eq. ) taken as an example of nonlinear pressure‐flow relations linearized for small departures about any given bias flow rate (). Oscillatory resistance for slow oscillations is the local tangent slope of the pressure‐flow curve. For long straight tubes, slope at is the Poiseuille flow resistance.



Figure 2.

A: sinusoidal strip‐chart recording of flow (bottom) imagined to be the projection of a rotating ray of length (top). B: as in the case of flow, pressure may be thought of as the projection of a rotating ray of length Pao(ω). Phase angle between pressure and flow is Φrs. C: impedance may be decomposed into real and imaginary parts or into magnitude and phase. D: Pao(t) vs. (t) yields a Lissajous ellipse, from which impedance components may be deduced.



Figure 3.

A: simple series model of the respiratory system. B: impedance vector at several frequencies. Components of impedance vector: real (resistive) component (C); imaginary (reactive) component (D); magnitude (E); phase angle (F).



Figure 4.

Model of T network accounting for airway impedance (Zaw), tissue impedance (Zt), and gas compression (Zg). Forcing may be at mouth, body surface, or both. Either generator may be short‐circuited (no pressure difference) or open‐circuited (no flow) to deal with the case of a single input. Note the sign convention for flows: continuity applied at node PA (alveolar pressure) requires . Raw, airway resistance; Iaw, airway inertance; Rt, tissue resistance; It, tissue inertance; Ct, tissue compliance; Cg, gas compressibility; PB, barometric pressure; , alveolar gas flow.



Figure 5.

Equivalent circuits for one‐port systems (A) and two‐port systems (B).



Figure 6.

An airway of length L may be divided into infinitesimal segments of length dx. The equivalent circuit for such a segment incorporates airway inertance (Iaw) and viscous resistance (Raw) as series elements. Shunt elements can be subdivided into the gas compressibility pathway, consisting of gas compressibility (Cg) and gas thermal conductance (Gt), and the wall distension pathway, consisting of airway wall elastance (Eaww), inertance (Iaww), and resistance (Raww).



Figure 7.

Pressure and flow generators: reciprocating pump to apply pressure variations at the chest (A); loudspeaker to apply pressure variations at the mouth (B); loudspeakers arranged in series and in parallel to obtain larger pressures and volume changes (C).



Figure 8.

Model of T network including the airways (complex impedance Zaw), tissues (lung plus chest wall, complex impedance Zt), and compressible alveolar gas (complex impedance Zg). Functional arrangement of the compartments depends on where the pressure variations are applied. Equations on right express relationships between measured impedance and that of the compartments when the output variable is airway opening (A), body surface (B), and gas compression flow (C).

Adapted from Peslin et al.


Figure 9.

A: modulus (|Zrs|), phase angle (θrs), and real (real [Zrs] or equivalent resistance) and imaginary (imag[Zrs] or equivalent reactance) parts of the relationship between transrespiratory pressure and flow when pressure is varied at the mouth, . Data from 9 healthy humans. [Upper part from Michaelson et al. ; lower part from E. D. Michaelson, unpublished observations.] B: modulus (|Zrs|), phase angle (θrs), and real (real [Zrs]) and imaginary (imag[Zrs]) parts of the total respiratory input impedance observed at 5 lung volumes in a healthy human.

Adapted from Michaelson et al.


Figure 10.

Model proposed by Michaelson et al. to interpret input impedance measurements. The lung, distal to central airways [upper airway resistance (Ruaw) and inertance (Iuaw)], is represented by 2 resistance‐inertance‐compliance pathways arranged in parallel; also featured are the properties of extrathoracic airway walls [mouth resistance (Rm), inertance (Im), and compliance (Cm)] and chest wall compliance (Cw).

From Michaelson et al. , by copyright permission of The American Society for Clinical Investigation


Figure 11.

Transfer impedance forcing at the chest, [Pbs/(–)]Pao=0. Modulus (|Z|), phase angle (θ), and real (real[Z]) and imaginary (imag[Z]) parts of the relationship between transrespiratory pressure and flow when pressure is varied around the chest. Data from 5 healthy humans. Note that – is the flow out of the mouth according to sign convention of Figs. and .

Upper part adapted from Peslin et al.


Figure 12.

Real (real[Z]) and imaginary (imag[Z]) parts of total respiratory input impedance (continuous lines), lung impedance (dashed line), and an approximation to chest wall impedance (dotted lines) at 3 levels of vital capacity: 70% (open circles), 40% (closed circles), and 25% (triangles). Average values in 15 healthy subjects ±1 SD.

From Nagels et al.


Figure 13.

Measured and theoretically determined phase velocity for an excised canine trachea with static distending pressure of zero.

From Guelke and Bunn


Figure 14.

Measured input impedance components of human at tracheostomy opening.

From Ishizaka et al.


Figure 15.

Measured and theoretically determined transfer functions of alveolar pressure to airway opening pressure in excised canine lung.

From Fredberg


Figure 16.

Pressure distribution along the tracheobronchial tree varying with oscillatory frequency. Glottis corresponds to x = 0; open circles correspond to locations of successive bifurcations. As a result of standing waves, the pressure does not fall monotonically from glottis to alveolus except at low frequencies

From Fredberg and Moore


Figure 17.

Airway area by acoustic reflection (solid lines) yields good agreement with radiographic determinations (filled circles) of tracheal area (top). G, glottis; S, sternal notch; C, carina. Result is accurate with light gases (HeO2, top and middle) but erroneous when air is employed (bottom). Dashed lines indicate ±1 SD.

From Fredberg et al.
References
 1. Albright, C. D., and S. Bondurant. Some effects of respiratory frequency on pulmonary mechanics. J. Clin. Invest. 44: 1362–1370, 1965.
 2. Allen, G. R., K. R. MasleN, and G. F. Rowlands. Some aspects of the dynamic behavior of aircrew breathing equipment. Aerosp. Med. 36: 1047–1053, 1965.
 3. Amrein, R., R. Keller, H. Joos, and H. Herzog. Valeurs théoriques nouvelles de l'explbration de la fonction ventilatoire du poumon. Bull. Physio‐Pathol. Respir. 6: 317–349, 1970.
 4. Aronsson, H., L. Solymar, J. Dempsey, J. Bjure, T. Olsson, and B. Bake. A modified forced oscillation technique for measurements of respiratory resistance. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 42: 650–655, 1977.
 5. Atlan, G., G. Cannet, C. Jacquemin, P. Varène, R. Pouliquen, L. Dams, and J. Richalet. Un modèle synthétique du système mécanique ventilatoire. II. Validation. Bull. Physio‐Pathol. Respir. 8: 237–249, 1972.
 6. Atlan, G., P. Varène, C. Jacquemin, R. Pouliquen, J. F. Boisvieux, and J. Richalet. Étude critique des méthodes D'oscillations forcées en mécanique ventilatoire. Bull. Physio‐Pathol. Respir. 7: 63–78, 1971.
 7. Auenbrugger, L. Invention nobum ex percussione thoracic humaniet signo abstrusos interni pectoris morbos delegendi. London: Dawson, 1966. [Reprint of Forbes' English translation (1824).].
 8. Baur, X., H. Bergstermann, G. Fruhmann, H. Polke, and G. Praml. Oszillatorische und ganzkorperplethysmographische Messung des Atemwiderstands bei allergeninduzierten Bronchial‐obstruktionen. Atemwegs‐Lungenkr. 4: 262–264, 1978.
 9. Benade, A. H. On the propagation of sound waves in a cylindrical conduit. J. Acoust. Soc. Am. 44: 616–623, 1968.
 10. Berdel, D., H. Magnussen, J. P. Holle, and V. Hartmann. Measurement of resistance by an oscillation technique and by body plethysmography: a comparative study in children (Abstract). Lung 155: 156, 1978.
 11. Berdel, D., H. Magnussen, J. P. Holle, and V. Hartmann. Vergleich der oszillatorischen Atemwiderstandsmessung mit der Plethysmographie und der Spirometrie im Kindesalter. Schweiz. Med. Wochenschr. 109: 92–94, 1979.
 12. Bv, N. A. Measurements of respiratory inertance in anesthetized subjects. Respir. Physiol. 9: 65–73, 1970.
 13. Bergman, N. A., and C. L. Waltemath. A comparison of some methods for measuring total respiratory resistance. J. Appl. Physiol. 36: 131–134, 1974.
 14. Bhansali, P. V., C. G. Irvin, J. A. Dempsey, R. Bush, and J. G. Webster. Human pulmonary resistance: effect of frequency and gas physical properties. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol 47: 161–168, 1979.
 15. Bobbaers, H., J. Clément, and K. P. van de Woestijne. Dynamic viscoelastic properties of the canine trachea. J. Appl. Physiol: Respirat. Environ. Exercise Physiol. 44: 137–143, 1978.
 16. Brody, A. W., J. J. Connolly, Jr., and H. J. Wander. Influence of abdominal muscles, mesenteric viscera and liver on respiratory mechanics. J. Appl. Physiol. 14: 121–128, 1959.
 17. Brody, A. W., and A. B. DuBois. Determination of tissue, airway and total resistance to respiration in cats. J. Appl. Physiol. 9: 213–218, 1956.
 18. Brody, A. W., A. B. DuBois, O. I. Nisell, and J. Engelberg. Natural frequency, damping factor and inertance of the chest‐lung system in cats. Am. J. Physiol. 186: 142–148, 1956.
 19. Brown, F. T. A unified approach to the analysis of uniform one‐dimensional distributed systems. J. Basic Eng. 89: 423–432, 1967.
 20. Brown, F. T., D. L. Margolis, and R. P. Shah. Small amplitude frequency behavior of fluid lines with turbulent flow. J. Basic Eng. 91: 678–693, 1969.
 21. Butler, A. J., and A. C. Dornhorst. The physics of some pulmonary signs. Lancet 2: 649, 1956.
 22. Cass, L. J. Measurement of total respiratory and nasal airflow resistance. J. Am. Med. Assoc. 199: 396–398, 1967.
 23. Chong, C. C., and H. B. Atabek. The inlet length for oscillatory flow and its effects on the determination of the rate of flow in arteries. Phys. Med. Biol. 6: 303–317, 1961.
 24. Clements, J. A., J. T. Sharp, R. P. Johnson, and J. O. Elam. Estimation of pulmonary resistance by repetitive interruption of air flow. J. Clin. Invest. 38: 1262–1270, 1959.
 25. Coermann, R. R., G. H. Ziegentruecker, A. L. Wittwer,and H. E. von Gierke. The passive dynamic properties of the human thorax‐abdomen system and the whole body system. Aerosp. Med. 31: 443–445, 1960.
 26. Cogswell, J. J. Forced oscillation technique for determination of resistance to breathing in children. Arch. Dis. Child. 48: 259–266, 1973.
 27. Crawford, E. C., Jr. Mechanical aspects of panting in dogs. J. Appl. Physiol. 17: 249–251, 1962.
 28. Crawford, E. C., Jr., and G. Kampe. Oscillation mechanics of the respiratory system as related to panting in pigeons (Abstract). Federation Proc. 30: 556, 1971.
 29. Crawford, F. S.,Jr. Waves. New York: McGraw‐Hill, 1968.
 30. Daróczy, B., and Z. Hantos. An improved forced oscillatory estimation of respiratory impedance. Int. J. Biomed. Comput. 13: 221–235, 1982.
 31. Daróczy, B., Z. Hantos, and J. Klebniczki. An adaptive filtering technique for the determination of forced oscillatory impedance (Abstract). Bull. Eur. Physiopathol. Respir. 16: 187P–188P, 1980.
 32. Dawson, S. V., and E. A. Elliott. Wave‐speed limitation on expiratory flow—a unifying concept. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 43: 498–515, 1977.
 33. Dawson, S. V., and K. E. Finucane. A prediction of the distribution of oscillatory flow in human airways. Bull. Physio‐Pathol. Respir. 8: 293–304, 1972.
 34. DeJong, R. G., and J. J. Fredberg. Transpulmonary pressure transmissibility in excised and in situ canine lungs. In: Pulmonary Function Testing in Infants and Children, edited by J. J. Fredberg and M. E. B. Wohl. Bethesda, MD: Natl. Inst. Health, 1977, HR‐6–2901–2A, p. 133–156.
 35. Delavault, E., G. Saumon, and R. Georges. Identification of transducer defect in respiratory impedance measurements by forced random noise. Correction of experimental data. Respir. Physiol. 40: 107–117, 1980.
 36. Delavault, E., G. Saumon, and R. Georges. Characterization and validation of forced input method for respiratory impedance measurement. Respir. Physiol. 40: 119–136, 1980.
 37. Dorkin, H. L., A. C. Jackson, D. J. Strieder, and S. V. Dawson. Interaction of oscillatory and unidirectional flows in straight tubes and an airway cast. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 52: 1097–1105, 1982.
 38. Druz, W. S., H. B. Vania, and J. T. Sharp. Comparison of driving point and transfer impedances of the respiratory system (Abstract). Federation Proc. 37: 367, 1978.
 39. DuBois, A. B. Resistance to breathing measured by driving the chest at 6 cps. Federation Proc. 12: 35–36, 1953.
 40. DuBois, A. B., A. W. Brody, D. H. Lewis, and B. F. Burgess, Jr. Oscillation mechanics of lungs and chest in man. J. Appl. Physiol. 8: 587–594, 1956.
 41. DuBois, A. B., and B. B. Ross. A new method for studying mechanics of breathing using cathode ray oscillograph. Proc. Soc. Exp. Biol. Med. 78: 546–549, 1951.
 42. Eyles, J. G., and R. L. Pimmel. Estimating respiratory mechanical parameters in parallel compartment models. IEEE Trans. Biomed. Eng. 28: 313–317, 1981.
 43. Ferris, B. G., Jr., J. Mead, and L. H. Opie. Partitioning of respiratory flow resistance in man. J. Appl. Physiol. 19: 653–658, 1964.
 44. Finucane, K. E., S. V. Dawson, P. D. Phelan, and J. Mead. Resistance of intrathoracic airways of healthy subjects during periodic flow. J. Appl. Physiol. 38: 517–530, 1975.
 45. Finucane, K. E., B. A. Egan, and S. V. Dawson. Linearity and frequency response of pneumotachographs. J. Appl. Physiol. 32: 121–126, 1972.
 46. Finucane, K. E., and J. Mead. Impedance of the respiratory tissues as a function of respiratory muscle activity (Abstract). Federation Proc. 30: 555, 1971.
 47. Finucane, K. E., and J. Mead. Estimation of alveolar pressure during forced oscillation of the respiratory system. J. Appl. Physiol. 38: 531–537, 1975.
 48. Fischer, J., H. Matthys, K. H. Rühle, and G. Klein. Oscillatory resistance and forced expiratory measurements for screening of lung disorders. In: Progress in Respiration Research. Biomedical Engineering and Data Processing in Pneumonology, edited by H. Matthys. Basel: Karger, 1979, vol. 11, p. 202–214.
 49. Fisher, A. B., A. B. DuBois, and R. W. Hyde. Evaluations of the forced oscillation technique for the determination of resistance to breathing. J. Clin. Invest. 47: 2045–2057, 1968.
 50. Fleisch, A. Le pneumotachographe. Helv. Physiol. Pharmacol. Acta 14: 363–368, 1956.
 51. Forgacs, P. Lung Sounds. London: Baillière, Tindal, & Cox, 1978, p. 11–12.
 52. Förster, E., D. Berger, and D. Nolte. Vergleichmessungen des Atemwiderstandes mit der Oszillationsmethode und mit der Bodyplethysmographie. Verh. Dtsch. Ges. Inn. Med. 84: 392–395, 1978.
 53. Franetzki, M., K. Prestele, and V. Korn. A direct‐display oscillation method for measurement of respiratory impedance. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 46: 956–965, 1979.
 54. Frank, N. R., J. Mead, and J. L. Whittenberger. Comparative sensitivity of four methods for measuring changes in respiratory flow resistance in man. J. Appl. Physiol. 31: 934–938, 1971.
 55. Franken, H., J. Clement, M. Cauberghs, and K. P. van de Woestijne. Oscillating flow of a viscous compressible fluid through a rigid tube: a theoretical model. IEEE Trans. Biomed. Eng. 28: 416–420, 1981.
 56. Fredberg, J. J. Spatial considerations in oscillation mechanics of the lungs. Federation Proc. 39: 2747–2754, 1980.
 57. Fredberg, J. J., and R. G. DeJong. Measurements of sound transmission in the lung. Am. Conf. Eng. Med. Biol. 15th, 1979.
 58. Fredberg, J. J., and A. Hoenig. Mechanical response of the lungs at high frequencies. J. Biomech. Eng. 100: 57–66, 1978.
 59. Fredberg, J. J., and J. Mead. Impedance of intrathoracic airway models during low‐frequency periodic flow. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 47: 347–351, 1979.
 60. Fredberg, J. J., and J. J. Moore. The distributed response of complex branching duct networks. J. Acoust. Soc. Am. 63: 954–961, 1978.
 61. Fredberg, J. J., R. S. Sidell, M. E. Wohl, and R. G. DeJong. Canine pulmonary input impedance measured by transient forced oscillations. J. Biomech. Eng. 100: 67–71, 1978.
 62. Fredberg, J. J., M. E. B. Wohl, G. M. Glass, and H. L. Dorkin. Airway area by acoustic reflections measured at the mouth. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 48: 749–758, 1980.
 63. Friedman, M., P. G. Canaday, J. M. Fulton, R. L. Pimmel, and P. A. Bromberg. Fractionation of airways resistance using forced random noise technique (FRN) in asthmatic subjects (Abstract). Am. Rev. Respir. Dis. 125, Suppl.: 223, 1982.
 64. Fry, D. L., R. E. Hyatt, C. B. McCall, and A. J. Mallos. Evaluation of three types of respiratory flowmeters. J. Appl. Physiol. 10: 210–214, 1957.
 65. Fullton, J. M., D. A. Hayes, and R. L. Pimmel. Pulmonary impedance in dogs measured by forced random noise with a retrograde catheter. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 52: 725–733, 1982.
 66. Goldman, M., R. J. Knudson, J. Mead, N. Peterson, J. R. Schwaber, and M. E. Wohl. A simplified measurement of respiratory resistance by forced oscillation. J. Appl. Physiol. 28: 113–116, 1970.
 67. Goldstein, D., and J. Mead. Total respiratory impedance immediately after panting. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 48: 1024–1028, 1980.
 68. Grimby, G. Measurement of respiratory resistance with forced oscillations. Scand. J. Clin. Lab. Invest. 24, Suppl. 110: 37–39, 1969.
 69. Grimby, G., T. Takashima, W. Graham, P. Macklem, and J. Mead. Frequency dependence of flow resistance in patients with obstructive lung disease. J. Clin. Invest. 47: 1455–1465, 1968.
 70. Gropper, A., A. C. Jackson, and J. P. Butler. Measurement of the flow properties of the airways during forced oscillations from 2 to 30 Hz (Abstract). Federation Proc. 35: 231, 1976.
 71. Guelke, R. W., and A. E. Bunn. Transmission line theory applied to sound wave propagation in tubes with compliant walls. Acustica 48: 101–106, 1981.
 72. Haddad, A. G., R. L. Pimmel, D. D. Scaperoth, and P. A. Bromberg. Forced oscillatory respiratory parameters following papain exposure in dogs. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 46: 61–66, 1979.
 73. Hall, W. J., R. G. Douglas, R. W. Hyde, F. K. Roth, A. S. Cross, and D. M. Speers. Pulmonary mechanics after uncomplicated influenza A infection. Am. Rev. Respir. Dis. 113: 141–147, 1976.
 74. Hannon, R. R., and R. S. Lyman. Studies on pulmonary acoustics. II. The transmission of tracheal sounds through freshly exenterated sheep's lungs. Am. Rev. Tuberc. 19: 360–375, 1929.
 75. Harry, R. R., H. S. Hsiao, and H. J. Proctor. A pulse technique for measuring the mechanical properties of the lung. Proc. Biomed. Symp., 12th, San Diego, 1973, p. 85–90.
 76. Hayes, D. A., R. L. Pimmel, J. M. Fullton, and P. A. Bromberg. Detection of respiratory mechanical dysfunction by forced random noise impedance parameters. Am. Rev. Respir. Dis. 120: 1095–1100, 1979.
 77. Heaf, P. J. D., and F. J. Prime. The compliance of the thorax in normal human subjects. Clin. Sci. 15: 319–327, 1956.
 78. Hildebrandt, J. Dynamic properties of air‐filled excised cat lung determined by liquid plethysmograph. J. Appl. Physiol. 27: 246–250, 1969.
 79. Hildebrandt, J. Pressure‐volume data of cat lung interpreted by a plastoelastic, linear viscoelastic model. J. Appl. Physiol. 28: 365–372, 1970.
 80. Hildebrandt, J., and A. C. Young. Fluid plethysmographic method for obtaining dynamic pressure‐volume data. J. Appl. Physiol. 27: 286–290, 1969.
 81. Hofmann, D., M. Pflug, and R. Wonne. Oscillatorische Impedanz‐Messung bei Kindern und ihre Bedeutung für die pneumologische Diagnostik. Atemwegs‐Lungenkr. 5: 124–128, 1979.
 82. Hogg, J. C., P. T. Macklem, and W. M. Thurlbeck. The resistance of collateral channels in excised human lungs. J. Clin. Invest. 48: 421–431, 1969.
 83. Holle, J. P., V. Hartmann, G. Heer, and H. Magnussen. Die Kontinuierliche Messung des oszillatorischen Atemwiderstandes unter Salbutamol‐Aminophyllin und Ipratropium‐bromid‐Gabe. Atemwegs‐Lungenkr. 4: 418–420, 1978.
 84. Holle, J. P., F. Lándsér, B. Schuller, V. Hartmann, and H. Magnussen. Measurement of respiratory mechanics with forced oscillations. Comparison of two methods (Siregnost FD 5 versus a pseudo‐random noise technique). Respiration 41: 119–127, 1981.
 85. Holle, J. P., H. Magnussen, and V. Hartmann. Measurement of oscillatory impedance during air and helium breathing. In: Progress in Respiration Research. Biomedical Engineering and Data Processing in Pneumonology, edited by H. Matthys. Basel: Karger, 1979, vol. 11, p. 162–171.
 86. Horsfield, K., and G. Cumming. Morphology of the bronchial tree in man. J. Appl. Physiol. 24: 373–383, 1968.
 87. Hull, W. E., and E. C. Long. Respiratory impedance and volume flow at high frequency in dogs. J. Appl. Physiol. 16: 439–443, 1961.
 88. Hull, W. E., and E. C. Long. Right atrial and esophageal pressures during forced high frequency respiration in dogs (Abstract). Physiologist 4 (3): 50, 1961.
 89. Hull, W. E., and E. C. Long. Change of thoraco‐abdominal resonant frequency with driving pressure (Abstract). Physiologist 6: 205, 1963.
 90. Hyatt, R. E., I. R. Zimmerman, G. M. Peters, and W. J. Sullivan. Direct writeout of total respiratory resistance. J. Appl. Physiol. 28: 675–678, 1970.
 91. Interiano, B., R. Hyde, M. Hodges, and P. N. Yu. Inter‐relation between alterations in pulmonary mechanics and hemodynamics in acute myocardial infarction. J. Clin. Invest. 52: 1994–2006, 1973.
 92. Irvin, C., P. Bhansali, and J. Dempsey. Characterization of airways constriction with frequency dependence of resistance and gas density (Abstract). Federation Proc. 38: 1445, 1979.
 93. Ishizaka, K., J. C. French, and J. L. Flanagan. Direct determination of vocal tract wall impedance. IEEE Trans. Acoust. Speech Signal Process. 23: 370–373, 1975.
 94. Ishizaka, K., M. Matoudaira, and T. Kaneko. Input acoustic impedance measurements of the subglottal system. J. Acoust. Soc. Am. 60: 190–197, 1976.
 95. Jackson, A. C. Lung impedance determinations by a discrete frequency technique without flow measurements. In: Pulmonary Function Testing in Infants and Children, edited by J. J. Fredberg and M. E. B. Wohl. Bethesda, MD: Natl. Inst. Health, 1977, HR‐6–2901–2A.
 96. Jackson, A. C., J. P. Butler, B. J. Millet, F. G. Hoppin, Jr., and S. V. Dawson. Airway geometry by analysis of acoustic pulse response measurements. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 43: 523–536, 1977.
 97. Jackson, A. C., J. P. Butler, and R. W. Pyle. Acoustic input impedance of excised dog lungs. J. Acoust. Soc. Am. 64: 1020–1026, 1978.
 98. Jackson, A. C., P. J. Gulesian, Jr., and J. Mead. Glottal aperture during panting with voluntary limitation of tidal volume. J. Appl. Physiol. 39: 834–836, 1975.
 99. Jackson, A. C., S. H. Loring, and J. M. Drazen. Serial distribution of bronchoconstriction induced by vagal stimulation or histamine. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 50: 1286–1292, 1981.
 100. Jackson, A. C., and D. E. Olson. Comparison of direct and acoustical area measurements in physical models of human central airways. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 48: 896–902, 1980.
 101. Jackson, A. C., and A. Vinegar. A technique for measuring frequency response of pressure, volume, and flow transducers. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 47: 462–467, 1979.
 102. Jackson, A. C., and J. W. Watson. Oscillatory mechanics of the respiratory system in normal rats. Respir. Physiol. 48: 309–322, 1982.
 103. Jackson, A. C., C. D. Wegner, J. D. Berry, and J. R. Gillespie. Frequency dependence of respiratory resistances between 2 and 32 Hz in normal bonnet monkeys (Abstract). Federation Proc. 39: 835, 1980.
 104. Jaeger, M. J., and A. B. Otis. Measurement of airway resistance with a volume displacement body plethysmograph. J. Appl. Physiol. 19: 813–820, 1964.
 105. Jordan, C., J. R. Lehane, J. G. Jones, D. G. Altman, and J. P. Royston. Specific conductance using forced airflow oscillation in mechanically ventilated human subjects. J. Appl. Physiol: Respirat. Environ. Exercise Physiol. 51: 715–724, 1981.
 106. Kabiraj, M. U., C. Rolf, and B. G. Simonsson. Drug‐induced changes in airways obstruction reflected by forced expiratory flows and airway resistance measured with an oscillometric method using quiet breathing. Respiration 41: 90–95, 1981.
 107. Kappos, A. D., J. R. Rodarte, and S. J. Lai‐Fook. Frequency dependence and partitioning of respiratory impedance in dogs. J. Appl. Physiol: Respirat. Environ. Exercise Physiol. 51: 621–629, 1981.
 108. Kazansky, B. G. Outline of the theory of non‐uniform transmission lines. Proc. Inst. Electr. Eng. Part C 105: 126–138, 1958.
 109. Kjeldgaard, J. M., R. W. Hyde, D. M. Speers, and W. W. Reichert. Frequency dependence of total respiratory resistance in early airway disease. Am. Rev. Respir. Dis. 114: 501–508, 1976.
 110. Landau, L. L., and P. O. Phelan. Evaluation of two techniques for the measurement of respiratory resistance by forced oscillation. Thorax 28: 136–141, 1973.
 111. Lándsér, F. J., J. Clément, and K. P. van de Woestijne. Normal values of total respiratory resistance and reactance determined by forced oscillations. Influence of smoking. Chest 81: 586–591, 1982.
 112. Lándsér, F. J., J. Nagels, J. Clément, and K. P. van de Woestijne. Errors in the measurement of total respiratory resistance and reactance by forced oscillations. Respir. Physiol 28: 289–301, 1976.
 113. Lándsér, F. J., J. Nagels, M. Demedts, L. Billiet, and K. P. van de Woestijne. A new method to determine frequency characteristics of the respiratory system. J. Appl. Physiol. 41: 101–106, 1976.
 114. Lilly, J. C. Flowmeter for recording respiratory flow of human subjects. In: Methods in Medical Research, edited by J. H. Comroe. Chicago, IL: Year Book, 1950, vol. 2, p. 113–121.
 115. Long, E. C., W. E. Hull, and E. L. Gebel. Respiratory dynamic resistance. J. Appl. Physiol. 17: 609–612, 1962.
 116. MacDonald, D. Blood Flow in Arteries. Baltimore, MD: Williams & Wilkins, 1974.
 117. Macklem, P. T., and J. Mead. Resistance of central and peripheral airways measured by a retrograde catheter. J. Appl. Physiol. 22: 395–401, 1967.
 118. Mansell, A., H. Levison, K. Kruger, and T. L. Tripp. Measurement of respiratory resistance in children by forced oscillations. Am. Rev. Respir. Dis. 106: 710–714, 1972.
 119. Margolis, D. L. An Experimental Investigation of Acoustic Waves in Turbulent Fluid Transmission Lines. Cambridge, MA: MIT, 1972, p. 97–101. PhD thesis.
 120. Martin, H. B., and D. F. Proctor. Pressure‐volume measurements on dog bronchi. J. Appl. Physiol. 13: 337–343, 1958.
 121. Martini, P. Studien aber Percussion und Auskultation, Deutsches. Arch. Klin. Med. 139: 257–285, 1922.
 122. Maslen, K. R. Dynamic Calibration of Gas Flowmeters. Teddington, UK: Aeronaut. Res. Counc, 1971. (Curr. Pap. 1224.).
 123. Maslen, K. R., and G. F. Rowlands. A New Method of Measuring the Impedance of the Human Respiratory System at Moderate Frequencies. Farnborough, UK: Royal Aircraft Establishment, 1966. (Tech. Rep. 66296.).
 124. Maslen, K. R., and G. F. Rowlands. Simulation of the impedance of the human respiratory system in dynamic testing of aircraft breathing equipment. Aerosp. Med. 39: 458–462, 1968.
 125. Mead, J. Measurement of inertia of the lungs at increased ambient pressure. J. Appl. Physiol. 9: 208–212, 1956.
 126. Mead, J. Control of respiratory frequency. J. Appl. Physiol. 15: 325–336, 1960.
 127. Mead, J. Contribution of compliance of airways to frequency‐dependent behavior of lungs. J. Appl. Physiol. 26: 670–673, 1969.
 128. Mead, J., and J. L. Whittenberger. Evaluation of airway interruption technique as a method for measuring pulmonary air‐flow resistance. J. Appl. Physiol. 6: 408–416, 1954.
 129. Mead, W. J., and V. P. Collins. The principles of dilatancy applied to techniques of radiotherapy. Am. J. Roentgenol. Radium Ther. Nucl. Med. 71: 864–866, 1954.
 130. Menendez, R., H. W. Kelly, and W. Tuttle. A comparison of total respiratory conductance by forced oscillations with spirometry in evaluating the response of asthmatic children to inhaled isoproterenol (Abstract). Am. Rev. Respir. Dis. 123, Suppl.: 162, 1981.
 131. Michaelson, E. D. Effects of the mouth shunt impedance on the frequency response of the respiratory system (Abstract). Proc. Int. Congr. Physiol. Sci., 27th, Paris, 1977, vol. 13, p. 505.
 132. Michaelson, E. D., E. D. Grassman, and W. R. Peters. Pulmonary mechanics by spectral analysis of forced random noise. J. Clin. Invest. 56: 1210–1230, 1975.
 133. Miller, T. K., and R. L. Pimmel. Forced noise mechanical parameters during inspiration and expiration. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 52: 1530–1534, 1982.
 134. Mitchell, M., S. Watanabe, and A. D. Renzetti. Evaluation of airway conductance measurements in normal subjects and patients with chronic obstructive pulmonary disease. Am. Rev. Respir. Dis. 96: 685–691, 1967.
 135. Mittman, C., N. H. Edelman, A. H. Norris, and N. W. Shock. Relationship between chest wall and pulmonary compliance and age. J. Appl. Physiol. 20: 1211–1216, 1965.
 136. Miyakawa, M., K. Yamamoto, and T. Mikami. Acoustic measurement of the respiratory system—an acoustic pneumograph. Med. Biol. Eng. 14: 653–659, 1976.
 137. Mlczoch, J. Impedance of the lung in acute pulmonary infarction. In: Progress in Respiration Research. Pulmonary Embolism, edited by J. Widimsky. Basel: Karger, 1980, vol. 13,] p. 82–87.
 138. Müller, E., and J. Vogel. Modeling and parameter estimation of the respiratory system using oscillatory impedance curves (Abstract). Bull. Eur. Physiopathol. Respir. 17: 10P–11P, 1981.
 139. Müller, E., H. Wuthe, and J. Vogel. Estimation of respiratory parameters using oscillatory impedance data and results of modeling (Abstract). Bull. Eur. Physiopathol. Respir. 16: 189P–190P, 1980.
 140. Murphy, D. M. F., L. F. Metzger, D. A. Silage, and L. M. Hollmann. Frequency dependent resistance in simple coal workers' pneumoconiosis (Abstract). Am. Rev. Respir. Dis. 123, Suppl.: 143, 1981.
 141. Murphy, D. M. F., D. A. Silage, L. F. Metzger, and G. R. Owens. Forced oscillation measurements of total respiratory resistance (Abstract). Am. Rev. Respir. Dis. 121, Suppl.: 171, 1980.
 142. Murray, A., and J. M. M. Neilson. Diagnostic percussion sounds. I. A qualitative analysis. Med. Biol. Eng. 13: 19–28, 1975.
 143. Nagels, J., F. J. Lándsér, L. Van der Linden, J. Clément, and K. P. Van de Woestijne. Mechanical properties of lungs and chest wall during spontaneous breathing. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 49: 408–416, 1980.
 144. Naimark, A., and R. M. Cherniack. Compliance of the respiratory system and its components in health and obesity. J. Appl. Physiol. 15: 377–382, 1960.
 145. Nieding, G. von, and U. Smidt. Pharmacokinetics of different bronchodilators as measured continuously with the oscillation method (Abstract). Bull. Eur. Physiopathol. Respir. 13: 126P–127P, 1977.
 146. Nisell, O. I., and A. B. Dubois. Relationship between compliance and FRC of the lungs in cats, and measurement of resistance to breathing. Am. J. Physiol. 178: 206–210, 1954.
 147. Nolte, D., D. Berger, and E. Forster. Theoretical and clinical aspects of impedance measurements of the respiratory system. In: Progress in Respiration Research. Biomedical Engineering and Data Processing in Pneumonobgy, edited by H. Matthys. Basel: Karger, 1979, vol. 11, p. 172–178.
 148. Olive, J. T., and R. E. Hyatt. Maximal expiratory flow and total respiratory resistance during induced bronchoconstriction in asthmatic subjects. Am. Rev. Respir. Dis. 106: 366–376, 1972.
 149. Otis, A. B., C. B. McKerrow, R. A. Bartlett, J. Mead, M. B. McIlroy, N. J. Selverstone, and E. P. Radford, Jr. Mechanical factors in distribution of pulmonary ventilation. J. Appl. Physiol. 8: 427–443, 1956.
 150. Otis, A. B., and D. F. Proctor. Measurement of alveolar pressure in human subjects. Am. J. Physiol. 152: 106–112, 1948.
 151. Peslin, R., C. Duvivier, and J. Morinet‐Lambert. Réponse en fréquence du système mécanique ventilatoire total de 3 à 70 Hz. Bull. Physio‐Pathol. Respir. 8: 267–279, 1972.
 152. Peslin, R., B. Hannhart, and J. Pino. Impédance mécanique thoraco‐pulmonaire chez des sujets fumeurs et non‐fumeurs. Bull. Eur. Physiopathol. Respir. 17: 93–105, 1981.
 153. Peslin, R., T. Hixon, and J. Mead. Variations des résistances thoraco‐pulmonaires au cours du cycle ventilatoire étudiées par méthode D'oscillation. Bull. Physio‐Pathol. Respir. 7: 173–188, 1971.
 154. Peslin, R., J. Morinet‐Lambert, and C. Duvivier. Étude de la réponse en fréquence de pneumotachographes. Bull. Physio‐Pathol. Respir. 8: 1363–1376, 1972.
 155. Peslin, R., J. Papon, C. Duvivier, and J. Richalet. Frequency response of the chest: modeling and parameter estimation. J. Appl. Physiol. 39: 523–534, 1975.
 156. Petro, W., G. von Nieding, W. Boll, and U. Smidt. Determination of respiratory resistance by an oscillation method. Studies of long‐term and short‐term variability and dependence upon lung volume and compliance. Respiration 42: 243–251, 1981.
 157. Pimmel, R. L., J. M. Fullton, J. F. Ginsberg, M. J. Hazucha, E. D. Haak, W. F. McDonnell, and P. A. Bromberg. Correlation of airway resistance with forced random noise resistance parameters. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 51: 33–39, 1981.
 158. Pimmel, R. L., R. A. Sunderland, D. J. Robinson, H. B. Williams, R. L. Hamlin, and P. A. Bromberg. Instrumentation for measuring respiratory impedance by forced oscillations. IEEE Trans. Biomed. Eng. 24: 89–93, 1977.
 159. Pimmel, R. L., M. J. Tsai, D. C. Winter, and P. A. Bromberg. Estimating central and peripheral respiratory resistance. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 45: 375–380, 1978.
 160. Pimmel, R. L., D. C. Winter, and P. A. Bromberg. Forced oscillatory parameters of the canine respiratory system with altered vagal tone. IEEE Trans. Biomed. Eng. 27: 146–149, 1980.
 161. Rice, D. A. Sound speed in the upper airways. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 49: 326–336, 1980.
 162. Rohrer, R. Der Strömungswiderstand in den menschlichen Atemwegen und der Einfluss der unregelmassigen Verzweigung des bronchial Systems auf den Atmungsverlauf in verschiedenen Lungenbezirken. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 162: 225–299, 1915.
 163. Ross, A. J., M. B. Raber, B. W. Kirk, and D. H. Goldstein. Direct readout of respiratory impedance. Med. Biol. Eng. 14: 558–564, 1976.
 164. Saumon, G., E. Delavault, and R. Georges. Modeling of the frequency response of the respiratory system from mouth input (Abstract). Bull. Eur. Physiopathol. Respir. 17: 14P–16P, 1981.
 165. Schmid‐Schoenbein, G. W., and Y. C. Fung. Forced perturbation of respiratory system. A. The traditional model. Ann. Biomed. Eng. 6: 194–211, 1978.
 166. Schwaber, J. R., M. Khan, G. Tanabe, and M. Stein. Determination of total respiratory flow resistance by forced oscillations (Abstract). Clin. Res. 13: 352, 1965.
 167. Sharp, J. T., J. Danon, and W. S. Druz. The continuous direct reading measurement of respiratory resistance at multiple frequencies (Abstract). Am. Rev. Respir. Dis. 105: 1016, 1972.
 168. Sharp, J. T., J. P. Henry, S. K. Sweany, W. R. Meadows, and R. J. Pietras. Total respiratory inertance and its gas and tissue components in normal and obese men. J. Clin. Invest. 43: 503–509, 1964.
 169. Sharp, J. T., J. P. Henry, S. K. Sweany, W. R. Meadows, and R. J. Pietras. The total work of breathing in normal and obese men. J. Clin. Invest. 43: 728–739, 1964.
 170. Sharp, J. T., S. K. Sweany, J. P. Henry, R. J. Pietras, and W. R. Meadows. Total respiratory inertance in normal and obese persons (Abstract). Physiologist 5: 212, 1962.
 171. Shearer, J. L., A. T. Murphy, and H. H. Richardson. Introduction to System Dynamics. Reading, MA: Addison‐Wesley, 1967.
 172. Shephard, R. J. Mechanical characteristics of the human airway in relation to use of the interrupter valve. Clin. Sci. 25: 263–280, 1963.
 173. Shephard, R. J. Dynamic characteristics of the human airways and the behavior of unstable breathing systems. Aerosp. Med. 37: 1014–1021, 1966.
 174. Sidell, R. S., and J. J. Frrdberg. Non‐invasive inference of airway network geometry from broadband lung reflection data. J. Biomech. Eng. 100: 131–138, 1978.
 175. Silverman, L., and J. L. Whittenberger. Clinical pneumotachograph. In: Methods in Medical Research, edited by J. H. Comroe. Chicago, IL: Year Book, 1950, vol. 2, p. 104–112.
 176. Sinha, R., A. Eliraz, and P. Kimbel. Correlation of forced oscillation technique with spirometry in evaluation of pulmonary function (Abstract). Am. Rev. Respir. Dis. 119, Suppl.: 170, 1979.
 177. Slutsky, A. S., and J. M. Drazen. Estimating central and peripheral respiratory resistance: an alternative analysis. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 47: 1325–1331, 1979.
 178. Slutsky, A. S., and J. J. Fredberg. Analysis of frequency dependence of respiratory system resistance using a computer simulation model (Abstract). Am. Rev. Respir. Dis. 121, Suppl.: 405, 1980.
 179. Smidt, U., H. Löllgen, G. von Nieding, M. Franeztki, V. Korn, and K. Prestele. A new oscillation method for determining resistance to breathing. Verh. Ges. Lungen‐Atmungsforsch. 6: 211–225, 1976.
 180. Smith, J. C., J. P. Butler, and F. G. Hoppin, Jr. Dynamic mechanical properties of lung parenchyma (Abstract). Physiologist 23 (4): 45, 1980.
 181. Sobol, B. J. Tests of ventilatory function not requiring maximal subject effort. II. The measurement of total respiratory impedance. Am. Rev. Respir. Dis. 97: 868–879, 1968.
 182. Sondhi, M. M., and B. Gopinath. Determination of vocal tract shape from impulse response at the lips. J. Acoust. Soc. Am. 49: 1867–1873, 1971.
 183. Stanescu, D. C., R. Fesler, C. Veriter, A. Frans, and L. Brasseur. A modified measurement of respiratory resistance by forced oscillation during normal breathing. J. Appl. Physiol. 39: 305–311, 1975.
 184. Stanescu, D., N. E. Moavero, C. Veriter, and L. Brasseur. Frequency dependence of respiratory resistance in healthy children. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 47: 268–272, 1979.
 185. Stanescu, D. C., J. Pattijn, J. Clément, and K. P. van de Woestijne. Glottis opening and airway resistance. J. Appl. Physiol. 32: 460–466, 1972.
 186. Strutt, J. W., and Baron Rayleigh. The Theory of Sound. New York: Dover, 1945, vol. 2, p. 62–66.
 187. Takashima, T., W. Hida, M. Sasaki, S. Suzuki, T. Sasaki. Direct‐writing recorder of the dose‐response curves of airway to methacoline clinical applications. Chest 80: 600–606, 1981.
 188. Taylor, M. G. Input impedance of an assembly of randomly branching elastic tubes. Biophys. J. 5: 29–51, 1966.
 189. Taylor, M. G. Use of random excitations and spectral analysis in the study of frequency‐dependent parameters of the cardiovascular system. Circ. Res. 18: 585–595, 1966.
 190. Tsai, M. J., R. L. Pimmel, E. J. Stiff, P. A. Bromberg, and R. L. Hamlin. Respiratory parameter estimation using forced oscillatory impedance data. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 43: 322–330, 1977.
 191. Tuttle, W. C., J. A. Loeppky, and U. C. Luft. Effect of gas density on total respiratory conductance measured by forced oscillations (Abstract). Federation Proc. 36: 614, 1977.
 192. Van Brabandt, H., M. Cauberghs, P. Moerman, and K. P. van de Woestijne. Partitioning of pulmonary impedance in excised human lungs (Abstract). Am. Rev. Respir. Dis. 123, Suppl.: 194, 1981.
 193. Van den Berg, J. W. Myoelastic‐aerodynamic theory of voice production. J. Speech Hear. Res. 1: 227–244, 1958.
 194. Van den Berg, J. W. An electrical analogue of the trachea, lungs and tissues. Acta Physiol. Pharmacol. Neerl. 9: 361–385, 1960.
 195. Van Lith, P., F. N. Johnson, and J. T. Sharp. Respiratory elastances in relaxed and paralyzed states in normal and abnormal men. J. Appl. Physiol. 23: 475–486, 1967.
 196. Varène, P., and C. Jacquemin. Plethysmographic measurement of the impedance of the gaseous ventilatory system. In: Progress in Respiration Research. Body Plethysmography, edited by A. B. DuBois and K. P. van de Woestijne. Basel: Karger, 1969, vol. 4, p. 88–101.
 197. Varène, P., J. Timbal, and C. Jacquemin. Étude comparative des résistances respiratoires tissulaires et gazeuses de l'homme. Arch. Sci. Physiol. 20: 303–341, 1966.
 198. Vincent, N. J., R. Knudson, D. E. Leith, P. T. Macklem, and J. Mead. Factors influencing pulmonary resistance. J. Appl. Physiol. 29: 236–243, 1970.
 199. Von Neergaard, K., and K. Wirz. Die Messung der Strömungswiderstande in den Atemwegen des Menschen insbesondere bei Asthma und Emphysem. Z. Klin. Med. 105: 51–82, 1927.
 200. Wanner, A., S. Zarzecki, and M. B. Marks. Continuous measurement of respiratory resistance in asthmatic children. Respiration 34: 61–68, 1977.
 201. Weibel, E. R. Morphometrics of the lung. In: Handbook of Physiology. Respiration, edited by W. O. Fenn and H. Rahn. Washington, DC: Am. Physiol. Soc., 1964, sect. 3, vol. I, chapt. 7, p. 285–307.
 202. Williams, S. P., J. M. Fullton, M. J. Tsai, R. L. Pimmel, and A. M. Collier. Respiratory impedance and derived parameters in young children by forced random noise. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 47: 169–174, 1979.
 203. Williams, S. P., R. L. Pimmel, J. M. Fullton, M. J. Tsai, and A. M. Collier. Fractionating respiratory resistance in young children. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 47: 551–555, 1979.
 204. Wohl, M. E., L. C. Stigol, and J. Mead. Resistance of the total respiratory system in healthy infants and infants with bronchiolitis. Pediatrics 43: 495–509, 1969.
 205. Womersley, J. R. Method for calculation of velocity rate of flow, and viscous drag in arteries when the pressure gradient is known. J. Physiol. London 127: 553–563, 1955.
 206. Yamashiko, S. M., S. K. Karuza, and J. D. Hackney. Phase compensation of Fleisch pneumotachographs. J. Appl. Physiol. 36: 493–495, 1974.
 207. Zalter, R., H. C. Hardy, and A. A. Luisada. Acoustic transmission characteristics of the thorax. J. Appl. Physiol. 18: 428–436, 1963.
 208. Zechman, F. W., Jr., D. Peck, and E. Luce. Effect of vertical vibration on respiratory airflow and transpulmonary pressure. J. Appl. Physiol. 20: 849–854, 1965.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

René Peslin, Jeffrey J. Fredberg. Oscillation Mechanics of the Respiratory System. Compr Physiol 2011, Supplement 12: Handbook of Physiology, The Respiratory System, Mechanics of Breathing: 145-177. First published in print 1986. doi: 10.1002/cphy.cp030311