Comprehensive Physiology Wiley Online Library

Lung Recoil: Elastic and Rheological Properties

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Historical Background
2 Pressure‐Volume Relationships
2.1 Excised Lungs
2.2 Liquid Filling
2.3 Temperature
2.4 Quantification
3 Rheological Properties
3.1 Hysteresis, Stress Adaptation, and Creep
3.2 Structural Basis
3.3 Rheological Models
4 Force‐Bearing Structures
4.1 Airways and Vasculature
4.2 Pleura and Interlobular Septa
4.3 Alveolar Septa
5 Connective Tissue
5.1 Components
5.2 Collagen‐Elastin Interactions
6 Interfacial Tension
6.1 Air‐Liquid Interface
6.2 Estimation of Interfacial Tension From Pressure‐Volume Curves
6.3 Direct Estimation of Interfacial Tension in Situ
6.4 Cell Medium Interfacial Tension
7 Contractile Elements
7.1 Airways
7.2 Alveolar Duct
7.3 Septa
7.4 Functional Implications
8 Postmortem Changes
8.1 Lung Tissue
8.2 Lung Surface
8.3 Airways
9 Nonuniformities of Ventilation
9.1 Synchrony of Ventilation
9.2 Gas Dilution
Figure 1. Figure 1.

Four inflation‐deflation maneuvers in excised rabbit lung generating characteristic volume‐pressure loops. a: Inflation from degassed state shows transpulmonary pressures in excess of 20 cmH2O required before there is substantial opening. On deflation to 0 cmH2O emptying is incomplete, with substantial air trapped in lung. b: Repeated cycles between 0 and 30 cmH2O show stable loops. Lung is now much more easily opened than in α, but still becomes relatively stiff near 30 cmH2O. c: Small volume cycles (such as in tidal breaths in vivo) run between ∼3 and 8 cmH2O. d: With air removed and saline introduced, lung shows much less recoil over same volume range.

Figure 2. Figure 2.

Deflation volume‐pressure characteristics of lungs filled with different substances.

Figure 3. Figure 3.

Temperature effects on volume‐pressure loops. A: air‐filled lungs; B: saline‐filled lungs.

Adapted from Inoue et al.
Figure 4. Figure 4.

Stress adaptation in normal lung showing time course of transpulmonary pressure in air‐filled (solid line) and saline‐filled (dashed line) cat lungs. Top curve, behavior after inflation to total lung capacity (TLC); lower curves, after deflation from TLC to 85%, 70%, 55%, 40%, and 21% TLC.

Figure 5. Figure 5.

Schematic description of viscoelastic, plastoelastic mechanism constructed of springs, dashpots, and dry‐friction elements.

Figure 6. Figure 6.

Light micrograph of dog lung showing network of alveolar septa that constitutes parenchyma. Air inflated to 55% total lung capacity, fixed with intravascular osmium tetroxide and tannin. Bar, 100 μm; × 156.

Figure 7. Figure 7.

A: volume‐pressure deflation curves for air‐filled and saline‐filled lungs. B: surface area‐surface tension relationship calculated from differences in pressure of saline‐filled and air‐filled lungs and assumptions of isotropic deflation and simple summation of tissue and surface contributions.

Figure 8. Figure 8.

A: plots of tissue (U), surface (∫γdS), and total (E) energies against surface areas (S). B: surface tension‐lung volume relationships obtained by Bachofen et al. , Schürch , and Wilson .

Figure 9. Figure 9.

Schematic relationships among contact angles and interfacial tensions, forming basis for experiments of Schürch and colleagues .

Figure 10. Figure 10.

Volume‐pressure behavior of guinea pig lungs before and after excision.



Figure 1.

Four inflation‐deflation maneuvers in excised rabbit lung generating characteristic volume‐pressure loops. a: Inflation from degassed state shows transpulmonary pressures in excess of 20 cmH2O required before there is substantial opening. On deflation to 0 cmH2O emptying is incomplete, with substantial air trapped in lung. b: Repeated cycles between 0 and 30 cmH2O show stable loops. Lung is now much more easily opened than in α, but still becomes relatively stiff near 30 cmH2O. c: Small volume cycles (such as in tidal breaths in vivo) run between ∼3 and 8 cmH2O. d: With air removed and saline introduced, lung shows much less recoil over same volume range.



Figure 2.

Deflation volume‐pressure characteristics of lungs filled with different substances.



Figure 3.

Temperature effects on volume‐pressure loops. A: air‐filled lungs; B: saline‐filled lungs.

Adapted from Inoue et al.


Figure 4.

Stress adaptation in normal lung showing time course of transpulmonary pressure in air‐filled (solid line) and saline‐filled (dashed line) cat lungs. Top curve, behavior after inflation to total lung capacity (TLC); lower curves, after deflation from TLC to 85%, 70%, 55%, 40%, and 21% TLC.



Figure 5.

Schematic description of viscoelastic, plastoelastic mechanism constructed of springs, dashpots, and dry‐friction elements.



Figure 6.

Light micrograph of dog lung showing network of alveolar septa that constitutes parenchyma. Air inflated to 55% total lung capacity, fixed with intravascular osmium tetroxide and tannin. Bar, 100 μm; × 156.



Figure 7.

A: volume‐pressure deflation curves for air‐filled and saline‐filled lungs. B: surface area‐surface tension relationship calculated from differences in pressure of saline‐filled and air‐filled lungs and assumptions of isotropic deflation and simple summation of tissue and surface contributions.



Figure 8.

A: plots of tissue (U), surface (∫γdS), and total (E) energies against surface areas (S). B: surface tension‐lung volume relationships obtained by Bachofen et al. , Schürch , and Wilson .



Figure 9.

Schematic relationships among contact angles and interfacial tensions, forming basis for experiments of Schürch and colleagues .



Figure 10.

Volume‐pressure behavior of guinea pig lungs before and after excision.

References
 1. Adamson, J., Jr. An electron microscopic comparison of the connective tissue from the lungs of young and elderly subjects. Am. Rev. Respir. Dis. 98: 394–406, 1968.
 2. Bachofen, H., P. Gehr, and E. R. Weibel. Alterations of mechanical properties and morphology in excised rabbit lungs rinsed with a detergent. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 47: 1002–1010, 1979.
 3. Bachofen, H., and J. Hildebrandt. Area analysis of pressure‐volume hysteresis in mammalian lungs. J. Appl. Physiol. 30: 493–497, 1971.
 4. Bachofen, H., J. Hildebrandt, and M. Bachofen. Pressure‐volume curves of air and liquid‐filled excised lungs—surface tension in situ. J. Appl. Physiol. 29: 422–431, 1970.
 5. Bachofen, H., and M. Scherrer. Lung tissue resistance in healthy subjects and in patients with lung disease. In: Airway Dynamics, Physiology, and Pharmacology, edited by A. Bouhuys. Springfield, IL: Thomas, 1970, p. 123–134.
 6. Bayliss, L. E., and G. W. Robertson. The viscoelastic properties of the lungs. Q. J. Exp. Physiol. 29: 27–47, 1939.
 7. Bienkowski, R., and M. Skolnick. On the calculation of surface tension in lungs from pressure‐volume data. J. Colloid Interface Sci. 48: 350–351, 1974.
 8. Borst, H. G., E. Berglund, J. L. Whittenberger, J. Mead, M. McGregor, and C. Collier. The effect of pulmonary vascular pressures on the mechanical properties of the lungs of anesthetized dogs. J. Clin. Invest. 36: 1708–1714, 1957.
 9. Boyce, J. F., S. Schürch, and D. J. L. McIver. Interfacial tensions in healthy and atherosclerotic rabbit aortae. Atherosclerosis 37: 361–370, 1980.
 10. Brown, E. S. Lung area from surface tension effects. Proc. Soc. Exp. Biol. Med. 95: 168–170, 1957.
 11. Brown, E. S., R. P. Johnson, and J. A. Clements. Pulmonary surface tension. J. Appl. Physiol. 14: 717–720, 1959.
 12. Brown, R., A. J. Woolcock, N. J. Vincent, and P. T. Macklem. Physiological effects of experimental airway obstruction with beads. J. Appl. Physiol. 27: 328–335, 1969.
 13. Butler, J. The adaptation of the relaxed lungs and chest wall to changes in volume. Clin. Sci. 16: 421–433, 1957.
 14. Carson, J. On the elasticity of the lungs. Philos. Trans. R. Soc. London Part 1: 29–44, 1820.
 15. Carton, R. W., J. Dainauskas, and J. W. Clark. Elastic properties of single elastic fibers. J. Appl. Physiol. 17: 547–551, 1962.
 16. Clements, J. A. Surface tension of lung extracts. Proc. Soc. Exp. Biol. Med. 95: 170–174, 1957.
 17. Clements, J. A. Surface phenomena in relation to pulmonary function. Physiologist 5: 11–28, 1962.
 18. Clements, J. A. Functions of the alveolar lining. Am. Rev. Respir. Dis. 115: 67–71, 1977.
 19. Clements, J. A., R. F. Hustead, R. P. Johnson, and I. Gribetz. Pulmonary surface tension and alveolar stability. J. Appl. Physiol. 16: 444–450, 1961.
 20. Clements, J., and H. Trahan. Effect of temperature on pressure‐volume characteristics of rat lungs (Abstract). Federation Proc. 22: 281, 1963.
 21. Cloetta, M. Untersuchungen über die Elastizität der Lunge und deren Bedeutung für die Zirkulation. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 152: 339–364, 1913.
 22. Colebatch, H. J. H. The humoral regulation of alveolar ducts. In: Airway Dynamics, Physiology, and Pharmacology, edited by A. Bouhuys. Springfield, IL: Thomas, 1970, p. 169–189.
 23. Colebatch, H. J. H., I. A. Greaves, and C. K. Y. Ng. Exponential analysis of elastic recoil and aging in healthy males and females. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 47: 683–691, 1979.
 24. Colebatch, H. J. H., I. A. Greaves, and C. K. Y. Ng. Pulmonary mechanics in diagnosis. In: Mechanisms of Airways Obstruction in Human Respiratory Disease, edited by M. A. de Kock, J. A. Nadel, and C. M. Lewis. Cape Town, South Africa: Balkema, 1979, p. 25–47.
 25. Colebatch, H. J. H., and C. A. Mitchell. Constriction of isolated living liquid‐filled dog and cat lungs with histamine. J. Appl. Physiol. 30: 691–702, 1971.
 26. Colebatch, H. J. H., B. S. Nail, and C. K. Y. Ng. Computerized measurement of pulmonary conductance and elastic recoil. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 44: 611–618, 1978.
 27. Colebatch, H. J. H., C. K. Y. Ng, and N. Nikov. Use of an exponential function for elastic recoil. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 46: 387–393, 1979.
 28. Comroe, J. H. Retrospectroscope: premature science and immature lungs. I. Some premature discoveries. Am. Rev. Respir. Dis. 116: 127–135, 1977.
 29. Cook, C. D., J. Mead, G. L. Schreiner, N. R. Frank, and J. M. Craig. Pulmonary mechanics during induced pulmonary edema in anesthetized dogs. J. Appl. Physiol. 14: 177–186, 1959.
 30. Dale, W., and H. Rahn. Rate of gas absorption during atelectasis. Am. J. Physiol. 170: 606–615, 1952.
 31. De Troyer, A., J. C. Yernault, and D. Rodenstein. Influence of beta‐2 agonist aerosols on pressure‐volume characteristics of the lungs. Am. Rev. Respir. Dis. 118: 987–995, 1978.
 32. De Troyer, A., J. C. Yernault, and D. Rodenstein. Effects of vagal blockade on lung mechanics in normal man. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 46: 217–226, 1979.
 33. Donders, F. C. Bijdrage tot het mechanisme van ademhaling en bloedsomloop in den gezonden en zieken toestand. Ned. Lancet 2: 333–376, 1849.
 34. Dunnill, M. S. Effect of lung inflation on alveolar surface area in the dog. Nature London 214: 1013–1014, 1967.
 35. Durlacher, S. H., W. G. Banfield, and A. D. Bergner. Post‐mortem pulmonary edema. Yale J. Biol. Med. 22: 565–572, 1950.
 36. Engel, L. A., H. Menkes, L. D. H. Wood, G. Utz, J. Joubert, and P. T. Macklem. Gas mixing during breath holding studied by intrapulmonary gas sampling. J. Appl. Physiol. 35: 9–17, 1973.
 37. Engel, L. A., and M. Paiva. Analyses of sequential filling and emptying of the lung. Respir. Physiol. 45: 309–321, 1981.
 38. Engel, L. A., G. Utz, L. D. H. Wood, and P. T. Macklem. Ventilation distribution in anatomical lung units. J. Appl. Physiol. 37: 194–200, 1974.
 39. Engel, L. A., L. D. H. Wood, G. Utz, and P. T. Macklem. Gas mixing during inspiration. J. Appl. Physiol. 35: 18–24, 1973.
 40. Fisher, M. J., M. F. Wilson, and K. C. Weber. Determination of alveolar surface area and tension from in situ pressure‐volume data. Respir. Physiol. 10: 159–171, 1970.
 41. Frank, N. R., E. P. Radford, Jr., and J. L. Whittenberger. Static volume‐pressure interrelations of the lungs and pulmonary blood vessels in excised cat's lung. J. Appl. Physiol. 14: 167–173, 1959.
 42. Fry, D. L. A preliminary lung model for simulating the aerodynamics of the bronchial tree. Comput. Biomed. Res. 2: 111–134, 1968.
 43. Fukaya, F., C. J. Martin, A. C. Young, and S. Katsura. Mechanical properties of alveolar walls. J. Appl. Physiol. 25: 689–695, 1968.
 44. Gibson, G. J., N. B. Pride, J. Davis, and R. C. Schroter. Exponential description of the static pressure‐volume curve of normal and diseased lungs. Am. Rev. Respir. Dis. 120: 799–811, 1979.
 45. Gil, J., H. Bachofen, P. Gehr, and E. R. Weibel. Alveolar volume‐surface area relation in air‐ and saline‐filled lungs fixed by vascular perfusion. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 47: 990–1001, 1979.
 46. Glaister, D. H., R. C. Schroter, M. F. Sudlow, and J. Milic‐Emili. Bulk elastic properties of excised lungs and the effect of a transpulmonary pressure gradient. Respir. Physiol. 17: 347–361, 1973.
 47. Greaves, I. A., and H. J. H. Colebatch. Elastic behavior and structure of normal and emphysematous lungs post mortem. Am. Rev. Respir. Dis. 121: 127–136, 1980.
 48. Gump, F. E., Y. Mashima, A. Ferenczy, and J. M. Kinney. Pre‐ and postmortem studies of lung fluids and electrolytes. J. Trauma 11: 474–482, 1971.
 49. Haber, P. S., H. J. H. Colebatch, C. K. Y. Ng, and I. A. Greaves. Alveolar size as a determinant of pulmonary distensibility in mammalian lungs. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol 54: 837–845, 1983.
 50. Hajji, M. A., T. A. Wilson, and S. J. Lai‐Fook. Improved measurements of shear modulus and pleural membrane tension of the lung. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 47: 175–181, 1979.
 51. Hance, A. J., and R. G. Crystal. The connective tissue of the lung. Am. Rev. Respir. Dis. 112: 657–711, 1975.
 52. Hansen, J. E., and E. P. Ampaya. Human air space shapes, sizes, areas, and volumes. J. Appl Physiol. 38: 990–995, 1975.
 53. Heynsius, A. Über die Grösse des negativem Drucks im Thorax beim rubigen Athmen. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 29: 265–311, 1882.
 54. Hildebrandt, J. Dynamic properties of air‐filled excised cat lung determined by liquid plethysmograph. J. Appl. Physiol 27: 246–250, 1969.
 55. Hildebrandt, J. Pressure‐volume data of cat lung interpreted by a plastoelastic, linear viscoelastic model. J. Appl. Physiol 28: 365–372, 1970.
 56. Hildebrandt, J. Modeles de l'hysteresis pression‐volume. Bull. Physio‐Pathol. Respir. 8: 337–350, 1972.
 57. Hildebrandt, J. Lung surfactant mechanics: some unresolved problems. In: Regulation of Ventilation and Gas Exchange, edited by C. D. Davies and G. D. Barnes. New York: Academic, 1978.
 58. Hildebrandt, J., H. Bachofen, and G. Brandt. Reduction of hysteresis in liquid‐sealed bell type spirometers. J. Appl Physiol. 28: 216–218, 1970.
 59. Hoffman, L., O. O. Blumenfeld, R. B. Mondshine, and S. S. Park. Effect of dl‐penicillamine on fibrous proteins of rat lung. J. Appl. Physiol. 33: 42–46, 1972.
 60. Hoffman, L., R. B. Mondshine, and S. S. Park. Effect of dl‐penicillamine on elastic propeties of rat lung. J. Appl. Physiol. 30: 508–511, 1971.
 61. Hoppin, F. G., Jr., and J. Hildebrandt. Mechanical properties of the lung. In: Bioengineering Aspects of the Lung, edited by J. B. West. New York: Dekker, 1977, p. 83–162.
 62. Hoppin, F. G., Jr., J. M. B. Hughes, and J. Mead. Axial forces in the bronchial tree. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 42: 773–781, 1977.
 63. Horie, T., R. Ardila, and J. Hildebrandt. Static and dynamic properties of excised cat lung in relation to temperature. J. Appl. Physiol. 36: 317–322, 1974.
 64. Horie, T., and J. Hildebrandt. Dynamic compliance, limit cycles, and static equilibria of excised cat lung. J. Appl. Physiol 31: 423–430, 1971.
 65. Horie, T., and J. Hildebrandt. Volume history, static equilibrium and dynamic compliance of excised cat lung. J. Appl Physiol. 33: 105–112, 1972.
 66. Horie, T., and J. Hildebrandt. Dependence of lung hysteresis area on tidal volume, duration of ventilation, and history. J. Appl Physiol. 35: 596–600, 1973.
 67. Horwitz, A. L., N. A. Elson, and R. G. Crystal. Proteoglycans and elastin. In: The Biochemical Basis of Pulmonary Function, edited by R. G. Crystal. New York: Dekker, 1976, p. 273–311.
 68. Hutchinson, J. Thorax. In: Cyclopaedia of Anatomy and Physiology, edited by R. B. Todd. London: Longmans, 1849–1852, vol. 4, pt. 2, p. 1017–1086.
 69. Ingram, R. H., Jr., J. J. Wellman, E. R. McFadden, Jr., and J. Mead. Relative contributions of large and small airways to flow limitation in normal subjects before and after atropine and isoproterenol. J. Clin. Invest. 59: 696–703, 1977.
 70. Inners, C. R., P. B. Terry, R. J. Traystman, and H. A. Menkes. Effects of lung volume on collateral and airways resistance in man. J. Appl Physiol.: Respirat. Environ. Exercise Physiol. 46: 67–73, 1979.
 71. Inoue, H., C. Inoue, and J. Hildebrandt. Temperature effects on lung mechanics in air‐ and liquid‐filled rabbit lungs. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol 53: 567–575, 1982.
 72. Jaeger, M. J., and A. B. Otis. Measurement of airway resistance with a volume displacement body plethysmograph. J. Appl Physiol. 19: 813–820, 1964.
 73. Kapanci, Y., A. Assimacopoulos, C. Irle, A. Zwahlen, and G. Gabbiani. “Contractile interstitial cells” in pulmonary alveolar septa: a possible regulator of ventilation/perfusion ratio? Ultrastructural immunofluorescence and in vitro studies. J. Cell Biol. 60: 375–392, 1974.
 74. Karlinsky, J. B., G. L. Snyder, C. Franzblau, P. J. Stone, and F. G. Hoppin, Jr. In vitro effects of elastase and collagenase on mechancial properties of hamster lungs. Am. Rev. Respir. Dis. 113: 769–777, 1976.
 75. Keith, A. The mechanism of respiration in man. In: Further Advances in Physiology, edited by L. Hill. London: Longmans, 1909, p. 182–207.
 76. Knudson, R. J., and W. T. Kallenborn. Evaluation of lung elastic recoil by exponential curve analysis. Respir. Physiol. 46: 29–42, 1981.
 77. Lempert, J., and P. T. Macklem. Effect of temperature on rabbit lung surfactant and pressure‐volume hysteresis. J. Appl. Physiol. 31: 380–385, 1971.
 78. Liebermeister, G. Zur normalen und pathologischen Physiologie der Atmungsorgane. I. Über das Verhältnis zwischen Lungendehnung und Lungenvolumen. Zentralbl. Allg. Pathol. Pathol. Anat. 18: 644–650, 1907.
 79. Loring, S. H., J. M. Drazen, J. C. Smith, and F. G. Hoppin, Jr. Vagal stimulation and aerosol histamine increase hysteresis of lung recoil. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 51: 477–484, 1981.
 80. Macklem, P. T. Airway obstruction and collateral ventilation. Physiol. Rev. 51: 368–436, 1971.
 81. Macklem, P. T., and J. Mead. Resistance of central and peripheral airways measured by a retrograde catheter. J. Appl. Physiol. 22: 395–401, 1967.
 82. Macklin, C. C. Musculature of the bronchi and lungs. Physiol. Rev. 9: 1–60, 1929.
 83. Marshall, R., and A. B. DuBois. The measurement of the viscous resistance of the lung tissue in normal man. Clin. Sci. 15: 161–170, 1956.
 84. Marshall, R., and J. G. Widdicombe. Stress relaxation of the human lung. Clin. Sci. 20: 19–31, 1960.
 85. Martin, H. B. Respiratory bronchioles as the pathway for collateral ventilation. J. Appl Physiol. 21: 1443–1447, 1966.
 86. McIlroy, M. B., J. Mead, N. J. Selverstone, and E. P. Radford, Jr. Measurement of lung tissue viscous resistance using gases of equal kinematic viscosity. J. Appl. Physiol. 7: 485–490, 1955.
 87. Mead, J., T. Takishima, and D. Leith. Stress distribution in lungs: a model of pulmonary elasticity. J. Appl. Physiol. 28: 596–608, 1970.
 88. Moor, E., and J. S. Ultman. Monte Carlo simulation of simultaneous gas flow and diffusion in an asymmetric distal pulmonary airway model. Bull. Math. Biol. 38: 161–193, 1976.
 89. Morley, C. J., A. D. Bangham, P. Johnson, G. D. Thorburn, and G. Jenkin. Physical and physiological properties of dry lung surfactant. Nature London 271: 162–163, 1978.
 90. Morriss, A. W., R. E. Drake, and J. C. Gabel. Comparison of microvascular filtration characteristics in isolated and intact lungs. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 48: 438–443, 1980.
 91. Murphy, B. G., and L. A. Engel. Models of the pressure‐volume relationship of the human lung. Respir. Physiol. 32: 183–194, 1978.
 92. Nadel, J. A., H. J. H. Colebatch, and C. R. Olsen. Location and mechanisms of airway constriction after barium sulfate microembolism. J. Appl. Physiol. 19: 387–394, 1964.
 93. Nagao, K., R. Ardila, and J. Hildebrandt. Rheological properties of excised rabbit lung stiffened by repeated hyperinflation. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 47: 360–368, 1979.
 94. Neumann, A. W., R. J. Good, C. J. Hope, and M. Sejpal. An equation‐of‐state approach to determine surface tensions of low‐energy solids from contact angles. J. Colloid Interface Sci. 49: 291–304, 1974.
 95. Niewoehner, D. E., J. Kleinerman, and L. Liotta. Elastic behavior of postmortem human lungs: effect of aging and mild emphysema. J. Appl. Physiol. 39: 943–949, 1975.
 96. Oldmixon, E. H., and F. G. Hoppin, Jr. Comparison of amounts of collagen and elastin in pleura and parenchyma of dog lung. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 56: 1383–1388, 1984.
 97. Orsos, F. Über das elastische Gerust der normalen und der emphysematosen Lunge. Beitr. Pathol. Anat. Allg. Pathol. 41: 95–121, 1907.
 98. Otis, A. B., C. B. McKerrow, R. A. Bartlett, J. Mead, M. B. McIlroy, N. J. Selverstone, and E. P. Radford, Jr. Mechanical factors in distribution of pulmonary ventilations. J. Appl. Physiol. 8: 427–433, 1956.
 99. Paiva, M., J. C. Yernault, P. van Eerdeweghe, and M. Englert. A sigmoid model of the static volume‐pressure curve of the lung. Respir. Physiol. 23: 317–323, 1975.
 100. Parish, W. E., A. R. Akester, and D. M. Gregg. The demonstration of bronchospasm in anaphylaxis by radiography. Int. Arch. Allergy Appl. Immunol. 25: 89–104, 1964.
 101. Pattle R. E. Properties, function and origin of the alveolar lining layer. Nature London 175: 1125–1126, 1955.
 102. Pattle, R. E. The cause of the stability of bubbles derived from the lung. Phys. Med. Biol. 5: 11–26, 1960.
 103. Pattle, R. E., and S. M. Cooper. Postmortem changes in the surpellic activity of lung surfactant. Br. J. Exp. Pathol. 59: 337–338, 1978.
 104. Pattle, R. E., C. Schock, and J. M. Creasey. Post‐mortem changes at electron microscope level in the type II cells of the lung. Br. J. Exp. Pathol. 55: 221–227, 1974.
 105. Pengelly, L. D. Curve‐fitting analysis of pressure‐volume characteristics in the lungs. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 42: 111–116, 1977.
 106. Pierce, J. A. The elastic tissue of the lung. In: The Lung, edited by A. A. Liebow and D. E. Smith. Baltimore, MD: Williams & Wilkins, 1968, p. 41–47.
 107. Pierce, J. A., and R. V. Ebert. Fibrous network of the lung and its change with age. Thorax 20: 469–476, 1965.
 108. Radford, E. P., Jr. Method for estimating respiratory surface area of mammalian lungs from their physical characteristics. Proc. Soc. Exp. Biol. Med. 87: 58–61, 1954.
 109. Radford, E. P., Jr. Recent studies of mechanical properties of mammalian lungs. In: Tissue Elasticity, edited by J. W. Remington. Washington, DC: Am. Physiol. Soc., 1957, p. 177–190.
 110. Reinberg, S. A. Roentgen‐ray studies on the physiology and pathology of the tracheo‐bronchial tree. Br. J. Radiol. 30: 451–455, 1925.
 111. Remington, J. W. Hysteresis loop behavior of the aorta and other extensible tissues. Am. J. Physiol. 180: 83–95, 1955.
 112. Salazar, E., and J. H. Knowles. An analysis of pressure volume characteristics of lungs. J. Appl. Physiol. 19: 97–104, 1964.
 113. Sasaki, H., T. Takishima, and M. Nakamura. Collateral resistance at alveolar level in excised dog lungs. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 48: 982–990, 1980.
 114. Schürch, S. Surface tension at low lung volumes: dependence on time and alveolar size. Respir. Physiol. 48: 339–355, 1982.
 115. Schürch, S., D. F. Gerson, and D. J. L. McIver. Determination of cell/medium interfacial tensions from contact angles in aqueous polymer systems. Biochim. Biophys. Acta 640: 557–571, 1981.
 116. Schürch, S., J. Goerke, and J. A. Clements. Direct determination of surface tension in the lung. Proc. Natl. Acad. Sci. USA 73: 4698–4702, 1976.
 117. Schürch, S., J. Goerke, and J. A. Clements. Direct determination of volume‐ and time‐dependence of alveolar surface tension in excised lungs. Proc. Natl. Acad. Sci. USA 75: 3417–3421, 1978.
 118. Schürch, S., and D. McIver. Interfacial tension at lipid‐water interfaces. Comparison of equation‐of‐state predictions with direct experimental measurements. J. Colloid Interface Sci. 81: 301–304, 1981.
 119. Setnikar, I., and G. Meschia. Proprieta elastiche del polmone e di modelli meccanici. Arch. Fisiol. 52: 288–302, 1953.
 120. Sharp, J. T., F. N. Johnson, N. B. Goldberg, and P. Van Lith. Hysteresis and stress adaptation in the human respiratory system. J. Appl. Physiol. 23: 487–497, 1967.
 121. Sherman, I. A. Interfacial tension effects in the microvasculature. Microvasc. Res. 22: 296–307, 1981.
 122. Sobin, S. S., Y. C. Fung, H. M. Tremer, and T. H. Rosenquist. Elasticity of the pulmonary alveolar microvascular sheet in the cat. Circ. Res. 30: 440–450, 1972.
 123. Stanley, N. N., R. Alper, E. L. Cunningham, N. S. Chernicak, and N. A. Kefalides. Effects of a molecular change in collagen on lung structure and mechanical function. J. Clin. Invest. 55: 1195–1201, 1975.
 124. Stengel, P., D. Frazer, and K. Weber. Lung degassing: an evaluation of two methods. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 48: 370–375, 1980.
 125. Storey, W. T., and N. C. Staub. Ventilation of terminal air units. J. Appl. Physiol. 17: 391–397, 1962.
 126. Stromberg, D. D., and C. A. Wiederhielm. Viscoelastic description of a collagenous tissue in simple elongation. J. Appl. Physiol. 26: 857–862, 1969.
 127. Suda, Y., C. J. Martin, and A. C. Young. Regional dispersion of volume‐to‐ventilation ratios in the lung of man. J. Appl. Physiol. 29: 480–485, 1970.
 128. Sugihara, T., J. Hildebrandt, and C. J. Martin. Viscoelastic properties of alveolar wall. J. Appl. Physiol. 33: 93–98, 1972.
 129. Tattersall, S. F., R. P. Pereira, D. Hunter, G. Blundell, and N. B. Pride. Lung distensibility and airway function in intermediate alpha‐1‐antitrypsin deficiency (PiMZ). Thorax 34: 637–646, 1979.
 130. Tierney, D. F., and R. P. Johnson. Altered surface tension of lung extracts and lung mechanics. J. Appl. Physiol. 20: 1253–1260, 1965.
 131. Valberg, P. A., and J. B. Brain. Lung surface tension and air space dimensions from multiple pressure‐volume curves. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 43: 730–738, 1977.
 132. Van der Brugh, J. P. Über eine Methode Zur Messung des interpleuralen Druckes. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 82: 591–602, 1900.
 133. Vesalius, A. De humani corporis fabrica libri septem. 1543.
 134. Von Basch. S. Über eine Function des Capillardruckes in den Lungenalveol. Wien. Med. Blatter 10: 465–467, 1887.
 135. Von Haller, A. Elementa physiologiae. Lausanne: Grosset, 1776, vol. III.
 136. Von Hayek, H. The Human Lung, translated from German by V. E. Krane. New York: Hafner, 1960.
 137. Von Neergaard, K. Neue Auffassungen über einen Grundbegriff der Atemmechanik. Die Retraktionskraft der Lunge, abhängig von der Oberflachenspannung in den Alveolen. Z. Gesamte Exp. Med. 66: 373–394, 1929.
 138. Wang, N. S., and W. L. Ying. A scanning electron microscopic study of alkali‐digested human and rabbit alveoli. Am. Rev. Respir. Dis. 115: 449–460, 1977.
 139. Wilson, T. A. Relations among recoil pressure, surface area, and surface tension in the lung. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 50: 921–926, 1981.
 140. Wohl, M. E., J. Turner, and J. Mead. Static volume‐pressure curves of dog lungs—in vivo and in vitro. J. Appl. Physiol. 24: 348–354, 1968.
 141. Woolcock, A. J., P. T. Macklem, J. C. Hogg, and N. J. Wilson. Influence of autonomic nervous system on airway resistance and elastic recoil. J. Appl. Physiol. 26: 814–818, 1969.
 142. Woolcock, A. J., P. T. Macklem, J. C. Hogg, N. J. Wilson, J. A. Nadel, and J. Brain. Effect of vagal stimulation on central and peripheral airways in dogs. J. Appl. Physiol. 26: 806–813, 1969.
 143. Woolcock, A. J., N. J. Vincent, and P. T. Macklem. Frequency dependence of compliance as a test for obstruction in the small airways. J. Clin. Invest. 48: 1097–1106, 1969.
 144. Young, I., R. W. Mazzone, and P. D. Wagner. Identification of functional lung unit in the dog by graded vascular embolization. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 49: 132–141, 1980.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Frederic G. Hoppin, Joseph C. Stothert, Ian A. Greaves, Yih‐Loong Lai, Jacob Hildebrandt. Lung Recoil: Elastic and Rheological Properties. Compr Physiol 2011, Supplement 12: Handbook of Physiology, The Respiratory System, Mechanics of Breathing: 195-215. First published in print 1986. doi: 10.1002/cphy.cp030313