Comprehensive Physiology Wiley Online Library

Collateral Flow

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Communications for Collateral Flow
1.1 Alveolar Pores
1.2 Alternative Pathways for Collateral Flow
1.3 Collateral Communications and Disease
2 Resistance to Collateral Flow
2.1 Measurements of Collateral Flow
2.2 Effects of Species, Location, Size, and Age
2.3 Mechanical Factors
2.4 Pharmacological and Neural Control
2.5 Respiratory Gases
3 Collateral Flow
3.1 Pulmonary Interdependence
3.2 Time Constants for Collateral Ventilation
4 Gas Exchange and Collateral Flow
4.1 Gas Exchange in Obstructed Units
4.2 Collateral Flow and Local Regulation of Ventilation‐Perfusion Relationships
4.3 Airway Obstruction and Collateral Flow
Figure 1. Figure 1.

Potential pathways for collateral flow ().

From Menkes et al.
Figure 2. Figure 2.

Scanning electron micrographs of dog lung.

intratracheal fixation at instillation pressure of 30 cmH2O with 2.5% glutaraldehyde solution, stained with uranyl acetate, dehydrated, critical‐point dried, and coated with gold. Note numerous interalveolar communications. × 230.

perfusion fixation with 1% osmium tetroxide solution and processed as in A. Note paucity of interalveolar communications. × 230. (Photographs courtesy of Dr. Peter Gehr.)

Figure 3. Figure 3.

method for measurements of resistance in small airways and collateral channels. , flow; Pb, pressure in airway at point of obstruction; Ps, pressure in alveoli of obstructed segment; Palv, pressure in alveoli of the lung surrounding obstructed segment; Pao, pressure at airway opening. [From Menkes et al. .]

model of collateral system. , flow through collateral system; Rsaw, resistance of small airways; Rcoll, resistance of collateral communications.

Figure 4. Figure 4.

Measurements of collateral mechanics after injection of methacholine in dog. After methacholine, a stop in flow () is followed by an abrupt decrease in pressure at bronchial obstruction (Pb) to level of pressure in obstructed segment (Ps). Difference between Pb and Ps is related to resistance in constricted airways distal to obstruction. τcoll, Time constant for collateral flow.

From Menkes and Traystman
Figure 5. Figure 5.

Determinants of magnitude of pulmonary interdependence (K). Top: in dog, when the lung surrounding an obstructed segment inflates from a pressure of 5 to 10 cmH2O, an outward‐acting pull results in a decrease of pressure from 5 to −5 cmH2O within segment. This corresponds to K = 2. In pig, in which K = 1, pressure in segment decreases from 5 to 0 cmH2O. Bottom: in spontaneously breathing pig, when the lung surrounding an obstructed segment inflates from a pressure of 5 to 10 cmH2O, pressure in segment decreases from 5 to −2 cmH2O (K = 1.4). With paralysis, K = 1. When the lung is excised, K = 0.1. Shape changes of obstructed segment may be responsible for low K values in the excised lung.

From Menkes and Traystman
Figure 6. Figure 6.

Effect of respiratory frequency on ventilation of collaterally ventilated units (VTs') compared to unobstructed units (VTs) with Rcoll · C's (τcoll) = 0.1 s and 0.5 s.

From Macklem
Figure 7. Figure 7.

Models for gas exchange.

separate pathways for ventilation () and perfusion ().

collateral communications for flow of blood and gas are included.



Figure 1.

Potential pathways for collateral flow ().

From Menkes et al.


Figure 2.

Scanning electron micrographs of dog lung.

intratracheal fixation at instillation pressure of 30 cmH2O with 2.5% glutaraldehyde solution, stained with uranyl acetate, dehydrated, critical‐point dried, and coated with gold. Note numerous interalveolar communications. × 230.

perfusion fixation with 1% osmium tetroxide solution and processed as in A. Note paucity of interalveolar communications. × 230. (Photographs courtesy of Dr. Peter Gehr.)



Figure 3.

method for measurements of resistance in small airways and collateral channels. , flow; Pb, pressure in airway at point of obstruction; Ps, pressure in alveoli of obstructed segment; Palv, pressure in alveoli of the lung surrounding obstructed segment; Pao, pressure at airway opening. [From Menkes et al. .]

model of collateral system. , flow through collateral system; Rsaw, resistance of small airways; Rcoll, resistance of collateral communications.



Figure 4.

Measurements of collateral mechanics after injection of methacholine in dog. After methacholine, a stop in flow () is followed by an abrupt decrease in pressure at bronchial obstruction (Pb) to level of pressure in obstructed segment (Ps). Difference between Pb and Ps is related to resistance in constricted airways distal to obstruction. τcoll, Time constant for collateral flow.

From Menkes and Traystman


Figure 5.

Determinants of magnitude of pulmonary interdependence (K). Top: in dog, when the lung surrounding an obstructed segment inflates from a pressure of 5 to 10 cmH2O, an outward‐acting pull results in a decrease of pressure from 5 to −5 cmH2O within segment. This corresponds to K = 2. In pig, in which K = 1, pressure in segment decreases from 5 to 0 cmH2O. Bottom: in spontaneously breathing pig, when the lung surrounding an obstructed segment inflates from a pressure of 5 to 10 cmH2O, pressure in segment decreases from 5 to −2 cmH2O (K = 1.4). With paralysis, K = 1. When the lung is excised, K = 0.1. Shape changes of obstructed segment may be responsible for low K values in the excised lung.

From Menkes and Traystman


Figure 6.

Effect of respiratory frequency on ventilation of collaterally ventilated units (VTs') compared to unobstructed units (VTs) with Rcoll · C's (τcoll) = 0.1 s and 0.5 s.

From Macklem


Figure 7.

Models for gas exchange.

separate pathways for ventilation () and perfusion ().

collateral communications for flow of blood and gas are included.

References
 1. Ahmed, T., P. Eyre, A. J. Januszkiewicz, and A. Wanner. Role of H1‐ and H2‐receptors in airway reactions to histamine in conscious sheep. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 49: 826–833, 1980.
 2. Alley, R. D., and G. E. Lindskog. Pharmacologic factors influencing collateral respiration: possible relation to the etiology of pulmonary complications. Ann. Surg. 128: 497–508, 1948.
 3. Ankeney, J. L., C. Hubay, and F. Tillotson. Effects of change in pulmonary circulation on collateral ventilation. Surg. Forum 1: 25–33, 1950.
 4. Baarsma, P. R., and M. N. J. Dirken. Collateral ventilation. J. Thorac. Surg. 17: 238–251, 1948.
 5. Bachofen, H., P. Gehr, and E. R. Weibel. Alterations of mechanical properties and morphology in excised rabbit lungs rinsed with a detergent. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 47: 1002–1010, 1979.
 6. Baker, D. H., and W. J. Daly. Collateral ventilation demonstrated by helium transfer. J. Appl. Physiol. 26: 321–325, 1969.
 7. Bartels, M. Kollaterale Ventilation beim menschen Habilitationsschrift aus der Medizinischen. Tübingen, West Germany: Tübingen Universitätsklinik, 1972. Thesis.
 8. Batra, G., R. Traystman, H. Rudnick, and H. Menkes. Effects of body position and cholinergic blockade on mechanics of collateral ventilation. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 50: 358–362, 1981.
 9. Benjamin, J. J., P. S. Murtagh, D. F. Proctor, H. A. Menkes, and S. Permutt. Pulmonary vascular interdependence in excised dog lobes. J. Appl. Physiol. 37: 887–894, 1974.
 10. Boatman, E. S., and H. D. Martin. Electron microscopy of the alveolar pores of Kohn. Am. Rev. Respir. Dis. 88: 779–784, 1963.
 11. Boren, H. G. Alveolar fenestrae: relationship to the pathology and pathogenesis of pulmonary emphysema. Am. Rev. Respir. Dis. 85: 328–344, 1962.
 12. Boyden, E. A. The structure of the pulmonary acinus in a child of six years and eight months. Am. J. Anat. 132: 275–299, 1971.
 13. Brown, R., A. J. Woolcock, N. J. Vincent, and P. T. Macklem. Physiological effects of experimental airway obstruction with beads. J. Appl. Physiol. 27: 328–335, 1969.
 14. Bynum, L. J., J. E. Wilson III, and A. K. Pierce. Comparison of spontaneous and positive‐pressure breathing in supine normal subjects. J. Appl. Physiol. 41: 341–347, 1976.
 15. Call, E. P., G. Lindskog, and A. Liebow. Some physiologic and pharmacologic aspects of collateral ventilation. J. Thorac. Cardiovasc. Surg. 49: 1015–1025, 1965.
 16. Chen, C., W. C. Sealy, and A. Seaber. The dynamic nature of collateral ventilation. J. Thorac. Cardiovasc. Surg. 59: 518–529, 1970.
 17. Culiner, M. M. Obliterative bronchitis and bronchiolitis with bronchiectasis. Chest 44: 351–360, 1963.
 18. Culiner, M. M. The right middle lobe syndrome, a nonobstructive complex. Dis. Chest 50: 57–66, 1966.
 19. Culiner, M. M., and C. A. Wall. Collateral ventilation in “intralobar pulmonary sequestration.” Report of a case. Dis. Chest 47: 118–122, 1965.
 20. Cutillo, A., E. Omboni, R. Perondi, and F. Tana. Effect of hypocapnia on pulmonary mechanics in normal subjects and in patients with chronic obstructive lung disease. Am. Rev. Respir. Dis. 110: 25–33, 1974.
 21. D'Angelo, E., and S. Michelini. Alveolar morphology under localized distorting forces. J. Appl. Physiol. 34: 809–815, 1973.
 22. Dixon, W. E., and T. G. Brodie. Contributions to the physiology of the lungs. I. The bronchial muscles, their innervation and the action of drugs upon them. J. Physiol. London 29: 97–173, 1903.
 23. DuBois, A. B., and R. M. Rogers. Respiratory factors determining the tissue concentrations of inhaled toxic substances. Respir. Physiol. 5: 34–52, 1968.
 24. Duguid, J. B., and M. W. Lambert. The pathogenesis of coal miners' pneumoconiosis. J. Pathol. Bacteriol. 88: 389–403, 1964.
 25. Effmann, E. L., G. S. Freedman, and R. C. Lange. 133Xe studies of collateral ventilation and air trapping following endobronchial occlusion. Radiology 105: 85–91, 1972.
 26. Engel, L. A., H. Menkes, L. D. H. Wood, G. Utz, J. Joubert, and P. T. Macklem. Gas mixing during breath holding studied by intrapulmonary gas sampling. J. Appl. Physiol. 35: 9–17, 1973.
 27. Fisk, D. E., and C. Kuhn. Emphysema‐like changes in the lungs of the blotchy mouse. Am. Rev. Respir. Dis. 113: 787–797, 1976.
 28. Flenley, D. C., J. Picken, L. Welchel, F. Ruff, P. M. Corry, and P. T. Macklem. Blood gas transfer after small airway obstruction in the dog and minipig. Respir. Physiol. 15: 39–51, 1972.
 29. Flenley, D. C., L. Welchel, and P. T. Macklem. Factors affecting gas exchange by collateral ventilation in the dog. Respir. Physiol. 15: 52–69, 1972.
 30. Frank, N. R., E. P. Radford, Jr., and J. L. Whittenberger. Static volume‐pressure interrelations of the lungs and pulmonary blood vessels in excised cats' lungs. J. Appl. Physiol. 14: 167–173, 1959.
 31. Fuller, S. D., N. E. Robinson, and J. B. Scott. Effect of pulmonary venous pressure on steady‐state collateral resistance. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 49: 643–648, 1980.
 32. Fung, Y. B., and S. S. Sobin. Pulmonary alveolar bloodflow. In: Lung Biology in Health and Disease. Bioengineering Aspects of the Lung, edited by J. B. West. New York: Dekker, 1977, vol. 3, p. 267–360.
 33. Gertner, A., B. Bromberger, R. Traystman, and H. Menkes. Histamine and pulmonary responses to cigarette smoke in periphery of the lung. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 53: 582–588, 1982.
 34. Glauser, E. M. Experimental emphysema in piglet lungs due to periodic hypoxia and hypercapnia. Am. Rev. Respir. Dis. 98: 444–448, 1968.
 35. Goldberg, H. S., W. Mitzner, K. Adams, H. Menkes, W. Lichtenstein, and S. Permutt. Effect of intrathoracic pressure on pressure‐volume characteristics of the lung in man. J. Appl. Physiol. 38: 411–417, 1975.
 36. Goshy, M., S. J. Lai‐Fook, and R. E. Hyatt. Perivascular pressure measurements by wick‐catheter technique in isolated dog lobes. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 46: 950–955, 1979.
 37. Grant, B. J. B., E. E. Davies, H. A. Jones, and J. M. B. Hughes. Local regulation of pulmonary blood flow and ventilation‐perfusion ratios in the coatimundi. J. Appl. Physiol 40: 216–228, 1976.
 38. Guerzon, G. M., P. D. Paré, M. C. Michoud, and J. C. Hogg. The number and distribution of mast cells in monkey lungs. Am. Rev. Respir. Dis. 119: 59–66, 1979.
 39. Gurtner, G. H. Evidence for facilitated O2 and CO2 transport. In: Pulmonary Gas Exchange, edited by J. West. New York: Academic, 1980, p. 205–239.
 40. Henderson, R., K. Horsfield, and G. Cumming. Intersegmental collateral ventilation in the human lung. Respir. Physiol. 6: 128–134, 1968.
 41. Hilpert, P. Kollaterale Ventilation Habilitationsschrift, aus der Medizinischen. Tübingen, West Germany: Tübingen Universitätsklinik, 1970. Thesis.
 42. Hilpert, P. He‐Auswaschung aus stenosierten Lungensegmenten durch kollaterale Ventilation. Respiration 33: 112–122, 1976.
 43. Hogg, J. C., J. B. Agarawal, A. J. S. Gardiner, W. H. Palmer, and P. T. Macklem. Distribution of airway resistance with developing pulmonary edema in dogs. J. Appl Physiol. 32: 20–24, 1972.
 44. Hogg, J. C., P. T. Macklem, and W. M. Thurlbeck. The resistance of collateral channels in excised human lungs. J. Clin. Invest. 48: 421–431, 1969.
 45. Hogg, W., J. Brunton, M. Kryger, R. Brown, and P. Macklem. Gas diffusion across collateral channels. J. Appl Physiol 33: 568–575, 1972.
 46. Hoppin, F. G., Jr., M. Green, and M. S. Morgan. Relationship of central and peripheral airway resistance to lung volume in dogs. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 44: 728–737, 1978.
 47. Hoppin, F. G., Jr., J. M. B. Hughes, and J. Mead. Axial forces in the bronchial tree. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 42: 773–781, 1977.
 48. Howell, J. B. L., S. Permutt, D. F. Proctor, and R. L. Riley. Effect of inflation of the lung on different parts of pulmonary vascular bed. J. Appl. Physiol. 16: 71–76, 1961.
 49. Hughes, J. M. B., F. G. Hoppin, Jr., and J. Mead. Effect of lung inflation on bronchial length and diameter in excised lungs. J. Appl. Physiol. 32: 25–35, 1972.
 50. Hughes, J. M. B., H. A. Jones, A. G. Wilson, B. J. B. Grant, and N. B. Pride. Stability of intrapulmonary bronchial dimensions during expiratory flow in excised lungs. J. Appl. Physiol 37: 684–694, 1974.
 51. Hughes, J. M. B., D. Y. Rosenzweig, and P. B. Kivitz. Site of airway closure in excised dog lungs: histologic demonstration. J. Appl. Physiol. 29: 340–344, 1970.
 52. Ingram, R. H., Jr. Effects of airway versus arterial CO2 changes on lung mechanics in dogs. J. Appl Physiol. 38: 603–607, 1975.
 53. Ingram, R. H., Jr., G. D. Finlay, and J. M. Bradford, Jr. Relationship of AaDo2 to airway PCO2 in dog lungs. J. Appl. Physiol. 40: 720–724, 1976.
 54. Inners, C. R., P. B. Terry, R. J. Traystman, and H. A. Menkes. Collateral ventilation and the middle lobe syndrome. Am. Rev. Respir. Dis. 118: 305–310, 1978.
 55. Inners, C. R., P. B. Terry, R. J. Traystman, and H. A. Menkes. Effects of lung volume on collateral and airways resistance in man. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol 46: 67–73, 1979.
 56. Inoue, H., C. Inoue, and J. Hildebrandt. Vascular and airway pressures, and interstitial edema, affect peribronchial fluid pressure. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 48: 177–185, 1980.
 57. Johnson, R., and G. Lindskog. Further studies on factors influencing collateral ventilation. J. Thorac. Cardiovasc. Surg. 62: 321–329, 1971.
 58. Kalk, J., J. Benjamin, H. Comite, G. Hutchins, R. Traystman, and H. Menkes. Vascular interdependence in postmortem human lungs. Am. Rev. Respir. Dis. 112: 505–511, 1975.
 59. Kaplan, J., G. C. Smaldone, H. A. Menkes, D. L. Swift, and R. J. Traystman. Response of collateral channels to histamine: lack of vagal effect. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 51: 1314–1319, 1981.
 60. Krahl, V. E. Microscopic anatomy of the lungs. Am. Rev. Respir. Dis. 80 (Pt. 2): 24–44, 1959.
 61. Kuno, K., and N. C. Staub. Acute mechanical effects of lung volume changes on artificial microholes in alveolar walls. J. Appl. Physiol. 24: 83–92, 1968.
 62. Kuriyama, T., and W. W. Wagner, Jr. Collateral ventilation may protect against high‐altitude pulmonary hypertension. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 51: 1251–1256, 1981.
 63. Lai‐Fook, S. J. A continuum mechanics analysis of pulmonary vascular interdependence in isolated dog lobes. J. Appl. Physiol: Respirat. Environ. Exercise Physiol. 46: 419–429, 1979.
 64. Lai‐Fook, S. J., R. E. Hyatt, and J. R. Rodarte. Effect of parenchymal shear modulus and lung volume on bronchial pressure‐diameter behavior. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 44: 859–868, 1978.
 65. Lai‐Fook, S. J., R. E. Hyatt, J. R. Rodarte, and T. A. Wilson. Behavior of artificially produced holes in lung parenchyma. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 43: 648–655, 1977.
 66. Lambert, M. W. Accessory bronchiole‐alveolar communications. J. Pathol. Bacterial. 70: 311–314, 1955.
 67. Liebow, A. A. Recent advances in pulmonary anatomy. In: Pulmonary Structure Function, edited by A. V. S. DeReuck and M. O'Conner. London: Churchill, 1962. (Ciba Found. Symp.)
 68. Lindskog, G. E., and H. H. Bradshaw. Collateral respiration: the chemical composition and volume of the collaterally respired gases. Am. J. Physiol. 108: 581–592, 1934.
 69. Lindskog, G. E., and H. H. Bradshaw. The reinflation of atelectatic lung. An experimental study. J. Thorac. Surg. 3: 333–340, 1934.
 70. Loosli, C. G. Interalveolar communications in normal and pathologic mammalian lungs: review of literature. Arch. Pathol. 24: 743–776, 1937.
 71. Macklem, P. T. Airway obstruction and collateral ventilation. Physiol. Rev. 51: 368–436, 1971.
 72. Macklem, P. T., and J. Mead. Resistance of central and peripheral airways measured by a retrograde catheter. J. Appl. Physiol. 22: 395–401, 1967.
 73. Macklem, P. T., D. F. Proctor, and J. C. Hogg. The stability of peripheral airways. Respir. Physiol. 8: 191–203, 1969.
 74. Macklin, C. C. X‐ray studies on bronchial movements. Am. J. Anat. 35: 303–329, 1925.
 75. Macklin, C. C. Alveolar pores and their significance in the human lung. Arch. Pathol. 21: 202–216, 1936.
 76. Martin, H. B. The effect of aging on the alveolar pores of Kohn in the dog. Am. Rev. Respir. Dis. 88: 773–778, 1963.
 77. Martin, H. B. Respiratory bronchioles as the pathway for collateral ventilation. J. Appl. Physiol. 21: 1443–1447, 1966.
 78. Mead, J. Respiration: pulmonary mechanics. Annu. Rev. Physiol. 35: 169–192, 1973.
 79. Mead, J., T. Takishima, and D. Leith. Stress distribution in lungs: a model of pulmonary elasticity. J. Appl. Physiol. 28: 596–608, 1970.
 80. Menkes, H., G. Gamsu, R. Schroter, and P. T. Macklem. Interdependence of lung units in isolated dog lungs. J. Appl. Physiol. 32: 675–680, 1972.
 81. Menkes, H., A. Gardiner, G. Gamsu, J. Lempert, and P. T. Macklem. Influence of surface forces on collateral ventilation. J. Appl. Physiol. 31: 544–549, 1971.
 82. Menkes, H., D. Lindsay, G. Gamsu, L. Wood, A. Muir, and P. T. Macklem. Measurement of sublobar lung volume and collateral flow resistance in dogs. J. Appl. Physiol. 35: 917–921, 1973.
 83. Menkes, H., D. Lindsay, L. Wood, A. Muir, and P. T. Macklem. Interdependence of lung units in intact dog lungs. J. Appl. Physiol. 32: 681–686, 1972.
 84. Menkes, H. A., and R. J. Traystman. State of the art: collateral ventilation. Am. Rev. Respir. Dis. 116: 287–309, 1977.
 85. Menkes, H. A., R. J. Traystman, and P. Terry. Collateral ventilation. Federation Proc. 38: 22–26, 1979.
 86. Metcalf, J. F., P. D. Wagner, and J. B. West. Effect of local bronchial obstruction on gas exchange in the dog. Am. Rev. Respir. Dis. 117: 85–95, 1978.
 87. Minh, V. D., G. F. Dolan, N. Kurihara, P. J. Friedman, R. G. Konopka, and K. M. Moser. Stability in lobar ventilation distribution during change in thoracic configuration. J. Appl. Physiol. 39: 462–468, 1975.
 88. Minh, V.‐D., N. Kurihara, P. J. Friedman, and K. M. Moser. Reversal of the pleural pressure gradient during electrophrenic stimulation. J. Appl. Physiol. 37: 496–504, 1974.
 89. Nakamura, M., H. Sasaki, and T. Takishima. Effect of lung surface tension on bronchial collapsibility in excised dog lungs. J. Appl. Physiol. 47: 692–700, 1979.
 90. Nakamura, T., T. Takishima, R. Takasugi, and T. Sasaki. Collateral ventilation in excised dog lungs. J. Appl. Physiol. 19: 1081–1085, 1964.
 91. Newhouse, M. T., M. R. Becklake, P. T. Macklem, and M. McGregor. Effect of alterations in end‐tidal CO2 tension on flow resistance. J. Appl. Physiol. 19: 745–749, 1964.
 92. Olsen, C. R., H. J. H. Colebatch, P. E. Mebel, J. A. Nadel, and N. C. Staub. Motor control of pulmonary airways studied by nerve stimulation. J. Appl. Physiol. 20: 202–208, 1965.
 93. Olson, L. E., and N. E. Robinson. Effect of vagal stimulation on collateral flow resistance in dog lungs. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 49: 287–293, 1980.
 94. Oricchio, D. Contribute allo studio delle anastomosi iner‐bronchiali. Ann. Ist. Carlo Forlanini 11: 597–604, 1948.
 95. Parra, S. C., L. R. Gaddy, and T. Takaro. Ultrastructural studies of canine interalveolar pores (of Kohn). Lab. Invest. 38: 8–13, 1978.
 96. Parra, S. C., L. R. Gaddy, and T. Takaro. Early ultrastructural changes in papain‐induced experimental emphysema. Lab. Invest. 42: 277–289, 1980.
 97. Pump, K. K. The pattern of development of emphysema in the human lung. Am. Rev. Respir. Dis. 108: 610–620, 1973.
 98. Pump, K. K. Fenestrae in the alveolar membrane of the human lung. Chest 65: 431–436, 1974.
 99. Pump, K. K. Emphysema and its relation to age. Am. Rev. Respir. Dis. 114: 5–13, 1976.
 100. Ranga, V., and J. Kleinerman. Interalveolar pores in mouse lungs. Am. Rev. Respir. Dis. 122: 477–481, 1980.
 101. Raskin, S. P., and P. G. Herman. Interacinar pathways in the human lung. Am. Rev. Respir. Dis. 111: 489–495, 1975.
 102. Robertson, C. H., D. L. Hall, and J. C. Hogg. A description of lung distortion due to localized pleural stress. J. Appl. Physiol. 34: 344–350, 1973.
 103. Robinson, N. E., and R. Milar. Lobar variations in collateral ventilation in excised dog lungs. Am. Rev. Respir. Dis. 121: 827–834, 1980.
 104. Robinson, N. E., and P. R. Sorenson. Collateral flow resistance and time constants in dog and horse lungs. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 44: 63–68, 1978.
 105. Robotham, J. L., H. A. Menkes, B. E. Chipps, C. R. Inners, P. Alderson, G. M. Hutchins, J. J. Tepas, and J. A. Haller. A physiologic assessment of segmental bronchial atresia. Am. Rev. Respir. Dis. 121: 533–540, 1980.
 106. Rosenberg, D. E., and H. A. Lyons. Collateral ventilation in excised human lungs. Respiration 37: 125–134, 1979.
 107. Rubinfeld, A. R., P. D. Wagner, and J. B. West. Gas exchange during acute experimental canine asthma. Am. Rev. Respir. Dis. 118: 525–536, 1978.
 108. Sahebjami, H., and C. L. Vassallo. Influence of starvation on enzyme‐induced emphysema. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 48: 284–288, 1980.
 109. Sasaki, H., F. G. Hoppin, Jr., and T. Takishima. Peribronchial pressure in excised dog lungs. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 45: 858–869, 1978.
 110. Sasaki, H., T. Takishima, and M. Nakamura. Collateral resistance at alveolar level in excised dog lungs. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 48: 982–990, 1980.
 111. Sasaki, H., T. Takishima, and T. Sasaki. Influence of lung parenchyma on dynamic bronchial collapsibility of excised dog lungs. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 42: 699–705, 1977.
 112. Scanlon, T. S., and J. L. Benumof. Demonstration of interlobar collateral ventilation. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 46: 658–661, 1979.
 113. Sealy, W. C., and A. Seaber. The action of carbon dioxide on the collateral pathways of pulmonary ventilation. J. Thorac. Cardiovasc. Surg. 69: 533–538, 1975.
 114. Slagter, B., and H. Heemstra. Limiting factors of expiration in normal subjects. Acta Physiol. Pharmacol. Neerl. 4: 419–421, 1955.
 115. Smith, L. J., C. R. Inners, P. B. Terry, H. A. Menkes, and R. J. Traystman. Effects of methacholine and hypocapnia on airways and collateral ventilation in dogs. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 46: 966–972, 1979.
 116. Sterling, G. M. The mechanism of bronchoconstriction due to hypocapnia in man. Clin. Sci. 34: 277–285, 1968.
 117. Sylvester, J. T., H. A. Menkes, and F. Stitik. Lung volume and interdependence in the pig. J. Appl. Physiol. 38: 395–401, 1975.
 118. Takishima, T., K. Ishikawa, T. Sasaki, H. Sasaki, and T. Nakamura. Measurement of collateral flow at quasialveolar level in excised dog lung. Tohoku J. Exp. Med. 105: 405–406, 1971.
 119. Takishima, T., and J. Mead. Tests of a model of pulmonary elasticity. J. Appl. Physiol. 33: 576–581, 1972.
 120. Takishima, T., H. Sasaki, and T. Sasaki. Influence of lung parenchyma on collapsibility of dog bronchi. J. Appl. Physiol. 38: 875–881, 1975.
 121. Terry, P. B., R. J. Traystman, H. H. Newball, G. Batra, and H. A. Menkes. Collateral ventilation in man. N. Engl. J. Med. 298: 10–14, 1978.
 122. Traystman, R. J., G. K. Batra, and H. A. Menkes. Local regulation of collateral ventilation by oxygen and carbon dioxide. J. Appl. Physiol. 40: 819–823, 1976.
 123. Traystman, R. J., P. B. Terry, and H. A. Menkes. Carbon dioxide—a major determinant of collateral ventilation. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 45: 69–74, 1978.
 124. Van Allen, C. M., and T. S. Jung. Postoperative atelectasis and collateral respiration. J. Thorac. Surg. 1: 3–14, 1931.
 125. Van Allen, C. M., G. E. Lindskog, and H. G. Richter. Gaseous interchange between adjacent lung lobules. Yale J. Biol. Med. 2: 297–300, 1930.
 126. Vincent, N. J., R. Knudson, D. E. Leith, P. T. Macklem, and J. Mead. Factors influencing pulmonary resistance. Appl. Physiol. 29: 236–243, 1970.
 127. Wagner, P. D., D. R. Dantzker, V. E. Iacovani, W. C. Tomlin, and J. B. West. Ventilation‐perfusion inequality in asymptomatic asthma. Am. Rev. Respir. Dis. 118: 511–524, 1978.
 128. West, J. B. Gas exchange when one lung region inspires from another. J. Appl. Physiol. 30: 479–487, 1971.
 129. Whittenberger, J. L., M. McGregor, E. Berglund, and H. G. Borst. Influence of state of inflation of the lung on pulmonary vascular resistance. J. Appl. Physiol. 15: 878–882, 1960.
 130. Woolcock, A. J., and P. T. Macklem. Mechanical factors influencing collateral ventilation in human, dog, and pig lungs. J. Appl. Physiol. 30: 99–115, 1971.
 131. Woolcock, A. J., P. T. Macklem, J. C. Hogg, and N. J. Wilson. Influence of autonomic nervous system on airway resistance and elastic recoil. J. Appl. Physiol. 26: 814–818, 1969.
 132. Woolcock, A. J., P. T. Macklem, J. C. Hogg, N. J. Wilson, J. A. Nadel, N. R. Frank, and J. Brain. Effect of vagal stimulation on central and peripheral airways in dogs. J. Appl. Physiol. 26: 806–813, 1969.
 133. Young, I., R. W. Massone, and P. D. Wagner. Identification of functional lung unit in the dog by graded vascular embolization. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 49: 132–141, 1980.
 134. Zidulka, A., J. T. Sylvester, S. Nadler, and N. R. Anthonisen. Lung interdependence and lung‐chest wall interaction of sublobar and lobar units in pigs. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 46: 8–13, 1979.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Harold A. Menkes, Peter T. Macklem. Collateral Flow. Compr Physiol 2011, Supplement 12: Handbook of Physiology, The Respiratory System, Mechanics of Breathing: 337-353. First published in print 1986. doi: 10.1002/cphy.cp030321