Comprehensive Physiology Wiley Online Library

Development, Growth, and Aging of the Lung

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Lung Growth and Maturation
2 Airway and Alveolar Development
2.1 Intrauterine Events
2.2 Differentiation of Alveolar Epithelium
2.3 Postnatal Events
3 Growth and Development of Connective Tissue
3.1 Intrauterine Period
3.2 Postnatal Period
4 Mechanical Properties of Growing Lung
4.1 Intrauterine and Perinatal Period
4.2 Postnatal Period
5 Control of Lung Growth
5.1 Intrauterine Period
5.2 Postnatal Period
6 Aging of Lung
6.1 Anatomy
6.2 Connective Tissue
6.3 Mechanical Properties
Figure 1. Figure 1.

Pseudoglandular phase of lung development in 16‐wk‐old fetus. × 159.

Figure 2. Figure 2.

Early canalicular phase (20 wk of gestation). Note developing blood vessel (thick arrow) and appearance of capillaries in epithelium (thin arrows). × 263.

Figure 3. Figure 3.

Late canalicular/early saccular phase (30 wk of gestation). Most of epithelium lining future acinus is flattened (thin arrows) but terminal lining of acinus is still cuboidal (thick arrows). Some secondary crests can be seen (see Figs. 5 and 6). × 159.

Figure 4. Figure 4.

Middle‐to‐late canalicular phase (26 wk of gestation) showing further branching to form future acinus. Epithelium is still mostly cuboidal and no secondary crests can be seen. × 263.

Figure 5. Figure 5.

Many low secondary crests (arrows) can be seen in late canalicular/early saccular phase (30 wk of gestation). × 384.

Figure 6. Figure 6.

Low (thin arrow) and high (thick arrow) secondary crest (30 wk of gestation). × 525.

Figure 7. Figure 7.

Alveoli are clearly visible (36 wk of gestation). × 159.

Figure 8. Figure 8.

Thin‐walled alveoli in higher‐power view of lung in Fig. 7. × 686.

Figure 9. Figure 9.

Thickness of interstitium (WT) between air spaces drops dramatically between 20 and 32 wk of gestation, then changes relatively little to term.

From Langston and Thurlbeck 156
Figure 10. Figure 10.

Respiratory surface area (SA) changes little between 20 and 28 wk of gestation, then increases rapidly to term.

From Langston and Thurlbeck 156
Figure 11. Figure 11.

Changes in parameters of lung maturation vs. fetal age in rabbit. Percent volume, a measure of lung stability, increased rapidly between 25 and 29 days, then slowed to birth (31 days). Maximum volume, an apparent measure of maturation of peripheral lung tissue, does not begin to change until day 28 and increases linearly thereafter. Minimum surface tension of lung mince, an apparent measure of type II cell maturation and surfactant production, changes slowly between days 25 and 29, then rapidly between days 29 and 30, reaching adult values on day 31.

Adapted from Kotas and Avery 151
Figure 12. Figure 12.

Increasingly mature alveolar type II cells. Cells were taken from fetal rat lung at 22 days of gestation. Left: immature type II cell filled with glycogen, which displaces cell organelles. Middle: type II cell containing large amounts of glycogen, but with at least 6 lamellar bodies (lb) and several multivesicular bodies. Arrows point to epithelial foot processes, which extend through basement membrane and come in close approximation to interstitial cell. Right: mature type II cell contains no glycogen, has multiple lamellar bodies, and has many surface microvilli. Arrow points to basilar foot process.

Figure 13. Figure 13.

Electron micrograph of secondary crest. Elastic fiber and collagen are near free margin of crest (arrow) and lie in bay of interstitial cell (isc). Note lipid droplet (l) in lipid‐containing interstitial cell. cl, Capillary lumen. Scale = 1 μm.

From Amy, Thurlbeck, et al. 8
Figure 14. Figure 14.

Terminal bronchiole (tb) in 1‐day‐old mouse; bronchiole leads into a developing acinus. Large, smooth‐walled structures surrounding bronchiole are primary saccules (ps). × 300.

From Amy, Thurlbeck, et al. 8
Figure 15. Figure 15.

Primary saccules leading from terminal bronchioles (tb) of 3‐day‐old mouse are being subdivided by low secondary crests (arrows). × 300.

From Amy, Thurlbeck, et al. 8
Figure 16. Figure 16.

Most of the primary saccules of 6‐day‐old mouse have shallow alveoli in their walls (a; dark arrows). Some primary saccules (light arrow) appear less divided than others. × 300.

From Amy, Thurlbeck, et al. 8
Figure 17. Figure 17.

Alveoli (a) are well developed in 14‐day‐old mouse and alveolar ducts (ad) are visible. Arrow points to a rare pore of Kohn. × 300.

From Amy, Thurlbeck, et al. 8
Figure 18. Figure 18.

Total number of alveoli in boys and girls. Note wide range of values (mean ± 2 SD).

From Thurlbeck 241
Figure 19. Figure 19.

Mean value of total number of alveoli (NAT) in children of various ages. Top: mean value for boys and girls. Bottom: mean and SE for both sexes together. Each age group contained similar proportion of each sex. The lower panel shows that no significant differences exist in children between ages 1–2 and 7–8 yr.

From Thurlbeck 241
Figure 20. Figure 20.

Alveolar surface area increases most rapidly in first 5 yr of life. Stippled areas represent mean ± 2 SE.

From Thurlbeck 241
Figure 21. Figure 21.

Lung volumes are larger in boys than girls, a difference that becomes significant at 2–3 yr of age. Stippled areas represent mean ± 2 SE. VL, lung volume at full inflation; CHL, crown‐heel length.

From Thurlbeck 241
Figure 22. Figure 22.

Age‐related changes in lung connective tissue of rat pups, per g lung wt (LW). Data for elastin (desmosines): •, adapted from Nardell and Brody 181; ○, adapted from Powell and Whitney 198. ▪, Data for collagen [nmol OH‐PRO (hydroxyproline) × 10−3] from Nardell and Brody 181.

Figure 23. Figure 23.

Change in physiological measures of saline‐filled lungs in rat pups from 4 to 40 days of age. Vol/gm, volume at 10 cmH2O inflation/g lung tissue; Prp, pressure at which saline‐filled lung ruptures; PL, deflation recoil pressure at 70% of vol at 10 cmH2O. Both Vol/gm and PL rise over first 20 days of life, then plateau. Prp is stable over first 12 days of life, then rises in a linear fashion thereafter.

Adapted from Nardell and Brody 181
Figure 24. Figure 24.

Proportion of core of air inside alveoli in alveolar ducts, sacs, and respiratory bronchioles increases with age; proportion of alveolar air decreases with age.

From Thurlbeck 241
Figure 25. Figure 25.

Volume proportion of lung formed by alveolar wall (% alveolar parenchyma) decreases with age.

From Thurlbeck 241


Figure 1.

Pseudoglandular phase of lung development in 16‐wk‐old fetus. × 159.



Figure 2.

Early canalicular phase (20 wk of gestation). Note developing blood vessel (thick arrow) and appearance of capillaries in epithelium (thin arrows). × 263.



Figure 3.

Late canalicular/early saccular phase (30 wk of gestation). Most of epithelium lining future acinus is flattened (thin arrows) but terminal lining of acinus is still cuboidal (thick arrows). Some secondary crests can be seen (see Figs. 5 and 6). × 159.



Figure 4.

Middle‐to‐late canalicular phase (26 wk of gestation) showing further branching to form future acinus. Epithelium is still mostly cuboidal and no secondary crests can be seen. × 263.



Figure 5.

Many low secondary crests (arrows) can be seen in late canalicular/early saccular phase (30 wk of gestation). × 384.



Figure 6.

Low (thin arrow) and high (thick arrow) secondary crest (30 wk of gestation). × 525.



Figure 7.

Alveoli are clearly visible (36 wk of gestation). × 159.



Figure 8.

Thin‐walled alveoli in higher‐power view of lung in Fig. 7. × 686.



Figure 9.

Thickness of interstitium (WT) between air spaces drops dramatically between 20 and 32 wk of gestation, then changes relatively little to term.

From Langston and Thurlbeck 156


Figure 10.

Respiratory surface area (SA) changes little between 20 and 28 wk of gestation, then increases rapidly to term.

From Langston and Thurlbeck 156


Figure 11.

Changes in parameters of lung maturation vs. fetal age in rabbit. Percent volume, a measure of lung stability, increased rapidly between 25 and 29 days, then slowed to birth (31 days). Maximum volume, an apparent measure of maturation of peripheral lung tissue, does not begin to change until day 28 and increases linearly thereafter. Minimum surface tension of lung mince, an apparent measure of type II cell maturation and surfactant production, changes slowly between days 25 and 29, then rapidly between days 29 and 30, reaching adult values on day 31.

Adapted from Kotas and Avery 151


Figure 12.

Increasingly mature alveolar type II cells. Cells were taken from fetal rat lung at 22 days of gestation. Left: immature type II cell filled with glycogen, which displaces cell organelles. Middle: type II cell containing large amounts of glycogen, but with at least 6 lamellar bodies (lb) and several multivesicular bodies. Arrows point to epithelial foot processes, which extend through basement membrane and come in close approximation to interstitial cell. Right: mature type II cell contains no glycogen, has multiple lamellar bodies, and has many surface microvilli. Arrow points to basilar foot process.



Figure 13.

Electron micrograph of secondary crest. Elastic fiber and collagen are near free margin of crest (arrow) and lie in bay of interstitial cell (isc). Note lipid droplet (l) in lipid‐containing interstitial cell. cl, Capillary lumen. Scale = 1 μm.

From Amy, Thurlbeck, et al. 8


Figure 14.

Terminal bronchiole (tb) in 1‐day‐old mouse; bronchiole leads into a developing acinus. Large, smooth‐walled structures surrounding bronchiole are primary saccules (ps). × 300.

From Amy, Thurlbeck, et al. 8


Figure 15.

Primary saccules leading from terminal bronchioles (tb) of 3‐day‐old mouse are being subdivided by low secondary crests (arrows). × 300.

From Amy, Thurlbeck, et al. 8


Figure 16.

Most of the primary saccules of 6‐day‐old mouse have shallow alveoli in their walls (a; dark arrows). Some primary saccules (light arrow) appear less divided than others. × 300.

From Amy, Thurlbeck, et al. 8


Figure 17.

Alveoli (a) are well developed in 14‐day‐old mouse and alveolar ducts (ad) are visible. Arrow points to a rare pore of Kohn. × 300.

From Amy, Thurlbeck, et al. 8


Figure 18.

Total number of alveoli in boys and girls. Note wide range of values (mean ± 2 SD).

From Thurlbeck 241


Figure 19.

Mean value of total number of alveoli (NAT) in children of various ages. Top: mean value for boys and girls. Bottom: mean and SE for both sexes together. Each age group contained similar proportion of each sex. The lower panel shows that no significant differences exist in children between ages 1–2 and 7–8 yr.

From Thurlbeck 241


Figure 20.

Alveolar surface area increases most rapidly in first 5 yr of life. Stippled areas represent mean ± 2 SE.

From Thurlbeck 241


Figure 21.

Lung volumes are larger in boys than girls, a difference that becomes significant at 2–3 yr of age. Stippled areas represent mean ± 2 SE. VL, lung volume at full inflation; CHL, crown‐heel length.

From Thurlbeck 241


Figure 22.

Age‐related changes in lung connective tissue of rat pups, per g lung wt (LW). Data for elastin (desmosines): •, adapted from Nardell and Brody 181; ○, adapted from Powell and Whitney 198. ▪, Data for collagen [nmol OH‐PRO (hydroxyproline) × 10−3] from Nardell and Brody 181.



Figure 23.

Change in physiological measures of saline‐filled lungs in rat pups from 4 to 40 days of age. Vol/gm, volume at 10 cmH2O inflation/g lung tissue; Prp, pressure at which saline‐filled lung ruptures; PL, deflation recoil pressure at 70% of vol at 10 cmH2O. Both Vol/gm and PL rise over first 20 days of life, then plateau. Prp is stable over first 12 days of life, then rises in a linear fashion thereafter.

Adapted from Nardell and Brody 181


Figure 24.

Proportion of core of air inside alveoli in alveolar ducts, sacs, and respiratory bronchioles increases with age; proportion of alveolar air decreases with age.

From Thurlbeck 241


Figure 25.

Volume proportion of lung formed by alveolar wall (% alveolar parenchyma) decreases with age.

From Thurlbeck 241
References
 1. Adamson, J. S. An electron microscopic comparison of the connective tissue from the lungs of young and elderly subjects. Am. Rev. Respir. Dis. 98: 399–406, 1968
 2. Addison, W. H. F., and H. W. How. On the prenatal and neonatal lung. Am. J. Anat. 15: 199–214, 1913.
 3. Agostoni, E., A. Taglietti, A. Ferrario Agostoni, and I. Setnikar. Mechanical aspects of the first breath. J. Appl. Physiol. 13: 344–348, 1958.
 4. Alcorn, D., T. M. Adamson, T. E. Lambert, J. E. Maloney, B. C. Ritchie, and P. M. Robinson. Morphological effects of chronic tracheal ligation and drainage in the fetal lamb lung. J. Anat. 123: 649–660, 1977.
 5. Alcorn, D., T. M. Adamson, J. E. Maloney, and P. M. Robinson. Morphological effects of chronic bilateral phrenectomy or vagotomy in the fetal lamb lung. J. Anat. 130: 683–695, 1980.
 6. Alescio, T. Effect of a proline analogue, azetidine‐2‐carboxylic acid, on the morphogenesis in vitro of mouse embryonic lung. J. Embryol. Exp. Morphol. 29: 439–451, 1973.
 7. Alescio, T., and M. DiMichele. Relationship of epithelial growth to mitotic rate in mouse embryonic lung developing in vitro. J. Embryol. Exp. Morphol. 19: 227–237, 1968.
 8. Amy, R. W., D. Bowes, P. H. Burri, J. Haines, and W. M. Thurlbeck. Postnatal growth of the mouse lung. J. Anat. 124: 131–151, 1977.
 9. Anderson, W. F., A. E. Anderson, Jr., J. A. Hernandez, and A. G. Foraker. Topography of aging and emphysematous lungs. Am. Rev. Respir. Dis. 90: 411–423, 1964.
 10. Angus, G. E., and W. M. Thurlbeck. Number of alveoli in the human lung. J. Appl. Physiol. 32: 483–485, 1972.
 11. Avery, M. E., and J. Mead. Surface properties in relation to atelectasis and hyaline membrane disease. Am. J. Dis. Child. 97: 517–523, 1959.
 12. Bailey, A. J., S. P. Robins, and G. Balian. Biological significance of the intermolecular crosslinks of collagen. Nature London 251: 105–109, 1974.
 13. Bain, A. D., I. I. Smith, and I. K. Gauld. Newborn born after prolonged leakage of liquor amnii. Br. Med. J. 5409: 598–599, 1964.
 14. Balin, A. K., D. B. P. Goodman, H. Rasmussen, and V. J. Cristofalo. Oxygen‐sensitive stages of the cell cycle of human diploid cells. J. Cell Biol. 78: 390–400, 1978.
 15. Ballard, P. L. Glucocorticoid receptors in the fetal lung. In: Lung Biology in Health and Disease. Development of the Lung, edited by W. A. Hodson. New York: Dekker, 1977, vol. 6, chapt. 11, p. 419–444.
 16. Bartels, H., R. Bartels, A. M. Rathschlag‐Schaefer, H. Röbbel, and S. Lüdders. Acclimatization of newborn rats and guinea pigs to 3000 to 5000 m simulated altitudes. Respir. Physiol. 36: 375–389, 1979.
 17. Bartlett, D., Jr. Postnatal growth of the mammalian lung: influence of exercise and thyroid activity. Respir. Physiol. 9: 50–57, 1970.
 18. Bartlett, D., Jr. Postnatal growth of the mammalian lung: influence of low and high oxygen tensions. Respir. Physiol. 9: 58–64, 1970.
 19. Beck, J. C., W. Mitzner, J. W. C. Johnson, G. M. Hutchins, J. M. Foidart, W. T. London, A. E. Palmer, and R. Scott. Betamethasone and the rhesus fetus: effect on lung morphometry and connective tissue. Pediatr. Res. 15: 235–240, 1981.
 20. Berend, N., C. Skoog, and W. M. Thurlbeck. Pressure‐volume characteristics of excised human lungs: effects of sex, age, and emphysema. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 49: 558–565, 1980.
 21. Bernfield, M. R., and S. D. Baneriee. The basal lamina in epithelial‐mesenchymal morphologic interactions. In: Biology and Chemistry of Basement Membranes, edited by N. A. Kefalides. New York: Academic, 1978, p. 137–148.
 22. Bhutani, V. K., S. D. Rubenstein, and T. H. Shaffer. Pressure‐volume relationships of tracheae in fetal newborn and adult rabbits. Respir. Physiol. 43: 221–231, 1981.
 23. Blackburn, W. R., H. Travers, and D. M. Potter. The role of the pituitary‐adrenal‐thyroid axis in lung differentiation. I. Studies of the cytology and physical properties of anencephalic fetal rat lung. Lab. Invest. 26: 306–318, 1972.
 24. Bluemink, J. G., P. van Maurik, and K. A. Lawson. Intimate cell contact at the epithelial/mesenchymal interface in embryonic mouse lung. J. Ultrastruct. Res. 55: 257–270, 1976.
 25. Bosma, J. F., J. Lind, and N. Genz. Motions of the pharynx associated with initial aeration of the lungs of the newborn infant. Acta Paediatr. Scand. Suppl. 117: 117–122, 1959.
 26. Boyden, E. A., and D. H. Tompsett. The postnatal growth of the lung in the dog. Acta Anat. 47: 185–215, 1961.
 27. Bradley, K. H., S. D. McConnell, and R. G. Crystal. Lung collagen composition and synthesis: characterization and changes with age. J. Biol. Chem. 249: 2674–2683, 1974.
 28. Bremer, J. L. Postnatal development of alveoli in the mammalian lung in relation to the problem of the alveolar phagocyte. Contrib. Embryol. Carnegie Inst. 25: 83–118, 1935.
 29. Briggs, V. A., B. J. Reilly, and K. Loewig. Lung hypoplasia and membranous diaphragm in the congenital rubella syndrome—a rare case. J. Can. Assoc. Radiol. 24: 126–127, 1973.
 30. Brody, J. S. Time course of and stimuli to compensatory growth of the lung following pneumonectomy. J. Clin. Invest. 56: 897–904, 1975.
 31. Brody, J. S., and W. J. Buhain. Hormone‐induced growth of the adult lung. Am. J. Physiol. 223: 1444–1450, 1972.
 32. Brody, J. S., and W. J. Buhain. Hormonal influence on post‐pneumonectomy lung growth in the rat. Respir. Physiol. 19: 344–355, 1973.
 33. Brody, J. S., R. Burki, and N. Kaplan. Deoxyribonucleic acid synthesis in lung cells during compensatory lung growth after pneumonectomy. Am. Rev. Respir. Dis. 117: 307–316, 1978.
 34. Brody, J. S., A. B. Fisher, A. Gocmen, and A. B. DuBois. Acromegalic pneumonomegaly: lung growth in the adult. J. Clin. Invest. 49: 1051–1060, 1970.
 35. Brody, J. S., H. Kagan, and A. Manalo. Lung lysyl oxidase activity: relation to lung growth. Am. Rev. Respir. Dis. 120: 1289–1295, 1979.
 36. Brody, J. S., S. Lahiri, M. Simpser, E. K. Motoyama, and T. Velasquez. Lung elasticity and airway dynamics in Peruvian natives to high altitude. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 42: 245–251, 1977.
 37. Brody, J. S., C. A. Vaccaro, P. J. Gill, and J. E. Gilbert. Alterations in alveolar basement membranes during postnatal lung growth. J. Cell Biol. 95: 394–402, 1982.
 38. Brown, L. A. S., and W. J. Longmore. Adrenergic and cholinergic regulation of lung surfactant secretion in the isolated perfused rat lung and in the alveolar type II cell in culture. J. Biol. Chem. 256: 66–72, 1981.
 39. Brumley, G. W., V. Cherniak, W. A. Hudson, C. Normand, A. Fenner, and M. E. Avery. Correlations of mechanical stability, morphology, pulmonary surfactant and phospholipid content in the developing lamb lung. J. Clin. Invest. 46: 863–873, 1967.
 40. Bucher, J. R., and R. J. Roberts. The development of the newborn rat lung in hyperoxia: a dose‐response study of lung growth, maturation and changes in antioxidant enzyme activities. Pediatr. Res. 15: 999–1008, 1981.
 41. Bucher, U., and L. Reid. Development of the intrasegmental bronchial tree. The pattern of branching and development of cartilage at various stages of intrauterine life. Thorax 16: 207–218, 1961.
 42. Buckingham, S., and M. E. Avery. Time of appearance of lung surfactant in the foetal mouse. Nature London 193: 688–689, 1962.
 43. Buhain, W. J., and J. S. Brody. Compensatory growth of the lung following pneumonectomy. J. Appl. Physiol. 35: 898–902, 1973.
 44. Burri, P. H. The postnatal growth of the rat lung. III. Morphology. Anat. Rec. 180: 77–98, 1974.
 45. Burri, P. H., J. Dbaly, and E. R. Weibel. The postnatal growth of the rat lung. I. Morphometry. Anat. Rec. 178: 711–730, 1974.
 46. Burri, P. H., and E. R. Weibel. Morphometric estimation of pulmonary diffusion capacity. II. Effect of Po2 on the growing lung, adaptation of the growing rat lung to hypoxia and hyperoxia. Respir. Physiol. 11: 247–264, 1971.
 47. Butler, C. Lung surface area in various morphologic forms of human emphysema. Am. Rev. Respir. Dis. 114: 347–352, 1976.
 48. Campiche, M. A., A. Gautier, E. I. Hernandez, and A. Reymond. An electron microscope study of the fetal development of the human lung. Pediatrics 32: 660–663, 1963.
 49. Carmal, J. A., F. Friedman, and F. H. Adams. Fetal tracheal ligation and lung development. Am. J. Dis. Child. 109: 452–456, 1965.
 50. Carson, S. H., H. W. Taeusch, Jr., and M. E. Avery. Inhibition of lung cell division after hydrocortisone injection into fetal rabbits. J. Appl. Physiol. 34: 660–663, 1973.
 51. Chamberlain, D., A. Hislop, E. Hey, and L. Reid. Pulmonary hypoplasia in babies with severe rhesus isoimmunisation: a quantitative study. J. Pathol. 122: 43–52, 1977.
 52. Cheng, J. B., A. Goldfien, P. L. Ballard, and J. M. Roberts. Glucocorticoids increase pulmonary β‐adrenergic receptors in fetal rabbit. Endocrinology 107: 1646–1648, 1980.
 53. Clements, J. A., and W. H. Tooley. Kinetics of surface‐active material in the fetal lung. In: Lung Biology in Health and Disease. Development of the Lung, edited by W. A. Hodson. New York: Dekker, 1977, vol. 6, chapt. 8, p. 349–366.
 54. Clemmons, D. R., L. E. Underwood, and J. J. van Wyk. Hormonal control of immunoreactive somatomedin production by cultured human fibroblasts. J. Clin. Invest. 67: 10–19, 1981.
 55. Clemmons, J. J. W. Embryonic renal injury: a possible factor in fetal malnutrition (Abstract). Pediatr. Res. 11: 404, 1977.
 56. Cohn, R. Factors affecting the postnatal growth of the lung. Anat. Rec. 75: 195–205, 1938.
 57. Cohn, R. The postnatal growth of the lung. J. Thorac. Surg. 9: 274–277, 1940.
 58. Collaborative Group on Antenatal Steroid Therapy. Effect of antenatal dexamethasone administration on the prevention of respiratory distress syndrome. Am. J. Obstet. Gynecol. 141: 276–287, 1981.
 59. Collet, A. J., and G. Des Biens. Fine structure of myogenesis and elastogenesis in the developing rat lung. Anat. Rec. 179: 343–360, 1974.
 60. Comroe, J. H., Jr. Premature science and immature lungs. Part I. Some premature discoveries. Am. Rev. Respir. Dis. 116: 127–135, 1977.
 61. Comroe, J. H., Jr. Premature science and immature lungs. Part II. Chemical warfare and the newly born. Am. Rev. Respir. Dis. 116: 311–323, 1977.
 62. Comroe, J. H., Jr. Premature science and immature lungs. Part III. The attack on immature lungs. Am. Rev. Respir. Dis. 116: 497–518, 1977.
 63. Cooney, T. P., and W. M. Thurlbeck. Lung growth and development in anencephaly and hydrancephaly. Am. Rev. Respir. Dis. 132: 596–601, 1985.
 64. Cooney, T. P., and W. M. Thurlbeck. The radial alveolar count of Emery and Mithal: a reappraisal. I. Postnatal lung growth. Thorax 37: 572–579, 1982.
 65. Cotes, J. E. Genetic factors affecting the lung. Bull. Physio‐Pathol. Respir. 10: 109–117, 1974.
 66. Cowan, M. J., and R. G. Crystal. Lung growth after unilateral pneumonectomy: quantitation of collagen synthesis and content. Am. Rev. Respir. Dis. 111: 267–277, 1975.
 67. Crocker, T. T., A. Teeter, and B. Nielsen. Postnatal cellular proliferation in mouse and hamster lung. Cancer Res. 30: 357–361, 1970
 68. Croteau, J. R., and C. D. Cook. Volume‐pressure and length‐tension measurements in human tracheal and bronchial segments. J. Appl. Physiol. 16: 170–172, 1961.
 69. Cunningham, E. L., J. S. Brody, and B. P. Jain. Lung growth induced by hypoxia. J. Appl. Physiol. 37: 362–366, 1974.
 70. Das, R. M., M. Jain, and W. M. Thurlbeck. Diurinal variation of deoxyribonucleic acid synthesis in murine alveolar wall cells and airway epithelial cells. Am. Rev. Respir. Dis. 119: 81–86, 1979.
 71. Das, R. M., M. Jain, and W. M. Thurlbeck. Circadium rhythm and proliferation of lung alveolar wall cells during postnatal growth in mice. Am. Rev. Respir. Dis. 121: 367–371, 1980.
 72. Das, R. M., and W. M. Thurlbeck. The events in the contralateral lung following pneumonectomy in the rabbit. Lung 156: 165–172, 1979.
 73. Davies, G., and L. Reid. Growth of the alveoli and pulmonary arteries in childhood. Thorax 25: 669–681, 1970.
 74. DeLemos, R. A., D. W. Shermeta, J. H. Knelson, R. Kotas, and M. E. Avery. Acceleration of appearance of pulmonary surfactant in the fetal lamb by administration of corticosteroids. Am. Rev. Respir. Dis. 102: 459–461, 1970.
 75. DeLorimier, A. A., D. F. Tierney, and H. R. Parker. Hypoplastic lungs in fetal lambs with surgically produced congenital diaphragmatic hernia. Surgery 62: 12–17, 1967.
 76. D'Ercole, A. J., G. T. Applewhite, and L. E. Underwood. Evidence that somatomedin is synthesized by multiple tissues in the fetus. Dev. Biol. 75: 315–328, 1980.
 77. Dingler, E. C. Wachstum der Lunge nach der Geburt. Acta Anat. Suppl. 30: 1–86, 1958.
 78. Dobbs, L. G., and R. J. Mason. Pulmonary alveolar type II cells isolated from rats. Release of phosphatidylcholine in response to β‐adrenergic stimulation. J. Clin. Invest. 63: 378–387, 1979.
 79. Dubreuil, G., A. Lacoste, and R. Raymond. Observations sur le développement du poumon humain. Bull. Histol. Appl. Physiol. Pathol. 13: 235–245, 1936.
 80. Dunnill, M. S. Postnatal growth of the lung. Thorax 17: 329–333, 1962.
 81. Egan, E. A., R. M. Nelson, and E. F. Beale. Lung solute permeability and lung liquid absorption in premature ventilated fetal goats. Pediatr. Res. 14: 314–318, 1980.
 82. Egan, E. A., R. M. Nelson, and R. E. Olver. Lung inflation and alveolar permeability to non‐electrolytes in the adult sheep in vivo. J. Physiol. London 260: 409–424, 1976.
 83. Egan, E. A., R. E. Olver, and L. B. Strang. Changes in non‐electrolyte permeability of alveoli and the absorption of lung liquid at the start of breathing in the lamb. J. Physiol. London 244: 161–179, 1975.
 84. Emery, J. L. Connective tissue and lymphatics. In: The Anatomy of the Developing Lung, edited by J. L. Emery. Lavenham, UK: Heinemann, 1969, p. 49–73.
 85. Emery, J. L. The postnatal development of the human lung and its implications for lung pathology. Respiration 27, Suppl.: 41–50, 1970.
 86. Emery, J. L., and D. G. Fagan. New alveoli—where and how? Arch. Dis. Child. 45: 145, 1970.
 87. Emery, J. L., and A. Mithal. The number of alveoli in the terminal respiratory unit of man during late intrauterine life and childhood. Arch. Dis. Child. 35: 544–547, 1960.
 88. Emery, J. L., and P. F. Wilcock. The postnatal development of the lung. Acta Anat. 65: 10–29, 1966.
 89. Erenberg, A., M. L. Rhodes, M. M. Weinsten, and R. L. Kennedy. The effect of fetal thyroidectomy on ovine fetal lung maturation. Pediatr. Res. 13: 230–235, 1979.
 90. Evans, M., J. Hackney, and R. Bils. Effects of high concentration of oxygen on cell renewal in the pulmonary alveoli. Aerosp. Med. 40: 1365–1368, 1969.
 91. Faridy, E. E., J. A. Thliveris, and G. S. Morris. Relationship between lung intra and extracellular DSPC in fetal and neonatal rats. Respir. Physiol. 45: 55–66, 1981.
 92. Farrell, P. M. Fetal lung development and the influence of glucocorticoids on pulmonary surfactant. J. Steroid Biochem. 8: 463–470, 1977.
 93. Farrell, P. M., and M. E. Avery. Hyaline membrane disease. Am. Rev. Respir. Dis. 111: 657–688, 1975.
 94. Farrell, P. M., and T. E. Morgan. Lecithin biosynthesis in the developing lung. In: Lung Biology in Health and Disease. Development of the Lung, edited by W. A. Hodson. New York: Dekker, 1977, vol. 6, chapt. 7, p. 309–348.
 95. Finegold, M. J., H. Katzew, N. B. Genieser, and M. H. Becker. Lung structure in thoracic dystrophy. Am. J. Dis. Child. 122: 153–159, 1971.
 96. Fisher, J. M., and J. D. Simnett. Morphogenetic and proliferative changes in the regenerating lung of the rat. Anat. Rec. 176: 389–395, 1973.
 97. Fisk, D. E., and C. Kuhn III. Emphysema‐like changes in the lung of the blotchy mouse. Am. Rev. Respir. Dis. 113: 787–798, 1976.
 98. Fitch, N., and R. C. Lachance. The pathogenesis of Potter's syndrome of renal agenesis. Can. Med. Assoc. J. 107: 653–656, 1972.
 99. Fraser, C. M., and J. C. Venter. The synthesis of β‐adrenergic receptors in cultured human lung cells: induction by glucocorticoids. Biochim. Biophys. Res. Commun. 94: 390–397, 1980.
 100. Geelhaar, A., and E. R. Weibel. Morphometric estimation of pulmonary diffusion capacity. III. The effect of increased oxygen consumption in Japanese waltzing mice. Respir. Physiol. 11: 354–366, 1971.
 101. Gehr, P., C. Hugonnaud, P. H. Burri, H. Bachofen, and E. R. Weibel. Adaptation of the growing lung to increased Vo2. III. The effect of exposure to cold environment in rats. Respir. Physiol. 32: 345–353, 1978.
 102. Goldstein, J. D., and L. M. Reid. Pulmonary hypoplasia resulting from phrenic nerve agenesis and diaphragmatic amyoplasia. J. Pediatr. 97: 282–287, 1980.
 103. Goldstein, R. H. The response of the aging hamster lung to elastase injury. Am. Rev. Respir. Dis. 125: 295–298, 1982.
 104. Goldstein, R. H., E. C. Lucey, C. Franzblau, and G. L. Snider. Failure of mechanical properties to parallel changes in lung connective tissue composition in bleomycin‐induced pulmonary fibrosis in hamsters. Am. Rev. Respir. Dis. 120: 67–73, 1979.
 105. Grant, M. M., N. R. Cutts, and J. S. Brody. Alterations in lung basement membrane during fetal growth and type II cell development. Dev. Biol. 97: 173–183, 1983.
 106. Griscom, N. T., G. B. S. Harris, M. E. Wohl, G. F. Vawter, and A. J. Ekralis. Fluid‐filled lung due to airway obstruction in the newborn. Pediatrics 48: 383–390, 1969.
 107. Gruenwald, P. Surface tension as a factor in the resistance of neonatal lungs to aeration. Am. J. Obstet. Gynecol. 53: 996–1007, 1947.
 108. Gruenwald, P. Normal and abnormal expansion of the lungs of newborn infants obtained at autopsy. III. The pattern of aeration as affected by gestational and postnatal age. Anat. Rec. 146: 337–352, 1963.
 109. Hackney, J. D., M. J. Evans, R. F. Bils, C. E. Spier, and M. P. Jones. Effect of oxygen at high concentration and food deprivation on cell division in lung alveoli of mice. Exp. Mol. Pathol. 26: 350–358, 1977.
 110. Hackney, J. D., M. J. Evans, C. E. Spier, U. T. Anzar, and K. W. Clark. Effect of high concentrations of oxygen on reparative regeneration of damaged alveolar epithelium in mice. Exp. Mol. Pathol. 34: 338–344, 1981.
 111. Hasleton, P. S. The internal surface area of the adult human lung. J. Anat. 112: 391–400, 1972.
 112. Heber, A. R. Some effects of altitudes on the human body. Lancet 1: 1148–1150, 1921.
 113. Hieronymi, G. Veranderungen der Lungenstruktur in verschiedenen Lebensalteren. Verh. Dtsch. Ges. Pathol. 44: 129–130, 1960.
 114. Hieronymi, G. Über den durch das Alter bedingten Formwandel menschlicher Lungen. Ergeb. Allg. Pathol. Pathol. Anat. 41: 1–62, 1961.
 115. Hislop, A., E. Hey, and L. Reid. The lungs in congenital bilateral renal agenesis and dysplasia. Arch. Dis. Child. 54: 32–38, 1979.
 116. Hislop, A., and L. Reid. Development of the acinus in the human lung. Thorax 29: 90–94, 1974.
 117. Hislop, A., and L. Reid. Persistent hypoplasia of the lung after repair of congenital diaphragmatic hernia. Thorax 31: 450–455, 1976.
 118. Hitchcock, K. R. Lung development and the pulmonary surfactant system: hormonal influences. Anat. Rec. 198: 13–34, 1980.
 119. Hitchcock, K. R., J. Harney, and S. Reichlin. Hormones and the lung. III. Thyroid hormones in the perinatal rat lung. Endocrinology 107: 294–299, 1980.
 120. Hogonnaud, C., P. Gehr, E. R. Weibel, and P. H. Burri. Adaptation of the growing lung to increased oxygen consumption. II. Morphometric analysis. Respir. Physiol. 29: 1–10, 1977.
 121. Holland, J., J. Milic‐Emili, P. T. Macklem, and D. V. Bates. Regional distribution of pulmonary ventilation and perfusion in elderly subjects. J. Clin. Invest. 47: 81–92, 1962.
 122. Holmes, C. W. M., and W. M. Thurlbeck. Normal lung growth and response after pneumonectomy in the rat at various ages. Am. Rev. Respir. Dis. 120: 1125–1136, 1979.
 123. Humphreys, P. W., I. C. S. Normand, E. O. R. Reynolds, and L. B. Strang. Pulmonary lymph flow and the uptake of liquid from the lungs of the lamb at the start of breathing. J. Physiol. London 193: 1–29, 1967.
 124. Humphreys, P. W., and L. B. Strang. Effects of gestation and prenatal asphyxia on pulmonary surface properties of the foetal rabbit. J. Physiol. London 192: 53–62, 1967.
 125. Hurtado, A. Respiratory adaptation in the Indian natives of the Peruvian Andes. Studies at high altitude. Am. J. Phys. Anthropol. 17: 137–165, 1932.
 126. International Anatomical Nomenclature Committee. Nomina Embryologica. Bethesda, MD: Fed. Am. Soc. Exp. Biol., 1970.
 127. Jain, B. P., J. S. Brody, and A. B. Fisher. The small lung of hypopituitarism. Am. Rev. Respir. Dis. 108: 49–55, 1973.
 128. Jaykka, S. Capillary erection and the structure appearance of fetal and neonatal lungs. Acta Paediatr. Stockholm 47: 484–488, 1958.
 129. John, R., and J. Thomas. Chemical composition of elastins isolated from aortas and pulmonary tissues of humans of different ages. Biochem. J. 127: 261–269, 1972.
 130. Jost, A., and A. Policard. Contribution experimental a l'étude du développement prenatal du poumon chez le lapin. Arch. Anat. Microsc. Morphol. Exp. 37: 323–332, 1948.
 131. Juricova, M., and Z. Deyl. Aging processes in collagens from different tissues of rats. Adv. Exp. Med. Biol. 53: 351–357, 1975.
 132. Kagan, H. M., L. Tseng, and D. E. Simpson. Control of elastin metabolism by elastin ligands. Reciprocal effects on lysyl oxidase activity. J. Biol. Chem. 256: 5417–5421, 1981.
 133. Karlberg, P. The adaptive changes in the immediate postnatal period with particular reference to respiration. J. Pediatr. 56: 585–604, 1962.
 134. Karlberg, P., F. H. Adams, F. Geubelle, and G. Wallgren. Alteration of the infant's thorax during vaginal delivery. Acta Obstet. Gynecol. Scand. 41: 223–229, 1962.
 135. Karlberg, P., R. B. Cherry, F. E. Esrardo, and G. Koch. Respiratory studies in newborn infants. II. Pulmonary ventilation and mechanics of breathing in the first minutes of life, including the onset of ventilation. Acta Paediatr. Scand. 51: 121–136, 1962.
 136. Karlberg, P., and G. Koch. Respiratory studies in newborn infants. III. Development of mechanics of breathing the first week of life. A longitudinal study. Acta Paediatr. Suppl. 135: 121–129, 1962.
 137. Karlinsky, J. B., G. L. Snider, C. Franzblau, P. J. Stone, and F. G. Hoppin, Jr. In vitro effects of elastase and collagenase on mechanical properties of hamster lungs. Am. Rev. Respir. Dis. 113: 769–777, 1976.
 138. Kauffman, S. L. Acceleration of canalicular development in lungs of fetal mice exposed transplacentally to dexamethasone. Lab. Invest. 36: 395–401, 1977.
 139. Kauffman, S. L., P. H. Burri, and E. R. Weibel. The postnatal growth of the rat lung. II. Autoradiography. Anat. Rec. 180: 63–76, 1974.
 140. Keeley, F. W., D. G. Fagan, and S. I. Webster. Quantity and character of elastin in developing human lung. Parenchymal tissues of normal infants and infants with respiratory distress syndrome. J. Lab. Clin. Med. 90: 981–989, 1977.
 141. Kida, K., and W. M. Thurlbeck. The effects of β‐aminoproprionitrile on the growing rat lung. Am. J. Pathol. 101: 693–710, 1980.
 142. Kida, K., and W. M. Thurlbeck. Lack of recovery of lung structure and function after the administration of β‐amino‐proprionitrile in the postnatal period. Am. Rev. Respir. Dis. 122: 467–475, 1980.
 143. Kida, K., and W. M. Thurlbeck. Tracheal banding in weanling rats diminishes lung growth and alters lung architecture. Pediatr. Res. 15: 269–277, 1981.
 144. Kikkawa, Y., M. Kaibara, E. K. Motoyama, M. M. Orzalesi, and C. D. Cook. Morphologic development of fetal rabbit lung and its acceleration with Cortisol. Am. J. Pathol. 64: 423–433, 1971.
 145. Kikkawa, Y., E. K. Motoyama, and C. D. Cook. The ultrastructure of the lungs of lambs. Am. J. Pathol. 47: 877–904, 1965.
 146. Kikkawa, Y., E. K. Motoyama, and L. Glucic. Study of the lungs of fetal and newborn rabbits. Morphologic, biochemical and surface physical development. Am. J. Pathol. 52: 177–209, 1968.
 147. Kitagawa, M., A. Hislop, E. A. Boyden, and L. Reid. Lung hypoplasia in congenital diaphragmatic hernia. Quantitative study of airway, artery and alveolar development. Br. J. Surg. 58: 342–346, 1971.
 148. Knudson, R. J., R. C. Slatin, and M. D. Lebowitz. The maximum expiratory flow volume curve. Normal standards variability and effects of age. Am. Rev. Respir. Dis. 113: 587–600, 1976.
 149. Kohler, H. G., K. R. Peel, and R. A. Hoar. Extramembranous pregnancy and amniorrhea. J. Obstet. Gynaecol. Br. Commonw. 77: 809–812, 1970.
 150. Kotas, R. V., and M. E. Avery. Accelerated appearance of pulmonary surfactant in the fetal rabbit. J. Appl. Physiol. 30: 358–361, 1971.
 151. Kotas, R. V., and M. E. Avery. The influence of sex on fetal lung maturation and on the response to glucocorticoids. Am. Rev. Respir. Dis. 121: 377–380, 1980.
 152. Kotas, R., L. Mims, and L. Hart. Reversible inhibition of lung cell numbers after glucocorticoid injection. Pediatrics 53: 358–361, 1974.
 153. Krahl, V. E. Anatomy of the mammalian lung. In: Handbook of Physiology. Respiration, edited by W. O. Fenn and H. Rahn. Washington, DC: Am. Physiol. Soc., 1964, sect. 3, vol. I, chapt. 6, p. 213–284.
 154. Lahiri, S., R. G. Delaney, J. S. Brody, M. Simpser, T. Velasquez, E. K. Motoyama, and G. Polgar. Relative roles of environmental and genetic factors in respiratory adaptation to high altitudes. Nature London 261: 133–135, 1976.
 155. Langston, C., P. Sachdeva, M. J. Cowan, J. Haines, R. G. Crystal, and W. M. Thurlbeck. Alveolar multiplication in the contralateral lung after unilateral pneumonectomy in rabbits. Am. Rev. Respir. Dis. 115: 7–13, 1977.
 156. Langston, C., and W. M. Thurlbeck. Lung growth and development in late gestation and early postnatal life (lung growth in utero and in the neonate). In: Perspectives in Pediatric Pathology, edited by H. C. Rosenberg. Chicago, IL: Year Book, 1982, chapt. 8, p. 203–235.
 157. Lanman, J. T., A. Schaffer, L. Herod, Y. Ogawa, and R. Castellanos. Distensibility of the fetal lung with fluid in the sheep. Pediatr. Res. 5: 586–590, 1971.
 158. Leblanc, P., F. Ruff, and J. Milic‐Emili. Effects of age and body position on “airway closure” in man. J. Appl. Physiol. 28: 448–451, 1970.
 159. Lechner, A. J., and N. Banchero. Lung morphometry in guinea pigs acclimated to hypoxia during growth. Respir. Physiol. 42: 155–169, 1980.
 160. Leung, D. Y. M., S. Glagov, and M. B. Mathews. A new in vitro system for studying cell response to mechanical stimulation. Different effects of cyclic stretching and agitation on smooth muscle biosynthesis. Exp. Cell Res. 109: 285–298, 1977.
 161. Liggins, G. C. Premature delivery of foetal limbs infused with glucocorticoids. J. Endocrinol. 45: 515–523, 1969.
 162. Lindberg, J. A., A. Brehier, and P. L. Ballard. Triiodothyronine nuclear binding in fetal and adult rat lung and cultured lung cells. Endocrinology 103: 1725–1731, 1978.
 163. Loosli, C. G. Interalveolar communications in normal and pathologic mammalian lungs: review of the literature. Arch. Pathol. 24: 743–776, 1937.
 164. Loosli, C. G., and E. L. Potter. Pre‐ and postnatal development of the respiratory portion of the human lung. Am. Rev. Respir. Dis. 80: 5–23, 1959.
 165. Macklem, P. T. Airway obstruction and collateral ventilation. Physiol. Rev. 51: 368–436, 1971.
 166. Macklin, C. C. Alveolar pores and their significance in the human lung. Arch. Pathol. 21: 202–226, 1936.
 167. Maksvytis, H., L. Simanovsky, M. Minnasian, J. S. Brody, and W. H. J. Douglas. In vitro studies of the lipid interstitial cell (LIC) of the developing lung. J. Cell. Physiol. 118: 113–123, 1984.
 168. Maksvytis, H. J., C. A. Vaccaro, and J. S. Brody. Isolation and characterization of the lipid‐containing interstitial cell from the developing rat lung. Lab. Invest. 45: 248–259, 1981.
 169. Martin, H. B. The effect of aging on the alveolar pores of Kohn in the dog. Am. Rev. Respir. Dis. 88: 773–778, 1963.
 170. Martin, C. J., S. Chihara, and D. B. Chang. A comparative study of the mechanical properties in aging alveolar wall. Am. Rev. Respir. Dis. 115: 981–988, 1977.
 171. Martin, C. J., and T. Sugihara. Stimulation of tissue properties in irreversible diffuse obstructive pulmonary syndromes. J. Clin. Invest. 52: 1918–1924, 1973.
 172. Mauderly, J. L. Effect of age on pulmonary structure and function of immature and adult animals and man. Federation Proc. 38: 173–177, 1979.
 173. Mead, J. Mechnical properties of lungs. Physiol. Rev. 41: 281–330, 1961.
 174. Milner, A. D., and R. A. Saunders. Pressure and volume changes during the first breath of human neonates. Arch. Dis. Child. 52: 918–924, 1977.
 175. Mitzner, W., J. W. C. Johnson, J. Beck, W. London, and D. Sly. Influence of betamethasone on the development of mechanical properties in the fetal rhesus monkey lung. Am. Rev. Respir. Dis. 125: 233–238, 1982.
 176. Mitzner, W., J. W. C. Johnson, R. Scott, W. T. London, and A. E. Palmer. Effect of betamethasone on pressure‐volume relationship of fetal rhesus monkey lung. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 47: 377–382, 1979.
 177. Moessinger, A. C., P. Marone, L. S. James, and W. A. Blanc. Fetal akinesia and lung growth (Abstract). Lab Invest. 42: 175a, 1980.
 178. Mortola, J. P., J. T. Fisher, J. B. Smith, G. S. Fox, S. Weeks, and D. Willis. Onset of respiration in infants delivered by cesarean section. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 52: 716–724, 1982.
 179. Motoyama, E., M. Orzalesi, Y. Kikkawa, M. Kaibara, B. Wu, C. Zigas, and C. Cook. Effect of Cortisol on the maturation of fetal rabbit lungs. Pediatrics 48: 547–555, 1971.
 180. Muieson, G., C. Sorbini, and V. Grassi. Respiratory function in the aged. Bull. Physio‐Pathol. Respir. 7: 973–1009, 1971.
 181. Nardell, E. A., and J. S. Brody. Determinants of mechanical properties of rat lung during postnatal development. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 53: 140–148, 1982.
 182. Neuhauser, G. Beitrag zur Morphogenese der Lunge. Verh. Anal Ges. 52: 277–284, 1961.
 183. Nielsen, H. C., H. M. Zinman, and J. S. Torday. Dihydrotestosterone inhibits fetal rabbit pulmonary surfactant production. J. Clin. Invest. 69: 611–616, 1982.
 184. Niewoehner, D. E., and J. Kleinerman. Morphometric study of elastic fibers in normal and emphysematous human lungs. Am. Rev. Respir. Dis. 115: 15–21, 1977.
 185. Nijjar, M. S. Role of cyclic AMP and related enzymes in rat lung growth and development. Biochim. Biophys. Acta 586: 454–472, 1979.
 186. O'Dell, B. L., K. H. Kilburn, W. N. McKenzie, and R. J. Thurston. The lung of the copper‐defiicent rat. A model for developmental pulmonary emphysema. Am. J. Pathol. 91: 413–432, 1978.
 187. O'Hare, K. H., and P. L. Townes. Morphogenesis of albino rat lung. An autoradiographic analysis of the embryological origin of the Type I and II pulmonary epithelial cells. J. Morphol. 132: 69–87, 1970.
 188. Orzalesi, M. M., E. K. Motoyama, H. N. Jacobson, Y. Kikkawa, E. O. R. Reynolds, and C. D. Cook. The development of the lungs of lambs. Pediatrics 35: 373–381, 1965.
 189. Page, D. V., and J. T. Stocker. Anomalies associated with pulmonary hypoplasia. Am. Rev. Respir. Dis. 125: 216–221, 1982.
 190. Perelman, R. H., M. J. Engle, and P. M. Farrell. Perspectives on fetal lung development. Lung 159: 53–80, 1981.
 191. Perlman, M., and M. Levin. Fetal pulmonary hypoplasia, anuria, and oligohydramnios: clinicopathologic observations and review of the literature. Am. J. Obstet. Gynecol. 118: 1119–1123, 1974.
 192. Perlman, M., J. Williams, and M. Hirsch. Neonatal pulmonary hypoplasia after prolonged leakage of amniotic fluid. Arch. Dis. Child. 51: 349–353, 1976.
 193. Picken, J., M. Lurie, and J. Kleinerman. Mechanical and morphologic effects of long term corticosteroid administration on the rat lung. Am. Rev. Respir. Dis. 110: 746–753, 1974.
 194. Pierce, J. A., and J. B. Hocott. Studies on the collagen and elastin content of the human lung. J. Clin. Invest. 39: 8–14, 1960.
 195. Pinkerton, K. E., B. E. Barry, J. J. O'Neil, J. A. Raub, P. C. Pratt, and J. D. Crapo. Morphologic changes in the lung during the lifespan of Fischer 344 rats. Am. J. Anat. 164: 155–174, 1982.
 196. Polgar, G., and T. R. Weng. The functional developmental of the respiratory system. Am. Rev. Respir. Dis. 120: 625–695, 1979.
 197. Potter, E. L., and G. P. Bohlender. Intra‐uterine respiration in relation to development of fetal lung. Am. J. Obstet. Gynecol. 42: 14–22, 1941.
 198. Powell, J. T., and P. L. Whitney. Postnatal development of rat lung. Changes in lung lectin, elastin, acetylcholinesterase and other enzymes. Biochem. J. 188: 1–8, 1980.
 199. Prockop, D. J., K. I. Kivirikko, L. Tuderman, and N. Guzman. The biosynthesis of collagen and its disorders. N. Engl. J. Med. 301: 77–85, 1979.
 200. Pump, K. K. Emphysema and its relation to age. Am. Rev. Respir. Dis. 114: 5–13, 1976.
 201. Ranga, V., and J. Kleinebman. Interalveolar pores in mouse lungs. Regional distribution and alterations with age. Am. Rev. Respir. Dis. 122: 477–481, 1980.
 202. Ranga, V., J. Kleinerman, M. P. C. Ip, and J. Sorenson. Age‐related changes in elastic fibers and elastin of lung. Am. Rev. Respir. Dis. 119: 369–381, 1979.
 203. Reale, F. R., and J. R. Esterly. Pulmonary hypoplasia: a morphometric study of the lungs of infants with diaphragmatic hernia, anencephaly and renal malformations. Pediatrics 51: 91–96, 1973.
 204. Rickert, W. S., and W. F. Forbes. Changes in collagen with age. VI. Age and smoking related changes in human lung connective tissue. Exp. Gerontol. 11: 89–101, 1976.
 205. Robinson, N. E., and J. R. Gillespie. Morphologic features of the lungs of aging beagle dogs. Am. Rev. Respir. Dis. 108: 1192–1199, 1973.
 206. Rooney, S. A., P. A. Marino, L. I. Gobran, I. Gross, and J. B. Warshaw. Thyrotropin‐releasing hormone increases the amount of surfactant in lung lavage from fetal rabbits. Pediatr. Res. 13: 623–625, 1979.
 207. Ryan, S. F., T. N. Vincent, R. S. Mitchell, G. F. Filey, and G. Dart. Ductectasia: an asymptomatic pulmonary change related to age. Med. Thorac. 22: 181–187, 1965.
 208. Sahebjami, H., and C. L. Vassallo. Effects of starvation and refeeding on lung mechanics and morphometry. Am. Rev. Respir. Dis. 119: 443–451, 1979.
 209. Sahebjami, H., and C. L. Vassallo. Influence of starvation on enzyme‐induced emphysema. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 48: 284–288, 1980.
 210. Sahebjami, H., and J. A. Wirman. Emphysema‐like changes in the lungs of starved rats. Am. Rev. Respir. Dis. 124: 619–624, 1981.
 211. Schneeberger, G. E., D. V. Walters, and R. E. Olver. Development of intercellular junctions in the pulmonary epithelium of the foetal lamb. J. Cell. Sci. 32: 307–324, 1978.
 212. Schweiler, G. H., and S. Skoglund. Individual variations in the bronchial tree in cats of different ages with special reference to the post‐natal development. Acta Anat. 56: 70–78, 1964.
 213. Setnikar, I. Origine e significato della proprieta meccaneche del pomone. Arch. Fisiol. 55: 349–357, 1955.
 214. Short, R. H. D. Alveolar epithelium in relation to growth of the lung. Philos. Trans. R. Soc. London Ser. B 235: 35–86, 1951.
 215. Short, R. H. D. Aspects of comparative lung growth. Proc. R. Soc. London Ser. B 140: 432–441, 1952.
 216. Silvers, G. W., T. L. Petty, and R. E. Stanford. Elastic recoil changes in early emphysema. Thorax 35: 490–495, 1980.
 217. Sinclair‐Smith, C. C., J. L. Emery, D. Gadsdon, F. Dinsdale, and J. Baddeley. Cartilage in children's lungs: a quantitative assessment using the right middle lobe. Thorax 31: 40–43, 1976.
 218. Smith, B. T. Lung maturation in the fetal rat: acceleration by injection of fibroblast‐pneumonocyte factor. Science 204: 1094–1095, 1979.
 219. Smith, B. T., and W. G. Bogues. Effects of drugs and hormones on lung maturation in experimental animal and man. Pharmacol. Ther. 9: 51–74, 1982.
 220. Smith, B. T., W. Galaugher, and W. M. Thurlbeck. Serum from pneumonectomized rabbits stimulates alveolar type II cell proliferation in vitro. Am. Rev. Respir. Dis. 121: 701–707, 1980.
 221. Smith, D. M., S. E. Shelley, and J. U. Balis. The maturation of the rabbit fetal lung following maternal administration of pilocarpine. Am. J. Anat. 154: 163–178, 1979.
 222. Smith, L. J., and J. S. Brody. Influence of methylprednisolone on mouse alveolar type 2 cell response to acute lung injury. Am. Rev. Respir. Dis. 123: 459–464, 1981.
 223. Sorbini, C. A., V. Grassi, E. Salinas, and G. Muiesan. Arterial oxygen tension in relation to age in healthy subjects. Respiration 25: 3–13, 1968.
 224. Spooner, B. S., and J. M. Faubiori. Collagen involvement in branching morphogenesis of embryonic lung and salivary gland. Dev. Biol. 77: 84–102, 1980.
 225. Spooner, B. S., and Wessels, N. K. Mammalian lung development: interactions in primordium formation and bronchial morphogenesis. J. Exp. Zool. 175: 445–454, 1970.
 226. Stanley, N. N., R. Alper, E. L. Cunningham, N. S. Cherniack, and N. A. Kefahdes. Effects of a molecular change in collagen on lung structure and mechanical function. J. Clin. Invest. 55: 1195–1201, 1975.
 227. Stigol, L. C., G. F. Vawter, and J. Mead. Studies on elastic recoil of the lung in a pediatric population. Am. Rev. Respir. Dis. 105: 552–563, 1972.
 228. Strang, L. B. Growth and development of the lung: fetal and postnatal. Annu. Rev. Physiol. 39: 253–276, 1977.
 229. Sugihara, T., and C. J. Martin. Simulation of lung tissue properties in age and irreversible obstructive syndromes using an aldehyde. J. Clin. Invest. 56: 23–29, 1975.
 230. Sugihara, T., C. J. Martin, and J. Hildebrandt. Length‐tension properties of alveolar wall in man. J. Appl. Physiol. 30: 874–878, 1971.
 231. Swischuk, L. E., C. J. Richardson, M. M. Nichols, and M. J. Ingman. Primary pulmonary hypoplasia in the neonate. J. Pediatr. 95: 573–577, 1979.
 232. Symchych, P. S., and P. Winchester. Animal model of human disease: Potter's Syndrome. Animal model: amniotic fluid deficiency and fetal lung growth in the rat. Am. J. Pathol. 90: 779–782, 1978.
 233. Taderera, J. V. Control of lung differentiation in vitro. Dev. Biol. 16: 489–512, 1967.
 234. Tanswell, A. K., and B. T. Smith. Human fetal lung type II pneumonocytes in monolayer culture: the influence of oxidant stress, Cortisol environment and soluble fibroblast factors. Pediatr. Res. 13: 1097–1100, 1979.
 235. Thomas, I. T., and D. W. Smith. Oligohydramnios, cause of the nonrenal features of Potter's syndrome, including pulmonary hypoplasia. J. Pediatr. 84: 811–815, 1974.
 236. Thompson, M. E. Lung growth in response to altered metabolic demand in hamsters: influence of thyroid function and cold exposure. Respir. Physiol. 40: 335–347, 1980.
 237. Thurlbeck, W. M. The internal surface area of non‐emphysematous lungs. Am. Rev. Respir. Dis. 95: 765–776, 1967.
 238. Thurlbeck, W. M. The state of the art: postnatal growth and development of the lung. Am. Rev. Respir. Dis. 111: 803–844, 1975.
 239. Thurlbeck, W. M. Chronic Airflow Obstruction in Lung Disease. Philadelphia, PA: Saunders, 1976.
 240. Thurlbeck, W. M. Postmortem lung volumes. Thorax 34: 735–739, 1979.
 241. Thurlbeck, W. M. Post‐natal human lung growth. Thorax 37: 564–571, 1982.
 242. Thurlbeck, W. M., and G. B. Angus. Growth and aging of the normal lung. Chest 67, Suppl.: 3S–7S, 1975.
 243. Thurlbeck, W. M., W. Galaugher, and J. Mathers. Adaptive response to pneumonectomy in puppies. Thorax 36: 424–427, 1981.
 244. Thurlbeck, W. M., K. Kida, C. Langston, M. J. Cowan, J. A. Kitterman, W. Tooley, and H. Bryan. Postnatal lung growth after repair of diaphragmatic hernia. Thorax 34: 338–343, 1979.
 245. Thurlbeck, W. M., R. C. Ryder, and N. Sternby. A comparative study of the severity of emphysema in necropsy populations in three different countries. Am. Rev. Respir. Dis. 109: 239–248, 1974.
 246. Torday, J. S., and H. C. Nielsen. Surfactant phospholipid ontogeny in fetal rabbit lung lavage and amniotic fluid. Biol. Neonat. 39: 266–271, 1981.
 247. Tordet, C., R. Bertin, C. Gardey, M. O. Richard, F. Dameron, and L. Marin. Lung catecholamines and cyclic nucleotides during perinatal development in the rat. Possible relationships with biochemical and morphological differentiation. Pediatr. Res. 15: 787–793, 1981.
 248. Towers, B. Amniotic fluid and the fetal lung. Nature London 183: 1140–1141, 1959.
 249. Tsao, F. H., G. R. Gutcher, and R. D. Zachman. Effect of hydrocortisone on the metabolism of phosphatidylcholine in maternal and fetal rabbit lungs and livers. Pediatr. Res. 13: 997–1001, 1979.
 250. Turner, J. M., J. Mead, and M. E. Wohl. Elasticity of human lungs in relation to age. J. Appl. Physiol. 25: 664–671, 1968.
 251. Vaccaro, C. A., and J. S. Brody. Ultrastructure of developing alveoli. I. The role of the interstitial fibroblast. Anat. Rec. 192: 467–479, 1978.
 252. Viidik, A. Connective tissue—possible implications of the temporal changes for the aging process. Mech. Ageing Dev. 9: 267–285, 1979.
 253. Walters, D. V., and R. E. Olver. The role of catecholamines in lung liquid absorption at birth. Pediatr. Res. 12: 239–242, 1978.
 254. Wang, N. S., R. V. Kotas, M. E. Avery, and W. M. Thurlbeck. Accelerated appearance of osmiophilic bodies in fetal lungs following steroid injection. J. Appl. Physiol. 30: 362–365, 1971.
 255. Weibel, E. R. Morphometry of the Human Lung. Heidelberg, West Germany: Springer‐Verlag, 1963.
 256. Weibel, E. R. Post‐natal growth of the lung and pulmonary gas‐exchange capacity. In: Development of the Lung, edited by A. V. S. de Reuck and R. Porter. Boston, MA: Little, Brown, 1967, p. 131–148. (Ciba Found. Symp.)
 257. Weibel, E. R. Fleischner lecture. Looking into the lung. What can it tell us? Am. J. Roentgenol. 113: 1021–1031, 1979.
 258. Weibel, E. R., P. H. Burri, H. Claassen, P. Gehr, and S. Sehovic. Size and structure of the respiratory system of the smallest mammal. In: Comparative Physiology. Primitive Mammals, edited by K. Schmidt‐Nielsen, L. Bolis, and C. R. Taylor. New York; Cambridge Univ. Press, 1979, p. 181–191.
 259. Wessels, N. K. Mammalian lung development: interactions in formation and morphogenesis of tracheal buds. J. Exp. Zool. 175: 455–466, 1970.
 260. Whitsett, J. A., M. A. Manton, C. Darovec‐Beckerman, K. G. Adams, and J. J. Moore. β‐Adrenergic receptors in the developing rabbit lung. Am. J. Physiol. 240 (Endocrinol. Metab. 3): E351–E357, 1981.
 261. Wigglesworth, J. S., and R. Desai. Effect on lung growth of cervical cord section in the rabbit fetus. Early Hum. Dev. 3: 51–65, 1979.
 262. Wigglesworth, J. S., and R. Desai. Is fetal respiratory function a major determinant of perinatal survival? Lancet 1: 264–267, 1982.
 263. Wigglesworth, J. S., R. Desai, and P. Guerrini. Fetal lung hypoplasia: biochemical and structural variations and their possible significance. Arch. Dis. Child. 56: 606–615, 1981.
 264. Wigglesworth, J. S., R. M. L. Winston, and K. Bartlett. Infuence of the central nervous system on fetal lung development. Arch. Dis. Child. 52: 965–967, 1977.
 265. Williams, M. C. Development of the alveolar structure of the fetal rat in late gestation. Federation Proc. 36: 2653–2659, 1977.
 266. Williams, M. C., and R. J. Mason. Development of the type II cell in the fetal rat lung. Am. Rev. Respir. Dis. 115: 37–47, 1977.
 267. Willson, H. G. Postnatal development of the lung. Am. J. Anat. 44: 97–122, 1928.
 268. Witschi, H. R., W. W. Haschek, A. J. P. Klein‐Szanto, and P. J. Hakkinen. Potentiation of diffuse lung damage by oxygen: determining of variables. Am. Rev. Respir. Dis. 123: 98–103, 1981.
 269. Wright, R. R. Elastic tissue of normal and emphysematous lungs—tridimensional histologic study. Am. J. Pathol. 39: 355–367, 1961.
 270. Wu, B., Y. Kikkawa, M. Ozalesi, E. Motoyama, M. Kaibara, C. Zigas, and C. Cook. The effect of thyroxine on the maturation of fetal rabbit lungs. Biol. Neonat. 22: 161–168, 1973.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Jerome S. Brody, William M. Thurlbeck. Development, Growth, and Aging of the Lung. Compr Physiol 2011, Supplement 12: Handbook of Physiology, The Respiratory System, Mechanics of Breathing: 355-386. First published in print 1986. doi: 10.1002/cphy.cp030322