Comprehensive Physiology Wiley Online Library

Gas Physiology in Diving

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Breathing under water: Ventilatory needs
1.1 Effects of Gas Compression
1.2 CO2 Elimination
2 The need for pressure balance
2.1 Respiratory Problems
2.2 Cardiovascular Aspects
2.3 Ventilation–Perfusion Matching
3 External breathing impediment
3.1 Dyspnea and CO2 Exchange
4 Barotrauma of the lung
5 Oxygen Toxicity
5.1 Physiological Response to O2 Breathing
5.2 Toxic Effects: Pulmonary
5.3 Toxic Effects: Central Nervous System
5.4 Modulation of Toxicity
5.5 Mechanism of O2 Toxicity
6 Nitrogen narcosis
6.1 Signs and Symptoms
6.2 Causes and Mechanisms
6.3 Adaptation
7 Physics of bubble formation
7.1 Diffusion Equations
7.2 Surface Tension
7.3 Growth and Decay of a Preformed Bubble
7.4 Nucleus to Bubble
8 Decompression
Figure 1. Figure 1.

Actual and predicted relationships between pressure (depth) and MVV while breathing air or various helium–oxygen mixtures. Numbers on curve to the right refer to air pressure in atm that were predicted to allow the same MVV achievable with helium–oxygen mixtures at the pressures given on the ordinate.

Reproduced with permission from Lanphier and Camporesi 102
Figure 2. Figure 2.

Effects of inhaled gas composition and pressure on alveolar Pco2 levels recorded by Lanphier at U. S. Navy Experimental Diving Unit. Bars indicate mean values; lines above bars show highest individual values. Total gas pressure at bottom of graph; gas composition within bars. Oxygen Po2 was the same in the second, third, and fourth bars. Comparison of bars allows some conclusions (see text) about Factors apparently responsible for observed hypercapnia as tabulated in the figure.

Reproduced with permission from Lanphier and Camporesi 102
Figure 3. Figure 3.

Gas supply in a heavy (hard hat) diving suit. Size of the arrows illustrates the relative magnitude of water and air pressure. Air pressure in lungs is the same as air pressure in “bubble” surrounding the chest, which is determined by water pressure at chest level. Further details in text.

Figure 4. Figure 4.

Schematic of scuba breathing regulator. Breathing air is provided at the same pressure as water pressure acting on the membrane. A pressure differential (higher outside than inside), whether caused by inspiration or descent, will move the membrane inward and provide for inflow of compressed air.

Figure 5. Figure 5.

Scuba diver with breathing regulator at mouth, experiencing positive static lung loading in the head‐down position (A). Scuba diver with counterlung (breathing bag) on back is exposed to negative SLL in the prone position (B).

Figure 6. Figure 6.

Results of end‐tidal Pco2 recordings and dyspnea scoring (0 = no dyspnea, 2.5 very severe dyspnea) in subjects performing exercise under water at 147 kPa (15 ft, 4.5 m) (A) and 690 kPa (190 ft, 57 m (B). Low dyspnea scores are associated with high CO2 levels and vice versa.

Reproduced with permission from Warkander et al. 170
Figure 7. Figure 7.

Feedback loop due to interaction between surface tension and gas diffusion. Action of the loop causes explosive growth of small bubbles.

Reproduced from Van Liew 156, with permission
Figure 8. Figure 8.

Simulation of the time course of variables when a preexisting bubble in the body is subjected to decompression. It is assumed that surface tension and barometric pressure are the only physical forces acting on the bubble. Redrawn from Van Liew 156, with permission.

Figure 9. Figure 9.

Simulation of the consequences of decompression for a very small bubble or “nucleus.” Redrawn from Van Liew 156, with permission.



Figure 1.

Actual and predicted relationships between pressure (depth) and MVV while breathing air or various helium–oxygen mixtures. Numbers on curve to the right refer to air pressure in atm that were predicted to allow the same MVV achievable with helium–oxygen mixtures at the pressures given on the ordinate.

Reproduced with permission from Lanphier and Camporesi 102


Figure 2.

Effects of inhaled gas composition and pressure on alveolar Pco2 levels recorded by Lanphier at U. S. Navy Experimental Diving Unit. Bars indicate mean values; lines above bars show highest individual values. Total gas pressure at bottom of graph; gas composition within bars. Oxygen Po2 was the same in the second, third, and fourth bars. Comparison of bars allows some conclusions (see text) about Factors apparently responsible for observed hypercapnia as tabulated in the figure.

Reproduced with permission from Lanphier and Camporesi 102


Figure 3.

Gas supply in a heavy (hard hat) diving suit. Size of the arrows illustrates the relative magnitude of water and air pressure. Air pressure in lungs is the same as air pressure in “bubble” surrounding the chest, which is determined by water pressure at chest level. Further details in text.



Figure 4.

Schematic of scuba breathing regulator. Breathing air is provided at the same pressure as water pressure acting on the membrane. A pressure differential (higher outside than inside), whether caused by inspiration or descent, will move the membrane inward and provide for inflow of compressed air.



Figure 5.

Scuba diver with breathing regulator at mouth, experiencing positive static lung loading in the head‐down position (A). Scuba diver with counterlung (breathing bag) on back is exposed to negative SLL in the prone position (B).



Figure 6.

Results of end‐tidal Pco2 recordings and dyspnea scoring (0 = no dyspnea, 2.5 very severe dyspnea) in subjects performing exercise under water at 147 kPa (15 ft, 4.5 m) (A) and 690 kPa (190 ft, 57 m (B). Low dyspnea scores are associated with high CO2 levels and vice versa.

Reproduced with permission from Warkander et al. 170


Figure 7.

Feedback loop due to interaction between surface tension and gas diffusion. Action of the loop causes explosive growth of small bubbles.

Reproduced from Van Liew 156, with permission


Figure 8.

Simulation of the time course of variables when a preexisting bubble in the body is subjected to decompression. It is assumed that surface tension and barometric pressure are the only physical forces acting on the bubble. Redrawn from Van Liew 156, with permission.



Figure 9.

Simulation of the consequences of decompression for a very small bubble or “nucleus.” Redrawn from Van Liew 156, with permission.

References
 1. Ackles, K. N., and B. Fowler. Cortical evoked response and inert gas narcosis in man. Aerospace Med. 41: 1184, 1971.
 2. Adolfson, J. Deterioration of mental and motor functions in hyperbaric air. Scand. J. Psychol. 6: 26–31, 1965.
 3. Adolfson, J., and A. Muren. Air breathing at 13 atmospheres. Psychological and physiological observations. Sartryck Forsvarsmed. 1: 31–37, 1965.
 4. Aldrich, C. J. Compressed‐air illness, caisson disease. Int. Clin. 10: 73–88, 1900.
 5. Anthonisen, N. R., G. Utz, M. H. Kruger, and J. S. Urbanetti. Exercise tolerance at 4 and 6 ATA. Undersea Biomed. Res. 3: 95–102, 1976.
 6. Arborelius, M., Jr., U. I. Balldin, B. Lilja, and C. E. G. Lundgren. Hemodynamic changes in man during immersion with the head above water. Aerospace Med. 43: 592–598, 1972.
 7. Arborelius, M., Jr., U. I. Balldin, B. Lilja, and C. E. G. Lundgren. Regional lung function in man during immersion with the head above water. Aerospace Med. 43: 701–707, 1972.
 8. Arduini, A., and M. G. Arduini. Effect of drugs and metabolic alterations on brain stem arousal mechanism. J. Pharmacol. 110: 76–85, 1954.
 9. Bachrach, A. J. A short history of man in the sea. In: The Physiology of Diving and Compressed Air Work (3rd ed.), edited by P. B. Bennett and D. H. Elliott. London: Bailliere Tindall, 1982, p. 1–14.
 10. Baer, R., G. O. Dahlbäck, and V. I. Balldin. Pulmonary mechanics and atelectasis during immersion in O2‐breathing subjects. Undersea Biomed. Res. 14: 229–240, 1987.
 11. Balldin, U. I. The preventive effect of denitrogenation during warm water immersion on decompression sickness in man. Proc. First Annual Scientific Meeting Eur. Undersea Biomed. Soc., Stockholm 1973. Försvarsmedicin 9: 239–243, 1973.
 12. Balldin, U. I., G. O. Dahlbäck, and C. E. G. Lundgren. Changes in vital capacity produced by oxygen breathing during immersion with the head above water. Aerospace Med. 42: 384–387, 1971.
 13. Balldin, U. I., C. E. G. Lundgren, J. Lundwall, and S. Mellander. Changes in the elimination of 133xenon from the anterior tibial muscle in man induced by immersion in water and by shifts in body position. Aerospace Med. 42: 489–493, 1971.
 14. Balldin, U. I., and C. E. G. Lundgren. Effects of immersion with the head above water on tissue nitrogen elimination in man. Aerospace Med. 42: 1101–1108, 1972.
 15. Bean, J. W. Tensional changes of alveolar gas in reactions to rapid compression and decompression and question of nitrogen narcosis. Am. J. Physiol. 161: 417–425, 1950.
 16. Behnke, A. R., R. M. Thomson, and E. P. Motley. The psychologic effects from breathing air at 4 atmospheres pressure. Am. J. Physiol. 112: 554–558, 1935.
 17. Behnke, A. R., and O. K. Yarbrough. Respiratory resistance, and oil–water solubility and mental effects of argon compared with helium and nitrogen. Am. J. Physiol. 126: 409–415, 1939.
 18. Bennett, P. B. Comparison of the effects of drugs on nitrogen and oxygen toxicity in rats. Life Sci. 12: 721–727, 1962.
 19. Bennett, P. B. Prevention in rats of the narcosis produced by inert gases at high pressures. Am. J. Physiol. 305: 1013–1018, 1963.
 20. Bennett, P. B. The effects of high pressures of inert gases on auditory evoked potentials in cat cortex and reticular formation. Electroencephalogr. Clin. Neurophysiol. 17: 388–397, 1964.
 21. Bennett, P. B. Review of protective pharmacological agents in diving. Aerospace Med. 43: 184–192, 1972.
 22. Bennett, P. B. Pharmacological effects of inert gases and hydrogen. In: Underwater Physiology, edited by C. J. Lambertsen. Bethesda, MD: Am. Soc. Exp. Biol., 1975.
 23. Bennett, P. B. Inert gas narcosis. In: The Physiology and Medicine of Diving (4th ed.), edited by P. B. Bennett and D. H. Elliott. London: Saunders, 1993.
 24. Bennett, P. B., K. N. Ackles, and V. J. Cripps. Effects of hyperbaric nitrogen and oxygen on auditory evoked responses in man. Aerospace Med. 40: 521–525, 1969.
 25. Bennett, P. B., and G. D. Blenkarn. Arterial blood gases in man during inert gas narcosis. J. Appl. Physiol. 36: 45–48, 1974.
 26. Bennett, P. B., and A. N. Dossett. Mechanisms and prevention of inert gas narcosis and anesthesia. Nature 228: 1317–1318, 1970.
 27. Bennett, P. B., and A. J. Hayward. Electroencephalographic and other changes induced by high partial pressures of nitrogen. Electroencephalogr. Clin. Neurophysiol. 13: 91–98, 1961.
 28. Bennett, P. B., B. Leventhal, R. Coggin, and L. Racanska. Lithium effects: protection against nitrogen narcosis potentiation of HPNS. Undersea Biomed Res. 7: 11–16, 1980.
 29. Bennett, P. B., D. Papahadjopoulos, and A. D. Bangham. The effect of raised pressures of inert gases on phospholipid model membranes. Life Sci. 6: 2527–2533, 1967.
 30. Bennett, P. B., S. Simon, and Y. Katz. High pressures of inert gases and anesthesia mechanisms. In: Molecular Mechanisms of Anesthesia, edited by B. R. Fink. New York: Raven, 1975, vol. 1, p. 367–403.
 31. Bitterman, N., A. Laor, and Y. Melamed. CNS O2 toxicity in O2‐inert gas mixtures. Undersea Biomed. Res. 14: 477–483, 1987.
 32. Bondi, K. R., J. Murray Young, R. M. Bennett, and M. E. Bradley. Closing volumes in man immersed to the neck in water. J. Appl. Physiol. 40: 736–740, 1976.
 33. Boycott, A. E., G. C. C. Damant, and J. S. Haldane. The prevention of compressed air illness. J. Hyg. 8: 342–443, 1908.
 34. Boyle, R. Continuation of the observations concerning respiration. Phil. Trans. 5: 2035–2056, 1670.
 35. Brubakk, A. O., B. B. Hemmingsen, and G. Sundnes (Eds). Supersaturation and Bubble Formation in Fluids and Organisms. Trondheim, Norway: Tapir, 1989.
 36. Butler, F. K., and E. D. Thalmann. CNS O2 toxicity in closed circuit scuba divers II. Undersea Biomed. Res. 13: 193–223, 1986.
 37. Carpenter, F. G. Anesthetic action of inert gases on the central nervous system in mice. Am. J. Physiol. 172: 471–474, 1953.
 38. Case, E. M., and J. B. S. Haldane. Human physiology under high pressure. J. Hyg. 41: 225–249, 1941.
 39. Clark, J. M., R. M. Jackson, C. J. Lambertsen, R. Gelfand, W. D. B. Hiller, and M. Unger. Pulmonary function in men after O2 breathing at 3 ATA for 3.5 h. J. Appl. Physiol. 71: 878–885, 1991.
 40. Clark, J. M., and C. J. Lambertsen. Rate of development of pulmonary O2 toxicity in man during O2 breathing at 2 ATA. J. Appl. Physiol. 30: 739–752, 1971.
 41. Clark, J. M., and C. J. Lambertsen. Pulmonary oxygen toxicity: a review. Pharmacol. Rev. 23: 37–133, 1971.
 42. Clements, J. A., and K. M. Wilson. The affinity of narcotic agents for interfacial films. Proc. Natl. Acad. Sci. USA 48: 1008–1014, 1962.
 43. Cohen, R., W. H. Bell, H. A. Saltzman, and J. A. Kylstra. Alveolar–arterial oxygen pressure difference in man immersed up to the neck in water. J. Appl. Physiol. 30: 720–723, 1971.
 44. Colebatch, H. J. H., M. M. Smith, and C. K. Y. Ng. Increased elastic recoil as a determinant of pulmonary barotrauma in divers. Respir. Physiol. 26: 55–64, 1976.
 45. Crapo, J. D. Morphologic changes in pulmonary oxygen toxicity. Annu. Rev. Physiol. 48: 721–731, 1986.
 46. Dahlbäck, G. O. Lung Mechanics During Immersion in Water. Lund, Sweden: Univ. of Lund, 1978, Thesis.
 47. Dahlbäck, G. O., and U. I. Balldin. Positive‐pressure oxygen breathing and pulmonary atalectasis during immersion. Undersea Biomed. Res. 10: 39–44, 1983.
 48. Daniels, S., K. C. Eastaugh, W. D. M. Paton, and E. B. Smith. Micronuclei and bubble formation: a quantitative study using the common shrimp, crangon cragnon. In: Underwater Physiology VIII, Proc. Eighth Symp. Underwater Physiol. edited by A. J. Bachrach and M. M. Matzen. Bethesda, MD: Undersea Med. Soc., 1984, p. 147–157.
 49. Davis, F. M., J. P. Osborne, A. D. Baddeley, and I. M. F. Graham. Diver performance: nitrogen narcosis and anxiety. Aerospace Med. 43: 1079–1082, 1972.
 50. Derion, T., H. J. B. Guy, K. Tsukimoto, W. Schaffartzik, R. Prediletto, D. C. Poole, D. R. Knight, and P. D. Wagner. Ventilation–perfusion relationships in the lung during head‐out water immersion. J. Appl. Physiol. 72: 64–72, 1992.
 51. Derion, T., W. G. Reddan, and E. H. Lanphier. Effects of body position and static lung loading during immersion on end‐expiratory lung volume and peak expiratory flow [Abstract]. Undersea Biomed. Res. 15: 69, 1988.
 52. Donald, K. W. O2 poisoning in man, part I. Br. Med. J. 1: 667–672, 1947.
 53. Donald, K. W. O2 poisoning in man, part II. Br. Med. J. 1: 712–717, 1947.
 54. Dwyer, J., H. A. Saltzman, and R. O'Bryan. Maximal physical work capacity of man at 43.4 ATA. Undersea Biomed. Res. 4: 359–372, 1977.
 55. Eckenhof, R. G., J. H. Dougherty, Jr., A. A. Messier, S. F. Osborne, and J. W. Parker. Progression of and recovery from pulmonary O2 toxicity in humans exposed to 5 ATA air. Aviat. Space Environ. Med. 58: 658–667, 1987.
 56. Eckenhoff, R. G., and J. S. Hughes. Acclimatization to decompression stress. In: Underwater Physiology VIII, Proc. Eighth Symp. Underwater Physiol., edited by A. J. Bachrach and M. M. Matzen. Bethesda, MD: Undersea Med. Soc., 1984, p. 93–100.
 57. Elandt‐Johnson, R. C., and N. O. Johnson. Survival Models and Data Analysis. New York: Wiley, 1980.
 58. Elliott, D. H., and R. E. Moon. Manifestations of the Decompression Disorders. In: The Physiology and Medicine of Diving (4th ed.), edited by P. B. Bennett and D. H. Elliott. London: W. B. Saunders, 1993, p. 481–505.
 59. Epstein, P. S., and M. S. Plesset. On the stability of gas bubbles in liquid–gas solutions. J. Chem. Physics 18: 1505–1509, 1950.
 60. Evans, A., and D. N. Walder. Significance of gas micronuclei in the aetiology of decompression sickness. Nature 222: 251–252, 1969.
 61. Fagraeus, L., and D. Linnarsson. Maximal voluntary and exercise ventilation at high ambient air pressures. Försvarsmedicin 9: 275–278, 1973.
 62. Farhi, L. E., and D. Linnarsson. Cardiopulmonary readjustments during graded immersion in water at 35°C. Respir. Physiol. 30: 35–50, 1977.
 63. Flook, V., and I. M. Fraser. Inspiratory flow limitation in divers. Undersea Biomed. Res. 16: 305–311, 1989.
 64. Fowler, A., K. N. Ackles, and G. Porlier. Effects of inert gas narcosis on behavior—a critical review. Undersea Biomed. Res. 12: 369–402, 1985.
 65. Francis, T. J. R., J. L. Griffin, L. D. Homer, G. H. Pezeshkpour, A. J. Dutka, and E. T. Flynn. Bubble‐indiced dysfunction in acute spinal cord decompression sickness. J. Appl. Physiol. 68: 1368–1375, 1990.
 66. Franks, N. P., and W. R. Lieb. Where do narcotics act? Nature 274: 339–342, 1978.
 67. French, J. D., M. Verzeano, and H. W. Magoun. A neural basis of the anesthetic state. AMA Arch. Neurol. 69: 519–529, 1953.
 68. Fridovich, I., and B. Freeman. Antioxidant defenses in the lung. Annu. Rev. Physiol. 48: 693–702, 1986.
 69. Golding, F. C., P. Griffiths, H. V. Hempleman, W. D. M. Paton, and D. N. Walder. Decompression sickness during construction of the Dartford tunnel. Br. J. Indust. Med. 17: 167–180, 1960.
 70. Hallenbeck, J. M., and J. C. Andersen. Pathogenesis of the decompression disorders. In: The Physiology and Medicine of Diving (3rd ed.), edited by P. B. Bennett and D. H. Elliott. London, Bailliere Tindall, 1982, p. 435–460.
 71. Halsey, M. J., B. W. Wardley‐Smith, and C. J. Green. Pressure reversal of general anesthesia—a multi‐site expansion hypothesis. Br. J. Anaesthesia 50: 1091–1097, 1978.
 72. Harabin, A. L., J. C. Braisted, and E. T. Flynn. Response of antioxidant enzymes to intermittent and continuous hyperbaric O2. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 69: 328–335, 1990.
 73. Harabin, A. L., L. D. Homer, and M. E. Bradley. Pulmonary O2 toxicity in awake dogs: metabolic and physiological effects. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 57: 1480–1488, 1984.
 74. Harabin, A. L., L. D. Homer, P. K. Weathersby, and E. T. Flynn. An analysis of decrements in vital capacity as an index of pulmonary O2 toxicity. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 63: 1130–1135, 1987.
 75. Harabin, A. L., S. S. Survanshi, P. K. Weathersby, J. R. Hays, and L. D. Homer. The modulation of O2 toxicity by intermittent exposure. Tox. Appl. Pharmacol. 93: 298–311, 1988.
 76. Harvey, E. N. Physical factors in bubble formation. In: Decompression Sickness, edited by J. F. Fulton. Philadelphia: Saunders, 1951, p. 90–114.
 77. Haugaard, N. Cellular mechanisms of O2 toxicity. Physiol. Rev. 48: 311–373, 1968.
 78. Hempleman, H. V. Decompression procedures for deep, open sea operations. In: Underwater Physiology III, Baltimore: Williams and Wilkins, 1967, p. 255–266.
 79. Hempleman, H. V. British decompression theory and practice. In: The Physiology and Medicine of Diving and Compressed Air Work (1st ed.), edited by P. B. Bennett and D. H. Elliott. London: Bailliere, Tindall and Cassell, 1969, p. 291–318.
 80. Hempleman, H. V. History of the evolution of decompression procedures. In: The Physiology of Diving and Compressed Air Work (3rd ed.), edited by P. B. Bennett and D. H. Elliott. London: Bailliere Tindall, 1982, p. 319–351.
 81. Hendricks, P. L., D. A. Hall, W. L. Hunter, and P. J. Haley. Extension of pulmonary O2 tolerance in man at 2 ATA by intermittent O2 exposure. J. Appl. Physiol. 42: 593–599, 1977.
 82. Hesser, C. M., J. Adolfson, and L. Fagraeus. Role of CO2 in compressed‐air narcosis. Aerospace Med. 42: 163–168, 1971.
 83. Hesser, C. V., F. Lind, and B. Faijerson. Effects of exercise and raised air pressures on maximal voluntary ventilation. In: Proc. Eur. Underwater Biomed. Soc. 5th Ann. Scientific Meeting, edited by J. Grimstad. Bergen, Norway: Eur. Undersea Biomed. Soc., 1979, p. 203–212.
 84. Hickey, D. D., C. E. G. Lundgren, and A. J. Pasche. Influence of exercise on maximal voluntary ventilation and forced expiratory flow at depth. Undersea Biomed. Res. 10: 241–254, 1983.
 85. Hickey, D. D., W. T. Norfleet, A. J. Påsche, and C. E. G. Lundgren. Respiratory function in the upright working diver at 6.8 ATA (190 fsw). Undersea Biomed. Res. 14: 241–262, 1987.
 86. Hills, B. A. Acclimatization to decompression sickness: a study of passive relaxation in several tissues. Clin. Sci. 37: 109–124, 1969.
 87. Hills, B. A. Decompression Sickness, Vol I: The Biophysical Basis of Prevention and Treatment. New York: Wiley, 1977, p. 310–315.
 88. Jamieson, D., B. Chance, E. Cadenas, and A. Boveris. The relation of free radical production to hyperoxia. Annu. Rev. Physiol. 48: 703–719, 1986.
 89. Jones, A. W., R. D. Jennings, J. Adolfson, and C. M. Hesser. Combined effects of ethanol and hyperbaric air on body sway and heart rate in man. Undersea Biomed. Res. 6: 15–25, 1979.
 90. Kalbfleish, J., and R. L. Prentice. The Statistical Analysis of Failure Time Data. New York: Wiley, 1980.
 91. Keays, F. L. Compressed Air Illness. Ithaca, NY: Cornell University Medical College, 1909, vol. 2, p. 1–55.
 92. Kerem, D., Y. Melamed, and A. Moran. Alveolar Pco2 during rest and exercise in divers and non‐divers breathing O2 at 1 ATA. Undersea Biomed. Res. 7: 17–26, 1980.
 93. Kiesling, R. J., and C. H. Maag. Performance impairment as a function of nitrogen narcosis. J. Appl. Psychol. 46: 91–95, 1962.
 94. Kinney, J. S., and C. L. McKay. The visual evoked response as a measure of nitrogen narcosis in Navy divers. Report 664, New London: U.S. Naval Submarine Medical Center, 1971.
 95. Lahiri, S., E. Mulligan, S. Andronikou, M. Shirahata, and A. Mokashi. Carotid body chemosensory function in prolonged normobaric hyperoxia in the cat. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 62: 1924–1931, 1987.
 96. Lambertsen, C. J., J. M. Clark, R. Gelfand, J. B. Pisarello, W. H. Cobbs, J. E. Bevilacqua, D. M. Schwartz, D. J. Montaban, C. S. Leach, P. C. Johnson, and D. E. Fletcher. Definition of tolerance to continuous hyperoxia in man. In: Ninth Int. Symp. Underwater Hyperbaric Physiol., edited by A. A. Bove, A. J. Bachrach, and L. J. Greenbaum, Jr. Bethesda, MD: Undersea Hyperbaric Med. Soc., 1987, p. 717–735.
 97. Lambertsen, C. J., R. Gelfand, R. Peterson, R. Strauss, W. B. Wright, J. G. Dickson, Jr., C. Puglia, and R. W. Hamilton, Jr. Human tolerance to He, Ne and N2 at respiratory gas densities equivalent to He–O2 breathing at depths to 1200, 2000, 3000, 4000, and 5000 feet of sea water (Predictive Studies III). Aviat. Space Environ. Med. 48: 843–855, 1977.
 98. Lambertsen, C. J., R. H. Kough, D. Y. Cooper, G. L. Emmel, H. Y. H. Loeschke, and C. F. Schmidt. O2 toxicity. Effects in man of O2 inhalation at 1 and 3.5 atmospheres upon blood gas transport, cerebral circulation and cerebral metabolism. J. Appl. Physiol. 5: 471–486, 1953.
 99. Lambertsen, C. J., S. G. Owen, H. Wendel, M. W. Stroud, A. A. Lurrie, W. Lochner, and G. F. Clark. Respiratory and cerebral circulatory control during exercise at .21 and 2.0 atm inspired Po2. J. Appl. Physiol. 14: 966–982, 1959.
 100. Lanari, A., A. Lambertini, F. L. Zubiaur, and B. Bromberger Barnea. Las modificaciones de la presion intratoracica, arterial sistemica, y venosa periferica durante la sumersion. Medicina (B. Aires) 20: 159–163, 1960.
 101. Lanphier, E. H. Influences of increased ambient pressures upon alveolar ventilation. In: Proc. 2nd Symp. Underwater Physiol., edited by C. J. Lambertsen and L. J. Greenbaum. Washington, DC: Natl. Acad. Sci. Natl. Res. Council, 1963.
 102. Lanphier, E. H., and E. M. Camporesi. Respiration and exercise. In: The Physiology and Medicine of Diving, edited by P. B. Bennett and D. H. Elliott. San Pedro, CA: Best, 1982, p. 99–156.
 103. Larrabee, M. G., and J. M. Posternak. Selective action of anesthetics on synapses and axons in mammalian sympathetic ganglia. J. Neurophysiol. 15: 91–114, 1952.
 104. Leitch, D. R., and R. D. Green. Pulmonary barotrauma in divers and the treatment of cerebral arterial gas embolism. Aviat. Space Environ. Med. 57: 931–938, 1986.
 105. Leitch, D. R., and R. D. Green. Recurrent pulmonary baro‐trauma. Aviat. Space Environ. Med. 57: 1039–1043, 1986.
 106. Lever, M. J., K. M. Miller, W. D. M. Paton, and E. B. Smith. Pressure reversal of anaesthesia. Nature 231: 371–386, 1971.
 107. Linnarson, D., and C. M. Hesser. Dissociated ventilatory and central respiratory responses to CO2 at raised N2 pressure. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 45: 756–761, 1978.
 108. Löllgen, H., G. von Nieding, and R. Horres. Respiratory and hemodynamic adjustment during head‐out water immersion. Int. J. Sports Med. 1: 25–29, 1980.
 109. Lundgren, C. E. G. Discussion. In: The Physiological Basis of Decompression Sickness, edited by R. D. Vann. Bethesda, MD: Undersea Hyperbaric Med. Soc., 1989, p. 69.
 110. Lundgren, C. E. G., and D. E. Warkander, eds. Discussion. In: Physiological and Human Engineering Aspects of Underwater Breathing Apparatus. Bethesda, MD: Undersea and Hyperbaric Medical Society, Inc., 1989, p. 213–221.
 111. Maio, D. A., and L. E. Farhi. Effect of gas density on mechanics of breathing. J. Appl. Physiol. 23: 687–693, 1967.
 112. Marshall, J. M., and W. O. Fenn. The narcotic effects of nitrogen and argon on the central nervous system of frogs. Am. J. Physiol. 163: 733, 1950.
 113. Matalon, S., M. S. Nesarajah, and L. E. Farhi. Pulmonary and circulatory changes in conscious sheep exposed to 100% O2 at 1 ATA. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 53: 110–116, 1982.
 114. McDonough, P. M., and E. A. Hemmingsen. Bubble formation in crabs induced by limb motions after decompression. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 57: 117–122, 1984.
 115. McWhorter, J. E. The etiological factors of compressed‐air illness. The gaseous content of tunnels: the occurrence of the disease in workers. Am. J. Med. Sci. 139: 373–383, 1910.
 116. Meyer, K. H., and H. Hopff. Narcosis by inert gases under pressure. Hoppe‐Seyler's Z. Physiol. Chem. 126: 288–298, 1923.
 117. Miller, J. N., O. D. Wangensteen, and E. H. Lanphier. Respiratory limitations to work at depth. In: Proc. Third Int. Conf. Hyperbaric Underwater Physiol., edited by X. Fructus. Paris, Doin, 1972, p. 118–123.
 118. Miller, K. W., W. D. M. Paton, R. Smith, and E. M. Smith. The pressure reversal of general anaesthesia and the critical volume hypothesis. Mol. Pharmacol. 9: 131–143, 1973.
 119. Morrison, J. B., J. T. Florio, and W. S. Butt. Observations after loss of consciousness under water. Undersea Biomed. Res. 5: 179–187, 1978.
 120. Mullins, L. J. Some physical mechanisms in narcosis. Chem. Rev. 54: 289–323, 1954.
 121. Nemiroff, M. J., G. R. Saltz, and J. G. Weg. Survival after cold‐water near‐drowning: the protective effect of the diving reflex. Am. Rev. Respir. Dis. 115: 145, 1977.
 122. Novotny, J. A., D. L. Mayers, Y. F. J. Parsons, S. S. Survanshi, P. K. Weathersby, and L. D. Homer. Xenon kinetics in muscle are not explained by a model of parallel perfusion‐limited compartments. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 68: 876–890, 1990.
 123. Overton, E. Studien Über die Narkose. Jena Fischer, 1901.
 124. Parker, E. C., S. S. Survanshi, P. K. Weathersby, and E. D. Thalmann. Statistically based decompression tables VIII: linear exponential kinetics. NMRI Technical Report 92–73. Bethesda, MD: Naval Medical Research Institute, 1992.
 125. Paton, W. D. M., and D. N. Walder. Compressed air illness. An investigation during the construction of the Tyne tunnel 1948–50. Medical Research Council Special Report 281. London: Her Majesty's Stationary Office, 1954.
 126. Piccard, J. Aero‐emphysema and the birth of gas bubbles. Proc. Staff Meetings Mayo Clin. 16: 700–704, 1941.
 127. Pol, B., and T. J. J. Watelle. Memoire sur les effects de la compression de l'air applique au creusement des puits a hoville. Ann. d'Hyg. Pub. Med. Legate 2: 241–279, 1854.
 128. Powell, M. R., M. P. Spencer, and O. T. Von Ramm. Ultrasonic surveillance of decompression. In: The Physiology and Medicine of Diving (3rd ed.), edited by P. B. Bennett and D. H. Elliot. London: Bailliere Tindall, 1982, p. 404–434.
 129. Prefaut, C., F. Dubois, C. Roussos, R. Amaral‐Marques, P. T. Macklem, and F. Ruff. Influence of immersion to the neck in water on airway closure and distribution of perfusion in man. Respir. Physiol. 37: 313–323, 1979.
 130. Prefaut, C., M. Ramonatxo, R. Boyer, and G. Chardon. Human gas exchange during water immersion. Respir. Physiol. 34: 307–318, 1978.
 131. Ringqvist, T. The ventilatory capacity in healthy subjects. Scand. J. Clin. Lab. Invest. 18: 1–179, 1966.
 132. Rubenstein, C. J. Role of decompression conditioning in the incidence of decompression sickness in deep diving. NEDU Report 12–68. Panama City, FL: Navy Experimental Diving Unit, 1968.
 133. Saltzman, H. A., L. Hart, H. O. Sieker, and E. J. Duffy. Retinal vascular response to hyperbaric oxygenation. J. Am. Med. Soc. 191: 114–116, 1975.
 134. Schreiner, H. R., R. W. Hamilton, and T. D. Langley. Neon: an attractive new commercial diving gas. In: Proc. Offshore Technology Conf. Houston, May 1–3, 1972.
 135. Scriven, L. E. On the dynamics of gas phase growth. Chem. Eng. Sci. 10: 1–13, 1959.
 136. Seusing, J., and H. Drube. The importance of hypercapnia in depth intoxication. Klin. Wschr. 38: 1088–1090, 1960.
 137. Sherman, D., E. Eilender, A. Shefer, and D. Kerem. Ventilatory and occlusion‐pressure responses to hypercapnia in divers and non‐divers. Undersea Biomed. Res. 7: 61–74, 1980.
 138. Smith, A. H. The Effects of High Atmospheric Pressure Including the Caisson Disease. New York: Eagle Print, 1873. Prize Essay of the Alumnae Association of the College of Physicians and Surgeons New York.
 139. Spaur, W. H., L. W. Rahmond, M. M. Knott, J. C. Crothers, W. R. Braithwaite, E. D. Thalmann, and D. F. Uddin. Dyspnea in divers at 49.5 ATA: mechanical, not chemical in origin. Undersea Biomed. Res. 4: 183–198, 1977.
 140. Spencer, M. P., and H. F. Clarke. Precordial monitoring of pulmonary gas embolism and decompression bubbles. Aerospace Med. 43: 762–767, 1972.
 141. Stigler, R. Die Kraft unserer Inspirations Muskulatur. Pflugers Arch. 139: 234–254, 1911.
 142. Strauss, R. H. Bubble formation in gelatin: implications for the prevention of decompression sickness. Undersea Biomed. Res. 1: 169–174, 1974.
 143. Thalmann, E. D. Phase II testing of decompression algorithms for use in the U.S. Navy Underwater Decompression computer. NEDU Report 1–84. Panama City, FL: Navy Experimental Diving Unit, 1984.
 144. Thalmann, E. D. Air‐N2O2 decompression computer algorithm development. NEDU Report 8–85. Panama City, FL: Navy Experimental Diving Unit, 1985.
 145. Thalmann, E. D. Development of a decompression algorithm for constant 0.7 ATA oxygen partial pressure in helium diving. NEDU Report 1–85. Panama City, FL: Navy Experimental Diving Unit, 1985.
 146. Thalmann, E. D. USN experience in decompression table validation. In: 34th UHMS Workshop, Validation of Decompression Tables, edited by H. R. Schreiner and R. W. Hamilton. Bethesda, MD: Undersea Hyperbaric Med Soc., Pub 74, 1989, p. 1–88.
 147. Thalmann, E. D., and C. A. Piantadosi. Submerged exercise at pressure up to 55.55 ATA [Abstract]. Undersea Biomed. Res. 8: 25, 1981.
 148. Thalmann, E. D., D. K. Sponholtz, and C. E. G. Lundgren. Effects of immersion and static lung loading on submerged exercise at depth. Undersea Biomed. Res. 6: 259–290, 1979.
 149. Thalmann, E. D., J. L. Zumrick, H. J. C. Schwartz, and F. K. Butler. Accommodation to decompression sickness in HeO2 divers. Undersea Biomed. Res. 11 (suppl. 1): 6, 1984.
 150. Tikuisis, P. Modeling the observations of in vivo bubble formation with hydrophobic crevices. Undersea Biomed. Res. 13: 165–180, 1986.
 151. Torbati, D., A. Mokashi, and S. Lahiri. Effects of acute hyperbaric oxygenation on respiratory control in cats. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 67: 2351–2356, 1989.
 152. Torbati, D., D. Parolla, and S. Lavy. Organ blood flow, cardiac output, arterial blood pressure, and vascular resistance in rats exposed to various oxygen pressures. Aviat. Space Environ. Med. 50: 256–263, 1979.
 153. U. S. Department of Navy. U. S. Navy Diving Manual (rev. 2), Washington, DC: Naval Sea Systems Command, 1987, vol. 2. (NAVSEA 0994‐LP‐001–9020).
 154. U. S. Navy. U. S. Navy Diving Manual (rev. 3), Washington, DC: Naval Sea Systems Command, 1991, vol. 2 (NAVSEA 0994‐LP‐001–9020).
 155. Vail, E. G. Hyperbaric respiratory mechanics. Aerospace Med. 42: 536–546, 1971.
 156. Van Liew, H. D. Mechanical and physical factors in lung function during work in dense environments. Undersea Biomed. Res. 10: 255–264, 1983.
 157. Van Liew, H. D. Simulation of the dynamics of decompression sickness bubbles and the generation of new bubbles. Undersea Biomed. Res. 18: 333–345, 1991.
 158. Van Liew, H. D., B. Bishop, P. Walder‐D, and H. Rahn. Effects of compression on composition and absorption of tissue gas pockets. J. Appl. Physiol. 20: 927–933, 1965.
 159. Van Liew, H. D., and M. P. Hlastala. Influence of bubble size and blood perfusion on absorption of gas bubbles in tissues. Respir. Physiol. 7: 111–121, 1969.
 160. Vann, R. D. Decompression theory and application. In: The Physiology of Diving and Compressed Air Work (3rd ed.), edited by P. B. Bennett and D. H. Elliot. London: Bailliere Tindall, 1982, p. 352–382.
 161. Vann, R. D., J. Grimstad, and C. H. Nielsen. Evidence for gas nuclei in decompressed rats. Undersea Biomed. Res. 7: 107–112, 1980.
 162. Vann, R. D., and E. D. Thalmann. Decompression physiology and practice. In: The Physiology of Diving and Compressed Air Work (4th ed), edited by P. B. Bennett and D. H. Elliott. London: Bailliere Tindall, 1993.
 163. Van Rensselaer, H. The pathology of the caisson disease. Trans. Med. Soc. N.Y. 408–444, 1891.
 164. Vokac, Z., H. Bell, E. Bautz‐Holter, and K. Rodahl. O2 uptake/heart rate relationship in leg and arm exercise, sitting and standing. J. Appl. Physiol. 39: 54–59, 1975.
 165. Walder, D. N. Adaptation to decompression sickness in caisson work. In: Proc. Third Int. Biometerology Congr. Oxford, 1968, p. 350–359.
 166. Walder, D. N. The compressed air environment. In: The Physiology of Diving and Compressed Air Work (3rd ed.), edited by P. B. Bennett and D. H. Elliot. London: Bailliere Tindall, 1982, p. 15–30.
 167. Walker, B. R., A. A. Attallah, J. B. Lee, S. K. Hong, B. K. Mookerjee, L. Share, and J. A. Krasney. Antidiuresis and inhibition of PGE2 excretion by hyperoxia in the conscious dog. Undersea Biomed. Res. 7: 113–126, 1980.
 168. Ward, C. A., D. McCullough, and W. D. Fraser. Relation between complement activation and susceptibility to decompression sickness. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 62: 1160–1166, 1987.
 169. Ward, C. A., D. McCullough, D. Yee, D. Stanga, and W. D. Raser. Complement activation involvement in decompression sickness of rabbits. Undersea Biomed. Res. 17: 51–66, 1990.
 170. Warkander, D. E., W. T. Norfleet, G. K. Nagasawa, and C. E. G. Lundgren. CO2 retention with minimal symptoms but severe dysfunction during wet simulated dives to 6.8 atm abs. Undersea Biomed. Res. 17: 515–523, 1990.
 171. Warkander, D. E., W. T. Norfleet, G. K. Nagasawa, and C. E. G. Lundgren. Physiologically and subjectively acceptable breathing resistance in divers' breathing gear. Undersea Biomed. Res. 19: 427–445, 1992.
 172. Weathersby, P. K., B. L. Hart, E. T. Flynn, and W. F. Walker. Role of O2 in the production of human decompression sickness. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 63: 2380–2387, 1987.
 173. Weathersby, P. K., J. R. Hayes, S. S. Survanshi, L. D. Homer, B. L. Hart, E. T. Flynn, and M. E. Bradley. Statistically based decompression tables. II. Equal risk air diving decompression schedules. NMRI Technical Report 85–17. Bethesda, MD: Naval Medical Research Institute Technical, 1985.
 174. Weathersby, P. K., L. D. Homer, and E. T. Flynn. Homogeneous nucleation of gas bubbles in vivo. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 53: 940–946, 1982.
 175. Weathersby, P. K., L. D. Homer, and E. T. Flynn. On the likelihood of decompression sickness. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 53: 815–825, 1984.
 176. Weathersby, P. K., S. S. Survanshi, J. R. Hayes, and M. E. MacCallum. Statistically based decompression tables III: comparative risk using U. S. Navy, British, and Canadian standard air schedules. NMRI Technical Report 86–50. Bethesda, MD: Naval Medical Research Institute, 1986.
 177. Weathersby, P. K., S. S. Survanshi, J. R. Hayes, E. Parker, and E. D. Thalmann. Predicting the time of occurrence of decompression sickness. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 72: 1541–1548, 1992.
 178. Weathersby, P. K., S. S. Survanshi, L. D. Homer, B. L. Hart, R. Y. Nishi, E. T. Flynn, and M. E. Bradley. Statistically based decompression tables. I. Analysis of standard air dives: 1950–1970. NMRI Technical Report 85–16. Bethesda, MD: Naval Medical Research Institute, 1985.
 179. Weber, C. A., C. A. Duncan, M. J. Lyons, and S. G. Jenkinson. Depletion of tissue glutathione with DEM enhances hyperbaric O2 toxicity. Am. J. Physiol. (Lung Cell Mol. Physiol. 2) 258: L308–L312, 1990.
 180. Whalen, R. E., H. A. Saltzman, D. H. Holloway, H. D. McIntosh, H. O. Sieker, and I. W. Brown. Cardiovascular and blood gas response to hyperbaric oxygenation. Am. J. Cardiol. 15: 638–646, 1965.
 181. Wienke, B. R. Tissue gas exchange models and decompression computations: a review. Undersea Biomed. Res. 16: 53–89, 1989.
 182. Wienke, B. R. Basic Decompression Theory and Application. Flagstaff, AZ: Best, 1991.
 183. Wood, L. D. H., and A. C. Bryan. Exercise ventilatory mechanics at increased ambient pressure. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 44: 231–237, 1978.
 184. Workman, R. D., and R. C. Bornmann. Decompression theory: American practice. In: The Physiology and Medicine of Diving (2nd ed.), edited by P. B. Bennett and D. H. Elliot. London: Bailliere Tindall, 1975, p. 307–330.
 185. Yount, D. E., T. D. Kunkle, J. S. D'Arrigo, F. W. Ingle, C. M. Yeung, and E. L. Beckman. Stabilization of gas cavitation nuclei by surface‐active compounds. Aviat. Space Environ. Med. 48: 185–191, 1977.
 186. Yount, D. E., and R. H. Strauss. Bubble formation in gelatin: a model for decompression sickness. J. Appl. Physics 44: 5081–5089, 1976.
 187. Zheng, Q., D. J. Durben, G. H. Wolf, and C. A. Angell. Liquids at large negative pressures: water at the homogeneous nucleation limit. Science 254: 829–832, 1991.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Claes E. G Lundgren, Andrea Harabin, Peter B Bennett, Hugh D Van Liew, Edward D Thalmann. Gas Physiology in Diving. Compr Physiol 2011, Supplement 14: Handbook of Physiology, Environmental Physiology: 999-1019. First published in print 1996. doi: 10.1002/cphy.cp040243