Comprehensive Physiology Wiley Online Library

The Cardiovascular System at High Altitude

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Normal Cardiac Output
1.1 Stroke Volume
1.2 Heart Rate
2 Cardiac Output at High Altitude
2.1 Heart Rate at High Altitude
2.2 Effect of Polycythemia on Cardiac Output
2.3 Sojourners Exposed to Altitude
3 Pulmonary Circulation at Altitude
3.1 Role of Hematocrit in Pulmonary Hypertension
3.2 Role of Hypoxia in Pulmonary Hypertension
3.3 Adrenergic Control of Pulmonary Vasculature
3.4 Pulmonary Artery Morphology
3.5 Connective Tissue Growth: Hypertrophy
3.6 Mechanism of Pulmonary Vasoconstriction
4 Effects of Hypoxia on the Heart
4.1 Morphology
4.2 Metabolic Effects
4.3 Microcirculation
5 Coronary Circulation
6 Systemic Circulation
6.1 Effects of Altitude
6.2 Atrial Natriuretic Factor
6.3 Venous Tone
6.4 Summary of Effects on the Circulatory System
7 Applied Aspects
Figure 1. Figure 1.

Density of β‐adrenoreceptors on peripheral blood lymphocytes of humans who demonstrate normal (N) and increased (H) pulmonary artery pressure rise in response to hypoxia. In normoxic conditions density is higher in normals compared to hyperresponders. When breathing a hypoxic gas mixture (FIO2 = 0.10) only hyperresponders increased density.

Figure 2. Figure 2.

Morphology of pulmonary arterioles (diameter 45 μm). (A) Pulmonary arteriole in a low‐altitude (760 m) native. The wall is composed of elastic fibers. (B) Pulmonary arteriole of a native high‐lander (3,600 m). Muscular layer is enlarged and situated between internal and external elastic membranes.

Figure 3. Figure 3.

Scanning electron microscopy (X 360) of inner surface of a large pulmonary artery branch (diameter 10,000 μm). (A) Endothelial cells of yaks are enlarged with cytoplasmic microprocesses with a cellular structure on the surface. (B) Endothelial cells of calves are smaller, and cytoplasmic microprocesses are absent. Blood cells are seen on the endothelial surface.



Figure 1.

Density of β‐adrenoreceptors on peripheral blood lymphocytes of humans who demonstrate normal (N) and increased (H) pulmonary artery pressure rise in response to hypoxia. In normoxic conditions density is higher in normals compared to hyperresponders. When breathing a hypoxic gas mixture (FIO2 = 0.10) only hyperresponders increased density.



Figure 2.

Morphology of pulmonary arterioles (diameter 45 μm). (A) Pulmonary arteriole in a low‐altitude (760 m) native. The wall is composed of elastic fibers. (B) Pulmonary arteriole of a native high‐lander (3,600 m). Muscular layer is enlarged and situated between internal and external elastic membranes.



Figure 3.

Scanning electron microscopy (X 360) of inner surface of a large pulmonary artery branch (diameter 10,000 μm). (A) Endothelial cells of yaks are enlarged with cytoplasmic microprocesses with a cellular structure on the surface. (B) Endothelial cells of calves are smaller, and cytoplasmic microprocesses are absent. Blood cells are seen on the endothelial surface.

References
 1. Aarons, R. D., and P. B. Molinoff. Changes in the density of beta adrenergic receptors in rat lymphocytes, heart and lung after chronic treatment with propranolol. J. Pharmacol. Exp. Ther. 221: 439–443, 1982.
 2. Agadzhanian, N. A., and M. M. Mirrakhimov. Organism Resistance. Moscow: Nauka, 1970, p. 184.
 3. Aldashev, A. A., A. Agibetov, Yugai, and A. Shamshiev. Specific proteins synthesized in human lymphocytes during hypoxia. Am. J. Physiol. 261: 92–96, 1991.
 4. Aldashev, A. A., U. M. Borbugulov, B. A. Davletov, and M. M. Mirrakhimov. Human adrenoceptor system response to the development of high‐altitude pulmonary arterial hypertension. J. Mol. Cell. Cardiol. 21: 175–179, 1989.
 5. Alexander, J. K., and R. F. Grover. Mechanism of reduced cardiac stroke volume at high altitude. Clin. Cardiol. 6: 301–303, 1983.
 6. Alexander, J. K., L. H. Hartley, M. Modelski, and R. F. Grover. Reduction of stroke volume during exercise in man following ascent to 3100 m altitude. J. Appl. Physiol. 23: 849–858, 1967.
 7. Anderson, G. L., and R. W. Bullard. Effect of high altitude on lactic dehydrogenase isozymes and anoxic tolerance of the rat myocardium. Proc. Soc. Exp. Biol. Med. 138: 441–443, 1971.
 8. Antony, A., E. Ackerman, and G. K. Strother. Effects of altitude acclimatization on rat myoglobin: changes in myoglobin content of skeletal and cardiac muscle. Am. J. Physiol. 196: 512–519, 1959.
 9. Arias‐Stella, J., and H. Kruger. Pathology of high altitude pulmonary edema. Arch. Pathol. 76: 147, 1963.
 10. Arias‐Stella, J., and M. Topilsky. Anatomy of the coronary circulation at high altitude. In: High Altitude Physiology: Cardiac and Respiratory Aspects, edited by R. Porter and J. Knight. Edinburgh: Churchill Livingstone, 1971, p. 149–154.
 11. Baker, P. T. The adaptive fitness of high‐altitude population Biological Programme. In: The Biology of High Altitude Peoples. International Biological Programme 14, edited by P. T. Baker. Cambridge: Cambridge University Press, 1977, p.317–350.
 12. Balasubramanian, V., O. P. Mathew, S. C. Tiwari, A. Behl, S. C. Sharma, and R. S. Hoon. Alteration in left ventricular function in normal man on exposure to high sltitude (3658 m). Br. Heart J. 40: 276–285, 1978.
 13. Banchero, N., F. Sime, D. Penaloza, J. Cruz, R. Gamboa, and E. Marticorena. Pulmonary pressure, cardiac output, and arterial oxygen saturation during exercise at high altitude and at sea level. Circulation 33: 249–262, 1966.
 14. Basu, A., R. Gupta, P. Mitra, A. Dewanji, and A. Sinha. Variations on resting blood pressure among Sherpas of the eastern Himalaya. In: Proceedings of the Indian Statistical Institute Golden Jubilee, International Conference on Human Genetics and Adaptation, edited by K. C. Basu. 1982, p.60–69.
 15. Becker, E. L., J. A. Schilling, and R. B. Harvey. Renal function in man acclimatized to high altitude. J. Appl. Physiol. 10: 79, 1957.
 16. Benitz, W. E., J. D. Coulson, D. S. Lesslor, and M. Bernfield. Hypoxia inhibits proliferation of fetal pulmonary arterial smooth muscle cells in vitro. Pediatr. Res. 20: 966–972, 1986.
 17. Bergofsky, E. H., and F. Haas. An investigation of the site of pulmonary vascular response to hypoxia. Bull. Physiopathol. Resp. 4: 91–103, 1968.
 18. Berne, R. M., R. Rubio, B. R. Duling, and V. T. Wied Meier. Effects of acute and chronic hypoxia on coronary blood flow. In: Hypoxia, High Altitude, and the Heart, edited by S. Karger. Basel: Munchen, 1970, p. 56–66.
 19. Biro, G. P., J. D. Hatcher, and D. B. Jenings. The role of the aortic body chemoreceptors in the cardiac and respiratory responses to acute hypoxia in the anesthetized dog. Can. J. Physiol. Pharmacol. 151: 249–259, 1973.
 20. Bonverot, P. Adaptation to Altitude—Hypoxia in Vertebrates. Berlin: Springer‐Verlag, 1985, p. 176.
 21. Brodde, O. E., N. Stuna, V. Demuth, et al. Alpha‐ and beta‐adrenoceptors in circulating blood cells of essential hypertensive patients increased receptor density and responsiveness. Clin. Exp. Hypertens. 7: A1135–A1150, 1985.
 22. Carmelino, M.cited by D. Heath and D. R. Williams. Man at High Altitude (2nd ed.), Edinburgh: Churchill Livingstone, 1981, p 347.
 23. Castle, W. B., and J. H. Jandl. Blood viscosity and blood volume: opposing influences upon oxygen transport in polycythemia. Semin. Hematol. 3: 193–198, 1966.
 24. Chapman, C. B., J. N. Fisher, and J. B. Sproule. Behavior of stroke volume at rest and during exercise in human beings. J. Clin. Invest. 39: 1208–1213, 1960.
 25. Clozel, J. P., C. Saunier, D. Hartemann, and W. Fischli. Effect of cilazapril, a novel angiotensin converting enzyme inhibitor on the structure of pulmonary arteries of rats exposed to chronic hypoxia. J Cardiovasc. Pharmacol. 17: 36–40, 1991.
 26. Collins, D. D., C. H. Scoggin, C. W. Zwillich, and J. V. Weil. Hereditary aspects of decreased hypoxic response. J. Clin. Invest. 62: 105, 1978.
 27. Daly, M., and M. J. Scott. The cardiovascular responses to stimulation of carotid body chemoreceptors in the dog. J. Physiol. (Lond.) 165: 179–197, 1963.
 28. Daniyarov, S. B. The Results and Perspectives of the Role of Organism Nervous System Adapting to High Altitude. Frunze: Meditsinskii Institute, 1989, p.51.
 29. Davies, P., F. Maddalo, and L. Reid. Effects of chronic hypoxia on structure and reactivity of rat lung microvessels. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 58: 795–801, 1985.
 30. Dubinina, G. S., R. I. Kovalyova, and M. M. Mirrakhimov. Physiology and Pathology of the Organism at High Altitude. Kyrgyz State Medical Institute, 1967, p. 7–11.
 31. Dzhailobaev, A. D., B. Y. A. Grinshtein, G. S. Dubinina, and O. N. Narbekov. Physiology and Pathology of the Organism at High Altitude in Residents of High Altitude in Kyrgyzia. Kyrgyz State Medical Institute, 1973, p. 155–163.
 32. Eckstein, J., and A. W. Horsley. Effects of hypoxia on peripheral venous tone in man. J. Lab. Clin. Med. 56: 847–853, 1960.
 33. Editorial. EDRF. Lancet 11: 137–138, 1987.
 34. Feinberg, H., A. Gerola, and L. N. Katz. Effect of hypoxia on cardiac oxygen consumption and coronary flow. Am. J. Physiol. 195: 593–600, 1958.
 35. Fishman, A. P. The Pulmonary Circulation: Normal and Abnormal. Mechanisms, Management, and the National Registry. Philadelphia: University of Pennsylvania Press, 1990.
 36. Fishman, A. P., H. W. Fritts, and A. Cournand. Effects of acute hypoxia and exercise on the pulmonary circulation. Circulation 5: 263, 1952.
 37. Fowles, R. F., and H. N. Hultgren. Left ventricular function at high altitude examined by systolic time intervals and M‐mode echocardiography. Am. J. Cardiol. 52: 862–866, 1983.
 38. Goldenberg, F., J. P. Richalet, I. Ounen, and A. M. Antezana. Sleep apneas and the high altitude newcomer. Int. J. Sports Med. 13: S34–S36, 1992.
 39. Gordon, J. B., R. C. Wetzel, M. L. McGeady, N. F. Adkinson,Jr., and J. T. Sylvestor. Effects of indomethacin in on estradiol‐induced attenuation of hypoxic vasoconstriction in lamb lungs. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 61: 2116–2121, 1986.
 40. Graham, R. M., and J. P. Zisfein. Atrial natriuretic factor: bio‐synthetic regulation and role in circulatory homeostasis. In: The heart and cardiovascular system, edited by H. A. Fozzard, E. Haber, R. B. Jennings, A. M. Katz, and H. E. Morgan. New York: Raven, 1986,] p. 1559–1572.
 41. Grandjean, E. Physiologi du climat de la montagne. J. Physiol. Paris 40: 1A–96A, 1948.
 42. Grollman, A. Physiological variations of the cardiac output of man. The effect of high altitude on the cardiac output and its related functions: an account of experiments conducted on the summit of Pikes' Peak Colorado. Am. J. Physiol. 93: 19–40, 1930.
 43. Grover, R. F. Comparative physiology of hypoxic pulmonary hypertension. In: Cardiovascular and Respiratory Effects of Hypoxia. Basel: Karger, 1966.
 44. Grover, R. F. Limitation of aerobic working capacity at high altitude. Adv. Cardiol. 5: 11–16, 1970.
 45. Grover, R. F. Chronic hypoxic pulmonary hypertension. In: The Pulmonary Circulation: Normal and Abnormal, edited by A. P. Fishman. Philadelphia: University of Pennsylvania Press, 1990, p. 283–299.
 46. Grover, R. F., J. R. Johnson, R. G. McCullough, R. E. McCullough, S. E. Hotmeister, W. B. Campbell, and R. C. Reynolds. Pulmonary hypertension and pulmonary vascular reactivity in beagles at high altitude. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 65: 2632–2640, 1988.
 47. Grover, R. F., R. Lufchanowski, and J. K. Alexander. Hypoxia, High Altitude, and the Heart. Basel: Karger, 1971.
 48. Grover, R. F., R. Lufschanowski, and J. K. Alexander. Decreased coronary blood flow in man following ascent to high altitude. Adv. Cardiol. 5: 72–79, 1990.
 49. Grover, R. F., J. T. Okin, H. R. Overy, A. Treger, and F. H. N. Spracklen. Natural history of pulmonary hypertension in normal adult residents of high altitude. Circulation 32: 102, 1965.
 50. Grover, R. F., J. H. K. Vogel, K. H. Averill, and S. G. Blount,Jr. Pulmonary hypertension. Individual and species variability relative to vascular reactivity. Am. Heart J. 66: 1, 1963.
 51. Groves, B. M., J. T. Reeves, J. R. Sutton, P. D. Wagner, A. Cymmerman, M. K. Malconian, P. B. Rock, P. M. Young, and C. S. Houston. Operation Everest II: elevated high‐altitude pulmonary resistance unresponsive to oxygen. J. Appl. Physiol. 63: 521–530, 1987.
 52. Guyton, A. C., C. E. Jones, and T. G. Coleman. Cardiac Output and its Regulation (2nd ed.). Philadelphia: Saunders, 1973.
 53. Guyton, A. C., and T. Q. Richardson. Effect of hematocrit on venous return. Circ. Res. 9: 157–164, 1961.
 54. Hakim, T. S., and R. B. Malik. Hypoxic vasoconstriction in blood and plasma perfused lungs. Physiology 72: 109–122, 1988.
 55. Harris, P. Some observation on the biochemistry of the myocardium at the high altitude. In: High Altitude Physiology, edited by R. Porter and J. Knight. Edinburgh: Churchill Livingstone, 1971, p. 125–129.
 56. Harris, P., and D. Heath. The Human Pulmonary Circulation (2nd ed.). Edinburgh: Churchill Livingstone, 1977.
 57. Harrison, B. D., and T. C. Strokes. Secondary polycythaemia: its causes, effects and treatment. Br. J. Dis. Chest 76: 313, 1982.
 58. Hartley, L. H., J. K. Alexander, M. Modelski, and R. F. Grover. Subnormal cardiac output at rest and during exercise at 3,100 m altitude. J. Appl. Pysiol. 23: 839–848, 1967.
 59. Hecht, H. H., H. Kuida, R. L. Lange, J. L. Thorne, and A. M. Brown. Brisket disease II. Clinical features and hemodynamic observations in altitude‐dependent right heart failure of cattle. Am. J. Med. 32: 171–183, 1962.
 60. Hellems, H. K., J. W. Ord, F. N. Talmers, and R. C. Christensen. Effects of hypoxia on coronary blood flow and myocardial metabolism in normal human subjects. Circulation 16: 893, 1957.
 61. Hill, N. S., and L. C. Ou. The role of pulmonary vascular responses to chronic hypoxia in the development of chronic mountain sickness in rats. Resp. Physiol. 58: 171–185, 1984.
 62. Hislop, A., and L. Reid. Changes in the pulmonary arteries of the rat during recovery from hypoxia‐induced pulmonary hypertension. Br. J. Exp. Pathol. 58: 653–662, 1977.
 63. Hochachka, P. W., C. Stanley, J. Merkt, and J. Sumar‐Kalinowski. Metabolic meaning of elevated levels of oxidative enzymes in high altitude adapted animals: an interpretive hypothesis. Respir. Physiol. 52: 303–313, 1983.
 64. Hoon, R. S., V. Balasubramanian, O. P. Mathew, S. C. Tiwari, S. C. Sharma, and K. S. Chadha. Effect of high‐altitude exposure for 10 days on stroke volume and cardiac output. J. Appl. Physiol. 42: 722, 1977.
 65. Horwitz, L. D., J. M. Atkins, and S. J. Leshin. Role of the Frank‐Starling mechanism in exercise. Circ. Res. 31: 868, 1972.
 66. Hultgren, H., and R. F. Grover. Circulatory adaptation to high altitude. Annu. Rev. Med. 19: 119–152, 1968.
 67. Hultgren, H. W., J. Kelly, and H. Miller. Effect of oxygen upon pulmonary circulation in acclimatized man at high altitude. J. Appl. Physiol. 20: 239–243, 1965.
 68. Hurtado, A. Animals in high altitude: resident man. In: Handbook of Physiology. Adaptation to the Environment, edited by D. B. Dill and E. F. Adolph. Washington, DC: Am. Physiol. Soc., 1964, sect. 4, p. 843–860.
 69. Hurtado, A. Rev. Med. Peruana, 1932. Cited in H. N. Hultgren and R. F. Grover. Circulatory adaptation to high altitude. Annu. Rev. Med. 19: 119–152, 1968.
 70. Hurtado, A., A. Merino, and E. Delgado. Influence of anoxemia on the hemopoetic activity. Intern. Med. 75: 284–324, 1945.
 71. Hyman, A. L., and P. J. Kadowitz. Enhancement α and β adrenoceptor responses by elevation in vascular tone in pulmonary circulation. Am. J. Physiol. 250 (Heart Circ. Physiol. 21): H1109–H1116, 1986.
 72. Ishikawa, T., M. Yanagisawa, S. Kimura, K. Goto, and T. Masaki. Positive chronotropic effects of endothelin, a novel endothelium‐derived vasoconstrictor peptide. Pflugers Arch. 413: 108–110, 1988.
 73. Ivanov, K. P., and Y. Y. Kislyakov. The efficacy of main physiological reactions of brain adaptation to hypoxia. Proc. Acad. Sci. USSR 233: 997–1000, 1977.
 74. Jackson, F. The heart at high altitude. Br. Heart J. 30: 291–294, 1968.
 75. Jederlinic, P., N. S. Hill, L. C. Ou, and B. L. Fenburg. Lung angiotensin converting enzyme activity in rats with differing susceptibilities to chronic hypoxia. Thorax 43: 703–707, 1988.
 76. Jungmann, H. Kreislaufwirkungen von Bergfahrten (Oberstdorf‐Nebelhorn). Z. Exp. Med. 119: 280–285, 1952.
 77. Kadyraliev, T. K. Morphological alterations in pulmonary resistant vessels in development of high‐altitude pulmonary hypertension. Arch Pathol 5: 36–40, 1990.
 78. Kadyraliev, T. K. Functional restruction morphology of resistant vessels and pulmonary capillaries during adaptation to high altitude. Arch. Pathol. 5: 40–45, 1991.
 79. Kadyraliev, T. K., and M. M. Mirrakhimov. Functional morphology of resistant vessels and pulmonary capillaries in species and individual organism adaptation to high altitude. Bull. Exp. Biol. Med. 7: 100–104, 1992.
 80. Khamzamulin, R. O., M. M. Mirrakhimov, N. N. Brimkulov, and Kalyuzhnyi. Obsidanum effect on cardiovascular system during high‐altitude hypoxia. Kardiologiya 10: 112–117, 1978.
 81. Kontos, H. A., H. P. Mauck, D. W. Richardson, and J. L. Patterson,Jr. Mechanism of circulatory responses to systemic hypoxia in the anesthetized dog. Am. J. Physiol. 209: 397–403, 1965.
 82. Korner, P. I. Integrative neural cardiovascular control. Physiol. Rev. 51: 312–367, 1971.
 83. Koyama, T., and K. Nakugawa. The effect of hypoxia on the coronary blood flow reserpinized dogs. Am. Heart J. 84: 487–495, 1972.
 84. Lahiri, S., and P. G. Data. Chemosensitivity and regulation of ventilation during sleep at high altitudes. Int. J. Sports Med. 13 (suppl.): S31–S33, 1992.
 85. Lahiri, S., N. H. Edelman, N. S. Cherniack, and A. P. Fishman. Blunted hypoxic drive to ventilation in subjects with life‐long hypoxemia. Federation Proc. 28: 1289–1295, 1969.
 86. Lawrence, D. L., and Y. Shenker. Effect of hypoxic exercise on atrial natriuretic factor and aldosterone regulation. Am. J. Hypertens. 4: 341–347, 1991.
 87. Lenfant, C., and K. Sullivan. Adaptation to high altitude. N. Engl. J. Med. 284: 1298–1309, 1971.
 88. Logaras, G. Further studies of the pulmonary arterial blood pressure. Acta Med. Scand. 14: 120, 1947.
 89. Malyshev, I. U. The Phenomenon of Adaptational Stabilization Structures and the Role of Heat Shock Proteins in it. Moscow:, 1992. Synopsis of MD thesis.
 90. Margaria, R., and P. Cerretelli. Physiological aspects of life at extreme altitudes. In: Biometeorol. Proc. Second Bioclimatol. Congr., Sept. 4‐10, London, edited by S. W. Tromp. 1960, p.3–25.
 91. Marsh, J. D., and K. A. Sweeney. Beta‐adrenergic receptor regulation during hypoxia in intact cultured heart cells. Am. J. Physiol. 256 (Heart Circ. Physiol. 27): H275–H281, 1989.
 92. Marticorena, E., L. Ruiz, J. Severino, J. Calvez, and D. Peñaloza. Systemic blood pressure in white men born at sea level: changes after long residence at high altitude. Am. J. Cardiol. 23: 364–368, 1969.
 93. Martineaud, J. P., J. Durand, J. Coudert, and Seroussi. La circulation cutanée au cours de l'adaptation altitude. Pflugers Arch. 310: 264–276, 1969.
 94. Martorana, P. A., M. Wilkinson, P. Van Even, and G. Lungarella. Tsk mice with genetic emphysema. Right ventricular hypertrophy occurs without hypertrophy muscular pulmonary arteries or muscularization of arterioles. Am. Rev. Respir. Dis. 142: 333–337, 1990.
 95. Masuyama, S. H., S. H. Kohchiyama, T. Shinozari, S. H. Okita, F. Kunitotno, H. Tojima, H. Kimura, T. Kuriyama, and Y. Honda. Periodic breathing at high altitude and ventilatory responses to O2 and CO2. J. Physiol. (Lond.) 39: 523–535, 1989.
 96. Mazess, R. B. Exercise performance at high altitude (4000 m) in Peru. In: High Altitude Adaptation in a Peruvian Community, 1968, p. 167–185.
 97. McGrath, J. J., J. Prochazka, V. Pelouch, and B. Ostadal. Physiological responses of rats to intermittent high‐altitude stress: effects of age. J. Appl. Physiol. 34: 289–293, 1973.
 98. McMurtry, I. F., A. B. Davidson, J. T. Reeves, and R. F. Grover. Inhibition of hypoxic pulmonary vasoconstriction by calcium antagonists in isolated rat lungs. Circ. Res. 38: 99, 1976.
 99. Mecham, R. P., L. A. Whitehouse, D. S. Wrenn, W. C. Parks, G. L. Griffin, R. M. Senior, E. C. Crouch, K. R. Stenmark, and N. F. Voelkel. Smooth muscle‐mediated connective tissue remodelling in pulmonary hypertension. Science 237: 423–426, 1987.
 100. Meerson, F. Z. Adaptation to high‐altitude hypoxia. In: edited by O. G. Gazenko. Moscow: Nauka, 1986, p. 222–251.
 101. Meyrick, B., and L. Reid. Endothelial and subintimal changes in rat hilar pulmonary artery during recovery from hypoxia. A quantitative ultrastructural study. Lab. Invest. 42: 603–615, 1980.
 102. Mirrakhimov, M. M. Cardiovascular system at high altitude. In: Meditsina, 1968, p. 156.
 103. Mirrakhimov, M. M. Ventilatory and circulatory adaptation to Tien‐Shan and the Pamirs altitude in man. In: Proc. Union Physiol. Sci. Delhi: 1974.
 104. Mirrakhimov, M. M. Biological and physiological characteristics of the high altitude natives of Tien Shan and the Pamirs. In: The Biology of High‐Altitude Peoples. International Biological Programme 14, edited by P. T. Baker. Cambridge: Cambridge University Press, 1977, p. 299–315.
 105. Mirrakhimov, M. M., A. S. Dzhumagulova, E. Shatemirova, Y. u. M. Ishmatov, and V. A. Zelenshchikova. Hypoxic training during hypertension. CV World Rep. 3: 13–219, 1990.
 106. Mirrakhimov, M. M., and B. Ya. Grinshtein. Cardiac muscle adaptation to high altitude. In: Physiology and pathology of cardiovascular system. Proc. Kyrgyz State Medical Institute, edited by Y. A. M. Snezhko. 1966, p. 71–80.
 107. Mirrakhimov, M. M., and T. F. Kalko. Peripheral chemoreceptors and human adaptation to high altitude. Biomed. Biochem. Acta. 47: 89–91, 1988.
 108. Mirrakhimov, M. M., R. I. Kovalyova, Z. M. Kudaiberdiev, and O. N. Narbekov. The study of the circulation function at the altitudes of Tien‐Shan and Pamir. In: Human Adaptation, edited by Z. I. Barbashova. Leningrad: Nauka, 1972, p. 125–131.
 109. Mirrakhimov, M. M., and T. S. Meimanaliev. Prevalence and diagnostic peculiarities of ischemic heart disease in population of highlanders. Epidemiol. News. 30: 125–126, 1981.
 110. Mirrakhimov, M. M., and T. S. Meimanaliev. High‐Altitude Cardiology. Kyrgyzstan: Frunze, 1984.
 111. Mirrakhimov, M. M., T. S. Meimanaliev, and K. D. Abdurasulov. Correlation between right ventricular hypertrophy and cardiac arrhythmias in prevalence and diagnostic in population of highlanders. Jpn. Heart J. 23: 501–503, 1982.
 112. Mirrakhimov, M. M., R. I. Rudenko, T. M. Murataliev, and R. O. Khamzamulin. Circulatory adaptation in man. Proc. clinical and instrumental characteristics of primary high‐altitude pulmonary arterial hypertension. Kardiologiya 10: 56–61, 1976.
 113. Moldotashev, I. K., A. A. Aldashev, T. A. Batyraliev, U. M. Borbugulov, Y. O. Titov, and A. E. Tashpolotov. The reactivity of pulmonary arteries and activity of neurotransmitter receptors in permanent residents of high altitude [Abstract]. Const. Cong. Ing. Soc. Pathophis. Moscow, May 28‐June 1, 1991.
 114. Monge, C. Les Erythremies de l'Altitude: Les Rapports avec la Maladie de Váquez. Etude Physiologique et Pathologique. Paris: Masson et Cie, 1929.
 115. Monge, C. M., and C. C. Monge. High‐Altitude Diseases. Mechanism and Management. Springfield: Thomas, 1966.
 116. Moret, P. Myocardial metabolism; acute and chronic adaptation to hypoxia. Med. Sci. Sports Exerc. 19: 48–63, 1985.
 117. Moret, P. R. Coronary blood flow and myocardial metabolism in man at high altitude. In: High Altitude Physiology: Cardiac and Respiratory Aspects, edited by R. Porter and J. Knight. Edinburgh: Churchill Livingstone, 1971, p. 131–148.
 118. Morpurgo, M., R. Tramarin, C. Rampulla, C. Fracchia, and F. Cobelli. Pathophysiology and Treatment of Pulmonary Circulation. Verona: Bi and Gi, 1988.
 119. Motley, H. L., A. Cournand, L. Werko, A. Himmelstein, and D. Dresdsle. The influence of short periods of induced acute anoxia upon pulmonary artery pressure in man. Am. J. Physiol. 150: 315, 1947.
 120. Mustafin, K. S. Morphofunctional alterations in the pulmonary circulation in man and animals at high altitude. Int. Symp., June 28–30. Moscow: Frunze, 1982, p. 104–105.
 121. Naeije, R., C. Melot, P. Mols, and R. Hallemans. Effects of vasodilators on hypoxic pulmonary vasoconstriction in normal man. Chest 82: 404–410, 1982.
 122. Nakazava, K., and K. Amaha. Effect of nicardipine hydrochloride on regional hypoxic pulmonary vasoconstriction. Br J Anaesth 60: 547–554, 1988.
 123. Orbeli, L. A. The Effect of Decreased Barometrical Pressure on the Central Nervous System. Leningrad: Nauka, 1940.
 124. Panin, L. E. Energy Aspects of Adaptation. Leningrad: Medicine, 1978.
 125. Parin, V. V. Effect of pulmonary ventilation on pulmonary circulation. Patologich. Phisiol. Eks. Ter. 4: 7–12, 1960.
 126. Pauli, H. G., B. Truniger, J. K. Larsen, and R. O. Mulhausen. Renal function during prolonged exposure to hypoxia and carbon monoxide. Scand. J. Clin. Lab. Invest. 22: 5, 1968.
 127. Peake, M. D., A. L. Harabin, N. J. Breunan, and J. T. Sylvester. Steady‐state vascular responses to graded hypoxia in isolated lungs of five species. J. Appl. Physiol. 1: 1214–1219, 1981.
 128. Peñaloza, D., F. Sime, N. Bachero, R. Gamboa, J. Cruz, and E. Marticorena. Pulmonary hypertension in healthy men born and living at high altitude. Am. J. Cardiol. 11: 150–157, 1963.
 129. Peñaloza, D., F. Sime, and L. Ruiz. Cor pulmonale in chronic mountain sickness: present concept of Monge's disease. In: Ciba Foundation Symposium on High‐Altitude Physiology: Cardiac and Respiratory Aspects, edited by R. Porter and J. Knight. Edinburgh: Churchill Livingstone, 1971, p. 41–60.
 130. Plotnikov, I. P. Cardiovascular System during Human Adaptation to High Altitude. Dushanbe, 1963. Synopsis of Thesis.
 131. Pohl, U., and R. Busse. Hypoxia stimulates release of endothelium‐derived relaxant factor. Am. J. Physiol. 256 (Heart Circ. Physiol. 27): H1595–H1600, 1989.
 132. Poupa, O., K. Krofta, J. Prochazka, and Z. Turek. Acclimation to simulated high altitude and acute cardiac necrosis. Federation Proc. 25: 1243–1246, 1966.
 133. Pugh, L. G. C. E. Cardiac output in muscular exercise at 5800 m (19,000 feet). J. Appl. Physiol. 19: 441–447, 1964.
 134. Ramos, A., H. Kruger, M. Muro, and J. Arias‐Stella. Untitled. Bol. San. Pan. Am. 62: 496–502, 1967.
 135. Reane, P. M., J. M. Kay, K. L. Suyama, D. Gauthier, and K. Andrew. Lung angiotensin converting enzyme activity in rats with pulmonary hypertension. Thorax 37: 198–204, 1982.
 136. Redding, G. J., R. Tuck, and P. Escourou. Nifedipine attenuates acute hypoxic pulmonary vasoconstriction in awake piglets. Am. Rev. Respir. Dis. 129: 785–789, 1984.
 137. Reeves, J. T., E. G. Grover, and R. F. Grover. Pulmonary circulation and oxygen transport in lambs at high altitude. J. Appl. Physiol. 18: 560–566, 1963.
 138. Reeves, J. T., R. S. Mazzeo, E. E. Wolfel, and A. J. Yong. Increased arterial pressure after acclimatization to 4,300 m: possible role of norepinephrine. Int. J. Sports Med. 13: 518–521, 1992.
 139. Reid, L. M. Vascular remodelling in pulmonary circulation. In: Pulmonary circulation: Normal and abnormal, edited by A. P. Fishman. Philadelphia: University of Pennsylvania Press, 1990, p. 259–282.
 140. Replogle, R. L., H. J. Meiselmann, and E. W. Merrill. Clinical implication of rheology studies. Circulation 36: 148–160, 1967.
 141. Richalet, J., H. Mehdioui, C. Rathat, P. Vignon, A. Keromes, J. P. Herry, C. Sabatler, M. Tauche, and F. Lhoste. Acute hypoxia decreases in cardiac response to catecholamines in exercising humans. J. Sports Med. 9: 157–162, 1988.
 142. Richalet, J. P., R. Kacimi, and A. M. Antezana. The control of cardiac chronotropic function in hypobaric hypoxia. Int. J. Sports Med. 13: S22–S24, 1992.
 143. Richardson, T. Q., and A. C. Guyton. Effects of polycythemia and anemia on cardiac output and other circulatory factors. Am. J. Physiol. 197: 1167–1170, 1959.
 144. Rotta, A. Physiologic condition of the heart in the natives of high altitude. Am. Heart J. 33: 669–676, 1947.
 145. Rotta, A., A. Canepa, A. Hurtado, T. Velasquez, and R. Chavez. Pulmonary circulation at sea level and high altitude. J. Appl. Physiol. 9: 328–336, 1956.
 146. Rudenko, R. I. Vectorcardiographic studies in highlanders in problems of adaptation to high altitude. Proc. Kyrgyz St. Med. Inst. 69: 162–172, 1971.
 147. Ruiz, L., M. Figueroa, C. Horna, and D. Peñaloza. Systemic blood pressure in high altitude residents. In: Progress Report to the World Health Organization, 1968.
 148. Ruiz, L., C. Figueroa, C. Horna, and D. Peñaloza. Prevalencia de la hipertensión arterial y cardiopatía isquémica en las grandes alturas. Am. J. Cardiol. 39: 474–89, 1969.
 149. Ruiz, L. and D. Peñaloza. Altitude and cardiovascular diseases. Progress Report to the World Health Organization, 1970.
 150. Ruiz, L., and D. Peñaloza. Altitude and hypertension. Mayo Clin. Proc. 52: 442, 1977.
 151. Rushmer, R. F. Constancy of stroke volume in ventricular responses to exertion. Am. J. Physiol. 196: 745, 1959.
 152. Saltin, B., and P. Astrand. Maximal oxygen uptake in athletes. J. Appl. Physiol. 23: 353, 1967.
 153. Sarkisov, D. S. Structural bases of homeostasis. In: Homeostasis, edited by P. D. Gorizontov. Moscow: Meditsina, 1976, p. 133–177.
 154. Sibley, D. R., J. L. J. Benovic, M. G. Caron, and R. J. Lefkowitz. Regulation of transmembrane signaling by receptor phosphorylation. Cell 48: 913–922, 1987.
 155. Snyder, G. K., R. T. Byers, and S. R. Kayar. Effects of hypoxia on tissue capilarity in geese. Respir. Physiol. 58: 151–160, 1984.
 156. Starling, E. H. The Linacre Lecture on the Law of the Heart. London: Longmans, Green, 1918.
 157. Stenberg, J., B. Ekblom, and R. Messin. Hemodynamic response to work at simulated altitude, 4,000 m. J. Appl. Physiol. 21: 1589–1594, 1966.
 158. Stenmark, R., A. Aldashev, E. C. J. Orton, A. G. J. Durmowicz, W. C. J. Badesch, R. P. Mecham, N. F. Voelkel, and J. T. Reeves. Cellular adaptation during chronic neonatal hypoxic pulmonary hypertension. Am. J. Physiol. 261 (suppl.): 97–104, 1991.
 159. Stockmann, P. T., D. H. Will, S. D. Sides, S. Brunner, G. D. Wilner, K. M. Leahy, R. C. Wiegand, and P. H. Needelman. Reversible induction of right ventricular atriopeptin synthesis in hypertrophy due to hypoxia. Circ. Res. 63: 207–213, 1988.
 160. Sun, S. F., T. S. Droma, J. G. Zhang, J. K. Tao, S. Y. Huang, R. McCullough, R. E. McCullough, C. S. Reeves, J. T. Reeves, and L. G. Moore. Greater maximal O2 uptaxes and vital capacities in Tibetan than han residents of Lhasa. Respir. Physiol. 79: 151–162, 1990.
 161. Swigart, R. H. Polycythemia and right ventricular hypertrophy. Circ. Res. 17: 30, 1965.
 162. Terrados, N., E. Jansson, C. Sylvin, and L. Kajser. Is hypoxia a stimulus for synthesis of oxidative enzymes and myoglobin? J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 68: 2369–2372, 1990.
 163. Theilen, E. O., M. H. Paul, and D. E. Gregg. A comparison of effects of intra‐arterial and intravenous transfusion in hemorrhagic hypotensions on coronary blood flow, systemic blood pressure, and ventricular and diastolic pressure. J. Appl. Physiol. 7: 248–252, 1954.
 164. Tozzi, C. A., G. Y. Poiani, N. H. Edelman, and D. J. Riley. Vascular collagen affects reactivity of hypertensive pulmonary arteries of the rat. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 66: 1730–1735, 1989.
 165. Tucker, A., and S. M. Horvath. Regional blood flow responses to hypoxia and exercise in altitude adapted rats. Eur. J. Appl. Physiol. 33: 139–150, 1974.
 166. VanLiere, E., and K. Stikney. Hypoxia. Moscow: Meditsina, 1967.
 167. Vatner, S. F., and E. Braunwald. Cardiovascular control mechanisms in the conscious state. N. Engl. J. Med. 293: 970–976, 1975.
 168. Vlsdimirov, G. I., I. M. Defolin, and K. Smirnov. The effect of caffeine taking on cardiac output at high altitude. In: Proceedings Dedicated to London, ES, Leningrad: Medghiz, 1947, p. 66–78.
 169. Voelkel, N., J. Hegstrand, J. T. Reeves, I. E. McMurtry, and P. B. Malinoff. Effects of hypoxia on density of β‐adrenergic receptors. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 50: 313–366, 1981.
 170. Vogel, J. H. K. Importance of mild hypoxia on abnormal pulmonary vascular beds. Adv. Cardiol. 5: 159–165, 1970.
 171. Vogel, J. H. K., J. E. Goss, and H. L. Brammel. Pulmonary circulation in normal man with acute exposure to high altitude. Circulation 34: 233, 1966.
 172. Vogel, J. H. K., G. Jameeson, M. Delivoria‐Papadopoulos, R. D. Luecker, H. L. Brammell, and D. Brane. Coronary blood flow during short term exposure to high altitude. Adv. Cardiol. 5: 80–85, 1970.
 173. Vogel, J. H. K., W. F. Weaver, R. L. Rose, S. G. Y. R. Blount, and R. F. Grover. Pulmonary hypertension on exertion in normal man living at 10,500 feet (Leadville, Colorado). Med. Thorac. 19: 461–477, 1962.
 174. Von Euler, U. S., and G. Liljestrand. Observations on the pulmonary arterial blood pressure in the cat. Acta Physiol. Scand. 12: 301–324, 1946.
 175. Wagenvoort, C. A., and H. Denolin. Pulmonary Circulation—Advances and Contraversions. New York: Elsevier, 1989.
 176. Wagenvoort, C. A., and N. Wagenvoort. Pathology of Pulmonary Hypertension. New York: Wiley, 1977.
 177. Walker, B. R., N. F. Voelkel, I. F. J. McMurtry, and E. M. Adams. Evidence for diminished sensitivity of the hamster pulmonary vasculature to hypoxia. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 52: 1571–1574, 1982.
 178. Weir, E. K., D. H. Will, A. F. Alexander, I. F. McMurtry, R. Looda, J. T. Reeves, and R. F. Grover. Vascular hypertrophy in cattle susceptible to hypoxic pulmonary hypertension. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 46: 517–521, 1979.
 179. Will, D. H., J. L. Hicks, C. S. Card, and A. F. Alexander. Inherited susceptibility of cattle to high‐altitude pulmonary hypertension. J. Appl. Physiol. 38: 491–495, 1970.
 180. Winslow, R. M., and C. C. Monge. Hypoxia, Polycythemia, and Chronic Mountain Sickness. Baltimore: Johns Hopkins University Press, 1986.
 181. Winslow, R. M., C. C. Monge, E. G. Brown, H. G. Klein, F. Sarnquist, and N. J. Winslow. The effect of hemodilution on O2 transport in high‐altitude polycythemia. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 59: 1495–1502, 1985.
 182. Wu, T., Q. Zhang, B. Jin, F. Xu, Q. Cheng, and X. Wan. Chronic mountain sickness (Monge's disease): an observation in Qinhai, Tibet Plateau. In: High‐Altitude Medicine, edited by G. Ueda. Matsumoto: Shinshu University Press, 1992, p. 314–324.
 183. Zhaparov, B. Comparative myocardial morphology of nonadapted, temporary adapted, as well as permanently living at high altitude animals (experimental morphological study). Moscow:, 1987. Synopsis of Thesis (MD).
 184. Zierhut, W., and H. Zimmer. Effect of calcium antagonists and other drugs on the hypoxia‐induced increase in rat right ventricular pressure. J. Cardiovasc. Pharmacol. 14: 311–318, 1989.
 185. Zverkova, E. E. Myocardial blood supply and organism resistance to hypoxia during hypoxic and hypercapnic training. Alma‐Ata, 1982. Synopsis of Thesis.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Mirsaid M. Mirrakhimov, Robert M. Winslow. The Cardiovascular System at High Altitude. Compr Physiol 2011, Supplement 14: Handbook of Physiology, Environmental Physiology: 1241-1257. First published in print 1996. doi: 10.1002/cphy.cp040253