Comprehensive Physiology Wiley Online Library

Endocrine Adaptation to Hypoxia

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Hypothalamic‐Pituitary‐Adrenal Axis and Endorphins
1.1 Acute Hypoxia
1.2 Mechanisms
1.3 Chronic Hypoxia
1.4 Endorphins/Lipotropic Pituitary Hormone
2 Catecholamines
2.1 Acute Hypoxia
2.2 Mechanisms
2.3 Chronic Hypoxia
3 Atrial Natriuretic Peptide
3.1 Mechanism
3.2 Chronic Hypoxia
4 Arginine Vasopressin
4.1 Acute Hypoxia
4.2 Mechanisms
4.3 Interactions
4.4 Chronic Hypoxia
5 Renin‐Angiotensin‐Aldosterone System
5.1 Acute Hypoxia
5.2 Chronic Hypoxia
5.3 Mechanisms
6 Hypothalamic‐Pituitary‐Thyroid Axis
6.1 Rats
7 Hormones of Reproduction
8 Hormones of the Islets of Langerhans
9 Somatomammotropins
9.1 Prolactin
9.2 Growth Hormone
10 Other Circulating Hormones and Factors
Figure 1. Figure 1.

Plasma aldosterone and cortisol concentrations during bolus infusion of ACTH (dose at top in μg) in progressively increasing doses in subjects exposed to normoxemia (sea level) and acute hypoxemia at sea level (Hypoxemia sea I) and in moderately high altitude (high altitude)‐adapted subjects. Plasma renin activity was decreased in the sea‐level group compared to the other two groups (data not shown). *P < 0.05 between subjects at sea level during normoxemia and hypoxemia and between high‐altitude subjects. **P < 0.05 between subjects at sea level during hypoxemia and between high‐altitude subjects. Graph demonstrates that acute and chronic hypoxia decrease aldosterone but not cortisol response to physiological doses of ACTH.

From ref. 186 with permission
Figure 2. Figure 2.

Effect of buffer PO2 (shown in torr) on angiotensin II—stimulated aldosterone and cortisol release from acutely dispersed bovine adrenal zona glomerulosa and fasciculata cells. Aldosterone release was proportional to PO2, whereas cortisol release was unaffected by changing PO2.

Adapted from ref. 172 with permission
Figure 3. Figure 3.

Plasma aldosterone and atrial natriuretic factor (ANF) levels during acute hypoxia (closed circles; SaO2 ∼68 ± 1%) and normoxia (open circles). *P < 0.05, **P < 0.01 compared with control. †P < 0.05, hypoxemia vs. normoxemia. Graph indicates that aldosterone decreases while ANF increases, suggesting that ANF may be a cause of the decreased aldosteronogenesis shown in Figure .

From ref. 118 with permission
Figure 4. Figure 4.

Serum osmolality (solid line) and plasma arginine vasopressin concentrations (dashed line) at sea level, 5,400 m, and 6,300 m for 7‐17 days (n = 13). Graph demonstrates no change in vasopressin despite a significant increase in osmolality.

From ref. 24 with permission


Figure 1.

Plasma aldosterone and cortisol concentrations during bolus infusion of ACTH (dose at top in μg) in progressively increasing doses in subjects exposed to normoxemia (sea level) and acute hypoxemia at sea level (Hypoxemia sea I) and in moderately high altitude (high altitude)‐adapted subjects. Plasma renin activity was decreased in the sea‐level group compared to the other two groups (data not shown). *P < 0.05 between subjects at sea level during normoxemia and hypoxemia and between high‐altitude subjects. **P < 0.05 between subjects at sea level during hypoxemia and between high‐altitude subjects. Graph demonstrates that acute and chronic hypoxia decrease aldosterone but not cortisol response to physiological doses of ACTH.

From ref. 186 with permission


Figure 2.

Effect of buffer PO2 (shown in torr) on angiotensin II—stimulated aldosterone and cortisol release from acutely dispersed bovine adrenal zona glomerulosa and fasciculata cells. Aldosterone release was proportional to PO2, whereas cortisol release was unaffected by changing PO2.

Adapted from ref. 172 with permission


Figure 3.

Plasma aldosterone and atrial natriuretic factor (ANF) levels during acute hypoxia (closed circles; SaO2 ∼68 ± 1%) and normoxia (open circles). *P < 0.05, **P < 0.01 compared with control. †P < 0.05, hypoxemia vs. normoxemia. Graph indicates that aldosterone decreases while ANF increases, suggesting that ANF may be a cause of the decreased aldosteronogenesis shown in Figure .

From ref. 118 with permission


Figure 4.

Serum osmolality (solid line) and plasma arginine vasopressin concentrations (dashed line) at sea level, 5,400 m, and 6,300 m for 7‐17 days (n = 13). Graph demonstrates no change in vasopressin despite a significant increase in osmolality.

From ref. 24 with permission
References
 1. Adnot, S., P. Andrivet, P. E. Chabrier, J. Piquet, P. Plas, P. Braquet, F. Roudot‐Thoraval, and C. Brun‐Buisson. Atrial natriuretic factor in chronic obstructive lung disease with pulmonary hypertension. J. Clin. Invest. 83: 986–993, 1989.
 2. Altland, P. D. Effect of discontinuous exposure to 25,000 feet simulated altitude on growth and reproduction of the albino rat. J. Exp. Zool. 110: 1–17, 1949.
 3. Anderson, R. J., R. G. Pluss, A. S. Berns, J. T. Jackson, P. E. Arnold, R. W. Schrier, and K. M. McDonald. Mechanism of effect of hypoxia on renal water excretion. J. Clin. Invest. 62: 769–777, 1978.
 4. Ashack, R., M. O. Farber, M. H. Weinberger, G. L. Robertson, N. S. Fineberg, and F. Manfredi. Renal and hormonal responses to acute hypoxia in normal individuals. J. Lab. Clin. Med. 106: 12–16, 1985.
 5. Baertschi, A. J., J. M. Adams, and M. P. Sullivan. Acute hypoxemia stimulates atrial natriuretic factor secretion in vivo. Am. J. Physiol. 255 (Heart Circ. Physiol. 26): H295–H300, 1988.
 6. Baertschi, A. J., C. Hausmaninger, R. S. Walsh, R. M. Mentzer, Jr., D. A. Wyatt, and R. A. Pence. Hypoxia‐induced release of atrial natriuretic factor (ANF) from the isolated rat and rabbit heart. Biochem. Biophys. Res. Commun. 140: 427–433, 1986.
 7. Baertschi, A. J., J.‐H. Jiao, D. E. Carlson, R. W. Campbell, W. G. Teague, D. Willson, and D. S. Gann. Neural control of ANF release in hypoxia and pulmonary hypertension. Am. J. Physiol. 259 (Heart Circ. Physiol. 30): H735–H744, 1990.
 8. Baertschi, A. J., and G. Teague. Alveolar hypoxia is a powerful stimulus for ANF release in conscious lambs. Am. J. Physiol. 256 (Heart Circ. Physiol. 27): H990–H998, 1989.
 9. Bangham, C. R. M., and P. H. Hackett. Effects of high altitude on endocrine function in the Sherpas of Nepal. J. Endocrinol. 79: 147–148, 1978.
 10. Banks, D., and M. C. Harris. Activation of hypothalamic arcuate but not paraventricular neurons following carotid body stimulation in the rat. Neuroscience 24: 967–976, 1988.
 11. Banks, W. A., and J. Cooper. Hypoxia and hypercarbia of chronic lung disease: minimal effects on anterior pituitary function. South. Med. J. 83: 290–293, 1990.
 12. Bartsch, P., S. Shaw, M. Franciolli, M. P. Gnadinger, and P. Weidmann. Atrial natriuretic peptide in acute mountain sickness. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 65: 1939–1937, 1988.
 13. Baum, D., R. Griepp, and D. Porte. Glucose‐induced insulin release during acute and chronic hypoxia. Am. J. Physiol. 237 (Endocrinol. Metab. Gastrointest. Physiol. 6): E45–E50, 1979.
 14. Baum, D., and P. Oyer. Norepinephrine‐stimulated lipolysis in acute and chronic hypoxemia. Am. J. Physiol. 241 (Endocrinol. Metab. 4): E28–E34, 1981.
 15. Baum, D., and D. Porte. Effect of acute hypoxia on circulating insulin levels. J. Clin. Endocrinol. Metab. 29: 991–994, 1969.
 16. Baum, D., and D. Porte. A mechanism for regulation of insulin release in hypoxia. Am. J. Physiol. 222: 695–699, 1972.
 17. Baum, D., and D. Porte. Beta adrenergic receptor dysfunction in hypoxic inhibition of insulin release. Endocrinology 98: 359–366, 1976.
 18. Baum, D., and D. Porte. Stress hyperglycemia and the adrenergic regulation of pancreatic hormones in hypoxia. Metabolism 29: 1176–1185, 1980.
 19. Baum, D., D. Porte, and J. Ensinck. Hyperglucagonemia and alpha‐adrenergic receptor in acute hypoxia. Am. J. Physiol. 237 (Endocrinol. Metab. Gastrointest. Physiol. 6): E404–E408, 1979.
 20. Baylis, P. H., R. A. Stockley, and D. A. Heath. Effect of acute hypoxaemia on plasma arginine vasopressin in conscious man. Clin. Sci. Mol. Med. 53: 401–404, 1977.
 21. Biesold, D., M. Kurosawa, A. Sato, and A. Trzebski. Hypoxia and hypercapnia increase the sympathoadrenal medullary functions in anesthetized, artificially ventilated rats. Jpn. J. Physiol. 39: 511–522, 1989.
 22. Bloom, S. R., A. V. Edwards, and R. N. Hardy. Adrenal and pancreatic endocrine responses to hypoxia and hypercapnia in the calf. J. Physiol. 269: 131–143, 1977.
 23. Blum, J. W., W. Bianca, F. Naf, P. Kunz, J. A. Fischer, and M. DaPrada. Plasma catecholamine and parathyroid hormone responses in cattle during treadmill exercise at simulated high altitude. Horm. Metab. Res. 11: 246–251, 1979.
 24. Blume, F. D., S. J. Boyer, L. E. Braverman, A. Cohen, J. Dirkse, and J. P. Mordes. Impaired osmoregulation at high altitude. JAMA 252: 524–526, 1984.
 25. Boddy, K., C. T. Jones, C. Mantell, J. G. Ratcliffe, and J. S. Robinson. Changes in plasma ACTH and corticosteroid of the maternal and fetal sheep during hypoxia. Endocrinology 94: 588–590, 1974.
 26. Boschetti, E., C. Tantucci, M. Cocchieri, G. Fornari, V. Grassi, and C. A. Sorbini. Acute effects of captopril in hypoxic pulmonary hypertension. Respiration 48: 296–302, 1985.
 27. Bouissou, P., G. R. Brisson, F. Peronnet, R. Helie, and M. Ledoux. Inhibition of exercise‐induced blood prolactin response by acute hypoxia. Can. J. Sports Sci. 12: 49–50, 1987.
 28. Bouissou, P., J. Fiet, C. Y. Guezennec, and P. C. Pesquies. Plasma adrenocorticotrophin and cortisol responses to acute hypoxia at rest and during exercise. Eur. J. Appl. Physiol. 57: 110–113, 1988.
 29. Bouissou, P., C. Y. Geuzennec, F. X. Galen, G. Defer, J. Fiet, and P. C. Pesquies. Dissociated response of aldosterone from plasma renin activity during prolonged exercise under hypoxia. Horm. Metab. Res. 20: 517–521, 1988.
 30. Bouissou, P., F. Peronnet, G. Brisson, R. Helie, and M. Ledoux. Metabolic and endocrine responses to graded exercise under acute hypoxia. Eur. J. Appl. Physiol. 55: 290–294, 1986.
 31. Bouissou, P., F. Peronnet, G. Brisson, R. Helie, and M. Ledoux. Fluid‐electrolyte shift and renin‐aldosterone responses to exercise under hypoxia. Horm. Metab. Res. 19: 331–332, 1987.
 32. Bouissou, P., J.‐P. Richalet, F. X. Galen, M. Lartigue, P. Larmignat, F. Devaux, C. Dubray, and A. Keromes. Effect of β‐adrenoreceptor blockade on renin‐aldosterone and a‐ANF during exercise at altitude. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 67: 141–146, 1989.
 33. Brahmachari, H. D., M. S. Malhotra, K. Ramachandran, and U. Radhakrishnan. Progressive changes in plasma cortisol, antidiuretic hormone, and urinary volume of normal lowlanders during short stay at high altitude. Indian J. Exp. Biol. 11: 454–455, 1973.
 34. Breslow, M. J., T. D. Ball, C. F. Miller, H. Raff, and R. J. Traystman. Relationship between regional adrenal blood flow and secretory activity during hypoxia in anesthetized, ventilated dogs. Am. J. Physiol. 257 (Heart Circ. Physiol. 28): H1458–H1465, 1989.
 35. Breslow, M. J., J. R. Robin, T. D. Mandress, L. C. Racusen, H. Raff, and R. J. Traystman. Changes in adrenal O2 consumption during catecholamine secretion in anesthetized dogs. Am. J. Physiol. 259 (Heart Circ. Physiol. 30): H681–H688, 1990.
 36. Brickner, R. C., B. Jankowski, and H. Raff. The conversion of corticosterone to aldosterone is the site of the oxygen sensitivity of the bovine adrenal zona glomerulosa. Endocrinology 130: 88–92, 1992.
 37. Brickner, R. C., and H. Raff. Oxygen sensitivity of potassium‐and angiotensin II‐stimulated aldosterone release by bovine adrenal cells. J. Endocrinol. 129: 43–48, 1991.
 38. Bubb, W. J., E. T. Howley, and R. H. Cox. Effects of various levels of hypoxia on plasma catecholamines at rest and during exercise. Aviat. Space Environ. Med. 54: 637–640, 1983.
 39. Chakraborti, S., and S. K. Batabyal. Study of moderate and high altitude stress on plasma renin, aldosterone and electrolyte levels in humans. Indian J. Exp. Biol. 23: 706–707, 1985.
 40. Claustre, J., R. Favre, J. M. Cottet‐Emard, and L. Peyrin. Free, glucuronide, and sulfate catecholamines in the rat: effect of hypoxia. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 59: 12–17, 1985.
 41. Claybaugh, J. R., J. E. Hansen, and D. B. Wozniak. Response of antidiuretic hormone to acute exposure to mild and severe hypoxia in man. J. Endocrinol. 77: 157–160, 1978.
 42. Claybaugh, J. R., C. E. Wade, A. K. Sato, S. A. Cucinell, J. C. Lane, and J. T. Maher. Antidiuretic hormone responses to eucapnic and hypocapnic hypoxia in humans. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 53: 815–823, 1982.
 43. Clozel, J.‐P., C. Saunier, D. Hartemann, M. Allam, and W. Fischli. Effect of hypoxia and hypercapnia on atrial natriuretic factor and plasma renin activity in conscious dogs. Clin. Sci. (Colch.) 76: 249–254, 1989.
 44. Colice, G. L., and G. Ramirez. Effect of hypoxemia on the renin‐angiotensin‐aldosterone system in humans. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 58: 724–730, 1985.
 45. Colice, G. L., and G. Ramirez. Aldosterone response to angiotensin II during hypoxemia. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 61: 150–154, 1986.
 46. Connors, J. M., and L. G. Martin. Altitude‐induced changes in plasma thyroxine, 3, 5, 3'‐triiodothyronine, and thyrotropin in rats. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 53: 313–315, 1982.
 47. Corlone, S., P. Palange, E. T. Mannix, M. P. Salatto, P. Serra, M. H. Weinberger, G. R. Aronogg, E. M. Cockerill, and M. O. Farber. Atrial natriuretic peptide, renin, and aldosterone in obstructive lung disease and heart failure. Am. J. Med. Sci. 298: 243–248, 1989.
 48. Cosby, R. L., A. M. Sophocles, J. A. Durr, C. L. Peerinjacquet, B. Yee, and R. W. Schrier. Elevated plasma atrial natriuretic factor and vasopressin in high‐altitude pulmonary edema. Ann. Intern. Med. 109: 796–799, 1988.
 49. Cunningham, W. L., E. J. Becker, and F. Kreuzer. Catecholamines in plasma and urine at high altitude. J. Appl. Physiol. 20: 607–610, 1965.
 50. Curbelo, H. M., E. C. Karliner, and A. B. Houssay. Effect of acute hypoxia on blood TSH levels. Horm. Metab. Res. 11: 155–157, 1979.
 51. Curran‐Everett, D. C., J. R. Claybaugh, K. Miki, S. K. Hong, and J. A. Krasney. Hormonal and electrolyte responses of conscious sheep to 96 h of hypoxia. Am. J. Physiol. 255 (Regulatory Integrative Comp. Physiol. 26): R274–R283, 1988.
 52. Doepker, S. K., B. Jankowski, and H. Raff. Vasopressin response to almitrine in normoxic and hypoxic conscious rats. FASEB J. 5: A373, 1991.
 53. du Souich, P., C. Saunier, D. Hartemann, A. Sautegeau, H. Ong, P. Larose, and R. Babini. Effect of moderate hypoxemia on atrial natriuretic factor and arginine vasopressine (sic) in normal man. Biochem. Biophys. Res. Commun. 148: 906–912, 1987.
 54. Epstein, M., and T. Saruta. Effects of simulated high altitude on renin‐aldosterone and Na homeostasis in normal man. J. Appl. Physiol. 33: 204–210, 1972.
 55. Fahim, M. S., F. S. Messiha, and S. M. Girgis. Effect of acute and chronic simulated high altitude on male reproduction and testosterone level. Arch. Androl. 4: 217–219, 1980.
 56. Farber, M. O., S. S. O. Kiblawi, R. A. Strawbridge, G. L. Robertson, M. H. Weinberger, and F. Manfredi. Studies on plasma vasopressin and the renin‐angiotensin‐aldosterone system in chronic obstructive lung disease. J. Lab. Clin. Med. 90: 373–380, 1977.
 57. Farber, M. O., M. H. Weinberger, G. L. Robertson, and N. S. Fineberg. The effects of angiotensin‐converting enzyme inhibition on sodium handling in patients with advanced chronic obstructive pulmonary disease. Am. Rev. Respir. Dis. 136: 862–866, 1987.
 58. Favier, R. J., D. Desplanches, J. M. Pequignot, L. Peyrin, and R. Flandrois. Effects of hypoxia on catecholamine and cardiorespiratory responses in exercising dogs. Respir. Physiol. 61: 167–177, 1985.
 59. Forsling, M. L., and L. A. Aziz. Release of vasopressin in response to hypoxia and the effect of aminergic and opioid antagonists. J. Endocrinol. 99: 77–86, 1983.
 60. Francesconi, R., and A. Cymerman. Adrenocortical activity and urinary cyclic AMP levels: effects of hypobaric hypoxia. Aviat. Space Environ. Med. 46: 50–54, 1975.
 61. Frayser, R., I. D. Rennie, G. W. Gray, and C. S. Houston. Hormonal and electrolyte response to exposure to 17,500 ft. J. Appl. Physiol. 38: 636–642, 1975.
 62. Freedman, A., A. T. Scardella, N. H. Edelman, and T. V. Santiago. Hypoxia does not increase CSF or plasma β‐endorphin activity. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 64: 966–971, 1988.
 63. French, J. W., D. Porte, and D. Baum. The effect of hypoxia and epinephrine on arginine induced insulin release. Proc. Soc. Exp. Biol. Med. 144: 288–290, 1973.
 64. Gabbe, S. G., and C. A. Villee. The effect of hypoxia on progesterone synthesis by placental villi in organ culture. Am. J. Obstet. Gynecol. 111: 31–37, 1971.
 65. Galton, V. A. Some effects of altitude on thyroid function. Endocrinology 91: 1393–1403, 1972.
 66. Gordon, A. S., F. J. Tornetta, S. A. D'Angelo, and H. A. Charipper. Effects of low atmospheric pressure on the activity of the thyroid, reproductive system and anterior pituitary in the rat. Endocrinology 33: 366–383, 1943.
 67. Gosney, J. R. Effects of hypobaric hypoxia on the Leydig cell population of the testis of the rat. J. Endocrinol. 103: 59–62, 1984.
 68. Gosney, J. R. The effects of hypobaric hypoxia on the corticotrophic population of the adenohypophysis of the male rat. J. Pathol. 142: 163–168, 1984.
 69. Gosney, J. R. Adrenal corticomedullary hyperplasia in hypobaric hypoxia. J. Pathol. 146: 59–64, 1985.
 70. Gosney, J. R. Morphological changes in the pituitary and thyroid of the rat in hypobaric hypoxia. J. Endocrinol. 109: 119–124, 1986.
 71. Gould, A. B., and S. A. Goodman. The effect of hypoxia on the renin‐angiotensinogen system. Lab. Invest. 22: 443–447, 1970.
 72. Gradwell, E. Histological changes in the thyroid gland in rats on acclimatization to simulated high altitude. J. Pathol. 125: 33–37, 1978.
 73. Griffen, S. C., and H. Raff. Vasopressin responses to hypoxia in conscious rats: interaction with water restriction. J. Endocrinol. 125: 61–66, 1990.
 74. Groza, P., C. Vladescu, and J. Boerescu. Effects of mild hypoxia (2200 m) on catecholamine and corticosterone secretion. Physiologie 12: 165–168, 1975.
 75. Guerra‐Garcia, R., A. Velasquez, and J. Coyotupa. A test of endocrine gonadal function in men: urinary testosterone after injection of HCG. II. A different response of the high altitude native. J. Clin. Endocrinol. 29: 179–182, 1969.
 76. Hackett, P. H., M. L. Forsling, J. Milledge, and D. Rennie. Release of vasopressin in man at altitude. Horm. Metab. Res. 10: 571–572, 1978.
 77. Hale, H. B., G. Sayers, K. L. Sydnor, M. L. Sweat, and D. D. Van Fossan. Blood adrenocorticotrophic hormone and plasma corticosteroids in men exposed to adverse environmental conditions. J. Clin. Invest. 36: 1642–1646, 1957.
 78. Hanley, D. F., D. A. Wilson, M. A. Feldman, and R. J. Traystman. Peripheral chemoreceptor control of neurohypophyseal blood flow. Am. J. Physiol. 254 (Heart Circ. Physiol. 25): H742–H750, 1988.
 79. Hannhart, B., C. K. Pickett, and L. G. Moore. Effects of estrogen and progesterone on carotid body neural output responsiveness to hypoxia. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 68: 1909–1916, 1990.
 80. Harber, M. J., J. D. Williams, and J. J. Morton. Antidiuretic hormone excretion at high altitude. Aviat. Space Environ. Med. 52: 38–40, 1981.
 81. Harris, M. C., A. V. Ferguson, and D. Banks. The afferent pathway for carotid body chemoreceptor input to the hypothalamic supraoptic nucleus in the rat. Pflugers Arch. 400: 80–81, 1984.
 82. Harrison, T. S., and J. Seaton. The relative effects of hypoxia and hypercarbia on adrenal medullary secretion in anesthetized dogs. J. Surg. Res. 5: 560–564, 1965.
 83. Heyes, M. P., M. O. Farber, F. Manfredi, D. Robertshaw, M. Weinberger, N. Fineberg, and G. Robertson. Acute effects of hypoxia on renal and endocrine function in normal humans. Am. J. Physiol. 243 (Regulatory Integrative Comp. Physiol. 14): R265–R270, 1982.
 84. Hirai, K., G. Atkins, and S. F. Marotta. 17‐Hydroxycorticosteroid secretion during hypoxia in anesthetized dogs. Aerospace Med. 34: 814–816, 1963.
 85. Hogan, R. P., III, T. A. Kotchen, A. E. Boyd III, and L. H. Hartley. Effect of altitude on renin‐aldosterone system and metabolism of water and electrolytes. J. Appl. Physiol. 35: 385–390, 1973.
 86. Honig, A., R. Landgaf, C. Ledderhos, and W. Quies. Plasma vasopressin levels in healthy young men in response to stimulation of the peripheral arterial chemoreceptors by almitrine bis‐mesylate. Biomed. Biochim. Acta 46: 1043–1049, 1987.
 87. Honig, A., B. Wedler, M. Schmidt, S. Gruska, and A. Twal. Suppression of the plasma aldosterone to renin activity ratio in anaesthetized cats after pharmacological stimulation of the peripheral arterial chemoreceptors with almitrine bismesylate. Biomed. Biochim. Acta 46: 1055–1059, 1987.
 88. Horio, T., M. Kohno, K. Yokokawa, K.‐I. Murakawa, K. Yasunari, H. Fujiwara, N. Kurihara, and T. Takeda. Effect of hypoxia on plasma immunoreactive endothelin‐1 concentration in anesthetized rats. Metabolism 40: 999–1001, 1991.
 89. Hornbein, T. F. Adrenal cortical response to chronic hypoxia. J. Appl. Physiol. 17: 246–248, 1962.
 90. Humpeler, E., F. Skrabal, and G. Bartsch. Influence of exposure to moderate altitude on the plasma concentration of cortisol, aldosterone, renin, testosterone, and gonadotropins. Eur. J. Appl. Physiol. 45: 167–176, 1980.
 91. Jacobson, L., and M. F. Dallman. ACTH secretion and ventilation increase at similar arterial PO2 in conscious rats. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 66: 2245–2250, 1989.
 92. Jain, S, W. L. Wilke, and A. Tucker. Age‐dependent effects of chronic hypoxia on renin‐angiotensin and urinary excretions. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 69: 141–146, 1990.
 93. Jin, H., R.‐H. Yang, Y.‐F. Chen, R. M. Jackson, H. Itoh, M. Mukoyama, K. Nakao, H. Imura, and S. Oparil. Atrial natriuretic peptide in acute hypoxia‐induced pulmonary hypertension in rats. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 71: 807–814, 1991.
 94. Jin, H., R.‐H. Yang, Y.‐F. Chen, R. M. Jackson, and S. Oparil. Atrial natriuretic peptide attenuates the development of pulmonary hypertension in rats adapted to chronic hypoxia. J. Clin. Invest. 85: 115–120, 1990.
 95. Jin, H., R.‐H. Yang, R. M. Thornton, Y.‐F. Chen, R. Jackson, and S. Oparil. Atrial natriuretic peptide lowers pulmonary artery pressure in hypoxia‐adapted rats. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 65: 1729–1735, 1988.
 96. Johnson, C. L., and G. LaRoche. Simulated altitude and iodine metabolism in rats: II. Effects of chronic exposure on serum and thyroid iodinated components; effects of blood fractions and some organ weights. Aerospace Med. 39: 365–375, 1968.
 97. Johnson, T. S., J. B. Young, and L. Landsberg. Sympathoadrenal responses to acute and chronic hypoxia in the rat. J. Clin. Invest. 71: 1263–1271, 1983.
 98. Jones, R. M., F. T. LaRochelle, Jr., and S. M. Tenney. Role of arginine vasopressin on fluid and electrolyte balance in rats exposed to high altitude. Am. J. Physiol. 240 (Regulatory Integrative Comp. Physiol. 11) R182–R186, 1981.
 99. Jones, R. M., C. Terhaard, J. Zullo, and S. M. Tenney. Mechanism of reduced water intake in rats at high altitude. Am. J. Physiol. 240 (Regulatory Integrative Comp. Physiol. 11): R187–R191, 1981.
 100. Jung, R. C., D. B. Dill, R. Horton, and S. M. Horvath. Effects of age on plasma aldosterone levels and hemoconcentration at altitude. J. Appl. Physiol. 31: 593–597, 1971.
 101. Kawashima, A., K. Kubo, K. Hirai, S. Yoshikawa, Y. Matsuzawa, and T. Kobayashi. Plasma levels of atrial natriuretic peptide under acute hypoxia in normal subjects. Respir. Physiol. 76: 79–92, 1989.
 102. Keynes, R. J., G. W. Smith, J. D. H. Slater, M. M. Brown, S. E. Brown, N. N. Payne, T. P. Jowett, and C. C. Monge. Renin and aldosterone at high altitude in man. J. Endocrinol. 92: 131–140, 1982.
 103. Khmel'nitskii, O. K., and T. Y. Tararek. Effect of exposure to high‐altitude hypoxia on morphology of the pituitary‐gonads system. Byull. Eks. Biol. Med. 111: 432–436, 1991.
 104. Knudtzon, J., A. Bogsnes, and N. Norman. Changes in prolactin and growth hormone levels during hypoxia and exercise. Horm. Metab. Res. 21: 453–454, 1989.
 105. Koller, E. A., A. Buhrer, L. Felder, M. Schopen, and M. B. Vallotton. Altitude diuresis: endocrine and renal responses to acute hypoxia of acclimatizated and non‐acclimatized subjects. Eur. J. Appl. Physiol. 62: 228–234, 1991.
 106. Koller, E. A., M. Schopen, M. Keller, R. E. Lang, and M. B. Vallotton. Ventilatory, circulatory, endocrine, and renal effects of almitrine infusion in man: a contribution to high altitude physiology. Eur. J. Appl. Physiol. 58: 419–425, 1989.
 107. Kopelman, P. G., M. C. P. Apps, T. Cope, and D. W. Empey. Nocturnal hypoxia and prolactin secretion in obese women. Br. Med. J. 287: 859–861, 1983.
 108. Kotchen, T. A., E. H. Mougey, R. P. Hogan, A. E. Boyd III, L. L. Pennington, and J. W. Mason. Thyroid responses to simulated altitude. J. Appl. Physiol. 34: 165–168, 1973.
 109. Koyama, S., T. Kobayashi, K. Kubo, M. Fukushima, K. Yoshimura, T. Shibamato, and S. Kusama. The increased sympathoadrenal activity in patients with high altitude pulmonary edema is centrally mediated. Jpn. J. Med. 27: 10–16, 1988.
 110. Kraemer, W. J., A. J. Hamilton, S. E. Gordon, L. A. Trad, J. T. Reeves, D. W. Zahn, and A. Cymerman. Plasma changes in beta‐endorphin to acute hypobaric hypoxia and high intensity exercise. Aviat. Space Environ. Med. 62: 754–758, 1991.
 111. Krapf, R., P. Jaeger, and H. N. Hulter. Chronic respiratory alkalosis induces renal PTH‐resistance, hyperphophatemia and hypocalcemia in humans. Kidney Int. 42: 727–734, 1992.
 112. Larsen, R. F., P. B. Rock, C. S. Fulco, B. Edelman, A. J. Young, and A. Cymerman. Effects of sprinolactone on acute mountain sickness. Aviat. Space Environ. Med. 57: 543–547, 1986.
 113. Lau, C. Effects of O2‐CO2 changes on hypothalamo‐hypophyseal‐adrenocortical activation. Am. J. Physiol. 221: 607–612, 1971.
 114. Lau, C. Role of respiratory chemoreceptors in adrenocortical activation. Am. J. Physiol. 221: 602–606, 1971.
 115. Lau, C., and S. F. Marotta. Role of peripheral chemoreceptors on adrenocortical secretory rates during hypoxia. Aerospace Med. 40: 1065–1068, 1969.
 116. Lau, C., and P. S. Timiras. Adrenocortical function in hypothalamic deafferented rats maintained at high altitude. Am. J. Physiol. 222: 1040–1042, 1972.
 117. Lawrence, D. L., and Y. Shenker. Effect of hypoxic exercise on atrial natriuretic factor and aldosterone regulation. Am. J. Hypertens. 4: 341–347, 1991.
 118. Lawrence, D. L., J. B. Skatrud, and Y. Shenker. Effect of hypoxia on atrial natriuretic factor and aldosterone regulation in humans. Am. J. Physiol. 258 (Endocrinol. Metab. 21): E243–E248, 1990.
 119. Lee, K., S. Miwa, K. Koshimura, H. Hasegawa, K. Hamahata, and M. Fujiwara. Effects of hypoxia on the catecholamine release, Ca2+ uptake, and cytosolic free Ca2+ concentration in cultured bovine adrenal chromaffin cells. J. Neurochem. 55: 1131–1137, 1990.
 120. Leuenberger, U., K. Gleeson, K. Wroblewski, S. Prophet, R. Zelis, C. Zwillich, and L. Sinoway. Norepinephrine clearance is increased during acute hypoxemia in humans. Am. J. Physiol. 261 (Heart Circ. Physiol. 32): H1659–H1664, 1991.
 121. Lew, R. A., and A. J. Baertschi. Mechanisms of hypoxia‐induced atrial natriuretic factor release from rat hearts. Am. J. Physiol. 257 (Heart Circ. Physiol. 28): H147–H156, 1989.
 122. Lewis, R. A., G. W. Thorn, G. F. Koepf, and S. S. Dorrance. The role of the adrenal cortex in acute anoxia. J. Clin. Invest. 21: 33–46, 1942.
 123. Liu, L., H. Cheng, W. Chin, H. Jin, and S. Oparil. Atrial natriuretic peptide lowers pulmonary artery pressure in patients with high altitude disease. Am. J. Med. Sci. 298: 397–401, 1989.
 124. Lundy, E. F., L. D. Klima, T. S. Huber, G. B. Zelenock, and L. G. D'Alecy. Elevated blood ketone and glucagon levels cannot account for 1,3‐butanediol induced cerebral protection in the Levine rat. Stroke 18: 217–222, 1987.
 125. Maher, J. T., L. G. Jones, L. H. Hartley, G. H. Williams, and L. I. Rose. Aldosterone dynamics during graded exercise at sea level and high altitude. J. Appl. Physiol. 39: 18–22, 1975.
 126. Maresh, C. M., B. J. Noble, K. L. Robertson, and J. S. Harvey. Aldosterone, cortisol, and electrolyte responses to hypobaric hypoxia in moderate‐altitude natives. Aviat. Space Environ. Med. 56: 1078–1084, 1985.
 127. Marks, B. H., A. N. Bhattacharya, and J. Vernikos‐Danellis. Effect of hypoxia on secretion of ACTH in the rat. Am. J. Physiol. 208: 1021–1025, 1965.
 128. Marotta, S. F. Roles of aortic and carotid chemoreceptors in activating the hypothalamo‐hypophyseal‐adrenocortical system during hypoxia. Proc. Soc. Exp. Biol. Med. 141: 915–922, 1972.
 129. Marotta, S. F., K. Hirai, and G. Atkins. Secretion of 17‐hydroxycorticosteroids in conscious and anesthetized dogs exposed to simulated altitude. Proc. Soc. Exp. Biol. Med. 114: 403–405, 1963.
 130. Marotta, S. F., L. J. Malasanos, and U. Boonayathap. Inhibition of the adrenocortical response to hypoxia by dexamethasone. Aerospace Med. 44: 1–4, 1973.
 131. Martin, I. H., N. Basso, M. I. Sarchi, and A. C. Taquini. Changes in the renin‐angiotensin‐aldosterone system in rats of both sexes submitted to chronic hypobaric hypoxia. Arch. Int. Physiol. Biochem. 95: 255–262, 1987.
 132. Martin, I. H., D. Baulan, N. Basso, and A. C. Taquini. The renin‐angiotensin‐aldosterone system in rats of both sexes subjected to chronic hypobaric hypoxia. Arch. Int. Physiol. Biochem. 90: 129–133, 1982.
 133. Martin, L. G., G. E. Wertenberger, and R. W. Bullard. Thyroidal changes in the rat during acclimation to simulated altitude. Am. J. Physiol. 221: 1057–1063, 1971.
 134. Mazzeo, R. S., P. R. Bender, G. A. Brooks, G. E. Butterfield, B. M. Groves, J. R. Sutton, E. E. Wolfel, and J. T. Reeves. Arterial catecholamine responses during exercise with acute and chronic high‐altitude exposure. Am. J. Physiol. 261 (Endocrinol. Metab. 24): E419–D424, 1991.
 135. McKenzie, J. C., I. Tanaka, T. Inagami, K. S. Misoni, and R. M. Klein. Alterations in atrial and plasma atrial natriuretic factor (ANF) content during development of hypoxia‐induced pulmonary hypertension in the rat. Proc. Soc. Exp. Biol. Med. 181: 459–463, 1986.
 136. McLean, C. J., C. W. Booth, T. Tattersall, and J. D. Few. The effect of high altitude on saliva aldosterone and glucocorticoid concentrations. Eur. J. Appl. Physiol. 58: 341–347, 1989.
 137. Meehan, R. T. Renin, aldosterone, and vasopressin responses to hypoxia during 6 hours of mild exercise. Aviat. Space Environ. Med. 57: 960–965, 1986.
 138. Milledge, J. S. Renin‐aldosterone system. In: High Altitude and Man, edited by J. B. West and S. Lahiri. Bethesda, MD: Am. Physiol. Soc., 1984, p. 47–57.
 139. Milledge, J. S., J. M. Beeley, S. McArthur, and A. H. Morice. Atrial natriuretic peptide, altitude and acute mountain sickness. Clin. Sci. (Colch.) 77: 509–514, 1989.
 140. Milledge, J. S., and D. M. Catley. Renin, aldosterone, and converting enzyme during exercise and acute hypoxia in humans. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 52: 320–323, 1982.
 141. Milledge, J. S., D. M. Catley, E. S. Williams, W. R. Withey, and B. D. Minty. Effect of prolonged exercise at altitude on the renin‐aldosterone system. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 55: 413–418, 1983.
 142. Miranda, de, I. M., J. C. Macome, L. E. Costa, and A. C. Taquini. Adaptation to chronic hypobaric hypoxia and sexual hormones. Acta Physiol. Pharmacol. Ther. Latinoam. 27: 65–71, 1977.
 143. Mlekusch, W., B. Paletta, W. Truppe, E. Paschke, and R. Grimus. Plasma concentrations of glucose, corticosterone, glucagon, and insulin and liver content of metabolic substrates and enzymes during starvation and additional hypoxia in the rat. Horm. Metab. Res. 13: 612–614, 1981.
 144. Mohri, M., K. Seto, M. Nagase, K. Tsunashima, and M. Kawakami. Changes in pituitary‐adrenal function under continuous exposure to hypoxia in male rats. Exp. Clin. Endocrinol. 81: 65–70, 1983.
 145. Moncloa, F., L. Beteta, I. Velazco, and C. Gonez. ACTH stimulation and dexamethasone inhibition in newcomers to high altitude. Proc. Soc. Exp. Biol. Med. 122: 1029–1031, 1966.
 146. Moncloa, F., A. Carcelen, and L. Beteta. Physical exercise, acid‐base balance, and adrenal function in newcomers to high altitude. J. Appl. Physiol. 28: 151–155, 1970.
 147. Moncloa, F., J. Donayre, L. A. Sobrevilla, and R. Guerra‐Garcia. Endocrine studies at high altitude. II. Adrenal cortical function in sea level natives exposed to high altitudes (4300 meters) for two weeks. J. Clin. Endocrinol. 25: 1640–1642, 1965.
 148. Moncloa, F., R. Guerra‐Garcia, C. Subauste, L. A. Sobrevilla, and J. Donayre. Endocrine studies at high altitude. I. Thyroid function in sea level natives exposed for two weeks to an altitude of 4300 meters. J. Clin. Endocrinol. 26: 1237–1239, 1966.
 149. Moore, L. G., R. E. McCullough, and J. V. Weil. Increased HVR in pregnancy: relationship to hormonal and metabolic changes. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 62: 158–163, 1987.
 150. Mordes, J. P., F. D. Blume, S. Boyer, M.‐R. Zheng, and L. E. Braverman. High‐altitude pituitary‐thyroid dysfunction on Mount Everest. N. Engl. J. Med. 308: 1135–1138, 1983.
 151. Moss, I. R., and J. G. Inman. Proopiomelanocortin opioids in brain, CSF, and plasma of piglets during hypoxia. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 66: 2280–2286, 1989.
 152. Moss, I. R., and J. D. G. Inman. Effects of pentobarbital on proopiomelanocortin opioid products of neonatal piglets during normoxia and hypoxia. J. Neuroendocrinol. 3: 455–460, 1991.
 153. Moss, I. R., J. G. Inman, J. C. Porter, and D. J. Faucher. Ontogeny of plasma, CSF and brainstem ACTH in piglets: effects of hypoxia and anesthesia. Neuroendocrinology 51: 586–591, 1990.
 154. Mouats, A., P. Guilloteau, J. A. Chayvialle, R. Toullec, C. Bernard, J. F. Grongnet, and G. T. Dos Santos. Effet de l'hypoxie sur les concentrations plasmatiques de gastrine et de polypeptide inhibiteur gastrique (GIP) chex le veau nouveau‐ne. Reprod. Nutr. Dev. 2 (suppl.): 219s–220s, 1990.
 155. Mulvey, P. F., and J. M. R. Macaione. Thyroidal dysfunction during simulated altitude conditions. Federation Proc. 23: 1243–1246, 1969.
 156. Naramiya, M., H. Yamada, I. Matsuba, Y. Ikeda, T. Tanese, and M. Abe. The effect of hypoxia on insulin and glucagon secretion in the perfused pancreas of the rat. Endocrinology 111: 1010–1014, 1982.
 157. Nelson, B. D., and A. Anthony. Thyroxine biosynthesis and thyroidal uptake of I131 in rats at the onset of hypoxia exposure. Proc. Soc. Exp. Biol. Med. 121: 1256–1260, 1966.
 158. Nelson, M. L., and J. M. Cons. Pituitary hormones and growth retardation in rats raised at simulated high altitude (3800 m). Environ. Physiol. Biochem. 5: 273–282, 1975.
 159. Nelson, M. L., J. M. Cons, and G. E. Hodgdon. Effects of simulated high altitude (3800 m) on reproductive function in the pregnant rat. Environ. Physiol. Biochem. 5: 65–72, 1975.
 160. Nishijima, M. K., M. J. Breslow, H. Raff, and R. J. Traystman. Regional adrenal blood flow during hypoxia. Am. J. Physiol. 256 (Heart Circ. Physiol. 27): H94–H100, 1989.
 161. Okazaki, S., Y. Tamura, T. Hatano, and N. Matsui. Hormonal disturbances of fluid‐electrolyte metabolism under altitude exposure in man. Aviat. Space Environ. Med. 55: 200–205, 1984.
 162. Oparil, S., A. J. Narkates, R. M. Jackson, and H. S. Ann. Altered angiotensin‐converting enzyme in lungs and extrapulmonary tissues of hypoxia‐adapted rats. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 65: 218–227, 1988.
 163. Ou, L. C., and S. M. Tenney. Adrenocortical function in rats chronically exposed to high altitude. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 47: 1185–1187, 1979.
 164. Pison, C. M., J. E. Wolf, P. A. Levy, F. Dubois, C. G. Brambilla, and B. Paramelle. Effects of captopril combined with oxygen therapy at rest and on exercise in patients with chronic bronchitis and pulmonary hypertension. Respiration 58: 9–14, 1991.
 165. Porchet, M., H. Contat, B. Waeber, J. Nussberger, and H. R. Brunner. Response of plasma arginine vasopressin levels to rapid changes in altitude. Clin. Physiol. 4: 435–438, 1984.
 166. Raff, H. The renin‐angiotensin‐aldosterone system during hypoxia. In: Response and Adaptation to Hypoxia—Organ to Organelle, edited by S. Lahiri, N. Cherniak, and R. S. Fitzgerald. New York: Oxford University Press, 1991, p. 211–222.
 167. Raff, H. Renin response to hemorrhage in conscious rats: effect of acute reductions in hematocrit. Am. J. Physiol. 258 (Regulatory Integrative Comp. Physiol. 29): R487–R491, 1990.
 168. Raff, H., D. L. Ball, and T. L. Goodfriend. Low oxygen selectively inhibits aldosterone secretion from bovine adrenocortical cells in vitro. Am. J. Physiol. 256 (Endocrinol. Metab. 19): E640–E644, 1989.
 169. Raff, H., R. C. Brickner, and B. Jankowski. The renin‐angiotensin‐aldosterone system during hypoxia: is the adrenal an oxygen sensor? In: Man and Mountain Medicine, edited by J. R. Sutton and G. Coates. New York: Pergamon, 1992 Adv. Biosci. vol. 84, p. 42–49.
 170. Raff, H., and K. J. Chadwick. Aldosterone responses to ACTH during hypoxia in conscious rats. Clin. Exp. Pharmacol. Physiol. 13: 827–830, 1986.
 171. Raff, H., and K. D. Fagin. Measurement of hormones and blood gases during hypoxia in conscious, cannulated rats. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 56: 1426–1430, 1984.
 172. Raff, H., and S. Kohandarvish. The effect of oxygen on aldosterone release from bovine adrenocortical cells in vitro: PO2 vs. steroidogenesis. Endocrinology 127: 682–687, 1990.
 173. Raff, H., and S. A. Levy. Renin‐angiotensin‐aldosterone and ACTH‐cortisol control during acute hypoxemia and exercise in patients with chronic obstructive lung disease. Am. Rev. Respir. Dis. 133: 396–399, 1986.
 174. Raff, H., J. Maselli, and I. A. Reid. Correlation of plasma angiotensin II concentration and plasma renin activity during acute hypoxia in dogs. Clin. Exp. Pharmacol. Physiol. 12: 91–94, 1985.
 175. Raff, H., and T. P. Roarty. Renin, ACTH, and aldosterone during acute hypercapnia and hypoxia in conscious rats. Am. J. Physiol. 254 (Regulatory Integrative Comp. Physiol. 25): R431–R435, 1988.
 176. Raff, H., M. H. Rossing, S. K. Doepker, and S. C. Griffen. Vasopressin response to hemorrhage in the rat: effect of hypoxia and water restriction. Clin. Exp. Pharmacol. Physiol. 18: 725–729, 1991.
 177. Raff, H., R. B. Sandri, and T. P. Segerson. Renin, ACTH, and adrenocortical function during hypoxia and hemorrhage in conscious rats. Am. J. Physiol. 250 (Regulatory Integrative Comp. Physiol. 21): R240–R244, 1986.
 178. Raff, H., J. Shinsako, and M. F. Dallman. Surgery potentiates adrenocortical responses to hypoxia. Proc. Soc. Exp. Biol. Med. 172: 400–406, 1983.
 179. Raff, H., J. Shinsako, and M. F. Dallman. Renin and ACTH responses to hypercapnia and hypoxia after chronic carotid denervation. Am. J. Physiol. 247 (Regulatory Integrative Comp. Physiol. 18): R412–R417, 1984.
 180. Raff, H., J. Shinsako, L. C. Keil, and M. F. Dallman. Vasopressin, ACTH, and blood pressure during hypoxia induced at different rates. Am. J. Physiol. 245 (Endocrinol. Metab. 8): E489–E493, 1983.
 181. Raff, H., J. Shinsako, L. C. Keil, and M. F. Dallman. Vasopressin, ACTH, and corticosteroids during hypercapnia and graded hypoxia in dogs. Am. J. Physiol. 244 (Endocrinol. Metab. 7): E453–E458, 1983.
 182. Raff, H., J. Shinsako, L. C. Keil, and M. F. Dallman. Feedback inhibition of ACTH and vasopressin responses to hypoxia by physiological increases in endogenous plasma corticosteroids in dogs. Endocrinology 114: 1245–1249, 1984.
 183. Raff, H., S. P. Tzankoff, and R. S. Fitzgerald. ACTH and cortisol responses to hypoxia in dogs. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 51: 1257–1260, 1981.
 184. Raff, H., S. P. Tzankoff, and R. S. Fitzgerald. Chemoreceptor involvement in cortisol responses to hypoxia in ventilated dogs. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 52: 1092–1096, 1982.
 185. Raffestin, B., S. Adnot, J. J. Mercadier, M. Levame, P. Duc, P. Braquet, I. Viossat, and P. E. Chabrier. Synthesis and secretion of atrial natriuretic factor during chronic hypoxia: a study in the conscious instrumented rat. Clin. Sci. (Colch.) 78: 597–603, 1990.
 186. Ramirez, G., P. A. Bittle, M. Hammon, C. W. Ayers, J. R. Dietz, and G. L. Colice. Regulation of aldosterone secretion during hypoxemia at sea level and moderately high altitude. J. Clin. Endocrinol. Metab. 67: 1162–1165, 1988.
 187. Ramirez, G., M. Hammon, S. J. Agosti, P. A. Bittle, J. R. Dietz, and G. L. Colice. Effects of hypoxemia at sea level and high altitude on sodium excretion and hormonal levels. Aviat. Space Environ. Med. 63: 891–898, 1992.
 188. Rastogi, G. K., M. S. Malhotra, M. C. Srivastava, R. C. Sawhney, G. I. Dua, K. Sridharan, R. S. Hoon, and I. Singh. Study of the pituitary‐thyroid functions at high altitude in man. J. Clin. Endocrinol. Metab. 44: 447–452, 1977.
 189. Rattner, B. A., B. T. Macmillan, S. D. Michael, and P. D. Altland. Plasma gonadotrophins, prolactin, and corticosterone concentrations in male mice exposed to high altitude. J. Reprod. Fertil. 60: 431–436, 1980.
 190. Rattner, B. A., S. D. Michael, and P. D. Altland. Plasma concentrations of hypophyseal hormones and corticosterone in male mice acutely exposed to simulated high altitude. Proc. Soc. Exp. Biol. Med. 163: 367–371, 1980.
 191. Rattner, B. A., S. D. Michael, and H. J. Brinkley. Embryonic implantation, dietary intake, and plasma GH concentration in pregnant mice exposed to hypoxia. Aviat. Space Environ. Med. 49: 687–691, 1978.
 192. Raynaud, J., L. Drouet, J. P. Martineaud, J. Bordachar, J. Coudert, and J. Durand. Time course of plasma growth hormone during exercise in humans at altitude. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 50: 229–233, 1981.
 193. Richalet, J.‐P., V. Rutgers, P. Bouchet, J.‐C. Rymer, A. Keromes, G. Duval‐Arnould, and C. Rathat. Diurnal variations of acute mountain sickness, colour vision, and plasma cortisol and ACTH at high altitude. Aviat. Space Environ. Med. 60: 105–111, 1989.
 194. Rochat, T., A. F. Junod, and R. C. Gaillard. Circulating endogenous opioids and ventilatory response to CO2 and hypoxia. Respir. Physiol. 61: 85–93, 1985.
 195. Rose, C. E., R. J. Anderson, and R. M. Carey. Antidiuresis and vasopressin release with hypoxemia and hypercapnia in conscious dogs. Am. J. Physiol. 247 (Regulatory Integrative Camp. Physiol. 18): R127–R134, 1984.
 196. Rose, C. E., L. B. Latham, V. L. Brashers, K. Y. Rose, M. P. Sandridge, R. M. Carey, J. S. Althaus, and E. D. Miller. Hypoxemia and hypercapnia in conscious dogs: opioid modulation of catecholamines. Am. J. Physiol. 254 (Heart Circ. Physiol. 25): H72–H80, 1988.
 197. Sawhney, R. C., P. C. Chhabra, A. S. Malhotra, T. Singh, S. S. Riar, and R. M. Rai. Hormone profiles at high altitude in man. Andrologia 17: 178–184, 1985.
 198. Sawhney, R. C., and A. S. Malhotra. Thyroid function in sojourners and acclimatised low landers at high altitude in man. Horm. Metab. Res. 23: 81–84, 1991.
 199. Sawhney, R. C., A. S. Malhotra, T. Singh, R. M. Rai, and K. C. Sinha. Insulin secretion at high altitude in man. Int. J. Biometeorol. 30: 231–238, 1986.
 200. Schmidt, M., B. Wedler, C. Zingler, C. Ledderhos, and A. Honig. Kidney function during arterial chemoreceptor stimulation. II. Suppression of plasma aldosterone concentration due to hypoxic‐hypercapnic perfusion of the carotid bodies in anaesthetized cats. Biomed. Biochim. Acta 44: 711–722, 1985.
 201. Schmidt, W., G. Brabant, C. Kroger, S. Strauch, and A. Hilgendorf. Atrial natriuretic peptide during and after maximal and submaximal exercise under normoxic and hypoxic conditions. Eur. J. Appl. Physiol. 61: 398–407, 1990.
 202. Semple, P. d'A., G. H. Beastall, T. M. Brown, K. W. Stirling, R. J. Mills, and W. S. Watson. Sex hormone suppression and sexual impotence in hypoxic pulmonary fibrosis. Thorax 39: 46–51, 1984.
 203. Semple, P. d'A., G. H. Beastall, W. S. Watson, and R. Hume. Hypothalamic‐pituitary dysfunction in respiratory hypoxia. Thorax 36: 605–609, 1981.
 204. Share, L., and M. N. Levy. Effect of carotid chemoreceptor stimulation on plasma antidiuretic hormone titer. Am. J. Physiol. 210: 157–161, 1966.
 205. Shigeoka, J. W., G. L. Colice, and G. Ramirez. Effect of normoxemic and hypoxemic exercise on renin and aldosterone. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 59: 142–148, 1985.
 206. Singh, I., M. S. Malhotra, P. K. Khanna, R. B. Nanda, T. Purshottan, T. N. Upadhyay, U. Radhakrishnan, and H. D. Brahmachari. Changes in plasma cortisol, blood antidiuretic hormone and urinary catecholamine in high‐altitude pulmonary oedema. Int. J. Biometeorol. 18: 211–221, 1974.
 207. Slater, J. D. H., R. E. Tuffley, E. S. Williams, C. H. Beresford, P. H. Sonksen, R. H. T. Edwards, R. P. Ekins, and M. McLaughlin. Control of aldosterone secretion during acclimatization to hypoxia in man. Clin. Sci. (Colch.) 37: 327–341, 1969.
 208. Slater, J. D. H., E. S. Williams, R. H. T. Edwards, R. P. Ekins, P. H. Sonksen, C. H. Beresford, and M. McLaughlin. Potassium retention during the respiratory alkalosis of mild hypoxia in man: its relationship to aldosterone secretion and other metabolic changes. Clin. Sci. (Colch.) 37: 311–326, 1969.
 209. Sobrevilla, L. A., I. Romero, F. Moncloa, J. Donayre, and R. Guerra‐Garcia. Endocrine studies at high altitude. III. Urinary gonadotropins in subjects native to and living at 14,000 feet and during acute exposure of men living at sea level to high altitudes. Acta Endocrinol. 56: 369–375, 1967.
 210. Stark, R. I., S. S. Daniel, M. K. Husain, A. B. Zubrow, and L. S. James. Effects of hypoxia on vasopressin concentrations in cerebrospinal fluid and plasma of sheep. Neuroendocrinology 38: 453–460, 1984.
 211. Stark, R. I., S. L. Wardlaw, S. S. Daniel, M. K. Jusain, U. M. Sanocka, L. S. James, and R. L. Vande Wiele. Vasopressin secretion induced by hypoxia in sheep: developmental changes and relationship to β‐endorphin release. Am. J. Obstet. Gynecol. 143: 204–215, 1982.
 212. Steinbrook, R. A., S. E. Weinberger, D. B. Carr, E. Von Gal, J. Fisher, D. E. Leith, V. Fencl, and M. Rosenblatt. Endogenous opioids and ventilatory responses to hypoxia in normal humans. Am. Rev. Respir. Dis. 131: 588–591, 1985.
 213. Stewart, A. G., P. A. Bardsley, S. V. Baudouin, J. C. Waterhouse, J. S. Thompson, A. H. Morice, and P. Howard. Changes in atrial natriuretic peptide concentrations during intravenous saline infusion in hypoxic cor pulmonale. Thorax 46: 829–834, 1991.
 214. Stock, M. J., C. Chapman, J. L. Stirling, and I. T. Campbell. Effects of exercise, altitude, and food on blood hormone and metabolite levels. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 45: 350–354, 1978.
 215. Stockmann, P. T., D. H. Will, S. D. Sides, S. R. Brunnert, G. D. Wilner, K. M. Leahy, R. C. Wiegand, and P. Needleman. Reversible induction of right ventricular atriopeptin synthesis in hypertrophy due to hypoxia. Circ. Res. 63: 207–213, 1988.
 216. Story, D. A., B. R. Miller, C. M. Shield, and G. Bowes. Atrial natriuretic factor during hypoxia and mild exercise. Aviat. Space Environ. Med. 62: 287–290, 1991.
 217. Suarez, M. P., J. R. Varea Teran, G. Garces, C. Avila, D. H. Coy, and A. V. Schally. Pituitary response to luteinizing hormone‐releasing hormone analog at sea level and high altitudes. Obstet. Gynecol. 59: 52–57, 1982.
 218. Subramanian, R., B. Bhatia, and H. H. Siddiqui. Urine output and blood ADH in rats under different grades of hypoxia. In: Selected Topics in Environmental Biology, edited by B. Bhatia, G. S. Chinna, and B. Singh. New Delhi: Interprint, 1975, chapt. 50, p. 325–332.
 219. Surks, M. I. Effect of hypoxia and high altitude on thyroidal iodine metabolism in the rat. Endocrinology 78: 307–315, 1966.
 220. Surks, M. I. Effect of thyrotropin on thyroidal iodine metabolism during hypoxia. Am. J. Physiol. 216: 436–439, 1969.
 221. Sutton, J. R. Effect of acute hypoxia on the hormonal response to exercise. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 42: 587–592, 1977.
 222. Sutton, J. R., G. W. Viol, G. W. Gray, M. McFadden, and P. Keane. Renin, aldosterone, electrolyte, and cortisol responses to hypoxic decompression. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 43: 421–424, 1977.
 223. Towell, M. E., J. Figueroa, S. Markowitz, B. Elias, and P. Nathanielsz. The effect of mild hypoxemia maintained for twenty‐four hours on maternal and fetal glucose, lactate, cortisol, and arginine vasopressin in pregnant sheep at 122 to 139 days gestation. Am. J. Obstet. Gynecol. 157: 1550–1557, 1987.
 224. Tuffley, R. E., D. Rubenstein, J. D. H. Slater, and E. S. Williams. Serum renin activity during exposure to hypoxia. J. Endocrinol. 48: 497–510, 1970.
 225. Tunny, T. J., J. van Gelder, R. D. Gordon, S. A. Klemm, S. M. Hamlet, W. L. Finn, G. M. Carney, and C. Brand‐Maher. Effects of altitude on atrial natriuretic peptide: the Bicentennial Mount Everest Expedition. Clin. Exp. Pharmacol. Physiol. 16: 287–291, 1989.
 226. Vander, A. J., L. G. Moore, G. Brewer, K. M. J. Menon, and B. G. England. Effects of high altitude on plasma concentrations of testosterone and pituitary gonadotropins in man. Aviat. Space Environ. Med. 49: 356–357, 1978.
 227. Verzar, F., E. Sailer, and V. Vidovic. Changes in thyroid activity at low atmospheric pressures and at high altitudes, as tested with 131I. J. Endocrinol. 8: 308–320, 1952.
 228. Vonmoos, S., J. Nussberger, B. Waeber, J. Biollax, H. R. Brunner, and P. Leuenberger. Effect of metoclopramide on angiotensins, aldosterone, and atrial peptide during hypoxia. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 69: 2072–2077, 1990.
 229. Walker, B. R. Inhibition of hypoxia‐induced ADH release by meclofenamate in the conscious dog. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 54: 1624–1629, 1983.
 230. Wang, B. C., W. D. Sundet, and K. L. Goetz. Vasopressin in plasma and cerebrospinal fluid of dogs during hypoxia or acidosis. Am. J. Physiol. 247 (Endocrinol. Metab. 10): E449–E455, 1984.
 231. Wardlaw, S. L., R. I. Stark, S. Daniel, and A. G. Frantz. Effects of hypoxia on β‐endorphin and β‐lipotropin release in fetal, newborn, and maternal sheep. Endocrinology 108: 1710–1715, 1981.
 232. Weismann, D. N., J. E. Herrig, O. J. McWeeny, N. A. Ayres, and J. E. Robillard. Renal and adrenal responses to hypoxemia during angiotensin‐converting enzyme inhibition in lambs. Circ. Res. 52: 179–187, 1983.
 233. Winter, R. J. D., L. Meleagros, S. Pervex., H. Jamal, T. Krausz, J. M. Polak, and S. R. Bloom. Atrial natriuretic peptide levels in plasma and in cardiac tissues after chronic hypoxia in rats. Clin. Sci. (Colch.) 76: 95–101, 1989.
 234. Yamashita, H. Effect of baro‐ and chemoreceptor activation on supraoptic nuclei neurons in the hypothalamus. Brain Res. 126: 551–556, 1977.
 235. Yamashita, H., and K. Koizumi. Influence of carotid and aortic baroreceptors on neurosecretory neurons in the supraoptic nuclei. Brain Res. 170: 259–277, 1979.
 236. Zakheim, R. M., A. Molteni, L. Mattioli, and M. Park. Plasma angiotensin II levels in hypoxic and hypovolemic stress in unanesthetized rabbits. J. Appl. Physiol. 41: 462–465, 1976.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Hershel Raff. Endocrine Adaptation to Hypoxia. Compr Physiol 2011, Supplement 14: Handbook of Physiology, Environmental Physiology: 1259-1275. First published in print 1996. doi: 10.1002/cphy.cp040254