Comprehensive Physiology Wiley Online Library

Physiology of Extreme Altitude

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Barometric Pressure
2 Pulmonary Gas Exchange
2.1 Alveolar Gas Composition
2.2 Blood Gases and Acid‐Base Status
3 Maximal Oxygen Consumption
4 Cardiovascular System
5 Other Features
5.1 Central Nervous System
5.2 Sleep
5.3 Metabolic Changes
Figure 1. Figure 1.

Barometric pressure–altitude relationships. Upper line shows measurements made on Mt. Everest during AMREE. Lower line shows the relationship for the Standard Atmosphere 38. From 114.

Figure 2. Figure 2.

Mean monthly pressures for 8,848 m altitude obtained from weather balloons released from New Delhi, India. Note increase during summer months. Mean monthly standard deviation (SD) also shown. Barometric pressure measured on the Everest summit on October 24, 1981 (*) was unusually high. From 114.

Figure 3. Figure 3.

Oxygen–carbon dioxide diagram showing alveolar gas values collated by Rahn and Otis 72 together with values obtained at extreme altitudes by the AMREE expedition (triangles). From 112.

Figure 4. Figure 4.

Oxygen‐carbon dioxide diagram showing the two lines drawn by Rahn and Otis 72 for unacclimatized and acclimatized subjects at high altitude (compare Fig. 3. Alveolar gas failures for OEI, OEII, and AMREE are shown together with corresponding barometric pressures. Note that OEI subjects appeared to be poorly acclimatized at extreme altitudes, whereas OEII subjects had intermediate values. From 107.

Figure 5. Figure 5.

Maximum oxygen consumptions plotted against inspired Po2 for OEII and AMREE. Note that, although AMREE values were higher at sea level, values measured at the summit Po2 were essentially identical. From 109.

Figure 6. Figure 6.

Sensitivity of calculated maximal oxygen consumption to changes in several variables for a climber on the summit of Mt. Everest. Each variable was increased by 5%, leaving all others constant. From 102.

Figure 7. Figure 7.

Blood lactate concentrations measured at rest or shortly after maximal exercise at various altitudes. Most of the data are redrawn from Cerretelli 13. Filled circles and triangles show data for acclimatized Caucasians (C); open circles and triangles are for high‐altitude natives (N). Data for 6,300 m are from AMREE for acclimatized lowlanders. From 105.

Figure 8. Figure 8.

Cardiac output (by thermodilution) and stroke volume plotted against oxygen uptake and heart rate at barometric pressures of 760, 347, 282, and 240 mm Hg during OEII. For measurements at 240 mm Hg, subjects breathed an oxygen mixture to give an inspired Po2 of 43 mm Hg. From 74.

Figure 9. Figure 9.

Left ventricular ejection fractions at rest on the cycle ergometer and during peak exercise at sea level and at a simulated altitude of about 8,010 m. Note that ejection fraction was well preserved. From 91.

Figure 10. Figure 10.

Mean pulmonary artery pressure minus mean pulmonary wedge pressure plotted against cardiac output by thermodilution at various barometric pressures (PB) during OEII. For measurements at 240 mm Hg, subjects breathed an oxygen mixture to give an inspired Po2 of 43 mm Hg. From 30.

Figure 11. Figure 11.

Example of periodic breathing at altitude 6,300 m (barometric pressure 351 mm Hg). From 115.



Figure 1.

Barometric pressure–altitude relationships. Upper line shows measurements made on Mt. Everest during AMREE. Lower line shows the relationship for the Standard Atmosphere 38. From 114.



Figure 2.

Mean monthly pressures for 8,848 m altitude obtained from weather balloons released from New Delhi, India. Note increase during summer months. Mean monthly standard deviation (SD) also shown. Barometric pressure measured on the Everest summit on October 24, 1981 (*) was unusually high. From 114.



Figure 3.

Oxygen–carbon dioxide diagram showing alveolar gas values collated by Rahn and Otis 72 together with values obtained at extreme altitudes by the AMREE expedition (triangles). From 112.



Figure 4.

Oxygen‐carbon dioxide diagram showing the two lines drawn by Rahn and Otis 72 for unacclimatized and acclimatized subjects at high altitude (compare Fig. 3. Alveolar gas failures for OEI, OEII, and AMREE are shown together with corresponding barometric pressures. Note that OEI subjects appeared to be poorly acclimatized at extreme altitudes, whereas OEII subjects had intermediate values. From 107.



Figure 5.

Maximum oxygen consumptions plotted against inspired Po2 for OEII and AMREE. Note that, although AMREE values were higher at sea level, values measured at the summit Po2 were essentially identical. From 109.



Figure 6.

Sensitivity of calculated maximal oxygen consumption to changes in several variables for a climber on the summit of Mt. Everest. Each variable was increased by 5%, leaving all others constant. From 102.



Figure 7.

Blood lactate concentrations measured at rest or shortly after maximal exercise at various altitudes. Most of the data are redrawn from Cerretelli 13. Filled circles and triangles show data for acclimatized Caucasians (C); open circles and triangles are for high‐altitude natives (N). Data for 6,300 m are from AMREE for acclimatized lowlanders. From 105.



Figure 8.

Cardiac output (by thermodilution) and stroke volume plotted against oxygen uptake and heart rate at barometric pressures of 760, 347, 282, and 240 mm Hg during OEII. For measurements at 240 mm Hg, subjects breathed an oxygen mixture to give an inspired Po2 of 43 mm Hg. From 74.



Figure 9.

Left ventricular ejection fractions at rest on the cycle ergometer and during peak exercise at sea level and at a simulated altitude of about 8,010 m. Note that ejection fraction was well preserved. From 91.



Figure 10.

Mean pulmonary artery pressure minus mean pulmonary wedge pressure plotted against cardiac output by thermodilution at various barometric pressures (PB) during OEII. For measurements at 240 mm Hg, subjects breathed an oxygen mixture to give an inspired Po2 of 43 mm Hg. From 30.



Figure 11.

Example of periodic breathing at altitude 6,300 m (barometric pressure 351 mm Hg). From 115.

References
 1. Andrew, M., H. O'Brodovich, and J. Sutton. Operation Everest II: coagulation system during prolonged decompression to 282 torr. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 63: 1262–1267, 1987.
 2. Barcroft, J., C. A. Binger, A. V. Bock, J. H. Doggart, H. S. Forbes, and G. Harrop. Observations upon the effect of high altitude on the physiological processes of the human body, carried out in the Peruvian Andes, chiefly at Cerro de Pasco. Phil. Trans. R. Soc. Lond. B 211: 351–480, 1923.
 3. Berssenbrugge, A., J. Dempsey, C. Iber, J. Skatrud, and P. Wilson. Mechanisms of hypoxia‐induced periodic breathing during sleep in humans. J. Physiol. (Lond.) 343: 507–524, 1983.
 4. Bert, P. La Pression Barométrique. Paris: Masson, 1878. (English translation by M. A. Hitchcock and F. A. Hitchcock, College Book, 1943.).
 5. Blume, F. D. Metabolic and endocrine changes at altitude. In: High Altitude and Man, edited by J. B. West and S. Lahiri. Bethesda, MD: Am. Physiol. Soc., 1984, p. 37–45.
 6. Blume, F. D., S. J. Boyer, L. E. Braverman, and A. Cohen. Impaired osmoregulation at high altitude. JAMA 252: 1580–1585, 1984.
 7. Borgström, L., H. Johannsson, and B. K. Siesjö The relationship between arterial Po2 and cerebral blood flow in hypoxic hypoxia. Acta Physiol. Scand. 93: 423–243, 1975.
 8. Boutellier, U., H. Howald, P. E. de Prampero, D. Giezendanner, and P. Cerretelli. Human muscle adaptations to chronic hypoxia. Prog. Clin. Biol. Res. 136: 273–281, 1983.
 9. Boyer, S. J., and F. D. Blume. Weight loss and changes in body composition at high altitude. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 57: 1580–1585, 1984.
 10. Cavaletti, G., R. Moroni, P. Garavaglia, and G. Tredici. Brain damage after high‐altitude climbs without oxygen. Lancet i: 101, 1987.
 11. Cerretelli, P. Limiting factors to oxygen transport on Mount Everest. J. Appl. Physiol. 40: 658–667, 1976.
 12. Cerretelli, P. Metabolismo ossidativo ed anaerobico nel soggetto acclimatato alla altitudine. Minerva Aerospace 67: 11–26, 1976.
 13. Cerretelli, P. Gas exchange at high altitude. In: Pulmonary Gas Exchange, edited by J. B. West. New York: Academic, 1980, vol. II, p. 97–147.
 14. Cerretelli, P., C. Marconi, O. Dériaz, and D. Giezendanner. After effects of chronic hypoxia on cardiac output and muscle blood flow at rest and exercise. Eur. J. Appl. Physiol. 53: 92–96, 1984.
 15. Chesner, I. M., N. A. Small, and P. W. Dykes. Intestinal absorption at high altitude. Postgrad. Med. J. 63: 173–175, 1987.
 16. Christensen, C. H., and W. H. Forbes. Der Kreislauf in grossen Hohen. Skand. Arch. Physiol. 76: 75–100, 1937.
 17. Clark, C. F., R. K. Heaton, and A. N. Wiens. Neuropsychological functioning after prolonged high altitude exposure in mountaineering. Aviat. Space Environ. Med. 54: 202–207, 1983.
 18. Cotes, J. E. Ventilatory capacity at altitude and its relation to mask design. Proc. R. Soc. Lond. B 143: 32–39, 1954.
 19. Cummings, P., and M. Lysgaard. Cardiac arrythmia at high altitude. West. J. Med. 135: 66–68, 1981.
 20. Cymerman, A., J. T. Reeves, J. R. Sutton, P. B. Rock, B. M. Groves, M. K. Malconian, P. M. Young, P. D. Wagner, and C. S. Houston. Operation Everest II: maximal oxygen uptake at extreme altitude. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 66: 2446–2453, 1989.
 21. Douglas, C. G., J. A. Haldane, Y. Henderson, and E. C. Schneider. Physiological observations made on Pike's Peak, Colorado, with special reference to adaptation to low barometric pressures. Phil. Trans. R. Soc. Lond. B 203: 185–381, 1913.
 22. Edwards, H. T. Lactic acid in rest and work at high altitude. Am. J. Physiol. 116: 367–375, 1936.
 23. Filippi, de, F. Karakorum and Western Himalaya. London: Constable, 1912.
 24. FitzGerald, M. P. The changes in the breathing and the blood of various altitudes. Phil. Trans. R. Soc. Lond. B 203: 351–371, 1913.
 25. Garner, S. H., J. R. Sutton, R. L. Burse, A. J. McComas, A. Cymerman, and C. S. Houston. Operation Everest II: neuromuscular performance under conditions of extreme simulated altitude. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 68: 1167–1172, 1990.
 26. Gill, M. B., E. C. Poulton, A. Carpenter, M. M. Woodhead, and M. H. P. Gregory. Falling efficiency at sorting cards during acclimatization at 19,000 ft. Nature 203: 436, 1964.
 27. Glazier, J. B., J. M. B. Hughes, J. E. Maloney, and J. B. West. Measurements of capillary dimensions and blood volume in rapidly frozen lungs. J. Appl. Physiol. 26: 65–76, 1969.
 28. Green, H. J., J. Sutton, P. Young, A. Cymerman, and C. S. Houston. Operation Everest II: muscle energetics during maximal exhaustive exercise. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 66: 142–150, 1989.
 29. Grollman, A. Physiological variations of the cardiac output of man. VII. The effect of high altitude on the cardiac output and its related functions: an account of experiments conducted on the summit of Pikes Peak, Colorado. Am. J. Physiol. 93: 19–40, 1930.
 30. Groves, B. M., J. T. Reeves, J. R. Sutton, P. D. Wagner, A. Cymerman, M. K. Malconian, P. B. Rock, P. M. Young, and C. S. Houston. Operation Everest II: elevated high‐altitude pulmonary resistance unresponsive to oxygen. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 63: 521–530, 1987.
 31. Harper, A. M., and H. I. Glass. Effect of alterations in the arterial carbon dioxide tension on the blood flow through the cerebral cortex at normal and low arterial blood pressures. J. Neurol. Neurosurg. Psychiatr. 28: 449–452, 1965.
 32. Hinchliff, T. W. Over the Sea and Far Away. London: Longmans Green, 1876.
 33. Hitchcock, F. A. Animals in high altitudes: early balloon flights. In: Handbook of Physiology. Adaptation to the Environment, edited by D. B. Dill and E. F. Adolph. Washington, DC: Am. Physiol. Soc., 1964.
 34. Hornbein, T. F., B. D. Townes, R. B. Schoene, J. R. Sutton, and C. S. Houston. The cost to the central nervous system of climbing to extremely high altitude. N. Engl. J. Med. 321: 1714–1719, 1989.
 35. Houston, C. S., A. Cymerman, and J. R. Sutton. Operation Everest II: Biomedical Studies during a Simulated Ascent of Mt. Everest. Natick, MA: U. S. Army Res. Inst. Exp. Med., 1991.
 36. Houston, C. S., and R. L. Riley. Respiratory and circulatory changes during acclimatization to high altitude. Am. J. Physiol. 149: 565–588, 1947.
 37. Houston, C. S., J. R. Sutton, A. Cymerman, and J. T. Reeves. Operation Everest II: man at extreme altitude. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 63: 877–882, 1987.
 38. International Civil Aviation Organization. Manual of the ICAO Standard Atmosphere (2nd ed.) Montreal: Int. Civil Aviation Org., 1964.
 39. Karliner, J. S., F. F. Sarnquist, D. M. Graber, Jr., R. M. Peters, and J. B. West. The electrocardiogram at extreme altitude: experience on Mt. Everest. Am. Heart J. 109: 505–513, 1985.
 40. Kellas, A. M. A consideration of the possibility of ascending the loftier Himalaya. Geogr. J. 49: 26–47, 1917.
 41. Kellas, A. M. Sur les possibilités de faire l'ascension du Mount Everest. Comptes Rendus Seances 1: 451–521, 1921.
 42. Keys, A. The physiology of life at high altitude: the International High Altitude Expedition to Chile 1935. Sci. Monthly 43: 289–312, 1936.
 43. Khoo, M. C. K., R. E. Kronauer, K. P. Strohl, and A. S. Slutsky. Factors inducing periodic breathing in humans: a general model. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 53: 644–659, 1982.
 44. Kontos, H. A., J. E. Levasseur, D. W. Richardson, H. P. Mauck, Jr., and J. L. Patterson, Jr. Comparative circulatory responses to systemic hypoxia in man and in unanesthetized dog. J. Appl. Physiol. 23: 381–386, 1967.
 45. Lahiri, S., and P. Barnard. Role of arterial chemoreflex in breathing during sleep at high altitude. In: Hypoxia, Exercise and Altitude, edited by J. R. Sutton, C. S. Houston, and N. L. Jones. New York: Liss, 1983, p. 75–85.
 46. Lahiri, S., K. Maret, and M. G. Sherpa. Dependence of high altitude sleep apnea on ventilatory sensitivity to hypoxia. Respir. Physiol. 52: 281–301, 1983.
 47. Lahiri, S., K. H. Maret, M. G. Sherpa, and R. M. Peters, Jr. Sleep and periodic breathing at high altitude: Sherpa natives versus sojourners. In: High Altitude and Man, edited by J. B. West and S. Lahiri. Bethesda, MD: Am. Physiol. Soc., 1984, p. 73–90.
 48. MacDougall, J. D., H. J. Green, J. R. Sutton, G. Coates, A. Cymerman, P. Young, and C. S. Houston. Operation Everest II: structural adaptations in sketetal muscle in response to extreme simulated altitude. Acta Physiol. Scand. 142: 421–427, 1991.
 49. Malconian, M., H. Hultgren, M. Nitta, J. Anholm, C. Houston, and H. Fails. The sleep electrocardiogram at extreme altitudes (Operation Everest II). Am. J. Cardiol. 65: 1014–1020, 1990.
 50. Malconian, M. K., P. B. Rock, J. T. Reeves, and C. S. Houston. Operation Everest II: gas tensions in expired air and arterial blood at extreme altitude. Aviat. Space Environ. Med. 64: 37–42, 1993.
 51. Masuyama, S., H. Kimura, T. Sugita, T. Kuriyama, K. Tatsumi, F. Kunitomo, S. Okita, H. Tojima, Y. Yuguchi, S. Watanabe, and Y. Honda. Control of ventilation in extreme‐altitude climbers. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 61: 500–506, 1986.
 52. Mecham, R. P., L. A. Whitehouse, D. S. Wrenn, W. C. Parks, G. L. Griffin, R. M. Senior, E. C. Crouch, K. R. Stenmark, and N. F. Voelkel. Smooth muscle‐mediated connective tissue remodeling in pulmonary hypertension. Science 237: 423–426, 1987.
 53. Meehan, R., U. Duncan, L. Neale, G. Taylor, H. Muchmore, N. Scott, K. Ramsey, E. Smith, P. Rock, R. Goldblum, and C. Houston. Operation Everest II: alterations in the immune system at high altitudes. J. Clin. Immunol. 8: 397–406, 1988.
 54. Messner, R. Everest: Expedition to the Ultimate. London: Kaye and Ward, 1979.
 55. Meyrick, B., and L. Reid. Hypoxia‐induced structural changes in the media and adventitia of the rat hilar pulmonary artery and their regression. Am. J. Pathol. 100: 151–169, 1980.
 56. Milledge, J. S. Electrocardiographic changes at high altitude. Br. Heart J. 25: 291–298, 1962.
 57. Milledge, J. S., M. P. Ward, E. S. Williams, and C. R. A. Clarke. Cardiorespiratory response to exercise in men repeatedly exposed to extreme altitude. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 55: 1379–1385, 1983.
 58. Mosso, A. Life of Man on the High Alps. London: Fisher Unwin, 1898, p. 42–47.
 59. National Oceanic and Atmospheric Administration. U.S. Standard Atmosphere. Washington, DC: Nat. Oceanic Atmos. Admin., 1976.
 60. Norton, E. F. Norton and Somervell's attempt in: The Fight for Everest, 1924, edited by E. F. Norton. London: Arnold, 1925, p. 99–119.
 61. Oelz, O., H. Howald, P. E. di Prampero, H. Hoppeler, H. Claassen, R. Jenni, A. Bühlmann, G. Ferretti, J.‐C. Brückner, A. Veicsteinas, M. Gussoni, and P. Cerretelli. Physiological profile of world‐class high‐altitude climbers. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 60: 1734–1742, 1986.
 62. Otis, A. B. The work of breathing. In: Handbook of Physiology. Respiration, edited by W. O. Fenn and H. Rahn. Washington DC: Am. Physiol. Soc., 1964, vol. I, p. 463–476.
 63. Peñaloza, D., F. Sime, N. Banchero, R. Gamboa, J. Cruz, and E. Marticorena. Pulmonary hypertension in healthy men born and living at high altitudes. Am. J. Cardiol. 11: 150–157, 1963.
 64. Petit, J. M., G. Milie‐Emili, and J. Troquet. Travail dynamique pulmonaire et altitude. Rev. Med. Aeronaut. 2: 276–279, 1963.
 65. Piiper, J., and P. Scheid. Blood‐gas equilibration in lungs. In: Pulmonary Gas Exchange. Ventilation, Blood Flow, and Diffusion, edited by J. B. West. New York: Academic, 1980, vol. 1, p. 131–171.
 66. Poiani, G. J., C. A. Tozzi, S. E. Yohn, R. A. Pierce, S. A. Belsky, R. A. Berg, S. Y. Yu, S. B. Deak, and D. J. Riley. Collagen and elastin metabolism in hypertensive pulmonary arteries of rats. Circ. Res. 66: 968–978, 1990.
 67. Pugh, L. G. C. E. Resting ventilation and alveolar air on Mount Everest: with remarks on the relation of barometric pressure to altitude in mountains. J. Physiol. (Lond.) 135: 590–610, 1957.
 68. Pugh, L. G. C. E. Physiological and medical aspects of the Himalayan Scientific and Mountaineering Expedition, 1960‐6. Br. Med. J. 2: 621–633, 1962.
 69. Pugh, L. G. C. E. Animals in high altitudes: man above 5000 m—mountain exploration. In: Handbook of Physiology. Adaptation to the Environment, edited by D. B. Dill and E. F. Adolph. Washington, DC: Am. Physiol. Soc., 1964, sect. 4.
 70. Pugh, L. G. C. E. Cardiac output in muscular exercise at 5800 m (19,000 ft.). J. Appl. Physiol. 19: 441–447, 1964.
 71. Pugh, L. G. C. E., M. B. Gill, S. Lahiri, J. S. Milledge, M. P. Ward, and J. B. West. Muscular exercise at great altitudes. J. Appl. Physiol. 19: 431–440, 1964.
 72. Rahn, H., and W. O. Fenn. A Graphical Analysis of the Respiratory Gas Exchange. Washington, DC: Am. Physiol. Soc., 1955.
 73. Rahn, H., and A. B. Otis. Man's respiratory response during and after acclimatization to high altitude. Am. J. Physiol. 157: 445–462, 1949.
 74. Rai, R. M., M. S. Malhotra, G. P. Dimri, and T. Sampathkumar. Utilization of different quantities of fat at high altitude. Am. J. Clin. Nutr. 28: 242–245, 1975.
 75. Reeves, J. T., B. M. Groves, J. R. Sutton, P. D. Wagner, A. Cymerman, M. K. Malconian, P. B. Rock, P. M. Young, and C. S. Houston. Operation Everest II: preservation of cardiac function at extreme altitude. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 63: 531–539, 1987.
 76. Regard, M., O. Oelz, P. Brugger, and T. Landis. Persistent cognitive impairment in climbers after repeated exposure to extreme altitude. Neurology 39: 210–213, 1989.
 77. Reite, M., D. Jackson, R. L. Cahoon, and J. V. Weil. Sleep physiology at high altitude. Electroencephalogr. Clin. Neurophysiol. 38: 463–471, 1975.
 78. Rennie, D. Will mountain trekkers have heart attacks? JAMA 261: 1045–1046, 1989.
 79. Rennie, M. J., P. Babij, J. R. Sutton, W. J. Tonkins, W. W. Read, C. Ford, and D. Halliday. Effects of acute hypoxia on forearm leucine metabolism. In: Hypoxia, Exercise and Altitude, edited by J. R. Sutton, C. S. Houston, and N. L. Jones. New York: Liss, 1983, p. 317–323.
 80. Richardson, T. Q., and A. C. Guyton. Effects of polycythemia and anemia on cardiac output and other circulatory factors. Am. J. Physiol. 197: 1167–1170, 1959.
 81. Riley, R. L., and C. S. Houston. Composition of alveolar air and volume of pulmonary ventilation during long exposure to high altitude. J. Appl. Physiol. 3: 526–534, 1951.
 82. Rose, M. S., C. S. Houston, C. S. Fulco, G. Coates, J. R. Sutton, and A. Cymerman. Operation Everest II: nutrition and body composition. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 65: 2545–2551, 1988.
 83. Rotta, A., A. Cánepa, A. Hurtado, T. Velásquez, and R. Chávez. Pulmonary circulation at sea level and at high altitudes. J. Appl. Physiol. 9: 328–336, 1956.
 84. Ryn, Z. Psychopathology in alpinism. Acta Med. Pol. 12: 453–467, 1971.
 85. Sarnquist, F. H., R. B. Schoene, P. H. Hackett, and B. D. Townes. Hemodilution of polycythemic mountaineers: effects on exercise and mental function. Aviat. Space Environ. Med. 57: 313–317, 1986.
 86. Schoene, R. B. Control of ventilation in climbers to extreme altitude. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 53: 886–890, 1982.
 87. Schoene, R. B., P. H. Hackett, and R. C. Roach. Blunted hypoxic chemosensitivity at altitude and sea level in an elite high altitude climber. In: Hypoxia and Cold, edited by J. R. Sutton, C. S. Houston, and G. Coates. New York: Praeger, 1987, p. 532.
 88. Schoene, R. B., S. Lahiri, P. H. Hackett, R. M. Peters, Jr., J. S. Milledge, C. J. Pizzo, F. H. Sarnquist, S. J. Boyer, D. J. Graber, K. H. Maret, and J. B. West. Relationship of hypoxic ventilatory response to exercise performance on Mount Everest. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 56: 1478–1483, 1984.
 89. Sharma, V. M., and M. S. Malhotra. Ethnic variations in psychological performance under altitude stress. Aviat. Space Environ. Med. 47: 248–251, 1976.
 90. Sharma, V. M., M. S. Malhotra, and A. S. Baskaran. Variations in psychometer efficiency during prolonged stay at high altitude. Ergonomics 18: 511–516, 1975.
 91. Sime, F., D. Peñnaloza, L. Ruiz, N. Gonzales, E. Covarrubias, and R. Postigo. Hypoxemia, pulmonary hypertension, and low cardiac output in newcomers at low altitude. J. Appl. Physiol. 36: 561–565, 1974.
 92. Suarez, J., J. K. Alexander, and C. S. Houston. Enhanced left ventricular systolic performance at high altitude during Operation Everest II. Am. J. Cardiol. 60: 137–142, 1987.
 93. Sutton, J. R., C. S. Houston, A. L. Mansell, M. McFadden, P. Hackett, J. R. A. Rigg, and C. P. Powles. Effect of acetazolamide on hypoxemia during sleep at high altitude. N. Engl. J. Med. 301: 1329–1331, 1979.
 94. Sutton, J. R., J. T. Reeves, P. D. Wagner, B. M. Groves, A. Cymerman, M. K. Malconian, P. B. Rock, P. M. Young, S. D. Walter, and C. S. Houston. Operation Everest II: oxygen transport during exercise at extreme simulated altitude. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 64: 1309–1321, 1988.
 95. Townes, B. D., T. F. Hornbein, R. B. Schoene, F. H. Sarnquist, and I. Grant. Human cerebral function at extreme altitude. In: High Altitude and Man, edited by J. B. West and S. Lahiri. Bethesda, MD: Am. Physiol. Soc., 1984, p. 31–36.
 96. Tozzi, C. A., G. J. Poiani, A. M. Harangozo, C. D. Boyd, and D. J. Riley. Pressure‐induced connective tissue synthesis in pulmonary artery segments is dependent on intact endothelium. J. Clin. Invest. 84: 1005–1012, 1989.
 97. Vogel, J. A., J. E. Hansen, and C. W. Harris. Cardiovascular responses in man during exhaustive work at sea level and high altitude. J. Appl. Physiol. 23: 531–539, 1967.
 98. Vogel, J. A., and C. W. Harris. Cardiopulmonary responses of resting man during early exposure to high altitude. J. Appl. Physiol. 22: 1124–1128, 1967.
 99. Vogel, J. A., L. H. Hartley, and J. C. Cruz. Cardiac output during exercise in altitude natives at sea level and high altitude. J. Appl. Physiol. 36: 173–176, 1974.
 100. Wagner, P. D., J. R. Sutton, J. T. Reeves, A. Cymerman, B. M. Groves, and M. K. Malconian. Operation Everest II. Pulmonary gas exchange during a simulated ascent of Mt. Everest. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 63: 2348–2359, 1987.
 101. Ward, M. P., J. S. Milledge, and J. B. West. High Altitude Medicine and Physiology. London: Chapman and Hall, 1989.
 102. Weil, J. V., M. H. Kryger, and C. H. Scoggin. Sleep and breathing at high altitude. In: Sleep Apnea Syndromes, edited by C. Guilleminault and W. Dement. New York: Liss, 1978, p. 119–136.
 103. West, J. B. Climbing Mt. Everest without oxygen: an analysis of maximal exercise during extreme hypoxia. Respir. Physiol. 52: 265–279, 1983.
 104. West, J. B. “Oxygenless” climbs and barometric pressure. Am. Alpine J. 58: 126–132, 1984.
 105. West, J. B. Highest inhabitants in the world. Nature 324: 517, 1986.
 106. West, J. B. Lactate during exercise at extreme altitude. Federation Proc. 45: 2953–2957, 1986.
 107. West, J. B. Alexander M. Kellas and the physiological challenge of Mt. Everest. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 63: 3–11, 1987.
 108. West, J. B. Rate of ventilatory acclimatization to extreme altitude. Respir. Physiol. 74: 323–333, 1988.
 109. West, J. B. The safety of trekking at high altitude after coronary bypass surgery. JAMA 260: 2218–2219, 1988.
 110. West, J. B. Limiting factors for exercise at extreme altitude. Clin. Physiol. 10: 265–272, 1990.
 111. West, J. B. Acclimatization and tolerance to extreme altitude. J. Wild. Med. 4: 17–26, 1993.
 112. West, J. B., S. J. Boyer, D. J. Graber, P. H. Hackett, K. H. Maret, J. S. Milledge, R. M. Peters, Jr., C. J. Pizzo, M. Samaja, F. H. Sarnquist, R. B. Schoene, and R. M. Winslow. Maximal exercise at extreme altitudes on Mount Everest. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 55: 688–698, 1983.
 113. West, J. B., P. H. Hackett, K. H. Maret, J. S. Milledge, R. M. Peters, Jr., C. J. Pizzo, and R. M. Winslow. Pulmonary gas exchange on the summit of Mt. Everest. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 55: 678–687, 1983.
 114. West, J. B., S. Lahiri, M. B. Gill, J. S. Milledge, L. G. C. E. Pugh, and M. P. Ward. Arterial oxygen saturation during exercise at high altitude. J. Appl. Physiol. 17: 617–621, 1962.
 115. West, J. B., S. Lahiri, K. H. Maret, R. M. Peters, Jr., and C. J. Pizzo. Barometric pressures at extreme altitudes on Mt. Everest: physiological significance. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 54: 1188–1194, 1983.
 116. West, J. B., R. M. Peters, Jr., G. Aksnes, K. H. Maret, J. S. Milledge, and R. B. Schoene. Nocturnal periodic breathing at altitudes of 6,300 and 8,050 m. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 61: 280–287, 1986.
 117. Winslow, R. M., C. C. Monge, E. G. Brown, H. G. Klein, F. Sarnquist, N. J. Winslow, and S. S. McKneally. Effects of hemodilution of O2 transport in high‐altitude polycythemia. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 59: 1495–1502, 1985.
 118. Young, P. M., M. S. Rose, J. R. Sutton, H. J. Green, A. Cymerman, and C. S. Houston. Operation Everest II: plasma lipid and hormonal responses during a simulated ascent of Mt. Everest. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 66: 1430–1435, 1989.
 119. Zuntz, N., A. Loewy, F. Muller, and W. Caspari. Atmospheric pressure at high altitudes. In: Höhenklima und Bergwanderungen in ihrer Wirkung auf den Menschen. Berlin: Bong, 1906. (Translation of relevant pages in: High Altitude Physiology, edited by J. B. West. Stroudsburg, PA: Hutchins Ross, 1981).

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

John B. West. Physiology of Extreme Altitude. Compr Physiol 2011, Supplement 14: Handbook of Physiology, Environmental Physiology: 1307-1325. First published in print 1996. doi: 10.1002/cphy.cp040257