Comprehensive Physiology Wiley Online Library

Physiology of prevertebral ganglia in mammals with special reference to inferior mesenteric ganglion

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Neuroanatomy of Prevertebral Ganglia
1.1 General Descriptions
1.2 Components of Prevertebral Ganglia
2 Innervation of Prevertebral Ganglia
2.1 Spinal Preganglionic Neurons to Prevertebral Ganglion Cells
2.2 Visceral Afferent Fibers to Prevertebral Ganglion Cells
3 Electrophysiology of Prevertebral Ganglion Cells
3.1 Resting Membrane Potential
3.2 Neuromodulation of Resting Membrane Potential
3.3 Other Modulations of Resting Membrane Potential
3.4 Firing Patterns of Sympathetic Neurons
3.5 Modification of Firing Patterns
3.6 Afterspike Hyperpolarizations of Sympathetic Neurons
4 Synaptic Transmission in Prevertebral Ganglia
4.1 Fast Synaptic Transmission
4.2 Slow Synaptic Transmission
5 Neurotransmitters in Prevertebral Ganglia
5.1 Substance P
5.2 Enkephalins and Endorphin
5.3 Vasoactive Intestinal Polypeptide
5.4 Cholecystokinin
5.5 Dynorphin
5.6 Bombesin
5.7 Calcitonin Gene‐Related Peptide
5.8 Neurotensin
5.9 Serotonin
5.10 Vasopressin
5.11 Somatostatin and Neuropeptide Y
6 Summary
Figure 1. Figure 1.

Celiac superior and inferior mesenteric ganglia and associated structures in male guinea pig. Orad is at left and ventral is up.

From Kreulen and Szurszewski
Figure 2. Figure 2.

Pelvic‐hypogastric plexus. Principal ganglion cells are scattered throughout region where hypogastric and pelvic nerves intersect. HG.N., hypogastric nerve; S.V., seminal vesicles; V.D., vas deferens; P, prostate gland; C, coagulating gland; B, urinary bladder; pelv. N., pelvic nerves; L, lumbar root; and S, sacral nerve.

Figure 3. Figure 3.

Responses of principal ganglion cell of inferior mesenteric ganglion of guinea pig to increasing depolarizing current pulses applied through intracellular microelectrode. Note that successive increases in strength of depolarizing current pulse increased frequency of action potentials. In each panel, upper trace is membrane potential, bottom trace is current monitor.

From Crowcroft and Szurszewski
Figure 4. Figure 4.

Responses of presumed small intensely fluorescing (SIF) cells to depolarizing (A) and hyperpolarizing (B) current pulses applied through intracellular microelectrode and to orthodromic nerve stimulation (C‐F). Responses in A and B obtained from a presumed SIF cell located in a pelvic‐hypogastric ganglion of guinea pig. Note that depolarizing current >1 nA was needed to initiate action potentials. Top trace, membrane potential; bottom trace, current monitor. C, synaptic responses due to stimulation of left pelvic nerve 52 mm from recording site; it consists of three superimposed traces. D, recordings obtained from another presumed SIF cell in inferior mesenteric ganglion of guinea pig. Responses due to repetitive stimulation of intermesenteric nerve (20 Hz for 1 s). Responses are subthreshold EPSPs recorded at high gain. E, F, recordings obtained from two presumed SIF cells in inferior mesenteric ganglia of two guinea pigs. Response in E due to suprathreshold stimulation of intermesenteric nerve (40 Hz for 0.2 s) and response in F due to repetitive stimulation of lumbar colonic nerve (40 Hz for 0.2 s). Note that after single action potential (E) or burst of action potentials (F), membrane potential returned to base line without passing through after spike hyperpolarization. Resting membrane potential of these four cells ranged from −86 to −80 mV. Calibrations for recordings: C, 60 mV and 60 ms; D, 15 mV and 3 s; E, 60 mV and 30 ms; F, 80 mV and 0.86 s.

Recordings from J. H. Szurszewski and P. J. Crowcroft
Figure 5. Figure 5.

Response of satellite cell of inferior mesenteric ganglion of guinea pig to depolarizing current pulses applied through intracellular microelectrode (A) and to suprathreshold repetitive stimulation of lumbar colonic nerve (B). Note that this cell type is inexcitable to both forms of stimulation. Depolarization of membrane during repetitive nerve stimulation has been attributed to accumulation of K+ in extracellular spaces.

Recording from J. H. Szurszewski and P. J. Crowcroft
Figure 6. Figure 6.

Electron micrographs of two principal ganglion cells of pelvic‐hypogastric ganglion of guinea pig. Top panel, principal ganglion cell (GC), 25 μm diam, is surrounded by satellite cell containing large nucleus. Bottom panel, higher‐power electron micrograph of region of principal ganglion cell with tuftlike ganglion cell processes (GCP) and varicosities of axons.

Electron micrographs from J. H. Szurszewski and A. Ostberg
Figure 7. Figure 7.

High‐power electron micrograph of synapse of preganglionic axon with ganglion cell process of pelvic‐hypogastric ganglion of guinea pig. Varicosity of preganglionic axon contains agranular vesicles (AGV) and large granular vesicles (LGV).

Electron micrograph from J. H. Szurszewski, A. Ostberg, and P. J. Crowcroft
Figure 8. Figure 8.

Electron micrograph of small intensely fluorescing (SIF) cell of inferior mesenteric ganglion of guinea pig. Note numerous vesicles (1,000–1,600 Å diam), each containing large densely staining granule (400–900 Å diam). SIF cell enveloped by satellite cell (SC) with numerous mitochondria and large nucleus (N). This SIF cell is type I and is surrounded by portions of four other SIF cells.

Electron micrograph from J. H. Szurszewski, A. Ostberg, and P. J. Crowcroft
Figure 9. Figure 9.

Location of main nuclei of sympathetic preganglionic neurons of spinal cord of dog. IMLp, nucleus intermediolateralis pars principalis; IMLf, nucleus intermediolateralis pars funicularis; IML, nucleus intermediolateralis; IC, nucleus intercalatus spinalis; ICPe, nucleus intercalatus pars paraependymalis.

From Petras and Faden
Figure 10. Figure 10.

Location of four principal groups of sympathetic preganglionic neurons of lumbar segment of spinal cord of guinea pig. IMLp, nucleus intermediolateralis pars principalis; IMLf, nucleus intermediolateralis pars funicularis; IC, nucleus intercalatus spinalis; ICPe, nucleus intercalatus pars paraependymalis.

Figure 11. Figure 11.

Frequency histogram of conduction velocities of preganglionic fibers in different trunks attached to nerve inferior mesenteric ganglion of guinea pig.

Data from J. H. Szurszewski and P. J. Crowcroft
Figure 12. Figure 12.

Ongoing rhythmic discharge of action potentials recorded intracellularly from four neurons of four preparations of cat inferior mesenteric ganglia. In each record, note slow depolarization in membrane potential preceding each action potential. Frequency of action potentials: A, 0.6 Hz; B, 2.3 Hz; C, 3.2 Hz; D, 12.9 Hz.

From Julé and Szurszewski
Figure 13. Figure 13.

Relationship between endogenously active spinal sympathetic preganglionic neurons and endogenously active neurons located in inferior mesenteric ganglion of cat. CM, enteric cholinergic motoneuron; SN, sympathetic neuron; ˜, spontaneously active neuron.

Figure 14. Figure 14.

Excitatory synaptic activity in principal ganglion cell in inferior mesenteric ganglion of guinea pig before and after cutting lumbar colonic nerves that connected ganglion to segment of distal colon. After cutting lumbar colonic nerves, all synaptic input was abolished. Dot indicates moment of cutting nerve.

From Crowcroft et al.
Figure 15. Figure 15.

Effect of increasing colonic intraluminal pressure on excitatory synaptic input to principal ganglion cell in guinea pig inferior mesenteric ganglion. Intraluminal pressure was measured at both proximal (P) and distal (D) ends of colonic segment. In each panel, bottom trace is intracellularly recorded electrical activity from same cell during three different levels of maintained pressure: 2, 6, and 8 cmH2O. Each increase in basal pressure caused increase in incidence of excitatory synaptic input that was maintained as long as increase in pressure was maintained (longest duration, 1 h).

From Weems and Szurszewski . Copyright 1977. Reprinted with permission by the American Gastroenterological Association
Figure 16. Figure 16.

Effect of spontaneous increase in colonic intraluminal pressure on excitatory synaptic input to principal ganglion cell in guinea pig inferior mesenteric ganglion. Upper trace, intraluminal pressure measured from orad end of colonic segment. Lower trace, intracellularly recorded electrical activity. Note that spontaneous increase in basal intraluminal pressure caused increase in excitatory synaptic input and depolarization of cell membrane potential. Dashed line in lower trace represents apparent membrane potential before spontaneous change in pressure.

From Weems and Szurszewski
Figure 17. Figure 17.

Effect of superfusing colon only with tubocurarine on excitatory synaptic input to principal ganglion cell in guinea pig inferior mesenteric ganglion. Two‐compartment organ bath allowed for addition of antagonist to colon only. A, synaptic input when colonic segment was bathed in normal Krebs solution. B, synaptic input 5 min after adding tubocurarine to solution bathing colonic segment. C, effect of distending colonic segment with air when tubocurarine was still present in solution bathing segment of colon. Note that distension caused immediate increase in excitatory synaptic input during blockade of nicotinic receptors in colon wall. This suggests that population of mechanosensitive fibers project to inferior mesenteric ganglion without intervening nicotinic synapse. All recordings from same cell. Recording in C continuous with recording in B

From Szurszewski and Weems
Figure 18. Figure 18.

Neural connections between inferior mesenteric ganglion and colon of guinea pigs. Darkened enteric ganglionic cells represent peripheral, cholinergic afferent mechanosensory pathway. SN, sympathetic neuron; CM, enteric cholinergic motoneuron; MP, myenteric plexus.

Figure 19. Figure 19.

Examples of excitatory synaptic input to two different principal ganglion cells in right celiac ganglion (A and B) and to principal ganglion cell in superior mesenteric ganglion (C).

From Kreulen and Szurszewski
Figure 20. Figure 20.

Intracellular recording from principal ganglion cell in guinea pig superior mesenteric ganglion receiving excitatory synaptic input from attached segment of colon. In A, distension of colon caused immediate increase in synaptic input. In B, most of fibers running in lumbar colonic nerve were cut during maintained distension. Note sharp decrease in synaptic input. In C, all but one fiber running in lumbar colonic nerve were cut.

From Kreulen and Szurszewski
Figure 21. Figure 21.

Peripheral pathways mediating colocolonic inhibitory reflex. SN, sympathetic neuron; CM, enteric cholinergic motorneuron; MP, myenteric plexus. Darkened enteric ganglion cells represent afferent, cholinergic mechanosensory pathway. All unmarked synapses are excitatory.

Figure 22. Figure 22.

Peripheral pathways mediating gastroduodenal inhibitory reflex. SN, sympathetic neuron; CM, enteric cholinergic motoneuron; MP, myenteric plexus. Darkened enteric ganglion cell in gastric antrum represents cholinergic, mechanosensory pathway.

Figure 23. Figure 23.

Response of two principal ganglion cells to long‐lasting depolarization currents of different strength applied through intracellular microelectrode. A‐D, firing patterns of neuron on left exemplify responses of phasic firing neuron; E‐H, firing patterns on right exemplify responses of tonic firing neuron. Note that adapted firing frequency of various tonic discharges is maintained constant throughout period of depolarization. Note also that afterspike hyperpolarization in phasic firing cell is shorter than afterspike hyperpolarization in tonic firing cell.

From Weems and Szurszewski
Figure 24. Figure 24.

Frequency‐current relationship of three principal ganglion cells of inferior mesenteric ganglion of guinea pig. Adapted firing rate of spikes is plotted as function of strength of depolarizing currents applied through intracellular microelectrode. Each cell had afterspike hyperpolarization (ASH) of different duration. Durations of ASH for these three cells were 74 ms (•), 210 ms (○), and 310 ms (×). Note that neuron with longest duration ASH had lower frequency of firing at firing threshold than did neuron with shortest duration ASH. Also slope of frequency‐current relation was least for neuron with longest duration ASH.

From Weems and Szurszewski
Figure 25. Figure 25.

Antidromic and synaptic responses of principal ganglion cell in guinea pig inferior mesenteric ganglion evoked after stimulation of lumbar colonic nerves (A, C) and right hypogastric nerve (B). In top trace of A, two action potentials were produced by stimulation of lumbar colonic nerve. Hyperpolarization of cell due to injection of hyperpolarizing current through recording microelectrode (bottom trace of A) revealed subthreshold fast‐rise response followed by subthreshold synaptic response. Note that fast‐rise response decayed with time course similar to decay of electrotonic potential. Occurrence of fast‐rise response indicates that first action potential in top trace was antidromic. B, subthreshold, fast‐rise response recorded from another principal ganglion cell to stimulation of right hypogastric nerve. Dot marks location of stimulus artifact. C, sequence of responses of another cell to increase in strength of stimulation of lumbar colonic nerve; antidromic response was subthreshold (top trace), but synaptic responses superimposed upon it (middle and bottom traces) elicited action potentials. Dots mark location of stimulus artifact. A, B, C, uncorrected velocities of propagation of nerve fibers giving rise to antidromic responses were 0.9, 0.5, and 0.9 m/s, respectively, indicating conduction along C‐fibers.

Recordings from J. H. Szurszewski, B. F. King, and P. J. Crowcroft
Figure 26. Figure 26.

Intracellular recordings from principal ganglion cell in pelvic‐hypogastric ganglion of guinea pig, showing responses to orthodromic nerve stimulation before (A), during (B, C, D), and after (E, F) iontophoretic application of dihydro‐β‐erythroidine (DHβE). B, C, D were taken 10, 20, and 30 s, respectively, after onset of iontophoretic application of DHβE. E, F taken 4 min and 15 min, respectively, after stopping application of DHβE. Each record is three superimposed responses to single stimuli of hypogastric nerve (60 V, 0.5 ms, 0.7 Hz). Thin white line in each panel indicates level of resting membrane potential at start of experiment.

From Holman et al.
Figure 27. Figure 27.

Time course of fast excitatory postsynaptic potentials (EPSPs) in irregularly discharging neuron evoked by subthreshold stimulation of lumbar colonic nerve (LCN) and of fast EPSPs due to input from intrinsic, regularly discharging neuron in orad lobe of cat inferior mesenteric ganglion. A and B are continuous records.

From Julé and Szurszewski
Figure 28. Figure 28.

Responses of principal ganglion cell in guinea pig inferior mesenteric ganglion to increasing strength of stimulation of ascending mesenteric (intermesenteric) nerve (A‐J) and right hypogastric nerve (X‐Z). Each record consists of six successive responses to nerve stimulation of same current strength. Numbers at right of each trace indicate strength of stimulation in volts. Arrows in each trace indicate additional synaptic responses due to recruitment by higher stimulus strength of additional preganglionic fibers.

From Crowcroft and Szurszewski
Figure 29. Figure 29.

Responses of principal ganglion cell in guinea pig pelvichypogastric ganglion to increasing strength of stimulation of right hypogastric nerve (A) and right pelvic nerve (B). Responses at top of A and B were due to stimulus strength that was just threshold. Responses at bottom of A and B were due to maximum strength stimulus applied to each nerve. Threshold response to stimulation of both nerves was an action potential. Note that after second action potential in second trace of A, membrane potential remained depolarized for 54 ms before onset of afterhyperpolarization. Amount of transmitter released to trigger second action potential must have been considerably greater than that normally seen in inferior mesenteric ganglion. Such strong synaptic input is characteristic feature of synaptic inputs to pelvic‐hypogastric ganglia. Note also that third action potential in third trace of A is smaller in amplitude and has higher threshold, providing additional support for supposition that sustained depolarization after second action potential was due to continued transmitter action.

From Crowcroft and Szurszewski
Figure 30. Figure 30.

B‐E, response of principal ganglion cell in guinea pig inferior mesenteric ganglion to repetitive stimulation of intermesenteric nerve in normal Krebs solution and during exposure to dihydro‐β‐erythroidine (DHβE) (5 × 10−6 g/ml). A, note sequence of afterpotentials after repetitive stimulation (8 Hz, 1 s). Aftertrain hyperpolarization is immediately followed by slow depolarization that was 4 mV in amplitude and 3.3 s in duration. B, 2 min after nicotinic blockade, stimulation of intermesenteric nerve (8 Hz, 1 s) caused long‐lasting depolarization. C, D, effect of stimulation (30 Hz, 2 s) is shown at low and high amplification 2 and 4 min, respectively, after adding DHβE. E, 5 min after adding DHβE, slow depolarization after repetitive stimulation (30 Hz, 0.5 s) was prolonged and reached threshold for firing action potentials. Note that initiation of action potentials during slow depolarization is not normally seen in normal Krebs solution. In B‐E, single action preceding nerve stimulation was initiated by intracellular injection of suprathreshold depolarization to confirm cell's ability to generate action potential in face of nicotinic‐receptor blockade. Thin white line in C‐E indicates period of nerve stimulation. Although not shown, slow depolarization was blocked after addition of atropine (10−6 g/ml). Voltage calibration: A, B, D, 25 mV; C, E, 100 mV.

Data from J. H. Szurszewski and P. J. Crowcroft
Figure 31. Figure 31.

Response of principal ganglion cell in guinea pig celiac ganglion to repetitive stimulation of inferior celiac nerves (ICN) without (A) and with (B) an attached segment of colon. Note that following repetitive stimulation, there were two phases of afterpotentials: an aftertrain hyperpolarization that was immediately followed by a slow depolarization 8 mV in amplitude and lasted 22 s. B, note that in presence of ongoing excitatory synaptic input from colonic mechanoreceptors, some of fast excitatory postsynaptic potentials (EPSPs) reached threshold for firing action potential during slow depolarization. Recordings were made from two different cells in two different preparations of right celiac ganglion. Dashed line indicates level of membrane potential before nerve stimulation. Although not shown, slow depolarization was resistant to nicotinic and muscarinic receptor antagonists.

Recording from J. H. Szurszewski and D. L. Kreulen
Figure 32. Figure 32.

Response of principal ganglion cell in guinea pig inferior mesenteric ganglion to single and repetitive stimulation of lumbar colonic nerve. In A and B, top trace is intracellularly recorded potential without depolarizing current pulses, middle trace is with depolarizing current pulses, and bottom trace is current monitor. In C, bottom two traces are continuous with middle two traces. Before nerve stimulation, intracellularly injected depolarizing current pulses applied through microelectrode were subthreshold for initiation of action potential. Lumbar colonic nerve stimulated with single stimulus in A and stimulated repetitively in B (10 Hz, 1 s) and C (30 Hz, 1 s). Note that amplitude and duration of slow depolarization after afterspike hyperpolarization and aftertrain hyperpolarization were dependent on frequency of nerve stimulation. Note also that depolarizing current pulses that were subthreshold for initiation of action potential evoked action potential during slow depolarization. Increase in excitability and slow depolarization were associated with increase in membrane resistance. Numbers below C indicate minutes after repetitive nerve stimulation. (Note break in tracing in C.)

From Crowcroft and Szurszewski
Figure 33. Figure 33.

Effect of administration of capsaicin in vitro on noncholinergic slow excitatory postsynaptic potentials (EPSPs) in principal ganglion cell in guinea pig inferior mesenteric ganglion. In A, B, C, upper trace is response to supramaximal stimulation of both hypogastric nerves (20 Hz, 4 s, open triangles), and lower trace is response to distension of segment of distal colon (20 cmH2O for 65 s, between arrows). Note that in B, 10 min after adding capsaicin, the electrically evoked EPSP was abolished and distension‐induced slow depolarization was attenuated to 2.2 mV, compared with A, 11.2 mV in normal Krebs solution. C, responses obtained 10 min after washing out capsaicin.

From Kreulen and Peters
Figure 34. Figure 34.

Substance P pathway between lumbar spinal cord, inferior mesenteric ganglion, and distal colon of guinea pig. Note that of two substance P pathways shown, only central pathway is proposed as participating in substance P‐dependent transmission in inferior mesenteric ganglion. Substance P terminals located between circular and longitudinal muscle layers, as described by Aldskogius et al. , are presumed to function as mechanoreceptors and nociceptors. SP, substance P pathway; SN, sympathetic neuron; MP, myenteric plexus; B.V., blood vessel; CM, enteric cholinergic motoneuron. Darkened enteric ganglion cells represent peripheral, cholinergic afferent mechanosensory pathway. All unmarked synapses are excitatory.

Figure 35. Figure 35.

Effect of leucine‐enkephalin (Leu‐Enk) on cholinergic synaptic transmission in principal ganglion cell in inferior mesenteric ganglion of guinea pig. A, C, response to electrical stimulation of intermesenteric nerve in normal Krebs solution before (A) and after (C) washout of leucine‐enkephalin. B, recording made with leucine‐enkephalin present in bathing solution. Each panel consists of three superimposed successive responses to nerve stimulation.

From Shu et al.
Figure 36. Figure 36.

Effect of leucine‐enkephalin on afferent, colonic mechanosensory synaptic input to principal ganglion cell in guinea pig inferior mesenteric ganglion. In A, B, C, top trace is colonic intraluminal pressure and bottom trace is intracellular recorded electrical activity. In A, activity in normal Krebs solution; in B, 6 min after leucine‐enkephalin was added to solution perfusing only inferior mesenteric ganglion; in C, 3–5 min after washout of leucine‐enkephalin. Note that in presence of leucine‐enkephalin, there was significant reduction in total synaptic input from colon and there was increase in basal intraluminal pressure.

From Shu et al.
Figure 37. Figure 37.

Enkephalin pathway between spinal cord and inferior mesenteric ganglion of guinea pig. Note that terminals containing enkephalin‐like material end presynaptically on substance P collaterals and on terminals of cholinergic afferent mechanosensory fibers. For simplicity, enkephalin endings on other cholinergic preganglionic fibers have been left out. SP, substance P pathway, IMLf, nucleus intermediolateralis pars funcularis; IMLp, nucleus intermediolateralis pars principalis; ENK, enkephalin pathway; SN, sympathetic neuron; MP, myenteric plexus; B.V. blood vessel; CM, enteric cholinergic motoneuron. Darkened enteric ganglion cells represent peripheral, cholinergic afferent pathway. All unmarked synapses are excitatory.

Figure 38. Figure 38.

Effect of vasoactive intestinal peptide (VIP) antiserum of noncholinergic slow excitatory postsynaptic potential (EPSP) recorded from principal ganglion cell in guinea pig inferior mesenteric ganglion. Hexamethonium (2 × 10−4 M) and atropine (2 × 10−6 M) were present throughout to block nicotinic and muscarinic receptors, respectively. A, repetitive stimulation of lumbar colonic nerve (20 Hz, 4 s) evoked noncholinergic slow EPSP 4 mV in amplitude. B, nonimmune‐rabbit serum applied by pressure ejection for 2 min. Stimulation of lumbar colonic nerves evoked noncholinergic slow EPSP 4.5 mV in amplitude. C, amplitude of noncholinergic slow EPSP was reduced to 2 mV during pressure ejection of rabbit VIP antiserum. All recordings made from same cell.

From Love and Szurszewski
Figure 39. Figure 39.

Effect of vasoactive intestinal peptide (VIP) antiserum on slow depolarization evoked by distension of segment of distal colon of guinea pig. Intracellular recording obtained from principal ganglion cell in inferior mesenteric ganglion. Throughout experiment, hexamethonium (2 × 10−4 M) and atropine (2 × 10−6 M) were present in Krebs solution, bathing only inferior mesenteric ganglion. In A, B, C, upper trace is intracellular recording; bottom trace is intraluminal colonic pressure. In A, increase in pressure in segment of colon to 15 cmH2O caused 4 mV depolarization of neuron in ganglion. In B, pressure ejection of rabbit VIP antiserum onto neuron greatly reduced amplitude of distension‐induced membrane depolarization. Two minutes after ending application of VIP antiserum and after washout of antiserum, distension of colon evoked noncholinergic slow depolarization 5 mV in amplitude. All recordings made from same neuron.

From Love and Szurszewski
Figure 40. Figure 40.

Vasoactive intestinal polypeptide (VIP) pathway between prevertebral ganglia (celiac and superior and inferior mesenteric ganglion) and colon of guinea pig. Note that it is being suggested that mechanosensory fibers containing VIP‐like material end on NA/— and NA/SOM prevertebral neurons. The NA/— neurons in turn innervate motor apparatus of gut, whereas NA/SOM neurons innervate DYN/VIP neurons thought to regulate mucosal function . NA/NPY, noradrenergic neuron with neuropeptide Y immunoreactivity; NA/—, noradrenergic neuron that has not been demonstrated to contain a neuropeptide; NA/SOM, noradrenergic neuron with somatostatin immunoreactivity; MP, myenteric plexus; CM, enteric cholinergic motor neuron; DYN/VIP, enteric neuron in the submucous plexus containing dynorphin and VIP immunoreactivity. Darkened enteric ganglion cells represent peripheral, cholinergic afferent pathway. All unmarked synapses are excitatory.

Figure 41. Figure 41.

Response of principal ganglion cell in guinea pig inferior mesenteric ganglion to repetitive nerve stimulation before (A) and after (C) desensitization to nonsulfated cholecystokinin‐8 (CCK‐8). Nonsulfated CCK‐8 was applied by pressure ejection in B. Before desensitization to nonsulfated CCK‐8, noncholinergic slow excitatory postsynaptic potential (EPSP) was 6 mV in amplitude and lasted 63 s (A). After desensitization (C), EPSP was 2 mV and 19 s in duration.

From Schumann and Kreulen . Copyright 1986, with permission of the American Society for Pharmacology and Experimental Therapeutics
Figure 42. Figure 42.

Peripheral CCK pathway. SN, sympathetic neuron; MP, myenteric plexus; CM, enteric cholinergic motor neuron; CCK, cholecystokinin. Darkened enteric ganglion cells represent peripheral, cholinergic afferent pathway. All unmarked synapses are excitatory.

Figure 43. Figure 43.

Peripheral dynorphin and bombesin pathways. SN, sympathetic neuron; MP, myenteric plexus; CM, enteric cholinergic motor neuron; Bom, bombesin; DYN, dynorphin. Darkened enteric ganglion cells represent peripheral, cholinergic afferent pathway.

Figure 44. Figure 44.

Calcitonin gene‐related peptides (CGRP) pathway and other related pathways. Note that CGRP is colocalized in substance P (SP) pathway. In contrast, peripheral substance P pathway does not contain CGRP‐like immunoreactivity. Enkephalin (ENK) pathway is shown to inhibit release of CGRP and substance P from collaterals present in inferior mesenteric ganglion. IMLf, nucleus intermediolaterals pars funicularis; IMLp, nucleus intermediolateralis pars principalis; SN, sympathetic neuron; MP, myenteric plexus; CM, enteric cholinergic motoneuron; B.V., blood vessel. Darkened enteric ganglion cells represent peripheral, cholinergic afferent pathway. All unmarked synapses are excitatory.

Figure 45. Figure 45.

Neurotensin pathway and other related pathways. Note that central neurotensin pathway acts presynaptically in inferior mesenteric ganglion to cause release of substance P (SP) and calcitonin gene‐related peptide (CGRP) and also postsynaptically on sympathetic neuron to cause direct excitation. IMLp, nucleus intermediolateralis pars principalis; NT, neurotensin; SN, sympathetic neuron; MP, myenteric plexus; CM, enteric cholinergic motoneuron; B.V., blood vessel. Darkened enteric ganglion cells represent peripheral, cholinergic afferent pathway. All unmarked synapses are excitatory.

Figure 46. Figure 46.

Pathways for acetylcholine and noradrenergic neurons running between distal colon, inferior mesenteric ganglion, and lumbar spinal cord of guinea pig. Note that for completeness, mechanosensory cholinergic neuron is shown projecting to inferior mesenteric ganglion without cholinergic input from other enteric neurons. All open‐symbol synapses are excitatory. SN, sympathetic neuron; MP, myenteric plexus; CM, enteric cholinergic motoneuron; L, lumbar spinal cord; IMLp, nucleus intermediolateralis pars principalis; IMLf, nucleus intermediolateralis pars funicularis; IC, nucleus intercalatus spinalis; ICP2, nucleus intercalatus spinalis pars paraependymalis.

Figure 47. Figure 47.

Peptidergic pathways between distal colon, inferior mesenteric ganglion, and lumbar spinal cord of guinea pig. Note specific locations for neurotensin (NT) and enkephalin (ENK) neurons. Cholinergic, mechanosensory afferent pathway (darkened neurons) is included because one site of action for enkephalin pathway is to inhibit release of acetylcholine from terminals of this pathway. Note also that peptidergic mechanosensory pathways utilizing vasoactive intestinal polypeptide (VIP), cholecystokinin (CCK), bombesin (BOM), and dynorphin (DYN) as neurotransmitters are shown as occurring within same neuron and also in subpopulation of mechanosensory neurons distinct from cholinergic mechanosensory pathway. MP, myenteric plexus; SP, substance P; CGRP, calcitonin gene‐related peptide; NA, norepinephrine neuron; SOM, somatostatin; ACh, acetylcholine; B.V., blood vessel.



Figure 1.

Celiac superior and inferior mesenteric ganglia and associated structures in male guinea pig. Orad is at left and ventral is up.

From Kreulen and Szurszewski


Figure 2.

Pelvic‐hypogastric plexus. Principal ganglion cells are scattered throughout region where hypogastric and pelvic nerves intersect. HG.N., hypogastric nerve; S.V., seminal vesicles; V.D., vas deferens; P, prostate gland; C, coagulating gland; B, urinary bladder; pelv. N., pelvic nerves; L, lumbar root; and S, sacral nerve.



Figure 3.

Responses of principal ganglion cell of inferior mesenteric ganglion of guinea pig to increasing depolarizing current pulses applied through intracellular microelectrode. Note that successive increases in strength of depolarizing current pulse increased frequency of action potentials. In each panel, upper trace is membrane potential, bottom trace is current monitor.

From Crowcroft and Szurszewski


Figure 4.

Responses of presumed small intensely fluorescing (SIF) cells to depolarizing (A) and hyperpolarizing (B) current pulses applied through intracellular microelectrode and to orthodromic nerve stimulation (C‐F). Responses in A and B obtained from a presumed SIF cell located in a pelvic‐hypogastric ganglion of guinea pig. Note that depolarizing current >1 nA was needed to initiate action potentials. Top trace, membrane potential; bottom trace, current monitor. C, synaptic responses due to stimulation of left pelvic nerve 52 mm from recording site; it consists of three superimposed traces. D, recordings obtained from another presumed SIF cell in inferior mesenteric ganglion of guinea pig. Responses due to repetitive stimulation of intermesenteric nerve (20 Hz for 1 s). Responses are subthreshold EPSPs recorded at high gain. E, F, recordings obtained from two presumed SIF cells in inferior mesenteric ganglia of two guinea pigs. Response in E due to suprathreshold stimulation of intermesenteric nerve (40 Hz for 0.2 s) and response in F due to repetitive stimulation of lumbar colonic nerve (40 Hz for 0.2 s). Note that after single action potential (E) or burst of action potentials (F), membrane potential returned to base line without passing through after spike hyperpolarization. Resting membrane potential of these four cells ranged from −86 to −80 mV. Calibrations for recordings: C, 60 mV and 60 ms; D, 15 mV and 3 s; E, 60 mV and 30 ms; F, 80 mV and 0.86 s.

Recordings from J. H. Szurszewski and P. J. Crowcroft


Figure 5.

Response of satellite cell of inferior mesenteric ganglion of guinea pig to depolarizing current pulses applied through intracellular microelectrode (A) and to suprathreshold repetitive stimulation of lumbar colonic nerve (B). Note that this cell type is inexcitable to both forms of stimulation. Depolarization of membrane during repetitive nerve stimulation has been attributed to accumulation of K+ in extracellular spaces.

Recording from J. H. Szurszewski and P. J. Crowcroft


Figure 6.

Electron micrographs of two principal ganglion cells of pelvic‐hypogastric ganglion of guinea pig. Top panel, principal ganglion cell (GC), 25 μm diam, is surrounded by satellite cell containing large nucleus. Bottom panel, higher‐power electron micrograph of region of principal ganglion cell with tuftlike ganglion cell processes (GCP) and varicosities of axons.

Electron micrographs from J. H. Szurszewski and A. Ostberg


Figure 7.

High‐power electron micrograph of synapse of preganglionic axon with ganglion cell process of pelvic‐hypogastric ganglion of guinea pig. Varicosity of preganglionic axon contains agranular vesicles (AGV) and large granular vesicles (LGV).

Electron micrograph from J. H. Szurszewski, A. Ostberg, and P. J. Crowcroft


Figure 8.

Electron micrograph of small intensely fluorescing (SIF) cell of inferior mesenteric ganglion of guinea pig. Note numerous vesicles (1,000–1,600 Å diam), each containing large densely staining granule (400–900 Å diam). SIF cell enveloped by satellite cell (SC) with numerous mitochondria and large nucleus (N). This SIF cell is type I and is surrounded by portions of four other SIF cells.

Electron micrograph from J. H. Szurszewski, A. Ostberg, and P. J. Crowcroft


Figure 9.

Location of main nuclei of sympathetic preganglionic neurons of spinal cord of dog. IMLp, nucleus intermediolateralis pars principalis; IMLf, nucleus intermediolateralis pars funicularis; IML, nucleus intermediolateralis; IC, nucleus intercalatus spinalis; ICPe, nucleus intercalatus pars paraependymalis.

From Petras and Faden


Figure 10.

Location of four principal groups of sympathetic preganglionic neurons of lumbar segment of spinal cord of guinea pig. IMLp, nucleus intermediolateralis pars principalis; IMLf, nucleus intermediolateralis pars funicularis; IC, nucleus intercalatus spinalis; ICPe, nucleus intercalatus pars paraependymalis.



Figure 11.

Frequency histogram of conduction velocities of preganglionic fibers in different trunks attached to nerve inferior mesenteric ganglion of guinea pig.

Data from J. H. Szurszewski and P. J. Crowcroft


Figure 12.

Ongoing rhythmic discharge of action potentials recorded intracellularly from four neurons of four preparations of cat inferior mesenteric ganglia. In each record, note slow depolarization in membrane potential preceding each action potential. Frequency of action potentials: A, 0.6 Hz; B, 2.3 Hz; C, 3.2 Hz; D, 12.9 Hz.

From Julé and Szurszewski


Figure 13.

Relationship between endogenously active spinal sympathetic preganglionic neurons and endogenously active neurons located in inferior mesenteric ganglion of cat. CM, enteric cholinergic motoneuron; SN, sympathetic neuron; ˜, spontaneously active neuron.



Figure 14.

Excitatory synaptic activity in principal ganglion cell in inferior mesenteric ganglion of guinea pig before and after cutting lumbar colonic nerves that connected ganglion to segment of distal colon. After cutting lumbar colonic nerves, all synaptic input was abolished. Dot indicates moment of cutting nerve.

From Crowcroft et al.


Figure 15.

Effect of increasing colonic intraluminal pressure on excitatory synaptic input to principal ganglion cell in guinea pig inferior mesenteric ganglion. Intraluminal pressure was measured at both proximal (P) and distal (D) ends of colonic segment. In each panel, bottom trace is intracellularly recorded electrical activity from same cell during three different levels of maintained pressure: 2, 6, and 8 cmH2O. Each increase in basal pressure caused increase in incidence of excitatory synaptic input that was maintained as long as increase in pressure was maintained (longest duration, 1 h).

From Weems and Szurszewski . Copyright 1977. Reprinted with permission by the American Gastroenterological Association


Figure 16.

Effect of spontaneous increase in colonic intraluminal pressure on excitatory synaptic input to principal ganglion cell in guinea pig inferior mesenteric ganglion. Upper trace, intraluminal pressure measured from orad end of colonic segment. Lower trace, intracellularly recorded electrical activity. Note that spontaneous increase in basal intraluminal pressure caused increase in excitatory synaptic input and depolarization of cell membrane potential. Dashed line in lower trace represents apparent membrane potential before spontaneous change in pressure.

From Weems and Szurszewski


Figure 17.

Effect of superfusing colon only with tubocurarine on excitatory synaptic input to principal ganglion cell in guinea pig inferior mesenteric ganglion. Two‐compartment organ bath allowed for addition of antagonist to colon only. A, synaptic input when colonic segment was bathed in normal Krebs solution. B, synaptic input 5 min after adding tubocurarine to solution bathing colonic segment. C, effect of distending colonic segment with air when tubocurarine was still present in solution bathing segment of colon. Note that distension caused immediate increase in excitatory synaptic input during blockade of nicotinic receptors in colon wall. This suggests that population of mechanosensitive fibers project to inferior mesenteric ganglion without intervening nicotinic synapse. All recordings from same cell. Recording in C continuous with recording in B

From Szurszewski and Weems


Figure 18.

Neural connections between inferior mesenteric ganglion and colon of guinea pigs. Darkened enteric ganglionic cells represent peripheral, cholinergic afferent mechanosensory pathway. SN, sympathetic neuron; CM, enteric cholinergic motoneuron; MP, myenteric plexus.



Figure 19.

Examples of excitatory synaptic input to two different principal ganglion cells in right celiac ganglion (A and B) and to principal ganglion cell in superior mesenteric ganglion (C).

From Kreulen and Szurszewski


Figure 20.

Intracellular recording from principal ganglion cell in guinea pig superior mesenteric ganglion receiving excitatory synaptic input from attached segment of colon. In A, distension of colon caused immediate increase in synaptic input. In B, most of fibers running in lumbar colonic nerve were cut during maintained distension. Note sharp decrease in synaptic input. In C, all but one fiber running in lumbar colonic nerve were cut.

From Kreulen and Szurszewski


Figure 21.

Peripheral pathways mediating colocolonic inhibitory reflex. SN, sympathetic neuron; CM, enteric cholinergic motorneuron; MP, myenteric plexus. Darkened enteric ganglion cells represent afferent, cholinergic mechanosensory pathway. All unmarked synapses are excitatory.



Figure 22.

Peripheral pathways mediating gastroduodenal inhibitory reflex. SN, sympathetic neuron; CM, enteric cholinergic motoneuron; MP, myenteric plexus. Darkened enteric ganglion cell in gastric antrum represents cholinergic, mechanosensory pathway.



Figure 23.

Response of two principal ganglion cells to long‐lasting depolarization currents of different strength applied through intracellular microelectrode. A‐D, firing patterns of neuron on left exemplify responses of phasic firing neuron; E‐H, firing patterns on right exemplify responses of tonic firing neuron. Note that adapted firing frequency of various tonic discharges is maintained constant throughout period of depolarization. Note also that afterspike hyperpolarization in phasic firing cell is shorter than afterspike hyperpolarization in tonic firing cell.

From Weems and Szurszewski


Figure 24.

Frequency‐current relationship of three principal ganglion cells of inferior mesenteric ganglion of guinea pig. Adapted firing rate of spikes is plotted as function of strength of depolarizing currents applied through intracellular microelectrode. Each cell had afterspike hyperpolarization (ASH) of different duration. Durations of ASH for these three cells were 74 ms (•), 210 ms (○), and 310 ms (×). Note that neuron with longest duration ASH had lower frequency of firing at firing threshold than did neuron with shortest duration ASH. Also slope of frequency‐current relation was least for neuron with longest duration ASH.

From Weems and Szurszewski


Figure 25.

Antidromic and synaptic responses of principal ganglion cell in guinea pig inferior mesenteric ganglion evoked after stimulation of lumbar colonic nerves (A, C) and right hypogastric nerve (B). In top trace of A, two action potentials were produced by stimulation of lumbar colonic nerve. Hyperpolarization of cell due to injection of hyperpolarizing current through recording microelectrode (bottom trace of A) revealed subthreshold fast‐rise response followed by subthreshold synaptic response. Note that fast‐rise response decayed with time course similar to decay of electrotonic potential. Occurrence of fast‐rise response indicates that first action potential in top trace was antidromic. B, subthreshold, fast‐rise response recorded from another principal ganglion cell to stimulation of right hypogastric nerve. Dot marks location of stimulus artifact. C, sequence of responses of another cell to increase in strength of stimulation of lumbar colonic nerve; antidromic response was subthreshold (top trace), but synaptic responses superimposed upon it (middle and bottom traces) elicited action potentials. Dots mark location of stimulus artifact. A, B, C, uncorrected velocities of propagation of nerve fibers giving rise to antidromic responses were 0.9, 0.5, and 0.9 m/s, respectively, indicating conduction along C‐fibers.

Recordings from J. H. Szurszewski, B. F. King, and P. J. Crowcroft


Figure 26.

Intracellular recordings from principal ganglion cell in pelvic‐hypogastric ganglion of guinea pig, showing responses to orthodromic nerve stimulation before (A), during (B, C, D), and after (E, F) iontophoretic application of dihydro‐β‐erythroidine (DHβE). B, C, D were taken 10, 20, and 30 s, respectively, after onset of iontophoretic application of DHβE. E, F taken 4 min and 15 min, respectively, after stopping application of DHβE. Each record is three superimposed responses to single stimuli of hypogastric nerve (60 V, 0.5 ms, 0.7 Hz). Thin white line in each panel indicates level of resting membrane potential at start of experiment.

From Holman et al.


Figure 27.

Time course of fast excitatory postsynaptic potentials (EPSPs) in irregularly discharging neuron evoked by subthreshold stimulation of lumbar colonic nerve (LCN) and of fast EPSPs due to input from intrinsic, regularly discharging neuron in orad lobe of cat inferior mesenteric ganglion. A and B are continuous records.

From Julé and Szurszewski


Figure 28.

Responses of principal ganglion cell in guinea pig inferior mesenteric ganglion to increasing strength of stimulation of ascending mesenteric (intermesenteric) nerve (A‐J) and right hypogastric nerve (X‐Z). Each record consists of six successive responses to nerve stimulation of same current strength. Numbers at right of each trace indicate strength of stimulation in volts. Arrows in each trace indicate additional synaptic responses due to recruitment by higher stimulus strength of additional preganglionic fibers.

From Crowcroft and Szurszewski


Figure 29.

Responses of principal ganglion cell in guinea pig pelvichypogastric ganglion to increasing strength of stimulation of right hypogastric nerve (A) and right pelvic nerve (B). Responses at top of A and B were due to stimulus strength that was just threshold. Responses at bottom of A and B were due to maximum strength stimulus applied to each nerve. Threshold response to stimulation of both nerves was an action potential. Note that after second action potential in second trace of A, membrane potential remained depolarized for 54 ms before onset of afterhyperpolarization. Amount of transmitter released to trigger second action potential must have been considerably greater than that normally seen in inferior mesenteric ganglion. Such strong synaptic input is characteristic feature of synaptic inputs to pelvic‐hypogastric ganglia. Note also that third action potential in third trace of A is smaller in amplitude and has higher threshold, providing additional support for supposition that sustained depolarization after second action potential was due to continued transmitter action.

From Crowcroft and Szurszewski


Figure 30.

B‐E, response of principal ganglion cell in guinea pig inferior mesenteric ganglion to repetitive stimulation of intermesenteric nerve in normal Krebs solution and during exposure to dihydro‐β‐erythroidine (DHβE) (5 × 10−6 g/ml). A, note sequence of afterpotentials after repetitive stimulation (8 Hz, 1 s). Aftertrain hyperpolarization is immediately followed by slow depolarization that was 4 mV in amplitude and 3.3 s in duration. B, 2 min after nicotinic blockade, stimulation of intermesenteric nerve (8 Hz, 1 s) caused long‐lasting depolarization. C, D, effect of stimulation (30 Hz, 2 s) is shown at low and high amplification 2 and 4 min, respectively, after adding DHβE. E, 5 min after adding DHβE, slow depolarization after repetitive stimulation (30 Hz, 0.5 s) was prolonged and reached threshold for firing action potentials. Note that initiation of action potentials during slow depolarization is not normally seen in normal Krebs solution. In B‐E, single action preceding nerve stimulation was initiated by intracellular injection of suprathreshold depolarization to confirm cell's ability to generate action potential in face of nicotinic‐receptor blockade. Thin white line in C‐E indicates period of nerve stimulation. Although not shown, slow depolarization was blocked after addition of atropine (10−6 g/ml). Voltage calibration: A, B, D, 25 mV; C, E, 100 mV.

Data from J. H. Szurszewski and P. J. Crowcroft


Figure 31.

Response of principal ganglion cell in guinea pig celiac ganglion to repetitive stimulation of inferior celiac nerves (ICN) without (A) and with (B) an attached segment of colon. Note that following repetitive stimulation, there were two phases of afterpotentials: an aftertrain hyperpolarization that was immediately followed by a slow depolarization 8 mV in amplitude and lasted 22 s. B, note that in presence of ongoing excitatory synaptic input from colonic mechanoreceptors, some of fast excitatory postsynaptic potentials (EPSPs) reached threshold for firing action potential during slow depolarization. Recordings were made from two different cells in two different preparations of right celiac ganglion. Dashed line indicates level of membrane potential before nerve stimulation. Although not shown, slow depolarization was resistant to nicotinic and muscarinic receptor antagonists.

Recording from J. H. Szurszewski and D. L. Kreulen


Figure 32.

Response of principal ganglion cell in guinea pig inferior mesenteric ganglion to single and repetitive stimulation of lumbar colonic nerve. In A and B, top trace is intracellularly recorded potential without depolarizing current pulses, middle trace is with depolarizing current pulses, and bottom trace is current monitor. In C, bottom two traces are continuous with middle two traces. Before nerve stimulation, intracellularly injected depolarizing current pulses applied through microelectrode were subthreshold for initiation of action potential. Lumbar colonic nerve stimulated with single stimulus in A and stimulated repetitively in B (10 Hz, 1 s) and C (30 Hz, 1 s). Note that amplitude and duration of slow depolarization after afterspike hyperpolarization and aftertrain hyperpolarization were dependent on frequency of nerve stimulation. Note also that depolarizing current pulses that were subthreshold for initiation of action potential evoked action potential during slow depolarization. Increase in excitability and slow depolarization were associated with increase in membrane resistance. Numbers below C indicate minutes after repetitive nerve stimulation. (Note break in tracing in C.)

From Crowcroft and Szurszewski


Figure 33.

Effect of administration of capsaicin in vitro on noncholinergic slow excitatory postsynaptic potentials (EPSPs) in principal ganglion cell in guinea pig inferior mesenteric ganglion. In A, B, C, upper trace is response to supramaximal stimulation of both hypogastric nerves (20 Hz, 4 s, open triangles), and lower trace is response to distension of segment of distal colon (20 cmH2O for 65 s, between arrows). Note that in B, 10 min after adding capsaicin, the electrically evoked EPSP was abolished and distension‐induced slow depolarization was attenuated to 2.2 mV, compared with A, 11.2 mV in normal Krebs solution. C, responses obtained 10 min after washing out capsaicin.

From Kreulen and Peters


Figure 34.

Substance P pathway between lumbar spinal cord, inferior mesenteric ganglion, and distal colon of guinea pig. Note that of two substance P pathways shown, only central pathway is proposed as participating in substance P‐dependent transmission in inferior mesenteric ganglion. Substance P terminals located between circular and longitudinal muscle layers, as described by Aldskogius et al. , are presumed to function as mechanoreceptors and nociceptors. SP, substance P pathway; SN, sympathetic neuron; MP, myenteric plexus; B.V., blood vessel; CM, enteric cholinergic motoneuron. Darkened enteric ganglion cells represent peripheral, cholinergic afferent mechanosensory pathway. All unmarked synapses are excitatory.



Figure 35.

Effect of leucine‐enkephalin (Leu‐Enk) on cholinergic synaptic transmission in principal ganglion cell in inferior mesenteric ganglion of guinea pig. A, C, response to electrical stimulation of intermesenteric nerve in normal Krebs solution before (A) and after (C) washout of leucine‐enkephalin. B, recording made with leucine‐enkephalin present in bathing solution. Each panel consists of three superimposed successive responses to nerve stimulation.

From Shu et al.


Figure 36.

Effect of leucine‐enkephalin on afferent, colonic mechanosensory synaptic input to principal ganglion cell in guinea pig inferior mesenteric ganglion. In A, B, C, top trace is colonic intraluminal pressure and bottom trace is intracellular recorded electrical activity. In A, activity in normal Krebs solution; in B, 6 min after leucine‐enkephalin was added to solution perfusing only inferior mesenteric ganglion; in C, 3–5 min after washout of leucine‐enkephalin. Note that in presence of leucine‐enkephalin, there was significant reduction in total synaptic input from colon and there was increase in basal intraluminal pressure.

From Shu et al.


Figure 37.

Enkephalin pathway between spinal cord and inferior mesenteric ganglion of guinea pig. Note that terminals containing enkephalin‐like material end presynaptically on substance P collaterals and on terminals of cholinergic afferent mechanosensory fibers. For simplicity, enkephalin endings on other cholinergic preganglionic fibers have been left out. SP, substance P pathway, IMLf, nucleus intermediolateralis pars funcularis; IMLp, nucleus intermediolateralis pars principalis; ENK, enkephalin pathway; SN, sympathetic neuron; MP, myenteric plexus; B.V. blood vessel; CM, enteric cholinergic motoneuron. Darkened enteric ganglion cells represent peripheral, cholinergic afferent pathway. All unmarked synapses are excitatory.



Figure 38.

Effect of vasoactive intestinal peptide (VIP) antiserum of noncholinergic slow excitatory postsynaptic potential (EPSP) recorded from principal ganglion cell in guinea pig inferior mesenteric ganglion. Hexamethonium (2 × 10−4 M) and atropine (2 × 10−6 M) were present throughout to block nicotinic and muscarinic receptors, respectively. A, repetitive stimulation of lumbar colonic nerve (20 Hz, 4 s) evoked noncholinergic slow EPSP 4 mV in amplitude. B, nonimmune‐rabbit serum applied by pressure ejection for 2 min. Stimulation of lumbar colonic nerves evoked noncholinergic slow EPSP 4.5 mV in amplitude. C, amplitude of noncholinergic slow EPSP was reduced to 2 mV during pressure ejection of rabbit VIP antiserum. All recordings made from same cell.

From Love and Szurszewski


Figure 39.

Effect of vasoactive intestinal peptide (VIP) antiserum on slow depolarization evoked by distension of segment of distal colon of guinea pig. Intracellular recording obtained from principal ganglion cell in inferior mesenteric ganglion. Throughout experiment, hexamethonium (2 × 10−4 M) and atropine (2 × 10−6 M) were present in Krebs solution, bathing only inferior mesenteric ganglion. In A, B, C, upper trace is intracellular recording; bottom trace is intraluminal colonic pressure. In A, increase in pressure in segment of colon to 15 cmH2O caused 4 mV depolarization of neuron in ganglion. In B, pressure ejection of rabbit VIP antiserum onto neuron greatly reduced amplitude of distension‐induced membrane depolarization. Two minutes after ending application of VIP antiserum and after washout of antiserum, distension of colon evoked noncholinergic slow depolarization 5 mV in amplitude. All recordings made from same neuron.

From Love and Szurszewski


Figure 40.

Vasoactive intestinal polypeptide (VIP) pathway between prevertebral ganglia (celiac and superior and inferior mesenteric ganglion) and colon of guinea pig. Note that it is being suggested that mechanosensory fibers containing VIP‐like material end on NA/— and NA/SOM prevertebral neurons. The NA/— neurons in turn innervate motor apparatus of gut, whereas NA/SOM neurons innervate DYN/VIP neurons thought to regulate mucosal function . NA/NPY, noradrenergic neuron with neuropeptide Y immunoreactivity; NA/—, noradrenergic neuron that has not been demonstrated to contain a neuropeptide; NA/SOM, noradrenergic neuron with somatostatin immunoreactivity; MP, myenteric plexus; CM, enteric cholinergic motor neuron; DYN/VIP, enteric neuron in the submucous plexus containing dynorphin and VIP immunoreactivity. Darkened enteric ganglion cells represent peripheral, cholinergic afferent pathway. All unmarked synapses are excitatory.



Figure 41.

Response of principal ganglion cell in guinea pig inferior mesenteric ganglion to repetitive nerve stimulation before (A) and after (C) desensitization to nonsulfated cholecystokinin‐8 (CCK‐8). Nonsulfated CCK‐8 was applied by pressure ejection in B. Before desensitization to nonsulfated CCK‐8, noncholinergic slow excitatory postsynaptic potential (EPSP) was 6 mV in amplitude and lasted 63 s (A). After desensitization (C), EPSP was 2 mV and 19 s in duration.

From Schumann and Kreulen . Copyright 1986, with permission of the American Society for Pharmacology and Experimental Therapeutics


Figure 42.

Peripheral CCK pathway. SN, sympathetic neuron; MP, myenteric plexus; CM, enteric cholinergic motor neuron; CCK, cholecystokinin. Darkened enteric ganglion cells represent peripheral, cholinergic afferent pathway. All unmarked synapses are excitatory.



Figure 43.

Peripheral dynorphin and bombesin pathways. SN, sympathetic neuron; MP, myenteric plexus; CM, enteric cholinergic motor neuron; Bom, bombesin; DYN, dynorphin. Darkened enteric ganglion cells represent peripheral, cholinergic afferent pathway.



Figure 44.

Calcitonin gene‐related peptides (CGRP) pathway and other related pathways. Note that CGRP is colocalized in substance P (SP) pathway. In contrast, peripheral substance P pathway does not contain CGRP‐like immunoreactivity. Enkephalin (ENK) pathway is shown to inhibit release of CGRP and substance P from collaterals present in inferior mesenteric ganglion. IMLf, nucleus intermediolaterals pars funicularis; IMLp, nucleus intermediolateralis pars principalis; SN, sympathetic neuron; MP, myenteric plexus; CM, enteric cholinergic motoneuron; B.V., blood vessel. Darkened enteric ganglion cells represent peripheral, cholinergic afferent pathway. All unmarked synapses are excitatory.



Figure 45.

Neurotensin pathway and other related pathways. Note that central neurotensin pathway acts presynaptically in inferior mesenteric ganglion to cause release of substance P (SP) and calcitonin gene‐related peptide (CGRP) and also postsynaptically on sympathetic neuron to cause direct excitation. IMLp, nucleus intermediolateralis pars principalis; NT, neurotensin; SN, sympathetic neuron; MP, myenteric plexus; CM, enteric cholinergic motoneuron; B.V., blood vessel. Darkened enteric ganglion cells represent peripheral, cholinergic afferent pathway. All unmarked synapses are excitatory.



Figure 46.

Pathways for acetylcholine and noradrenergic neurons running between distal colon, inferior mesenteric ganglion, and lumbar spinal cord of guinea pig. Note that for completeness, mechanosensory cholinergic neuron is shown projecting to inferior mesenteric ganglion without cholinergic input from other enteric neurons. All open‐symbol synapses are excitatory. SN, sympathetic neuron; MP, myenteric plexus; CM, enteric cholinergic motoneuron; L, lumbar spinal cord; IMLp, nucleus intermediolateralis pars principalis; IMLf, nucleus intermediolateralis pars funicularis; IC, nucleus intercalatus spinalis; ICP2, nucleus intercalatus spinalis pars paraependymalis.



Figure 47.

Peptidergic pathways between distal colon, inferior mesenteric ganglion, and lumbar spinal cord of guinea pig. Note specific locations for neurotensin (NT) and enkephalin (ENK) neurons. Cholinergic, mechanosensory afferent pathway (darkened neurons) is included because one site of action for enkephalin pathway is to inhibit release of acetylcholine from terminals of this pathway. Note also that peptidergic mechanosensory pathways utilizing vasoactive intestinal polypeptide (VIP), cholecystokinin (CCK), bombesin (BOM), and dynorphin (DYN) as neurotransmitters are shown as occurring within same neuron and also in subpopulation of mechanosensory neurons distinct from cholinergic mechanosensory pathway. MP, myenteric plexus; SP, substance P; CGRP, calcitonin gene‐related peptide; NA, norepinephrine neuron; SOM, somatostatin; ACh, acetylcholine; B.V., blood vessel.

References
 1. Acher, R., and J. Chauvet. La structure de la vasopressine de boeuf. Biochim. Biophys. Acta 14: 421–429, 1954.
 2. Adams, P. R., and D. A. Brown. Actions of γ‐aminobutyric acid on sympathetic ganglion cells. J. Physiol. Load. 250: 85–120, 1975.
 3. Adams, P. R., D. A. Brown, and A. Constanti. M‐currents and other potassium currents in bullfrog sympathetic neurones. J. Physiol. Lond. 330: 537–572, 1982.
 4. Adams, W. B. Slow depolarizing and hyperpolarizing currents which mediate bursting in Aplysia neurone R15. J. Physiol. Lond. 360: 51–68, 1985.
 5. Adrian, T. E., J. M. Allen, S. R. Bloom, M. A. Ghatei, M. N. Rossor, G. W. Roberts, T. J. Crow, K. Tatemoto, and J. M. Polack. Neuropeptide Y distribution in human brain. Nature Load. 306: 584–586, 1983.
 6. Akasu, T., J. P. Gallagher, K. Hirai, and P. Shinnick‐Gallagher. Vasoactive intestinal polypeptide depolarization in cat bladder parasympathetic ganglia. J. Physiol. Land. 374: 457–473, 1986.
 7. Akasu, T., and K. Koketsu. Muscarinic transmission. In: Autonomic and Enteric Ganglia, edited by A. G. Karczmar, K. Koketsu, and S. Nishi. New York: Plenum, 1986, p. 161–180.
 8. Aldskogius, H., L.‐G. Elfvin, and C. A. Forsman. Primary sensory afferents in the inferior mesenteric ganglion and related nerves of the guinea pig. J. Auton. Nerv. Syst. 15: 179–190, 1986.
 9. Alkon, D. L., J. Acosta‐Urguidi, J. Olds, G. Kuzma, and J. T. Neary. Protein kinase injection reduces voltage‐dependent potassium currents. Science Wash. DC 219: 303–306, 1983.
 10. Amara, S. G., V. Jonas, M. G. Rosenfeld, E. S. Ong, and R. M. Evans. Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature Land. 298: 240–244, 1982.
 11. Amin, A. H., T. B. B. Crawford, and J. H. Gaddum. The distribution of substance P and 5‐hydroxytryptamine in the central nervous system of the dog. J. Physiol. Land. 126: 596–618, 1954.
 12. Anand, P., S. J. Gibson, G. P. McGregor, M. A. Blank, M. A. Ghatei, A. J. Bacarese‐Hamilton, J. M. Polak, and S. R. Bloom. A VIP‐containing system concentrated in the lumbosacral region of human spinal cord. Nature Lond. 305: 143–145, 1983.
 13. Arai, K. Cholin als hormon der Darmbewegung. VI. Experimentelle therapie der magendarmlähmung nach Peritonitis und Laparotomie. Pfluegers Arch. 193: 359–395, 1922.
 14. Araki, T., M. Ito, and T. Oshima. Potential changes produced by application of current steps in motoneurones. Nature Lond. 191: 1104–1105, 1962.
 15. Archakova, L. I., I. A. Bulygin, and N. I. Netukova. The ultrastructural organization of sympathetic ganglia of the cat. J. Auton. Nerv. Syst. 6: 83–93, 1982.
 16. Armett, C. J., and C. J. Ritchie. The action of acetylcholine on conduction in mammalian non‐myelinated fibres and its prevention by an anticholinesterase. J. Physiol. Lond. 152: 141–158, 1960.
 17. Armett, C. J., and J. M. Ritchie. The action of acetylcholine and some related substance on conduction in mammalian nonmyelinated nerve fibres. J. Physiol. Lond. 155: 372–384, 1961.
 18. Armett, C. J., and J. M. Ritchie. On the permeability of mammalian non‐myelinated fibres to sodium and to lithium ions. J. Physiol. Lond. 165: 130–140, 1963.
 19. Armett, C. J., and J. M. Ritchie. The ionic requirements for the action of acetylcholine on mammalian non‐myelinated fibres. J. Physiol. Lond. 165: 141–159, 1963.
 20. Armstrong, C. M., and S. R. Taylor. Interaction of barium ions with potassium channels in squid giant axons. Biophys. J. 30: 473–488, 1980.
 21. Audigier, S., C. Barberis, and S. Jard. Vasoactive intestinal polypeptide increases inositol phospholipid breakdown in the rat superior cervical ganglion. Brain Res. 376: 363–367, 1986.
 22. Autillo‐Touati, A. A cytochemical and ultrastructural study of the “S.I.F.” cells in cat sympathetic ganglia. Histochemistry 60: 189–224, 1979.
 23. Bahr, R., B. Bartel, H. Blumberg, and W. Jänig. Functional characterization of preganglionic neurons projecting in the lumbar splanchnic nerves: neurons regulating motility. J. Auton. Nerv. Syst. 15: 109–130, 1986.
 24. Bahr, B., B. Bartel, H. Blumberg, and W. Jänig. Functional characterization of preganglionic neurons projecting the lumbar splanchnic nerves: vasoconstrictor neurons. J. Auton. Nerv. Syst. 15: 131–140, 1986.
 25. Bahr, R., B. Bartel, H. Blumberg, and W. Jänig. Secondary functional properties of lumbar visceral preganglionic neurons. J. Auton. Nerv. Syst. 15: 141–152, 1986.
 26. Baldino, F., Jr., L. G. Davis, and B. Wolfson. Structure‐activity studies with carboxy‐ and amino terminal fragments of neurotensin on hypothalamic neurons in vitro. Brain Res. 342: 266–272, 1985.
 27. Baldissera, F., and B. Gustafsson. Regulation of repetitive firing in motoneurons by the afterspike hyperpolarization conductance. Brain Res. 30: 431–434, 1971.
 28. Barrett, E. F., and J. N. Barrett. Separation of two voltage‐sensitive potassium currents, and demonstration of a tetrodotoxin resistant calcium current in frog motoneurones. J. Physiol. Lond. 255: 737–774, 1976.
 29. Bartel, B., H. Blumberg, and W. Jänig. Discharge patterns of motility‐regulating neurons projecting in the lumbar splanchnic nerves to visceral stimuli in spinal cats. J. Auton. Nerv. Syst. 15: 153–163, 1986.
 30. Bartho, L., P. Hölzer, and F. Lembeck. Sympathetic control of substance P releasing enteric neurones in the guinea pig ileum. Neurosci. Lett. 38: 291–296, 1983.
 31. Bayliss, W. M., and E. H. Starling. The movements and innervation of the small intestine. J. Physiol. Lond. 24: 99–143, 1899.
 32. Bayliss, W. M., and E. H. Starling. The movements and innervation of the large intestine. J. Physiol. Lond. 26: 107–118, 1900.
 33. Bayliss, W. M., and E. H. Starling. The movements and innervation of the small intestine. J. Physiol. Lond. 26: 125–138, 1900.
 34. Bayliss, W. M., and E. H. Starling. The mechanism of pancreatic secretion. J. Physiol. Lond. 28: 325–353, 1902.
 35. Baylor, D. A., and J. G. Nichols. Changes in extracellular potassium concentration produced by neuronal activity in the central nervous system of the leech. J. Physiol. Lond. 203: 555–569, 1969.
 36. Beacham, W. S., and E. R. Perl. Background and reflex activity of sympathetic preganglionic neurones in spinal cat. J. Physiol. Lond. 172: 400–416, 1964.
 37. Beani, L., C. Bianchi, and A. Crema. The effect of catecholamines and sympathetic stimulation on the release of acetylcholine from the guinea‐pig colon. Br. J. Pharmacol. Chemother. 36: 1–17, 1969.
 38. Bell, C. Autonomic nervous control of reproduction: circulatory and other factors. Pharmacol. Rev. 24: 657–736, 1972.
 39. Bernard, C. Recherches experimentales sur les ganglions de grand sympathique. C. R. Acad. Sci. Paris Ser. D 55: 341–356, 1862.
 40. Bessou, P., Y. Laporte, and H. Planel. Observations sur l'activation de neurones du nerf colonique provoquée par la stimulation du nerf hypogastrique chez le chat. J. Physiol. Paris 51: 909–921, 1959.
 41. Bichat, M. F. Traité d'anatomie descriptive. Paris: Brosson & Gabon, 1801.
 42. Birks, R. I. The relationship of transmitter release and storage to fine structure in a sympathetic ganglion. J. Neurocytol. 3: 133–160, 1974.
 43. Bishop, G. H., and P. Heinbecker. A functional analysis of the cervical sympathetic nerve supply to the eye. Am. J. Physiol. 100: 519–532, 1932.
 44. Björklund, A., B. Ehinger, and B. Falck. A method for differentiating dopamine from noradrenaline in tissue sections by microspectrofluorometry. J. Histochem. Cytochem. 16: 263–270, 1968.
 45. Blackman, J. G., P. J. Crowcroft, C. E. Devine, M. E. Holman, and K. Yonemura. Transmission from preganglionic fibres in the hypogastric nerve to peripheral ganglia in male guinea‐pigs. J. Physiol. Lond. 201: 723–743, 1969.
 46. Blackman, J. G., and R. D. Purves. Intracellular recordings from ganglia of the thoracic sympathetic chain of the guinea‐pig. J. Physiol. Lond. 203: 173–198, 1969.
 47. Bloom, F., E. Battenberg, J. Rossier, N. Ling, and R. Guillemin. Neurons containing β‐endorphin in rat brain exist separately from those containing enkephalin: immunocytochemical studies. Proc. Natl. Acad. Sci. USA 75: 1591–1595, 1978.
 48. Blumberg, H., P. Haupt, W. Janig, and W. Kohler. Encoding of visceral noxious stimuli in the discharge patterns of visceral afferent fibers from the colon. Pfluegers Arch. 398: 33–40, 1983.
 49. Bornstein, J. C., and H. L. Field. Morphine presynaptically inhibits a ganglionic cholinergic synapse. Neurosci. Lett. 15: 77–82, 1979.
 50. Botar, J. The Autonomic Nervous System. An Introduction to Its Physiological and Pathological Histology. Budapest: Akad. Kiado, 1966.
 51. Botticelli, L. J., B. M. Cox, and A. Goldstein. Immunoreactive dynorphin in mammalian spinal cord and dorsal root ganglia. Proc. Natl. Acad. Sci. USA 78: 7783–7786, 1981.
 52. Bouvier, M., and J. Gonella. Nervous control of the internal anal sphincter of the cat. J. Physiol, hand. 310: 457–469, 1981.
 53. Boyle, P. J., and E. J. Conway. Potassium accumulation in muscle and associated changes. J. Physiol. Lond. 122: 474–488, 1941.
 54. Bradbury, A. F., D. G. Smyth, C. R. Snell, N. J. H. Bikdsall, and E. C. Hulme. C‐fragment of lipotropin has a high affinity for brain opiate receptors. Nature Lond. 260: 793–795, 1976.
 55. Bradley, K., and G. G. Somjen. Accommodation in motoneurones of the rat and the cat. J. Physiol. Lond. 156: 75–92, 1961.
 56. Brazeau, P., W. Vale, R. Burgus, N. Ling, M. Butcher, J. Rivier, and R. Guillemin. Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science Wash. DC 179: 77–79, 1973.
 57. Brock, L. G., J. S. Coombs, and J. S. Eccles. The recording of potentials from motoneurones with an intracellular electrode. J. Physiol. Lond. 117: 431–460, 1952.
 58. Brown, D. A. Slow cholinergic excitation—a mechanism for increasing neuronal excitability. Trends Neurol. Sci. 6: 302–307, 1983.
 59. Brown, D. A., and P. R. Adams. Muscarinic suppression of a novel voltage‐sensitive K+‐current in a vertebrate neurone. Nature Lond. 283: 673–676, 1980.
 60. Brown, D. A., P. R. Adams, S. W. Jones, W. H. Griffith, J. M. Hills, and A. Constanti. Some ionic mechanisms of slow peptidergic neuronal excitation. Regul. Pept. Suppl. 4: 157–164, 1985.
 61. Brown, D. A., and W. H. Griffith. Substance‐P (SP) mediated inward currents in voltage‐clamped guinea‐pig inferior mesenteric ganglion (IMG) cells in vitro. J. Physiol. Lond. 357: 17P, 1984.
 62. Brown, D. A., and C. N. Scholfield. Changes of intracellular sodium and potassium ion concentrations in isolated rat superior cervical ganglia induced by depolarizing agents. J. Physiol. Lond. 242: 307–319, 1974.
 63. Brown, D. A., and A. A. Selyanko. Two components of muscarine‐sensitive currents in rat sympathetic neurones. J. Physiol. Lond. 358: 335–363, 1985.
 64. Brown, G. L., and J. E. Pascoe. Pathways through the inferior mesenteric ganglion of the rabbit. J. Physiol. Lond. 114: 16P–18P, 1951.
 65. Brown, G. L., and J. E. Pascoe. Conduction through the inferior mesenteric ganglion of the rabbit. J. Physiol. Lond. 118: 113–123, 1952.
 66. Bulygin, I. A. A consideration of the general principles of organization of sympathetic ganglia. J. Auton. Nerv. Syst. 8: 303–330, 1983.
 67. Bulygin, I. A., and L. I. Archakova. Electron‐microscopic analysis of synapses in caudal mesenteric sympathetic ganglion in afferent link of sympathetic reflexes. Neirofiziologiya 3: 84–88, 1971.
 68. Burke, R. E. Firing patterns of gastrocnemius motor units in the decerebrate cat. J. Physiol. Lond. 196: 631–654, 1968.
 69. Burke, R. E., and G. ten Bruggencate. Electrotonic characteristics of alpha motoneurones of varying size. J. Physiol. Lond. 212: 120, 1971.
 70. Burnstock, G., T. Hökfelt, M. D. Gershon, L. L. Iversen, H. W. Kosterlitz, and J. H. Szurszewski. Non‐adrenergic, non‐cholinergic autonomic neurotransmission mechanisms. Neurosci. Res. Program Bull. 17: 377–519, 1979.
 71. Cannon, W. B. The motor activities of the stomach and small intestine after splanchnic and vagus section. Am. J. Physiol. 17: 429–442, 1906.
 72. Cannon, W. B., and F. T. Murphy. The movements of the stomach and intestine in some surgical conditions. Ann. Surg. 43: 512–536, 1906.
 73. Cannon, W. B., and A. Rosenblueth. Studies on conditions of activity in endocrine organs. XXIX. Sympathin E and sympathin I. Am. J. Physiol. 104: 557–574, 1933.
 74. Carraway, R., P. Kitabgi, and S. E. Leeman. The amino acid sequence of radioimmunoassayable neurotensin from bovine intestine: identity to neurotensin from hypothalamus. J. Biol. Chem. 253: 7996–7998, 1978.
 75. Carraway, R., and S. E. Leeman. The isolation of a new hypotensive peptide, neurotensin, from bovine hypothalami. J. Biol. Chem. 248: 6854–6861, 1973.
 76. Carraway, R., and S. E. Leeman. The amino acid sequence of a hypothalamic peptide, neurotensin. J. Biol. Chem. 250: 1907–1911, 1975.
 77. Carraway, R., and S. E. Leeman. Characterization of radioimmunoassayable neurotensin in the rat: its differential distribution in the central nervous system, small intestine, and stomach. J. Biol. Chem. 251: 7045–7052, 1976.
 78. Carraway, R. E., and S. E. Leeman. The amino acid sequence of bovine hypothalamic substance P. Identity to substance P from colliculi and small intestine. J. Biol. Chem. 254: 2944–2945, 1979.
 79. Cassell, J. F., A. L. Clark, and E. M. McLachlan. Characteristics of phasic and tonic sympathetic ganglion cells of the guinea‐pig. J. Physiol. Lond. 372: 457–483, 1986.
 80. Cervero, F. Afferent activity evoked by natural stimulation of the biliary system in the ferret. Pain 13: 137–157, 1982.
 81. Cervero, F., and L. A. Connell. Distribution of somatic and visceral primary afferent fibers within the thoracic spinal cord of the cat. J. Comp. Neurol. 230: 88–98, 1984.
 82. Cervero, F., and L. A. Connell. Fine afferent fibers from viscera do not terminate in the substanta gelatinosa of the thoracic spinal cord. Brain Res. 294: 370–374, 1984.
 83. Cervero, F., L. A. Connell, and S. N. Lawson. Somatic and visceral primary afferents in the lower thoracic dorsal root ganglia of the cat. J. Comp. Neurol. 228: 422–431, 1984.
 84. Cervero, F., and A. Iggo. Natural stimulation of urinary bladder afferents does not affect transmission through lumbosacral spinocervical tract neurons in the cat. Brain Res. 156: 375–379, 1978.
 85. Chance, R. E., T. M. Lin, M. L. Johnson, N. E. Moon, and D. C. Evans. Studies on a new recognized pancreatic hormone with gastrointestinal activities. Endocrinology Suppl. 96: 183, 1975.
 86. Chang, M. M., and S. E. Leeman. Isolation of a sialogogic peptide from bovine hypothalamic tissue and its characterization as substance P. J. Biol. Chem. 245: 4784–4790, 1970.
 87. Chang, P.‐Y., and F.‐Y. Hsu. The localization of the intestinal inhibitory reflex arc. Q. J. Exp. Physiol. 31: 311–318, 1942.
 88. Chiba, T., and T. H. Williams. Histofluorescence characteristics and quantification of small intensely fluorescent cells (“S.I.F.” cells) in sympathetic ganglia of several species. Cell Tissue Res. 162: 331–341, 1975.
 89. Chung, K., J. M. Chung, F. W. Lavelle, and R. D. Wurster. Sympathetic neurons in the cat spinal cord projecting to the stellate ganglion. J. Comp. Neurol 185: 23–30, 1979.
 90. Chung, J. M., K. Chung, and R. D. Wurster. Sympathetic preganglionic neurons of the cat spinal cord: horseradish peroxidase study. Brain Res. 91: 126–131, 1975.
 91. Code, R. A., and J. H. Fallon. Some projections of dynorphin‐immunoreactive neurons in the cat central nervous system. Neuropeptides 8: 165–172, 1986.
 92. Cole, A. E., and P. Shinnick‐Gallagher. Muscarinic inhibitory transmission in mammalian sympathetic ganglia mediated by increased potassium conductance. Nature Lond. 307: 270–271, 1984.
 93. Coleman, H. A. Multiple sites for the initiation of action potentials in neurones of the inferior mesenteric ganglion of the guinea‐pig. Neuroscience 20: 357–363, 1987.
 94. Coles, J. A., and R. K. Orkand. Modification of potassium movement through the retina of the drone (Apis mellifera) by glia uptake. J. Physiol. Lond. 340: 157–174, 1983.
 95. Connor, J. A. Neural repetitive firing: a comparative study of membrane properties of crustacean walking leg axons. J. Neurophysiol. 38: 922–932, 1975.
 96. Connor, J. A., and C. F. Stevens. Voltage‐clamp studies of a transient outward membrane current in gastropod neural somata. J. Physiol. Lond. 213: 21–30, 1971.
 97. Connor, J. A., D. Walter, and R. McKown. Neural repetitive firing. Modifications of the Hodgkin‐Huxley axon suggested by experimental results from crustacean axons. Biophys. J. 18: 81–102, 1977.
 98. Conradi, S. On motoneuron synaptology in adult cats. Acta Physiol. Scand. Suppl. 332: 5–115, 1969.
 99. Constanti, A., P. R. Adams, and D. A. Brown. Why do barium ions initiate acetylcholine? Brain Res. 206: 244–250, 1981.
 100. Coombs, J. S., J. C. Eccles, and P. Fatt. The electrical properties of the motoneurone membrane. J. Physiol. Lond. 130: 291–325, 1955.
 101. Corder, R., P. C. Emson, and P. Lowry. Purification and characterization of human neuropeptide Y from adrenal‐medullary phaeochromocytoma tissue. Biochem. J. 219: 699–706, 1984.
 102. Costa, M., and J. B. Furness. The origins, pathways and terminations of neurons with VIP‐like immunoreactivity in the guinea‐pig small intestine. Neuroscience 8: 665–676, 1983.
 103. Costa, M., and J. B. Furness. Somatostatin is present in a subpopulation of noradrenergic nerve fibers supplying the intestine. Neuroscience 13: 911–919, 1984.
 104. Costa, M., J. B. Furness, and I. L. Gibbins. Chemical coding of enteric neurons. In: Progress in Brain Research, edited by T. Hökfelt, K. Fuxe, and B. Pernow. Amsterdam: Elsevier, 1986, vol. 68, p. 217–239.
 105. Costa, M., J. B. Furness, I. J. Llewellyn‐Smith, and C. Cuello. Projections of substance P neurons within the guinea pig small intestine. Neuroscience 6: 411–424, 1981.
 106. Crowcroft, P. J., M. E. Holman, and J. H. Szurszewski. Excitatory input from the distal colon to the inferior mesenteric ganglion in the guinea‐pig. J. Physiol. Lond. 219: 443–461, 1971.
 107. Crowcroft, P. J., and J. H. Szurszewski. A study of the inferior mesenteric and pelvic ganglia of guinea‐pigs with intracellular electrodes. J. Physiol. Lond. 219: 421–441, 1971.
 108. Cuello, A. C., T. M. Jessel, I. Kanazawa, and L. L. Iverson. Substance P: localization in synaptic vesicles in rat central nervous system. J. Neurochem. 29: 747–751, 1977.
 109. Dale, H. H. The action of extracts of the pituitary body. Biochem. J. 4: 427–447, 1909.
 110. Dalsgaard, C.‐J., and L.‐G. Elfvin. Spinal origin of preganglionic fibers projecting onto the superior cervical ganglion and inferior mesenteric ganglion of the guinea pig, as demonstrated by the horseradish peroxidase technique. Brain Res. 172: 139–143, 1979.
 111. Dalsgaard, C.‐J., and L.‐G. Elfvin. Structural studies on the connectivity of the inferior mesenteric ganglion of the guinea pig. J. Auton. Nerv. Syst. 5: 265–278, 1982.
 112. Dalsgaard, C.‐J., T. Hökfelt, L.‐G. Elfvin, L. Skirboll, and P. Emson. Substance‐P containing primary sensory neurons projecting to the inferior mesenteric ganglion: evidence from combined retrograde tracing and immunohistochemistry. Neuroscience 7: 647–654, 1982.
 113. Dalsgaard, C.‐J., T. Hökfelt, L.‐G. Elfvin, and L. Terenius. Enkephalin‐containing sympathetic preganglionic neurons projecting to the inferior mesenteric ganglion: evidence from combined retrograde tracing and immunohistochemistry. Neuroscience 7: 2039–2050, 1982.
 114. Dalsgaard, C.‐J., T. Hökfelt, M. Schultzberg, J. M. Lundberg, L. Terenius, G. J. Dockray, and M. Goldstein. Origin of peptide‐containing fibers in the inferior mesenteric ganglion of the guinea‐pig: immunohistochemical studies with antisera to substance P, enkephalin, vasoactive intestinal polypeptide, cholecystokinin and bombesin. Neuroscience 9: 191–211, 1983.
 115. Dalsgaard, C.‐J., S. R. Vincent, T. Hökfelt, I. Christensson, and L. Terenius. Separate origins for the dynorphin and enkephalin immunoreactive fibers in the inferior mesenteric ganglion of the guinea pig. J. Comp. Neurol. 221: 482–489, 1983.
 116. Dalsgaard, C.‐J., S. R. Vincent, T. Hökfelt, J. M. Lundberg, A. Dahlström, M. Schultzberg, G. J. Dockray, and A. C. Cuello. Coexistence of cholecystokinin‐ and substance P‐like peptides in neurones of the dorsal root ganglia of the rat. Neurosci. Lett. 33: 159–163, 1982.
 117. Dalsgaard, C.‐J., S. R. Vincent, M. Schultzberg, T. Hökfelt, L.‐G. Elfvin, L. Terenius, and G. J. Dockray. Capsaicin‐induced depletion of substance P‐like immunoreactivity in guinea pig sympathetic ganglia. J. Auton. Nerv. Syst. 9: 595–606, 1983.
 118. Dalsgaard, C.‐J., J. Ygge, S. R. Vincent, M. Ohrling, G. Dockray, and R. Elde. Peripheral projections and neuropeptide coexistence in a subpopulation of fluoride‐resistant acid phosphatase reactive spinal primary sensory neurons. Neurosci. Lett. 51: 139–144, 1984.
 119. David, V. C., and Loring, M. Splanchnic anaesthesia in the treatment of paralytic ileus. Ann. Surg. 92: 721–725, 1930.
 120. Davison, J. S., and P. Hersteinsson. Functional organization of the guinea‐pig inferior mesenteric ganglion. J. Physiol. Lond. 250: 27P–28P, 1975.
 121. De Castro, F. Sympathetic ganglia, normal and pathological. In: Cytology and Cellular Pathology of the Nervous System, edited by W. Penfield. New York: Hoeber, 1932, sect. 7, p. 317–380.
 122. De Castro, F., and J. Harreros. Actividad funcional del ganglio cervical superior, en relacion al numero y modalidad de sus fibras preganglionicas. Modelo de la synapsis. Trabajos Inst. Cajal Invest. Biol. 37: 287–342, 1945.
 123. Decktor, D. L., and W. A. Weems. An intracellular characterization of neurones and neural connexions within the left coeliac ganglion of cats. J. Physiol. Lond. 341: 197–211, 1983.
 124. DeGroat, W. C., A. M. Booth, and J. Krier. Interaction between sacral parasympathetic and lumbar sympathetic inputs to pelvic ganglia. In: Integrative Functions of the Autonomic Nervous System, edited by C. M. Brooks, K. Koizumi, and A. Sato. Tokyo: Tokyo Univ. Press, 1979, chapt. 15, p. 234–247.
 125. DeGroat, W. C., and J. Krier. An electrophysiological study of the sacral parasympathetic pathway to the colon of the cat. J. Physiol. Lond. 260: 425–445, 1976.
 126. DeGroat, W. C., and J. Krier. The central control of the lumbar sympathetic pathway to the large intestine of the cat. J. Physiol. Lond. 289: 449–468, 1979.
 127. DeGroat, W. C., and R. J. Theobald. Sympathetic inhibitory reflexes to the urinary bladder and bladder ganglia evoked by electrical stimulation of vesical afferents. J. Physiol. Lond. 259: 223–237, 1976.
 128. Del Fiacco, M., M. C. Levanti, G. Brotzu, and R. Montisci. Substance P‐like immunoreactivity in human sympathetic ganglia. Brain Res. 321: 143–146, 1984.
 129. Dennis, M. J., and H. M. Gerschenfeld. Some physiological properties of identified mammalian neurogial cells. J. Physiol. Lond. 203: 211–222, 1969.
 130. Dennis, M. J., A. J. Harris, and S. W. Kuffler. Synaptic transmission and its duplication by focally applied acetylcholine in parasympathetic neurons in the heart of the frog. Proc. R. Soc. Lond. B Biol. Sci. 177: 509–539, 1971.
 131. DePace, D. M. Morphologic study of the blood vessels of the superior cervical ganglion of the albino rat. Acta Anat. 109: 238–246, 1981.
 132. DePace, D. M. Evidence for a blood‐ganglion barrier in the superior cervical ganglion of the rat. Anat. Rec. 204: 357–363, 1982.
 133. Dick, E., and R. F. Miller. Peptides influence retinal ganglion cells. Neurosci. Lett. 26: 131–135, 1981.
 134. Dockray, G. J. Immunochemical evidence of cholecystokinin‐like peptides in the brain. Nature Lond. 264: 568–569, 1976.
 135. Dockrav, G. J., C. Vaillant, and J. H. Walsh. The neuronal origin of bombesin‐like immunoreactivity in the rat gastrointestinal tract. Neuroscience 4: 1561–1568, 1979.
 136. Dogiel, A. S. Zur Frage uber die Ganglion der Darmgeflechte bei den saugetieren. Anat. Anz. 10: 517–528, 1895.
 137. Dogiel, A. S. Zwei Arten sympathischer Nervenzellen. Anat. Anz. 11: 679–687, 1896.
 138. Douglas, D. M., and F. C. Mann. The effect of peritoneal initiation on the activity of the intestine. Br. Med. J. 1: 227–231, 1941.
 139. Dun, N. J., and Z. G. Jiang. Non‐cholinergic excitatory transmission in inferior mesenteric ganglia of the guinea‐pig: possible mediation by substance‐P. J. Physiol. Lond. 325: 145–159, 1982.
 140. Dun, N. J., and A. G. Karczmar. Actions of substance P on sympathetic neurons. Neuropharmacology 18: 215–218, 1979.
 141. Dun, N. J., and M. Kiraly. Capsaicin causes release of substance P‐like peptide in guinea‐pig inferior mesenteric ganglion. J. Physiol. Lond. 340: 107–120, 1984.
 142. Dun, N. J., M. Kiraly, and R. C. Ma. Evidence for a serotonin‐mediated slow excitatory potential in the guinea‐pig coeliac ganglia. J. Physiol. Lond. 351: 61–76, 1984.
 143. Dun, N. J., and R. C. Ma. Slow non‐cholinergic excitatory potentials in neurones of the guinea‐pig coeliac ganglia. J. Physiol. Lond. 351: 47–60, 1984.
 144. Dun, N. J., and S. Minolta. Effects of substance P on neurons of the inferior mesenteric ganglia of the guinea‐pig. J. Physiol. Lond. 321: 259–271, 1981.
 145. Dupont, A., and Y. Mérand. Enzymatic inactivation of neurotensin by hypothalamic and brain extracts of the rat. Life Sci. 22: 1623–1630, 1978.
 146. Du Vigneaud, V. Hormones of the posterior pituitary gland: oxytocin and vasopressin. Harvey Lect. 50: 1–26, 1954.
 147. Eccles, J. C. The action potential of the superior cervical ganglion. J. Physiol. Lond. 85: 179–206, 1935.
 148. Eccles, J. C., R. M. Eccles, and A. Lundberg. The action potentials of the α‐motoneurons supplying fast and slow muscles. J. Physiol. Lond. 142: 275–291, 1958.
 149. Eccles, J. C., R. F. Schmidt, and W. D. Willis. The mode of operation of the synaptic mechanism producing presynaptic inhibition. J. Neurophysiol. 26: 523–538, 1963.
 150. Eccles, R. M., and B. Libet. Origin and blockade of the synaptic responses of curarized sympathetic ganglia. J. Physiol. Lond. 157: 484–503, 1961.
 151. Eckert, R., and H. D. Lux. A voltage‐sensitive persistent calcium conductance in neural somata of Helix. J. Physiol. Lond. 254: 129–151, 1976.
 152. Eipper, B. A., and R. E. Mains. Structure and biosynthesis of pro‐adrenocorticotropin/endorphin and related peptides. Endocr. Rev. 1: 1–27, 1980.
 153. Elfvin, L.‐G. Ultrastructural studies on the synaptology of the inferior mesenteric ganglion of the cat. I. Observations on the cell surface of the postganglionic perikarya. J. Ultrastruct. Res. 37: 411–425, 1971.
 154. Elfvin, L.‐G. Ultrastructural studies on the synaptology of the inferior mesenteric ganglion of the cat. II. Specialized serial neuronal contacts between preganglionic end fibers. J. Ultrastruct. Res. 37: 426–431, 1971.
 155. Elfvin, L.‐G. Ultrastructural studies on the synaptology of the inferior mesenteric ganglion of the cat. III. The structure and distribution of the axo‐dendritic and dendro‐dendritic contacts. J. Ultrastruct. Res. 37: 432–448, 1971.
 156. Elfvin, L.‐G., and C.‐J. Dalsgaard. Retrograde axonal transport of horseradish peroxidase in afferent fibers of the inferior mesenteric ganglion of the guinea pig. Identification of the cells of origin in dorsal root ganglia. Brain Res. 126: 149–153, 1977.
 157. Elfvin, L.‐G., T. Hökfelt, and M. Goldstein. Fluorescence microscopical, immunohistochemical and ultrastructural studies on sympathetic ganglia of the guinea‐pig with special reference to the S.I.F. cells and their catecholamine content. J. Ultrastruct. Res. 51: 377–396, 1975.
 158. Elliott, T. R., and E. Barclay‐Smith. Antiperistalsis and other muscular activities of the colon. J. Physiol. Lond. 31: 272–304, 1904.
 159. Eränkö, O. SIF cells, chromaffin cells, granule‐containing cells and interneurons. In: SIF Cells. Structure and Function of the Small, Intensely Fluorescent Sympathetic Cells, edited by O. Eränkö. Washington, DC: US Govt. Printing Office, DHEW Publ. No. (NIH) 76–942, 1976, p. 1–7.
 160. Eränkö, O., and L. Eränkö. Small intensely fluorescent, granule‐containing cells in the sympathetic ganglia of the rat. In: Progress in Brain Research. Histochemistry of Nervous Transmission, edited by O. Eränkö. Amsterdam: Elsevier, 1971, vol. 34, p. 39–52.
 161. Eränkö, O., and M. Härkönen. Histochemical demonstration of fluorogenic amines in the cytoplasm of sympathetic ganglion cells of the rat. Acta Physiol. Scand. 58: 285–286, 1963.
 162. Eränkö, O., and M. Härkönen. Monoamine‐containing small cells in the superior cervical ganglion of the rat and an organ composed of them. Acta Physiol. Scand. 63: 511–512, 1965.
 163. Erlanger, J., and H. S. Gasser. Electrical Signs of Nervous Activity. Philadelphia: Univ. of Pennsylvania Press, 1937.
 164. Erspamer, V. Biogenic amines and active polypeptides of the amphibian skin. Annu. Rev. Pharmacol. 11: 327–350, 1971.
 165. Erspamer, V., G. Falconieri‐Erspamer, P. Melchiorri, and L. Negri. Occurrence of polymorphism of bombesin‐like peptides in the gastrointestinal tract of birds and mammals. Gut 20: 1047–1056, 1979.
 166. Erspamer, V., and P. Melchiorri. Actions of bombesin on secretions and motility of the gastrointestinal tract. In: Gastrointestinal Hormones, edited by J. C. Thompson. Austin: Univ. of Texas Press, 1975, p. 575–589.
 167. Euler, U. S. von. Untersuchungen über Substanz P, die atropinfeste, darmerregende und gefässerweiternde Substanz aus Darm und Gehirm. Naunyn‐Schmiedebergs Arch. Pharmacol. 181: 181–197, 1936.
 168. Euler, U. S. von. Herstellung und Eigenschaften von Substanz P. Acta Physiol. Scand. 4: 373–375, 1942.
 169. Euler, U. S. von. Historical notes. In: Substance P, edited by U. S. von Euler and B. Pernow. New York: Raven, 1977, p. 1–3. (Nobel Symp. Ser. no. 37.)
 170. Euler, U. S. von, and J. H. Gaddum. An unidentified depressor substance in certain tissue extracts. J. Physiol. Lond. 72: 74–87, 1931.
 171. Falck, B. Observations on the possibilities for the cellular localization of monoamines with a fluorescence method. Acta Physiol. Scand. Suppl. 197: 1–26, 1962.
 172. Fried, G., J. M. Lundberg, and E. Theodorsson‐Norheim. Subcellular storage and axonal transport of neuropeptide Y (NPY) in relation to catecholamines in the cat. Acta Physiol. Scand. 125: 145–154, 1985.
 173. Furness, J. B. The origin and distribution of adrenergic nerve fibers in the guinea‐pig colon. Histochemie 21: 295–306, 1970.
 174. Furness, J. B., and M. Costa. Morphology and distribution of intrinsic adrenergic neurones in the proximal colon of the guinea‐pig. Z. Zellforsch. Mikrosk. Anat. 120: 346–363, 1971.
 175. Furness, J. B., and M. Costa. The adrenergic innervation of the gastrointestinal tract. Ergebn. Physiol. 69: 1–51, 1974.
 176. Furness, J. B., M. Costa, P. C. Emson, R. Håkanson, E. Moghimzadeh, F. Sundler, I. L. Taylor, and R. E. Chance. Distribution, pathways and reactions to drug treatment of nerves with neuropeptide Y‐ and pancreatic polypeptide‐like immunoreactivity in the guinea‐pig digestive tract. Cell Tissue Res. 234: 71–92, 1983.
 177. Furness, J. B., and T. Malmfors. Aspects of the arrangement of the adrenergic innervation in guinea‐pigs as revealed by the fluorescence histochemical method applied to stretched, air‐dried preparations. Histochemie 25: 297–309, 1971.
 178. Furness, J. B., and G. Sobels. The ultrastructure of paraganglia associated with inferior mesenteric ganglia in the guinea‐pig. Cell Tissue Res. 171: 123–139, 1976.
 179. Fuxe, K., L. F. Agnati, T. McDonald, V. Locatelli, T. Hökfelt, C.‐J. Dalsgaard, N. Battistini, N. Yanaihara, V. Mutt, and A. C. Cuello. Immunohistochemical indications of gastrin releasing peptide‐bombesin‐like immunoreactivity in the nervous system of rat. Codistribution with substance P‐like immunoreactive nerve terminal systems and coexistence with substance P‐like immunoreactivity in dorsal root ganglion cell bodies. Neurosci. Lett. 37: 17–22, 1983.
 180. Fuxe, K., T. Goldstein, T. Hökfelt, and T. H. Joh. Cellular localization of dopamine‐hydroxylase and phenylethanolamine‐N‐methyl transferase as revealed by immunohistochemistry. In: Progress in Brain Research, Histochemistry of Nervous Transmission, edited by O. Eränkö. Amsterdam: Elsevier, 1971, vol. 34, p. 127–138.
 181. Fuxe, K., T. Hökfelt, S. I. Said, and V. Mutt. Vasoactive polypeptide and the nervous system: immunohistochemical evidence for localization in central and peripheral neurons, particularly intracortical neurons of the cerebral cortex. Neurosci. Lett. 5: 241–246, 1977.
 182. Gabella, G. Ganglia of the autonomic nervous system. In: The Peripheral Nerve, edited by D. N. Landon. London: Chapman & Hall, 1976, sect. 7, p. 355–395.
 183. Gaginella, T. S., H. S. Mekhjian, and T. M. O'Dorisio. Vasoactive intestinal peptide: quantification by radioimmunoassay in isolated cells, mucosa, and muscle of the hamster intestine. Gastroenterology 74: 718–721, 1978.
 184. Galvan, M., A. Dörge, F. Beck, and R. Rick. Intracellular electrolyte concentrations in rat sympathetic neurones measured with an electron microprobe. Pfluegers Arch. 400: 274–279, 1984.
 185. Gamse, R., and S. Heuberger. Release of neurotensin from rat spinal cord in vitro. Neurosci. Lett. 36: 87–91, 1983.
 186. Gamse, R., E. Mroz, S. E. Leeman, and F. Lembeck. The intestine as source of immunoreactive substance P in plasma of the cat. Naunyn‐Schmiedebergs Arch. Pharmacol. 305: 17–21, 1978.
 187. Gamse, R., A. Wax, R. E. Zigmond, and S. E. Leeman. Immunoreactive substance P in sympathetic ganglia: distribution and sensitivity toward capsaicin. Neuroscience 6: 437–441, 1981.
 188. Garrett, J. R., E. R. Howard, and W. Jones. The internal anal sphincter in the cat: a study of the nervous mechanisms affecting tone and reflex activity. J. Physiol. Lond. 243: 153–166, 1974.
 189. Garry, R. C. The nervous control of the caudal region of the large bowel in the cat. J. Physiol. Lond. 77: 422–431, 1933.
 190. Garry, R. C. The movements of the large intestine. Physiol. Rev. 14: 103–132, 1934.
 191. Garry, R. C., and J. S. Gillespie. The responses of the musculature of the colon of the rabbit to stimulation in vitro of the parasympathetic and of the sympathetic outflows. J. Physiol. Lond. 128: 557–576, 1955.
 192. Gaskell, W. H. On the structure, distribution, and function of the nerves which innervate the visceral and vascular systems. J. Physiol. Lond. 7: 1–80, 1886.
 193. Casser, H. S. Unmedullated fibres originating in dorsal root ganglia. J. Gen. Physiol. 33: 651–690, 1950.
 194. Gershon, M., and S. Bursztjan. Properties of the enteric nervous system: limitation of access of intravascular macro‐molecules to the myenteric plexus and muscularis externa. J. Comp. Neurol. 180: 467–487, 1978.
 195. Gibbons, I. L., J. B. Furness, M. Costa, I. MacIntyre, C. J. Hillyard, and S. Girgis. Co‐localization of calcitonin gene‐related peptide‐like immunoreactivity with substance P in cutaneous, vascular and visceral sensory neurons of guinea pigs. Neurosci. Lett. 57: 125–130, 1985.
 196. Gibson, S. J., J. M. Polak, S. R. Bloom, I. M. Sabate, P. M. Mulderry, M. A. Ghatei, G. P. McGregor, J. F. B. Morrison, J. S. Kelley, R. M. Evans, and M. G. Rosenfeld. Calcitonin gene‐related peptide immunoreactivity in the spinal cord of man and of eight other species. J. Neurosci. 4: 3101–3111, 1984.
 197. Gibson, S. J., J. M. Polak, S. R. Bloom, and P. D. Wall. The distribution of nine peptides in rat spinal cord with special emphasis on the substantia gelatinosa and on the area around the central canal (lamina X). J. Comp. Neurol. 201: 65–79, 1981.
 198. Gillespie, J. S., and M. A. Khoyi. The site and receptors responsible for the inhibition by sympathetic nerves of intestinal smooth muscle and its parasympathetic motor nerves. J. Physiol. Lond. 267: 767–789, 1977.
 199. Gillespie, J. S., and B. R. MacKenna. The inhibitory action of the sympathetic nerves on the smooth muscle of the rabbit gut, its reversal by reserpine and restoration by catecholamines and by dopa. J. Physiol. Lond. 156: 17–34, 1961.
 200. Glazer, E. J., and A. I. Basbaum. Leucine‐enkephalin: localization in and axoplasmic transport by sacral parasympathetic preganglionic neurons. Science Wash. DC 208: 1479–1480, 1980.
 201. Glazer, E. J., and A. I. Basbaum. Immunohistochemical localization of leucine‐enkephalin in the spinal cord of the cat: enkephalin‐containing marginal neurons and pain modulation. J. Comp. Neurol. 196: 377–389, 1981.
 202. Goldstein, A. W., W. Fischli, L. I. Lowney, M. Hunkapiller, and L. Hood. Porcine pituitary dynorphin: complete amino acid sequences of the biologically active heptadecapeptide. Proc. Natl. Acad. Sci. USA 78: 7219–7223, 1981.
 203. Goldstein, A., S. Tachibana, L. I. Lowney, M. Hunkapiller, and L. Hood. Dynorphin (1–13), an extraordinarily potent opioid peptide. Proc. Natl. Acad. Sci. USA 76: 6666–6670, 1979.
 204. Granit, R., D. Kernell, and Y. Lamarre. Algebraical summation in synaptic activation of motoneurones firing within the ‘primary range’ to injected currents. J. Physiol. Lond. 187: 379–399, 1966.
 205. Granit, R., D. Kernell, and G. K. Shortess. Quantitative aspects of repetitive firing of mammalian motoneurones caused by injected currents. J. Physiol. Lond. 168: 911–931, 1963.
 206. Gray, P. T. A., and J. M. Ritchie. A voltage‐gated chloride conductance in rat cultured astrocytes. Proc. R. Soc. Lond. B Biol. Sci. 228: 267–288, 1986.
 207. Green, J. D. The hippocampus. Physiol. Rev. 44: 561–608, 1964.
 208. Greenwood, D., R. E. Coggerhall, and C. E. Hulsebosch. Sexual dimorphism in the numbers of neurons in the pelvic ganglia of adult rats. Brain Res. 340: 160–162, 1985.
 209. Griffith, W. H., III, J. P. Gallagher, and P. Shinnick‐Gallagher. An intracellular investigation of cat vesicle pelvic ganglia. J. Neurophysiol. 43: 343–354, 1980.
 210. Hagiwara, S., and I. Tasaki. A study on the mechanism of impulse transmission across the giant synapse of the squid. J. Physiol. Load. 143: 114–137, 1958.
 211. Hamberger, B., and K.‐A. Norberg. Studies on some systems of adrenergic synaptic terminals in the abdominal ganglia of the cat. Acta. Physiol. Scand. 65: 235–242, 1965.
 212. Hanley, M. R., H. P. Benton, S. L. Lightman, K. Todd, B. A. Bone, P. Fretten, S. Palmer, C. J. Kirk, and R. H. Michell. A vasopressin‐like peptide in the mammalian sympathetic nervous system. Nature Lond. 309: 258–260, 1984.
 213. Häppölä, O., S. Soinila, H. Päivärnta, P. Panula, and O. Eränkö. Histamine‐immunoreactive cells in the superior cervical ganglion and in the celiac‐superior mesenteric ganglion complex of the rat. Histochemistry 82: 1–3, 1985.
 214. Harper, A. A., and H. S. Raper. Pancreozymin, a stimulant of the secretion of pancreatic enzymes in extracts of the small intestine. J. Physiol. Lond. 102: 115–125, 1943.
 215. Harper, A. A., and C. C. N. Vass. The control of the external secretion of the pancreas in cats. J. Physiol. Lond. 99: 415–435, 1941.
 216. Harris, A. J. An experimental analysis of the inferior mesenteric plexus. J. Comp. Neurol. 79: 1–17, 1943.
 217. Hashiguchi, T., H. Kobayashi, T. Tosaka, and B. Libet. Two muscarinic depolarizing mechanisms in mammalian sympathetic neurons. Brain Res. 242: 378–382, 1982.
 218. Heitz, P., J. M. Polak, C. M. Timson, and A. G. E. Pearse. Enterochromaffin cells as the endocrine source of gastrointestinal substance P. Histochemistry 49: 343–347, 1976.
 219. Helén, P., P. Panula, H. Y. Yang, and S. I. T. Rappaport. Bombesin/gastrin‐releasing peptide (GRP)‐ and [Met]5‐enkephalin‐Arg6‐Gly7‐Leu8‐like immunoreactivity in small fluorescent (SIF) cells and nerve fibers of rat sympathetic ganglia. J. Histochem. Cytochem. 32: 1131–1138, 1984.
 220. Helmstaedter, V., C. Taugner, G. E. Feurle, and W. G. Forssmann. Localization of neurotensin‐immunoreactive cells in the small intestine of man and various mammals. Histochemistry 53: 35–41, 1977.
 221. Henry, J. L., and F. R. Calaresu. Topography and numerical distribution of neurons of the thoraco‐lumbar intermediolateral nucleus in the cat. J. Comp. Neurol. 144: 205–214, 1972.
 222. Herbison, A. E., J. I. Hubbard, and N. E. Sirett. Neurotensin excites neurons in the arcuate nucleus of the rat hypothalamus in vitro. Brain Res. 364: 391–395, 1986.
 223. Hertz, A. F. The ileo‐caecal sphincter. J. Physiol. Lond. 47: 54–56, 1913.
 224. Hertz, A. F., and A. Newton. The normal movements of the colon in man. J. Physiol. Lond. 47: 57–65, 1913.
 225. Heym, C., M. Reinecke, E. Weihe, and W. G. Forssmann. Dopamine β‐hydroxylase‐, neurotensin‐, substance P‐, vasoactive intestinal polypeptide‐ and enkephalin‐immunohistochemistry of paravertebral and prevertebral ganglia in the cat. Cell Tissue Res. 235: 411–418, 1984.
 226. Hille, B. The selective inhibition of delayed potassium currents in nerve by tetraethylammonium ions. J. Gen. Physiol. 50: 1287–1302, 1967.
 227. Hills, J. M., B. F. King, R. Mirsky, and K. R. Jessen. Immunohistochemical and electrophysiological studies of GABA in prevertebral ganglia in guinea‐pig. Localization and actions. J. Auton. Nerv. Syst. In press.
 228. Hodgkin, A. L., and P. Horowicz. The influence of potassium and chloride ions on the membrane potential of single muscle fibres. J. Physiol. Lond. 148: 127–160, 1959.
 229. Hodgkin, A. L., and A. F. Huxley. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. Lond. 117: 500–544, 1952.
 230. Hodgkin, A. L., and B. Katz. The effect of sodium ions on the electrical activity of the giant axon of the squid. J. Physiol. Lond. 108: 37–77, 1949.
 231. Hökfelt, T. In vitro studies on central and peripheral monoamine neurons at the ultrastructural level. Z. Zellforsch Mikrosk. Anat. 91: 1–74, 1968.
 232. Hökfelt, T. Distribution of noradrenaline storing particles in peripheral adrenergic neurons as revealed by electron microscopy. Acta Physiol. Scand. 76: 427–440, 1969.
 233. Hökfelt, T., R. P. Elde, O. Johansson, R. Luft, and A. Arimura. Immunohistochemical evidence for the presence of somatostatin, a powerful inhibitory peptide, in some primary sensory neurons. Neurosci. Lett. 1: 231–235, 1975.
 234. Hökfelt, T., R. P. Elde, O. Johansson, R. Luft, G. Nilsson, and A. Arimura. Immunohistochemical evidence for separate populations of somatostatin‐containing and substance P‐containing primary afferent neurons in the rat. Neuroscience 1: 131–136, 1976.
 235. Hökfeldt, T., L.‐G. Elfvin, R. Elde, M. Schultzberg, M. Goldstein, and R. Luft. Occurrence of somatostatin‐like immunoreactivity in some peripheral sympathetic noradrenergic neurons. Proc. Natl. Acad. Sci. USA 8: 3587–3591, 1977.
 236. Hökfelt, T., L.‐G. Elfvin, M. Schultzberg, K. Fuxe, S. I. Said, V. Mutt, and M. Goldstein. Immunohistochemical evidence of vasoactive intestinal polypeptide‐containing neurons and nerve fibers in sympathetic ganglia. Neuroscience 2: 885–896, 1977.
 237. Hökfelt, T., L.‐G. Elfvin, M. Schultzberg, M. Goldstein, and G. Nilsson. On the occurrence of substance P‐containing fibres in sympathetic ganglia: immunohistochemical evidence. Brain Res. 132: 29–41, 1977.
 238. Hökfelt, T., O. Johansson, Å. Ljungdahl, J. N. Lundberg, and M. Schultzberg. Peptidergic neurones. Nature Lond. 284: 515–521, 1980.
 239. Hökfelt, T., M. Schultzberg, R. Elde, G. Nilsson, L. Terenius, S. Said, and M. Goldstein. Peptide neurons in peripheral tissue including the urinary tract: immunohistochemical studies. Acta Pharmacol. Toxicol. 43: 79–89, 1978.
 240. Holman, M. E., T. C. Muir, J. H. Szurszewski, and K. Yonemura. Effect of iontophoretic application of cholinergic agonists and their antagonists to guinea‐pig pelvic ganglia. Br. J. Pharmacol. 41: 26–40, 1971.
 241. Holmes, F. W., and H. A. Davenport. Cells and fibers in spinal nerves. IV. The number of neurites in dorsal and ventral roots of the cat. J. Comp. Neurol. 73: 1–6, 1940.
 242. Hölzer, P., A. Bucsics, and F. Lembeck. Distribution of capsaicin‐sensitive nerve fibres containing immunoreactive substance P in cutaneous and visceral tissues of the rat. Neurosci. Lett. 31: 253–257, 1982.
 243. Holzer, P., R. Gamse, and F. Lembeck. Distribution of substance P in the rat gastrointestinal tract—lack of effect of capsaicin pretreatment. Eur. J. Pharmacol. 61: 303–307, 1980.
 244. Honda, C. N., M. Rethelyi, and P. Petrusz. Preferential immunohistochemical localization of vasoactive intestinal polypeptide (VIP) in the sacral spinal cord of the cat: light and electron microscopic observations. J. Neurosci. 3: 2183–2196, 1983.
 245. Horn, J. P., and D. A. McAfee. Alpha‐adrenergic inhibition of calcium‐dependent potentials in rat sympathetic neurones. J. Physiol. Lond. 301: 191–204, 1980.
 246. Hotz, G. Beitrage zur pathologie ders darmbewegungen. Mitt. Grenzgeb. Med. Chir. 20: 257–318, 1909.
 247. Hua, X.‐Y., E. Theodorsson‐Norheim, E. Brodin, J. M. Lundberg, and T. Hökfelt. Multiple tachykinin (neurokinin A, neuropeptide K and substance P) in capsaicin‐sensitive sensory neurons in the guinea pig. Regul. Pept. 13: 1–19, 1985.
 248. Huber, G. C. A contribution on the minute anatomy of the sympathetic ganglion of the different classes of vertebrates. J. Morphol. 16: 27–86, 1899.
 249. Hughes, J., T. W. Smith, H. W. Kosterlitz, L. A. Fothergill, B. A. Morgan, and H. R. Morris. Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature Lond. 253: 577–579, 1975.
 250. Hulten, L. Extrinsic nervous control of colonic motility and blood flow. Acta Physiol. Scand. Suppl. 335: 1–116, 1969.
 251. Iggo, A. Gastrointestinal tension receptors with unmyelinated fibers in the vagus of the cat. J. Exp. Physiol. 42: 130–143, 1957.
 252. Iggo, A. Non‐myelinated visceral muscular and cutaneous afferent fibers and pain. In: The Assessment of Pain in Man and Animals, edited by C. A. Keele and R. Smith. Edinburgh: Livingstone, 1962, p. 74–87.
 253. Inagaki, S., Y. Kubota, S. Kito, K. Kangawa, and H. Matsuo. Immunoreactive atrial natriuretic polypeptides in the adrenal medulla and sympathetic ganglia. Regul. Pept. 15: 249–260, 1986.
 254. Ip, N. Y., C. K. Ho, and R. E. Zigmond. Secretin and vasoactive intestinal polypeptide acutely increase tyrosine 3‐monooxygenase in the rat superior cervical ganglion. Proc. Natl. Acad. Sci. USA 79: 7566–7569, 1982.
 255. Iversen, L. L., S. D. Iversen, F. Bloom, C. Douglas, M. Brown, and W. Vale. Calcium‐dependent release of somatostatin and neurotensin from rat brain in vitro. Nature Lond. 273: 161–163, 1978.
 256. Ivy, A. C., M. I. Grossman, and W. H. Bachruch. Peptic Ulcer. London: Churchill, 1950.
 257. Ivy, A. C., and G. B. McIlvain. The excitation of gastric secretion by application of substances to the duodenal and jejunal mucosa. Am. J. Physiol. 67: 124–140, 1923.
 258. Ivy, A. C., and E. Oldberg. A hormone mechanism for gall bladder contraction and evacuation. Am. J. Physiol. 86: 599–613, 1928.
 259. Ivy, A. C., and E. Oldberg. A hormone mechanism for gall bladder contraction and evacuation: physiological studies. Am. J. Physiol. 85: 381–383, 1928.
 260. Jacobowitz, D. Catecholamine fluorescence studies of adrenergic neurons and chromaffin cells in sympathetic ganglia. Federation Proc. 29: 1929–1944, 1970.
 261. Jacobowitz, D. M., and J. A. Olschowska. Bovine pancreatic polypeptide‐like immunoreactivity in brain and peripheral nervous system: coexistence with catecholaminergic nerves. Peptides Fayetteville 3: 569–590, 1982.
 262. Jan, L. Y., and Y. N. Jan. Peptidergic transmission in sympathetic ganglia of the frog. J. Physiol. Lond. 327: 219–246, 1982.
 263. Jan, Y. N., L. Y. Jan, and S. W. Kuffler. A peptide as a possible transmitter in sympathetic ganglia of the frog. Proc. Natl. Acad. Sci. USA 76: 1501–1505, 1979.
 264. Jan, Y. N., L. Y. Jan, and S. W. Kuffler. Further evidence for peptidergic transmission in sympathetic ganglia. Proc. Natl. Acad. Sci. USA 77: 5008–5012, 1980.
 265. Jänig, W., and R. F. Schmidt. Single unit responses in the cervical sympathetic trunk upon somatic nerve stimulation. Pfluegers Arch. 314: 199–216, 1970.
 266. Jansson, G., B. Lisander, and J. Martinson. Hypothalamic control of adrenergic outflow to the stomach of the cat. Acta Physiol. Scand. 75: 176–186, 1969.
 267. Järvi, R., P. Helen, M. Pelto‐Huikko, and A. Hervonen. Neuropeptide Y (NPY)‐like immunoreactivity in rat sympathetic neurons and small granule‐containing cells. Neurosci. Lett. 67: 223–227, 1986.
 268. Jensen, R. T., G. F. Lemp, and J. D. Gardner. Interaction of cholecystokinin with specific membrane receptors on pancreatic acinar cells. Proc. Natl. Acad. Sci. USA 77: 2079–2083, 1980.
 269. Jessell, T. M., L. I. Iversen, and A. C. Cuello. Capsaicin‐induced depletion of substance P from primary sensory neurons. Brain Res. 152: 183–188, 1978.
 270. Jiang, Z.‐G., and N. J. Dun. Multiple conductance change associated with the slow excitatory potential in mammalian sympathetic neurons. Brain Res. 229: 203–208, 1981.
 271. Jiang, Z.‐G., and N. J. Dun. Facilitation of nicotinic response in the guinea pig prevertebral neurons by substance P. Brain Res. 363: 196–198, 1986.
 272. Jiang, Z.‐G., N. J. Dun, and A. G. Karczmar. Substance P: a putative sensory transmitter in mammalian autonomic ganglia. Science Wash. DC 217: 739–741, 1982.
 273. Job, C., and A. Lundberg. Reflex excitation of cells in the inferior mesenteric ganglion on stimulation of the hypogastric nerve. Acta Physiol. Scand. 26: 366–382, 1952.
 274. Johnston, D. Voltage clamp reveals basis for calcium regulation of bursting pacemaker potentials in Aphysia neurons. Brain Res. 107: 418–423, 1976.
 275. Ju, G., T. Hokfelt, J. A. Fischer, P. Frey, J. F. Rehfled, and G. J. Dockray. Does cholecystokinin‐like immunoreactivity in rat primary sensory neurons represent calcitonin gene‐related peptide? Neurosci. Lett. 68: 305–310, 1986.
 276. Julé, Y., N. Clerc, J. P. Niel, and M. Condamin. [Met]‐and [Leu]‐enkephalin‐like immunoreactive cell bodies and nerve fibres in the celiac ganglion of the cat. Neuroscience 18: 487–498, 1986.
 277. Julé, Y., J. Krier, and J. H. Szurszewski. Patterns of innervation of neurones in the inferior mesenteric ganglion of the cat. J. Physiol. Lond. 344: 293–304, 1983.
 278. Julé, Y., and J. H. Szurszewski. Electrophysiology of neurones of the inferior mesenteric ganglion of the cat. J. Physiol. Lond. 344: 277–292, 1983.
 279. Kakidani, H., Y. Funitani, H. Takahushi, M. Noda, Y. Morimoto, T. Hirose, M. Asai, S. Inayama, S. Nakanishi, and S. Numa. Cloning and sequence analysis of cDNA for porcine β‐neoendorphin/dynorphin precursor. Nature Lond. 298: 245–249, 1982.
 280. Kanagawa, Y., T. Matsuyama, A. Wanaka, S. Yoneda, K. Kimura, T. Kamada, H. W. M. Steinbusch, and M. Tohyama. Coexistence of enkephalin‐ and serotoxin‐like substance on single small intensely fluorescent cells of the guinea pig superior cervical ganglion. Brain Res. 379: 377–379, 1986.
 281. Karczmar, A. G. Historical development of concepts of ganglionic transmission. In: Autonomic and Enteric Ganglia, edited by A. G. Karczmar, K. Koketsu, and S. Nishi. New York: Plenum, 1986, p. 3–26.
 282. Katayama, Y., and S. Nishi. Peptidergic transmission. In: Autonomic and Enteric Ganglia, edited by A. G. Karczmar, K. Koketsu, and S. Nishi. New York: Plenum, 1986, p. 181–201.
 283. Kawatani, M., I. P. Lowe, I. Nadelhaft, C. Morgan, and W. C. deGroat. Vasoactive intestinal polypeptide in visceral afferent pathways to the sacral spinal cord of the cat. Neurosci. Lett. 42: 311–316, 1983.
 284. Kawatani, M., M. Rutigliano, and W. C. deGroat. Depolarization and muscarinic excitation induced in a sympathetic ganglion by vasoactive intestinal polypeptide. Science Wash. DC 229: 879–881, 1985.
 285. Kawatani, M., M. Rutigliano, and W. C. deGroat. Selective facilitatory effect of vasoactive intestinal polypeptide (VIP) on muscarinic firing in vesical ganglia of the cat. Brain Res. 336: 223–234, 1985.
 286. Keast, J. R., J. B. Furness, and M. Costa. The origins of peptides and norepinephrine nerves in the mucosa of the guinea pig small intestine. Gastroenterology 86: 637–644, 1984.
 287. Keef, K. D., and D. L. Kreulen. Venous mechanoreceptor input to neurones in the inferior mesenteric ganglion of the guinea‐pig. J. Physiol. Lond. 377: 49–59, 1986.
 288. Kernell, D. The limits of firing frequency in cat lumbosacral motoneurones possessing different times courses of afterhyperpolarization. Acta Physiol. Scand. 65: 87–100, 1965.
 289. Kessler, J. A., J. E. Adler, M. C. Bohn, and I. B. Black. Substance P in principal sympathetic neurons: regulation by impulse activity. Science Wash. DC 214: 335–336, 1981.
 290. Kihl, B., A. Rökaeus, S. Rosell, and L. Olbe. Fat inhibition of gastric acid secretion in man and plasma concentrations of neurotensin like immunoreactivity. Scand. J. Gastroenterol. 16: 513–526, 1981.
 291. Kihl, B., A. Rökaeus, S. Rosell, and L. Olbe. The effect of intraduodenal instillation of oleic acid on plasma neurotensin‐like immunoreactivity and on gastric acid secretion stimulated by betazole and sham feeding in man. Scand. J. Gastroenterol. 17: 633–639, 1982.
 292. Kimmell, J. R., L. J. Hayden, and H. G. Pollock. Isolation and characterization of a new pancreatic polypeptide hormone. J. Biol. Chem. 250: 9369–9376, 1975.
 293. Kimmel, J. R., H. G. Pollock, R. E. Chance, M. G. Johnson, J. R. Reeves, I. L. Taylor, C. Miller, and J. E. Shively. Pancreatic polypeptide from rat pancreas. Endocrinology 114: 1725–1731, 1984.
 294. King, B. F. Excitation and Inhibition in the Rabbit Rectococcygeus Muscle. Glasgow, Scotland: University of Glasgow, 1980, PhD thesis.
 295. King, B. F., and J. M. Hills. GABA‐like immunoreactivity in prevertebral ganglia in guinea‐pig. Gastroenterology 85: 1467, 1987.
 296. King, B. F., and J. H. Szurszewski. An electrophysiological study of the inferior mesenteric ganglion of the dog. J. Neurophysiol. 51: 607–615, 1984.
 297. King, B. F., and J. H. Szurszewski. Mechanoreceptor pathways from the distal colon to the autonomic nervous system in the guinea‐pig. J. Physiol. Land. 350: 93–107, 1984.
 298. King, B. F., and J. H. Szurszewski. Afterspike‐hyperpolarization of functionally‐identified neurones in the inferior mesenteric ganglion in guinea‐pig. J. Auton. Nerv. Syst. In press.
 299. King, B. F., and J. H. Szurszewski. Effects of potassium‐channel blocking agents on neurones in the inferior mesenteric ganglion in guinea‐pig. J. Auton. New. Syst. In press.
 300. King, B. F., and J. H. Szurszewski. Electrotonic characteristics and electrical properties of neurones in the inferior mesenteric ganglion in guinea‐pig. J. Auton. Nerv. Syst. In press.
 301. King, C. E. Studies on intestinal inhibitory reflexes. Am. J. Physiol. 70: 183–193, 1924.
 302. Kiraly, M., S. Audigier, E. Tribollet, C. Barberis, M. Dolivo, and J. J. Dreiffus. Biochemical and electrophysiological evidence of functional vasopressin receptors in the rat superior cervical ganglion. Proc. Natl. Acad. Sci. USA 83: 5335–5339, 1986.
 303. Kiraly, M., R. C. Ma, and N. J. Dun. Serotonin mediates a slow excitatory potential in mammalian celiac ganglia. Brain Res. 275: 378–383, 1983.
 304. Kiraly, M., M. Maillard, J. J. Dreiffus, and M. Dolivo. Neurohypophyseal peptides depress cholinergic transmission in a mammalian sympathetic ganglion. Neurosci. Lett. 62: 89–95, 1985.
 305. Klein, R. L., S. P. Wilson, D. J. Dzielak, W.‐H. Yang, and O. H. Viveros. Opioid peptides and noradrenaline coexist in large dense‐cored vesicles from sympathetic nerve. Neuroscience 7: 2255–2261, 1982.
 306. Klingman, G. I., and J. D. Klingman. Catecholamines in peripheral tissues of mice and cell counts of sympathetic ganglia after the prenatal and postnatal administration of the nerve growth factor antiserum. Int. J. Neuropharmacol. 6: 501–508, 1967.
 307. Koch, N. G. An experimental analysis of mechanisms engaged in reflex inhibition of intestinal motility. Acta Physiol. Scand. 104, Suppl. 47: 1–54, 1959.
 308. Koketsu, K. Inhibitory transmissions: slow inhibitory postsynaptic potential. In: Autonomic and Enteric Ganglia, edited by A. G. Karczmar, K. Koketsu, and S. Nishi. New York: Plenum, 1986, p. 201–224.
 309. Kondo, H., H. Kuramoto, B. H. Wainer, and N. Yanaihara. Evidence for the coexistence of acetylcholine and enkephalin in the sympathetic preganglionic neurons of rats. Brain Res. 335: 309–314, 1985.
 310. Kondo, H., and R. Yui. An electron microscopic study in VIP‐like immunoreactive nerve fibers in the coeliac ganglion of guinea pigs. Brain Res. 237: 227–231, 1982.
 311. Kondo, H., and R. Yui. An electron microscopic study on enkephalin‐like immunoreactive nerve fibers in the coeliac ganglion of guinea pigs. Brain Res. 252: 142–145, 1982.
 312. Konishi, S., and M. Otsuka. Blockade of slow excitatory post‐synaptic potential by substance P antagonists on guinea‐pig sympathetic ganglia. J. Physiol. Lond. 361: 115–130, 1985.
 313. Konishi, S., A. Tsunoo, and M. Otsuka. Enkephalins pre‐synaptically inhibit cholinergic transmission in sympathetic ganglia. Nature Lond. 282: 515–516, 1979.
 314. Konishi, S., A. Tsunoo, and M. Otsuka. Substance P and noncholinergic excitatory synaptic transmission in guinea pig sympathetic ganglia. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 55: 525–530, 1979.
 315. Konishi, S., A. Tsunoo, and M. Otsuka. Enkephalin as a transmitter for presynaptic inhibition in sympathetic ganglia. Nature Lond. 294: 80–82, 1981.
 316. Konishi, S., A. Tsunoo, N. Yanaihara, and M. Otsuka. Peptidergic excitatory and inhibitory synapses in mammalian sympathetic ganglia: roles of substance P and enkephalin. Biomed. Res. 1: 528–536, 1980.
 317. Konturek, S. J. Somatostatin and opiate peptides: their action on gastrointestinal secretion. In: Gastrointestinal Hormones, edited by G. B. Glass. New York: Raven, 1980, chapt. 28, p. 693–716.
 318. Kreulen, D. L. Intracellular recordings in the inferior mesenteric ganglion of the rat. Soc. Neurosci. Abstr. 8: 553, 1982.
 319. Kreulen, D. L., T. C. Muir, and J. H. Szurszewski. Peripheral sympathetic pathways to gastroduodenal region of the guinea pig. Am. J. Physiol. 245 (Gastrointest. Liver Physiol. 8): G369–G375, 1983.
 320. Kreulen, D. L., and S. Peters. Non‐cholinergic transmission in a sympathetic ganglion of the guinea‐pig elicited by colon distention. J. Physiol. Lond. 374: 315–334, 1986.
 321. Kreulen, D. L., and J. H. Szurszewski. Electrophysiological and morphological basis for organization of neurons in prevertebral ganglia. In: Frontiers of Knowledge in the Diarrheal Diseases: International Colloquium in Gastroenterology, edited by H. D. Janowitz and D. B. Sachar. Upper Montclair, NJ: Projects in Health, 1979, p. 211–226.
 322. Kreulen, D. L., and J. H. Szurszewski. Nerve pathways in celiac plexus of the guinea pig. Am. J. Physiol. 237 (Endocrinol. Metab. Gastrointest. Physiol. 6): E90–E97, 1979.
 323. Kreulen, D. L., and J. H. Szurszewski. Reflex pathways in the abdominal prevertebral ganglia: evidence for a colo‐colonic inhibitory reflex. J. Physiol. Lond. 295: 21–32, 1979.
 324. Krier, J., P. F. Schmalz, and J. H. Szurszewski. Central innervation of neurones in the inferior mesenteric ganglion and of the large intestine of the cat. J. Physiol. Lond. 332: 125–138, 1982.
 325. Krier, J., and J. H. Szurszewski. Effect of substance P on colonic mechanoreceptors, motility, and sympathetic neurons. Am. J. Physiol. 243 (Gastrointest. Liver Physiol. 6): G259–G267, 1982.
 326. Krnjević, K. The distribution of Na and K in cat nerves. J. Physiol. Lond. 128: 473–488, 1955.
 327. Krnjević, K. Na and K in degenerating cat nerves. J. Physiol. Lond. 135: 281–287, 1957.
 328. Krnjević, K., and A. Lisiewicz. Injection of calcium ions into spinal motoneurones. J. Physiol. Lond. 225: 363–390, 1972.
 329. Krnjević, K., R. Pumain, and L. Renaud. Effects of Ba2+ and tetraethylammonium on cortical neurones. J. Physiol. Lond. 215: 223–245, 1971.
 330. Krukoff, T. Segmental distribution of corticotropin‐releasing factor‐like and vasoactive intestinal peptide‐like immunoreactivities in presumptive sympathetic preganglionic neurons of the cat. Brain Res. 382: 153–157, 1986.
 331. Kuba, K., and S. Minota. General characteristics and mechanisms of nicotinic transmission in sympathetic ganglia. In: Autonomic and Enteric Ganglia, edited by A. G. Karczmar, K. Koketsu, and S. Nishi. New York: Plenum, 1986, p. 107–135.
 332. Kuffler, S. W., and J. G. Nicholls. The physiology of neuroglial cells. Ergebn. Physiol. 51: 1–90, 1966.
 333. Kuntz, A. The structural organization of the celiac ganglia. J. Comp. Neurol. 69: 1–12, 1938.
 334. Kuntz, A. The structural organization of the inferior mesenteric ganglia. J. Comp. Neurol. 72: 371–382, 1940.
 335. Kuntz, A. The Autonomic Nervous System. London: Baillière, Tindal, & Cox, 1947.
 336. Kuntz, A., and M. W. Jacobs. Components of periarterial extensions of celiac and mesenteric plexuses. Anat. Rec. 123: 509–520, 1955.
 337. Kuntz, A., and G. Saccomanno. Reflex inhibition of intestinal motility mediated through decentralized prevertebral ganglia. J. Neurophysiol. 7: 163–170, 1944.
 338. Kuntz, A., and C. van Buskirk. Reflex inhibition of bile flow and intestinal motility mediated through decentralized coeliac plexus. Proc. Soc. Exp. Biol. Med. 46: 519–523, 1941.
 339. Kuo, D. C., M. Kawatani, and W. C. Degroat. Vasoactive intestinal polypeptide identified in the thoracic dorsal root ganglia of the cat. Brain Res. 330: 178–182, 1985.
 340. Kuo, D. C., G. C. H. Yang, D. S. Yamasaki, and G. H. Krauthamer. A wide field electron microscopic analysis of the fiber constituents of the major splanchnic nerve in cat. J. Comp. Neurol. 210: 49–58, 1982.
 341. Kuz'mina, S. V. Structural organization of the inferior mesenteric ganglion. Arch. Anat. Histol. Embryol. 45: T706–T709, 1963.
 342. Langley, J. N. On the origin from the spinal cord of the cervical and upper thoracic sympathetic fibres with some observations on the white and grey rami communicantes. Philos. Trans. R. Soc. Land. B Biol. Sci. 183: 85–124, 1892.
 343. Langley, J. N. On the union of cranial autonomic (visceral) fibers with the nerve cells of the superior cervical ganglion. J. Physiol. Lond. 23: 241–270, 1898.
 344. Langley, J. N. The sympathetic and other related systems of nerves. In: Textbook of Physiology, edited by E. A. Shäfer. Edinburgh: Pentland, 1900, vol. 2, p. 616–696.
 345. Langley, J. N. On the question of commissural fibres between nerve‐cells having the same function and situated in the same sympathetic ganglion and on the function of postganglionic nerve plexuses. J. Physiol. Lond. 31: 244–259, 1904.
 346. Langley, J. N. The Autonomic Nervous System, pt. I. Cambridge, UK: Heffer, 1921.
 347. Langley, J. N., and H. K. Anderson. On reflex action from sympathetic ganglia. J. Physiol. Lond. 16: 410–440, 1894.
 348. Langley, J. N., and H. K. Anderson. On the innervation of the pelvic and adjoining viscera. Part I. The lower portion of the intestine. J. Physiol. Lond. 18: 67–105, 1895.
 349. Langley, J. N., and H. K. Anderson. The innervation of the pelvic and adjoining viscera. Part II. The bladder. J. Physiol. Lond. 19: 122–130, 1895.
 350. Langley, J. N., and W. L. Dickinson. On the local paralysis of the peripheral ganglia and on the connexion of different classes of nerve fibres with them. Proc. R. Soc. Lond. 46: 423–431, 1889.
 351. Larsson, L.‐L., J. Fahrenbrug, O. B. Schaffalitzky de Muckadell, F. Sundler, R. Håkanson, and J. F. Rehfeld. Localization of vasoactive intestinal polypeptide (VIP) to central and peripheral neurons. Proc. Natl. Acad. Sci. USA 73: 3197–3200, 1976.
 352. Larsson, L.‐L, and J. F. Rehfeld. Evidence for a common evolutionary origin of gastrin and cholecystokinin. Nature Lond. 269: 335–338, 1977.
 353. Larsson, L. I., and J. F. Rehfeld. Localization and molecular heterogeneity of cholecystokinin in the central and peripheral nervous system. Brain Res. 165: 201–218, 1979.
 354. Larsson, L. I., F. Sundler, and R. Håkanson. Immunohistochemical localization of human pancreatic polypeptide (HPP) to a population of islet cells. Cell Tissue Res. 156: 167–171, 1975.
 355. Lawson, H. The role of the inferior mesenteric ganglia in the diphasic response of the colon to sympathetic stimuli. Am. J. Physiol. 109: 257–273, 1934.
 356. Lawson, H., and J. P. Holt. The control of the large intestine by the decentralized inferior mesenteric ganglia. Am. J. Physiol. 118: 780–785, 1937.
 357. Leah, J. D., A. A. Cameron, W. L. Kelly, and P. J. Snow. Coexistence of peptide immunoreactivity in sensory neurons of the cat. Neurosci. Lett. 16: 683–690, 1985.
 358. Leander, S., R. Ekman, R. Uddman, F. Sundler, and R. Håkanson. Neuronal cholecystokinin, gastrin‐releasing peptide, neurotensin, and β‐endorphin in the intestine of the guinea pig—distribution and possible motor functions. Cell Tissue Res. 235: 521–531, 1984.
 359. Learmonth, J. R. The surgery of the sympathetic nervous system. Br. J. Surg. 25: 426–445, 1937.
 360. Learmonth, J. R., and J. Markowitz. Studies on the function of the lumbar sympathetic outflow. I. The relation of the lumbar sympathetic outflow to the sphincter ani internus. Am. J. Physiol. 89: 686–691, 1929.
 361. Learmonth, J. R., and J. Markowitz. Studies on the innervation of the large bowel. II. The influence of the lumbar colonic nerves on the distal part of the colon. Am. J. Physiol. 94: 501–504, 1930.
 362. Lebedev, V. P., V. I. Petrov, and V. A. Skobelev. Anti‐dromic discharges of sympathetic preganglionic neurons located outside of the spinal cord lateral horns. Neurosci. Lett. 2: 325–329, 1976.
 363. Lee, Y., S. Shiosaka, P. C. Emson, J. F. Powell, A. D. Smith, and M. Tohyama. Neuropeptide Y‐like immunoreactive structures in the rat stomach with special reference to the noradrenaline neuron system. Gastroenterology 89: 118–126, 1985.
 364. Lee, Y., S. Shiosaka, N. Hayashi, and M. Tohyama. The presence of vasoactive intestinal polypeptide‐like immunoreactive structures projecting from the myenteric ganglion of the stomach to the celiac ganglion revealed by a double‐labeling technique. Brain Res. 382: 392–394, 1986.
 365. Lee, Y., Y. Shiotani, N. Hayashi, T. Kamada, C. J. Hillyard, S. I. Girgis, I. MacIntyre, and M. Tohyama. Distribution and origin of calcitonin gene‐related peptide in the rat stomach and duodenum: an immunocytochemical analysis. J. Neural Transm. 68: 1–14, 1987.
 366. Lee, Y., K. Takami, Y. Kawai, S. Girgis, C. J. Hillyard, I. MacIntyre, P. C. Emson, and M. Tohyama. Distribution of calcitonin gene‐related peptide in the rat peripheral nervous system with reference to its coexistence with substance P. Neuroscience 15: 1227–1237, 1985.
 367. Leek, R. Abdominal and pelvic visceral receptors. Br. Med. Bull. 33: 163–168, 1977.
 368. Lehmann, A. V. Studien über reflektorische darmbewegungen beim Hunde. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 149: 413–433, 1913.
 369. Lembeck, F., P. Holzer, M. Schweditsch, and R. Gamse. Elimination of substance P from the circulation of the rat and its inhibition of bacitracin. Naunyn‐Schmiedeberg's Arch. Pharmacol. 305: 9–16, 1978.
 370. Lempinen, M. Extra‐adrenal chromaffin tissue of the rat and the effect of cortical hormones on it. Acta Physiol. Scand. Suppl. 231: 1–91, 1964.
 371. Léránth, C., and E. Féher. Synaptology and sources of vasoactive intestinal polypeptide and substance P containing axons of the cat coeliac ganglion. An experimental electron microscopic immunohistochemical study. Neuroscience 10: 947–958, 1983.
 372. Léránth, C., and G. Ungváry Axon types of prevertebral ganglia and the peripheral autonomic reflex arc. J. Auton. Nerv. Syst. 1: 265–281, 1980.
 373. Léránth, C., T. H. Williams, J. Y. Jew, and A. Arimura. Immunoelectron microscopic identification of somatostatin in cells and axons of sympathetic ganglia in the guinea pig. Cell Tissue Res. 212: 83–89, 1980.
 374. Li, C. H., and D. Chung. Isolation and structure of an untriacontapeptide with opiate activity from camel pituitary glands. Proc. Natl Acad. Sci. USA 73: 1145–1148, 1976.
 375. Libet, B. Generation of slow inhibitory and excitatory potentials. Federation Proc. 29: 1945–1956, 1970.
 376. Libet, B. Functional roles of S.I.F. cells in slow synaptic actions. In: Histochemistry and Cell Biology of Autonomic Neurons, SIF Cells and Paraneurons, edited by O. Eränkö, S. Soinila, and H. Päivärinta. New York: Raven, 1980, p. 111–118.
 377. Libet, B. Mediation of slow inhibitory postsynaptic potentials [letter]. Nature Lond. 313: 161–162, 1985.
 378. Libet, B., and C. Owman. Concomitant changes in formaldehyde‐induced fluorescence of dopamine interneurones and in slow‐inhibitory postsynaptic potentials of the rabbit superior cervical ganglion, induced by stimulation of the preganglionic nerve or by a muscarinic agent. J. Physiol. Lond. 237: 635–662, 1974.
 379. Libet, B., and T. Tosaka. Slow inhibitory and excitatory postsynaptic responses in single cells of mammalian sympathetic ganglia. J. Neurophysiol. 32: 43–50, 1969.
 380. Libet, B., and T. Tosaka. Dopamine as a synaptic transmitter and modulator in sympathetic ganglia: a different mode of synaptic action. Proc. Natl. Acad. Sci. USA 67: 667–673, 1970.
 381. Lin, T. M. Pancreatic polypeptide: isolation, chemistry and biological function. In: Gastrointestinal Hormones, edited by G. B. Glass. New York: Raven, 1980, chapt. 11, p. 276–306.
 382. Ling, N., R. Burgus, and R. Guillemin. Isolation, primary structure, and synthesis of alpha‐endorphin and gamma‐endorphin, two peptides of hypothalamic‐hypophyseal origin with morphinomimetic activity. Proc. Natl. Acad. Sci. USA 73: 3942–3946, 1976.
 383. Lisandeb, B., and O. Stenqvist. Extradural fentanyl and postoperative ileus in cats. Br. J. Anaesth. 53: 1237–1238, 1981.
 384. Lister, J. Preliminary account of an inquiry into the functions of the visceral nerves, with special reference to the so‐called “inhibitory system.” Proc. R. Soc. Lond. B Biol. Sci. 9: 367–380, 1858.
 385. Lium, R. Peptic ulcer and diarrhea following the removal of the prevertebral ganglia in dogs: antispasmodic effects of magnesium sulphate, pentobarbital and atropine sulphate. Surgery St. Louis 9: 538–553, 1941.
 386. Llinás, R., and H. Johnsen. Electrophysiology of mammalian thalamic neurones in vitro. Nature Lond. 297: 406–408, 1982.
 387. Lloyd, D. P. C. The transmission of impulses through the inferior mesenteric ganglia. J. Physiol. Lond. 91: 296–313, 1937.
 388. Love, J. A., and J. H. Szurszewski. The electrophysiological effects of vasoactive intestinal polypeptide in the guinea‐pig inferior mesenteric ganglion. J. Physiol. Lond. 394: 67–84, 1987.
 389. Lundberg, J. M., B. Hedlund, and T. Bartfai. Vasoactive intestinal polypeptide enhances muscarinic ligand binding in cat submandibular salivary gland. Nature Lond. 295: 147–149, 1982.
 390. Lundberg, J. M., T. Hökfelt, A. Änggard, J. Kimmel, M. Goldstein, and K. Markey. Coexistence of an avian pancreatic polypeptide (APP) immunoreactive substance and catecholamines in some peripheral and central neurones. Acta Physiol. Scand. 110: 107–109, 1980.
 391. Lundberg, J. M., T. Hökfelt, A. Änggard, L. Terenius, R. Elde, K. Markey, M. Goldstein, and J. Kimmel. Organizational principles in the peripheral sympathetic nervous system: subdivision by coexisting peptides (somatostatin‐, avian pancreatic polypeptide‐ and vasoactive intestinal polypeptide‐like immunoreactive materials). Proc. Natl. Acad. Sci. USA 79: 1303–1307, 1982.
 392. Lundberg, J. M., T. Hökfelt, A. Änggard, K. Uvnäs‐Wallensten, S. Brimijoin, E. Brodin, and J. Fahrenkrug. Peripheral peptide neurons: distribution, axonal transport, and some aspects on possible function. In: Neural Peptides and Neuronal Communication, edited by E. Costa and M. Trabucci. New York: Raven, 1980, p. 25–36.
 393. Lundberg, J. M., T. Hökfelt, G. Nilsson, L. Terenius, J. F. Rehfeld, R. P. Elde, and S. I. Said. Peptide neurons in the vagus splanchnic and sciatic nerves. Acta Physiol. Scand. 104: 499–501, 1978.
 394. Lundberg, J. M., T. Hökfelt, K. Schultzerg, K. Uvnäs‐Wallensten, C. Köhler, and S. I. Said. Occurrence of vasoactive intestinal polypeptide‐like immunoreactivity in certain cholinergic neurons of the cat: evidence from combined immunohistochemistry and acetylcholinesterase staining. Neuroscience 4: 1539–1559, 1979.
 395. Lundberg, J. M., A. Rökaeus, T. Hökfelt, S. Rosell, M. Brown, and M. Goldstein. Neurotensin‐like immunoreactivity in the preganglionic sympathetic nerves and in the adrenal medulla of the cat. Acta Physiol. Scand. 114: 153–155, 1982.
 396. Lundberg, J. M., K. Tatemoto, L. Terenius, P. M. Hellstrom, V. Mutt, and T. Hökfelt. Localization of peptide YY (PYY) in gastrointestinal endocrine cells and effects on intestinal blood flow and motility. Proc. Natl. Acad. Sci. USA 79: 4471–4475, 1982.
 397. Lundberg, J. M., L. Terenius, T. Hökfelt, and M. Goldstein. High levels of neuropeptide Y in peripheral noradrenergic neurons in various mammals including man. Neurosci. Lett. 42: 167–172, 1983.
 398. Lundberg, J. M., L. Terenius, T. Hökfelt, C. R. Martling, K. Tatemoto, V. Mutt, J. Polak, S. Bloom, and M. Goldstein. Neuropeptide Y (NPY)‐like immunoreactivity in peripheral noradrenergic neurons and effects of NPY on sympathetic function. Acta Physiol. Scand. 116: 477–480, 1982.
 399. Ma, R. C., N. J. Dun, and Z. G. Jiang. Evidence for slow IPSP in mammalian prevertebral ganglia. Brain Res. 270: 350–354, 1983.
 400. Maclean, A. B. The gastro‐ileal reflex in chronic appendicitis. Br. Med. J. 2: 1055–1056, 1932.
 401. Macrae, I. M., J. B. Furness, and M. Costa. Distribution of subgroups of noradrenaline neurons in the coeliac ganglion of the guinea‐pig. Cell Tissue Res. 244: 173–180, 1986.
 402. Maeda, K., and L. A. Frohman. Neurotensin release by rat hypothalamic fragments in vitro. Brain Res. 210: 261–269, 1981.
 403. Magnus, R. Versuche am überlebenden Dünndarm von Saugetieren II. Mitteil: die Beziehungen des Darmnevensystems zur automatischen Darmbewegung. Pfluegers Arch. Geamte Physiol. Menschen Tiere 102: 349–363, 1904.
 404. Mains, R. E., B. A. Eipper, and N. Ling. Common precursor to corticotropins and endorphins. Proc. Natl. Acad. Sci. USA 74: 3014–3018, 1977.
 405. Mannard, A., and C. Polosa. Analysis of background firing of single sympathetic preganglionic neurons of cat cervical nerve. J. Neurophysiol. 36: 398–408, 1973.
 406. Margiotta, J. F., and D. K. Berg. Enkephalin and substance P modulate synaptic properties of chick ciliary ganglion neurons in cell culture. Neuroscience 18: 175–182, 1986.
 407. Markowitz, J., and W. R. Campbell. The relief of experimental ileus by spinal anesthesia. Am. J. Physiol. 81: 101–106, 1927.
 408. Martin, A. R., and G. Pilar. Dual mode of synaptic transmission in the avian ciliary ganglion. J. Physiol. Lond. 168: 443–463, 1963.
 409. Mashford, M. L., G. Nilsson, A. Rökaeus, and S. Rosell. Release of neurotensin‐like immunoreactivity (NTLI) from the gut in anesthetized dogs. Acta Physiol. Scand. 104: 375–376, 1978.
 410. Mashford, M. L., G. Nilsson, A. Rökaeus, and S. Rosell. The effect of food ingestion on circulating neurotensin‐like immunoreactivity (NTLI) in the human. Acta Physiol. Scand. 104: 244–246, 1978.
 411. Massari, V. J., Y. Tizabi, C. H. Park, T. W. Moody, C. J. Helke, and T. L. O'Donohue. Distribution and origin of bombesin, substance P and somatostatin in cat spinal cord. Peptides Fayetteville 4: 673–681, 1983.
 412. Matthews, M. R., M. Connaughton, and A. C. Cuello. Ultrastructure and distribution of substance P‐immunoreactive sensory collaterals in the guinea pig prevertebral sympathetic ganglia. J. Comp. Neurol. 258: 28–51, 1987.
 413. Matthews, M. R., and A. C. Cuello. Substance‐P immunoreactive peripheral branches of sensory neurons innervate guinea‐pig sympathetic neurons. Proc. Natl. Acad. Sci. USA 79: 1668–1672, 1982.
 414. Matthews, M. R., and G. Raisman. The ultrastructure and somatic efferent synapses of small granule‐containing cells in the superior cervical ganglion. J. Anat. 105: 255–282, 1969.
 415. Maximow, A. A., and W. Bloom. A Text‐Book of Histology (5th ed.). Philadelphia, PA: Saunders, 1948.
 416. McCrea, E. D. A. The nerves to the stomach and their relation to surgery. Br. J. Surg. 13: 621–648, 1926.
 417. McDonald, D. M., and R. W. Blewett. Location and size of carotid body‐like organs (paraganglia) revealed in rats by the permeability of blood vessels to Evans blue dye. J. Neurocytol. 10: 607–643, 1981.
 418. McDonald, T. J., G. Nilsson, M. Vagne, M. Ghatei, S. R. Bloom, and V. Mutt. A gastrin releasing peptide from the porcine non‐antral gastric tissue. Gut 19: 767–774, 1978.
 419. McLachlan, E. M. The formation of synapses in mammalian sympathetic ganglia reinnervated with preganglionic or somatic nerves. J. Physiol. Lond. 237: 217–242, 1974.
 420. McLachlan, E. M. The components of the hypogastric nerve in male and female guinea pigs. J. Auton. Nerv. Syst. 13: 327–342, 1985.
 421. McLachlan, E. M., and I. J. Llewellyn‐Smith. The immunohistochemical distribution of neuropeptide Y in lumbar pre‐ and paravertebral sympathetic ganglion of the guinea pig. J. Auton. Nerv. Syst. 17: 313–324, 1986.
 422. McLachlan, E. M., B. J. Oldfield, and T. Sittiracha. Localization of hindlimb vasomotor neurons in the lumbar spinal cord of the guinea pig. Neurosci. Lett. 54: 269–275, 1985.
 423. McLennan, H., and J. E. Pascoe. The origin of certain non‐medullated nerve fibres which form synapses in the inferior mesenteric ganglion of the rabbit. J. Physiol. Lond. 124: 145–156, 1954.
 424. McMahan, U. J., and S. W. Kuffler. Visual identification of synaptic butons on living ganglion cells and of varicosities in postganglionic axons in the heart of the frog. Proc. R. Soc. Lond. B Biol. Sci. 177: 485–508, 1971.
 425. Meltzer, S. J., and J. Auer. Peristaltic movements of the rabbit's cecum and their inhibition. Proc. Soc. Exp. Biol. Med. 4: 37–40, 1907.
 426. Miller, S. M., and J. H. Szurszewski. Colonic mechanosensory input to the superior mesenteric ganglion in the mouse (Abstract). Physiologist 30: 214, 1987.
 427. Mitchell, G. A. G. Anatomy of the Autonomic Nervous System. Edinburgh: Livingstone, 1953.
 428. Mo, N., and N. J. Dun. Vasoactive intestinal polypeptide facilitates muscarinic transmission in mammalian sympathetic ganglia. Neurosci. Lett. 52: 19–23, 1984.
 429. Mo, N., and N. J. Dun. Cholecystokinin octapeptide depolarizes guinea pig inferior mesenteric ganglion cells and facilitates nicotinic transmission. Neurosci. Lett. 64: 263–268, 1986.
 430. Molander, C., J. Ygge, and C.‐J. Dalsgaard. Substance P‐, somatostatin‐ and calcitonin‐gene‐related peptide‐like immunoreactivity and fluoride resistant acid phosphatase‐activity in relation to retrogradely labeled cutaneous muscular and visceral primary sensory neurons in rat. Neurosci. Lett. 74: 37–42, 1987.
 431. Morgan, C., I. Nadelhaft, and W. C. Degroat. The distribution within the spinal cord of visceral primary afferent axons carried by the lumbar colonic nerve of the cat. Brain Res. 398: 11–17, 1986.
 432. Mudge, A. W., S. E. Leeman, and G. D. Fischbach. Enkephalin inhibits release of substance P from sensory neurons in culture and decreases action potential duration. Proc. Natl. Acad. Sci. USA 76: 526–530, 1979.
 433. Mumford, R. A., P. A. Pierzchala, A. W. Strauss, and M. Zimmermann. Purification of a membrane‐bound metalloen‐dopeptidase from porcine kidney that degrades peptide hormones. Proc. Natl. Acad. Sci. USA 78: 6623–6627, 1981.
 434. Muscholl, E., and M. Vogt. Perfusion of extramedullary chromaffine tissue. J. Physiol. Lond. 169: 93–94P, 1964.
 435. Mutt, V. Further investigations on intestinal hormonal polypeptides. Clin. Endocrinol. Suppl. 5: 1835–1975, 1976.
 436. Mutt, V., and J. E. Jorpes. Structure of porcine cholecystokinin‐pancreozymin. Eur. J. Biochem. 6: 156–162, 1968.
 437. Mutt, V., and J. E. Jorpes. Hormonal polypeptides of the upper intestine. Biochem. J. 125: 57P–58P, 1971.
 438. Mutt, V., and S. I. Said. Structure of porcine vasoactive intestinal octacosa‐peptide: the amino acid sequence. Use of kallikrein in its determination. Eur. J. Biochem. 42: 581–589, 1974.
 439. Nadelhaft, I., J. Roppolo, C. Morgan, and W. C. de‐Groat. Parasympathetic preganglionic neurons and visceral primary afferents in monkey sacral spinal cord revealed following application of horseradish peroxidase to pelvic nerve. J. Comp. Neurol. 1216: 36–52, 1983.
 440. Nakanishi, S., A. Inoue, T. Kita, M. Nakamura, A. C. Y. Chang, S. N. Cohen, and S. Numa. Nucleotide sequence of cloned cDNA for bovine corticotropin‐β‐lipotropin precursor. Nature Lond. 278: 423–437, 1979.
 441. Nawa, H., T. Hirose, H. Takashima, S. Inayama, and S. Nakanishi. Nucleotide sequence of cloned cDNAs for two types of bovine brain substance P precursor. Nature Lond. 306: 32–36, 1983.
 442. Nield, T. O. Slow‐developing depolarization of neurones in the guinea‐pig inferior mesenteric ganglion following repetitive stimulation of the preganglionic nerves. Brain Res. 140: 231–239, 1978.
 443. Nishi, S., and K. Koketsu. Electrical properties and activities of single sympathetic neurons in frogs. J. Cell. Comp. Physiol. 55: 15–30, 1960.
 444. Nishi, S., and K. Koketsu. Early and late afterdischarges of amphibian sympathetic ganglion cells. J. Neurophysiol. 31: 109–121, 1968.
 445. Nishi, S., H. Soeda, and K. Koketsu. Studies on sympathetic B and C neurons and patterns of preganglionic innervation. J. Cell. Comp. Physiol. 66: 19–32, 1965.
 446. Niwa, M., K. Shigematsu, L. Plunkett, and J. M. Saavedra. High‐affinity substance P binding sites in rat sympathetic ganglia. Am. J. Physiol. 249 (Heart Circ. Physiol. 18): H694–H697, 1985.
 447. Nja, A., and D. Purves. Specific innervation of guinea‐pig superior cervical ganglion cells by preganglionic fibres arising from different levels of the spinal cord. J. Physiol. Lond. 264: 565–583, 1977.
 448. Noda, M., Y. Furutani, H. Takahushi, M. Toyosato, T. Hirose, S. Inayama, S. Nakanishi, and S. Numa. Cloning and sequence analysis of cDNA for bovine adrenal preproen‐kephalin. Nature Lond. 295: 202–206, 1982.
 449. Nohmi, M., P. Shinnick‐Gallagher, P. W. Gean, J. P. Gallagher, and C. W. Cooper. Calcitonin and calcitonin gene‐related peptide enhance calcium‐dependent potentials. Brain Res. 367: 346–350, 1986.
 450. Norberg, K.‐A. Adrenergic innervation of the intestinal wall studied by fluorescence microscopy. Int. J. Neuropharmacol. 3: 379–382, 1964.
 451. Norberg, K.‐A., M. Ritzen, and U. Ungerstedt. Histochemical studies on a special catecholamine‐containing cell type in sympathetic ganglia. Acta Physiol. Scand. 67: 260–270, 1966.
 452. North, R. A., and M. Tonini. The mechanism of action of narcotic analgesics in the guinea pig ileum. Br. J. Pharmacol. 61: 541–549, 1977.
 453. Ochoa, J. The unmyelinated nerve fibre. In: The Peripheral Nerve, edited by D. N. Landon. London: Chapman & Hall, 1976, p. 106–158.
 454. Ochsner, A., and I. M. Gage. Adynamic ileus. Am. J. Surg. 20: 378–404, 1933.
 455. Ochsner, A., I. M. Gage, and R. A. Cutting. Treatment of ileus by splanchnic anesthesia. J. Am. Med. Assoc. 90: 1847–1853, 1928.
 456. Oldfield, B. J., and E. M. McLachlan. An analysis of the sympathetic preganglionic neurons projecting from the upper thoracic spinal roots of the cat. J. Comp. Neurol. 196: 329–345, 1981.
 457. Orci, L., O. Baetens, C. Rufener, M. Brown, W. Vale, and R. Guillemin. Evidence for immunoreactive neurotensin in dog intestinal mucosa. Life Sci. 19: 559–562, 1976.
 458. Orkand, R. K., J. G. Nicholls, and S. W. Kuffler. Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. J. Neurophysiol. 29: 788–806, 1966.
 459. Otsuka, M., and S. Konishi. Substance P and excitatory neurotransmitter of primary sensory neurons. Cold Spring Harbor Symp. Quant. Biol. 40: 135–143, 1976.
 460. Otsuka, M., and S. Konishi. Electrophysiological and neurochemical evidence for substance P as a transmitter of primary sensory neurons. In: Substance P, edited by U. S. von Euler and B. Pernow. New York: Raven, 1977, p. 207–216. (Nobel Symp. Ser. no. 37.)
 461. Owman, C., and N. O. Sjöstrand. Short adrenergic neurons and catecholamines containing cells in vas deferens and accessory male genital glands of different mammals. Z. Zellforsch. Mikrosk. Anat. 66: 300–320, 1965.
 462. Partridge, L. D., and C. F. Stevens. A mechanism for spike frequency adaptation. J. Physiol. Land. 256: 315–332, 1976.
 463. Pasternak, G. W., R. Goodman, and S. H. Snyder. An endogenous morphine‐like factor in mammalian brain. Life Sci. 16: 1765–1769, 1975.
 464. Paton, W. D. M., and E. S. Vizi. The inhibitory action of noradrenaline and adrenaline on acetylcholine output by guinea‐pig ileum longitudinal muscle strip. Br. J. Pharmacol. Chemother. 34: 10–28, 1969.
 465. Pearcy, J. F., and E. J. van Liere. Studies on the visceral nervous system. XVII. Reflexes from the colon. 1. Reflexes to the stomach. Am. J. Physiol. 78: 64–73, 1926.
 466. Pearse, A. G. E., and J. M. Polak. Immunocytochemical localization of substance P in mammalian intestine. Histochemistry 41: 373–375, 1975.
 467. Pearson, J., L. Brandeis, and A. C. Cuello. Depletion of substance P axons in the substantia gelatinosa of patients with diminished pain sensitivity. Nature Lond. 295: 61–63, 1982.
 468. Pébusque, M. J., A. M. Dupuy‐Coin, C. Cataldó, R. Seite, M. Bouteille, and P. Moens. Three dimensional electron microscopy of the nucleolar organizer regions (NORs) in sympathetic neurons. Biol. Cell. 41: 59–62, 1981.
 469. Pébusque, M. J., A. Robaglia, and R. Seite. Diurnal rhythm of nucleolar volume in sympathetic neurons of the rat superior cervical ganglion. Eur. J. Cell. Biol. 24: 128–130, 1981.
 470. Pébusque, M. J., and R. Seite. Evidence of a circadian rhythm in nucleolar components of rat superior cervical ganglion neurons with particular reference to the fibrillar centers: an ultrastructural and stereological analysis. J. Ultrastruct. Res. 77: 83–92, 1981.
 471. Pébusque, M. J., and R. Seite. Ultrastructure and stereological analysis of nucleoli of rat nodose ganglion neuron during a 24 h period: a comparison with sympathetic neurons of rat superior cervical ganglion. J. Auton. Nerv. Syst. 13: 91–98, 1985.
 472. Pelto‐Hiukko, M., M. Hervonen, P. Helén, I. Linnoila, V. M. Pickel, and R. J. Miller. Localization of (Met5)‐ and (Leu5)‐enkephalin in nerve terminals and SIF cells in adult human sympathetic ganglia. In: Histochemistry and Cell Biology of Autonomic Neurons, SIF Cells and Paraneurons, edited by O. Eränko, S. Soinila, and H. Paivärinta. New York: Raven, 1980, p. 379–383.
 473. Pernow, B. Studies in substance P. Purification, occurrence and biological actions. Acta Physiol. Scand. Suppl. 105: 1–90, 1953.
 474. Perri, V., O. Sacchi, and C. Casella. Electrical properties and synaptic connections of the sympathetic neurones in the rat and guinea‐pig superior cervical ganglion. Pfluegers Arch. 314: 4–54, 1970.
 475. Pert, C. B., and S. H. Snyder. Opiate receptors: demonstration in nervous tissue. Science Wash. DC 179: 1011–1014, 1973.
 476. Peters, S., and D. L. Kreulen. A slow EPSP in mammalian inferior mesenteric ganglion persists after in vivo capsaicin. Brain Res. 303: 186–189, 1984.
 477. Peters, S., and D. L. Kreulen. Vasopressin‐mediated slow EPSPs in a mammalian sympathetic ganglion. Brain Res. 339: 126–129, 1985.
 478. Peters, S., and D. L. Kreulen. Fast and slow potentials produced in a mammalian sympathetic ganglion by colon distension. Proc. Natl. Acad. Sci. USA 83: 1941–1944, 1986.
 479. Petras, J. M., and J. F. Cummings. Autonomic neurons in the spinal cord of the rhesus monkey: A correlation of the findings of cytoarchitectonics and sympathectomy with fiber degeneration following dorsal rhizotomy. J. Comp. Neurol. 146: 189–218, 1972.
 480. Petras, J. M., and A. I. Faden. The origin of sympathetic preganglionic neurons in the dog. Brain Res. 144: 353–357, 1978.
 481. Pflüger, E. Über das Hemmungs‐Nervensystem für die peristaltischen Bewegungen der Gedärme. Berlin: Hirschwald, 1857.
 482. Phillis, J. W., and J. R. Kirkpatrick. The actions of motilin, luteinizing hormone releasing hormone, cholecystokinin, vasoactive intestinal peptide, and other peptides on rat cerebral cortical neurons. Can. J. Physiol. Pharmacol. 58: 612–623, 1980.
 483. Pines, I. L. Zur morphologie des ganglion ciliare beim menschen. Z. Mikrosk. Anat. Forsch. 10: 313–380, 1927.
 484. Pinnock, R. D. Neurotensin depolarizes substantia nigra dopamine neurones. Brain Res. 338: 151–154, 1985.
 485. Polak, J. M., S. N. Sullivan, S. R. Bloom, A. M. J. Buchan, P. Facer, M. R. Brown, and A. G. E. Pearse. Specific localization of neurotensin to the N‐cell in human intestine by radioimmunoassay and immunocytochemistry. Nature Lond. 270: 183–184, 1977.
 486. Polosa, C., A. Mannard, and W. Laskey. Tonic activity of the autonomic nervous system: functions, properties, origins. In: Integrative Functions of the Autonomic Nervous System, edited by C. M. Brooks, K. Koizumi, and A. Sato. Tokyo: University Press, 1979, chapt. 25, p. 342–354.
 487. Popielski, L. Zur Physiologie des Plexus Coeliacus (Experimentelle Utersuchung). Arch Anat. Physiol. Physiol. Abt. Leipzig 27: 338–360, 1903.
 488. Pradayrol, L., H. Jornvall, V. Mutt, and A. Ribet. N‐terminally extended somatostatin: the primary structure of somatostatin‐28. FEBS Lett. 109: 55–58, 1980.
 489. Procacci, P., and M. Zoppi. Pathophysiology and clinical aspects of visceral and referred pain. In: Advances in Pain Research and Therapy, edited by J. Bonica. New York: Raven, 1983, vol. 5, p. 643–656.
 490. Purves, D., and R. I. Hume. The relation of postsynaptic geometry to the number of presynaptic axons that innervate autonomic ganglion cells. J. Neurosci. 1: 441–452, 1981.
 491. Ramón y Cajal, S. Sur les ganglions et plexus neureux de l'intestin. C. R. Soc. Biol. Paris 5: 217–223, 1893.
 492. Ramón yCajal, S. Las células del gran simpático del hombre adulto. Trabajos Lab. Invest. Biol. 4: 79–104, 1906.
 493. Ramón y Cajal, S. Histologie due système nerveux de l'homme et des vertébrés, translated by Azoulay. Paris: Maloine, 1911.
 494. Rang, H. P., and J. M. Richie. The ionic content of mammalian non‐myelinated nerve fibres and its alteration as a result of electrical activity. J. Physiol. Lond. 196: 223–236, 1968.
 495. Ranson, S. W., and P. R. Billingsley. An experimental analysis of the sympathetic trunk and greater splanchnic nerve in the cat. J. Comp. Neurol. 29: 441–456, 1918.
 496. Reinecke, M., W. G. Forssmann, G. Tmekotter, and J. Triepel. Localization of neurotensin‐immunoreactivity in the spinal cord and peripheral nervous system of the guinea pig. Neurosci. Lett. 37: 37–42, 1983.
 497. Rodrigo, J., J. M. Polak, L. Fernandez, M. A. Ghatei, P. Mulderry, and S. R. Bloom. Calcitonin gene‐related peptide immunoreactive sensory and motor nerves of the rat, cat and monkey esophagus. Gastroenterology 88: 444–451, 1985.
 498. Rosell, S., and A. Rökaeus. The effect of ingestion of amino acids, glucose and fat on circulating neurotensin‐like immunoreactivity (NTLI) in man. Acta Physiol. Scand. 107: 263–267, 1979.
 499. Rosenfeld, M. G., J. J. Mermod, S. G. Amara, L. W. Swanson, P. E. Sawchenko, J. Rivier, W. W. Vale, and R. M. Evans. Production of novel neuropeptide encoded by the calcitonin gene via tissue specific RNA processing. Nature Land. 304: 129–135, 1983.
 500. Ross, J. G. On the presence of centripetal fibers in the superior mesenteric nerves of the rabbit. J. Anat. 92: 189–198, 1958.
 501. Rossier, J., D. Liston, G. Patey, M. Chaminade, A. S. Foutz, A. Cupo, P. Giraud, M. P. Roisin, J. P. Henry, P. Verbanck, and J. J. Vanderhaeghen. The enkephalinergic neuron: implications of a polyenkephalin precursor. Cold Spring Harbor Symp. Quant. Biol. 47: 393–404, 1983.
 502. Rostad, H. Colonic motility in the cat. II. Extrinsic nervous control. Acta Physiol. Scand. 89: 91–103, 1973.
 503. Rubin, B., and S. E. Engel. Some biological characteristics of cholecystokinin (CCK‐PZ) and synthetic analogues. In: Frontiers in Gastrointestinal Hormone Research, edited by S. A. Anderson. Stockholm: Almquist & Wiksell, 1973, p. 41–45. (Nobel Symposium 16.)
 504. Said, S. I., and V. Mutt. Long acting vasodilator peptide from lung tissue. Nature Land. 224: 699–700, 1969.
 505. Said, S. I., and V. Mutt. Polypeptide with broad biological activity: isolation from small intestine. Science Wash. DC 169: 1217–1218, 1970.
 506. Said, S. I., and V. Mutt. Potent peripheral and splanchnic vasodilator peptide from normal gut. Nature Lond. 225: 863–864, 1970.
 507. Said, S. I., and V. Mutt. Isolation from procine‐intestinal wall of a vasoactive octacosapeptide related to secretin and to glucagon. Eur. J. Biochem. 28: 199–204, 1972.
 508. Saria, A., R. C. Ma, and N. J. Dun. Neurokinin A depolarizes neurons of the guinea pig inferior mesenteric ganglion. Neurosci. Lett. 60: 145–150, 1985.
 509. Sasek, C. A., V. W. Seybold, and R. P. Elde. The immunohistochemical localization of nine peptides in the sacral parasympathetic nucleus and the dorsal gray commissure in rat spinal cord. Neuroscience 12: 855–873, 1984.
 510. Schaefer, E. A., and S. Vincent. On the action of extract of pituitary injected intravenously. J. Physiol. Lond. 24: 19P–21P, 1899.
 511. Schally, A. V., A. Dupont, A. Arimura, T. W. Redding, and G. L. Linthicum. Isolation of porcine GH‐release inhibiting hormone (GH‐RIH): the existence of 3 forms of GH‐RIH (Abstract). Federation Proc. 34: 584, 1975.
 512. Schapiro, H., and E. R. Woodward. Inhibition of gastric motility by acid in the duodenum. J. Appl. Physiol. 8: 121–127, 1955.
 513. Schapiro, H., and E. R. Woodward. Pathway of enterogastric reflex. Proc. Soc. Exp. Biol. Med. 101: 407–409, 1959.
 514. Schofield, G. C. Experimental studies on the innervation of the mucous membrane of the gut. Brain 83: 490–514, 1960.
 515. Schultzberg, M. Bombesin‐like immunoreactivity in sympathetic ganglia. Neuroscience 8: 363–374, 1983.
 516. Schultzberg, M., and C.‐J. Dalsgaard. Enteric origin of bombesin immunoreactive fibers in the rat celiac‐superior mesenteric ganglion. Brain Res. 269: 190–195, 1983.
 517. Schultzberg, M., T. Hökfelt, G. Nilsson, L. Terenius, J. F. Rehfeld, M. Brown, R. Elde, M. Goldstein, and S. Said. Distribution of peptide‐ and catecholamine‐containing neurons in the gastrointestinal tract of rat and guinea‐pig: immunohistochemical studies with antisera to substance P, vasoactive intestinal polypeptide, enkephalins, somatostatin, gastrin/cholecystokinin, neurotensin and dopamine β‐hydroxylase. Neuroscience 5: 689–744, 1980.
 518. Schultzberg, M., T. Hökfelt, L. Terenius, L.‐G. Elfvin, J. M. Lundberg, J. Brandt, R. P. Elde, and M. Goldstein. Enkephalin immunoreactive nerve fibers and cell bodies in sympathetic ganglia of the guinea‐pig and rat. Neuroscience 4: 249–270, 1979.
 519. Schumann, M. A., and D. L. Kreulen. Action of cholecystokinin octapeptide and CCK‐related peptides on neurons in inferior mesenteric ganglion of guinea pig. J. Pharmacol. Exp. Ther. 239: 618–625, 1986.
 520. Schwindt, P. C., and W. H. Calvin. Membrane‐potential trajectories between spikes underlying motoneuron firing rates. J. Neurophysiol. 35: 311–325, 1972.
 521. Segal, M., M. A. Rogawashi, and J. L. Barker. A transient potassium conductance regulates the excitability of cultured hippocampal and spinal neurons. J. Neurosci. 4: 604–609, 1984.
 522. Semba, T. Intestino‐intestinal inhibitory reflexes. Jpn. J. Physiol. 4: 241–245, 1954.
 523. Semba, T. Studies on the entero‐gastric reflexes. Hiroshima J. Med. Sci. 2: 323–327, 1954.
 524. Seller, H. The discharge pattern of single units in thoracic and lumbar white rami in relation to cardiovascular event. Pfluegers Arch. 343: 317–330, 1973.
 525. Shimosegawa, T., M. Koizumi, T. Toyota, Y. Goto, S. Kobayashi, C. Yanaihara, and N. Yanaihara. Methionine‐enkephalin‐Arg6‐Gly7‐Leu8‐immunoreactive nerve fibers and cell bodies in lumbar paravertebral ganglia and the celiac‐superior mesenteric ganglion complex of the rat: an immunohistochemical study. Neurosci. Lett. 57: 169–174, 1985.
 526. Shimosegawa, T., M. Koizumi, T. Toyota, Y. Goto, C. Yanaihara, and N. Yanaihara. An immunohistochemical study of methionine‐enkephalin‐Arg6‐Gly7‐Leu8‐like immunoreactivity‐containing neurons in the parasympathetic preganglionic regions of the rat spinal cord. Brain Res. 406: 341–347, 1987.
 527. Shu, H., J. A. Love, and J. H. Szurszewski. Effect of enkephalins on colonic mechanoreceptor synaptic input to inferior mesenteric ganglion. Am. J. Physiol. 252 (Gastrointest. Liver Physiol. 15): G128–G135, 1987.
 528. Shults, C. W., H. Yajima, H. G. Gullner, T. N. Chase, and T. L. O'Donohue. Demonstration and distribution of kassinin‐like material (substance K) in the rat central nervous system. J. Neurochem. 45: 552–558, 1985.
 529. Simantov, R., and S. H. Snyder. Isolation and structure identification of a morphine‐like peptide ‘enkephalin’ in bovine brain. Life Sci. 18: 781–788, 1976.
 530. Simmons, M. A. The complexity and diversity of synaptic transmission in the prevertebral sympathetic ganglion. Prog. Neurobiol. Oxf. 24: 43–93, 1985.
 531. Simmons, M. A., and N. J. Dun. Synaptic transmission in the rabbit inferior mesenteric ganglion. J. Auton. Nerv. Syst. 14: 335–350, 1985.
 532. Skofitsch, G., and D. M. Jacobowitz. Autoradiographic distribution of 125I calcitonin gene‐related peptide binding sites in the rat central nervous system. Peptides Fayetteville 4: 975–986, 1985.
 533. Skok, V. I. Physiology of Autonomic Ganglion. Tokyo: Igaku Shoin, 1973.
 534. Smith, Jr., T. G., J. L. Barker, and H. Gainer. Requirements for bursting pacemaker potential activity in molluscan neurones. Nature Lond. 253: 450–452, 1975.
 535. Sokownin, N. Cited by Kowalesky, N., and C. Arnstein. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 8: 600, 1874.
 536. Sokownin, N. M. Materials for the physiology of micturition and ischuria. Izu. Nauch. Zap. Imper. Kazan Univ. 44: 1243–1283, 1877.
 537. Somjen, G. G. Evoked sustained focal potentials and membrane potential of neurons and of unresponsive cells of the spinal cord. J. Neurophysiol. 33: 562–582, 1970.
 538. Stanzione, P., and W. Zieglgänsberger. Action of neurotensin on spinal cord neurons in the rat. Brain Res. 268: 111–118, 1983.
 539. Stapelfeldt, W. H., V. L. W. Go, and J. H. Szurszewski. Neurotensin facilitates release of substance P from primary afferent nerve terminals in the guinea pig inferior mesenteric ganglion. Soc. Neurosci. Abstr. 13: 362.3, 1987.
 540. Stapelfeldt, W. H., and J. H. Szurszewski. Neurotensin facilitates synaptic transmission in guinea pig inferior mesenteric ganglion by post‐ and presynaptic mechanisms. Soc. Neurosci. Abstr. 12: 1496, 1986.
 541. Stapelfeldt, W. H., and J. H. Szurszewski. Central neurotensinergic pathway facilitates colo‐colonic reflex through the inferior mesenteric ganglion. Gastroenterology 92: 1622, 1987.
 542. Suda, T., F. Tozawa, S. Tachibuna, H. Demura, and K. Shizume. Multiple forms of immunoreactive dynorphin in rat pituitary and brain. Life Sci. 31: 51–57, 1982.
 543. Sundler, F., R. Häkanson, R. A. Hammer, J. Alumets, R. Carraway, S. E. Leeman, and E. A. Zimmermann. Immunohistochemical localization of neurotensin in endocrine cells of the gut. Cell Tissue Res. 178: 313–321, 1977.
 544. Sundler, F., E. Moghimzadeh, R. Häkanson, M. Ekelund, and P. M. Emson. Nerve fibres in the gut and pancreas of the rat displaying neuropeptide‐Y immunoreactivity. Cell Tissue Res. 230: 487–493, 1983.
 545. Suzue, T., N. Yanaihara, and M. Otsuka. Action of vasopressin, gastrin releasing peptide and other peptides on newborn cat spinal cord in vitro. Neurosci. Lett. 26: 137–142, 1981.
 546. Szolcsányi, J. A pharmacological approach to elucidation of the role of different nerve fibres and receptor endings in mediation of pain. J. Physiol. Paris 73: 251–259, 1979.
 547. Szurszewski, J. H. Toward a new view of prevertebral ganglia. In: Nerves and the Gut, edited by F. P. Brooks and P. W. Evers. Thorofare, NJ: Slack, 1977, p. 244–260.
 548. Szurszewski, J. H. Physiology of mammalian prevertebral ganglia. Annu. Rev. Physiol. 43: 53–68, 1981.
 549. Szurszewski, J. H., and J. Krier. Sympathetic regulation of gastrointestinal motility. In: Peripheral Neuropathy (2nd ed.), edited by P. J. Dyck, P. K. Thomas, E. H. Lambert, and R. Bunge. Philadelphia, PA: Saunders, 1984, vol. 1, p. 265–284.
 550. Szurszewski, J. H., and W. A. Weems. A study of peripheral input to and its control by post‐ganglionic neurones of the inferior mesenteric ganglion. J. Physiol. Land. 256: 541–556, 1976.
 551. Tachibana, S., K. Araki, S. Ohya, and S. Yoshida. Isolation and structure of dynorphin, an opioid peptide, from porcine duodenum. Nature Land. 295: 339–340, 1982.
 552. Takeuchi, A., and N. Takeuchi. Electrical changes in pre‐and postsynaptic axons of the giant squid synapse of Loligo. J. Gen. Physiol. 45: 1181–1193, 1962.
 553. Tamarind, D. L., and J. P. Quilliam. Synaptic organization and other ultrastructural features of the superior cervical ganglion of the rat, kitten and rabbit. Micron 2: 204–234, 1971.
 554. Tatemoto, K. Isolation and characterization of peptide YY (PYY), a candidate gut hormone that inhibits pancreatic exocrine secretion. Proc. Natl. Acad. Sci. USA 79: 2514–2518, 1982.
 555. Tatemoto, K. Neuropeptide Y: complete amino acid sequence of the brain peptide. Proc. Natl. Acad. Sci. USA 79: 5485–5489, 1982.
 556. Tatemoto, K., M. Carlquist, and V. Mutt. Neuropeptide Y—a novel brain peptide with structural similarities to peptide YY and pancreatic polypeptide. Nature Lond. 296: 659–660, 1982.
 557. Tatemoto, K., and V. Mutt. Isolation of two novel candidate hormones using a chemical method for finding naturally occurring polypeptide. Nature Lond. 285: 417–418, 1980.
 558. Taylor, I. L. Distribution and release of peptide YY in dog measured by specific radioimmunoassay. Gastroenterology 88: 731–737, 1985.
 559. Taylor, W. L., K. J. Collier, R. J. Deschener, H. C. Weith, and J. E. Dixon. Sequence analysis of a cDNA coding for a pancreatic precursor of somatostatin. Proc. Natl. Acad. Sci. USA 78: 6694–6698, 1981.
 560. Taylor, W. L., and J. E. Dixon. Catabolism of neuropeptides by a brain proline endopeptidase. Biochem. Biophys. Res. Commun. 94: 9–15, 1980.
 561. Terenius, J. Stereospecific interaction between narcotic analgesics and a synaptic plasma membrane fraction of rat cerebral cortex. Acta Pharmacol. Toxicol. 32: 317–320, 1973.
 562. Thoreau, H. D. The Writings of Henry David Thoreau. Boston: Houghton Mifflin, 1906.
 563. Thompson, S. Three pharmacologically distinct potassium channels in molluscan neurones. J. Physiol. Lond. 265: 465–488, 1977.
 564. Thompson, S. Aminopyridine blockade of transient potassium current. J. Gen. Physiol. 80: 1–18, 1982.
 565. Toënnis, W. Die funktion der valvula ileocoecalis. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 204: 477–482, 1924.
 566. Trumble, H. C. The plan of the visceral nerves in the lumbar and sacral outflows of the autonomic nervous system. Br. J. Surg. 21: 664–676, 1934.
 567. Tsunoo, A., S. Konishi, and M. Otsuka. Substance P as an excitatory transmitter of primary afferent neurons in guinea‐pig sympathetic ganglia. Neuroscience 7: 2025–2037, 1982.
 568. Uhl, G. R., and S. H. Snyder. Neurotensin receptor binding, regional and subcellular distribution favor transmitter role. Eur. J. Pharmacol. 41: 89–91, 1977.
 569. Uhl, G. R., and S. H. Snyder. Neurotensin. In: Neurosecretion and Brain Peptides, edited by J. B. Martin, S. Reichlin, and K. L. Bick. New York: Raven, 1981, p. 87–106.
 570. Ungváry, G., and C. Léránth. Termination in the prevertebral abdominal sympathetic ganglia of axons arising from the local (terminal) vegetative plexus of visceral organs. Z. Zellforsch. Mikrosk. Anat. 110: 185–191, 1970.
 571. Vanderhaeghan, J. J., J. C. Signeau, and W. Gepts. New peptide in the vertebrate CNS reacting with antigastrin antibodies. Nature Lond. 257: 604–605, 1975.
 572. Van Orden, L. S., III, J. M. Schaefer, J. P. Burke, and F. V. Lodden. Differentiation of norepinephrine storage compartments in peripheral adrenergic nerves. J. Pharmacol. Exp. Ther. 174: 357–368, 1970.
 573. Vanov, S., and M. Vogt. Catecholamine‐containing structures in the hypogastric nerve of the dog. J. Physiol. Lond. 168: 939–944, 1963.
 574. Vincent, S. R., C. J. Dalsgaard, M. Schultzberg, T. Hökfelt, I. Christensson, and L. Terenius. Dynorphin immunoreactivity in the autonomic nervous system. Neuroscience 10: 973–987, 1984.
 575. Vincent, S. R., T. Hökfelt, I. Christensson, and L. Terenius. Dynorphin‐immunoreactive neurons in the central nervous system of the rat. Neurosci. Lett. 33: 185–190, 1982.
 576. Volle, R. L., and B. A. Patterson. Regulation of cyclic AMP accumulation in rat sympathetic ganglion: effects of vasoactive intestinal polypeptide. J. Neurochem. 39: 1195–1197, 1982.
 577. Wagner, G. A. Behandlung des paralytischen Ileus. Berl. Klin. Wochenschr. 56: 1221, 1919.
 578. Wall, P. D. The substantia gelatinosa. A gate control mechanism set across a sensory pathway. Trends Neurosci. 3: 221–224, 1980.
 579. Wallis, D. I., and R. A. North. Synaptic input to cells of the rabbit superior cervical ganglion. Pfluegers Arch. 374: 145–152, 1978.
 580. Walsh, J. H. Gastrointestinal hormones and peptides. In: Physiology of the Gastrointestinal Tract (1st ed.), edited by L. R. Johnson. New York: Raven, 1981, vol. 1, chapt. 3, p. 59–145.
 581. Walsh, J. H., H. C. Wong, and G. J. Dockray. Bombesin‐like peptides in mammals. Federation Proc. 38: 2315–2319, 1979.
 582. Warkentin, J., J. H. Huston, F. W. Preston, and A. C. Ivy. The mechanism of bile flow inhibition upon distention of the colon or stimulation of its nerve supply. Am. J. Physiol. 138: 462–464, 1943.
 583. Watanabe, H. Adrenergic nerve elements in the hypogastric ganglion of the guinea pig. Am. J. Anat. 130: 305–330, 1971.
 584. Watson, S. J., H. Akil, C. W. Richard, and J. D. Barchas. Evidence for two separate opiate peptide neuronal systems. Nature Lond. 275: 226–228, 1978.
 585. Watson, S. J., H. Khachaturian, H. Akil, D. H. Coy, and A. Goldstein. Comparison of the distribution of dynorphin systems and enkephalin systems in brain. Science Wash. DC 218: 1134–1136, 1982.
 586. Weber, E., K. A. Roth, and J. D. Barchas. Immunohistochemical distribution of alpha‐neo‐endorphin/dynorphin neuronal systems in rat brain: evidence for colocalization. Proc. Natl. Acad. Sci. USA 79: 3062–3066, 1982.
 587. Weems, W. A., and J. H. Szurszewski. Modulation of colonic motility by peripheral neural inputs to neurons of the inferior mesenteric ganglion. Gastroenterology 73: 273–278, 1977.
 588. Weems, W. A., and J. H. Szurszewski. An intracellular analysis of some intrinsic factors controlling neural output from inferior mesenteric ganglion of guinea pigs. J. Neurophysiol. 41: 305–321, 1978.
 589. Williams, J. T., Y. Katayama, and R. A. North. The action of neurotensin on single myenteric neurones. Eur. J. Pharmacol. 59: 181–186, 1979.
 590. Williams, T. H. The question of the intraganglionic (connector) neuron of the autonomic nervous system. J. Anat. 101: 603–604, 1967.
 591. Williams, T. H., A. C. Black, T. Chiba, and J. W. Jew. Species differences in mammalian SIF cells. In: Advances in Biochemical Psychopharmacology, edited by E. Costa and G. L. Gessa. New York: Raven, 1977, p. 505–511.
 592. Williams, T. H., T. Chiba, A. C. Black, Jr., R. C. Bhalla, and J. Y. Jew. Species variation in SIF cells of superior cervical ganglia: are there two functional types? In: SIF Cells. Structure and Function of the Small, Intensely Fluorescent Sympathetic Cells, edited by O. Eränkö. Washington, DC: US Gov. Printing Office, DHEW Publ. No. (NIH) 76–942, 1976. (Fogarty Int. Center Proc, chapt. 12, p. 143–162.)
 593. Williams, T. H., and S. L. Palay. Ultrastructure of the small neurons in the superior cervical ganglion. Brain Res. 15: 17–34, 1969.
 594. Woodward, J. K., C. P. Bianchi, and S. D. Erulkar. Electrolyte distribution in rabbit superior cervical ganglion. J. Neurochem. 16: 289–299, 1969.
 595. Yaksh, T. L., C. Schmauss, P. E. Mikevych, E. O. Abay, and V. L. W. Go. Pharmacological studies on the application, disposition, and release of neurotensin in the spinal cord. Ann. NY Acad. Sci. 400: 228–243, 1982.
 596. Young, W. S., III, and M. J. Kuhar. Neurotensin receptor localization by light microscopic autoradiography in rat brain. Brain Res. 206: 273–285, 1981.
 597. Young, W. S., III, G. R. Uhl, and M. J. Kuhar. Iontophoresis of neurotensin in the area of the locus coeruleus. Brain Res. 150: 431–435, 1978.
 598. Youmans, W. B., A. I. Karstens, and K. W. Aumann. Nervous pathways for the reflex regulation of intestinal pressure. Am. J. Physiol. 135: 619–627, 1942.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

J. H. Szurszewski, B. F. King. Physiology of prevertebral ganglia in mammals with special reference to inferior mesenteric ganglion. Compr Physiol 2011, Supplement 16: Handbook of Physiology, The Gastrointestinal System, Motility and Circulation: 519-592. First published in print 1989. doi: 10.1002/cphy.cp060115