Comprehensive Physiology Wiley Online Library

Sensory afferents from the gastrointestinal tract

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Visceral Nerves as Sensory Nerves
1.1 Pathways to the Central Nervous System
2 Classification of Gastrointestinal Receptors
3 Sensory Code
4 Methodology
5 Mucosal Receptors
5.1 Spontaneous Activity
5.2 Mechanosensitivity
5.3 Receptive Fields
5.4 Chemosensitivity
5.5 Thermoreceptors
6 Muscle Receptors
6.1 In‐Series Tension Receptors
7 Serosal and Mesenteric Receptors
7.1 Receptive Fields
7.2 Spontaneous Activity
7.3 Response Characteristics
8 Functional Specificity and Transduction of Stimuli
9 Spontaneous Activity in Gastrointestinal Afferents
10 Rate of Adaptation
11 Modulation of Receptor Activity
12 Functional Significance of Gastrointestinal Receptors
12.1 Mucosal Receptors
12.2 Muscle Receptors
13 Serosal and Mesenteric Receptors
14 Conclusions
Figure 1. Figure 1.

Effect of brushing on a mucosal unit. Lower trace, force applied measured by a force transducer attached to paintbrush. At each downward displacement, paintbrush was stroked across receptive field (1‐mm2 spot). Because of movement of receptive field, size of force applied cannot be compared quantitatively. Response does not extend beyond brushing period.

From Cottrell and Iggo [55
Figure 2. Figure 2.

Response of a mucosal unit to sustained pressure with a glass probe (bar), placed at the edge (upper spike train) and centrally (lower spike trace) in receptive field. Corresponding response collected as histograms, with 1‐s bin width of 2 repetitions of stimulus for each unit shown below. Left histograms, central probe placement; right histograms, peripheral placement.

From Cottrell and Iggo 55
Figure 3. Figure 3.

Response of a gastric chemoreceptor to irrigation of receptive field with 0.1 N hydrochloric acid. Instantaneous response frequency; each action potential generates a dot, which is plotted according to interval from previous action potential, from which instantaneous frequency is calculated. Bottom, time in seconds.

From Davison 59
Figure 4. Figure 4.

Top: response of an intestinal glucoreceptor to glucose solution (10 g/l) injected into small intestinal lumen and maintained for 1 h. A: response immediately after end of injection; B: after 15 min; C: after 30 min; D: after 1 h. Discharge frequency decreases in B‐D, and activity becomes discontinuous. Bottom: effect of glucose on activity of a glucoreceptor.

From Mei 147
Figure 5. Figure 5.

Impulses in afferent vagal fiber from a tension receptor in the antrum. Upper trace, afferent nerve discharge; lower trace, intragastric pressure. As spontaneous waves of contraction pass over receptive field, firing occurs in afferent nerve. Three small transient waves on lower trace were due to respiration.

From Andrews et al. 16
Figure 6. Figure 6.

Response of a single gastric afferent unit to incremental stepwise increase in intragastric volume. Top trace, instantaneous response frequency; middle trace, intragastric pressure; below that is intragastric volume. Dynamic and static components at each increase in volume.

From Clarke 41
Figure 7. Figure 7.

A: impulses in an afferent vagal fiber from tension receptor in upper corpus. Upper trace, action potentials; lower trace, intragastric volume during 50 ml infusion of 0.9% NaCl. B: interval histograms (left) and interval‐interval “scatter” plots (right) of impulse traffic from tension receptor in gastric corpus. Upper records: spontaneous activity, mean frequency 3.98 impulses/s. Lower trace: activity during static phase of gastric distension, with 15 ml of 0.9% NaCl, mean frequency 9.16 impulses/s. Discharge frequency increases with distension and becomes less irregular.

A from Grundy and Scratcherd 96; B from Scratcherd and Grundy 192
Figure 8. Figure 8.

Impulse activity in duodenal tension receptor. Upper trace: longitudinal tension. Lower trace: frequency histogram, 1‐s bin width.

From Cottrell and Iggo 53
Figure 9. Figure 9.

Stimulus‐response relationship of 2 duodenal tension receptors to static phase of compression. Regression lines were calculated by method of least squares.

From Cottrell and Iggo 53
Figure 10. Figure 10.

Top: receptive fields of 6 slowly adapting splanchnic mechanoreceptors associated with ileum, ileocaecal junction, and mesentery. Each symbol represents 1 unit; distribution of symbols shows receptive fields. Values on right, conduction velocity of afferent fibers. Bottom: response of splanchnic afferent unit with 5 points of mechanical sensitivity (A‐E) near ileocolic junction. At each point, mechanical stimuli were applied with a hand‐held glass probe; left, spike shape; right, spike train.

Top from Morrison 157; bottom from Morrison 156
Figure 11. Figure 11.

Mechanosensitive sites of splanchnic afferent units. Units were excited by pressure applied manually with a small glass rod (tip diam 1–2 mm). A: distribution of mechanosensitive sites along arteries, on colon wall, and in mesentery; 20 axons had 1 mechanosensitive spot and 9 axons had 2. B,C: discharge of 2 afferents to pressure on their mechanosensitive sites. B: slowly adapting unit with resting activity. C: fast‐adapting unit without resting activity. V. mes. inf., inferior mesenteric vein; A. mes. inf., inferior mesenteric artery; Aa. iliacae com., common iliac arteries.

From Blumberg et al. 33
Figure 12. Figure 12.

Typical responses (type I‐IV) of 4 splanchnic afferent units (large signals in specimen records) to distension of colon at intraluminal pressure of 100 mmHg for 1 min. Lower record, intraluminal pressure. Histograms on right, peristimulus time histograms of impulse activity (width bin 1‐s) illustrated on left. Size of signal in D decreased during distension because of movement of nerve bundle in relation to recording electrode.

From Blumberg et al. 33
Figure 13. Figure 13.

Impulses in 2 vagal efferent neurons recorded simultaneously from same nerve strand in response to gastric distension; 4‐min continuous recording. Upper trace, efferent nerve discharge; lower trace, intragastric pressure. One efferent neuron was spontaneously active and was inhibited during gastric distension with 40 ml 0.9% NaCl. Second efferent neuron with action potentials of slightly lower amplitude than first was recruited on distension and discharged phasically in rhythm with fluctuations in intragastric pressure due to antral contractions.

From Scratcherd and Grundy 192
Figure 14. Figure 14.

Response of single splanchnic afferent to colonic distension (black bars, intraluminal pressure 50 mmHg) before (A) and during (B) ischemia of colon. Intervals between distension 12–22 min before ischemia and 8–15 min during ischemia. Bin width of peristimulus time histogram 1 s.

From Haupt et al. 109


Figure 1.

Effect of brushing on a mucosal unit. Lower trace, force applied measured by a force transducer attached to paintbrush. At each downward displacement, paintbrush was stroked across receptive field (1‐mm2 spot). Because of movement of receptive field, size of force applied cannot be compared quantitatively. Response does not extend beyond brushing period.

From Cottrell and Iggo [55


Figure 2.

Response of a mucosal unit to sustained pressure with a glass probe (bar), placed at the edge (upper spike train) and centrally (lower spike trace) in receptive field. Corresponding response collected as histograms, with 1‐s bin width of 2 repetitions of stimulus for each unit shown below. Left histograms, central probe placement; right histograms, peripheral placement.

From Cottrell and Iggo 55


Figure 3.

Response of a gastric chemoreceptor to irrigation of receptive field with 0.1 N hydrochloric acid. Instantaneous response frequency; each action potential generates a dot, which is plotted according to interval from previous action potential, from which instantaneous frequency is calculated. Bottom, time in seconds.

From Davison 59


Figure 4.

Top: response of an intestinal glucoreceptor to glucose solution (10 g/l) injected into small intestinal lumen and maintained for 1 h. A: response immediately after end of injection; B: after 15 min; C: after 30 min; D: after 1 h. Discharge frequency decreases in B‐D, and activity becomes discontinuous. Bottom: effect of glucose on activity of a glucoreceptor.

From Mei 147


Figure 5.

Impulses in afferent vagal fiber from a tension receptor in the antrum. Upper trace, afferent nerve discharge; lower trace, intragastric pressure. As spontaneous waves of contraction pass over receptive field, firing occurs in afferent nerve. Three small transient waves on lower trace were due to respiration.

From Andrews et al. 16


Figure 6.

Response of a single gastric afferent unit to incremental stepwise increase in intragastric volume. Top trace, instantaneous response frequency; middle trace, intragastric pressure; below that is intragastric volume. Dynamic and static components at each increase in volume.

From Clarke 41


Figure 7.

A: impulses in an afferent vagal fiber from tension receptor in upper corpus. Upper trace, action potentials; lower trace, intragastric volume during 50 ml infusion of 0.9% NaCl. B: interval histograms (left) and interval‐interval “scatter” plots (right) of impulse traffic from tension receptor in gastric corpus. Upper records: spontaneous activity, mean frequency 3.98 impulses/s. Lower trace: activity during static phase of gastric distension, with 15 ml of 0.9% NaCl, mean frequency 9.16 impulses/s. Discharge frequency increases with distension and becomes less irregular.

A from Grundy and Scratcherd 96; B from Scratcherd and Grundy 192


Figure 8.

Impulse activity in duodenal tension receptor. Upper trace: longitudinal tension. Lower trace: frequency histogram, 1‐s bin width.

From Cottrell and Iggo 53


Figure 9.

Stimulus‐response relationship of 2 duodenal tension receptors to static phase of compression. Regression lines were calculated by method of least squares.

From Cottrell and Iggo 53


Figure 10.

Top: receptive fields of 6 slowly adapting splanchnic mechanoreceptors associated with ileum, ileocaecal junction, and mesentery. Each symbol represents 1 unit; distribution of symbols shows receptive fields. Values on right, conduction velocity of afferent fibers. Bottom: response of splanchnic afferent unit with 5 points of mechanical sensitivity (A‐E) near ileocolic junction. At each point, mechanical stimuli were applied with a hand‐held glass probe; left, spike shape; right, spike train.

Top from Morrison 157; bottom from Morrison 156


Figure 11.

Mechanosensitive sites of splanchnic afferent units. Units were excited by pressure applied manually with a small glass rod (tip diam 1–2 mm). A: distribution of mechanosensitive sites along arteries, on colon wall, and in mesentery; 20 axons had 1 mechanosensitive spot and 9 axons had 2. B,C: discharge of 2 afferents to pressure on their mechanosensitive sites. B: slowly adapting unit with resting activity. C: fast‐adapting unit without resting activity. V. mes. inf., inferior mesenteric vein; A. mes. inf., inferior mesenteric artery; Aa. iliacae com., common iliac arteries.

From Blumberg et al. 33


Figure 12.

Typical responses (type I‐IV) of 4 splanchnic afferent units (large signals in specimen records) to distension of colon at intraluminal pressure of 100 mmHg for 1 min. Lower record, intraluminal pressure. Histograms on right, peristimulus time histograms of impulse activity (width bin 1‐s) illustrated on left. Size of signal in D decreased during distension because of movement of nerve bundle in relation to recording electrode.

From Blumberg et al. 33


Figure 13.

Impulses in 2 vagal efferent neurons recorded simultaneously from same nerve strand in response to gastric distension; 4‐min continuous recording. Upper trace, efferent nerve discharge; lower trace, intragastric pressure. One efferent neuron was spontaneously active and was inhibited during gastric distension with 40 ml 0.9% NaCl. Second efferent neuron with action potentials of slightly lower amplitude than first was recruited on distension and discharged phasically in rhythm with fluctuations in intragastric pressure due to antral contractions.

From Scratcherd and Grundy 192


Figure 14.

Response of single splanchnic afferent to colonic distension (black bars, intraluminal pressure 50 mmHg) before (A) and during (B) ischemia of colon. Intervals between distension 12–22 min before ischemia and 8–15 min during ischemia. Bin width of peristimulus time histogram 1 s.

From Haupt et al. 109
References
 1. Abrahamsson, H. Studies on the inhibitory nervous control of gastric motility. Acta Physiol. Scand. Suppl. 390: 1–38, 1973.
 2. Abrahamsson, H., and G. Jansson. Vago‐vagal gastro‐gastric relaxation in the cat. Acta Physiol. Scand. 89: 600–602, 1973.
 3. Adachi, A. Thermosensitive and osmoreceptive afferent fibres in the hepatic branch of the vagus nerve. J. Auton. Nerv. Syst. 10: 269–273, 1984.
 4. Adachi, A., and A. Niijima. Thermosensitive afferent fibres in the hepatic branch of the vagus nerve in the guinea pig. J. Auton. Nerv. Syst. 5: 101–109, 1982.
 5. Adachi, A., A. Niijima, and H. L. Jacobs. An hepatic osmoreceptor mechanism in the rat: electrophysiological and behavioral studies. Am. J. Physiol. 231: 1043–1049, 1976.
 6. Adachi, A., N. Shimizu, Y. Oomura, and M. Kobashi. Convergence of hepatoportal glucose‐sensitive afferent signals to glucose‐sensitive units within the nucleus of the solitary tract. Neurosci. Lett. 46: 215–218, 1984.
 7. Agostoni, E., J. E. Chinnock, M. De B. Daly, and J. G. Murray. Functional and histological studies of the vagus nerve and its branches to the heart, lungs and abdominal viscera in the cat. J. Physiol. Lond. 135: 182–206, 1957.
 8. Allen, A. Structure and function of gastrointestinal mucus. In: Physiology of the Gastrointestinal Tract (1st ed.), edited by L. R. Johnson. New York: Raven, 1981, vol. 1, p. 617–640.
 9. Anand, B. K., and R. V. Pillai. Activity of single neurones in the hypothalamic feeding centers: effects of gastric distension. J. Physiol. Lond. 192: 63–77, 1967.
 10. Andrew, B. L. A functional analysis of the myelinated fibres of the superior laryngeal nerve of the rat. J. Physiol. Lond. 133: 420–432, 1956.
 11. Andrew, B. L. The nervous control of the cervical oesophagus of the rat during swallowing. J. Physiol. Lond. 134: 729–740, 1956.
 12. Andrew, B. L. Activity in afferent nerve fibres from the cervical oesophagus. J. Physiol. Lond. 135: 54P–55P, 1957.
 13. Andrews, P. L. R. Vagal afferent innervation of the gastrointestinal tract. In: Progress in Brain Research. Visceral Sensation, edited by F. Cervero and J. F. B. Morrison. Amsterdam: Elsevier, 1986, vol. 67, p. 65–86.
 14. Andrews, P. L. R., D. Grundy, and I. N. C. Lawes. The role of the vagus and splanchnic nerves in the regulation of intragastric pressure in the ferret. J. Physiol. Lond. 307: 401–411, 1980.
 15. Andrews, P. L. R., D. Grundy, and T. Scratcherd. Reflex excitation of antral motility induced by gastric distension in the ferret. J. Physiol. Lond. 298: 79–84, 1980.
 16. Andrews, P. L. R., D. Grundy, and T. Scratcherd. Vagal afferent discharge from mechanoreceptors in different regions of the ferret stomach. J. Physiol. Lond. 298: 513–524, 1980.
 17. Andrews, P. L. R., and K. M. Lang. Vagal afferent discharge from mechanoreceptors in the lower oesophagus of the ferret (Abstract). J. Physiol. Lond. 332: 29P, 1982.
 18. Asaad, K., S. Abd‐El Rahman, N. Y. Nawar, and Y. Mikhail. Intrinsic innervation of the oesophagus in dogs with special reference to the presence of muscle spindles. Acta Anat. 115: 91–96, 1983.
 19. Bain, W. A., J. T. Irving, and B. A. McSwiney. The afferent fibres from the abdomen in the splanchnic nerves. J. Physiol. Lond. 84: 323–333, 1935.
 20. Balistreri, W. F., J. E. Heubi, and F. J. Suchy. Bile acid metabolism: relationship of bile acid malabsorption and diarrhea. J. Pediatr. Gastroenterol. Nutr. 2: 105–121, 1983.
 21. Baron, R., W. Janig, and E. M. McLachlan. The afferent and sympathetic components of the lumbar spinal outflow to the colon and pelvic organs in the cat. I. The hypogastric nerve. J. Comp. Neurol. 238: 135–146, 1985.
 22. Baron, R., W. Janig, and E. M. McLachlan. The afferent and sympathetic components of the lumbar spinal outflow to the colon and pelvic organs in the cat. II. The lumbar splanchnic nerves. J. Comp. Neurol. 238: 147–157, 1985.
 23. Baron, R., W. Janig, and E. M. McLachlan. The afferent and sympathetic components of the lumbar spinal outflow to the colon and pelvic organs in the cat. III. The colonic nerves, incorporating an analysis of all components of the lumbar prevertebral outflow. J. Comp. Neurol. 238: 158–168, 1985.
 24. Barone, F. C., M. J. Wayner, C. S. Weiss, and C. R. Almli. Effects of intragastric water infusion and gastric distension on hypothalamic neuronal activity. Brain. Res. Bull. 4: 267–282, 1979.
 25. Beckstead, R. M., and R. Norgren. An autoradiographic examination of the central distribution of the trigeminal, facial, glossopharyngeal, and vagal nerves in the monkeys. J. Comp. Neurol. 184: 455–472, 1979.
 26. Beidler, L. M. Taste receptor stimulation with salts and acids. In: Handbook of Sensory Physiology. Chemical Senses. Taste, edited by L. M. Beidler. Berlin: Springer‐Verlag, 1971, vol. 4, pt. 2, p. 200–220.
 27. Bell, F. R., M. Nouri, and D. E. Webber. The interplay between hydrogen ions, bicarbonate ions and osmolality in the anterior duodenum modulating gastric function in the conscious calf. J. Physiol. Lond. 314: 331–341, 1981.
 28. Bentley, F. H., and R. H. Smithwick. Visceral pain produced by balloon distension of the jejunum. Lancet 2: 389–391, 1940.
 29. Bessou, P., and E. R. Perl. A movement receptor of the small intestine. J. Physiol. Lond. 182: 404–426, 1966.
 30. Bessou, P., and E. R. Perl. Response of cutaneous sensory units with unmyelinated fibers to noxious stimuli. J. Neurophysiol. 32: 1025–1043, 1969.
 31. Bitar, K., N. Mei, and M. H. Michelucci. Vagal mechano‐receptors of the lower oesophageal sphincter and of the pyloric sphincter in the cat. J. Physiol. Lond. 245: 102P–103P, 1975.
 32. Blair, E. L., J. C. Brown, A. A. Harper, and T. Scratcherd. A gastric phase of pancreatic secretion. J. Physiol. Lond. 184: 812–824, 1966.
 33. Blumberg, H., P. Haupt, W. Janig, and W. Kohler. Encoding of visceral noxious stimuli in the discharge patterns of visceral afferent fibres from the colon. Pfluegers Arch. 398: 33–40, 1983.
 34. Borison, H. L., and S. C. Wang. The physiology and pharmacology of vomiting. Pharmacol. Reu. 5: 193–230, 1953.
 35. Bull, J. S., D. Grundy, and T. Scratcherd. The effect of intraluminal tryptophan and phenylalanine on small intestinal motility in the conscious dog. J. Physiol. Lond. 367: 353–362, 1985.
 36. Cervero, F. Afferent activity evoked by natural stimulation of the biliary system in the ferret. Pain 13: 137–151, 1982.
 37. Cervero, F. Visceral nociception: peripheral and central aspects of visceral nociceptive systems. Philos. Trans. R. Soc. Lond. B Biol. Sci. 308: 325–337, 1985.
 38. Cervero, F., and L. A. Connell. Distribution of somatic and visceral primary afferent fibres within the thoracic spinal cord of the cat. J. Comp. Neurol. 230: 88–98, 1984.
 39. Cervero, F., and K. A. Sharkey. More than gut feelings about visceral sensation. Trends Neurosci. 8: 188–190, 1985.
 40. Christensen, J. Origin of sensation in the esophagus. Am. J. Physiol. 246 (Gastrointest. Liver Physiol. 9): G221–G225, 1984.
 41. Clarke, G. D. An Electrophysiological Investigation of the Vagal Sensory Innervation of the Upper Alimentary Tract. Dundee, Scotland: Univ. of Dundee, 1977. PhD thesis.
 42. Clarke, G. D., and J. S. Davison. Mucosal receptors in the gastric antrum and small intestine of the rat with afferent fibres in the cervical vagus. J. Physiol. Lond. 284: 55–67, 1978.
 43. Clerc, N. Afferent innervation of the lower oesophageal sphincter of the cat. Pathways and functional characteristics. J. Auton. Nerv. Syst. 10: 213–216, 1984.
 44. Clerc, N., and N. Mei. Vagal mechanoreceptors located in the lower oesophageal sphincter of the cat. J. Physiol. Lond. 336: 487–498, 1978.
 45. Clerc, N., and N. Mei. Thoracic esophageal mechanoreceptors connected with fibers following sympathetic pathways. Brain Res. Bull. 10: 1–7, 1983.
 46. Clifton, G. L., R. E. Coggeshall, W. H. Vance, and W. D. Willis. Receptive fields of unmyelinated ventral root afferent fibres. J. Physiol. Lond. 256: 573–600, 1976.
 47. Coget, J., and J. P. Rousseau. Reinnervation of striated muscle by peripheral vagal fibres cut above or below the nodose ganglion in the cat and rabbit. J. Physiol. Lond. 335: 481–493, 1983.
 48. Coggeshall, R. E., J. D. Coulter, and W. D. Willis. Unmyelinated axons in the ventral roots of the cat lumbosacral enlargement. J. Comp. Neurol. 153: 39–58, 1974.
 49. Coggeshall, R. E., and H. Ito. Sensory fibres in the ventral roots L7 and S1 in the cat. J. Physiol. Lond. 267: 215–235, 1977.
 50. Cooke, A. R. Control of gastric emptying and motility. Gastroenterology 68: 804–816, 1975.
 51. Cottrell, D. F. Cold‐sensitive mechanoreceptors with afferent C‐fibres in the sheep duodenum. Pfluegers Arch. 402: 454–457, 1984.
 52. Cottrell, D. F. Mechanoreceptors of the rabbit duodenum. Q. J. Exp. Physiol. 69: 677–684, 1984.
 53. Cottrell, D. F., and A. Iggo. Tension receptors with vagal afferent fibres in the proximal duodenum and pyloric sphincter of sheep. J. Physiol. Lond. 354: 457–475, 1984.
 54. Cottrell, D. F., and A. Iggo. The response of duodenal tension receptors in sheep to pentagastrin, cholecystokinin and some other drugs. J. Physiol. Lond. 354: 477–495, 1984.
 55. Cottrell, D. F., and A. Iggo. Mucosal enteroreceptors with vagal afferent fibres in the proximal duodenum of sheep. J. Physiol. Lond. 354: 497–522, 1984.
 56. Crousillat, J., and F. Ranieri. Mécanorecepteurs splanchniques de la voie biliaire et de don péritoine. Exp. Brain Res. 40: 146–153, 1980.
 57. Crowcroft, P. J., and J. H. Szurszewski. A study of the inferior mesenteric and pelvic ganglia of guinea‐pig with intracellular electrodes. J. Physiol. Lond. 219: 421–441, 1971.
 58. Daniel, E. E., and G. E. Wiebe. Transmission of reflexes arising on both sides of the gastroduodenal junction. Am. J. Physiol. 211: 634–642, 1966.
 59. Davison, J. S. Response of single vagal afferent fibres to mechanical and chemical stimulation of the gastric and duodenal mucosa in cats. Q. J. Exp. Physiol. Cogn. Med. Sci. 57: 405–416, 1972.
 60. Davison, J. S. The electrophysiology of gastrointestinal chemoreceptors. Digestion 7: 312–317, 1972.
 61. Davison, J. S., and G. D. Clarke. Electrophysiological analysis of vagal afferent innervation of the muscle of the upper gastrointestinal tract. In: Physiology and Pharmacology of Smooth Muscle, edited by M. Papasova and E. Atanassova. Sofia C, Bulgaria: Bulgarian Acad. Sci., 1977, p. 102–107.
 62. Davison, J. S., and D. Grundy. Modulation of single vagal efferent fibre discharge by gastrointestinal afferents in the rat. J. Physiol. Lond. 284: 69–82, 1978.
 63. De Groat, W. C., and P. M. Lalley. Reflex firing in the lumbar sympathetic outflow to activation of vesical afferent fibres. J. Physiol. Lond. 226: 289–309, 1972.
 64. Delbro, D., B. Lisander, and S. A. Andersson. Atropine‐sensitive gastric smooth muscle excitation by mucosal nociceptive stimulation—the involvement of an axon reflex? Acta Physiol. Scand. 122: 621–627, 1984.
 65. Dockray, G. J., R. A. Gregory, H. J. Tracy, and W. Y. Zhu. Transport of cholecystokinin‐octapeptide‐like immuno‐reactivity towards the gut in afferent vagal fibres in cat and dog. J. Physiol. Lond. 314: 501–512, 1981.
 66. Douglas, W. W., and J. M. Ritchie. Mammalian nonmyelinated nerve fibers. Physiol. Rev. 42: 297–334, 1962.
 67. Downman, C. B. B., and M. H. Evans. The distribution of splanchnic afferents in the spinal cord of cat. J. Physiol. Lond. 137: 66–79, 1957.
 68. Duclaux, R., N. Mei, and F. Ranieri. Conduction velocity along the afferent vagal dendrites: a new type of fibre. J. Physiol. Lond. 260: 480–495, 1976.
 69. Ellison, J. P., and G. M. Clark. Retrograde axonal transport of horseradish peroxidase in peripheral autonomic nerves. J. Comp. Neurol. 161: 103–114, 1975.
 70. El Ouazzani, T. Thermoreceptors in the digestive tract and their role. J. Auton. Nerv. Syst. 10: 246–254, 1984.
 71. El Ouazzani, T., and N. Mei. Innervation sensitive de la jonction gastroduodénale: données électrophysiologiques, histologiques et histochimiques récentes. C. R. Seances Soc. Biol. Fil. 172: 283–288, 1978.
 72. El Ouazzani, T., and N. Mei. Mise en évidence électrophysiologique des thermorécepteurs vagaux dans la région gastrointestinale. Leur role dans la régulation de la motricité digestive. Exp. Brain Res. 34: 419–434, 1979.
 73. El Ouazzani, T., and N. Mei. Acido‐ et glucorécepteurs vagaux de la région gastro‐duodénale. Exp. Brain Res. 42: 442–452, 1981.
 74. El Ouazzani, T., and N. Mei. Electrophysiologic properties and role of the vagal thermoreceptors of lower esophagus and stomach of cat. Gastroenterology 83: 995–1001, 1982.
 75. Evans, D. H. L., and J. G. Murray. Histological and functional studies on the fibre composition of the vagus nerve of the rabbit. J. Anat. 88: 320–337, 1954.
 76. Falempin, M., N. Mei, and J. P. Rousseau. Vagal mechanoreceptors of the inferior thoracic oesophagus, the lower oesophageal sphincter and the stomach in sheep. Pfluegers Arch. 373: 25–30, 1978.
 77. Falempin, M., and J. P. Rousseau. Reinnervation of skeletal muscle by vagal sensory fibres in the sheep, cat and rabbit. J. Physiol. Lond. 335: 467–479, 1983.
 78. Falempin, M., and J. P. Rousseau. Effects of the vagal deafferentation on oesophageal motility in the conscious sheep. In: Gastrointestinal Motility, edited by C. Roman. Lancaster, UK: MTP, 1984, p. 3–8.
 79. Falempin, M., and J. P. Rousseau. Activity of lingual, laryngeal and oesophageal receptors in conscious sheep. J. Physiol. Lond. 347: 47–58, 1984.
 80. Flemstrom, G. Gastric secretion of bicarbonate. In: Physiology of the Gastrointestinal Tract (1st ed.), edited by L. R. Johnson. New York: Raven, 1981, vol. 1, p. 603–616.
 81. Floyd, K., V. E. Hick, and J. F. B. Morrison. Mechanosensitive afferent units in the hypogastric nerve of the cat. J. Physiol. Lond. 259: 457–471, 1976.
 82. Floyd, K., J. Koley, and J. F. B. Morrison. Afferent discharges in the sacral ventral roots of cats. J. Physiol. Lond. 259: 37P–38P, 1976.
 83. Floyd, K., and G. Lawrenson. Mechanosensitive afferents in the cat pelvic nerve. J. Physiol. Lond. 290: 51P–52P, 1979.
 84. Floyd, K., and J. F. B. Morrison. Splanchnic mechanoreceptors in the dog. Q. J. Exp. Physiol. Cogn. Med. Sci. 59: 361–366, 1974.
 85. Foley, J. O. The functional types of nerve fibres and their numbers in the great splanchnic nerve. Anat. Rec. 100: 766–767, 1948.
 86. Fujita, T., and S. Kobayashi. Paraneuronal cells in the GEP endocrine system. In: Gut Hormones, edited by S. R. Bloom. Edinburgh: Churchill Livingstone, 1978, p. 414–422.
 87. Fujita, T., and Y. Yanatori. Intestinal endocrine cell reception of luminal stimuli. In: Endocrine Gut and Pancreas: Proceedings, edited by T. Fujita. Amsterdam: Elsevier, 1976, p. 237–243.
 88. Gabella, G. Structure of muscle and nerves in the gastrointestinal tract. In: Physiology of the Gastrointestinal Tract (1st ed.), edited by L. R. Johnson. New York: Raven, 1981, vol. 1, p. 197–241.
 89. Gabella, G., and H. L. Pearse. Number of axons in the abdominal vagus of the rat. Brain Res. 58: 465–469, 1973.
 90. Garnier, L., and N. Mei. Do true osmoreceptors exist at intestinal level? J. Physiol. Lond. 327: 97P–98P, 1982.
 91. Gray, J. A. B. Initiation of impulses at receptors. In: Handbook of Physiology, Neurophysiology, edited by H. W. Magoun. Washington, DC: Am. Physiol. Soc., 1959, sect. 1, vol. 1, chapt. IV, p. 123–145.
 92. Grossman, M. I. Secretion of acid and pepsin in response to distension of vagally innervated fundic gland area in dogs. Gastroenterology 42: 718–721, 1962.
 93. Grundy, D. Gastrointestinal Motility. The Integration of Physiological Mechanisms. Lancaster, UK: MTP, 1985.
 94. Grundy, D., A. A. Salih, and T. Scratcherd. Modulation of vagal efferent discharge by mechanoreceptors in the stomach, duodenum and colon of the ferret. J. Physiol. Lond. 319: 43–52, 1981.
 95. Grundy, D., and T. Scratcherd. A splanchno‐vagal component of the inhibition of gastric motility by distension of the intestines. In: Motility of the Digestive Tract, edited by M. Wienbeck. New York: Raven, 1982, p. 39–43.
 96. Grundy, D., and T. Scratcherd. The role of the vagus and sympathetic nerves in the control of gastric motility. In: Gastric and Gastroduodenal Motility, edited by L. M. A. Akkermans, A. G. Johnson, and N. W. Read. Eastbourne, UK: Praeger, 1984, p. 21–33.
 97. Gupta, B. N., K. Nier, and H. Hansel. Cold sensitive afferents from the abdomen. Pfluegers Arch. 380: 203–204, 1979.
 98. Hamilton, R., and R. Norgren. Central projections of gustatory nerves in the rat. J. Comp. Neurol. 222: 560–577, 1984.
 99. Hardcastle, J., P. T. Hardcastle, and P. A. Sanford. Effect of actively transported hexoses on afferent nerve discharge from the small intestine. J. Physiol. Lond. 285: 71–84, 1978.
 100. Harding, R., and B. F. Leek. Gastro‐duodenal receptor responses to chemical and mechanical stimuli, investigated by a “single fibre” technique. J. Physiol. Lond. 222: 139P–140P, 1972.
 101. Harding, R., and B. F. Leek. Rapidly adapting mechanoreceptors in the reticulo‐rumen which also respond to chemicals. J. Physiol. Lond. 223: 32P–33P, 1972.
 102. Harding, R., and D. A. Titchen. Chemosensitive vagal endings in the oesophagus of the cat. J. Physiol. Lond. 247: 52P–53P, 1975.
 103. Harper, A. A., C. Kidd, and T. Scratcherd. Vago‐vagal reflex effects on gastric and pancreatic secretion and gastrointestinal motility. J. Physiol. Lond. 148: 417–436, 1959.
 104. Harper, A. A., and B. A. McSwiney. Ascending spinal pathways of the pupillo‐dilator fibres. J. Physiol. Lond. 90: 395–402, 1937.
 105. Harper, A. A., B. A. McSwiney, and S. F. Suffolk. Afferent fibres from the abdomen in the vagus nerves. J. Physiol. Lond. 85: 267–276, 1935.
 106. Harris, A. J. An experimental analysis of the inferior mesenteric plexus. J. Comp. Neurol. 79: 1–18, 1943.
 107. Harris, A. J., R. Hodes, and H. W. Magoun. The afferent path of the pupillodilator reflex in the cat. J. Neurophysiol. 7: 231–243, 1944.
 108. Haupt, P., W. Janig, and W. Kohler. How are stimuli which are harmful to the colon and elicit pain in man encoded in the discharge pattern of visceral thoracolumber afferents (Abstract). Pain, Suppl. 1: 88, 1981.
 109. Haupt, P., W. Janig, and W. Kohler. Response patterns of visceral afferent fibres, supplying the colon, upon chemical and mechanical stimuli. Pfluegers Arch. 398: 41–47, 1983.
 110. Hensel, H. Thermoreception and Temperature Regulation. London: Academic, 1981.
 111. Hermann, G. E., and R. C. Rogers. Convergence of vagal and gustatory afferent input within the parabrachial nucleus of the rat. J. Auton. Nerv. Syst. 13: 1–17, 1985.
 112. Hertz, A. F. The Sensibility of the Alimentary Canal. London: Hodder & Stoughton, 1911.
 113. Higashi, H., and S. Nishi. 5‐Hydroxytryptamine receptors of visceral primary afferent neurones on rabbit nodose ganglia. J. Physiol. Lond. 323: 543–567, 1982.
 114. Holmes, R., and R. W. Torrance. Afferent fibres of the stellate ganglion. Q. J. Exp. Physiol. Cogn. Med. Sci. 44: 271–281, 1959.
 115. Hulsebosch, C. E., and R. E. Coggeshall. An analysis of the axon populations in the nerves to the pelvic viscera in the rat. J. Comp. Neurol. 211: 1–10, 1982.
 116. Hunt, C. C. The pacinian corposcle. In: The Peripheral Nervous System, edited by J. I. Hubbard. New York: Plenum, 1974, p. 405–420.
 117. Hunt, J. N., and Knox, M. T. The slowing of gastric emptying by four strong acids and three weak acids. J. Physiol. Lond. 222: 187–208, 1972.
 118. Hunt, J. N., and D. F. Stubbs. The volume and energy content of meals as determinants of gastric emptying. J. Physiol. Lond. 215: 209–225, 1975.
 119. Iggo, A. Tension receptors in the stomach and urinary bladder. J. Physiol. Lond. 128: 593–607, 1955.
 120. Iggo, A. Gastrointestinal tension receptors with unmyelinated afferent fibres in the vagus of the cat. Q. J. Exp. Physiol. Cogn. Med. Sci. 42: 130–143, 1957.
 121. Iggo, A. Gastric mucosal receptors with vagal afferent fibres in the cat. Q. J. Exp. Physiol. Cogn. Med. Sci. 42: 398–409, 1957.
 122. Iggo, A. The electrophysiological identification of single nerve fibres, with particular reference to the slowest‐conducting vagal afferent fibres in the cat. J. Physiol. Lond. 142: 110–126, 1958.
 123. Iggo, A. Physiology of visceral afferent systems. Acta Neuroveg. 28: 121–134, 1966.
 124. Jeanningros, R. Vagal unitary responses to intestinal amino acid infusions in the anaesthetized cat: a putative signal for protein induced satiety. Physiol. Behav. 28: 9–21, 1982.
 125. Jeanningros, R. Lateral hypothalamic responses to pre‐absorptive and post‐absorptive signals related to amino‐acid ingestion. J. Auton. Nerv. Syst. 10: 261–268, 1984.
 126. Jeanningros, R. Modulation of lateral hypothalamic single unit activity by gastric and intestinal distension. J. Auton. Nerv. Syst. 11: 1–11, 1984.
 127. Jeanningros, R., and N. Mei. Données préliminaires sur la résponse des chémorécepteurs intestinaux aux acides aminés. Reprod. Nutr. Dev. 20: 1615–1619, 1980.
 128. Kalia, M., and M. M. Mesulam. Brain stem projections of sensory and motor components of the vagus complex in the cat. II. Laryngeal, tracheobronchial, pulmonary, cardiac, and gastrointestinal branches. J. Comp. Neurol. 193: 467–508, 1980.
 129. Kalia, M., and J. M. Sullivan. Brainstem projections of sensory and motor components of the vagus nerve in the rat. J. Comp. Neurol. 211: 248–264, 1982.
 130. Kelly, K. A. Motility of the stomach and gastroduodenal junction. In: Physiology of the Gastrointestinal Tract (1st ed.), edited by L. R. Johnson. New York: Raven, 1981, vol. 1, p. 393–410.
 131. King, B. F., and J. H. Szurszewski. Mechanoreceptor pathways from the distal colon to the autonomic nervous system in the guinea‐pig. J. Physiol. Lond. 350: 93–108, 1984.
 132. Kreulen, D. L., and J. H. Szurszewski. Nerve pathways in celiac plexus of the guinea pig. Am. J. Physiol. 237 (Endocrinol. Metab. Gastrointest. Physiol. 6): E90–D97, 1979.
 133. Kuntz, A. The structural organization of the celiac ganglia. J. Comp. Neurol. 69: 1–12, 1938.
 134. Kuntz, A. The structural organization of the inferior mesentric ganglia. J. Comp. Neurol. 72: 371–382, 1940.
 135. Kuo, D. C., and W. C. De Groat. Primary afferent projections of the major splanchnic nerve to the spinal cord and gracile nucleus of the cat. J. Comp. Neurol. 231: 421–434, 1985.
 136. Kuo, D. C., G. C. H. Yang, D. S. Yamasaki, and G. M. Krauthamer. A wide field electron microscopic analysis of the fiber constituents of the major splanchnic nerve in the cat. J. Comp. Neurol. 210: 49–58, 1982.
 137. Langley, J. N., and H. K. Anderson. The innervation of the pelvic and adjoining viscera. Pt. VI. Histological and physiological observations upon the effects of section of the sacral nerves. J. Physiol. Lond. 19: 372–384, 1896.
 138. Leek, B. F. Reticulo‐ruminal mechanoreceptors in sheep. J. Physiol. Lond. 202: 585–609, 1969.
 139. Leek, B. F. Abdominal visceral receptors. In: Handbook of Sensory Physiology. Enteroceptors, edited by E. Neil. Berlin: Springer‐Verlag, 1972, vol. 3, pt. 1, p. 113–160.
 140. Leek, B. F. The innervation of the sheep forestomach papillae from which combined chemoreceptor and rapidly adapting mechanoreceptor responses are obtained. J. Physiol. Lond. 227: 22P–23P, 1972.
 141. Leek, B. F. Abdominal and pelvic visceral receptors. Br. Med. Bull. 33: 163–168, 1977.
 142. Leslie, R. A., D. G. Gwyn, and D. A. Hopkins. The central distribution of the cervical vagus nerve and gastric afferent and efferent projections in the rat. Brain Res. Bull. 8: 37–48, 1982.
 143. Lewis, T. Pain. New York: Macmillan, 1942.
 144. Loewenstein, W. R., and R. Skalak. Mechanical transmission in a Pacinian corpuscle. An analysis and a theory. J. Physiol. Lond. 182: 346–378, 1966.
 145. Mei, N. Disposition anatomique et propriétés électrophysiologiques des neurones sensitifs vagaux chez le chat. Exp. Brain Res. 11: 465–479, 1970.
 146. Mei, N. Mécanorécepteurs vagaux digestifs chez le chat. Exp. Brain Res. 11: 502–514, 1970.
 147. Mei, N. Vagal glucoreceptors in the small intestine of the cat. J. Physiol. Lond. 282: 485–506, 1978.
 148. Mei, N. Recent studies on intestinal vagal afferent innervation. Functional implications. J. Auton. Nerv. Syst. 9: 199–206, 1983.
 149. Mei, N. Sensory structures in the viscera. In: Progress in Sensory Physiology, edited by D. Ottoson. Berlin: Springer‐Verlag, 1983, p. 1–42.
 150. Mei, N. Intestinal chemosensitivity. Physiol. Rev. 65: 211–237, 1985.
 151. Mei, N., A. Arlhac, and A. Boyer. Nervous regulation of insulin release by the intestinal vagal glucoreceptors. J. Auton. Nerv. Syst. 4: 351–363, 1981.
 152. Mei, N., M. Condamin, and A. Boyer. The composition of the vagus nerve of the cat. Cell Tissue Res. 209: 423–431, 1980.
 153. Mei, N., L. Garnier, and J. Melone. Vagal osmosensitive receptors located in the small intestine. Role in gastric emptying. In: Gastrointestinal Motility, edited by C. Roman. Lancaster: MTP, 1984, p. 141–142.
 154. Mei, N., J. Perrin, J. Crousillat, and A. Boyer. Comparison between the properties of the vagal and splanchnic glucoreceptors of the small intestine. Involvement in insulin release. J. Auton. Nerv. Syst. 10: 275–278, 1984.
 155. Moore, R. M. Some experimental observations relating to visceral pain. Surgery St. Louis 3: 534–555, 1938.
 156. Morrison, J. F. B. Splanchnic slowly adapting mechanoreceptors with punctate receptive fields in the mesentery and gastrointestinal tract of the cat. J. Physiol. Lond. 233: 349–361, 1973.
 157. Morrison, J. F. B. The afferent innervation of the gastrointestinal tract. In: Nerves and the Gut, edited by F. P. Brooks and P. W. Evers. Thorofare, NJ: Slack, 1977, p. 297–326.
 158. Morrison, J. F. B., and S. B. McMahon. Colonic afferents and their reflexes. In: Motility of the Digestive Tract, edited by M. Wienbeck. New York: Raven, 1982, p. 19–29.
 159. Nabeyama, A., and C. P. Leblond. “Caveolated cells” characterized by deep surface invaginations and abundant filaments in mouse gastrointestinal epithelia. Am. J. Anat. 140: 147–165, 1974.
 160. Newman, P. P. Visceral Afferent Functions of the Nervous System. London: Arnold, 1974.
 161. Newson, B., H. Ahlman, A. Dahlström, T. K. Das Gupta, and L. M. Nyhus. On the innervation of the ileal mucosa in the rat—a synapse. Acta. Physiol. Scand. 105: 387–389, 1979.
 162. Newson, B., H. Ahlman, A. Dahlstrom, and L. M. Nyhus. Ultrastructural observations in the rat ileal mucosa of possible epithelial “taste cells” and submucosal sensory neurones. Acta Physiol. Scand. 114: 161–164, 1982.
 163. Niijima, A. Afferent discharges from osmoreceptors in the liver of the guinea‐pig. Science Wash. DC 166: 1519–1520, 1969.
 164. Niijima, A. Afferent impulse discharges from glucoreceptors in the liver of the guinea‐pig. Ann. NY Acad. Sci. 157: 690–700, 1969.
 165. Niijima, A. Glucose‐sensitive afferent nerve fibres in the hepatic branch of the vagus nerve of the guinea‐pig. J. Physiol. Lond. 332: 315–323, 1982.
 166. Nonidez, J. F. Afferent nerve endings in the ganglia of the intermuscular plexus of the dog's esophagus. J. Comp. Neurol. 85: 187–189, 1946.
 167. Paintal, A. S. Impulses in vagal afferent fibres from stretch receptors in the stomach and their role in the peripheral mechanism of hunger. Nature Lond. 172: 1194–1195, 1953.
 168. Paintal, A. S. A method of locating the receptors of visceral afferent fibres. J. Physiol Lond. 124: 166–172, 1954.
 169. Paintal, A. S. A study of gastric stretch receptors. Their role in the peripheral mechanism of satiation of hunger and thirst. J. Physiol. Lond. 126: 255–270, 1954.
 170. Paintal, A. S. Response from mucosal mechanoreceptors in the small intestine of the cat. J. Physiol. Lond. 139: 353–368, 1957.
 171. Paintal, A. S. Vagal afferent fibres. Ergeb. Physiol. Biol. Chem. Exp. Pharmakol. 52: 74–156, 1963.
 172. Paintal, A. S. Vagal sensory receptors and their reflex effects. Physiol. Rev. 53: 159–227, 1973.
 173. Pavlov, I. P. The Work of the Digestive Glands (transl. by W. Thompson). London: Griffin, 1902.
 174. Perrin, J., J. Crousillat, and N. Mei. Assessment of true splanchnic glucoreceptors in the jejuno‐ileum of the cat. Brain Res. Bull. 7: 625–628, 1981.
 175. Ranieri, F., N. Mei, and J. Crousillat. Splanchnic afferents arising from gastrointestinal and peritoneal mechanoreceptors. Exp. Brain Res. 16: 276–290, 1973.
 176. Rawson, R. O., and K. P. Quick. Localization of intra‐abdominal thermoreceptors in the ewe. J. Physiol. Lond. 222: 665–677, 1972.
 177. Rawson, R. O., K. P. Quick, and R. F. Coughlin. Thermoregulatory responses to intra‐abdominal heating in the ewe. Sciences NY 165: 919–920, 1969.
 178. Reidel, W. Warm receptors in the dorsal abdominal wall of the rabbit. Pfluegers Arch. 361: 205–206, 1976.
 179. Reidel, W., G. Siaplauras, and E. Simon. Intra‐abdominal thermosensitivity in the rabbit as compared to spinal thermosensitivity. Pfluegers Arch. 340: 59–70, 1973.
 180. Rodrigo, J., J. Dephilipe, E. M. Robles‐Chillida, J. A. Perez Anton, I. Mayo, and A. Gomez. Sensory vagal nature and anatomical access paths to esophageal laminar nerve endings in the myenteric ganglia. Acta Anat. 112: 47–57, 1982.
 181. Rodrigo, J., C. J. Hernández, M. A. Vidal, and J. A. Pedrosa. Vegetative innervation of the esophagus. II. Intraganglionic laminar endings. Acta Anat. 92: 79–100, 1975.
 182. Ross, J. G. On the presence of centripetal fibres in the superior mesenteric nerves of the rabbit. J. Anat. 92: 189–197, 1957.
 183. Rousseau, J. P., and M. Falempin. Activity of gut receptors in the conscious sheep. Ann. Rech. Vet. 10: 189–191, 1979.
 184. Rousseau, J. P., and M. Falempin. Reinnervation of a striated muscle by vagal sensory axons. J. Auton. Nerv. Syst. 10: 217–223, 1984.
 185. Ruch, T. C. Pathophysiology of pain. In: Medical Physiology and Biophysics, edited by T. C. Ruch and J. F. Fulton. Philadelphia, PA: Saunders, 1960, p. 350–368.
 186. Ryall, R. W., and M. F. Piercey. Visceral afferent and efferent fibres in the sacral ventral roots in cats. Brain Res. 23: 57–64, 1970.
 187. Satchell, P. M. Canine oesophageal mechanoreceptors. J. Physiol. Lond. 346: 287–300, 1984.
 188. Sawchenko, P. E. Central connections of the sensory and motor nuclei of the vagus nerve. J. Auton. Nerv. Syst. 9: 13–26, 1983.
 189. Sawchenko, P. E., and M. I. Friedman. Sensory functions of the liver—a review. Am. J. Physiol. 236 (Regulatory Integrative Comp. Physiol. 5): R5–R20, 1979.
 190. Schmitt, M. Influence of hepatic portal receptors on hypothalamic feeding and satiety centers. Am. J. Physiol. 225: 1089–1095, 1973.
 191. Schofield, G. C. Experimental studies on the innervation of the mucous membrane of the gut. Brain 83: 490–514, 1960.
 192. Scratcherd, T., and D. Grundy. Nervous afferents from the upper gastrointestinal tract which influence gastrointestinal motility. In: Motility of the Digestive Tract, edited by M. Wienbeck. New York: Raven, 1982, p. 7–17.
 193. Shaffalitzky de Muckadell, O. B., and J. Fahrenkrug. Secretion pattern of secretin in man: regulation by gastric acid. Gut 19: 812–818, 1978.
 194. Sharma, K. N. Receptor mechanisms in the alimentary tract: their excitation and functions: In: Handbook of Physiology. Alimentary Canal. Control of Food and Water Intake, edited by C. F. Code. Washington DC: Am. Physiol. Soc., 1967, sect. 6, vol. 1, p. 225–237.
 195. Singer, M. V. Latency of pancreatic fluid secretory response to intestinal stimulants in the dog. J. Physiol. Lond. 339: 75–85, 1983.
 196. Singer, M. V., T. E. Soloman, J. Wood, and M. I. Grossman. Latency of pancreatic enzyme response to intraduodenal stimulants. Am. J. Physiol. 238 (Gastrointest. Liver Physiol. 1): G23–G29, 1980.
 197. Solcia, E., C. Capella, R. Buffa, L. Usellini, R. Fiocca, and F. Sessa. Endocrine cells of the digestive system. In: Physiology of the Gastrointestinal Tract (1st ed.), edited by L. R. Johnson. New York: Raven, 1981, vol. 1, p. 39–58.
 198. Stansfield, C. E., and D. I. Willis. Properties of visceral primary afferent neurones in the nodose ganglion of the rabbit. J. Neurophysiol. 54: 245–260, 1985.
 199. Szurszewski, J. H. Towards a view of prevertebral ganglion. In: Nerves and the Gut, edited by F. P. Brooks and P. W. Evers. Thorofare, NJ: Slack, 1977, p. 244–260.
 200. Szurszewski, J. H. Physiology of mammalian prevertebral ganglia. Annu. Rev. Physiol. 43: 53–68, 1981.
 201. Takeshima, T. Functional classification of the vagal afferent discharges in the dog's stomach. Jpn. J. Smooth Muscle Res. 7: 19–27, 1971.
 202. Takeshima, T. Functional classification of the vagal afferent discharges in the stomach of the dog. In: Vagotomy: Latest Advances With Special Reference to Gastric and Duodenal Ulcer Disease, edited by F. Holle and S. Andersson. Berlin: Springer‐Verlag, 1974, p. 106–108.
 203. Todd, J. K. Afferent impulses in the pudendal nerves of the cat. Q. J. Exp. Physiol. Cogn. Med. Sci. 49: 258–267, 1964.
 204. Tsai, T. L. A histological study of the sensory nerves in the liver. Acta Neuroveg. 17: 354–385, 1957.
 205. White, J. C. Sensory innervation of the viscera. Studies on visceral afferent neurones in man based on neurosurgical procedures for the relief of intractable pain. Res. Publ. Assoc. Res. Nerv. Ment. Dis. 23: 373–390, 1943.
 206. Woods, J. D. Physiology of the enteric nervous system. In: Physiology of the Gastrointestinal Tract (1st ed.), edited by L. R. Johnson. New York: Raven, 1981, vol. 1, p. 1–38.
 207. Youmans, W. B. Nervous and Neurohumoral Regulation of Intestinal Motility. New York: Interscience, 1949.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

David Grundy, Tim Scratcherd. Sensory afferents from the gastrointestinal tract. Compr Physiol 2011, Supplement 16: Handbook of Physiology, The Gastrointestinal System, Motility and Circulation: 593-620. First published in print 1989. doi: 10.1002/cphy.cp060116