Comprehensive Physiology Wiley Online Library

Control centers in the central nervous system for regulating gastrointestinal motility

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Identification with Retrograde Neuronal Tracing Techniques of CNS Centers Influencing GI Motility
1.1 Parasympathetic Neural Pathways
1.2 Sympathetic Neural Pathways
1.3 Sensory Neural Pathways
2 Stimulation of CNS Centers Identified by Retrograde Neuronal Tracing Techniques
2.1 Parasympathetic Centers
2.2 Sympathetic Centers
2.3 Centers Defined by Tracing Afferent Pathways
3 Neuroanatomical Description of CNS Centers Influencing GI Motility
3.1 Parasympathetic Centers
3.2 Sympathetic Centers
3.3 Sensory Centers
4 Neuronal Inputs and Outputs of CNS Centers Influencing GI Motility
4.1 Parasympathetic Centers
4.2 Sympathetic Centers
4.3 Sensory Centers
5 Stimulation and Lesion of CNS Nuclei Projecting to CNS Sites Influencing GI Motility
5.1 Cerebral Cortex
5.2 Amygdala and Bed Nucleus of Stria Terminalis
5.3 Paraventricular Nucleus of the Hypothalamus
5.4 Nucleus Tractus Solitarius
5.5 Medullary Reticular Nuclei
5.6 Parabrachial Nucleus
5.7 Inputs to the Spinal Cord
5.8 Other Sites
6 Overview of Brain‐Gut Neural Circuitry
7 Role of Brain‐Gut Neural Circuitry in Regulation of GI Motility
7.1 Role of Cerebral Cortex to Nucleus Tractus Solitarius Pathway
7.2 Role of Pathway from Periventricular area of the Hypothalamus to the Dorsal Motor Nucleus of the Vagus
7.3 Role of Cerebral Cortex to Onuf's Nucleus Pathway
7.4 Role of Spinal Reflex Involving Afferent Fibers in the Pudendal Nerve and Onuf's Nucleus and Efferent Fibers in the Pudendal Nerve
7.5 Role of Sympathetic Centers in the Spinal Cord
7.6 Role of Retrofacial Nucleus, Nucleus Ambiguus, and Dorsal Motor Nucleus of Vagus Pathways to Upper and Lower Esophageal Sphincters
7.7 Role of Afferent Fibers in Vagus Nerve, Nucleus Tractus Solitarius, and Neurons in Dorsal Motor Nucleus of the Vagus in Receptive Relaxation
8 Concepts Emerging from Studies of Control Centers
Figure 1. Figure 1.

Diagram of nuclei of central nervous system (CNS; parasympathetic) that innervate various regions of the gastrointestinal (GI) tract from upper esophageal sphincter (UES) to external anal sphincter (EAS). A/P, antrum/pylorus; Ca, cardial; CE, cervical esophagus; Co, corpus of stomach; D, duodenum; DC, distal colon; DMV, dorsal motor nucleus of vagus; F, fundus of stomach; I, ileum; IML, intermediolateral cell column; J, jejunum; LES, lower esophageal sphincter; MC, midcolon; NA, nucleus ambiguus; NRA, nucleus retroambiguus; O, obex; ON, Onuf's nucleus; PC, proximal colon; R, rectum; RF, retrofacial nucleus; S1–3, sacral spinal cord segments 1 to 3; TE, thoracic esophagus; 7, facial nucleus.

Figure 2. Figure 2.

Diagram of medial and lateral columns of neurons within dorsal motor nucleus of vagus that give rise to axons that travel through the gastric branch of the vagus to various parts of the stomach. Gastric nerves proper innervate the fundus and corpus, whereas the nerve of Laterjet passes to the antrum‐pylorus region of the stomach. IO, inferior olivary nucleus; NTS, nucleus tractus solitarius; SpTr V, spinal tract of trigeminal nerve; XII, hypoglossal nucleus. Black dots within nucleus X, many neurons within a rostrocaudal column of cells.

Figure 3. Figure 3.

Source of sympathetic innervation to GI tract. CG, celiac ganglion; EAS, innervation to external anal sphincter; IMG, inferior mesenteric ganglion; SCG, superior cervical ganglion; SG, stellate ganglion; SMG, superior mesenteric ganglion; T1, 1st thoracic spinal cord segment; T6, 6th thoracic spinal cord segment.

Figure 4. Figure 4.

Pathway taken by vagal afferent fibers from GI tract to tractus solitarius (TS). Stippled area medial to tractus solitarius, one of nuclei of the tractus, the medial nucleus. Arrows, flow of impulses from GI tract. 10, inferior olivary nucleus; mnTS, medial nucleus tractus solitarius; NA, nucleus ambiguus; SpTr 5, spinal tract of trigeminal nerve; 10, dorsal motor nucleus of vagus; 12, hypoglossal nucleus.

Figure 5. Figure 5.

A: subnuclear groups of tractus solitarius at a level 0.4 mm rostral to the obex. B: commissural nucleus at a level 0.85 mm caudal to the obex, ap, Area postrema; CC, central canal; dlnTS, dorsolateral nucleus of tractus solitarius; dnTS, dorsal nTS; g, nucleus gracilis; mnTS, medial nTS; ncom, commissural nTS; ni, intermediate nTS; ni, interstitial nTS; sg, subgelatinous nTS; TS, tractus solitarius; vlnTS, ventrolateral nTS; vnTS, ventral nTS; 10, dorsal motor nucleus of vagus; 12, hypoglossal nucleus.

Adapted from Kalia and Mesulam
Figure 6. Figure 6.

Pelvic afferent neurons and their termination within spinal cord segments that extend from 4th lumbar segment to as far caudal as 1st coccygeal segment. Only sacral segments 1–3 are demonstrated, cc, Central canal; CX1, 1st coccygeal segment; DB, dorsal band of parasympathetic neurons; DCL, dorsal column; DH, dorsal horn; DRG, dorsal root ganglion; LB, lateral band of parasympathetic neurons; LCP, lateral collateral pathway; LF, lateral funiculus; L4‐L7, 4th through 7th lumbar segments of spinal cord; LT, Lissauer's tract; MCP, medial collateral pathway; VH, ventral horn. Asterisks, groups of neuron cell bodies of either parasympathetic preganglionic neurons or somatic motoneurons.

Figure 7. Figure 7.

Pathway taken by sympathetic afferent neurons from GI tract to CNS, primarily in midlumbar segments of spinal cord, cc, Central canal; DH, dorsal horn; DR, dorsal root; DRG, dorsal root ganglion; LCP, lateral collateral pathway; LS, lumbar splanchnic nerve; LT, Lissauer's tract; L3, L4, L5, lumbar spinal cord segments 3–5; MCP, medial collateral pathway; SG, sympathetic chain ganglion; VH, ventral horn; VR, ventral root. Asterisks, groups of preganglionic sympathetic neurons.

From Barone et al.
Figure 8. Figure 8.

Pudendal afferent neurons that arise primarily from area of external anal sphincter. Neurons travel by way of pudendal nerves into lower lumber (L7) segments 1–3 of sacral spinal cord. Afferents enter Lissauer's tract (LT) and give rise to medial and lateral collateral pathways (LCP) that terminate near the dorsal band (DB) of preganglionic neurons. Other afferents pass upward through dorsal funiculus to reach nucleus gracilis in the brain stem. DH, dorsal horn; DRG, dorsal root ganglion; VH, ventral horn.

Figure 9. Figure 9.

Distribution of fast blue‐labeled neurons in right (upper) and left (lower) dorsal motor nucleus of vagus (DMV) after fast blue injections into antrum and pylorus. Vertical axis, number of labeled cell bodies in DMV per 0.14 mm (sum of 5 serial 28‐μm sections). Horizontal axis, location in DMV (relative to obex in mm) of number of cell bodies.

From Pagani et al.
Figure 10. Figure 10.

Effect of electrical Stimulation (100 μA, 50 Hz, 0.2‐ms pulse duration) of dorsal motor nucleus of vagus on gastric motility and cardiovascular function. Arrow, stimulus was turned on. Small change in heart rate (HR).

From Pagani et al.
Figure 11. Figure 11.

Coronal section of brain stem passing through dorsal motor nucleus of vagus. Lesion site lies confined to dorsal medial aspect of dorsal motor nucleus of vagus (X). Electrical stimulation at that site produced the increase in contractile activity observed in Figure . mnTS, medial nucleus tractus solitarius; TS, tractus solitarius; XII, hypoglossal nucleus.

From Pagani et al.
Figure 12. Figure 12.

Effect of electrical stimulation of 4 specific regions of dorsal motor nucleus of vagus on minute motility index (MMI). Cross‐hatched bars, changes in MMI of antrum; solid bars, changes in MMI of pylorus. Vertical bars, standard error of the mean. Data from each histogram were derived from 4–6 animals. Small asterisks, response was statistically significant (P < 0.05) from control using paired t test. Large asterisks, response was significantly (P < 0.05) attenuated compared with maximal response occurring from 1.5 to 2.0 mm rostral to obex using t test for grouped data.

From Pagani et al.
Figure 13. Figure 13.

Comparison of changes in minute motility index (MMI) induced by electrical stimulation of dorsal motor nucleus of vagus (DMV; left) and of brain sites medial to DMV (right). Cross‐hatched bars, changes in MMI of antrum; solid bars, changes in MMI of pylorus. Vertical bars, standard error of the mean. Data for each histogram were derived from 5–10 animals.

Adapted from Pagani et al.
Figure 14. Figure 14.

Coronal section of brain stem passing through dorsal motor nucleus of vagus (DMV). Lesion site lies medial to DMV (X). mnTS, medial nucleus tractus solitarius; TS, tractus solitarius; XII, hypoglossal nucleus.

From Pagani et al.
Figure 15. Figure 15.

Experiment showing effect of microinjection of L‐glutamic acid (arrow) into dorsal motor nucleus of vagus on gastric motility and cardiovascular function.

From Gillis et al.
Figure 16. Figure 16.

Coronal section of brain stem passing through dorsal motor nucleus of vagus (DMV). Microinjection site lies in DMV X. mnTS, medial nucleus tractus solitarius; TS, tractus solitarius; XII, hypoglossal nucleus.

Figure 17. Figure 17.

Cross section of brainstem, 2.3 mm rostral to obex, that shows relationship of neuronal axons from nucleus ambiguus (NA) to dorsal motor nucleus of vagus (DMV) as they exit the brain stem. 10, inferior olivary nucleus; SpTr V, spinal tract of trigeminal nerve; TS, tractus solitarius; XII, hypoglossal nucleus.

Figure 18. Figure 18.

Effect of electrical stimulation (133 μA, 50 Hz, 0.2‐ms pulse duration) of nucleus ambiguus complex on gastric secretion (gastric pH, microe‐quivalents of H+, and peptic units), gastroduodenal motility, arterial pressure, and heart rate (HR). Left panels: control traces and values. Right panels: traces obtained immediately after electrical stimulation was initiated (arrows). Values for pH, microequivalents of H+, and peptic units are values obtained either over a 10‐min control collective period (left) or over a 10‐min period of electrical stimulation on nucleus ambiguus complex (right). MMI, minute motility index.

From Pagani et al.
Figure 19. Figure 19.

Coronal section of brain stem passing through nucleus ambiguus (arrow), tractus solitarius (TS), dorsal motor nucleus of vagus (X), hypoglossal nucleus (XII), and inferior olivary nucleus (IO).

Adapted from Pagani et al.
Figure 20. Figure 20.

Thoracolumbar portion of the spinal cord showing intermediate gray matter and its subnuclear groups, connection of upper thoracic segments of spinal cord to cervical ganglia of sympathetic chain, and connection of lumbar segments of spinal cord to lumbar part of the sympathetic chain. CA, central autonomic neurons; CC, central canal; IC, spinal intercalated nucleus; IMLf, funicular part of intermediolateral cell column; IMLp, principal part of intermediolateral cell column.

Figure 21. Figure 21.

Diagram of CNS demonstrating pathways that interconnect different nuclei that are involved in control of the GI system. A: overall wiring diagram. B: enlargement of medullary segment to show interconnections of dorsal motor nucleus of vagus (DMV), nucleus ambiguus (NA), nucleus tractus solitarius (NTS), medullary reticular formation (MRF), ventrolateral medulla (VLM), and raphe obscurus (RO). ACh, acetylcholine; NC, nucleus cuneatus; ON, Onuf's nucleus; SpTr V, spinal tract of trigeminal nerve.

Figure 22. Figure 22.

Proposed scheme of CNS neural pathways activated by blockade of effects of GABA in periventricular nucleus of the hypothalamus, resulting in increases in gastric motility and antagonism of vagal effects on the heart. We propose that blockade of GABAergic transmission occurs at interneurons located in the hypothalamus and results in activation of neurons projecting to GABA‐inhibitory interneurons located in the region of nucleus ambiguus (NA), as well as activation of a collateral branch of the same neuron that projects to excitatory interneurons in the dorsal motor nucleus of vagus (DMV). End result is an increase in parasympathetic outflow to the stomach and a decrease in parasympathetic outflow to the heart.

Adapted from Pagani et al.
Figure 23. Figure 23.

Proposed scheme showing how blockade of sympathetic nervous system activity to the colon can result in colonic contractions. Presumably enteric ganglia cells are active and are responsible for tonic release of acetylcholine (ACh) at smooth muscle of colon. In addition, tonic sympathetic activity originating from the spinal cord results in release of norepinephrine (NE) at enteric ganglia. Released NE acts on α2‐adrenergic receptors located on enteric ganglia cells to cause hyperpolarization and inhibit release of ACh. Blockade of α2‐adrenergic receptors removes this inhibitory noradrenergic input and results in cholinergically mediated increases in colonic motility. IML, intermediolateral cell column.



Figure 1.

Diagram of nuclei of central nervous system (CNS; parasympathetic) that innervate various regions of the gastrointestinal (GI) tract from upper esophageal sphincter (UES) to external anal sphincter (EAS). A/P, antrum/pylorus; Ca, cardial; CE, cervical esophagus; Co, corpus of stomach; D, duodenum; DC, distal colon; DMV, dorsal motor nucleus of vagus; F, fundus of stomach; I, ileum; IML, intermediolateral cell column; J, jejunum; LES, lower esophageal sphincter; MC, midcolon; NA, nucleus ambiguus; NRA, nucleus retroambiguus; O, obex; ON, Onuf's nucleus; PC, proximal colon; R, rectum; RF, retrofacial nucleus; S1–3, sacral spinal cord segments 1 to 3; TE, thoracic esophagus; 7, facial nucleus.



Figure 2.

Diagram of medial and lateral columns of neurons within dorsal motor nucleus of vagus that give rise to axons that travel through the gastric branch of the vagus to various parts of the stomach. Gastric nerves proper innervate the fundus and corpus, whereas the nerve of Laterjet passes to the antrum‐pylorus region of the stomach. IO, inferior olivary nucleus; NTS, nucleus tractus solitarius; SpTr V, spinal tract of trigeminal nerve; XII, hypoglossal nucleus. Black dots within nucleus X, many neurons within a rostrocaudal column of cells.



Figure 3.

Source of sympathetic innervation to GI tract. CG, celiac ganglion; EAS, innervation to external anal sphincter; IMG, inferior mesenteric ganglion; SCG, superior cervical ganglion; SG, stellate ganglion; SMG, superior mesenteric ganglion; T1, 1st thoracic spinal cord segment; T6, 6th thoracic spinal cord segment.



Figure 4.

Pathway taken by vagal afferent fibers from GI tract to tractus solitarius (TS). Stippled area medial to tractus solitarius, one of nuclei of the tractus, the medial nucleus. Arrows, flow of impulses from GI tract. 10, inferior olivary nucleus; mnTS, medial nucleus tractus solitarius; NA, nucleus ambiguus; SpTr 5, spinal tract of trigeminal nerve; 10, dorsal motor nucleus of vagus; 12, hypoglossal nucleus.



Figure 5.

A: subnuclear groups of tractus solitarius at a level 0.4 mm rostral to the obex. B: commissural nucleus at a level 0.85 mm caudal to the obex, ap, Area postrema; CC, central canal; dlnTS, dorsolateral nucleus of tractus solitarius; dnTS, dorsal nTS; g, nucleus gracilis; mnTS, medial nTS; ncom, commissural nTS; ni, intermediate nTS; ni, interstitial nTS; sg, subgelatinous nTS; TS, tractus solitarius; vlnTS, ventrolateral nTS; vnTS, ventral nTS; 10, dorsal motor nucleus of vagus; 12, hypoglossal nucleus.

Adapted from Kalia and Mesulam


Figure 6.

Pelvic afferent neurons and their termination within spinal cord segments that extend from 4th lumbar segment to as far caudal as 1st coccygeal segment. Only sacral segments 1–3 are demonstrated, cc, Central canal; CX1, 1st coccygeal segment; DB, dorsal band of parasympathetic neurons; DCL, dorsal column; DH, dorsal horn; DRG, dorsal root ganglion; LB, lateral band of parasympathetic neurons; LCP, lateral collateral pathway; LF, lateral funiculus; L4‐L7, 4th through 7th lumbar segments of spinal cord; LT, Lissauer's tract; MCP, medial collateral pathway; VH, ventral horn. Asterisks, groups of neuron cell bodies of either parasympathetic preganglionic neurons or somatic motoneurons.



Figure 7.

Pathway taken by sympathetic afferent neurons from GI tract to CNS, primarily in midlumbar segments of spinal cord, cc, Central canal; DH, dorsal horn; DR, dorsal root; DRG, dorsal root ganglion; LCP, lateral collateral pathway; LS, lumbar splanchnic nerve; LT, Lissauer's tract; L3, L4, L5, lumbar spinal cord segments 3–5; MCP, medial collateral pathway; SG, sympathetic chain ganglion; VH, ventral horn; VR, ventral root. Asterisks, groups of preganglionic sympathetic neurons.

From Barone et al.


Figure 8.

Pudendal afferent neurons that arise primarily from area of external anal sphincter. Neurons travel by way of pudendal nerves into lower lumber (L7) segments 1–3 of sacral spinal cord. Afferents enter Lissauer's tract (LT) and give rise to medial and lateral collateral pathways (LCP) that terminate near the dorsal band (DB) of preganglionic neurons. Other afferents pass upward through dorsal funiculus to reach nucleus gracilis in the brain stem. DH, dorsal horn; DRG, dorsal root ganglion; VH, ventral horn.



Figure 9.

Distribution of fast blue‐labeled neurons in right (upper) and left (lower) dorsal motor nucleus of vagus (DMV) after fast blue injections into antrum and pylorus. Vertical axis, number of labeled cell bodies in DMV per 0.14 mm (sum of 5 serial 28‐μm sections). Horizontal axis, location in DMV (relative to obex in mm) of number of cell bodies.

From Pagani et al.


Figure 10.

Effect of electrical Stimulation (100 μA, 50 Hz, 0.2‐ms pulse duration) of dorsal motor nucleus of vagus on gastric motility and cardiovascular function. Arrow, stimulus was turned on. Small change in heart rate (HR).

From Pagani et al.


Figure 11.

Coronal section of brain stem passing through dorsal motor nucleus of vagus. Lesion site lies confined to dorsal medial aspect of dorsal motor nucleus of vagus (X). Electrical stimulation at that site produced the increase in contractile activity observed in Figure . mnTS, medial nucleus tractus solitarius; TS, tractus solitarius; XII, hypoglossal nucleus.

From Pagani et al.


Figure 12.

Effect of electrical stimulation of 4 specific regions of dorsal motor nucleus of vagus on minute motility index (MMI). Cross‐hatched bars, changes in MMI of antrum; solid bars, changes in MMI of pylorus. Vertical bars, standard error of the mean. Data from each histogram were derived from 4–6 animals. Small asterisks, response was statistically significant (P < 0.05) from control using paired t test. Large asterisks, response was significantly (P < 0.05) attenuated compared with maximal response occurring from 1.5 to 2.0 mm rostral to obex using t test for grouped data.

From Pagani et al.


Figure 13.

Comparison of changes in minute motility index (MMI) induced by electrical stimulation of dorsal motor nucleus of vagus (DMV; left) and of brain sites medial to DMV (right). Cross‐hatched bars, changes in MMI of antrum; solid bars, changes in MMI of pylorus. Vertical bars, standard error of the mean. Data for each histogram were derived from 5–10 animals.

Adapted from Pagani et al.


Figure 14.

Coronal section of brain stem passing through dorsal motor nucleus of vagus (DMV). Lesion site lies medial to DMV (X). mnTS, medial nucleus tractus solitarius; TS, tractus solitarius; XII, hypoglossal nucleus.

From Pagani et al.


Figure 15.

Experiment showing effect of microinjection of L‐glutamic acid (arrow) into dorsal motor nucleus of vagus on gastric motility and cardiovascular function.

From Gillis et al.


Figure 16.

Coronal section of brain stem passing through dorsal motor nucleus of vagus (DMV). Microinjection site lies in DMV X. mnTS, medial nucleus tractus solitarius; TS, tractus solitarius; XII, hypoglossal nucleus.



Figure 17.

Cross section of brainstem, 2.3 mm rostral to obex, that shows relationship of neuronal axons from nucleus ambiguus (NA) to dorsal motor nucleus of vagus (DMV) as they exit the brain stem. 10, inferior olivary nucleus; SpTr V, spinal tract of trigeminal nerve; TS, tractus solitarius; XII, hypoglossal nucleus.



Figure 18.

Effect of electrical stimulation (133 μA, 50 Hz, 0.2‐ms pulse duration) of nucleus ambiguus complex on gastric secretion (gastric pH, microe‐quivalents of H+, and peptic units), gastroduodenal motility, arterial pressure, and heart rate (HR). Left panels: control traces and values. Right panels: traces obtained immediately after electrical stimulation was initiated (arrows). Values for pH, microequivalents of H+, and peptic units are values obtained either over a 10‐min control collective period (left) or over a 10‐min period of electrical stimulation on nucleus ambiguus complex (right). MMI, minute motility index.

From Pagani et al.


Figure 19.

Coronal section of brain stem passing through nucleus ambiguus (arrow), tractus solitarius (TS), dorsal motor nucleus of vagus (X), hypoglossal nucleus (XII), and inferior olivary nucleus (IO).

Adapted from Pagani et al.


Figure 20.

Thoracolumbar portion of the spinal cord showing intermediate gray matter and its subnuclear groups, connection of upper thoracic segments of spinal cord to cervical ganglia of sympathetic chain, and connection of lumbar segments of spinal cord to lumbar part of the sympathetic chain. CA, central autonomic neurons; CC, central canal; IC, spinal intercalated nucleus; IMLf, funicular part of intermediolateral cell column; IMLp, principal part of intermediolateral cell column.



Figure 21.

Diagram of CNS demonstrating pathways that interconnect different nuclei that are involved in control of the GI system. A: overall wiring diagram. B: enlargement of medullary segment to show interconnections of dorsal motor nucleus of vagus (DMV), nucleus ambiguus (NA), nucleus tractus solitarius (NTS), medullary reticular formation (MRF), ventrolateral medulla (VLM), and raphe obscurus (RO). ACh, acetylcholine; NC, nucleus cuneatus; ON, Onuf's nucleus; SpTr V, spinal tract of trigeminal nerve.



Figure 22.

Proposed scheme of CNS neural pathways activated by blockade of effects of GABA in periventricular nucleus of the hypothalamus, resulting in increases in gastric motility and antagonism of vagal effects on the heart. We propose that blockade of GABAergic transmission occurs at interneurons located in the hypothalamus and results in activation of neurons projecting to GABA‐inhibitory interneurons located in the region of nucleus ambiguus (NA), as well as activation of a collateral branch of the same neuron that projects to excitatory interneurons in the dorsal motor nucleus of vagus (DMV). End result is an increase in parasympathetic outflow to the stomach and a decrease in parasympathetic outflow to the heart.

Adapted from Pagani et al.


Figure 23.

Proposed scheme showing how blockade of sympathetic nervous system activity to the colon can result in colonic contractions. Presumably enteric ganglia cells are active and are responsible for tonic release of acetylcholine (ACh) at smooth muscle of colon. In addition, tonic sympathetic activity originating from the spinal cord results in release of norepinephrine (NE) at enteric ganglia. Released NE acts on α2‐adrenergic receptors located on enteric ganglia cells to cause hyperpolarization and inhibit release of ACh. Blockade of α2‐adrenergic receptors removes this inhibitory noradrenergic input and results in cholinergically mediated increases in colonic motility. IML, intermediolateral cell column.

References
 1. Abrahamsson, H. Studies on the inhibitory nervous control of gastric motility. Acta Physiol. Scand. 390: 5–33, 1973.
 2. Ahlman, B. H., J. Lundberg, A. Dahlstrom, I. Larsson, G. Pettersson, J. Kewenter, and L. M. Nyhus. Evidence for innervation of the small intestine from the cervical sympathetic ganglia. J. Surg. Res. 24: 142–149, 1978.
 3. Akasu, T., P. Shinnick‐Gallagher, and J. P. Gallagher. Evidence for a catecholamine‐mediated slow hyperpolarizing synaptic response in parasympathetic ganglia. Brain Res. 365: 365–368, 1986.
 4. Akmayev, I. G., O. V. Vikhreva, and L. K. Konovalova. The origin of the hypothalamic‐vagal descending pathway: an experimental ultrastructural study. Brain Res. 230: 342–345, 1981.
 5. Aldskogius, H. Fine structural changes in nerve cell bodies of the adult rabbit dorsal motor vagal nucleus during axon reaction. Neuropath. Appl. Neurobiol. 4: 323–341, 1978.
 6. Anderson, P. N., J. Mitchell, and D. Mayor. The uptake of horseradish peroxidase by damaged autonomic nerves in vitro. J. Anat. 128: 401–406, 1979.
 7. Anderson, P. N., J. Mitchell, and D. Mayor. The uptake of horseradish peroxidase by neuronal elements within the guinea‐pig distal colon and its subsequent retrograde transport to the inferior mesenteric ganglion: an in vitro study using an intact neuronal system. J. Anat. 130: 153–157, 1980.
 8. Andersson, B., R. L. Kitchell, and N. Persson. A study of central regulation of rumination and reticulo‐ruminal motility. Acta Physiol. Scand. 46: 319–338, 1959.
 9. Andrews, P. L. R. The non‐adrenergic non‐cholinergic innervation of the stomach. Arch. Int. Pharmacodyn. Ther. 280: 34–109, 1986.
 10. Armstrong, D. M., C. A. Ross, V. M. Pickel, T. H. Joh, and D. J. Reis. Distribution of dopamine‐, noradrenaline‐, and adrenaline‐containing cell bodies in the rat medulla oblongata: demonstrated by the immunocytochemical localization of catecholamine biosynthetic enzymes. J. Comp. Neurol. 212: 173–187, 1982.
 11. Armstrong, D. M., C. B. Saper, A. I. Levey, B. H. Wainer, and R. D. Terry. Distribution of cholinergic neurons in rat brain: demonstrated by the immunocytochemical localization of choline acetyltransferase. J. Comp. Neurol. 216: 53–68, 1983.
 12. Atweh, S. F., and M. J. Kuhar. Autoradiographic localization of opiate receptors in rat brain. I. Spinal cord and lower medulla. Brain Res. 124: 53–67, 1977.
 13. Atweh, S. F., L. C. Murrin, and M. J. Kuhar. Presynaptic localization of opiate receptors in the vagal and accessory optic systems: an autoradiographic study. Neuropharmacology 17: 65–71, 1978.
 14. Aune, S. Intragastric pressure after vagotomy in man. Gastroenterology 4: 447–452, 1969.
 15. Babkin, B. P., and W. C. Kite, Jr. Central and reflex regulation of the motility of the pyloric antrum. J. Neurophysiol. 13: 321–334, 1950.
 16. Babkin, B. P., and W. C. Kite, Jr. Gastric motor effects of acute removal of cingulate gyrus and section of brain stem. J. Neurophysiol. 13: 335–342, 1950.
 17. Babkin, B. P., and T. J. Speakman. Cortical inhibition of gastric motility. J. Neurophysiol. 13: 55–63, 1950.
 18. Bahr, R., B. Bastel, H. Blumberg, and W. Jänig. Functional characterization of preganglionic neurons projecting in the lumbar splanchnic nerves: neurons regulating motility. J. Auton. Nerv. Syst. 15: 109–130, 1986.
 19. Bailey, P., and F. Bremer. A sensory cortical representation of the vagus nerve. J. Neurophysiol. 1: 405–412, 1938.
 20. Baron, R., W. Jänig, and E. M. Mclachlan. The afferent and sympathetic components of the lumbar spinal outflow to the colon and pelvic organs in the cat. I. The hypogastric nerve. J. Comp. Neurol. 238: 135–146, 1985.
 21. Baron, R., W. Jänig, and E. M. Mclachlan. The afferent and sympathetic components of the lumbar spinal outflow to the colon and pelvic organs in the cat. II. The lumbar splanchnic nerves. J. Comp. Neurol. 238: 147–157, 1985.
 22. Baron, R., W. Jänig, and E. M. Mclachlan. The afferent and sympathetic components of the lumbar spinal outflow to the colon and pelvic organs in the cat. III. The colonic nerves, incorporating an analysis of all components of the lumbar prevertebral outflow. J. Comp. Neurol. 238: 158–168, 1985.
 23. Barone, F. C., D. M. Lombardi, and H. S. Ormsbee III. Effects of hindbrain stimulation on lower esophageal sphincter pressure in the cat. Am. J. Physiol. 247 (Gastrointest. Liver Physiol. 10): G70–G78, 1984.
 24. Barr, M., and J. A. Kiernam. The Human Nervous System: An Anatomical Viewpoint (4th ed.). Philadelphia, PA: Harper & Row, 1983, p. 196.
 25. Bartel, B., H. Blumberg, and W. Jänig. Discharge patterns of motility‐regulating neurons projecting in the lumbar splanchnic nerves to visceral stimuli in spinal cats. J. Auton. Nerv. Syst. 15: 153–163, 1986.
 26. Bell, F. The localization within the dorsal motor nucleus of the vagus of the efferent fibers to the ruminant stomach. J. Anat. 94: 410–417, 1960.
 27. Bell, F., and A. Lawn. Localization of regions in the medulla oblongata of sheep associated with rumination. J. Physiol. Lond. 128: 577–592, 1955.
 28. Berthoud, H. R., A. Niijima, J. F. Sauter, and B. Jeanrenaud. Evidence for a role of the gastric, coeliac and hepatic branches in vagally stimulated insulin secretion in the rat. J. Auton. Nerv. Syst. 7: 97–110, 1983.
 29. Bessant, A. R. D., and J. Robertson‐Rintoul. Origin of the parasympathetic preganglionic fibers to the distal colon of the rabbit as demonstrated by the horseradish peroxidase method. Neurosci. Lett. 63: 17–22, 1986.
 30. Bishop, B. Reflex activity of external anal sphincter of the cat. J. Neurophysiol 22: 679–692, 1959.
 31. Bishop, B., R. C. Garry, T. D. M. Roberts, and J. K. Todd. Control of the external sphincter of the anus in the cat. J. Physiol. Load. 134: 229–240, 1956.
 32. Blessing, W. W., P. Frost, and J. B. Furness. Catecholamine cell groups of the cat medulla oblongata. Brain Res. 192: 69–75, 1980.
 33. Blessing, W. W., C. B. Jaeger, D. A. Ruggiero, and D. J. Reis. Hypothalamic projections of medullary catecholamine neurons in the rabbit: a combined catecholamine fluorescence and HRP transport study. Brain Res. Bull. 9: 279–286, 1982.
 34. Bloom, F. E. The functional significance of neurotransmitter diversity. Am. J. Physiol. 246 (Cell Physiol. 15): C184–C194, 1984.
 35. Bobillier, P., S. Sequin, F. Petitjian, O. Salvert, M. Touret, and M. Jouvet. The raphe nuclei of the cat brain stem: a topographical atlas of their efferent projections as revealed by autoradiography. Brain Res. 113: 449–486, 1976.
 36. Calaresu, F. R., and T. W. Pearce. Effects on heart rate of electrical stimulation of medullary vagal structures in the cat. J. Physiol. Lond. 176: 241–251, 1965.
 37. Calzà, L., L. Giardino, R. Grimaldi, M. Rigolo, H. W. M. Steinbusch, and M. Tiengo. Presence of 5‐HT‐positive neurons in the medial nuclei of the solitary tract. Brain Res. 347: 135–139, 1985.
 38. Cannon, W. B. The influence of emotional states on the functions of the alimentary canal. Am. J. Med. Sci. 137: 480–487, 1909.
 39. Cannon, W. B., and C. W. Lieb. The receptive relaxation of the stomach. Am. J. Physiol. 29: 267–273, 1911.
 40. Charlton, C. G., and C. J. Helke. Autoradiographic localization and characterization of spinal cord substance P binding sites: high densities in sensory, autonomic, phrenic and Onuf's motor nuclei. J. Neurosci. 5: 1653–1661, 1985.
 41. Christenson, J. The oesophagus. In: A Guide to Gastrointestinal Motility, edited by J. Christensen, D. L. Wingate, and R. A. Gregory. Bristol, UK: Wright, 1983.
 42. Code, C. F., J. H. Szurszewski, K. A. Kelly, and I. B. Smith. A concept of control of gastrointestinal motility. In: Handbook of Physiology. Alimentary Canal. Bile; Digestion; Ruminol Physiology, edited by C. F. Code. Washington, DC: Am. Physiol. Soc., 1968, sect. 6, vol. V, chapt. 139, p. 2881–2896.
 43. Connors, N. A., J. M. Sullivan, and K. S. Kubb. An autoradiographic study of the distribution of fibers from the dorsal motor nucleus of the vagus to the digestive tube of the rat. Acta Anat. 115: 266–271, 1983.
 44. Crowcraft, P. J., M. E. Holman, and J. H. Szurszewski. Excitatory input from the distal colon to the inferior mesenteric ganglion in the guinea pig. J. Physiol. Lond. 219: 443–461, 1971.
 45. Dahlstrom, A., and K. Fuxe. Experimentally induced changes in the intraneuronal amine levels of bulbospinal neuron systems. Acta Physiol. Scand. 64: 7–35, 1965.
 46. Dalsgaard, A.‐J., T. Hökfelt, O. Johansson, and R. Elde. Somatostatin immunoreactive cell bodies in the dorsal horn and the parasympathetic intermediolateral nucleus of the rat spinal cord. Neurosci. Lett. 27: 335–339, 1981.
 47. Davis, B. M., J. E. Krause, T. F. Mckelvy, and J. B. Cabot. Effects of spinal lesions on substance P levels in the rat: evidence for local spinal regulation. Neuroscience 13: 1311–1326, 1984.
 48. De Groat, W. C., A. M. Booth, R. J. Milne, and J. R. Roppolo. Parasympathetic preganglionic neurons in the sacral spinal cord. J. Auton. Nerv. Syst. 5: 23–43, 1982.
 49. De Groat, W. C., and J. Krier. The sacral parasympathetic reflex pathway regulating colonic motility and defecation in the cat. J. Physiol. Lond. 276: 481–500, 1978.
 50. De Groat, W. C., and J. Krier. The central control of the lumbar sympathetic pathway to the large intestine of the cat. J. Physiol. Lond. 289: 449–468, 1979.
 51. De Groat, W. C., I. Nadelhoft, R. J. Milne, A. M. Booth, C. Morgan, and K. Thor. Organization of the sacral parasympathetic reflex pathways to the urinary bladder and large intestine. J. Auton. Nerv. Syst. 3: 135–160, 1981.
 52. De Groat, W. C., and R. W. Ryall. Recurrent inhibition in sacral parasympathetic pathways to the bladder. J. Physiol. Lond. 196: 579–591, 1968.
 53. Delbro, D., and B. Lisander. Hexamethonium‐resistant gastric contractions by stimulation of the vagal nuclei. An antidromic activation of vagal afferents? Acta Physiol. Scand. 116: 1–6, 1982.
 54. Dembowsky, K., J. Czachurski, and H. Seller. Morphology of sympathetic preganglionic neurons in the thoracic spinal cord of the cat: an intracellular horseradish peroxidase study. J. Comp. Neurol. 8: 453–465, 1985.
 55. Dennison, S. J., V. E. Merritt, M. H. Aprison, and D. L. Felten. Redefinition of the vagus in the rat. Brain Res. 6: 77–81, 1981.
 56. Dennison, S. J., B. L. O'connor, M. H. Aprison, V. E. Merritt, and D. L. Felten. Viscerotopic localization of preganglionic parasympathetic cell bodies of origin of the anterior and posterior subdiaphragmatic vagus nerves. J. Comp. Neurol. 197: 259–269, 1981.
 57. Devroede, G., P. Arhan, C. Duguay, L. Tetreault, H. Akoury, and B. Perey. Traumatic constipation. Gastroenterology 77: 1258–1267, 1979.
 58. Dickhaus, M. J., and N. A. Connors. Autoradiographic studies of efferent nerves from the celiac ganglion in the cat. Experientia Basel 38: 497–498, 1982.
 59. DiMicco, J. A., K. Gale, B. L. Hamilton, and R. A. Gillis. GABA receptor control of parasympathetic outflow to the heart: characterization and brainstem localization. Science Wash. DC 204: 1106–1108, 1979.
 60. DiMicco, J. A., and R. A. Gillis. Neuro‐cardiovascular effects produced by bicuculline in the cat. J. Pharmacol. Exp. Ther. 210: 1–6, 1979.
 61. DiMicco, J. A., B. L. Hamilton, and R. A. Gillis. Central nervous system sites involved in the cardiovascular effects of Picrotoxin. J. Pharmacol. Exp. Ther. 203: 64–71, 1977.
 62. DiMicco, J. A., T. Prestel, D. L. Pearle, and R. A. Gillis. Mechanism of cardiovascular changes by activation of the central nervous system with Picrotoxin. Circ. Res. 41: 446–451, 1977.
 63. Elde, R., T. Hökfelt, O. Johanson, and L. Terenius. Immunohistochemical studies using antibodies to leucine‐enkephalin: initial observations on the nervous system of the rat. Neuroscience 1: 349–351, 1976.
 64. Elfvin, L. G., and B. Lindh. A study of the extrinsic innervation of the guinea‐pig pylorus with the horseradish peroxidase tracing technique. J. Comp. Neurol. 208: 317–324, 1982.
 65. Eliasson, S. Cerebral influence on gastric motility in cat. Acta Physiol. Scand. Suppl. 95: 1–70, 1952.
 66. Eliasson, S. Activation of gastric motility from the brainstem of the cat. Acta Physiol. Scand. 30: 199–214, 1953.
 67. Enzmann, E. R., G. S. Harell, and F. F. Zboralske. Upper esophageal responses to intraluminal distention in man. Gastroenterology 72: 1292–1298, 1977.
 68. Everitt, B. J., T. Hökfelt, L. Terenius, K. Tatemoto, V. Mutt, and M. Goldstein. Differential co‐existence of neuropeptide Y (NPY)‐like immunoreactivity with catecholamines in the central nervous system of the rat. Neuroscience 11: 443–462, 1984.
 69. Ewart, W. R., and D. L. Wingate. Central representation and opioid modulation of gastric mechanoreceptor activity in the rat. Am. J. Physiol. 244 (Gastrointest. Liver Physiol. 7): G27–G32, 1983.
 70. Ewart, W. R., and D. L. Wingate. Cholecystokinin octapeptide and gastric mechanoreceptor activity in rat brain. Am. J. Physiol. 244 (Gastrointest. Liver Physiol. 7): G613–G617, 1983.
 71. Ewart, W. R., and D. L. Wingate. Central representation of arrival of nutrient in the duodenum. Am. J. Physiol. 246 (Gastrointest. Liver Physiol. 9): G750–G756, 1984.
 72. Fallon, J. H., and F. M. Leslie. Distribution of dynorphin and enkephalin peptides in the rat brain. J. Comp. Neurol. 249: 293–336, 1986.
 73. Fealey, R. D., J. H. Szurszewski, J. L. Merrit, and E. P. Dimagno. Effect of traumatic spinal cord transection on human upper gastrointestinal motility and gastric emptying. Gastroenterology 87: 69–75, 1984.
 74. Fennegan, F. M., and M. J. Puiggari. Hypothalamic and amygdaloid influence on gastric motility in dogs. J. Neurosurg. 24: 497–504, 1966.
 75. Ferrario, C. M., K. L. Barnes, J. E. Szilagyi, and K. B. Brosnihan. Physiological and pharmacological characterization of the area postrema pressor pathways in the normal dog. Hypertension Dallas 1: 235–245, 1979.
 76. Floyd, W. F., and E. W. Walls. Electromyography of the sphincter ani externus in man. J. Physiol. Load. 122: 599–609, 1953.
 77. Fonberg, E. Control of emotional behaviour through the hypothalamus and amygdaloid complex. Ciba Found. Symp. 8: 131–150, 1972.
 78. Fox, E. A., and T. L. Powley. Longitudinal columnar organization within the dorsal motor nucleus represents separate branches of the abdominal vagus. Brain Res. 341: 269–282, 1985.
 79. Freackner, B., and C. V. Euler. Influence of pudendal block on the function of the anal sphincters. Gut 16: 482–489, 1975.
 80. Fryscak, T., W. Zenker, and D. Kanter. Afferent and efferent innervation of the rat esophagus: a tracing study with HRP and nuclear yellow. Anat. Embryol. 170: 63–70, 1984.
 81. Fukuda, H. Projections of the afferents from the distal colon onto the cerebral cortex of the dog (Abstract). Autonom. Nerv. Syst. 16: 33, 1978.
 82. Fukuda, H., K. Fukai, M. Yamane, and H. Okada. Pontine reticular unit responses to pelvic nerve and colonic mechanical stimulation in the dog. Brain Res. 207: 59–71, 1981.
 83. Fuxe, K. Evidence for the existence of monoamine neurons in the central nervous system. IV. Distribution of monoamine terminals in the central nervous system. Acta Physiol. Scand. Suppl. 247: 39–85, 1965.
 84. Gabella, G. Structure of muscles and nerves in the gastrointestinal tract. In: Physiology of the Gastrointestinal Tract (1st ed.), edited by L. R. Johnson. New York: Raven, 1981, vol. 1, p. 197–241.
 85. Gale, K., B. L. Hamilton, S. C. Brown, W. P. Norman, J. Dias Souza, and R. A. Gillis. The presence of GABA and specific GABA binding sites in cat brain nuclei associated with central vagal outflow. Brain Res. Bull. 5, Suppl. 2: 324–328, 1980.
 86. Gastaut, H., R. Vigouroux, J. Corriol, and M. Badier. Effet de la stimulation electrique (par electrodes a demeure) du complexe amygdalien chez le chat non nacrose. J. Physiol. Paris 43: 740–746, 1951.
 87. Geis, G. S., and R. D. Wurster. Horseradish peroxidase localization of cardiac vagal preganglionic somata. Brain Res. 182: 19–30, 1980.
 88. Getz, B., and T. Sirnes. The localization within the dorsal motor nucleus of the vagus. J. Comp. Neurol. 90: 95–110, 1949.
 89. Gillis, R. A., J. Dias Souza, K. A. Hicks, A. W. Mangel, F. D. Pagani, B. L. Hamilton, T. Q. Garvey III, D. G. Pace, R. K. Browne, and W. P. Norman. Inhibitory control of proximal colonic motility by the sympathetic nervous system. Am. J. Physiol. 253 (Gastrointest. Liver Physiol. 16): G531–G539, 1987.
 90. Gillis, R. A., C. J. Helke, B. L. Hamilton, W. P. Norman, and D. M. Jacobowitz. Evidence that substance P is a neurotransmitter of baro‐ and chemoreceptor afferents in nucleus tractus solitarius. Brain Res. 181: 476–481, 1980.
 91. Gillis, R. A., W. P. Norman, D. K. Kasbekar, A. W. Mangel, L. Skirboll, J. A. Quest, and F. D. Pagani. Central nervous system control of gastrointestinal function. In: Proceedings of the 10th International Symposium on Gastrointestinal Motility. New York: Elsevier, in press.
 92. Gillis, R. A. J. A. Quest, F. D. Pagani, J. Dias Souza, A. M. T. Da Silva, R. T. Jensen, T. Q. Garvey III, and P. Hamosh. Activation of central nervous system cholecystokinin receptors stimulates respiration in the cat. J. Pharmacol. Exp. Ther. 224: 408–414, 1983.
 93. Gillis, R. A., L. Skirboll, W. P. Norman, and F. D. Pagani. Evidence for substance P (SP), 5‐hydroxytryptamine (5‐HT) and avian pancreatic polypeptide (APP) in fibers innervating cell bodies of vagal preganglionic parasympathetic fibers which project to the stomach (Abstract). Gastroenterology 86: 1088, 1984.
 94. Gillis, R. A., D. J. Williford, J. Dias Souza, and J. A. Quest. Central cardiovascular effects produced by the GABA receptor agonist drug, THIP. Neuropharmacology 21: 545–547, 1982.
 95. Glazer, E. J., and A. I. Basbaum. Leucine enkephalin: localization in and axoplasmic transport by sacral parasympathetic preganglionic neurons. Science Wash. DC 208: 1479–1481, 1980.
 96. Goodchild, A. K., R. A. L. Dampney, and R. Bandler. A method for evoking physiological responses by stimulation of cell bodies, but not axons of passage, within localized regions of the central nervous system. J. Neurosci. Methods 6: 351–363, 1982.
 97. Goyal, R. K., and B. W. Cobb. Motility of the pharynx, esophagus, and esophageal sphincters. In: Physiology of the Gastrointestinal Tract (1st ed.), edited by L. R. Johnson. New York: Raven, 1981, p. 359–391.
 98. Grundy, D., and T. Scratchard. The effect of surgical anaesthesia on gastric motility in the ferret. (Abstract). J. Physiol. Lond. 367: 56P, 1985.
 99. Gunterberg, B., J. Kewenter, I. Petersen, and B. Stener. Anorectal function after major resections of the sacrum with bilateral or unilateral sacrifice of sacral nerves. Br. J. Surg. 63: 546–554, 1976.
 100. Guttman, L. Spinal Cord Injuries (Comprehensive Management and Research) (2nd ed.). Oxford, UK: Blackwell, 1970, p. 237–473.
 101. Gwyn, D. G., R. A. Leslie, and D. A. Hopkins. Gastric afferents to the nucleus of the solitary tract in the cat. Neurosci. Lett. 14: 13–17, 1979.
 102. Gwyn, D. G., T. C. Ritchie, and J. D. Coulter. The central distribution of vagal catecholaminergic neurons which project into the abdomen in the rat. Brain Res. 328: 139–144, 1985.
 103. Hadjiconstantinou, P., P. Panula, Z. Lackovic, and N. H. Neff. Spinal cord serotonin: a biochemical and immuno‐histochemical study following transection. Brain Res. 322: 245–254, 1984.
 104. Hahne, W. F., R. T. Jensen, G. F. Lemp, and J. D. Gardner. Proglumide and benzotript: members of a different class of cholecystokin in receptor antagonists. Proc. Natl. Acad. Sci. USA 78: 6304–6308, 1981.
 105. Hancock, M. B., and C. A. Peveto. A preganglionic autonomic nucleus in the dorsal gray commissure of the lumbar spinal cord of the rat. J. Comp. Neurol. 183: 65–72, 1979.
 106. Helke, C. J., J. J. Neil, V. J. Massari, and A. D. Loewy. Substance P neurons project from the ventral medulla to the intermediolateral cell column and ventral horn in the rat. Brain Res. 243: 147–152, 1982.
 107. Helke, C. J., C. W. Shults, T. N. Chase, and T. L. O'Donohue. Autoradiographic localization of substance P receptors in rat medulla: effect of vagotomy and nodose ganglionectomy. Neuroscience 12: 215–223, 1984.
 108. Henke, P. G. The telencephalic limbic system and experimental gastric pathology: a review. Neurosci. Behav. Rev. 6: 381–390, 1982.
 109. Hesser, F. H., O. R. Langworthy, and L. C. Kolb. Experimental study of gastric activity released from cortical control. J. Neurophysiol. 4: 274–283, 1941.
 110. Hesser, F. H., and G. E. Perret. Studies on gastric motility in the cat. II. Cerebral and infracerebral influence in control, vagectomy, and cervical cord preparations. Gastroenterology 38: 231–246, 1960.
 111. Higgins, G. A., G. E. Hoffman, S. Wray, and J. S. Schwaber. Distribution of neurotensin‐immunoreactivity within baroreceptive portions of the nucleus of the tractus solitarius and the dorsal vagal nucleus of the rat. J. Comp. Neurol. 226: 155–164, 1984.
 112. Higgs, B., F. W. L. Kerr, and F. H. Ellis. The experimental production of esophageal achalasia by electrolytic lesions in the medulla. J. Thorac. Cardiovasc. Surg. 50: 613–625, 1965.
 113. Hisa, Y., F. Sato, Y. Suzuki, K. Yanohara, M. Hyuga, and O. Mizukoshi. The localizations of motoneurons innervating the canine pharyngeal constrictor muscles in the posterior larynx by the fluorescent double‐labeling technique. Arch. Otorhino‐laryngol. 241: 83–87, 1984.
 114. Hodes, Z. I., M. A. Rea, D. L. Felten, and M. H. Aprison. Specific binding of the muscarinic antagonist [3H]guinnuclidinyl benzilate is not associated with preganglionic motor neurons in the dorsal motor nucleus of the vagus. Neurochem. Res. 8: 73–87, 1983.
 115. Hoffman, B. L., and T. Rasmussen. Stimulation studies of insular cortex of Macaco mulatta. J. Neurophysiol. 16: 343–351, 1953.
 116. Hökfelt, T., R. Elde, O. Johansson, L. Terenius, and L. Stein. The distribution of enkephalin‐immunoreactive cell bodies in the rat central nervous system. Neurosci. Lett. 5: 25–31, 1977.
 117. Holets, V., and R. Elde. The differential distribution and relationship of serotoninergic and peptidergic fibers to sympathoadrenal neurons in the intermediolateral cell column of the rat: a combined retrograde axonal transport and immunofluorescence study. Neuroscience 7: 1155–1174, 1982.
 118. Holstege, G., G. Graveland, C. Bijker‐Biemond, and I. Schuddeboom. Location of motoneurons innervating soft palate, pharynx and upper esophagus. Anatomical evidence for a possible swallowing center in the pontine reticular formation. An HRP and autoradiographical tracing study. Brain Behav. Evol. 23: 47–62, 1983.
 119. Holstege, G., L. Meiners, and K. Tan. Projections of the bed nucleus of the stria terminalis to the mesencephalon, pons, and medulla oblongata in the cat. Exp. Brain Res. 58: 379–391, 1985.
 120. Hoover, D. B., and S. E. Barron. Localization and acetylcholinesterase content of vagal efferent neurons Brain Res. 8: 279–284, 1982.
 121. Hoover, D. B., J. C. Hancock, and T. E. Deporter. Effect of vagotomy on cholinergic parameters in nuclei of rat medulla oblongata. Brain Res. Bull. 15: 5–11, 1985.
 122. Hopkins, D. A., and G. Holstege. Amygdaloid projections to the mesencephalon, pons and medulla oblongata in the cat. Exp. Brain Res. 32: 529–547, 1978.
 123. Hosoya, Y., and M. Matsushita. Cells of origin of the descending afferents to the lateral hypothalamic area in the rat, studies with the horseradish peroxidase method. Neurosci. Lett. 18: 231–236, 1980.
 124. Howard, B. R. The dorsal nucleus of the vagus as a centre controlling gastric motility in sheep. J. Physiol. Lond. 206: 167–180, 1970.
 125. Howe, P. R. C., D. M. Kuhn, J. B. Minson, B. H. Stead, and J. P. Chalmers. Evidence for bulbospinal serotonergic pressor pathway in the rat brain. Brain Res. 270: 29–36, 1983.
 126. Hudson, L. C., and J. F. Cummings. The origins of innervation of the esophagus of the dog. Brain Res. 326: 125–136, 1985.
 127. Hulten, L. Extrinsic nervous control of colonic motility and blood flow. Acta Physiol. Scand. 335, Suppl.: 1–166, 1969.
 128. Hunt, S., and J. Schmidt. Some observations on the binding patterns of alpha‐bungarotoxin in the central nervous system of the rat. Brain Res. 157: 213–232, 1978.
 129. Hurley‐Guis, K. M., and E. J. Neafsey. The medial frontal cortex and gastric motility: microstimulation results and their possible significance for the overall pattern of organization of rat frontal and parietal cortex. Brain Res. 365: 241–248, 1986.
 130. Ibata, Y., F. Kawakami, K. Fukui, H. Okamura, H. L. Obata‐Tsuto, T. Tsuto, and H. Terubayashi. Morphological survey of neurotensin‐like immunoreactive neurons in the hypothalamus. Peptides Fayetteville 5, Suppl. 1: 109–120, 1984.
 131. Jacobwitz, D. Histochemical studies of the autonomic innervation of the gut. J. Pharmacol. Exp. Ther. 149: 356–364, 1965.
 132. Jansson, G., and B. Lisander. An adrenergic influence on gastric motility in chronically vagotomized cats. Acta Physiol. Scand. 76: 463–471, 1969.
 133. Jansson, G., and J. Martinson. Some quantitative considerations on vagally induced relaxation of the gastric smooth muscle in the cat. Acta Physiol. Scand. 63: 351–357, 1965.
 134. Jenner, L., W. E. Stumpf, and W. Kalivas. Neurotensin: topographical distribution in rat brain by immunohistochemistry. J. Comp. Neurol. 210: 211–224, 1982.
 135. Johansson, B., O. Jonsson, and B. Ljung. Supraspinal control of the intestino‐intestinal inhibitory reflex. Acta Physiol. Scand. 63: 442–449, 1965.
 136. Johansson, B., O. Jonsson, and B. Ljung. Tonic supraspinal mechanisms influencing the intestino‐intestinal inhibitory reflex. Acta Physiol. Scand. 72: 200–204, 1968.
 137. Johansson, O., T. Hökfelt, B. Pernow, S. L. Jeffcoate, N. White, H. W. M. Steinbusch, A. A. J. Verhofstad, P. C. Emson, and E. Spindel. Immunohistochemical support for three putative transmitters in one neuron: coexistence of 5‐hydroxytryptamine, substance P‐ and thyrotropin releasing hormone‐like immunoreactivity in medullary neurons projecting to the spinal cord. Neuroscience 6: 1857–1881, 1981.
 138. Jones, B. E., and L. Friedman. Atlas of catecholamine perikayra, varicosities and pathways in the brainstem of the cat. J. Comp. Neurol. 215: 382–396, 1983.
 139. Jule, Y., and H. Szvrsewski. Electrophysiology of neurones of the inferior mesenteric ganglion of the cat. J. Physiol. Lond. 344: 277–292, 1983.
 140. Kaada, B. Somato‐motor, autonomic and electrocortico‐graphic responses to electrical stimulation of rhinencephalic and other structures in primates, cat, and dog. Acta Physiol. Scand. Suppl. 83: 1–285, 1951.
 141. Kahn, D., G. M. Abrams, E. A. Zimmerman, R. Carraway, and S. E. Leeman. Neurotensin neurons in the rat hypothalamus, an immunocytochemical study. Endocrinology 107: 47–54, 1980.
 142. Kalia, M. Neuroanatomical organization of the respiratory centers. Federation Proc. 36: 2405–2411, 1977.
 143. Kalia, M., and K. Fuxe. Rat medulla oblongata. I. Cytoar‐chitectonic considerations. J. Comp. Neurol. 233: 285–307, 1985.
 144. Kalia, M., K. Fuxe, and M. Goldstein. Rat medulla oblongata. II. Dopaminergic, noradrenergic (A1 and A2) and adrenergic neurons, nerve fibers, and presumptive terminal processes. J. Comp. Neurol. 233: 308–332, 1985.
 145. Kalia, M., K. Fuxe, and M. Goldstein. Rat medulla oblongata. III. Adrenergic (C1 and C2) neurons, nerve fibers and presumptive terminal processes. J. Comp. Neurol. 233: 333–349, 1985.
 146. Kalia, M., K. Fuxe, M. Goldstein, A. Harfstrand, L. A. Agnati, and J. T. Coyle. Evidence for the existence of putative dopamine‐, adrenaline‐ and noradrenaline‐containing vagal tumor neurons in the brainstem of the rat. Neurosci. Lett. 50: 57–62, 1984.
 147. Kalia, M., K. Fuxe, T. Hökfelt, O. Johansson, R. Lang, D. Ganten, C. Cuello, and L. Terenius. Distribution of neuropeptide immunoreactive nerve terminals within the subnuclei of the nucleus of the tractus solitarius of the rat. J. Comp. Neurol. 222: 404–444, 1984.
 148. Kalia, M., and M. M. Mesulam. Brain stem projections of sensory and motor components of the vagus complex in the cat. I. The cervical vagus and nodose ganglion. J. Comp. Neurol. 193: 435–465, 1980.
 149. Kalia, M., and M. M. Mesulam. Brain stem projections of sensory and motor components of the vagus complex in the cat. II. Laryngeal, tracheobronchial, pulmonary, cardiac, and gastrointestinal branches. J. Comp. Neurol. 193: 467–508, 1980.
 150. Kapp, B. S., J. S. Schwaber, and P. A. Driscoll. Subcortical projections to the amygdaloid central nucleus in the rabbit. Soc. Neurosci. Abstr. 10: 831, 1984.
 151. Karim, M. A., E. Shaikh, J. Tan, and Z. Ismail. The organization of the gastric efferent projections in the brainstem of monkey: an HRP study. Brain Res. 293: 231–240, 1984.
 152. Katz, D. M., and H. J. Karten. Substance P‐like immuno‐reactivity (SPLI) and target organ representation within the nucleus solitarius (NS) and vagal motor nucleus (DMN X). Soc. Neurosci. Abstr. 5: 530, 1979.
 153. Kawatani, M. Electromyographic investigation on the human external sphincter muscle of anus. Jpn. J. Physiol. 4: 196–204, 1954.
 154. Kawatani, M., D. C. Kuo, and W. C. de Groat. Identification of neuropeptides in visceral afferent neurons in the thoracolumbar dorsal ganglia of the cat. Abstr. 5th Int. Washington Spring Symp., May 28–31, Washington, DC, 1985.
 155. Kawatani, M., I. Lowe, I. Nadelhaft, C. Morgan, and W. C. de Groat. Vasoactive intestinal polypeptide in visceral afferent pathways to the sacral spinal cord of the cat. Neurosci. Lett. 42: 311–316, 1983.
 156. Kawatani, M., J. Nagel, M. B. Houston, R. Eskay, I. P. Lowe, and W. C. de Groat. Identification of leucine‐enkephalin and other neuropeptides in pelvic and pudendal afferent pathways to the spinal cord of the cat. Soc. Neurosci. Abstr. 10: 589, 1984.
 157. Kawatani, M., M. Rutigliano, and W. C. de Groat. Selective facilitatory effects of vasoactive intestinal polypeptide on muscarinic mechanisms in parasympathetic ganglia of the cat. Brain Res. 336: 223–234, 1985.
 158. Keeler, J. R., and C. J. Helke. Spinal cord substance P mediates bicuculline‐induced activation of cardiovascular responses from the ventral medulla. J. Auton. Nerv. Syst. 13: 19–34, 1985.
 159. Kelts, K. A., and K. E. Bignall. Spinal and cortical inhibition of intestinal motility in the squirrel monkey. Exp. Neurol. 41: 387–394, 1973.
 160. Kelts, K. A., and K. E. Bignall. Sympathetic nerve activity during reflex spinal inhibition of intestinal motility. Am. J. Physiol. 227: 703–709, 1974.
 161. Kerr, F. W. Preserved vagal visceromotor function following destruction of the dorsal motor nucleus. J. Physiol. Lond. 202: 755–769, 1969.
 162. Kimura, H., P. L. Mcgeer, J. H. Peng, and E. G. Mcgeer. The central cholinergic system studied by choline acetyltrans‐ferase immunohistochemistry in the cat. J. Comp. Neurol. 200: 151–201, 1981.
 163. King, G. W. Topology of ascending brainstem projections to nucleus parabrachialis in the cat. J. Comp. Neurol. 191: 615–638, 1980.
 164. Koiekegami, H., A. Kimoto, and C. Kido. Studies on the amygdaloid nucleus and periamygdaloid cortex. Experiments on the influence of their stimulation upon motility of small intestine and blood pressure. Folia Psychiatr. Neurol. Jpn. 7: 87–108, 1953.
 165. Koiekegami, H., H. Kushiro, and A. Kimoto. Studies on the functions and fiber connections of the amygdaloid nucleus and periamygdaloid cortex. Experiments on gastrointestinal motility and body temperature in cat. Folia Psychiatr. Neurol. Jpn. 6: 76–93, 1952.
 166. Konishi, S., A. Tsundo, and M. Otsuka. Enkephalins presynaptically inhibit cholinergic transmission in sympathetic ganglia. Nature Lond. 282: 515–516, 1979.
 167. Kreulen, D. L., and J. H. Szurszewski. Electrophysiological and morphological basis for organization of neurons in prevertebral ganglia. In: Frontiers of Knowledge in the Diarrheal Diseases: International Colloquium in Gastroenterology, edited by H. D. Janowitz and D. B. Sachor. Upper Montclair, NJ: Projects in Health, 1979, p. 211–226.
 168. Krier, J. Discharge patterns of pudendal efferent fibers innervating the external anal sphincter of the cat. J. Physiol. Lond. 368: 471–480, 1985.
 169. Krier, J., P. F. Schmalz, and J. H. Szurszewski. Central innervation of neurons in the inferior mesenteric ganglion and of the large intestine of the cat. J. Physiol. Lond. 332: 125–138, 1982.
 170. Krier, J., K. B. Thor, and W. C. de Groat. Effects of clonidine on the lumbar sympathetic pathways to the large intestine and urinary bladder of the cat. Eur. J. Pharmacol. 59: 47–53, 1979.
 171. Krukoff, T. L., J. Ciriello, and F. R. Calaresu. Segmental distribution of peptide‐like immunoreactivity in cell bodies of the thoracolumbar sympathetic nuclei of the cat. J. Comp. Neurol. 240: 90–102, 1985.
 172. Krukoff, T. L., J. Ciriello, and F. R. Calaresu. Segmental distribution of peptide‐ and 5HT‐like immunoreactivity in nerve terminals and fibers of the thoracolumbar sympathetic nuclei of the cat. J. Comp. Neurol. 240: 103–116, 1985.
 173. Kubek, M. J., M. A. Rea, Z. I. Modes, and M. H. Aprison. Quantitation and characterization of thyrotropin‐releasing hormone in vagal nuclei and other regions of the medulla oblongata of the rat. J. Neurochem. 40: 1307–1313, 1983.
 174. Kuo, D. C., T. Hisamitsu, and W. C. de Groat. A sympathetic projection from sacral paravertebral ganglia to the pelvic nerve and to postganglionic nerves on the surface of the urinary bladder and large intestine of the cat. J. Comp. Neurol. 226: 76–86, 1984.
 175. Kuo, D. C., D. S. Yamasaki, and G. M. Krauthamer. Segmental organization of sympathetic preganglionic neurons of the sphlanchnic nerve as revealed by retrograde transport of horseradish peroxidase. Neurosci. Lett. 17: 11–16, 1980.
 176. Kuru, M., and S. Sugihara. Contributions to the knowledge of bulbar autonomic centers. II. Relationship of the vagal nuclei to the gastrojejunal motility. Jpn. J. Physiol. 5: 21–26, 1955.
 177. Kuzuhara, S., I. Kanazawa, and T. Nakanishi. Topographical localization of the Onuf's nucleus innervating the rectal and vesical striated sphincter muscles: a retrograde fluorescent double labeling in cat and dog. Neurosci. Lett. 16: 125–130, 1980.
 178. LaHann, T. R., and A. Horita. Thyrotropin releasing hormone: centrally mediated effects on gastrointestinal motor activity. J. Pharmacol. Exp. Ther. 222: 66–70, 1982.
 179. Langworthy, O. R., and S. J. Rosenberg. Control by the central nervous system of rectal smooth muscle. J. Neurophysiol. 2: 356–360, 1939.
 180. Larson, G. M., B. H. J. Ahlman, M. Sano, C. T. Bombeck, and L. M. Nyhus. Effects of celacectomy and stellatectomy on gastric mucosal innervation and acid secretion in the dog. Chir. Forum Exp. Klin. Forsch. 93–96, 1979.
 181. Laughton, N. The effects on the stomach of stimulation of the dorsal vagus nuclei. Am. J. Physiol. 89: 18–23, 1929.
 182. Lawn, A. M. The localization, in the nucleus ambiguus of the rabbit, of the cells of origin of motor nerve fibers in the glossopharyngeal nerve and various branches of the vagus nerve by means of retrograde degeneration. J. Comp. Neurol. 127: 293–306, 1966.
 183. Lawrence, D., and O. J. Pittman. Interactions between descending paraventricular neurons and vagal motor neurons. Brain Res. 32: 158–160, 1984.
 184. Leslie, R. A., D. G. Gwyn, and D. A. Hopkins. The central distribution of the cervical vagus nerve and gastric afferent and efferent projections in the rat. Brain Res. Bull. 8: 37–43, 1982.
 185. Lewis, P. R., J. A. Scott, and V. Navaratnum. Localization in the dorsal motor nucleus of the vagus in the rat. J. Anat. 107: 197–208, 1970.
 186. Liedberg, G., K. C. Nielsen, C. Owman, and N. O. Sjoberg. Adrenergic contribution to the abdominal vagus nerves in the cat. Scand. J. Gastroenterol. 8: 177–180, 1973.
 187. Livingston, R. B. Visceral functions of the nervous system. Annu. Rev. Physiol. 12: 445–468, 1950.
 188. Ljungdahl, A., T. Hökfelt, G. Nilsson, and M. Goldstein. Distribution of substance P‐like immunoreactivity in the central nervous system of the rat. I. Cell bodies and nerve terminals. Neuroscience 3: 861–943, 1978.
 189. Lobera, B., R. Pasaro, S. Gonsalez‐Baron, and J. M. Delgado‐Garcia. A morphological study of ambiguus nucleus motoneurons innervating the laryngeal muscles in the rat and cat. Neurosci. Lett. 23: 125–130, 1982.
 190. Loewy, A. D. Raphe pallidus and raphe obscurus projections to the intermediolateral cell column in the rat. Brain Res. 222: 129–133, 1981.
 191. Loewy, A. D., and H. Burton. Nuclei of the solitary tract: efferent projections to the lower brainstem and spinal cord of the cat. J. Comp. Neurol. 181: 421–450, 1978.
 192. Loewy, A. D., and S. McKellar. Serotonergic projections from the ventral medulla to the intermediolateral cell column in the rat. Brain Res. 211: 146–152, 1981.
 193. Loewy, A. D., C. B. Saper, and R. P. Baker. Descending projections from the pontine micturition center. Brain Res. 172: 533–538, 1979.
 194. Loewy, A. D., and W. B. Sawyer. Substance P antagonist inhibits vasomotor responses elicited from ventral medulla in rat. Brain Res. 245: 379–383, 1982.
 195. Longhurst, J. C., H. L. Spilker, and G. A. Ordway. Cardiovascular reflexes elicited by passive gastric distension in anesthetized cats. Am. J. Physiol. 240 (Heart Circ. Physiol. 9): H539–H545, 1981.
 196. Lovgreen, N. A., J. Poulsen, and T. W. Schwartz. Impaired pancreatic innervation after selective gastric vagotomy. Reduction of the pancreatic polypeptide response to food and insulin hypoglycemia. Scand. J. Gastroenterol. 16: 811–816, 1981.
 197. Lowe, I. P., M. Kawatani, and W. C. de Groat. The identification of leucine‐enkephalin and somatostatin in the sacral parasympathetic preganglionic outflow to the colon of the cat. Soc. Neurosci. Abstr. 9: 294, 1983.
 198. Luiten, P. G. M., A. J. ter Horst, H. Korst, and A. B. Steffens. The course of paraventricular hypothalamic efferents to autonomic structures in medulla and spinal cord. Brain Res. 329: 374–378, 1985.
 199. Lundberg, J. M., T. Hökfelt, G. Nilsson, L. Teremius, J. Rehfeld, R. Elde, and S. Said. Peptide neurons in the vagus, splanchnic, and sciatic nerves. Acta Physiol. Scand. 104: 499–501, 1978.
 200. Lundberg, J. M., T. Hökfelt, M. Schultzberg, K. Uvaas‐Wallenstein, C. Köhler, and S. Said. Occurrence of vasoactive intestinal polypeptide (VIP)‐like immunoreactivity in certain cholinergic neurons of the cat: evidence from acetylcholinesterase staining. Neuroscience 4: 1539–1559, 1979.
 201. Mackel, R. Segmental and descending control of the external urethral and anal sphincters in the cat. J. Physiol. Lond. 294: 105–122, 1979.
 202. Maley, B., and R. Elde. Localization of substance P‐like immunoreactivity in cell bodies of the feline dorsal vagal nucleus. Neurosci. Lett. 27: 187–197, 1981.
 203. Maley, B., and R. Elde. The ultrastructural localization of serotonin immunoreactivity within the nucleus of the solitary tract of the cat. J. Neurosci. 2: 1499–1506, 1982.
 204. Maley, B., and R. Elde. Immunohistochemical localization of putative neurotransmitters within the feline nucleus tractus solitarii. Neuroscience 7: 2469–2490, 1982.
 205. Maley, B., T. Mullett, and R. Elde. The nucleus tractus solitarii of the cat: a comparison of Golgi impregnated neurons with methione‐enkephalin‐ and substance P‐immunoreactive neurons. J. Comp. Neurol. 217: 405–417, 1983.
 206. Martinson, J. Vagal relaxation of the stomach. Experimental reinvestigation for the concept of the transmission mechanism. Acta Physiol. Scand. 64: 453–462, 1965.
 207. Martinson, J. The effect of graded vagal stimulation on gastric motility, secretion, and blood flow in the cat. Acta Physiol. Scand. 65: 300–309, 1965.
 208. McAllen, R. M. Action and specificity of ventral medullary vasopressor neurons in the cat. Neuroscience 18: 51–59, 1986.
 209. McLean, J. H., and D. A. Hopkins. A light and electron microscopic study of the dorsal motor nucleus of the vagus nerve in the cat. J. Comp. Neurol. 195: 157–175, 1981.
 210. McLean, J. H., and D. A. Hopkins. Ultrastructural identification of labeled neurons in the dorsal motor nucleus of the vagus nerve following injections of horseradish peroxidase into the vagus nerve and brainstem. J. Comp. Neurol. 206: 243–252, 1982.
 211. McLean, J. H., and D. A. Hopkins. Ultrastructure of the dorsal motor nucleus of the vagus nerve in monkey with a comparison of synaptology in monkey and cat. J. Comp. Neurol. 231: 162–174, 1985.
 212. Meckler, R. L., and L. C. Weaver. Splenic, renal, and cardiac nerves have uneven dependence on tonic supraspinal inputs. Brain Res. 338: 123–135, 1985.
 213. Melander, T., T. Hökfelt, and A. Rokaeus. Distribution of galanin‐like immunoreactivity in the rat central nervous system. J. Comp. Neurol. 248: 475–517, 1986.
 214. Merill, E. G. Preliminary studies on nucleus retroambigualis‐nucleus of the solitary tract interactions in cat (Abstract). J. Physiol. Lond. 244: 54P–55P, 1974.
 215. Mettler, F. A., J. Spindler, C. C. Mettler, and J. C. Combs. Disturbances in gastrointestinal function after localized ablations of cerebral cortex. Arch. Surg. 32: 618–623, 1936.
 216. Milne, R. J., A. M. Booth, and W. C. de Groat. Firing patterns of preganglionic neurons and interneurons in the sacral autonomic nucleus of the cat. Soc. Neurosci. Abstr. 4: 22, 1978.
 217. Miyata, Y., K. Obata, Y. Tanaka, and M. Otsuka. Determination of gamma‐aminobutyric acid in isolated cells of the brainstem of the cat. J. Physiol. Soc. Jpn. 32: 377–388, 1970.
 218. Mizukawa, K., P. L. McGeer, H. Tago, J. H. Peng, E. G. McGeer, and H. Kimura. The cholinergic system of the human hindbrain studied by choline acetyltransferase immunohistochemistry and acetylcholinesterase histochemistry. Brain Res. 379: 39–55, 1986.
 219. Mohuiddin, A. Vagal preganglionic fibers to the alimentary canal. J. Comp. Neurol. 99: 289–317, 1953.
 220. Morgan, C., W. C. de Groat, and I. Nadelhaft. The spinal distribution of sympathetic preganglionic and visceral primary afferent neurons that send axons into the hypogastric nerves of the cat. J. Comp. Neurol. 243: 23–40, 1986.
 221. Morgan, C., I. Nadelhaft, and W. C. de Groat. The distribution within Lissauer's tract and the spinal gray matter of primary afferents from the pelvic nerve and its relationship to the sacral parasympathetic nucleus. J. Comp. Neurol. 201: 415–440, 1981.
 222. Muryobayashi, T., J. Mori, M. Jujiwara, and K. Shimamoto. Fluorescence histochemical demonstration of adrenergic nerve fibers in the vagus nerve of cats and dogs. Jpn. J. Pharmacol. 18: 285–293, 1968.
 223. Nadelhaft, I., and A. M. Booth. The location and morphology of preganglionic neurons and the distribution of visceral afferents from the rat pelvic nerve: a horseradish peroxidase study. J. Comp. Neurol. 226: 238–245, 1984.
 224. Nadelhaft, I., J. Roppolo, C. Morgan, and W. C. de Groat. Parasympathetic preganglionic neurons and visceral primary afferents in monkey sacral spinal cord revealed following application of horseradish peroxidase to pelvic nerve. J. Comp. Neurol. 216: 36–52, 1983.
 225. Nagai, T., T. Maeda, H. Imai, P. L. Mcgeer, and E. G. Mcgeer. Distribution of GABA‐T‐intensive neurons in the rat hindbrain. J. Comp. Neurol. 231: 260–269, 1985.
 226. Nakagawa, S. Onuf's nucleus of the sacral cord in a South American monkey (Saimiri): its location and bilateral cortical input from area 4. Brain Res. 191: 337–344, 1980.
 227. Nakahara, S., H. Itoh, R. Mibu, S. Ikeda, K. Konomi, and S. Masuda. Anorectal function after high sacrotomy with bilateral resection of S2–S5 nerves. Report of a case. Dis. Colon Rectum 29: 271–274, 1986.
 228. Nathan, P. W., and M. C. Smith. Spinal pathways for defecation and sensation from the lower bowel. J. Neurol. Neurosurg. 16: 245–256, 1953.
 229. Navaratnam, V., and P. R. Lewis. Effects of vagotomy on the distribution of cholinesterases in the cat medulla oblongata. Brain Res. 100: 599–613, 1975.
 230. Neill, M. E., and M. Swash. Increased motor unit fibre density in the external anal sphincter muscle in anorectal incontinence: a single fibre EMG study. J. Neurol. Neurosurg. Psychiatry 43: 343–347, 1980.
 231. Niel, J. P., J. Gonella, and C. Roman. Localisation par la technique de marquage à la peroxydase des corps cellulaires des neurones ortho et parasympathetiques innervant le sphincter oesophagien inferieur du chat. J. Physiol. Paris 76: 591–599, 1980.
 232. Noback, C. R., and R. J. Demarest. The Human Nervous System: Basic Principles of Neurobiology (3rd ed.). New York: McGraw‐Hill, 1981, p. 20.
 233. Norberg, R. A. Adrenergic innervation of the intestinal wall studied by fluorescence microscopy. Int. J. Neuropharmacol. 3: 379–382, 1964.
 234. Norberg, R. A., and R. Sjogvist. New possibilities for adrenergic modulation of synaptic transmission. Pharmacol. Rev. 18: 743–751, 1966.
 235. Norman, W. P., F. D. Pagani, H. S. Ormsbee III, D. K. Kasbekar, and R. A. Gillis. Use of horseradish peroxidase to identify hindbrain sites which influence gastric motility in the cat. Gastroenterology 88: 701–705, 1985.
 236. Norman, W. P., S. Pineo, M. Visner, S. Benjamin, and R. A. Gillis. Use of horseradish peroxidase to localize motoneurons innervating the feline upper esophageal sphincter (cri‐copharyngeal muscle), cervical and thoracic esophagus, and lower esophageal sphincter. Soc. Neurosci. Abstr. 12: 1058, 1986.
 237. Nosaka, S. Electrophysiologic identification of preganglionic neurons in rat dorsal motor nucleus and analysis of vagus afferent projections. Exp. Neurol. 91: 366–381, 1986.
 238. Ohsumi, K., K. Tsunekawa, and M. Fujiwara. Fluorescence histochemical studies on adrenergic nerve fibers in the vagus nerve of rat. In: Amine Fluorescence Histochemistry, edited by M. Fujiwara and C. Tanaka. Tokyo: Igaku Shoin, 1974, p. 93.
 239. Oldfield, B. J., and E. M. McLachlan. An analysis of the sympathetic preganglionic neurons projecting from the upper thoracic spinal roots of the cat. J. Comp. Neurol. 196: 329–345, 1981.
 240. Ormsbee, H. S., III, F. C. Barone, D. M. Lombardi, and L. C. Mccartney. Effects of hindbrain L‐glutamic acid application on gastrointestinal motor function in the cat. In: Gastrointestinal Motility. Proc. 9th Int. Symp. Gastroint. Motil., edited by C. Roman. Lancaster, UK: MTP, 1984, p. 583–591.
 241. Ormsbee, H. S., III, W. P. Norman, A. Woodward, F. Hardy, F. D. Pagani, D. K. Kasbekar, and R. A. Gillis. Selective motor and secretory pathways from the hindbrain to the stomach (Abstract). Dig. Dis. Sci. 27: 650, 1982.
 242. Osumi, Y., Y. Nagasaka, L. H. Wang Fu, and H. Fuhiwana. Inhibition of gastric acid secretion and mucosal blood flow induced by intraventricularly applied neurotensin in rats. Life Sci. 23: 2275–2280, 1978.
 243. Pagani, F. D. An Anatomical and Physiological Study of the Medullary Brainstem Control of Gastric Motility and Secretion in the Cat. Washington, DC: Georgetown Univ., 1986. PhD thesis.
 244. Pagani, F. D., J. A. DiMicco, B. L. Hamilton, J. Dias Souza, B. Schmidt, and R. A. Gillis. Stress‐induced changes in parasympathetic nervous system function are mimicked by blocking CNS GABA in the cat. Neuropharmacology 26: 155–160, 1987.
 245. Pagani, F. D., W. P. Norman, D. K. Kasbekar, and R. A. Gillis. Effects of stimulation of nucleus ambiguus complex on gastroduodenal function. Am. J. Physiol. 246 (Gastrointest. Liver Physiol. 9): G253–G262, 1984.
 246. Pagani, F. D., W. P. Norman, D. K. Kasbekar, and R. A. Gillis. Localization of sites within dorsal motor nucleus of vagus that affect gastric motility. Am. J. Physiol. 249 (Gastrointest. Liver Physiol. 12): G73–G84, 1985.
 247. Palkovits, M., and D. M. Jacobowitz. Topographic atlas of catecholamine and acetylcholinesterase‐containing neurons in the rat brain. II. Hindbrain (mesencephalon, rhombencephalon). J. Comp. Neurol. 157: 29–42, 1974.
 248. Palkovits, M., and L. Zaborszky. Neuroanatomy of central cardiovascular control. Nucleus tractus solitarii: afferent and efferent neuronal connections in relation to the baroreceptor reflex arc. In: Progress in Brain Research. Hypertension and Brain Mechanisms, edited by W. De Jong, A. P. Provost, and A. P. Shapiro. Amsterdam: Elsevier, 1977, vol. 47, p. 9–34.
 249. Penfield, W., and T. B. Rasmussen. The Cerebral Cortex of Man. New York: Macmillan, 1950.
 250. Petras, J. M., and J. F. Cummings. Autonomic neurons in the spinal cord of the rhesus monkey: a correlation of the findings of cytoarchitectomics and sympathectomy with fiber degeneration following dorsal rhizotomy. J. Comp. Neurol. 146: 189–218, 1972.
 251. Petras, J. M., and A. I. Faden. The origin of sympathetic preganglionic neurons in the dog. Brain Res. 144: 353–357, 1978.
 252. Pickel, V. M., M. Joh, J. Chan, and A. Beaudet. Serotonergic terminals: ultrastructure and synaptic interaction with catecholamine‐containing neurons in the medial nuclei of the solitary tracts. J. Comp. Neurol. 225: 291–301, 1984.
 253. Pollock, L. J., and I. Finkelman. The digestive apparatus in injuries to the spinal cord and cauda equina. Surg. Clin. N. Am. 34: 259–268, 1954.
 254. Rattan, S. The non‐adrenergic non‐cholinergic innervation of the esophagus and the lower esophageal sphincter. Arch. Int. Pharmacodyn. Ther. 280, Suppl.: 62–83, 1986.
 255. Reynolds, B. J., and S. G. Eliasson. Colonic pseudo‐obstruction in patients with stroke. Ann. Neurol. 1: 305, 1977.
 256. Ricardo, J. A., and E. Tongju Koh. Anatomical evidence of direct projections from the nucleus of the solitary tract to the hypothalamus, amygdala, and other forebrain structures in the rat. Brain Res. 153: 1–26, 1978.
 257. Ritchie, T. C., K. N. Westlund, R. M. Bowker, J. D. Coulter, and R. B. Leonard. The relationship of the medullary catecholamine containing neurones to the vagal motor nuclei. Neuroscience 7: 1471–1482, 1982.
 258. Robertson, H. A., and R. A. Leslie. Noradrenergic alpha2 binding sites in vagal dorsal motor nucleus and nucleus tractus solitarius: autoradiographic localization. Can. J. Physiol. Pharmacol. 63: 1190–1194, 1985.
 259. Rogers, R. C., and G. E. Hermann. Vagal afferent stimulation‐evoked gastric secretion suppressed by paraventricular nucleus lesion. J. Auton. Nerv. Syst. 13: 191–199, 1985.
 260. Rogers, R. C., and G. E. Hermann. Gastric‐vagal solitary neurons activated by paraventricular nucleus microstimulation. J. Auton. Nerv. Syst. 14: 351–362, 1985.
 261. Rogers, R. C., H. Kita, L. L. Butcher, and D. Novin. Afferent projections to the dorsal motor nucleus of the vagus. Brain Res. Bull. 5: 365–373, 1980.
 262. Rogers, R. C., and D. O. Nelson. Neurons of the vagal division of the solitary nucleus activated by the paraventricular nucleus of the hypothalamus. J. Auton. Nerv. Syst. 10: 193–197, 1984.
 263. Roman, C., and J. Gonella. Extrinsic control of digestivetract motility. In: Physiology of the Gastrointestinal Tract (1st ed.), edited by L. R. Johnson. New York: Raven, 1981, p. 289–333.
 264. Roppolo, J. R., A. M. Booth, and W. C. de Groat. The effects of naloxone on the neural control of the urinary bladder of the cat. Brain Res. 264: 355–358, 1983.
 265. Roppolo, J. R., I. Nadelhaft, and W. C. de Groat. The organization of pudendal motoneurons and primary afferent projections in the spinal cord of the rhesus monkey revealed by horseradish peroxidase. J. Comp. Neurol. 234: 475–488, 1985.
 266. Ross, C. A., D. A. Ruggiero, T. H. Joh, D. H. Park, and D. J. Reis. Rostral ventrolateral medulla: selective projections to the thoracic autonomic cell column from the region containing C1 adrenaline neurons. J. Comp. Neurol. 228: 168–185, 1984.
 267. Ross, C. A., D. A. Ruggiero, D. H. Park, T. H. Joh, A. F. Sved, J. Fernandez‐Pardal, J. M. Saavedra, and D. J. Reis. Tonic vasomotor control by the rostral ventrolateral medulla: effect of electrical or chemical stimulation of C1 adrenaline containing neurons on arterial pressure, heart rate, and plasma catecholamines and vasopressin. J. Neurosci. 4: 474–494, 1984.
 268. Ross, C. A., D. A. Ruggiero, and D. J. Reis. Projections from the nucleus tractus solitarii to the rostral ventrolateral medulla. J. Comp. Neurol. 242: 511–534, 1985.
 269. Rostad, H. Colonic motility in the cat. II. Extrinsic nervous control. Acta Physiol. Scand. 89: 91–103, 1973.
 270. Rostad, H. Colonic motility in the cat. III. Influence of hypothalamic and mesencephalic stimulation. Acta Physiol. Scand. 89: 104–115, 1973.
 271. Rostad, H. Colonic motility in the cat. IV. Peripheral pathways mediating the effects induced by hypothalamic and mesencephalic stimulation. Acta Physiol. Scand. 89: 154–168, 1973.
 272. Rostad, H. Colonic motility in the cat. V. Influence of telencephalic stimulation and the peripheral pathways mediating the effects. Acta Physiol. Scand. 89: 169–181, 1973.
 273. Rubin, E., and D. Purves. Segmental organization of sympathetic preganglionic neurons in the mammalian spinal cord. J. Comp. Neurol. 192: 163–174, 1980.
 274. Ryall, R. W., and W. C. De Groat. The microelectrophoretic administration of noradrenaline, 5‐hydroxytryptamine, acetylcholine and glycine to sacral parasympathetic preganglionic neurons. Brain Res. 37: 345–347, 1972.
 275. Sakaguchi, T., and M. Ohtake. Inhibition of gastric motility induced by activation of the hypothalamic paraventricular nucleus. Brain Res. 335: 365–367, 1985.
 276. Sample, R. H. B., and J. A. DiMicco. Kainic acid localized to the third cerebral ventricle blocks the cardiovascular effects of intracerebroventricular administration of bicuculline methiodide in anesthetized cats (Abstract). Pharmacologist 26: 210, 1984.
 277. Sample, R. H. B., and J. A. Dimicco. Partial localization of the forebrain site(s) mediating the cardiovascular effects of bicuculline methiodide and muscimol (Abstract). Federation Proc. 43: 401, 1984.
 278. Sanides, F. The architecture of the cortical taste nerve areas in squirrel monkey (Saimiri sciureus) and their relationship to insular, sensorimotor and prefrontal regions. Brain Res. 8: 97–124, 1968.
 279. Saper, C. B. Convergence of autonomic and limbic connections in the insular cortex of the rat. J. Comp. Neurol. 210: 163–173, 1982.
 280. Saper, C. B., and A. D. Loewy. Efferent connections of the parabrachial nucleus in the rat. Brain Res. 197: 291–317, 1980.
 281. Saper, C. B., A. D. Loewy, L. W. Swanson, and W. M. Cowan. Direct hypothalamo‐autonomic connections. Brain Res. 117: 305–312, 1976.
 282. Saskashi, N., and N. Miruno. Central distribution of efferent and afferent components of the cervical branches of the vagus nerve. Anat. Embryol. 166: 1–18, 1983.
 283. Satoh, K., M. Shimisu, M. Tohyama, and T. Maeda. Localization of the micturition reflex center at dorsolateral pontine tegmentum of the rat. Neurosci. Lett. 8: 27–33, 1978.
 284. Satoh, K., M. Tohyama, T. Sakumoto, K. Yamamoto, and N. Shimizu. Descending projection of the nucleus tegmentalis laterodorsalis to the spinal cord, studied by the horseradish peroxidase method following 6‐hydroxydopamine administration. Neurosci. Lett. 8: 9–15, 1978.
 285. Satomi, H., T. Yamamoto, H. Ise, and H. Takatama. Origins of the parasympathetic preganglionic fibers to the cat intestine as demonstrated by the horseradish peroxidase method. Brain Res. 151: 571–578, 1978.
 286. Sawchenko, P. E. Catecholamines and neuropeptides in the vagal motor nuclei: evidence for topographically organized subpopulations of chemically specified preganglionic neurons. Soc. Neurosci. Abstr. 9: 548, 1983.
 287. Sawchenko, P. E., and L. W. Swanson. Immunohistochemical identification of paraventricular hypothalamic neurons which project to the medulla or spinal cord in the rat. Soc. Neurosci. Abstr. 6: 520, 1980.
 288. Sawchenko, P. C., and L. W. Swanson. Immunohistochemical identification of neurons in the paraventricular nucleus of the hypothalamus that project to the medulla or to the spinal cord in the rat. J. Comp. Neurol. 205: 260–272, 1982.
 289. Scharoun, S., F. Barone, S. Jones, and M. Wayner. Vagal and gastric connections to the central nervous system determined by the transport of horseradish peroxidase. Brain Res. Bull. 13: 573–583, 1984.
 290. Schmidt, B., and J. A. Dimicco. Blockade of GABA receptors in periventricular forebrain of anesthetized cats: effects on heart rate, arterial pressure and hindlimb vascular resistance. Brain Res. 301: 111–119, 1984.
 291. Schramm, L. P. Spinal factors in sympathetic regulation. In: Central and Peripheral Mechanisms of Cardiovascular Regulation, edited by A. Magro, W. Oswald, D. Reis, and P. Vanhoutte. New York: Plenum, 1986, p. 303–352.
 292. Schramm, L. P., R. H. Livingstone, and M. M. Knuepfer. Spinal transection elevates renal nerve sympathetic activity in anesthetized rats. Soc. Neurosci. Abstr. 11: 35, 1985.
 293. Schrøder, H. D. Localization of cholecystokinin‐like immunoreactivity in the rat spinal cord, with particular reference to the autonomic innervation of the pelvic organs. J. Comp. Neurol. 217: 176–186, 1983.
 294. Schrøder, H. D. Somatostatin in the caudal spinal cord. An immunohistochemical study of the spinal centers involved in the innervation of pelvic organs. J. Comp. Neurol. 223: 400–414, 1984.
 295. Schrøder, H. D., and G. Skagerberg. Catecholine innervation of the caudal spinal cord in the rat. J. Comp. Neurol. 242: 358–368, 1985.
 296. Schwaber, J. S., B. S. Kapp, and G. Higgins. The origin and extent of direct amygdala projections to the region of the dorsal motor nucleus of the vagus and the nucleus of the solitary tract. Neurosci. Lett. 20: 15–20, 1980.
 297. Semba, T., N. Kimura, and K. Fujii. Bulbar influence on gastric motility. Jpn. J. Physiol. 19: 521–523, 1969.
 298. Semba, T., and T. Mizonishi. Atropine‐resistant excitation of motility of the dog stomach and colon induced by stimulation of the extrinsic nerves and their centers. Jpn. J. Physiol. 28: 239–248, 1978.
 299. Semba, T., H. Noda, and K. Fujii. On splanchnic motor responses of stomach movements produced by stimulation of the medulla oblongata and spinal cord. Jpn. J. Physiol. 13: 466–478, 1963.
 300. Shapiro, R. E., and R. R. Miselis. The central organization of the vagus nerve innervating the stomach of the rat. J. Comp. Neurol. 238: 473–488, 1985.
 301. Shealy, C. N., and T. L. Peele. Studies of amygdaloid nucleus of cat. J. Neurophysiol. 20: 125–139, 1957.
 302. Sheehan, D. The effect of cortical stimulation on gastric movements in the monkey. J. Physiol. Land. 83: 177–184, 1935.
 303. Shipley, M. T. Insular cortex projection to the nucleus of the solitary tract and brainstem visceromotor regions in the mouse. Brain Res. Bull. 8: 138–148, 1982.
 304. Shiraishi, T. Effects of lateral hypothalamic stimulation on medulla oblongata and gastric vagal neural responses. Brain Res. Bull. 5: 245–250, 1979.
 305. Siemens, E. R., M. A. Rea, D. L. Felten, and M. H. Aprison. Distribution and uptake of glycine, glutamate and gamma‐aminobutyric acid in the vagal nuclei and eight other regions of the rat medulla oblongata. Neurochem. Res. 7: 455–467, 1982.
 306. Simon, J. R., S. K. DiMicco, J. A. DiMicco, and M. H. Aprison. Choline acetyltransferase and glutamate uptake in the nucleus tractus solitarius and dorsal motor nucleus of the vagus: effect of nodose ganglionectomy. Brain Res. 344: 405–408, 1985.
 307. Skok, V. I. Physiology of Autonomic Ganglia. Tokyo: Igaku Shoin, 1973, p. 80–82.
 308. Smith, O. A. Personality and cardiovascular disease: contribution from non‐human primates. In: Neural and Psychological Mechanisms in Cardiovascular Disease, edited by A. Zanchetti. Milan, Italy: Casa Editrice “il Ponte,” 1972, p. 297–303.
 309. Smolen, A. J., and R. C. Truex. The dorsal motor nucleus of the vagus nerve of the cat: localization of preganglionic neurons by quantitative histological methods. Anat. Rec. 189: 555–566, 1977.
 310. Sofroniew, M. V. Projections from vasopressin, oxytocin, and neurophysin neurons to neural targets in the rat and human. J. Histochem. Cytochem. 28: 475–478, 1980.
 311. Sofroniew, M. V., and V. Schrell. Evidence for a direct projection from oxytocin and vasopressin neurons in the hypothalamic paraventricular nucleus to the medulla oblongata: immunohistochemical visualization of both the horseradish peroxidase transported and the peptide produced by the same neurons. Neurosci. Lett. 22: 211–217, 1981.
 312. Spencer, S. E., and W. T. Talman. Control of arterial pressure and gastric motility by the nucleus tractus solitarius in rat. Soc. Neurosci. Abstr. 10: 833, 1984.
 313. Spiegel, E. A., K. Weston, and M. J. Oppenheimer. Post‐motor foci influencing the gastrointestinal tract and their descending pathways. J. Neuropathol. Exp. Neurol. 2: 45–53, 1943.
 314. Stadaas, J. O. Intragastric pressure/volume relationship before and after proximal gastric vagotomy. Scand. J. Gastroenterol. 10: 129–134, 1975.
 315. Steinbusch, H. W. M. Distribution of serotonin‐immunoreactivity in the central nervous system of the rat: cell bodies and terminals. Neuroscience 6: 557–618, 1981.
 316. Stephenson, R. B., O. A. Smith, and A. M. Scher. Baroreceptor regulation of heart rate in baboons during different behavioral states. Am. J. Physiol. 241 (Regulatory Integrative Comp. Physiol. 10): R277–R285, 1981.
 317. Strom, G., and B. Uvnas. Motor responses of gastrointestinal tract and bladder to topical stimulation of frontal lobe, basal ganglia, and hypothalamus in cat. Acta Physiol. Scand. 21: 90–104, 1950.
 318. Stuesse, S. L., and S. E. Fish. Projections to the cardioinhibitory region of the nucleus ambiguus of rat. J. Comp. Neurol. 229: 271–278, 1984.
 319. Sumal, K. K., W. W. Blessing, T. H. Joh, J. Reis, and V. M. Pickel. Synaptic interaction of vagal afferents and catecholaminergic neurons in the rat nucleus tractus solitarius. Brain Res. 277: 31–40, 1983.
 320. Swanson, L. W. Immunohistochemical evidence for a neurophysin‐containing autonomic pathway arising in the paraventricular nucleus of the hypothalamus. Brain Res. 128: 346–353, 1977.
 321. Swanson, L. W. A direct projection from Ammon's horn to prefrontal cortex in the rat. Brain Res. 217: 150–154, 1981.
 322. Swanson, L. W., and B. K. Hartman. Biochemical specificity in central pathways related to peripheral and intracerebral homeostatic functions. Neurosci. Lett. 16: 55–60, 1980.
 323. Swanson, L. W., and H. G. J. M. Kuypers. The paraventricular nucleus of the hypothalamus: cytoarchitectonic subdivisions and the organization of projections to the pituitary, dorsal vagal complex and spinal cord as demonstrated by retrograde fluorescence double‐blocking methods. J. Comp. Neurol. 194: 555–570, 1980.
 324. Swanson, L. W., and P. E. Sawchenko. Hypothalamic integration: organization of the paraventricular and supraoptic nuclei. Annu. Rev. Neurosci. 6: 269–324, 1983.
 325. Swanson, L. W., P. E. Sawchenko, A. Berod, B. K. Hartman, K. B. Helle, and D. E. Vanorden. An immunohistochemical study of the organization of catecholaminergic cells and terminal fields in the paraventricular and supraoptic nuclei of the hypothalamus. J. Comp. Neurol. 196: 271–285, 1981.
 326. Szurszewski, J. H., and J. Krier. Sympathetic regulation of gastrointestinal motility. In: Peripheral Neuropathy, edited by P. J. Dyck, P. K. Thomas, E. Lambert, and R. Bunge. Philadelphia, PA: Saunders, 1984, vol. 1, p. 265–284.
 327. Taber, E. Brainstem nuclei of the cat. J. Comp. Neurol. 116: 27–69, 1961.
 328. Tache, Y., W. Vale, and M. Brown. Thyrotropin releasing hormone—CNS action to stimulate gastric acid secretion. Nature Load. 287: 149–151, 1980.
 329. Takaki, M., T. Neya, and S. Nakayama. Role and localization of a region in the pons which has a descending inhibitory influence on sympathetically mediated inhibition of the recto‐rectal reflex of guinea pigs. Pfluegers Arch. 398: 120–125, 1983.
 330. Takayama, K., N. Ishikawa, and M. Muira. Sites of origin and termination of gastric preganglionic neurons: an HRP study in the rat. J. Auton. Nerv. Syst. 6: 211–223, 1982.
 331. Takeuchi, Y., S. Matsushima, R. Matsushima, and D. A. Hopkins. Direct amygdoridal projections to the dorsal motor nucleus of the vagus nerve: a light and electron microscopic study in the rat. Brain Res. 280: 143–147, 1983.
 332. Talman, W. T., H. Perrone, and D. J. Reis. Evidence for L‐glutamate as the neurotransmitter of baroreceptor afferent nerve fibers. Science Wash. DC 209: 813–814, 1980.
 333. Tatemoto, K., A. Rokaus, H. Jornvall, T. J. Mcdonald, and V. Mutt. Galanin—a novel biologically active peptide from porcine intestine. FEBS Lett. 164: 124–128, 1983.
 334. Ter Horst, G. J., P. G. M. Luten, and F. Kuipers. Descending pathways from hypothalamus to dorsal motor vagus and ambiguus nuclei in the rat. J. Auton. Nerv. Syst. 11: 59–75, 1984.
 335. Terreberry, R. R., and E. J. Neafsey. Rat medial frontal cortex: a visceral motor region with a direct projection to the solitary nucleus. Brain Res. 278: 245–249, 1983.
 336. Thierry, A. M., J. P. Tassin, G. Blanc, and J. Glowinski. Selective activation of the mesocortical dopaminergic system by stress. Nature Land. 263: 242–244, 1976.
 337. Thomas, J. E., and M. V. Baldwin. Pathways and mechanisms of regulation of gastric motility. In: Handbook of Physiology. Alimentary Canal. Motility, edited by C. F. Code. Washington, DC: Am. Physiol. Soc., 1968, sect. 6, vol. IV, chapt. 95, p. 1937–1968.
 338. Tigges, J., S. Nakagawa, and M. Tigges. Efferents of area 4 in a South American monkey (Saimiri). I. Terminations in the spinal cord. Brain Res. 171: 1–10, 1979.
 339. Tinley, J. C. W., J. L. Maderdrut, L. J. Roger, and P. Petruse. The immunocytochemical localization of so‐matostatin‐containing neurons in the rat central nervous system. Neuroscience 6: 2173–2192, 1981.
 340. Truex, R. C., and M. B. Carpenter. Human Neuroanatomy (6th ed.). Baltimore, MD: Williams & Wilkins, 1969, p. 322.
 341. Tsuchiya, K., E. Kozawa, and M. Iriki. Changes of gastrointestinal motility evoked by spinal cord cooling and heating. Pfluegers Arch. 351: 275–286, 1974.
 342. Ueyama, T., H. Arakawa, and N. Mizuno. Contralateral termination of pudendal nerve fibers in the gracile nucleus of the rat. Neurosci. Lett. 62: 113–117, 1985.
 343. Ueyama, T., N. Mizuno, S. Nomura, A. Komishi, K. Itoh, and H. Arakawa. Central distribution of afferent and efferent components of the pudendal nerve in cat. J. Comp. Neurol. 222: 38–46, 1984.
 344. Ueyama, T., N. Mizuno, O. Takahashi, S. Nomura, H. Arakawa, and R. Matsushima. Central distribution of efferent and afferent components of the pudendal nerve in macaque monkeys. J. Comp. Neurol. 232: 548–556, 1985.
 345. Uhl, G. R., and S. H. Snyder. Neurotensin: a neuronal pathway projecting from amygdala through stria terminals. Brain Res. 161: 522–526, 1979.
 346. Unnerstall, J. R., M. J. Kuhar, R. Guzanne, and L. P. Schramm. Alpha‐2 binding sites in the thoracic spinal cord: autoradiographic evidence for postsynaptic localization in the intermediolateral cell column. Soc. Neurosci. Abstr. 10: 713, 1984.
 347. Uvnas‐Wallenstein, K., J. F. Rehfeld, L.‐I. Larsson, and B. Uvnas. Heptadecapeptide gastrin in the vagal nerve. Proc. Natl. Acad. Sci. USA 74: 5707–5710, 1977.
 348. Valenzuela, J. E. Dopamine as a possible neurotransmitter in gastric relaxation. Gastroenterology 71: 1019–1022, 1976.
 349. Van der Kooy, D., L. Y. Koda, J. F. Mcginty, C. R. Gerfen, and F. E. Bloom. The organization of projections from the cortex, amygdala, and hypothalamus to the nucleus of the solitary tract in rat. J. Comp. Neurol. 224: 1–24, 1984.
 350. Wamsley, J. K., W. S. Young III, and M. J. Kuhar. Immunohistochemical localization of enkephalin in rat forebrain. Brain Res. 190: 153–174, 1980.
 351. Watts, J. W., and J. F. Fulton. Intussusception—relation of cerebral cortex to intestinal motility in monkey. N. Engl. J. Med. 210: 882–896, 1934.
 352. Weber, J., P. Dennis, B. Mihout, J. M. Muller, F. Blanquart, J. P. Galmiche, P. Simon, and P. Pasquis. Effect of brain‐stem lesion on colonic and anorectal motility. Study of three patients. Dig. Dis. Sci. 30: 419–425, 1985.
 353. White, J. C., M. G. Verlot, and O. Ehrentheil. Neurogenic disturbances of the colon and their investigation by the colonmetrogram. Ann. Surg. 112: 1042–1057, 1940.
 354. Williford, D. J., B. L. Hamilton, and R. A. Gillis. Evidence that a GABAergic mechanism at nucleus ambiguus influences reflex‐induced vagal activity. Brain Res. 193: 584–588, 1980.
 355. Williford, D. J., H. S. Ormsbee III, W. P. Norman, J. W. Harmon, T. Q. Garvey III, J. A. Dimicco, and R. A. Gillis. Hindbrain GABA receptors influence parasympathetic outflow to the stomach. Science Wash. DC 214: 193–194, 1981.
 356. Wolf, S., and H. G. Wolff. Human Gastric Function: An Experimental Study of a Man and His Stomach. New York: Oxford Univ. Press, 1943.
 357. Wood, J. R., M. Camilleri, P. A. Low, and J. R. Malagelada. Brainstem tumor presenting as an upper gut motility disorder. Gastroenterology 89: 1411–1414, 1985.
 358. Yamamoto, T., H. Satomi, H. Ise, and K. Takahashi. Evidence of the dual innervation of the cat stomach by the vagal dorsal motor and medial solitary nuclei as described by the horseradish peroxidase method. Brain Res. 122: 125–131, 1977.
 359. Yoshida, Y., T. Miyazaki, M. Hirano, T. Shin, T. Totoki, and T. Kanaseki. Location of motoneurons supplying the cricopharyngeal muscle in the cat studied by means of the horseradish peroxidase method. Neurosci. Lett. 18: 1–4, 1980.
 360. Yoshida, Y., T. Miyazaki, M. Hirano, T. Shin, T. Totoki, and T. Kanaseki. Localization of efferent neurons innervating the pharyngeal constrictor muscles and the cervical esophagus muscle in the cat by means of the horseradish peroxidase method. Neurosci. Lett. 22: 91–95, 1981.
 361. Young, W. S., III, and M. J. Kukar. Neurotensin receptors: autoradiographic localization in rat CNS. Eur. J. Pharmacol. 59: 161–163, 1979.
 362. Zamir, N., M. Palkovits, and M. Brownstein. Distribution of immunoreactive Met‐enkephalin‐Arg6‐Gly7‐Leu8 and Leu‐enkephalin in discrete regions of the rat brain. Brain Res. 326: 1–8, 1985.
 363. Zerihun, L., and M. Harris. An electrophysiological analysis of caudally‐projecting neurons from the hypothalamic paraventricular nucleus in the rat. Brain Res. 26: 13–20, 1983.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Richard A. Gillis, John A. Quest, Francis D. Pagani, Wesley P. Norman. Control centers in the central nervous system for regulating gastrointestinal motility. Compr Physiol 2011, Supplement 16: Handbook of Physiology, The Gastrointestinal System, Motility and Circulation: 621-683. First published in print 1989. doi: 10.1002/cphy.cp060117