Comprehensive Physiology Wiley Online Library

Villous motility

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Anatomical Considerations And Contractile Patterns
2 Regulation Of Villous Motility
2.1 Nervous Control
2.2 Postprandial Regulation
3 Physiological Implications Of Villous Motility
4 Conclusions
Figure 1. Figure 1.

Frequency distribution of villous contraction rate in dog duodenum, jejunum, and ileum. Mean frequency was highest in duodenum (7.3 ± 0.1), intermediate in jejunum (4.0 ± 0.1), and lowest in ileum (2.0 ± 0.1).

From Womack et al.
Figure 2. Figure 2.

Percent change in frequency of villous contraction in dog jejunum induced by nutrient solutions. Amino acid solutions (15 and 30 mM) and a micellar oleic acid solution caused significant (P < 0.05) increases in contraction frequency. The mixed micellar (MM) solution consisted of 15 mM taurocholic acid, 5 mM monoolein, and 10 mM oleic acid. Taurocholic acid (TC) (15 mM), alone or in combination with monoolein (5 mM), did not increase villous motility.

From Womack et al.
Figure 3. Figure 3.

Effect of venous pressure elevation on villous contraction frequency and lymph flow. A venous pressure elevation of 20 cmH2O caused significant (P < 0.05) increases in both parameters. Villous contraction frequency rose 55% ± 14%, whereas lymph flow increased 54% ± 2%.

From Womack et al.
Figure 4. Figure 4.

Representative plasma‐dilution experiment. Intravenous saline infusion (2.5 ml·min−1 · kg−1 body wt) resulted in parallel changes in villous motility and lymph flow.

From Womack et al.
Figure 5. Figure 5.

Relationship between lymph flow (% of control) and villous motility (% of control). Regression analysis yielded statistically significant correlation (P < 0.001) with correlation coefficient of 0.83.

From Womack et al.
Figure 6. Figure 6.

Proposed mechanism for role of villous motility in lymph propulsion.

From Womack et al.
Figure 7. Figure 7.

Response of intestinal villous motility (A), blood flow (B), and oxygen uptake (C) to graded reductions in arterial pressure. Values obtained at 100 mmHg were taken as control, and all other values were expressed as percent of control. Blood flow demonstrated a linear decline as arterial pressure was reduced, and villous motility and oxygen uptake remained at control levels until pressure was reduced to <60 mmHg. *, Significant difference from control (P < 0.05).

From Womack et al.


Figure 1.

Frequency distribution of villous contraction rate in dog duodenum, jejunum, and ileum. Mean frequency was highest in duodenum (7.3 ± 0.1), intermediate in jejunum (4.0 ± 0.1), and lowest in ileum (2.0 ± 0.1).

From Womack et al.


Figure 2.

Percent change in frequency of villous contraction in dog jejunum induced by nutrient solutions. Amino acid solutions (15 and 30 mM) and a micellar oleic acid solution caused significant (P < 0.05) increases in contraction frequency. The mixed micellar (MM) solution consisted of 15 mM taurocholic acid, 5 mM monoolein, and 10 mM oleic acid. Taurocholic acid (TC) (15 mM), alone or in combination with monoolein (5 mM), did not increase villous motility.

From Womack et al.


Figure 3.

Effect of venous pressure elevation on villous contraction frequency and lymph flow. A venous pressure elevation of 20 cmH2O caused significant (P < 0.05) increases in both parameters. Villous contraction frequency rose 55% ± 14%, whereas lymph flow increased 54% ± 2%.

From Womack et al.


Figure 4.

Representative plasma‐dilution experiment. Intravenous saline infusion (2.5 ml·min−1 · kg−1 body wt) resulted in parallel changes in villous motility and lymph flow.

From Womack et al.


Figure 5.

Relationship between lymph flow (% of control) and villous motility (% of control). Regression analysis yielded statistically significant correlation (P < 0.001) with correlation coefficient of 0.83.

From Womack et al.


Figure 6.

Proposed mechanism for role of villous motility in lymph propulsion.

From Womack et al.


Figure 7.

Response of intestinal villous motility (A), blood flow (B), and oxygen uptake (C) to graded reductions in arterial pressure. Values obtained at 100 mmHg were taken as control, and all other values were expressed as percent of control. Blood flow demonstrated a linear decline as arterial pressure was reduced, and villous motility and oxygen uptake remained at control levels until pressure was reduced to <60 mmHg. *, Significant difference from control (P < 0.05).

From Womack et al.
References
 1. Angelucci, L., L. Micossi, and F. Cantalamessa. The action of caerulein on the motility of intestinal villi of avians. Arch. Int. Pharmacodyn. 196: 89–91, 1972.
 2. Brücke, E. Über ein in der darmschleimhaut aufgefundenes muskelsystem. Sitzungsber. Akad. Wiss. Wien 6: 214–248, 1851.
 3. Casley‐Smith, J. R. A fine structural study of variations in protein concentration in lacteals during compression and relaxation. Lymphology 12: 59–65, 1979.
 4. Chou, C. C., C. P. Hsieh, Y. M. Yu, P. Kvietys, L. C. Yu, R. Pittman, and J. M. Dabney. Localization of mesenteric hyperemia during digestion in dogs. Am. J. Physiol. 230: 583–589, 1976.
 5. Chou, C. C., P. Kvietys, J. Post, and S. P. Sit. Constituents of chyme responsible for postprandial intestinal hyperemia. Am. J. Physiol. 235 (Heart Circ. Physiol. 4): H677–H682, 1978.
 6. Drasch, O. Beiträge zur kenntnis des feineren baues des dünndarms, im sbesonderen über die nerven desselben. Sitzungsber. Akad. Wiss Wein 82: 168–198, 1880.
 7. Ek, B. Studies on mechanisms for beta‐adrenergic mediated inhibition of colon motility. Acta. Physiol. Scand. Suppl. 546: 1–39, 1985.
 8. Furness, J. B., and G. Burnstock. Role of circulating catecholamines in the gastrointestinal tract. In: Handbook of Physiology. Endocrinology, edited by H. Blaschko, G. Sayers, and A. D. Smith. Washington, DC: Am. Physiol. Soc., 1975, sect. 7, vol. 6, chapt. 33, p. 515–536.
 9. Furness, J. B., and M. Costa. The adrenergic innervation of the gastrointestinal tract. Ergeb. Physiol. Biol. Chem. Exp. Pharmacol. 69: 1–51, 1974.
 10. Granger, D. N., M. A. Perry, P. R. Kvietys, and A. E. Taylor. Capillary and interstitial forces during absorption in the cat small intestine. Gastroenterology 88: 267–273, 1984.
 11. Gruby, M., and M. Delafond. Résultats des recherches faites sur l'anatomie et les fonctions des villosités intestinales, l'absorption, la préparation et la composition organique du chyle dans les animaux. C. R. Acad. Sci. 16: 1194–1197, 1843.
 12. Güldner, F.‐H., J. R. Wolff, and D. G. Keyserlingk. Fibroblasts as a part of the contractile system in duodenal villi of rat. Z. Zellforsch. Mikrosk. Anat. 135: 349–360, 1972.
 13. Hambleton, B. F. Note upon the movements of the intestinal villi. Am. J. Physiol. 34: 446–447, 1914.
 14. Hooper, P. A., and R. Schneider. The effects of “autonomic drugs” on villous movement in the small intestine of the pigeon. Br. J. Pharmacol. 40: 426–436, 1970.
 15. Hooper, P. A., and R. Schneider. Evidence against the existence of hormonal control of small intestinal villous movement in the pigeon. Life Sci. 9: 1269–1273, 1970.
 16. Hooper, P. A., and R. Schneider. The mechanism of small intestinal villous movements in the pigeon. Life Sci. 10: 61–66, 1971.
 17. Ihász, M., I. Koiss, E. P. Németh, G. Folly, and M. Papp. Action of caerulein, glucagon or prostaglandin E1 on the motility of intestinal villi. Pfluegers Arch. 364: 301–304, 1976.
 18. Joyner, W. L., and E. Kokas. Effect of various gastrointestinal hormones and vasoactive substances on villous motility. Comp. Biochem. Physiol. 46A: 171–181, 1973.
 19. Keast, J. R., J. B. Furness, and M. Costa. Origins of peptide and norepinephrine nerves in the mucosa of the guinea pig small intestine. Gastroenterology 86: 637–644, 1984.
 20. King, C. E., and L. Arnold. The activities of the intestinal mucosal motor mechanism. Am. J. Physiol. 59: 97–121, 1922.
 21. King, C. E., L. Arnold, and J. G. Church. The physiological role of the intestinal mucosal movements. Am. J. Physiol. 61: 80–92, 1922.
 22. King, C. E., and M. H. Robinson. The nervous mechanisms of the muscularis mucosae. Am. J. Physiol. 143: 325–335, 1945.
 23. Kokas, E. Vergleichend‐physiologische untersuchungen über die bewegung der darmzotten. Plfuegers Arch. 225: 416–420, 1930.
 24. Kokas, E. Vergleichend‐physiologische untersuchungen über die bewegung der darmzotten und die resorption von glykose aus dem darm III. Z. V. Gl. Physiol. 26: 74–78, 1938.
 25. Kokas, E. Villikinin. Prog. Gastroenterol. 67: 750–752, 1974.
 26. Kokas, E., J. L. Davis III, and W. D. Brunson. Separation of villikinin‐like substance from intestinal mucosal extract. Arch. Int. Pharmacodyn. Ther. 191: 310–317, 1971.
 27. Kokas, E., and H. Gordon. Adrenergic and cholinergic receptors of intestinal villi in dogs. J. Pharmacol. Exp. Ther. 180: 56–61, 1972.
 28. Kokas, E., and C. L. Johnston, Jr. Influence of refined villikinin on motility of intestinal villi. Am. J. Physiol. 208: 1196–1202, 1965.
 29. Kokas, E., and C. L. Johnston, Jr. Evidence for an intestinal inhibitor of villous motility. Arch. Int. Pharmacodyn. Ther. 160: 211–222, 1966.
 30. Kokas, E., C. L. Johnston, Jr., and E. S. Barrow. Villikinin: Studies of intestinal and plasma villikinin preparations (Abstract). Federation Proc. 22: 225, 1963.
 31. Kokas, E., and G. Ludány. Die hormonale regelung der darmzottenbewegung I. Pfluegers Arch. 232: 293, 1933.
 32. Kokas, E., and G. Ludány. Die wirkung der gewürzmittel auf die bewegung der darmzotten und die glykoseresorption. Naunyn‐Schmiedebergs Arch. Exp. Pathol. Pharmakol. 169: 140–145, 1933.
 33. Kokas, E., and G. Ludany. Die hormonale regelung der darmzottenbewegung II. Pfluegers Arch. 234: 182–186, 1934.
 34. Kokas, E., and G. Ludány. Weitere untersuchungen über die nervöse beeinflussung der darmzottentätigkeit. Pfluegers Arch. 241: 268–271, 1938.
 35. Kokas, E., and G. Ludány. Relation between the villikinine and the absorption of glucose from the intestine. Q. J. Exp. Physiol. Cogn. Med. Sci. 28: 15–22, 1938.
 36. Lacauchie, M. Memoire sur la structure et le mode d'action des villosites intestinales. C. R. Acad. Sci. 16: 1125–1127, 1843.
 37. Lee, J. S. A micropuncture study of water transport by dog jejunal villi in vitro. Am. J. Physiol. 217: 1528–1533, 1969.
 38. Lee, J. S. Contraction of villi and fluid transport in dog jejunal mucosa in vitro. Am. J. Physiol. 221: 488–495, 1971.
 39. Lee, J. S. Lymph capillary pressure of rat intestinal villi during fluid absorption. Am. J. Physiol. 237 (Endocrinol. Metab. Gastrointest. Physiol. 5): E301–E307, 1979.
 40. Ludány, G. Action de la cocaïne et de quelques succédanés sur la motricité des villosités intestinales. C. R. Soc. Biol. 121: 293–295, 1936.
 41. Ludány, G., F. Farkas, and A. Incze. Antihistamine und die darmzottenbewegung. Arch. Int. Pharmacodyn. Ther. 83: 553–558, 1950.
 42. Ludány, G., T. Gáti, J. Rausch, and J. Hideg. Ganglien‐blocker und darmzottenbewegung. Arch. Int. Pharmacodyn. Ther. 127: 402–409, 1960.
 43. Ludány, G., T. Gáti, J. Rigö, and H. Szabö. Substanz P und die darmzottenbewegung. Pfluegers Arch. 270: 499–503, 1960.
 44. Ludány, G., T. Gáti, St. Szabö, and J. Hideg. 5‐Hydroxy‐tryptamin (enteramin, serotonin) und die darmzottenbewegung. Arch. Int. Pharmacodyn. Ther. 118: 62–69, 1959.
 45. Ludány, G., M. Ihász, and J. Karika. Polypeptide (bradykinin, kallidin, eledoisin) und die darmzottenbewegung. Acta Physiol. Hung. 34: 85–93, 1968.
 46. Ludány, G., and F. Jourdan. Influences du pneumogastrique et du sympathique sur la motricité des villosités intestinalis. C. R. Soc. Biol. 119: 1189–1190, 1935.
 47. Ludány, G., and F. Jourdan. Die wirkung des vagus, splanchnikus und physiologischer sympatischer erregung auf die darmzottentätigkeit. Arch. Int. Pharmacodyn. Ther. 53: 281–287, 1936.
 48. Ludány, G., F. Obal, and A. Santha. Die wirkung des cholins und seiner derivate auf die darmzottenbewegung. Arch. Int. Pharmacodyn. Ther. 84: 328–336, 1950.
 49. Mahler, P., W. Nonnenbruch, and J. Weiser. Arbeiten über die physiologie und pathologie des dünndarms. I. Beiträge zur physiologie, pharmakologie und pathologie der dünn‐darmzotten beim hund und beim menschen. Z. Gesamte Exp. Med. 85: 71–81, 1932.
 50. Nanba, R., and S. Hiramatsu. Effect of villikinin on the villus movements of the dog. Acta Med. Okayama 27: 91–101, 1973.
 51. Nanba, R., S. Hiramatsu, and K. Morimoto. On the movements of the intestinal villi of the dog. Jpn. J. Physiol. 20: 465–471, 1970.
 52. Neméth, E. P., M. Ihász, G. Folly, and M. Papp. The action of secretin, trypsin and histamine on the motility of canine intestinal villi. Am. J. Gastroenterol. 60: 607–615, 1973.
 53. Palay, S. L., and L. J. Karlin. An electron microscopic study of the intestinal villus. I. The fasting animal. J. Biophys. Biochem. Cytol. 5: 363–372, 1959.
 54. Sessions, J. T., Jr., S. R. Viegas de Andrade, and E. Kokas. Intestinal villi: form and motility in relation to function. In: Progress in Gastroenterology, edited by G. B. Jerzy Glass. New York: Grune & Stratton, 1968, p. 248–260.
 55. Shepherd, A. P. Effect of elevated venous pressure on intestinal oxygen extraction. In: Microcirculation, edited by J. Grayson and W. Zingg. New York: Plenum, vol. 2, p. 92–93.
 56. Thompson, A. B. R., and J. M. Dietschy. Intestinal lipid absorption: major extracellular and intracellular events. In: Physiology of the Gastrointestinal Tract, edited by L. R. Johnson. New York: Raven, 1981, vol. 1, p. 1147–1220.
 57. Trautman, A. Die muskulatur in den dünndarmzotten der haustiere. Anat. Anz. 34: 113–125, 1909.
 58. Trier, J. S., C. L. Krone, and M. H. Sleisinger. Anatomy, embryology and developmental abnormalities of the small intestine and colon. In: Gastrointestinal Disease: Pathophysiology, Diagnosis, Management, edited by M. H. Sleisinger and J. S. Fordtran. Philadelphia: Saunders, 1983, p. 780–811.
 59. Varro, V., L. Csernay, E. Szarvas, and G. Blaho. Effects of glucose and glycine solution on the circulation of the isolated loop in the dog. Am. J. Dig. Dis. 12: 60–64, 1967.
 60. Verzar, F., and E. Kokas. Die rolle der darmzotten bei der resorption. Pfluegers Arch. 217: 397–412, 1927.
 61. Verzar, F., and E. J. McDougall. Absorption from the Intestine. New York: Hafner, 1967, p. 53–70.
 62. Wells, H. S., and R. G. Johnson. The intestinal villi and their circulation in relation to absorption and secretion of fluid. Am. J. Physiol. 109: 387–402, 1934.
 63. Womack, W. A. Villous Motility: Regulation and Function. Mobile: Univ. of South Alabama, 1987. PhD dissertation.
 64. Womack, W. A., J. A. Barrowman, W. H. Graham, J. N. Benoit, P. R. Kvietys, and D. N. Granger. Quantitative assessment of villous motility. Am. J. Physiol. 252 (Gastrointest. Liver Physiol. 15): G250–G256, 1987.
 65. Womack, W. A., P. K. Tygart, D. Mailman, P. R. Kvietys, and D. N. Granger. Villous motility: relationship to lymph flow and blood flow in the dog jejunum. Gastroenterology, in press.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

William A. Womack, Peter R. Kvietys, D. Neil Granger. Villous motility. Compr Physiol 2011, Supplement 16: Handbook of Physiology, The Gastrointestinal System, Motility and Circulation: 975-986. First published in print 1989. doi: 10.1002/cphy.cp060125