Comprehensive Physiology Wiley Online Library

Gastrointestinal circulation and motor function

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 History
2 Microvascular Anatomy
3 Anatomical and Methodological Considerations
4 Effects of Motility on Blood Flow in Small Intestine
4.1 Rhythmic Contractions
4.2 Tonic Contractions
4.3 Blood Flow Distribution Within Gut Wall
4.4 Summary
5 Effects of Chemicals and Nerves on Blood Flow and Motility in Small Intestine
5.1 Cholinergics
5.2 Nerves
5.3 Bradykinin
5.4 Serotonin
5.5 Other Vasoactive Drugs and Gastrointestinal Hormones
5.6 Ions and Hypertonicity
5.7 Hypercapnia and Hypoxemia
5.8 Intestinal Wall Tension and Blood Flow
5.9 Blood Flow Distribution Within Gut Wall
5.10 Summary
6 Motility and Blood Flow in Colon and Stomach
6.1 Colon
6.2 Stomach
6.3 Summary
7 Effects of Intestinal Luminal Distension
7.1 Effect on total Blood Flow
7.2 Effect on Compartmental Blood Flow, Oxygen Consumption, Capillary Filtration Coefficient, and Lymph Flow
7.3 Summary
8 Effects of Blood Flow and Hypoxia on Motor Function
Figure 1. Figure 1.

Microvascular anatomy of rat intestine. 1A, first‐order arteriole.

A from Gore and Bohlen . B from data of Gore and Bohlen
Figure 2. Figure 2.

A: effect of rhythmic segmental contractions on arterial inflow and venous outflow; numbers 1–7 indicate synchronous changes in intestinal movements and blood flow. Tonus of gut was plotted. B: effect of rhythmic segmental contractions on minute volume flow of blood (drops/min). Volume flow per minute is plotted. Tracings from top to bottom are flow, lumen pressure of upper end of gut loop, venous pressure, intestinal volume, arterial pressure, and lumen pressure at lower end of loop.

From Sidky and Bean
Figure 3. Figure 3.

Relation between lumen pressure (IM), arterial inflow (AF), and venous outflow (VF) during spontaneous rhythmic contractions.

From Semba et al.
Figure 4. Figure 4.

Blood flow changes during and after tonic contractions. A.F., arterial inflow; V.F., venous outflow plotted on dotted line; L.P., lumen pressure. Short vertical lines indicate beginning of tonic contraction.

From Sidky and Bean
Figure 5. Figure 5.

Interplay of factors involved in relationship between intestinal distension, contractions, and blood flow.

Figure 6. Figure 6.

Effects of luminal distension or manipulation of gut wall and infusion of physostigmine on venous outflow of jejunal segment.

From data of Chou and Grassmick
Figure 7. Figure 7.

Mean percentage distribution of blood flow within gut wall before (CONT) and after (EXPT) manipulation or during distension of exteriorized small intestine segments. Values of intact gastrointestinal tract were obtained from tissues left undisturbed within abdominal cavity.

From Chou and Grassmick
Figure 8. Figure 8.

Compartmental blood flow and percentage distribution of total wall flow to each compartment before (C) and after (E) intravenous infusion of physostigmine in gastrointestinal tract.

From data of Chou and Grassmick
Figure 9. Figure 9.

Effects of acetylcholine (Ach) or epinephrine (Epi) injection on ileal perfusion pressure (Pp) and lumen pressure (PL) in ileal segment perfused at constant blood flow rate (F). After injection of 10 μg acetylcholine, luminal pressure rose above 40 mmHg, so attenuation had to be increased to x 5.

From Chou and Dabney
Figure 10. Figure 10.

Effects of intra‐arterial infusions of acetylcholine on intestinal blood flow in denervated (dashed line) and innervated (solid line) jejunal loops. Lines in upper right quadrant show flow values obtained after cessation of acetylcholine infusion when motility increase had subsided. Shaded area indicates maximum and minimum intraluminal pressure changes induced by acetylcholine (10–100 μg/min).

From Kewenter . © 1971, reprinted by permission of Universitetsforlaget, Oslo
Figure 11. Figure 11.

A: relation between motility index and blood flow. B: relation between motility index and absorption rate of L‐phenylalanine (open circles) and L‐serine (open triangles). Values were obtained from jejunal loops of conscious dogs during spontaneous and mechanically induced tonic contractions. C: relation between motility index and intestinal blood flow after bradykinin or acetylcholine in anesthetized dogs.

A, B from Pytkowski and Michalowski ; C from Pytkowski
Figure 12. Figure 12.

Correlation between blood flow in vein (VF) and artery (AF) in tonic contraction induced by physostigmine or hypertonic NaCl solution. Control VF and AF were set at 100%. IM, intestinal intraluminal pressure. Three types of blood flow responses can be observed.

From Semba et al.
Figure 13. Figure 13.

Typical recording during measurement of ileal compliance. Arrows indicate infusions or withdrawal of water into or from balloon. Balloon volume increased in 10‐ml steps to 40 ml, and total 40 ml was withdrawn in one step. Note that rhythmic segmental contractions appeared during distension and after withdrawal.

From Chou and Dabney
Figure 14. Figure 14.

Average effects of intra‐arterial infusion of epinephrine on ileal perfusion and intraluminal pressures determined at various ileal balloon volumes. N, number of dogs tested; F, average blood flow, maintained constant by pump.

From Chou and Dabney
Figure 15. Figure 15.

Correlation between colonic motility and blood flow. Open circles, contraction type; X, relaxation type; filled circles, combination type.

From Semba and Fujii . Lumen pressure tracings adapted by C. C. Chou according to description in text
Figure 16. Figure 16.

Effects of pelvic nerve stimulation before (left) and after (right) atropine.

From Fasth et al.
Figure 17. Figure 17.

Effect of mechanical stimulation of anal mucosa (indicated by horizontal bars and vertical lines) on colonic motility (volume change) and blood flow.

From Sjöqvist et al.
Figure 18. Figure 18.

Effect of varying levels of distending pressure on blood flow to various vascular segments within intestinal wall.

From Noer et al.
Figure 19. Figure 19.

Effect of luminal distension on blood flow. Tracings from top down: luminal volume, carotid artery pressure, and pressure difference between carotid and mesenteric arteries across constricting clamp, which indicates changes in blood flow. Time in intervals of 10 s (A) and 1 min (B).

From Lawson and Chumley
Figure 20. Figure 20.

Effects of distending canine ileal lumen from 0 to 50 ml lumen volume (A) and from 350 to 400 ml lumen volume (B). L.P., lumen pressure in mmHg; R, vascular resistance. Flow in ml · min−1 · 100 g−1.

From Hanson
Figure 21. Figure 21.

Effects of various stimuli on distension‐induced increments in luminal and perfusion pressures of ileal segments perfused at constant blood flow rate. Ordinates are increments in luminal or perfusion pressures resulting from increases in lumen volume from 0 to 30 ml or 0 to 40 ml. Solid lines, controls; dotted lines, experimental conditions.

Data from Chou and Dabney and Dabney et al.
Figure 22. Figure 22.

Effects of stepwise distension to 100 mmHg lumen pressure and deflation on blood flow (Q, ml·min−1·100 g−1), vascular resistance (PRU), capillary filtration coefficient (CFC, ml·min−1·100 g−1 dry wt), and oxygen consumption (, ml·min−1·100 g−1 dry wt) in denervated feline small bowel homologously perfused in vitro. Filled circles, nonobstructed intestine; open circles, previously obstructed intestine.

From Ohman
Figure 23. Figure 23.

Effect of occlusion of artery perfusing gut segment (CLAMP) before and after intra‐arterial infusion of tetrodotoxin (TTX).

Adapted from Chou and Gallavan
Figure 24. Figure 24.

Mean slow‐wave frequency before (C) and after either hypoxia or occlusion of superior mesenteric artery (SMA). Arrow indicates termination of experimental perturbations. ◯—◯, 50% O2 reduction; ◯—◯, 75% O2 reduction; •—•, SMA occlusion; •—•, SMA + SMV thrombosis.

From Meissner et al.


Figure 1.

Microvascular anatomy of rat intestine. 1A, first‐order arteriole.

A from Gore and Bohlen . B from data of Gore and Bohlen


Figure 2.

A: effect of rhythmic segmental contractions on arterial inflow and venous outflow; numbers 1–7 indicate synchronous changes in intestinal movements and blood flow. Tonus of gut was plotted. B: effect of rhythmic segmental contractions on minute volume flow of blood (drops/min). Volume flow per minute is plotted. Tracings from top to bottom are flow, lumen pressure of upper end of gut loop, venous pressure, intestinal volume, arterial pressure, and lumen pressure at lower end of loop.

From Sidky and Bean


Figure 3.

Relation between lumen pressure (IM), arterial inflow (AF), and venous outflow (VF) during spontaneous rhythmic contractions.

From Semba et al.


Figure 4.

Blood flow changes during and after tonic contractions. A.F., arterial inflow; V.F., venous outflow plotted on dotted line; L.P., lumen pressure. Short vertical lines indicate beginning of tonic contraction.

From Sidky and Bean


Figure 5.

Interplay of factors involved in relationship between intestinal distension, contractions, and blood flow.



Figure 6.

Effects of luminal distension or manipulation of gut wall and infusion of physostigmine on venous outflow of jejunal segment.

From data of Chou and Grassmick


Figure 7.

Mean percentage distribution of blood flow within gut wall before (CONT) and after (EXPT) manipulation or during distension of exteriorized small intestine segments. Values of intact gastrointestinal tract were obtained from tissues left undisturbed within abdominal cavity.

From Chou and Grassmick


Figure 8.

Compartmental blood flow and percentage distribution of total wall flow to each compartment before (C) and after (E) intravenous infusion of physostigmine in gastrointestinal tract.

From data of Chou and Grassmick


Figure 9.

Effects of acetylcholine (Ach) or epinephrine (Epi) injection on ileal perfusion pressure (Pp) and lumen pressure (PL) in ileal segment perfused at constant blood flow rate (F). After injection of 10 μg acetylcholine, luminal pressure rose above 40 mmHg, so attenuation had to be increased to x 5.

From Chou and Dabney


Figure 10.

Effects of intra‐arterial infusions of acetylcholine on intestinal blood flow in denervated (dashed line) and innervated (solid line) jejunal loops. Lines in upper right quadrant show flow values obtained after cessation of acetylcholine infusion when motility increase had subsided. Shaded area indicates maximum and minimum intraluminal pressure changes induced by acetylcholine (10–100 μg/min).

From Kewenter . © 1971, reprinted by permission of Universitetsforlaget, Oslo


Figure 11.

A: relation between motility index and blood flow. B: relation between motility index and absorption rate of L‐phenylalanine (open circles) and L‐serine (open triangles). Values were obtained from jejunal loops of conscious dogs during spontaneous and mechanically induced tonic contractions. C: relation between motility index and intestinal blood flow after bradykinin or acetylcholine in anesthetized dogs.

A, B from Pytkowski and Michalowski ; C from Pytkowski


Figure 12.

Correlation between blood flow in vein (VF) and artery (AF) in tonic contraction induced by physostigmine or hypertonic NaCl solution. Control VF and AF were set at 100%. IM, intestinal intraluminal pressure. Three types of blood flow responses can be observed.

From Semba et al.


Figure 13.

Typical recording during measurement of ileal compliance. Arrows indicate infusions or withdrawal of water into or from balloon. Balloon volume increased in 10‐ml steps to 40 ml, and total 40 ml was withdrawn in one step. Note that rhythmic segmental contractions appeared during distension and after withdrawal.

From Chou and Dabney


Figure 14.

Average effects of intra‐arterial infusion of epinephrine on ileal perfusion and intraluminal pressures determined at various ileal balloon volumes. N, number of dogs tested; F, average blood flow, maintained constant by pump.

From Chou and Dabney


Figure 15.

Correlation between colonic motility and blood flow. Open circles, contraction type; X, relaxation type; filled circles, combination type.

From Semba and Fujii . Lumen pressure tracings adapted by C. C. Chou according to description in text


Figure 16.

Effects of pelvic nerve stimulation before (left) and after (right) atropine.

From Fasth et al.


Figure 17.

Effect of mechanical stimulation of anal mucosa (indicated by horizontal bars and vertical lines) on colonic motility (volume change) and blood flow.

From Sjöqvist et al.


Figure 18.

Effect of varying levels of distending pressure on blood flow to various vascular segments within intestinal wall.

From Noer et al.


Figure 19.

Effect of luminal distension on blood flow. Tracings from top down: luminal volume, carotid artery pressure, and pressure difference between carotid and mesenteric arteries across constricting clamp, which indicates changes in blood flow. Time in intervals of 10 s (A) and 1 min (B).

From Lawson and Chumley


Figure 20.

Effects of distending canine ileal lumen from 0 to 50 ml lumen volume (A) and from 350 to 400 ml lumen volume (B). L.P., lumen pressure in mmHg; R, vascular resistance. Flow in ml · min−1 · 100 g−1.

From Hanson


Figure 21.

Effects of various stimuli on distension‐induced increments in luminal and perfusion pressures of ileal segments perfused at constant blood flow rate. Ordinates are increments in luminal or perfusion pressures resulting from increases in lumen volume from 0 to 30 ml or 0 to 40 ml. Solid lines, controls; dotted lines, experimental conditions.

Data from Chou and Dabney and Dabney et al.


Figure 22.

Effects of stepwise distension to 100 mmHg lumen pressure and deflation on blood flow (Q, ml·min−1·100 g−1), vascular resistance (PRU), capillary filtration coefficient (CFC, ml·min−1·100 g−1 dry wt), and oxygen consumption (, ml·min−1·100 g−1 dry wt) in denervated feline small bowel homologously perfused in vitro. Filled circles, nonobstructed intestine; open circles, previously obstructed intestine.

From Ohman


Figure 23.

Effect of occlusion of artery perfusing gut segment (CLAMP) before and after intra‐arterial infusion of tetrodotoxin (TTX).

Adapted from Chou and Gallavan


Figure 24.

Mean slow‐wave frequency before (C) and after either hypoxia or occlusion of superior mesenteric artery (SMA). Arrow indicates termination of experimental perturbations. ◯—◯, 50% O2 reduction; ◯—◯, 75% O2 reduction; •—•, SMA occlusion; •—•, SMA + SMV thrombosis.

From Meissner et al.
References
 1. Abe, H., H. Appert, J. Carballo, and J. M. Howard. Nonmucosal serotonin in motility of the small bowel. Arch. Surg. 106: 183–187, 1973.
 2. Altamirano, M., M. Requena, and T. C. Pérez. Interstitial fluid pressure in canine gastric mucosa. Am. J. Physiol. 229: 1414–1420, 1975.
 3. Alvarez, W. C. Introduction to Gastroenterology. New York: Hober, 1940, p. 199.
 4. Andersson, P. O., S. R. Bloom, and J. Jarhult. Colonic motor and vascular responses to pelvic nerve stimulation and their relation to local peptide release in the cat. J. Physiol. Lond. 334: 293–307, 1983.
 5. Andersson, P. O., and J. Jarhult. Separation of colonic motor and blood flow responses to pelvic nerve stimulation in the cat. Acta Physiol. Scand. 113: 263–265, 1981.
 6. Anrep, G. V., S. Cerqua, and A. Samann. The effect of muscular contraction upon the blood flow in the skeletal muscle in the diaphragm and in the small intestine. Proc R. Soc. Lond. B. Biol. Sci. 114: 245–257, 1934.
 7. Anuras, S., S. M. Chien, and J. Christensen. Metabolic dependence of the electromyogram of the cat colon. Am. J. Physiol. 239 (Gastrointest. Liver Physiol. 7): G173–G176, 1980.
 8. Baca, I., V. Mittmann, G. E. Feurle, M. Hass, and T. H. Muller. The effect of neurotensin on regional intestinal blood flow in the dog. Res. Exp. Med. 179: 53–85, 1981.
 9. Barcroft, H. Circulation in skeletal muscle. In: Handbook of Physiology. Circulation, edited by W. F. Hamilton Washington, DC: Am. Physiol. Soc., 1963, sect. 2, vol. II, chapt. 13, p. 1353–1385.
 10. Bayliss, W. M., and E. H. Starling. The influence of blood supply on intestinal movements. J. Physiol. Lond. 23: 34–35, 1898.
 11. Bayliss, W. M., and E. H. Starling. The movements and innervation of the small intestine. J. Physiol. Lond. 24: 99–143, 1899.
 12. Bean, J. W., and M. M. Sidky. Effects of low O2 on intestinal blood flow, tonus and motility. Am. J. Physiol. 189: 541–547, 1957.
 13. Bean, J. W., and M. M. Sidky. Intestinal blood flow as influenced by vascular and motor reactions to acetycholine and carbon dioxide. Am. J. Physiol. 194: 512–518, 1958.
 14. Biber, B., J. Fara, and O. Lundgren. Intestinal vascular responses to 5‐hydroxytryptamine. Acta Physiol. Scand. 87: 526–534, 1973.
 15. Biber, B., O. Lundgren, and J. Svanvik. Studies on the intestinal vasodilatation observed after mechanical stimulation of the mucosa of the gut. Acta Physiol. Scand. 82: 177–190, 1971.
 16. Boatman, D. L., and M. J. Brody. Effects of acetylcholine on intestinal vasculature of the dog. J. Pharmacol. Exp. Ther. 142: 185–191, 1963.
 17. Bohlen, H. G. Intestinal tissue PO2 and microvascular responses during glucose exposure. Am. J. Physiol. 238 (Heart Circ. Physiol. 7): H164–H171, 1980.
 18. Bohlen, H. G. In vivo microscopy of the intestinal microcirculation. In: Measurement of Blood Flow. Applications to the Splanchnic Circulation, edited by D. N. Granger and G. B. Bulkley. Baltimore, MD: Williams & Wilkins, 1981, p. 91–104.
 19. Bohlen, H. G. Microvasculature structure and interaction in the wall of the small intestine. Federation Proc. 43: 7–9, 1984.
 20. Bohlen, H. G., and R. W. Gore. Comparison of microvascular pressures and diameters in the innervated and denervated rat intestine. Microvasc. Res. 14: 251–264, 1977.
 21. Bohlen, H. G., and R. W. Gore. Microvascular pressures in. rat intestinal muscle during direct nerve stimulation. Microvasc. Res. 17: 27–37, 1979.
 22. Boley, S. J., G. P. Agrawal, A. R. Warren, F. J. Veith, B. S. Levowitz, W. Treiber, J. Dougherty, S. S. Schwartz, and M. L. Gliedman. Pathophysiologic effects of bowel distention on intestinal blood flow. Am. J. Surg. 117: 228–234, 1969.
 23. Bond, J. H., R. A. Prentiss, and M. D. Levitt. The effect of anesthesia and laparotomy on blood flow of the stomach, small bowel, and colon of the dog. Surgery St. Louis 87: 313–318, 1980.
 24. Bowen, J. C., W. Pawlik, W. F. Fang, and E. D. Jacobson. Pharmacologic effects of gastrointestinal hormones on intestinal oxygen consumption and blood flow. Surgery St. Louis 78: 515–519, 1975.
 25. Brobmann, G. F., E. D. Jacobson, and G. A. Brecher. Intestinal vascular responses to gut pressure and acetylcholine in vitro. Angiologica Basel 7: 129–139, 1970.
 26. Brobmann, G. F., E. D. Jacobson, and G. A. Brecher. Effects of distension and acetylcholine on intestinal blood flow in vivo. Angiologica Basel 7: 140–146, 1970.
 27. Bulkley, G. B., W. A. Womack, J. M. Downey, P. R. Kvietys, and D. N. Granger. Characterization of segmental collateral blood flow in the small intestine. Am. J. Physiol. 249 (Gastrointest. Liver Physiol. 12): G228–G235, 1985.
 28. Burns, T. D., and J. M. Dabney. Effects of hexamthonium (C6) and tetrodotoxin (TTX) on the intestinal vascular response to local stimuli (Abstract). Federation Proc. 31: 391, 1972.
 29. Burton, A. C., and D. J. Patel. Effect on pulmonary vascular resistance of inflation of the rabbit lungs. J. Appl. Physiol. 12: 239–246, 1958.
 30. Bussemaker, J. B., and J. Lindeman. Comparison of methods to determine viability of small intestine. Ann. Surg. 176: 97–101, 1972.
 31. Cabot, R. M., and S. Kohatsu. The effects of ischemia on the electrical and contractile activities of the canine small intestine. Am. J. Surg. 136: 242–246, 1978.
 32. Cannon, W. B., and I. R. Burket. The endurance of anemia by nerve cells in the myenteric plexus. Am. J. Physiol. 32: 347–357, 1913.
 33. Cassuto, J., S. Cedgard, J. Haglund, S. Redfors, and O. Lundgren. Intramural blood flows and flow distribution in the feline small intestine during arterial hypotension. Acta Physiol. Scand. 106: 335–342, 1979.
 34. Chou, C. C. The Role of Intestinal Wall Compliance in the Regulation of Intestinal Blood Flow. Norman: Univ. of Oklahoma, 1966 Dissertation.
 35. Chou, C. C. Relationship between intestinal blood flow and motility. Ann. Rev. Physiol. 44: 29–42, 1982.
 36. Chou, C. C., T. D. Burns, C. P. Hsieh, and J. M. Dabney. Mechanisms of local vasodilation with hypertonic glucose in the jejunum. Surgery St. Louis 71: 380–387, 1972.
 37. Chou, C. C., and J. M. Dabney. Intestinal compliance. Am. J. Dig. Dis. 12: 1189–1197, 1967.
 38. Chou, C. C., and J. M. Dabney. Interrelation of ileal wall compliance and vascular resistance. Am. J. Dig. Dis. 12: 1198–1208, 1967.
 39. Chou, C. C., E. D. Frohlich, and E. C. TexterJr. A comparative study of the effects of bradykinin, kallidin II and eledoisin on segmental superior mesenteric resistance. J. Physiol. Lond. 176: 1–11, 1965.
 40. Chou, C. C., and R. H. Gallavan. Blood flow and intestinal motility. Federation Proc. 41: 2090–2095, 1982.
 41. Chou, C. C., and B. Grassmick. Motility and blood flow distribution within the wall of the gastrointestinal tract. Am. J. Physiol. 235 (Heart Circ. Physiol. 4): H34–H39, 1978.
 42. Chou, C. C., C. P. Hsieh, T. D. Burns, and J. M. Dabney. Effects of lumen pH and osmolarity on duodenal blood flow and motility. Gastroenterology 60: 648, 1971.
 43. Chou, C. C., C. P. Hsieh, and J. M. Dabney. Effects of acid and hyperosmolarity in the lumen of the canine duodenum on local blood flow and motility. Gastroenterology 58: 934, 1970.
 44. Chou, C. C., C. P. Hsieh, and J. M. Dabney. Comparison of vascular effects of gastrointestinal hormones on various organs. Am. J. Physiol. 232 (Heart Circ. Physiol. 1): H103–H109, 1977.
 45. Chou, C. C., C. P. Hsieh, Y. M. Yu, P. Kvietys, L. C. Yu, R. Pittman, and J. M. Dabney. Localization of mesenteric hyperemia during digestion in dogs. Am. J. Physiol. 230: 583–589, 1976.
 46. Chou, C. C., D. H. Kuiper, and C. P. Hsieh. Effects of diphenylhydantoin on motility and compliance of the canine ileum and colon. Gastroenterology 62: 734, 1972.
 47. Chou, C. C., and P. R. Kvietys. Physiological and pharmacological alterations in gastrointestinal blood flow. In: Measurement of Blood Flow. Applications to the Splanchnic Circulation, by D. N. Granger and G. B. Bulkley. Baltimore, MD: Williams & Wilkins, 1981, p. 475–509.
 48. Chou, C. C., P. Kvietys, J. Post, and S. P. Sit. Constituents of chyme responsible for postprandial intestinal hyperemia. Am. J. Physiol. 235 (Heart Circ. Physiol. 4): H677–H682, 1978.
 49. Chou, C. C., R. A. Nyhof, P. R. Kvietys, S. P. Sit, and R. H. GallavanJr. Regulation of jejunal blood flow and oxygenation during glucose and oleic acid absorption. Am. J. Physiol. 249 (Gastrointest. Liver Physiol. 12): G691–G701, 1985.
 50. Code, C. F., and J. F. Schlegel. The gastrointestinal inter‐digestive housekeeper: motor correlates of the interdigestive myoelectric complex of the dog. In: Proceedings of the 4th International Symposium on Gastrointestinal Motility, edited by E. E. Daniel, J. A. L. Gilbert, B. Schofield, T. K. Schnitka, and G. Scott. Banff, Canada: Vancouver Mitchell, 1974, p. 631–634.
 51. Coulic, V., A. Maximenkova, and L. Finidova. Influence of the small bowel motility on its microcirculation. Biol. Gastro‐Enterol. 9: 289–294, 1976.
 52. Dabney, J. M., J. B. Scott, and C. C. Chou. Effects of cations on ileal compliance and blood flow. Am. J. Physiol. 212: 835–839, 1967.
 53. Dixon, J. A., C. G. Harman, R. L. Nichols, and E. EnglertJr. Intestinal motility following luminal and vascular occlusion of the small intestine. Gastroenterology 58: 673–678, 1970.
 54. Dragstedt, C. A., V. F. Lang, and R. F. Millet. The relative effects of distention on different portions of the intestine. Arch. Surg. 18: 2259–2263, 1929.
 55. Edlich, R. F., J. W. Borner, J. Kuphal, and O. H. Wangensteen. Gastric blood flow. 1. Its distribution during gastric distention. Am. J. Surg. 120: 35–37, 1970.
 56. Eklund, S., M. Jodal, O. Lundgren, and A. Sjöqvist. Effects of vasoactive intestinal polypeptide on blood flow, motility and fluid transport in the gastrointestinal tract of the cat. Acta Physiol. Scand. 105: 461–468, 1979.
 57. Evans, C. L. The physiology of plain muscle. Physiol. Rev. 6: 358–398, 1926.
 58. Evans, D. H. L., and H. O. Schild. The reactions of plexus‐free circular muscle of cat jejunum to drugs. J. Physiol. Lond. 119: 376–399, 1953.
 59. Fahrenkrug, J., U. Haglund, M. Jodal, O. Lundgren, L. Olbe, and O. B. Schaffalitzky de Muckadell. Nervous release of vasoactive intestinal polypeptide in the gastrointestinal tract of cats: possible physiological implications. J. Physiol. Lond. 284: 291–305, 1978.
 60. Fara, J. W., and K. S. Madden. Effect of secretin and cholecystokinin on small intestinal blood flow distribution. Am. J. Physiol. 229: 1365–1370, 1975.
 61. Fara, J. W., E. H. Rubinstein, and R. R. Sonnenschein. Intestinal hormones in mesenteric vasodilation after intraduodenal agents. Am. J. Physiol. 223: 1058–1067, 1972.
 62. Fara, J. W., and A. M. Salazer. Gastric inhibitory polypeptide increases mesenteric blood flow. Proc. Soc. Exp. Biol. Med. 158: 446–448, 1978.
 63. Fasth, S., S. Filipsson, L. Hulten, and J. Martinson. The effect of the gastrointestinal hormones on small intestinal motility and blood flow. Experientia Basel 29: 982–984, 1973.
 64. Fasth, S., H. Hedlund, L. Hulten, S. Nordgren, and T. Oresland. The effect of 5‐hydroxytryptamine on large intestinal motility and blood flow in the cat. Acta Physiol. Scand. 118: 329–336, 1983.
 65. Fasth, S., and L. Hulten. The effects of glucagon on intestinal motility and blood flow. Acta Physiol. Scand. 83: 169–173, 1971.
 66. Fasth, S., and L. Hulten. The effect of bradykinin on intestinal motility and blood flow. Acta Chir. Scand. 139: 699–705, 1973.
 67. Fasth, S., L. Hulten, B. J. Johnson, S. Nordgren, and I. J. Zeithin. Mobilization of colonic kallikrein following pelvic nerve stimulation in the atropinized cat. J. Physiol. Lond. 285: 471–478, 1978.
 68. Fasth, S., L. Hulten, and S. Nordgren. Evidence for a dual pelvic nerve influence on large bowel motility in the cat. J. Physiol. Lond. 298: 159–169, 1980.
 69. Fasth, S., L. Hulten, S. Nordgren, and I. J. Zeitlin. Studies on the atropine‐resistant sacral parasympathetic vascular and motility responses in the cat colon. J. Physiol. Lond. 311: 421–429, 1981.
 70. Fioramonti, J., and L. Bueno. Relation between intestinal motility and mesenteric blood flow in the conscious dog. Am. J. Physiol. 246 (Gastrointest. Liver Physiol. 9): G108–G113, 1984.
 71. Fioramonti, J., L. Bueno, and M. Ruckebusch. Blood sugar oscillations and duodenal migrating myoelectric complexes. Am. J. Physiol. 242 (Gastrointest. Liver Physiol. 5): G15–G20, 1982.
 72. Fleischer, D. R. On the movement of intestinal tonus. Gastroenterology 58: 685–691, 1970.
 73. Fondacaro, J. D. Intestinal blood flow and motility. In: Physiology of the Intestinal Circulation, edited by A. P. Shepherd and D. N. Granger. New York: Raven, 1984, p. 107–120.
 74. Frohlich, E. D., J. B. Scott, and F. J. Haddy. Effect of cations on resistance and responsiveness of renal and forelimb vascular beds. Am. J. Physiol. 203: 583–587, 1962.
 75. Gallavan, R. H.Jr., C. C. Chou, P. R. Kvietys, and S. P. Sit. Regional blood flow during digestion in the conscious dog. Am. J. Physiol. 238 (Heart Circ. Physiol. 7): H220–H225, 1980.
 76. Gannon, B. J., R. W. Gore, and P. A. W. Rogers. Is there an anatomical basis for a vascular counter‐current mechanism in rabbit and human intestinal villi? Biomed. Res. 2: 235–241, 1981.
 77. Gatch, W. D., and C. G. Culbertson. Circulatory disturbances caused by intestinal obstruction. Ann. Surg. 102: 619–635, 1935.
 78. Gatch, W. D., H. M. Trusler, and K. D. Ayers. Effects of gaseous distention on obstructed bowel. Arch. Surg. 14: 1215–1221, 1927.
 79. Geber, W. F. Intestinal blood flow‐pressure responses during control and induced peristalsis. Arch. Int. Pharmacodyn. 157: 53–66, 1965.
 80. Gore, R. W., and H. G. Bohlen. Pressure regulation in the microcirculation. Federation Proc. 34: 2031–2037, 1975.
 81. Gore, R. W., and H. G. Bohlen. Microvascular pressures in rat intestinal muscle and mucosal villi. Am. J. Physiol. 233 (Heart Circ. Physiol. 6): H685–H693, 1977.
 82. Granger, D. N., P. R. Kvietys, N. A. Mortillaro, and A. E. Taylor. Effect of luminal distension on intestinal transcapillary fluid exchange. Am. J. Physiol. 239 (Gastrointest. Liver Physiol. 2): G516–G523, 1980.
 83. Granger, D. N., P. D. I. Richardson, P. R. Kvietys, and N. A. Mortillaro. Intestinal blood flow. Gastroenterology 78: 837–863, 1980.
 84. Granger, D. N., P. D. I. Richardson, and A. E. Taylor. Volumetric assessment of the capillary filtration coefficient in the cat small intestine. Pfluegers Arch. 381– 25–33, 1979.
 85. Granger, D. N., J. D. Valleau, R. E. Parker, R. S. Lane, and A. E. Taylor. Effects of adenosine on intestinal hemodynamics, oxygen delivery, and capillary fluid exchange. Am. J. Physiol. 235 (Heart Circ. Physiol. 4): H707–H719, 1978.
 86. Gregg, D. E., E. M. Khouri, and C. R. Rayford. Systemic and coronary energetics in the resting unanesthetized dog. Circ. Res. 16: 102–113, 1965.
 87. Grim, E. The flow of blood in the mesenteric vessels. In: Handbook of Physiology. Circulation, edited by W. F. Hamilton Washington, DC: Am. Physiol. Soc., 1963, sect. 2, vol. II, chapt. 13, p 1439–1456.
 88. Grivel, M. L., and Y. Ruckebusch. The propagation of segmental contractions along the small intestine. J. Physiol. Lond. 227: 611–625, 1972.
 89. Guisan, Y. J., A. Hreno, and F. N. Gurd. Effect of acute ischemia on the motility of the small bowel in the awake dog. Eur. Surg. Res. 7: 23–33, 1975.
 90. Guth, P. H., T. Moler, and H. Wayland. Study of the gastric circulation by in vivo fluorescence microscopy. In: Gastrointestinal Mucosal Blood Flow, edited by L. P. Fielding London: Churchill Livingstone, 1980, p. 17–25.
 91. Guth, P. H., and A. Rosenberg. In vivo microscopy of the gastric microcirculation. Am. J. Dig. Dis. 17: 391–398, 1972.
 92. Guth, P. H., and E. Smith. Histamine receptors in mesenteric circulation of the cat and rat. Am. J. Physiol. 234 (Endocrinol. Metab. Gastrointest. Physiol. 4): E370–E374, 1978.
 93. Haddy, F. J., C. C. Chou, J. B. Scott, and J. M. Dabney. Intestinal vascular responses to naturally occurring vasoactive substances. Gastroenterology 52: 444–451, 1967.
 94. Hamilton, T. C. Comparison of the vasodilator activity of acetylcholine, cholinomimetics and other vasodilators in two vascular beds of the cat. Eur. J. Pharmacol. 28: 11–17, 1974.
 95. Hanson, K. M. Hemodynamic effects of distension of the dog small intestine. Am. J. Physiol. 225: 456–460, 1973.
 96. Hanson, K. M., and F. T. Moore. Effects of intraluminal pressure in the colon on its vascular pressure‐flow relationships. Proc. Soc. Exp. Biol. Med. 131: 373–376, 1969.
 97. Hanson, K. M., and F. T. Moore. Pressure‐volume relationships and blood flow in the distended colon. Am. J. Physiol. 217: 35–39, 1969.
 98. Hashimoto, K., and S. Kumakura. The pharmacological features of the coronary, renal, mesenteric and femoral arteries. Jpn J. Physiol. 15: 540–551, 1965.
 99. Hashizume, T., K. Hirokawa, S. Aibara, H. Ogawa, and A. Kasahara. Pharmacological and histological studies of gastric mucosal lesion induced by serotonin in rats. Arch. Int. Pharmacodyn. Ther. 236: 96–108, 1978.
 100. Hess, D. S., and R. J. Bache. Transmural distribution of myocardial blood flow during systole in the awake dog. Circ. Res. 38: 5–15, 1976.
 101. Holaday, D. A., H. Volk, and J. Mandell. Electrical activity of the small intestine with special reference to the origin of rhythmicity. Am. J. Physiol. 195: 505–515, 1958.
 102. Hukuhara, R. T., T. Sumi, and S. Kotani. Role of the ganglion cells in the small intestine taken in the intestinal intrinsic reflexes. Jpn J. Physiol. 11: 281–288, 1961.
 103. Hulten, L. Extrinsic nervous control of colonic motility and blood flow. Acta Physiol. Scand. Suppl. 335: 1–116, 1969.
 104. Hulten, L. Regulation of colonic motility and blood flow. Nutr. Rev. 35: 38–41, 1977.
 105. Hulten, L., M. Jodal, and O. Ludgren. Extrinsic nervous control of colonic blood flow. Acta Physiol. Scand. Suppl. 335: 39–50, 1969.
 106. Jacobson, E. D., G. F. Brobmann, and G. A. Brecker. Intestinal motor activity and blood flow. Gastroenterology 58: 575–579, 1970.
 107. Jodal, M., O. Lundgren, and A. Sjöqvist. The effect of apamin on nonadrenergic. noncholinergic vasodilator mechanism in the intestines of the cat. J. Physiol. Lond. 338: 207–219, 1983.
 108. Johnson, P. C. Myogenic nature of increase in intestinal vascular resistance with venous pressure elevation. Circ. Res. 7: 992–999, 1959.
 109. Kachelhoffer, J., A. Pousse, J. Marescaux, M. Iturizaga, and J. F. Grenier. Effects of motility and luminal distension on dog small intestine hemodynamics. Eur. Surg. Res. 10: 184–193, 1978.
 110. Katz, S., A. Wahab, W. Murray, and L. F. Williams. New parameters of viability in ischemic bowel disease. Am. J. Surg. 127: 136–141, 1974.
 111. Kewenter, J. The vagal control of the jejunal and ileal motility and blood flow. Acta Physiol. Scand. Suppl. 251: 1–68, 1965.
 112. Kewenter, J. Effects of graded acetylcholine infusions on intestinal motility, volume and blood flow. Scand. J. Gastroenterol. 6: 435–440, 1971.
 113. Konturek, S. J., J. Jaworek, M. Cieszkowski, W. Pawlik, J. Kania, and S. R. Bloom. Comparison of effects of neurotensin and fat on pancreatic stimulation in dogs. Am. J. Physiol. 244 (Gastrointest. Liver Physiol. 7): G590–G598, 1983.
 114. Kosteritz, H. W., V. W. Pirie, and J. A. Robinson. The mechanism of the peristaltic reflex in the isolated guinea‐pig ileum. J. Physiol. Lond. 133: 681–694, 1956.
 115. Kowalewski, K., and A. Kolodej. Effect of prostaglandin‐E2 on myoelectrical and mechanical activity of total isolated, ex‐vivo‐perfused, canine stomach. Pharmacology 13: 325–339, 1975.
 116. Kowalewski, K., S. Zajac, and A. Kolodej. Effect of ischemic anoxia on electrical and mechanical activity of the totally isolated porcine stomach. Eur. Surg. Res. 8: 12–25, 1976.
 117. Kvietys, P. R., and D. N. Granger. Vasoactive agents and splanchnic oxygen uptake. Am. J. Physiol. 243 (Gastrointest. Liver Physiol. 6): G1–G9, 1982.
 118. Kvietys, P. R., J. M. Russell, and D. N. Granger. Relationship between intestinal blood flow and oxygen uptake: effects of temperature, absorption and motility (Abstract). Federation Proc. 42: 340, 1983.
 119. Kyi, K. K. J., and E. E. Daniel. The effects of ischemia on intestinal nerves and electrical slow waves. Am. J. Dig. Dis. 15: 959–981, 1970.
 120. Lawson, H. The mechanism of deflation hyperemia in the intestine. Am. J. Physiol. 134: 147–156, 1941.
 121. Lawson, H., and A. M. Ambrose. The utilization of blood oxygen by the distended intestine. Am. J. Physiol. 135: 650–659, 1942.
 122. Lawson, H., and J. Chumley. The effect of distention on blood flow through the intestine. Am. J. Physiol. 131: 368–377, 1940.
 123. Lee, J. S. Motility, lymphatic contractility, and distention pressure in intestinal absorption. Am. J. Physiol. 208: 621–627, 1965.
 124. Lembeck, F., and R. Hettich. Comparative study of the effects of substance P on blood pressure, salivatory functions and intestinal motility. Naunyn‐Schmiedebergs Arch. Pharmacol. 265: 216–224, 1969.
 125. Lifson, N. Fluid secretion and hydrostatic pressure relationships in the small intestine. In: Mechanisms of Intestinal Secretion, edited by H. J. Binder New York: Liss, 1979, vol. 12, p. 249–261 (Kroc Found. Ser.).
 126. Longhurst, J. C., H. L. Spilker, and G. A. Ordway. Cardiovascular reflexes elicited by passive gastric distension in anesthetized cats. Am. J. Physiol. 240 (Heart Circ. Physiol. 9): H539–H545, 1981.
 127. Lundgren, O. Microcirculation of the gastrointestinal tract and pancreas. In: Handbook of Physiology. The Cardiovascular System. Microcirculation, edited by E. M. Renkin and C. C. Michel. Bethesda, MD: Am. Physiol. Soc., 1984, ect. 2, vol. IV, pt. 2, chapt. 13, p. 799–863.
 128. Lundgren, O., and I. Wallentin. Local chemical and nervous control of consecutive vascular sections in the mesenteric lymph nodes of the cat. Angiologica Basel 1: 284–296, 1964.
 129. Mall, F. A study of the intestinal contraction. Johns Hopkins Hosp. Rep. 1: 37–75, 1896.
 130. Mangino, M. J., and C. C. Chou. Arachidonic acid and postprandial intestinal hyperemia. Am. J. Physiol. 246 (Gastrointest. Liver Physiol. 9): G521–G527, 1984.
 131. Martin, A. W., and F. A. Fuhrman. The relationship between summated tissue respiration and metabolic rate in mouse and dog. Physiol. Zool. 28: 18–34, 1955.
 132. Martinson, J. The effect of graded vagal stimulation on gastric motility, secretion, and blood flow in the cat. Acta Physiol. Scand. 65: 300–309, 1965.
 133. Maxwell, L. C., A. P. Shepherd, G. L. Riedel, and M. D. Morris. Effect of microsphere size on apparent intramural distribution of intestinal blood flow. Am. J. Physiol. 241 (Heart Circ. Physiol. 10): H408–H414, 1981.
 134. Meissner, A., K. L. Bowes, and S. K. Sarna. Effects of ambient and stagnant hypoxia on the mechanical and electrical activity of the canine upper jejunum. Can. J. Surg. 19: 316–321, 1976.
 135. Mohamed, M. S., and J. W. Bean. Local and general alterations of blood CO2 and influence of intestinal motility in regulation of intestinal blood flow. Am. J. Physiol. 167: 413–425, 1951.
 136. Mortillaro, N. A., and R. Allen. Effects of venous pressure on intestinal metabolism (Abstract). Federation Proc. 39: 705, 1980.
 137. Nematzadeh, D., P. A. Kot, J. C. Rose, and H. K. Huang. Magnitude of the left ventricular intramyocardial pressure (IMP) gradient in the canine heart. Physiologist 19: 310, 1976.
 138. Noer, R. J., H. J. Robb, and L. F. Jacobson. Circulatory disturbances produced by acute intestinal distension in the living animal. Arch. Surg. 63: 520–528, 1951.
 139. Nylander, G., and S. Wikström. Propulsive gastrointestinal motility in regional and graded ischemia of the small bowel. An experimental study in the rat. I. Immediate results. Acta Chir. Scand. Suppl. 385: 1–67, 1968.
 140. Ohman, U. Studies on small intestinal obstruction. I. Intraluminal pressure in experimental low small bowel obstruction in the cat. Acta Chir. Scand. 141: 413–416, 1975.
 141. Ohman, U. Studies on small intestinal obstruction. II. Blood flow, vascular resistance, capillary filtration, and oxygen consumption in denervated small bowel after obstruction. Acta Chir. Scand. 141: 417–423, 1975.
 142. Ohman, U. Studies on small intestinal obstruction. III. Circulatory effects of artificial small bowel distension. Acta Chir. Scand. 141: 536–544, 1975.
 143. Ohman, U. Studies on small intestinal obstruction. IV. Circulatory effects of artificial small bowel distension. Acta Chir. Scand. 141: 545–549, 1975.
 144. Ohman, U. Studies on small intestinal obstruction. V. Blood circulation in moderately distended small bowel. Acta Chir. Scand. 141: 763–770, 1975.
 145. Ohman, U. Studies on small intestinal obstruction. Blood circulation in obstructed and artificially distended small intestine in the cat. Acta Chir. Scand. Suppl. 452: 1–41, 1975.
 146. Ohman, U. Blood flow and oxygen consumption in the feline small intestine: responses to artificial distention and intestinal obstruction. Acta Chir. Scand. 142: 329–333, 1976.
 147. Parker, R. E., and D. N. Granger. Effect of graded arterial occlusion on ileal blood flow distribution. Proc. Soc. Exp. Biol. Med. 162: 146–149, 1979.
 148. Pawlik, W., J. C. Bowen, and E. D. Jacobson. Vasoactive and metabolic effects of gastrointestinal hormones in the intestine. Mater. Med. Pol. 31: 151–154, 1977.
 149. Pawlik, W. W., J. D. Fondacaro, and E. D. Jacobson. Metabolic hyperemia in the canine gut. Am. J. Physiol. 239 (Gastrointest. Liver Physiol. 2): G12–G17, 1980.
 150. Pawlik, W., L. L. Tague, B. L. Tepperman, T. A. Miller, and E. D. Jacobson. Histamine H1‐ and H2‐receptor vasodilation of canine intestinal circulation. Am. J. Physiol. 233 (Endocrinol. Metab. Gastrointest. Physiol. 1): E219–E224, 1977.
 151. Pawlik, W. W., K. M. Walus, and J. D. Fondacaro. Effects of methionine‐enkephalin on intestinal circulation and oxygen consumption. Proc. Soc. Exp. Biol. Med. 165: 26–31, 1980.
 152. Perlman, D. M., and J. W. Cole. A smooth muscle stimulating substance released from the intestine following acute arterial occlusion. Surg. Forum 9: 476–480, 1958.
 153. Premen, A. J., C. Y. Soika, J. M. Dabney, and D. E. Dobbins. Effects of gastrointestinal hormones on ileal vascular and visceral smooth muscle. Am. J. Physiol. 246 (Gastrointest. Liver Physiol. 9): G1–G7, 1984.
 154. Price, W. E., Z. Shehadeh, G. H. Thompson, L. D. Underwood, and E. D. Jacobson. Effects of acetylcholine on intestinal blood flow and motility. Am. J. Physiol. 216: 343–347, 1969.
 155. Pytkowski, B. On the contribution of prostaglandin‐like substances to the action of bradykinin on intestinal motility and blood flow in canine jejunal loop in situ. Eur. J. Clin. Invest. 9: 391–396, 1979.
 156. Pytkowski, B., and J. Michalowski. Motility‐ and blood flow‐dependent absorption of amino acids in canine small intestine. Eur. J. Clin. Invest. 7: 79–86, 1977.
 157. Quigley, J. P., and D. A. Brody. Digestive tract: intraluminal pressures, gastrointestinal propulsion, gastric evacuation, pressure‐wall tension relationships. In: Medical Physics, edited by O. Glasser Chicago, IL: Yearbook, 1950, vol. II, p. 280.
 158. Ruf, W., G. T. Suehiro, A. Suehiro, V. Pressler, and J. J. McNamara. Intestinal blood flow at various intraluminal pressure in the piglet with closed abdomen. Ann. Surg. 191: 157–163, 1980.
 159. Schamaun, M. Electromyography to determine viability of injured small bowel segments; an experimental study with preliminary clinical observations. Surgery St. Louis 62: 899–909, 1967.
 160. Schrauwen, E., and A. Houvenaghel. Influence of substance P on mesenteric hemodynamics in the pig. Arch. Int. Pharmacodyn. Ther. 242: 315–317, 1979.
 161. Schuurkes, J. A. J., and G. A. Charbon. Motility and hemodynamics of the canine gastrointestinal tract. Stimulation by pentagastrin, cholecystokinin and vasopressin. Arch. Int. Pharmacodyn. Ther. 236: 214–227, 1978.
 162. Schwaiger, M., J. D. Fondacaro, and E. D. Jacobson. Effects of glucagon, histamine and perheiline on the ischemic canine mesenteric circulation. Gastroenterology 77: 730–735, 1979.
 163. Scott, J. B., and J. M. Dabney. Relation of gut motility to blood flow in the ileum of the dog. Circ. Res. 14, Suppl. 1: 235–239, 1964.
 164. Scott, J. B., E. D. Frohlich, R. A. Hardin, and F. J. Haddy. Na+, K+, Ca++, and Mg++ action on coronary vascular resistance in the dog heart. Am. J. Physiol. 201: 1095–1100, 1961.
 165. Selkurt, E. E., and P. C. Johnson. Effect of acute elevation of portal venous pressure on mesenteric blood volume, interstitial fluid volume, and hemodynamics. Circ. Res. 6: 592–599, 1958.
 166. Semba, T., K. Fujii, and Y. Fujii. Influence of peristaltic contraction of the stomach on blood flow through the gastrosplenic vein. Hiroshima J. Med. Sci. 19: 87–97, 1970.
 167. Semba, T., K. Fujii, and Y. Fujii. The influence of rhythmic and tonic contraction of the small intestine on blood flow through the intestinal segment. Jpn. J. Physiol. 21: 1–14, 1971.
 168. Semba, T., K. Fujii, and T. Mizonishi. Relation of intestinal motility to venous outflow and saturation of blood O2 through mesenteric blood vessels. Jpn. J. Physiol. 23: 541–557, 1973.
 169. Semba, T., and Y. Fujii. Relationship between venous flow and colonic peristalsis. Jpn. J. Physiol. 20: 408–416, 1970.
 170. Semba, T., T. Mizonishi, Y. Ikeda, and Y. Nagao. Influence of intestinal inhibitory reflex on mesenteric blood flow through an intestinal segment of the dog. Jpn. J. Physiol. 27: 439–450, 1977.
 171. Shehadeh, Z., W. E. Price, and E. D. Jacobson. Effects of vasoactive agents on intestinal blood flow and motility in the dog. Am. J. Physiol. 216: 386–392, 1969.
 172. Shepherd, A. P. Intestinal O2 consumption and 86Rb extraction during arterial hypoxia. Am. J. Physiol. 234 (Endocrinol. Metab. Gastrointest. Physiol. 3): E248–E251, 1978.
 173. Shepherd, A. P., G. L. Riedel, L. C. Maxwell, and J. W. Kiel. Selective vasodilators redistribute intestinal blood flow and depress oxygen uptake. Am. J. Physiol. 247 (Gastrointest. Liver Physiol. 10): G377–G384, 1984.
 174. Sidky, M., and J. W. Bean. Influence of rhythmic and tonic contraction of intestinal muscle on blood flow and blood reservoir capacity in dog intestine. Am. J. Physiol. 193: 386–392, 1958.
 175. Sit, S. P., and C. C. Chou. Time course of jejunal blood flow, O2 uptake, and O2 extraction during nutrient absorption. Am. J. Physiol. 247 (Heart Circ. Physiol. 16): H395–H402, 1984.
 176. Sjöqvist, A., J. Fahrenkrug, M. Jodal, and O. Lundgren. Effect of apamin on release of vasoactive intestinal polypeptide (VIP) from the intestines of the cat. Acta Physiol. Scand. 119: 69–76, 1983.
 177. Sjöqvist, A., P. M. Hellström, M. Jodal, and O. Lundgren. Neurotransmitters involved in the colonic contraction and vasodilation elicited by activation of the pelvic nerves in the cat. Gastroenterology 86: 1481–1487, 1984.
 178. Swabb, E. A., R. A. Hynes, and M. Donowitz. Elevated intraluminal pressure alters rabbit small intestinal transport in vivo. Am. J. Physiol. 242 (Gastrointest. Liver Physiol. 5): G58–G64, 1982.
 179. Swabb, E. A., R. A. Hynes, W. G. Marnane, J. S. McNeil, R. A. Decker, Y.‐H. Tai, and M. Donowitz. Intestinal filtration‐secretion due to increased intraluminal pressure in rabbits. Am. J. Physiol. 242 (Gastrointest. Liver Physiol. 5): G65–G75, 1982.
 180. Szurszewski, J. H. A migrating electric complex of the canine small intestine. Am. J. Physiol. 217: 1757–1763, 1969.
 181. Szurszewski, J., and F. R. Steggerda. The effect of hypoxia on the electrical slow wave of the canine small intestine. Am. J. Dig. Dis. 13: 168–177, 1968.
 182. Szurszewski, J., and F. R. Steggerda. The effect of hypoxia on the mechanical activity of the canine small intestine. Am. J. Dig. Dis. 13: 178–185, 1968.
 183. Texter, E. C.Jr., C. C. Chou, S. L. Merrill, H. C. Laureta, and E. D. Frohlich. Direct effects of vasoactive agents on segmental resistance of the mesenteric and portal circulation. Studies with l‐epinephrine, levarterenol, angiotensin, vasopressin, acetylcholine, metacholine, histamine, and serotonin. J. Lab. Clin. Med. 64: 624–633, 1964.
 184. Texter, E. C.Jr., H. C. Laureta, E. D. Frohlich, and C. C. Chou. Effects of major cations on gastric and mesenteric vascular resistances. Am. J. Physiol. 212: 569–573, 1967.
 185. Tunick, P. A., W. F. Treiber, Jr., M. Frank, F. J. Veith, M. L. Gliedman, and S. J. Boley. Pathophysiological effects of bowel distension on intestinal blood flow (II). Curr. Top. Surg. Res. 2: 59–69, 1970.
 186. Van Beuren, F. T., Jr. Relation between intestinal damage and delayed operation in acute mechanical ileus. Ann. Surg. 72: 610–615, 1920.
 187. Van Liere, E. J. The effect of anoxia on the alimentary tract. Physiol. Rev. 21: 307–323, 1941.
 188. Van Zwalenburg, C. Strangulation resulting from distention of hollow viscera. Ann. Surg. 46: 780–786, 1907.
 189. Vatner, S. F., D. Franklin, and R. L. Van Citters. Mesenteric vasoactivity associated with eating and digestion in the conscious dog. Am. J. Physiol. 219: 170–174, 1970.
 190. Walus, K. M., J. D. Fondacaro, and E. D. Jacobson. Effects of adenosine and its derivatives on the canine intestinal vasculature. Gastroenterology 81: 327–334, 1981.
 191. Walus, K. M., J. D. Fondacaro, and E. D. Jacobson. Effects of calcium and its antagonists on the canine mesenteric circulation. Circ. Res. 48: 692–700, 1981.
 192. Walus, K. M., J. D. Fondacaro, and E. D. Jacobson. Hemodynamic and metabolic changes during stimulation of ileal motility. Dig. Dis. Sci. 26: 1069–1077, 1981.
 193. Walus, K. M., J. D. Fondacaro, and E. D. Jacobson. A further characterization of histamine H1 and H2 effects and blockade in canine intestinal circulation. Dig. Dis. Sci. 26: 1542–1549, 1981.
 194. Walus, K. M., and E. D. Jacobson. Relation between small intestinal motility and circulation. Am. J. Physiol. 241 (Gastrointest. Liver Physiol. 4): G1–G15, 1981.
 195. Williams, J. H.Jr., M. Mager, and E. D. Jacobson. Relationship of mesenteric blood flow to intestinal absorption of carbohydrates. J. Lab. Clin. Med. 6: 853–863, 1964.
 196. Yu, Y., M. Luke, C. C. Yu, and C. C. Chou. Distribution of blood flow in the intestine with hypertonic glucose in the lumen. Surgery St. Louis 78: 520–525, 1975.
 197. Zeigler, M. G., R. W. Barton, and K. G. Swan. Mesenteric blood flow and small intestinal motility in the dog. Surgery St. Louis 73: 649–656, 1973.
 198. Zfass, A. M., L. Horowitz, and J. T. Farrar. Effect of vascular occlusion on small‐bowel intraluminal pressures in dogs. Am. J. Dig. Dis. 12: 154–161, 1967.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Ching Chung Chou. Gastrointestinal circulation and motor function. Compr Physiol 2011, Supplement 16: Handbook of Physiology, The Gastrointestinal System, Motility and Circulation: 1475-1518. First published in print 1989. doi: 10.1002/cphy.cp060140