Comprehensive Physiology Wiley Online Library

Electrophysiology of Gastric Ion Transport

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Structure of Gastric Mucosa
2 Voltage, Current, Ionic Flux, and Resistance
3 Membrane Permeability and Transport Properties
3.1 Cation and Anion Requirements for Acid Secretion
3.2 Sodium Absorption by Surface Cells and Chloride Secretion by Oxyntic Cells
3.3 Potassium Transport
3.4 Bicarbonate Secretion
3.5 Cell Membrane Potentials and Intracellular Ion Activities
3.6 Equivalent Circuit Analysis With Microelectrodes
3.7 Equivalent Circuit Analysis from Impedance Measurements
3.8 Segregation of Transport Functions and Associated Shunt Pathways
3.9 Electroneutral Hydrogen and Electrogenic Chloride Transport by Oxyntic Cells
4 Summary
Figure 1. Figure 1.

Vibrating‐probe measurement of current emerging from a surface epithelial cell (SEC) during control conditions and during amiloride 10−6 M, mucosal) treatment. Height of probe above epithelium (measured to midpoint of probe's excursion) and open‐circuit (OC) or short‐circuit (SC) conditions are indicated across top. Black bars, time periods when transepithelial voltage was clamped to ‐20 mV, mucosal negative. Resistance of this SEC (including the shunt pathway) was ∼5,000 Ω·cm2 20 mV·4 μA−1·cm−2) during control conditions and 15,000 Ω·cm2 20 mV·1.33 μA−1·cm−2) during amiloride treatment.

From Demarest et al. 25
Figure 2. Figure 2.

Example of a basolateral impalement of an oxyntic cell (OC) in a stimulated (.1 mM histamine) mucosa. Record starts with microelectrode in serosal bath registering a potential of 0 mV (lower trace). IN arrow, OC was impaled, and basolateral membrane potential (Vcs) of ‐62 mV was recorded. Upper trace, transepithelial potential (Vms) of ‐38 mV prior to impalement and apical membrane potential (Vmc) (= VmsVcs) of 24 mV after impalement. Repeated downward deflections in traces were due to transepithelial current pulses (amplitude = 20 μA/cm2; duration = 1 s; frequency = 12/min) used to determine transepithelial resistance, RT = ΔVms·20 μA−1·cm−2, and ratio of apical to basolateral membrane resistances, Ra/Rb = ΔVmcVcs. At ∼45 s after impalement, serosal solution [K+] was raised from 5 to 50 mM (black bar), causing a rapid and reversible depolarization of both membrane potentials and a decrease in relative resistance of the basolateral membrane, i.e., an increase in Ra/Rb. After return to 5 mM serosal [K+], microelectrode was withdrawn from cell at OUT arrow.

From Demarest and Machen 22
Figure 3. Figure 3.

Time course of stimulation followed continuously in a single OC in each of 5 mucosae. Values for time 0 were determined immediately before switching serosal superfusate to a superfusate containing 0.1 mM histamine. Vms and Vcs, transepithelial and basolateral membrane potential differences referred to serosal solution. Rt, transepithelial resistance; Rs/Rb, ratio of apical to basolateral membrane resistances. *, P < 0.05; **, P < 0.005; ***, P < 0.001.

From Demarest and Machen 22
Figure 4. Figure 4.

Equivalent circuit models of epithelia. M, mucosal compartment; C, cellular compartment; S, serosal compartment. Apical and basolateral cell membranes are represented by electromotive forces Ea and Eb, in series with resistances Ra and Rb. Rs, shunt pathway; electromotive force across this resistance was assumed to be 0. Horizontal dashed lines connect transepithelial (Vms), apical (Vmc), and basolateral (Vcs) membrane potentials to points in circuit from which they are measured. Curved arrow, current (Ic) that circulates within epithelium under open‐circuit conditions. A: simple circuit for flat epithelium with only 1 cell type. B: more realistic circuit for gastric mucosa that represents 2 cell types (oc, oxyntic cells; sec, surface epithelial cells, each with a paracellular shunt).

Figure 5. Figure 5.

Models for H+ and Cl transport by secreting (A) and resting (B) OC. Apical membrane contains H+‐K+ pump and conductive pathways for K+ and Cl. Basolateral membrane contains Na+‐K+ pump, K+ conductance, and separate Na+‐H+ and Cl‐HCO3 exchangers (ex). Mechanisms surrounded with dotted lines in A can account for HCl secretion by stimulated OC; mechanisms surrounded with dotted lines in B can account for Cl secretion by resting OC.

From Reenstra et al. 89
Figure 6. Figure 6.

Ion‐transport pathways in SEC and OC. Filled circles, ATP‐driven pumps (Na+‐K+‐ and H+‐K+‐ATPases). Open circles, coupled exchangers (Na+‐H+ and Cl‐HCO3). Open cylinders, conductance channels (K+ and Cl). Known intracellular concentrations and effects of inhibitors are indicated. Value for [Na+]i in SEC is taken from unpublished measurements by T. Zeuthen and T. E. Machen.



Figure 1.

Vibrating‐probe measurement of current emerging from a surface epithelial cell (SEC) during control conditions and during amiloride 10−6 M, mucosal) treatment. Height of probe above epithelium (measured to midpoint of probe's excursion) and open‐circuit (OC) or short‐circuit (SC) conditions are indicated across top. Black bars, time periods when transepithelial voltage was clamped to ‐20 mV, mucosal negative. Resistance of this SEC (including the shunt pathway) was ∼5,000 Ω·cm2 20 mV·4 μA−1·cm−2) during control conditions and 15,000 Ω·cm2 20 mV·1.33 μA−1·cm−2) during amiloride treatment.

From Demarest et al. 25


Figure 2.

Example of a basolateral impalement of an oxyntic cell (OC) in a stimulated (.1 mM histamine) mucosa. Record starts with microelectrode in serosal bath registering a potential of 0 mV (lower trace). IN arrow, OC was impaled, and basolateral membrane potential (Vcs) of ‐62 mV was recorded. Upper trace, transepithelial potential (Vms) of ‐38 mV prior to impalement and apical membrane potential (Vmc) (= VmsVcs) of 24 mV after impalement. Repeated downward deflections in traces were due to transepithelial current pulses (amplitude = 20 μA/cm2; duration = 1 s; frequency = 12/min) used to determine transepithelial resistance, RT = ΔVms·20 μA−1·cm−2, and ratio of apical to basolateral membrane resistances, Ra/Rb = ΔVmcVcs. At ∼45 s after impalement, serosal solution [K+] was raised from 5 to 50 mM (black bar), causing a rapid and reversible depolarization of both membrane potentials and a decrease in relative resistance of the basolateral membrane, i.e., an increase in Ra/Rb. After return to 5 mM serosal [K+], microelectrode was withdrawn from cell at OUT arrow.

From Demarest and Machen 22


Figure 3.

Time course of stimulation followed continuously in a single OC in each of 5 mucosae. Values for time 0 were determined immediately before switching serosal superfusate to a superfusate containing 0.1 mM histamine. Vms and Vcs, transepithelial and basolateral membrane potential differences referred to serosal solution. Rt, transepithelial resistance; Rs/Rb, ratio of apical to basolateral membrane resistances. *, P < 0.05; **, P < 0.005; ***, P < 0.001.

From Demarest and Machen 22


Figure 4.

Equivalent circuit models of epithelia. M, mucosal compartment; C, cellular compartment; S, serosal compartment. Apical and basolateral cell membranes are represented by electromotive forces Ea and Eb, in series with resistances Ra and Rb. Rs, shunt pathway; electromotive force across this resistance was assumed to be 0. Horizontal dashed lines connect transepithelial (Vms), apical (Vmc), and basolateral (Vcs) membrane potentials to points in circuit from which they are measured. Curved arrow, current (Ic) that circulates within epithelium under open‐circuit conditions. A: simple circuit for flat epithelium with only 1 cell type. B: more realistic circuit for gastric mucosa that represents 2 cell types (oc, oxyntic cells; sec, surface epithelial cells, each with a paracellular shunt).



Figure 5.

Models for H+ and Cl transport by secreting (A) and resting (B) OC. Apical membrane contains H+‐K+ pump and conductive pathways for K+ and Cl. Basolateral membrane contains Na+‐K+ pump, K+ conductance, and separate Na+‐H+ and Cl‐HCO3 exchangers (ex). Mechanisms surrounded with dotted lines in A can account for HCl secretion by stimulated OC; mechanisms surrounded with dotted lines in B can account for Cl secretion by resting OC.

From Reenstra et al. 89


Figure 6.

Ion‐transport pathways in SEC and OC. Filled circles, ATP‐driven pumps (Na+‐K+‐ and H+‐K+‐ATPases). Open circles, coupled exchangers (Na+‐H+ and Cl‐HCO3). Open cylinders, conductance channels (K+ and Cl). Known intracellular concentrations and effects of inhibitors are indicated. Value for [Na+]i in SEC is taken from unpublished measurements by T. Zeuthen and T. E. Machen.

References
 1. Blum, A. L., G. T. Shah, V. D. Wiebelhaus, F. T. Brennan, H. F. Helander, R. Ceballos, and G. Sachs. Pronase method for isolation of viable cells from Necturus.gastric mucosa. Gastroenterology 61: 189–200, 1971.
 2. Bornstein, A. M., W. H. Dennis, and W. S. Rehm. Movement of water, sodium, chloride and hydrogen across the resting stomach. Am. J. Physiol. 197: 332–336, 1959.
 3. Boron, W. F., and E. L. Boulpaep. Intracellular pH regulation in the renal proximal tubule of the salamander. Basolateral HCO3‐ transport. J. Gen. Physiol. 81: 53–94, 1983.
 4. Boulpaep, E. L., and H. Sackin. Electrical analysis of intraepithelial barriers. Curr. Top. Membr. Transp. 13: 169–197, 1980.
 5. Cabantchik, Z. I., and A. Rothstein. Membrane proteins related to anion permeability of human red blood cells. J. Membr. Biol. 15: 207–226, 1979.
 6. Carrasquer, G., T.‐C. Chu, W. S. Rehm, and M. Schwartz. Evidence for electrogenic Na‐Cl symport in the in vitro frog stomach. Am. J. Physiol. 242 (Gastrointest. Liver Physiol.5): G620–G627, 1982.
 7. Chew, C. S., and M. Brown. Release of intracellular Ca2+ and elevation of inositol trisphosphate by secretagogues. Biochim. Biophys. Acta 888: 116–125, 1986.
 8. Claude, P. Morphological factors influencing transepithelial permeability: a model for the resistance of the zonula occludens. J. Membr. Biol. 39: 219–232, 1978.
 9. Claude, P., and D. A. Goodenough. Fracture faces of zonulae occludentes from “tight” and “leaky” epithelia. J. Cell Biol. 58: 390–400, 1973.
 10. Clausen, C., T. E. Machen, and J. M. Diamond. Changes in the cell membranes of the bullfrog gastric mucosa with acid secretion. Science Wash. DC 217: 448–459, 1982.
 11. Clausen, C., T. E. Machen, and J. M. Diamond. Use of AC impedance analysis to study membrane changes related to acid secretion in amphibian gastric mucosa. Biophys. J. 41: 167–178, 1983.
 12. Cook, D. I., and E. Frömter. Is the voltage divider ratio a reliable estimate of the resistance ratio of the cell membranes in tubular epithelia? Pfluegers Arch. 403: 388–395, 1985.
 13. Crane, E. E., and R. E. Davies. Transport of radioactive Na and K through the gastric mucosa. Biochem. J. 45: 23–24, 1949.
 14. Crane, E. E., R. E. Davies, and N. M. Longmuir. The effect of electrical current on HCl secretion by isolated frog gastric mucosa. Biochem. J. 43: 336–342, 1948.
 15. Cuppoletti, J., and G. Sachs. Regulation of gastric acid secretion via modulation of a chloride conductance. J. Biol. Chem. 259: 14952–14959, 1984.
 16. Curci, S., L. Debellis, and E. Frömter. Evidence for rheogenic sodium bicarbonate cotransport in the basolateral membrane of oxyntic cells of frog gastric fundus. Pfluegers Arch. 408: 497–504, 1987.
 17. Curci, S., and T. Schettino. Effect of external sodium on intracellular chloride activity in the surface cells of frog gastric mucosa. Microelectrode studies. Pfluegers Arch. 401: 152–159, 1984.
 18. Curci, S., T. Schettino, and E. Frömter. Histamine reduces Cl‐ activity in surface epithelial cells of frog gastric mucosa. Suggestive evidence for ionic coupling between surface epithelial and oxyntic cells. Pfluegers Arch. 406: 204–211, 1986.
 19. Davis, C. W., and A. L. Finn. Cell volume regulation in frog urinary bladder. Federation Proc. 44: 2520–2525, 1985.
 20. Davis, T. L., J. R. Rutledge, D. C. Keesee, F. J. Bajandas, and W. S. Rehm. Acid secretion, potential, and resistance of frog stomach in K+‐free solutions. Am. J. Physiol. 209: 146–152, 1965.
 21. Davis, T. L., J. R. Rutledge, and W. S. Rehm. Effect of potassium on secretion and potential of frog's gastric mucosa in Cl‐‐free solutions. Am. J. Physiol. 205: 873–877, 1963.
 22. Dawson, D. C., and A. R. Cooke. Parallel pathways for ion transport across rat gastric mucosa: effect of ethanol. Am. J. Physiol. 235 (Endocrinol. Metab. Gastrointest. Physiol.4): E7–E15, 1978.
 23. Demarest, J. R., and T. E. Machen. Microelectrode measurements from oxyntic cells in intact Necturus.gastric mucosa. Am. J. Physiol. 249 (Cell Physiol. 18): C535–C540, 1985.
 24. Demarest, J. R., and T. E. Machen. Effects of omeprazole on the electrical properties of oxyntic cells (Abstract). Federation Proc. 45: 894, 1986.
 25. Demarest, J. R., and T. E. Machen. Different paracellular resistances are associated with surface and oxyntic cells in the gastric mucosa (Abstract). Biophys. J. 51: 340a, 1987.
 26. Demarest, J. R., C. Scheffey, and T. E. Machen. Segregation of gastric Na and Cl transport: a vibrating probe and microelectrode study. Am. J. Physiol. 251 (Cell Physiol. 20): C643–C648, 1986.
 27. Diamond, J. M. Transcellular cross‐talk between epithelial cell membranes. Nature Lond. 300: 683–685, 1982.
 28. Diamond, J. M., and T. E. Machen. Impedance analysis in epithelia and the problem of gastric acid secretion. J. Membr. Biol. 73: 17–41, 1983.
 29. Dinno, F., M. Dinno, C. H. Lee, M. Schwartz, and T. H. MacKrell. Determination of electrogenicity of frog gastric mucosa in chloride‐free solutions by using barbiturates. Proc. Soc. Exp. Biol. Med. 138: 479–481, 1971.
 30. Dino, M. A., M. Schwartz, G. Carrasquer, and W. S. Rehm. Microelectrode study of effects of luminal K+ on surface cells of frog stomach. Biochim. Biophys. Acta 856: 629–633, 1986.
 31. Durbin, R. P. Anion requirements for gastric acid secretion. J. Gen. Physiol. 4: 735–748, 1964.
 32. Durbin, R. P. Electrical potential difference of the gastric mucosa. In: Handbook of Physiology. Alimentary Canal, edited by C. F. Code. Washington, DC: Am. Physiol. Soc., 1967, sect. 6, vol. II, chapt. 49, p. 879–888.
 33. Fellinius, E., T. Berglindh, G. Sachs, L. Olbe, B. Elander, S. E. Sjostrand, and B. Wallmark. Substituted benzimidazoles inhibit gastric acid secretion by blocking (H+ + K+)‐ATPase. Nature Lond. 290: 159–161, 1981.
 34. Flemström, G. Na+ transport and impedance properties of the isolated frog gastric mucosa at different O2 tensions. Biochim. Biophys. Acta 225: 35–45, 1971.
 35. Flemström, G. Active alkalinization by amphibian gastric fundic mucosa in vitro. Am. J. Physiol. 233 (Endocrinol. Metab. Gastrointest. Physiol.2): E1–E12, 1977.
 36. Flemström, G., and A. Garner. Gastroduodenal HCO3‐ transport: characteristics and proposed role in acidity regulation and mucosal protection. Am. J. Physiol. 242 (Gastrointest. Liver Physiol.5): G183–G193, 1982.
 37. Flemström, G., and G. Sachs. Ion transport by amphibian antrum in vitro. I. General characteristics. Am. J. Physiol. 228: 1188–1198, 1975.
 38. Forte, J. G. Three components of Cl‐ flux across isolated bullfrog gastric mucosa. Am. J. Physiol. 216: 167–174, 1969.
 39. Forte, J. G., P. H. Adams, and R. E. Davies. The source of the gastric mucosal potential. Nature Lond. 197: 874–876, 1963.
 40. Forte, J. G., and T. E. Machen. Transport and electrical phenomena in resting and secreting piglet gastric mucosa. J. Physiol. Lond. 244: 33–51, 1975.
 41. Frizzell, R. A., M. Field, and S. G. Schultz. Sodium‐coupled chloride transport by epithelial tissues. Am. J. Physiol. 236 (Renal Fluid Electrolyte Physiol.5): F1–F8, 1979.
 42. Frömter, E., B. Gebler, K. Schopow, and H. Pockrandt‐Hemstedt. Cation and anion permeability of rabbit submaxillary main duct. In: Secretory Mechanisms of Exocrine Glands, edited by N. A. Thorn and O. H. Petersen. Copenhagen: Munksgaard, 1974, p. 496–509.
 43. Garratt, J. R., and P. A. Parsons. Preliminary observations on the permeability of submandibular glands to horseradish peroxidase in rabbits. In: Secretory Mechanisms of Exocrine Glands, edited by N. A. Thorn and O. H. Petersen. Copenhagen: Munksgaard, 1974, p. 487–492.
 44. Grady, T. P., and L. Y. Cheung. Microelectrode studies of Necturus.antral mucosa: electrical potentials and resistances. Am. J. Physiol. 244 (Gastrointest. Liver Physiol.7): G71–G75, 1983.
 45. Hansen, T., J. F. G. Slegers, and S. L. Bonting. Gastric acid secretion in the lizard. Ionic requirements and effects of inhibitors. Biochim. Biophys. Acta 382: 590–608, 1975.
 46. Harris, J. B., and I. S. Edelman. Transport of potassium by the gastric mucosa of the frog. Am. J. Physiol. 198: 280–288, 1960.
 47. Harris, J. B., and I. S. Edelman. Chemical concentration gradients and electrical properties of gastric mucosa. Am. J. Physiol. 206: 769–782, 1964.
 48. Heinz, E., and R. P. Durbin. Studies of the chloride transport in the gastric mucosa of the frog. J. Gen. Physiol. 41: 101–117, 1957.
 49. Helander, H. F., and R. P. Durbin. Localization of ouabain‐binding sites in frog gastric mucosa. Am. J. Physiol. 243 (Gastrointest. Liver Physiol.6): G297–G303, 1982.
 50. Helander, H. F., S. S. Sanders, L. L. Shanbour, and W. S. Rehm. Reversibility of effects of very hypotonic fluids on in vitro frog gastric mucosa: a functional morphological study. Acta Physiol. Scand. 95: 353–363, 1975.
 51. Hersey, S. J., G. Sachs, and D. K. Kasbeker. Acid secretion by frog gastric mucosa is electroneutral. Am. J. Physiol. 248 (Gastrointest. Liver Physiol.11): G246–G250, 1985.
 52. Hogben, C. A. M. Active transport of chloride by isolated frog gastric epithelium. Origin of the gastric mucosal potential. Am. J. Physiol. 180: 641–659, 1955.
 53. Kafoglis, K., S. J. Hersey, and J. F. White. Microelectrode measurements of K+ and pH in rabbit gastric glands: effect of histamine. Am. J. Physiol. 246 (Gastrointest. Liver Physiol.9): G433–G444, 1984.
 54. Kitahara, S., K. R. Fox, and C. A. M. Hogben. Acid secretion, Na+ absorption, and the origin of the potential difference across isolated mammalian stomachs. Am. J. Dig. Dis. 14: 221–238, 1969.
 55. Koelz, H. R., G. Sachs, and T. Berglindh. Cation effects on acid secretion in rabbit gastric glands. Am. J. Physiol. 241 (Gastrointest. Liver Physiol.4): G431–G442, 1981.
 56. Kottra, G., and E. Frömter. Rapid determination of intraepithelial resistance barriers by alternating current spectroscopy. I. Experimental procedures. J. Membr. Biol. 402: 409–420, 1984.
 57. Kottra, G., and E. Frömter. Rapid determination of intraepithelial resistance barriers by alternating current spectroscopy. II. Test of model circuits and quantification of results. J. Membr. Biol. 402: 421–432, 1984.
 58. Kuo, Y.‐J., and L. L. Shanbour. Effects of cyclic AMP, ouabain and furosemide on ion transport in isolated canine gastric mucosa. J. Physiol. Lond. 309: 29–43, 1980.
 59. Lee, H. C., H. Breitbart, M. Berman, and J. G. Forte. Potassium‐stimulated ATPase activity and hydrogen transport in gastric microsomal vesicles. Biochim. Biophys. Acta 553: 107–131, 1979.
 60. LeFevre, M. E., E. J. Gohmann, Jr., and W. S. Rehm. An hypothesis for discovery of inhibitors of gastric acid secretion. Am. J. Physiol. 207: 613–618, 1964.
 61. Lewis, S. A., and N. K. Wills. Electrical properties of the rabbit urinary bladder assessed using gramiciden D. J. Membr. Biol. 67: 45–53, 1982.
 62. Logsdon, C. D., and T. E. Machen. Involvement of extracellular calcium in gastric stimulation. Am. J. Physiol. 241 (Gastrointest. Liver Physiol.4): G365–G375, 1981.
 63. Luciano, E., E. Reale, G. Rechkemmer, and W. V. Engelhardt. Structure of the zonulae occludentes and the permeability of the epithelium to short chain fatty acids in the proximal and distal colon of the guinea pig. J. Membr. Biol. 82: 145–156, 1984.
 64. Machen, T. E., D. Erlij, and F. B. P. Wooding. Permeable junctional complexes. The movement of lanthanum across rabbit gallbladder and intestine. J. Cell Biol. 54: 302–312, 1972.
 65. Machen, T. E., and J. G. Forte. Gastric secretion. In: Membrane Transport in Biology, edited by G. Giebisch, D. C. Tosteson, and H. H. Ussing. Berlin: Springer‐Verlag, 1979, vol. 4B, p. 693–747.
 66. Machen, T. E., and J. G. Forte. Anion secretion by gastric mucosa. In: Chloride Transport Coupling in Biological Membranes and Epithelia, edited by G. A. Gerencser. Amsterdam: Elsevier, 1983, p. 415–460.
 67. Machen, T. E., and W. L. McLennan. Na+‐dependent H+ and Cl‐ transport in in vitro frog gastric mucosa. Am. J. Physiol. 238 (Gastrointest. Liver Physiol.1): G403–G413, 1980.
 68. Machen, T. E., and A. M. Paradiso. Regulation of intracellular pH in the stomach. Annu. Rev. Physiol. 49: 19–33, 1987.
 69. Machen, T. E., W. Silen, and J. G. Forte. Na+ transport by mammalian stomach. Am. J. Physiol. 234 (Endocrinol. Metab. Gastrointest. Physiol.3): E228–E235, 1978.
 70. Machen, T. E., and T. Zeuthen. Cl‐ transport by gastric mucosa: Cl‐ activity and membrane permeability. Phil. Trans. R. Soc. Lond. B Biol. Sci. 299: 559–573, 1982.
 71. Makhlouf, G. M. A model for passive transport of potassium by the stomach: evidence from in vitro studies. Am. J. Physiol. 227: 1285–1288, 1974.
 72. Makhlouf, G. M., and G. R. Duckworth. Secretion and electrical activity of a unilateral in vitro gastric mucosa. Gastroenterology 65: 907–911, 1973.
 73. Manning, E. C., and T. E. Machen. Effects of bicarbonate and pH on chloride transport by gastric mucosa. Am. J. Physiol. 243 (Gastrointest. Liver Physiol.6): G60–G68, 1982.
 74. Marcial, M. A., S. L. Carlson, and J. L. Madara. Partitioning of paracellular conductance along the ileal crypt‐villus axis: a hypothesis based on structural analysis with detailed consideration of tight junction structure‐function relationships. J. Membr. Biol. 80: 59–70, 1984.
 75. Martinez‐Palomo, A., and D. Erlij. Structure of tight junctions in epithelia with different permeability. Proc. Natl. Acad. Sci. USA 72: 4487–4491, 1975.
 76. McLennan, W. L., T. E. Machen, and T. Zeuthen. Ba2+ inhibition of electrogenic Cl‐ secretion by in vitro frog and piglet gastric mucosa. Am. J. Physiol. 239 (Gastrointest. Liver Physiol.2): G151–G160, 1980.
 77. Meyer, R. A., D. McGinley, and Z. Posalaky. The gastric mucosal barrier: structure of intercellular junctions in the dog. J. Ultrastruct. Res. 86: 192–201, 1984.
 78. Michelangeli, F. Acid secretion and intracellular pH in isolated oxyntic cells. J. Membr. Biol. 38: 31–50, 1978.
 79. Muallen, S., C. Burnham, D. Blissard, T. Berglindh, and G. Sachs. Electrolyte transport across the basolateral membrane of the parietal cells. J. Biol. Chem. 260: 6641–6649, 1985.
 80. Nagel, W., J. F. Garcia‐Dias, and A. Essig. Contribution of junctional conductance to the cellular voltage‐divider ratio in frog skins. Pfluegers Arch. 399: 336–341, 1983.
 81. Negulescu, P. A., and T. E. Machen. Intracellular Ca regulation during secretagogue‐secretion of the parietal cell. Am. J. Physiol. 254 (Cell Physiol. 23): C130–C140, 1988.
 82. Noyes, D. H., and W. S. Rehm. Voltage response of frog gastric mucosa to direct current. Am. J. Physiol. 219: 184–192, 1970. Oberleithner, H., W. Guggino, and G. Giebisch. Resistance properties of the diluting segment of the amphibian kidneys: influence of potassium adaptation. J. Membr. Biol. 88: 139–147, 1985.
 83. Obrink, K. J. Studies on the kinetics of the parietal secretion of the stomach. Acta Physiol. Scand. Suppl. 5: 1–106, 1948.
 84. O'Callaghan, J., S. S. Sanders, R. L. Shoemaker, and W. S. Rehm. Barium and K+ on surface and tubular cell resistances of frog stomach with microelectrodes. Am. J. Physiol. 227: 273–280, 1974.
 85. Okada, Y., and S. Ueda. Electrical membrane responses to secretagogues in parietal cells of the rat gastric mucosa in culture. J. Physiol. Lond. 354: 109–119, 1984.
 86. Palmer, L. G. Ion selectivity of the apical membrane Na channel in the toad urinary bladder. J. Membr. Biol. 67: 91–98, 1982.
 87. Paradiso, A. M., P. A. Negulescu, and T. E. Machen. Na+‐H+ and Cl‐‐OH‐ (HCO3‐) exchange in gastric glands. Am. J. Physiol. 250 (Gastrointest. Liver Physiol.13): G524–G534, 1986.
 88. Paradiso, A. M., R. Y. Tsien, J. R. Demarest, and T. E. Machen. Na‐H and Cl‐HCO3 exchange in rabbit oxyntic cells using fluorescence microscopy. Am. J. Physiol. 253 (Cell Physiol. 22): C30–C36, 1987.
 89. Reenstra, W. W., J. D. Bettencourt, and J. G. Forte. Active K+ absorption by the gastric mucosa: inhibition by omeprazole. Am. J. Physiol. 250 (Gastrointest. Liver Physiol.13): G455–G460, 1986.
 90. Reenstra, W. W., J. D. Bettencourt, and J. G. Forte. Mechanisms of active Cl‐ secretion by frog gastric mucosa. Am. J. Physiol. 252 (Gastrointest. Liver Physiol.15): G543–G547, 1987.
 91. Reenstra, W. W., and J. G. Forte. Mechanism of inhibition of gastric acid secretion by SCN‐: interrelation of SCN‐ flux and inhibition. Am. J. Physiol. 250 (Gastrointest. Liver Physiol.13): G76–G84, 1986.
 92. Rehm, W. S. Effect of electric current on gastric hydrogen ion and chloride ion secretion. Am. J. Physiol. 185: 325–331, 1956.
 93. Rehm, W. S. Acid secretion, resistance, short‐circuit current, and voltage‐clamping in frog's stomach. Am. J. Physiol. 203: 63–72, 1962.
 94. Rehm, W. S. Ion permeability and electrical resistance of the frog's gastric mucosa. Federation Proc. 26: 1303–1313, 1967.
 95. Rehm, W. S. The metabolic state and the response of the potential of frog gastric mucosa to changes in external ion concentration. J. Gen. Physiol. 51: 250s–260s, 1968.
 96. Rehm, W. S., G. Carrasquer, and M. Schwartz. Contributions of electrogenic pumps and parallel passive pathways to transmembrane voltage. In: Membrane Biophysics. Physical Methods in the Study of Epithelia, edited by M. A. Dinno, A. B. Callahan, and T. C. Rozzell. New York: Liss, 1983, vol. II, p. 313–327.
 97. Rehm, W. S., G. Carrasquer, and M. Schwartz. Effects of NaSCN and omeprazole on resistance and potential of fundus of Rana pipiens. Am. J. Physiol. 250 (Gastrointest. Liver Physiol.13): G511–G517, 1986.
 98. Rehm, W. S., T.‐C. Chu, M. Schwartz, and G. Carrasquer. Mechanisms responsible for SCN increase in resistance of in vitro frog gastric mucosa. Am. J. Physiol. 245 (Gastrointest. Liver Physiol.8): G143–G156, 1983.
 99. Rehm, W. S., and M. E. LeFevre. Effect of dinitrophenol on potential, resistance, and H+ rate of frog stomach. Am. J. Physiol. 208: 922–930, 1965.
 100. Rehm, W. S., and S. S. Sanders. Implications of the neutral Cl‐‐HCO3‐ exchange mechanism in gastric mucosa. Ann. NY Acad. Sci. 264: 442–455, 1975.
 101. Rehm, W. S., and S. S. Sanders. Electrical events during activation and inhibition of gastric HCl secretion. Gastroenterology 73: 959–969, 1977.
 102. Rehm, W. S., S. S. Sanders, M. G. Tant, F. M. Hoffman, and J. T. Tarvin. Conductance of frog gastric mucosa under varying conditions as determined by square wave analysis. In: Gastric Hydrogen Ion Secretion, edited by D. K. Kasbeker, G. Sachs, and W. S. Rehm. New York: Dekker, 1977, p. 29–53.
 103. Reuss, L., and A. L. Finn. Passive electrical properties of the toad urinary bladder epithelium. Intracellular electrical coupling and transepithelial cellular and shunt conductance. J. Gen. Physiol. 64: 1–25, 1974.
 104. Ring, A., and J. Sandblom. Impedance of the frog gastric mucosa: the Teorell‐Wensall effect. Ups. J. Med. Sci. 65: 283–293, 1980.
 105. Sachs, G., H. H. Chang, E. Rabon, R. Schackmann, M. Lewin, and G. Saccomani. A nonelectrogenic H+ pump in plasma membranes of hog stomach. J. Biol. Chem. 251: 7690–7698, 1976.
 106. Sachs, G., R. Shoemaker, and B. I. Hirschowitz. Action of 2‐deoxy‐d‐glucose on frog gastric mucosa. Am. J. Physiol. 209: 461–466, 1965.
 107. Sachs, G., R. L. Shoemaker, and B. I. Hirschowitz. Effects of sodium removal on acid secretion by the frog gastric mucosa. Proc. Soc. Exp. Biol. Med. 123: 47–52, 1986.
 108. Sanders, M. J., A. Ayalon, M. Roll, and A. H. Soll. The apical surface of canine chief cell monolayers resists H+ back diffusion. Nature Lond. 313: 52–54, 1985.
 109. Sanders, S. S., V. B. Hayne, Jr., and W. S. Rehm. Normal H+ rates in frog stomach in absence of exogenous CO2 and a note on pH stat method. Am. J. Physiol. 225: 1311–1321, 1973.
 110. Schettino, T., and S. Curci. Intracellular potassium activity in epithelial cells of frog fundic mucosa. Pfluegers Arch. 383: 99–103, 1980.
 111. Schettino, T., and S. Curci. On the luminal membrane permeability to Cl‐ of Necturus.gastric surface cells. Pfluegers Arch. 403: 331–333, 1985.
 112. Schettino, T., M. Köhler, and E. Frömter. Membrane potentials of individual cells of isolated gastric glands of rabbit. Pfluegers Arch. 405: 58–65, 1985.
 113. Schneyer, L. H. Amiloride inhibition of ion transport in perfused excretory duct of rat submaxillary gland. Am. J. Physiol. 219: 1050–1055, 1970.
 114. Schultz, S. G. Homocellular regulatory mechanisms in sodium‐transporting epithelia: avoidance of extinction by “flush‐through.” Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol.10): F579–F590, 1981.
 115. Schultz, S. G., R. A. Frizzell, and H. N. Nellans. Active sodium transport and the electrophysiology of the rabbit colon. J. Membr. Biol. 33: 351–384, 1976.
 116. Schwartz, M., and T. N. Mackrell. A confirmation of the electrogeneity of frog gastric mucosa by using methexyfluorane. Proc. Soc. Exp. Biol. Med. 130: 1048–1051, 1969.
 117. Sedar, A. W., and J. G. Forte. Effects of calcium depletion on the junctional complex between oxyntic cells of gastric glands. J. Cell Biol. 22: 173–188, 1964.
 118. Sen, P. C., L. L. Tague, and T. K. Ray. Secretion of H+ and K+ by bullfrog gastric mucosa: characterization of K+ transport pathway. Am. J. Physiol. 239 (Gastrointest. Liver Physiol.2): G485–G492, 1980.
 119. Shiba, H. Heaviside's “Bessel cable” as an electric model for flat simple epithelial cells with low resistive junctional membranes. J. Theor. Biol. 30: 59–68, 1970.
 120. Shimono, M., T. Yamamura, and G. Fumagalli. Intracellular junctions in salivary glands: freeze‐fracture and tracer studies of normal rat sublingual gland. J. Ultrastruct. Res. 7: 286–299, 1980.
 121. Shoemaker, R. L. Characteristics of the Necturus. In Vitro Gastric Mucosa. Birmingham: Univ. of Alabama, 1967. PhD thesis.
 122. Shoemaker, R. L. Micropuncture studies using the amphibian fundic gastric mucosa, in vitro. In: Gastric Ion Transport, edited by K. J. Obrink and G. Flemstrom. Uppsala, Sweden: Acta Physiol. Scand., 1978, p. 173–180. (Special Suppl.).
 123. Silen, W., T. E. Machen, and J. G. Forte. Acid‐base balance in amphibian gastric mucosa. Am. J. Physiol. 229: 721–730, 1975.
 124. Simonson, J. V. A., and H. L. Bank. Freeze‐fracture and lead ion tracer evidence for a paracellular fluid secretory pathway in rat parotid glands. Anat. Rec. 208: 69–80, 1984.
 125. Spenney, J. G., G. Flemström, R. L. Shoemaker, and G. Sachs. Quantitation of conductance pathways in antral gastric mucosa. J. Gen. Physiol. 65: 645–662, 1975.
 126. Spenney, J. G., R. L. Shoemaker, and G. Sachs. Micro‐electrode studies of fundic gastric mucosa: cellular coupling and shunt conductance. J. Membr. Biol. 19: 105–128, 1974.
 127. Starlinger, M. J., M. J. Hollands, P. H. Rowe, J. B. Matthews, and W. Silen. Chloride transport of frog gastric fundus: effects of omeprazole. Am. J. Physiol. 250 (Gastrointest. Liver Physiol.13): G118–G126, 1986.
 128. Takeuchi, K., A. Merhav, and W. Silen. Mechanism of luminal alkalinization by bullfrog gastric mucosa. Am. J. Physiol. 243 (Gastrointest. Liver Physiol.6): G377–G388, 1982.
 129. Teorell, T., and R. Wessall. Electrical impedance properties of surviving gastric mucosa of the frog. Acta Physiol. Scand. 10: 243–257, 1945.
 130. Thompson, S. M. Relations between chord and slope conductances and equivalent electromotive forces. Am. J. Physiol. 250 (Cell Physiol. 19): C333–C339, 1986.
 131. Tripathi, S., and P. K. Rangachari. In vitro primate gastric mucosa: electrical characteristics. Am. J. Physiol. 239 (Gastrointest. Liver Physiol.2): G77–G82, 1980.
 132. Ueda, S., D. D. F. Loo, and G. Sachs. Regulation of K channels in the basolateral membrane of Necturus.oxyntic cells. J. Membr. Biol. 97: 31–41, 1987.
 133. Ussing, H. H., and A. Leaf. Transport across multimembrane systems. In: Membrane Transport in Biology, edited by G. Giebisch, D. C. Tosteson, and H. H. Ussing. New York: Springer‐Verlag, 1978, p. 1–26.
 134. Van Driessche, W., and W. Zeiske. Ionic channels in epithelial cell membranes. Physiol. Rev. 65: 833–903, 1985.
 135. Villegas, L. Cellular location of the electrical potential difference in the frog gastric mucosa. Biochim. Biophys. Acta 64: 359–367, 1962.
 136. Villegas, L., F. Michelangeli, and L. Sananes. Asymmetrical response of oxyntic cells to direct current in nonstimulated frog gastric mucosa. Biochim. Biophys. Acta 219: 518–520, 1970.
 137. Wallmark, B., A. Brändström, and H. Larsson. Evidence for acid‐induced transformation of omeprazole into an active inhibitor of (H+ + K+)‐ATPase within the parietal cell. Biochim. Biophys. Acta 778: 549–558, 1984.
 138. Wallmark, B., B.‐M. Jaresten, H. Larsson, B. Ryberg, A. Brändström, and E. Fellenius. Differentiation among inhibitory actions of omeprazole, cimetidine, and SCN‐ on gastric acid secretion. Am. J. Physiol. 245 (Gastrointest. Liver Physiol.8): G64–G71, 1983.
 139. Wallmark, B., G. Sachs, S. Mardh, and E. Fellenius. Inhibition of gastric (H+ + K+)‐ATPase by the substituted benzimidazole, picoprazole. Biochim. Biophys. Acta 728: 31–38, 1983.
 140. Weinstein, R. S., B. F. Banner, J. R. Kuszak, N. J. Thomas, and B. U. Pauli. Ultrastructure of tight junctions in prostaglandin‐exposed rat stomach. Dig. Dis. Sci. 31, Suppl. 2: 115S–119S, 1986.
 141. Welsh, M. J., P. L. Smith, M. Fromm, and R. A. Frizzell. Crypts are the site of intestinal fluid and electrolyte secretion. Science Wash. DC 218: 1219–1221, 1982.
 142. Will, P. C., R. N. Cortwright, R. G. Groseclose, and U. Hopfer. Amiloride‐sensitive salt and fluid absorption in small intestine of sodium‐depleted rats. Am. J. Physiol. 248 (Gastrointest. Liver Physiol.11): G133–G141, 1985.
 143. Winship, D. H., and C. R. Caflisch. Intramucosal gastric acid concentration determined by glass microelectrode technique. Biochim Biophys. Acta 291: 280–286, 1973.
 144. Wolosin, J. M., and J. G. Forte. Stimulation of oxyntic cell triggers K+ and Cl‐ conductances in apical H+‐K+‐ATPase membrane. Am. J. Physiol. 246 (Cell Physiol. 15): C537–C545, 1984.
 145. Wright, G. H. Electrical impedance, ultrastructure and ion transport in foetal gastric mucosa. J. Physiol. Lond. 242: 661–672, 1974.
 146. Zeiske, W., T. E. Machen, and W. Van Driessche. Cl‐ and K+‐related fluctuations of ionic current through oxyntic cells in frog gastric mucosa. Am. J. Physiol. 245 (Gastrointest. Liver Physiol.8): G797–G807, 1983.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Jeffrey R. Demarest, Terry E. Machen. Electrophysiology of Gastric Ion Transport. Compr Physiol 2011, Supplement 18: Handbook of Physiology, The Gastrointestinal System, Salivary, Gastric, Pancreatic, and Hepatobiliary Secretion: 185-205. First published in print 1989. doi: 10.1002/cphy.cp060310