Comprehensive Physiology Wiley Online Library

Ion and Water Transport in Toad Urinary Epithelia in Vitro

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Structure of Toad Urinary Bladder
2 Ion Movements Across Epithelium
2.1 Apical Plasma Membrane
2.2 What ore the occurrence and characteristics of individual channels?
2.3 Basolateral Plasma Membrane
2.4 Paracellular Pathway
2.5 Representations of Transepithelial Transport
2.6 Membrane Potentials
3 Water Movements Across Epithelium
4 Composition of Epithelial Cells
4.1 Sodium
4.2 Potassium
4.3 Chloride
4.4 Calcium
4.5 pH
5 Metabolism and Transepithelial Transport
6 Regulation and Control of Transepithelial Transport and of Cell Composition
7 Hormonal Control of Transepithelial Transport
8 Summary
Figure 1. Figure 1.

Basic diagram of pathways for solute and H2O movements across toad urinary bladder. A: paracellular pathway comprised of tight junction (a) and lateral intercellular space (b). B: cellular pathway comprised of two barriers (apical and basolateral membranes) and three compartments [urinary or mucosal (1), cell (2), and interstitial or serosal (3)]. Normally rate constant k1 → 2 for Na+ is much greater than k2 → 1 so that little backflux of Na+ occurs from cell to mucosal medium. Similarly k2 → 3, which represents Na+ movement through Na+ pump, far exceeds k3 → 2. Thus Na+ movement through cellular pathway is effectively unidirectional from urine to interstitial fluid. In this diagram intercellular spaces are presumed to be continuous with and in diffusion equilibrium with bathing media and do not constitute additional compartment.

Figure 2. Figure 2.

Diagram of cross section of epithelial cell layer lining urinary surface of bladder wall. Microvilli on apical plasma membranes of cells are at top. Three epithelial cell types are shown: most frequent cell type is granular cell (GC) with its characteristic dense granules lying below apical plasma membrane; typical flask‐shaped mitochondria‐rich cell (MRC) is shown; and one basal cell (BC) lies just above basal lamina (BL). Omitted are infrequent goblet cells. Site of Na+ pumps along basolateral plasma membranes of GC, as localized by ouabain binding, is depicted by short, solid arrows. Beneath basal lamina but not shown in figure would lie submucosa, containing bundles of smooth muscle, collagen fibers, blood vessels, and nerves, lined on its serosal surface by simple serosa.

From Macknight et al. 264
Figure 3. Figure 3.

Tracings of mucosal surfaces of Dominican (A) and Colombian (B) toad urinary bladders showing contribution of three cell types to topology. Tracings are of cell profiles visualized by differential interference‐contrast microscopy. Mitochondria‐rich cells are indicated by enclosed circles, goblet cells are shown as circles, and granular cells (great majority) are indicated by polygons. Colombian toad bladders (B) contain many more mitochondria‐rich cells. Distribution of mitochondria‐rich cells among granular cells in Dominican toad bladder (A) has no reproducible pattern. Effective magnification, × 330.

From Macknight et al. 264
Figure 4. Figure 4.

Effect of K+‐free serosal medium, with or without 10−2M ouabain, on short‐circuit current of paired hemibladders. Solid line, K+‐free Na+ Ringer's + 10−2M ouabain, serosa; dashed line, K+‐free Na+ Ringer's, serosa. Hemibladders, bathed throughout on mucosal surface with Na+ Ringer's, were initially washed five times with K+‐free media. Ouabain was added to appropriate solution after last wash. Therefore, initial response to K+‐free medium is seen before exposure to ouabain, which produced immediate inhibition of short‐circuit current.

From Robinson and Macknight 348
Figure 5. Figure 5.

Electrical circuit analog for transepithelial Na+ transport across toad urinary bladder under steady‐state conditions. M, S, C, mucosal and serosal solutions and cell interior, respectively; RM, RB, and RL, electrical resistances of apical (mucosal), basolateral, and paracellular (leak) barriers, respectively, EM, E driving forces for Na+ movement across two plasma membranes (EM = ENa, the Nernst potential for Na+ across apical membrane). In this diagram, both bathing media have same composition. Therefore, it is assumed that no diffusion potentials exist within paracellular pathway. Analysis of circuit analog allows derivation of expressions for transmembrane electrical potential of the apical (Ψmc) and basolateral (Ψcs) membranes and for transepithelial electrical potentials (Ψms):More complex representations are required if more than one ionic species carries current through cellular pathway, if solutions of differing composition bathe both surfaces of tissue, or under non‐steady‐state conditions.

From Macknight et al. 264
Figure 6. Figure 6.

Relationship between mucosal Na+ concentration and current generated by pump (Ip) in nystatin‐treated hemibladders. Solid line represents best fit to points using equation 152 where Imax is maximum current generated by pump and Km is an arbitrary dissociation constant. Vertical lines represent SEM when greater than symbol (n = 7).

From Lewis et al. 235
Figure 7. Figure 7.

Relationships between membrane ion permeabilities and membrane potentials under short‐circuit conditions calculated using modified Goldman‐Hodgkin‐Katz equation (see equation 7) and typical cell ion concentrations estimated by electron microprobe analysis (Table 2). A: effect on membrane potential (ΔΨ) of 3Na+:2 K+ rheogenic pump (○) compared with electroneutral pump (•), where n indicates the pump ratio with different ratios of PNa+ PK−, and PCl−PK+ = 0.05 or 0.50. B: effect on ΔΨ of variations in PCl+ PK+ with PNa+:PK+ = 0.10 (▵) or 0.3 (▴) (pump ratio 3Na+:2K+).

Figure 8. Figure 8.

Relationships between membrane potentials (ΔΨ), membrane conductance for Na+ (•) and K+ (○), and ratios gNa+:gK+ (▴) and PNa+:PK+ (▪) under short‐circuit conditions, calculated from steady‐state values for transepithelial Na+ transport and typical cell ion concentrations.

Figure 9. Figure 9.

Measured electrical (ΔΨ) and calculated chemical (E) and electrochemical potentials (Δμ) (expressed in mV) across toad bladder epithelial cell apical (a) and basolateral (bl) plasma membranes under open‐circuit conditions. Values used for membrane potentials are apical membrane, −31 mV; basolateral membrane, +63 mV 93. Equilibrium potentials for Na+, K+, and Cl calculated from cell concentrations derived from electron microprobe data (Table 2). Positive values represent driving forces across apical membranes in direction from medium to cell (m → c) and across basolateral membranes in direction from cell to medium (c → s).

Figure 10. Figure 10.

Diagram of Na+ and H2O transport across toad urinary bladder epithelial cells under open‐circuit conditions with dilute urine. I: postulated linkage through gap junctions between granular and basal cells; in this example, for Na+. II: pathways for Na+ transport across cells, including postulated cotransporter for Cl and net Cl movement through paracellular pathway. III: consequences, for both H2O and Na+ transport, of occupancy of receptors on basolateral membrane by ADH. There are additional active apical membrane Na+ channels, basolateral membrane pump units, and K+ channels, together with insertion into apical membrane of vesicles containing H2O channels. This results in net flow of H2O from mucosa to serosa as consequence of osmotic gradient.



Figure 1.

Basic diagram of pathways for solute and H2O movements across toad urinary bladder. A: paracellular pathway comprised of tight junction (a) and lateral intercellular space (b). B: cellular pathway comprised of two barriers (apical and basolateral membranes) and three compartments [urinary or mucosal (1), cell (2), and interstitial or serosal (3)]. Normally rate constant k1 → 2 for Na+ is much greater than k2 → 1 so that little backflux of Na+ occurs from cell to mucosal medium. Similarly k2 → 3, which represents Na+ movement through Na+ pump, far exceeds k3 → 2. Thus Na+ movement through cellular pathway is effectively unidirectional from urine to interstitial fluid. In this diagram intercellular spaces are presumed to be continuous with and in diffusion equilibrium with bathing media and do not constitute additional compartment.



Figure 2.

Diagram of cross section of epithelial cell layer lining urinary surface of bladder wall. Microvilli on apical plasma membranes of cells are at top. Three epithelial cell types are shown: most frequent cell type is granular cell (GC) with its characteristic dense granules lying below apical plasma membrane; typical flask‐shaped mitochondria‐rich cell (MRC) is shown; and one basal cell (BC) lies just above basal lamina (BL). Omitted are infrequent goblet cells. Site of Na+ pumps along basolateral plasma membranes of GC, as localized by ouabain binding, is depicted by short, solid arrows. Beneath basal lamina but not shown in figure would lie submucosa, containing bundles of smooth muscle, collagen fibers, blood vessels, and nerves, lined on its serosal surface by simple serosa.

From Macknight et al. 264


Figure 3.

Tracings of mucosal surfaces of Dominican (A) and Colombian (B) toad urinary bladders showing contribution of three cell types to topology. Tracings are of cell profiles visualized by differential interference‐contrast microscopy. Mitochondria‐rich cells are indicated by enclosed circles, goblet cells are shown as circles, and granular cells (great majority) are indicated by polygons. Colombian toad bladders (B) contain many more mitochondria‐rich cells. Distribution of mitochondria‐rich cells among granular cells in Dominican toad bladder (A) has no reproducible pattern. Effective magnification, × 330.

From Macknight et al. 264


Figure 4.

Effect of K+‐free serosal medium, with or without 10−2M ouabain, on short‐circuit current of paired hemibladders. Solid line, K+‐free Na+ Ringer's + 10−2M ouabain, serosa; dashed line, K+‐free Na+ Ringer's, serosa. Hemibladders, bathed throughout on mucosal surface with Na+ Ringer's, were initially washed five times with K+‐free media. Ouabain was added to appropriate solution after last wash. Therefore, initial response to K+‐free medium is seen before exposure to ouabain, which produced immediate inhibition of short‐circuit current.

From Robinson and Macknight 348


Figure 5.

Electrical circuit analog for transepithelial Na+ transport across toad urinary bladder under steady‐state conditions. M, S, C, mucosal and serosal solutions and cell interior, respectively; RM, RB, and RL, electrical resistances of apical (mucosal), basolateral, and paracellular (leak) barriers, respectively, EM, E driving forces for Na+ movement across two plasma membranes (EM = ENa, the Nernst potential for Na+ across apical membrane). In this diagram, both bathing media have same composition. Therefore, it is assumed that no diffusion potentials exist within paracellular pathway. Analysis of circuit analog allows derivation of expressions for transmembrane electrical potential of the apical (Ψmc) and basolateral (Ψcs) membranes and for transepithelial electrical potentials (Ψms):More complex representations are required if more than one ionic species carries current through cellular pathway, if solutions of differing composition bathe both surfaces of tissue, or under non‐steady‐state conditions.

From Macknight et al. 264


Figure 6.

Relationship between mucosal Na+ concentration and current generated by pump (Ip) in nystatin‐treated hemibladders. Solid line represents best fit to points using equation 152 where Imax is maximum current generated by pump and Km is an arbitrary dissociation constant. Vertical lines represent SEM when greater than symbol (n = 7).

From Lewis et al. 235


Figure 7.

Relationships between membrane ion permeabilities and membrane potentials under short‐circuit conditions calculated using modified Goldman‐Hodgkin‐Katz equation (see equation 7) and typical cell ion concentrations estimated by electron microprobe analysis (Table 2). A: effect on membrane potential (ΔΨ) of 3Na+:2 K+ rheogenic pump (○) compared with electroneutral pump (•), where n indicates the pump ratio with different ratios of PNa+ PK−, and PCl−PK+ = 0.05 or 0.50. B: effect on ΔΨ of variations in PCl+ PK+ with PNa+:PK+ = 0.10 (▵) or 0.3 (▴) (pump ratio 3Na+:2K+).



Figure 8.

Relationships between membrane potentials (ΔΨ), membrane conductance for Na+ (•) and K+ (○), and ratios gNa+:gK+ (▴) and PNa+:PK+ (▪) under short‐circuit conditions, calculated from steady‐state values for transepithelial Na+ transport and typical cell ion concentrations.



Figure 9.

Measured electrical (ΔΨ) and calculated chemical (E) and electrochemical potentials (Δμ) (expressed in mV) across toad bladder epithelial cell apical (a) and basolateral (bl) plasma membranes under open‐circuit conditions. Values used for membrane potentials are apical membrane, −31 mV; basolateral membrane, +63 mV 93. Equilibrium potentials for Na+, K+, and Cl calculated from cell concentrations derived from electron microprobe data (Table 2). Positive values represent driving forces across apical membranes in direction from medium to cell (m → c) and across basolateral membranes in direction from cell to medium (c → s).



Figure 10.

Diagram of Na+ and H2O transport across toad urinary bladder epithelial cells under open‐circuit conditions with dilute urine. I: postulated linkage through gap junctions between granular and basal cells; in this example, for Na+. II: pathways for Na+ transport across cells, including postulated cotransporter for Cl and net Cl movement through paracellular pathway. III: consequences, for both H2O and Na+ transport, of occupancy of receptors on basolateral membrane by ADH. There are additional active apical membrane Na+ channels, basolateral membrane pump units, and K+ channels, together with insertion into apical membrane of vesicles containing H2O channels. This results in net flow of H2O from mucosa to serosa as consequence of osmotic gradient.

References
 1. Aceves, J., and A. W. Cuthbert. Uptake of [3H]benzamil at different sodium concentrations: inferences regarding the regulation of sodium permeability. J. Physiol. (Lond.) 295: 491–504, 1979.
 2. Aevoet, I., D. Erlij, and W. Van Driessche. Activation and blockage of a calcium‐sensitive cation‐selective pathway in the apical membrane of toad urinary bladder. J. Physiol. (Lond.) 398: 555–574, 1988.
 3. Al‐Awqati, Q., R. Beauwens, and A. Leaf. Coupling of sodium transport to respiration in the toad bladder. J. Membr. Biol. 22: 91–105, 1975.
 4. Al‐Awqati, Q., L. H. Norby, A. Mueller, and P. R. Steinmetz. Characteristics of stimulation of H+ transport by aldosterone in turtle urinary bladder. J. Clin. Invest. 58: 351–358, 1976.
 5. Almers, W., and C. Stirling. Distribution of transport proteins over animal cell membranes. J. Membr. Biol. 77: 169–186, 1984.
 6. Anner, B. M. Interaction of (Na+ +K+)‐ATPase with artificial membranes. I. Formation and structure of (Na+ + K+)‐ATPase‐liposomes. Biochim. Biophys. Acta 822: 319–334, 1985.
 7. Anner, B. M. Interaction of (Na+ +K+)‐ATPase with artificial membranes II. Expression of partial transport reactions. Biochim. Biophys. Acta 822: 335–353, 1985.
 8. Asher, C., E. J. Cragoe, Jr., and H. Garty. Effects of amiloride analogues on Na+ transport in toad bladder membrane vesicles: evidence for two electrogenic transporters with different affinities toward pyrazinecarboxamides. J. Biol. Chem. 262: 8566–8573, 1987.
 9. Asher, C., A. Moran, B. C. Rossier, and H. Garty. Sodium channels in membrane vesicles from cultured toad bladder cells. Am. J. Physiol. 254 (Cell Physiol. 23): C512–C518, 1988.
 10. Ausiello, D. A., H. L. Corwin, and J. H. Hartwig. Identification of actin‐binding protein and villin in toad bladder epithelia. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F101–F104, 1984.
 11. Beauwens, R., and Q. Al‐Awqati. Further studies on coupling between sodium transport and respiration in toad urinary bladder. Am. J. Physiol. 231: 222–227, 1976.
 12. Benos, D. J. Amiloride: a molecular probe of sodium transport in tissues and cells. Am. J. Physiol. 242 (Cell Physiol. 11): C131–C145), 1982.
 13. Benos, D. J., J. Reyes, and D. G. Shoemaker. Amiloride fluxes across erythrocyte membranes. Biochim. Biophys. Acta 734: 99–104, 1983.
 14. Benos, D. J., G. Saccomani, and S. Sariban‐Sohraby. The epithelial sodium channel: subunit number and location of the amiloride binding site. J. Biol. Chem. 262: 10613–10618, 1987.
 15. Bentley, P. J. The effects of neurohypophyseal extracts on water transfer across the wall of the isolated urinary bladder of the toad, Bufo marinus. J. Endocrinol. 17: 201–209, 1958.
 16. Bentley, P. J. Physiological properties of the isolated frog bladder in hyperosmotic solutions. Comp. Biochem. Physiol. 12: 233–239, 1964.
 17. Bentley, P. J. The physiology of the urinary bladder of amphibia. Biol. Rev. Cambridge Philosophic Soc. 41: 275–316, 1966.
 18. Bentley, P. J. Amiloride: a potent inhibitor of sodium transport across the toad bladder. J. Physiol. (Lond.) 195: 317–333, 1968.
 19. Bentley, P. J. Endocrines and Osmoregulation: Comparative Account of the Regulation of Water and Salt in Vertebrates. New York: Springer‐Verlag, 1971.
 20. Bentley, P. J. Sodium and water movement across the urinary bladder of a urodele amphibian (the mudpuppy Necturus maculosus): studies with vasotocin and aldosterone. Gen. Comp. Endocrinol. 16: 356–362, 1971.
 21. Bentley, P. J. The vertebrate urinary bladder: osmoregulatory and other uses. Yale J. Biol. Med. 52: 563–568, 1979.
 22. Bentley, P. J., O. A. Candia, M. Parisi, and A. J. Saladino. Effects of hyperosmolality on transmural sodium transport in the toad bladder. Am. J. Physiol. 225: 818–824, 1973.
 23. Bentley, P. J., and H. Heller. The action of neurohypophysial hormones on the water and sodium metabolism of urodele amphibians. J. Physiol. (Lond.) 171: 434–453, 1964.
 24. Bentley, P. J., and H. Heller. The water‐retaining action of vasotocin on the fire salamander (Salamandra maculosa): the role of the urinary bladder. J. Physiol. (Lond.) 181: 124–129, 1965.
 25. Biber, T. U. L., K. Drewnowska, C. M. Baumgarten, and R. S. Fisher. Intracellular Cl activity changes of frog skin. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F432–F438, 1985.
 26. Bindslev, N., J. M. Tormey, R. J. Pietras, and E. M. Wright. Electrically and osmotically induced changes in permeability and structure of toad urinary bladder. Biochim. Biophys. Acta 332: 286–297, 1974.
 27. Bobrycki, V. A., J. W. Mills, A. D. C. Macknight, and D. R. Di Bona. Structural responses to voltage‐clamping in the toad urinary bladder. I. The principle role of granular cells in active transport of sodium. J. Membr. Biol. 60: 21–33, 1981.
 28. Boulpaep, E. L. Electrical phenomena in the nephron. Kidney Int. 9: 88–102, 1976.
 29. Bourguet, J., J. Chevalier, and J. S. Hugon. Alterations in membrane‐associated particle distribution during antidiuretic challenge in frog urinary bladder epithelium. Biophys. J. 16: 627–639, 1976.
 30. Brem, A. S., E. Eich, M. Pearl, and A. Taylor. Anion transport inhibitors: effects on water and sodium transport in the toad urinary bladder. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F594–F601, 1985.
 31. Briggman, J. V., J. S. Graves, S. S. Spicer, and E. J. Cragoe. The ultracellular localization of amiloride in frog skin. Histochem. J. 15: 239–255, 1983.
 32. Brodsky, W. A., and T. P. Schilb. Osmotic properties of isolated turtle bladder. Am. J. Physiol. 208: 46–57, 1965.
 33. Brodsky, W. A., and T. P. Schilb. Ionic mechanisms for sodium and chloride transport across turtle bladders. Am. J. Physiol. 210: 987–996, 1966.
 34. Burch, R. M., and P. V. Halushka. Inhibition of prostaglandin synthesis antagonizes the colchicine‐induced reduction of vasopressin‐stimulated water flow in the toad urinary bladder. Mol. Pharmacol. 21: 142–149, 1982.
 35. Burch, R. M., and P. V. Halushka. ADH‐ or theophylline‐induced changes in intracellular free and membrane‐bound calcium. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F939–F945, 1984.
 36. Cala, P. M. Volume regulation by Amphiuma red blood cells: strategies for identifying alkali metal/H+ transport, Federation Proc. 44: 2500–2507, 1985.
 37. Canessa, M., P. Labarca, D. R. Dibona, and A. Leaf. Energetics of sodium transport in toad urinary bladder. Proc. Natl. Acad. Sci. USA 75: 4591–4595, 1978.
 38. Canessa, M., P. Labarca, and A. Leaf. Metabolic evidence that serosal sodium does not recycle through the active transepithelial transport pathway of toad bladder. J. Membr. Biol. 30: 65–77, 1976.
 39. Carvounis, C. P., N. Franki, S. D. Levine, and R. M. Hays. Membrane pathways for water and solutes in the toad bladder: I. Independent activation of water and urea transport. J. Membr. Biol 49: 253–268, 1979.
 40. Carvounis, C. P., S. D. Levine, and R. M. Hays. pH‐dependence of water and solute transport in toad urinary bladder. Kidney Int. 15: 513–519, 1979.
 41. Cei, J. M. Bufo of South America. In: Evolution of the Genus Bufo, edited by W. F. Blair, Austin: University of Texas, 1972, p. 82–92.
 42. Chapman, J. B. Thermodynamics and kinetics of electrogenic pumps. In: Electrogenic Transport: Fundamental Principles and Physiological Implications, edited by M. P. Blaustein and M. Lieberman. New York: Raven, 1984, p. 17–32.
 43. Chase, H. S., Jr. Does calcium couple the apical and basolateral membrane permeabilities in epithelia? Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F869–F876, 1984.
 44. Chase, H. S., Jr., and Q. Al‐Awqati. Removal of ambient K+ inhibits net Na+ transport in toad bladder by reducing Na+ permeability of the luminal border. Nature 281: 494–495, 1979.
 45. Chase, H. S., Jr., and Q. Al‐Awqati. Regulation of the sodium permeability of the luminal border of toad bladder by intracellular sodium and calcium: role of sodium‐calcium exchange in the basolateral membrane. J. Gen. Physiol. 77: 693–712, 1981.
 46. Chase, H. S., Jr., and Q. Al‐Awqati. Calcium reduces the sodium permeability of luminal membrane vesicles from toad bladder: studies using a fast‐reaction apparatus. J. Gen. Physiol. 81: 643–665, 1983.
 47. Chevalier, J., J. Bourguet, and J. S. Hugon. Membrane associated particles: distribution in frog urinary bladder epithelium at rest and after oxytocin treatment. Cell Tissue Res. 152: 129–140, 1974.
 48. Choi, J. K. The fine structure of the urinary bladder of the toad, Bufo marinus. J. Cell Biol. 16: 53–72, 1963.
 49. Civan, M. M. Effects of active sodium transport on current‐voltage relationship of toad bladder. Am. J. Physiol. 219: 234–245, 1970.
 50. Civan, M. M. Intracellular activities of sodium and potassium. Am. J. Physiol. 234 (Renal Fluid Electrolyte Physiol. 3): F261–F269, 1978.
 51. Civan, M. M. Intracellular potassium in toad urinary bladder: the recycling hypothesis. In: Epithelial Ion and Water Transport, edited by A. D. C. Macknight and J. P. Leader, New York: Raven, 1981, p. 107–116.
 52. Civan, M. M., E. J. Cragoe, Jr., and K. Peterson‐Yantorno. Intracellular pH in frog skin: effects of Na+, volume, and cAMP. Am. J. Physiol. 255 (Renal Fluid Electrolyte Physiol. 24): F126–F134, 1988.
 53. Civan, M. M., H. Degani, Y. Marglit, and M. Shporer. Observations on 23Na in frog skin by NMR. Am. J. Physiol. 245 (Cell Physiol. 14): C213–C219, 1983.
 54. Civan, M. M., and D. R. Di Bona. Pathways for movement of ions and water across toad urinary bladder. III. Physiologic significance of the paracellular pathway. J. Membr. Biol. 38: 359–386, 1978.
 55. Civan, M. M., and H. S. Frazier. The site of the stimulating action of vasopressin on sodium transport in toad bladder. J. Gen. Physiol. 51: 589–605, 1968.
 56. Civan, M. M., T. A. Hall, and B. L. Gupta. Microprobe study of toad urinary bladder in absence of serosal K+. J. Membr. Biol. 55: 187–202, 1980.
 57. Civan, M. M., O. Kedem, and A. Leaf. Effect of vasopressin on toad bladder under conditions of zero net sodium transport. Am. J. Physiol 211: 569–575, 1966.
 58. Civan, M. M., K. Peterson‐Yantorno, D. R. Di Bona, D. F. Wilson, and M. Erecinska. Bioenergetics of Na+ transport across frog skin: chemical and electrical measurements. Am. J. Physiol 245 (Renal Fluid Electrolyte Physiol. 14): F691–F700, 1983.
 59. Claude, P. Morphological factors influencing transepithelial permeability: a model for the resistance of the zonula occludens. J. Membr. Biol 39: 219–232, 1978.
 60. Claude, P., and D. A. Goodenough. Fracture faces of zonulae occludentes from “tight” and “leaky” epithelia. J. Cell Biol. 58: 390–400, 1973.
 61. Coplon, N. S., R. E. Steele, and R. H. Maffly. Interrelationships of sodium transport and carbon dioxide production by the toad bladder: response to changes in mucosal sodium concentration, to vasopressin and to availability of metabolic substrate. J. Membr. Biol. 34: 289–312, 1977.
 62. Cox, T. C. Potassium dependence of sodium transport in frog skin. Biochim. Biophys. Acta 942: 169–178; 1988.
 63. Cox, T. C., R. S. Fisher, and S. I. Helman. Rapid effects of ouabain at the basolateral membranes of frog skin, abstracted. Federation Proc. 39: 1081, 1980.
 64. Cox, T. C., and S. I. Helman. Effects of ouabain and furosemide on basolateral membrane Naefflux of frog skin. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F312–F321, 1983.
 65. Cox, T. C., and S. I. Helman. Na+ and K+ transport at basolateral membranes of epithelial cells. II. K+ efflux and stoichiometry of the Na,K‐ATPase. J. Gen. Physiol. 87: 485–502, 1986.
 66. Crowe, W. E. Voltage‐dependent optical signals from the apical membrane of the urinary bladder epithelium of the toad Bufo marinus. Proc. Univ. Otago Med. School 63: 12–13, 1985.
 67. Cushman, S. W., and L. J. Wardzala. Potential mechanism of insulin action on glucose transport in the isolated rat adipose cell: apparent translocation of intracellular transport systems to the plasma membrane. J. Biol. Chem. 255: 4758–4762, 1980.
 68. Cuthbert, A. W. Importance of guanidinium groups for blocking sodium channels in epithelia. Mol. Pharmacol. 12: 945–957, 1976.
 69. Cuthbert, A. W., and S. A. Wilson. Mechanisms for the effects of acetylcholine on sodium transport in frog skin. J. Membr. Biol. 59: 65–75, 1981.
 70. Davies, H. E. F., D. G. Martin, and G. W. G. Sharp. Differences in the physiological characteristics of bladders of toads from different geographical sources. Biochim. Biophys. Acta 150: 315–318, 1968.
 71. Davis, C. W., and A. L. Finn. Sodium transport effects on the basolateral membrane in toad urinary bladder. J. Gen. Physiol. 80: 733–751, 1982.
 72. Davis, C. W., and A. L. Finn. Sodium transport inhibition by amiloride reduces basolateral membrane potassium conductance in tight epithelia. Science 216: 525–527, 1982.
 73. Davis, C. W., and A. L. Finn. Cell volume regulation in frog urinary bladder. Federation Proc. 44: 2520–2525, 1985.
 74. Davis, W. L., D. B. P. Goodman, J. H. Martin, J. L. Matthews, and H. Rasmussen. Vasopressin‐induced changes in the toad urinary bladder epithelial surface. J. Cell Biol. 61: 544–547, 1974.
 75. Davis, W. L., D. B. P. Goodman, R. J. Schuster, H. Rasmussen, and J. H. Martin. Effects of cytochalasin B on the response of toad urinary bladder to vasopressin. J. Cell Biol. 63: 986–997, 1974.
 76. De Long, J., and M. M. Civan. Microelectrode study of K+ accumulation by tight epithelia: I. Baseline values of split frog skin and toad urinary bladder. J. Membr. Biol. 72: 183–193, 1983.
 77. De Long, J., and M. M. Civan. Microelectrode study of K+ accumulation by tight epithelia: II. Effect of inhibiting transepithelial Na+ transport on reaccumulation following depletion. J. Membr. Biol. 74: 155–164, 1983.
 78. De Long, J., and M. M. Civan. Apical sodium entry in split frog skin: current‐voltage relationship. J. Membr. Biol. 82: 25–40, 1984.
 79. Demarest, J. R. Ion and water transport by the flounder urinary bladder: salinity dependence. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F395–F401, 1984.
 80. Demarest, J. R., and T. E. Machen. Passive and active ion transport by the urinary bladder of a euryhaline flounder. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F402–F408, 1984.
 81. De Sousa, R. C. Cellular modes of action of vasopressin. In: Nephrology Today, edited by R. R. Robinson. New York: Springer‐Verlag, 1984, vol. 1, p. 407–416.
 82. De Sousa, R. C. Effects of vasopressin on epithelial transport. J. Cardiovasc. Pharmacol. 8 (S7): S23–S28, 1986.
 83. De Weer, P. Electrogenic pumps: theoretical and practical considerations. In: Electrogenic Transport: Fundamental Principles and Physiological Implications, edited by M. P. Blaustein and M. Lieberman. New York: Raven, 1984, p. 1–15.
 84. Diamond, J. M. Transcellular cross‐talk between epithelial cell membranes. Nature 300: 683–685, 1982.
 85. Di Bona, D. R. Direct visualization of epithelial morphology in the living amphibian urinary bladder. J. Membr. Biol. 40 (Spec. Suppl.): 45–70, 1978.
 86. Di Bona, D. R. Direct visualization of ADH‐mediated transepithelial osmotic flow. In: Hormonal Control of Epithelial Transport, edited by J. Bourguet. Paris: INSERM, 1979, p. 195–206.
 87. Di Bona, D. R. Cytoplasmic involvement in ADH‐mediated osmosis across toad urinry bladder. Am. J. Physiol. 245 (Cell Physiol. 14): C297–C307, 1983.
 88. Di Bona, D. R. Functional analysis of tight junction organization. Pflugers Arch. 405 (Suppl. 1): 405 S59–S66, 1985.
 89. Di Bona, D. R., and M. M. Civan. Pathways for movement of ions and water across toad urinary bladder. I. Anatomic site of transepithelial shunt pathways. J. Membr. Biol. 12: 101–128, 1973.
 90. Di Bona, D. R., M. M. Civan, and A. Leaf. The cellular specificity of vasopressin on toad urinary bladder. J. Membr. Biol. 1: 79–99, 1969.
 91. Di Bona, D. R., B. Sherman, V. A. Bobrycki, J. W. Mills, and A. D. C. Macknight. Structural responses to voltage‐clamping in the toad urinary bladder. II. Granular cells and the natriferic action of vasopressin. J. Membr. Biol. 60: 35–44, 1981.
 92. Di Bona, D. R., and J. T. Walker, Jr. Action of vasopressin on the cytoplasmic organization of target cells in the toad bladder. In: Vasopressin, edited by R. W. Schrier, New York: Raven, 1985, p. 125–129.
 93. Donaldson, P. J., J. P. Leader, and A. D. C. Macknight. Membrane potentials in toad bladder epithelial cells, abstracted. Federation Proc. 46: 1269, 1987.
 94. Dratwa, M., A. Le Furgey, and C. C. Tisher. Effect of vasopressin and serosal hypertonicity on toad urinary bladder. Kidney Int. 16: 695–703, 1979.
 95. Dratwa, M., and C. C. Tisher. Effect of hypertonicity and colchicine on intramembranous particle aggregation in toad urinary bladder. Cell Tissue Res. 196: 263–269, 1979.
 96. Eaton, D. C. Intracellular sodium ion activity and sodium transport in rabbit urinary bladder. J. Physiol. (Lond.) 316: 527–544, 1981.
 97. Eaton, D. C., A. M. Frace, and S. U. Silverthorn. Active and passive Na+ fluxes across the basolateral membrane of rabbit urinary bladder. J. Membr. Biol. 67: 219–229, 1982.
 98. Eaton, D. C., and K. L. Hamilton. The amiloride‐blockade sodium channel of epithelial tissue. In: Ion Channels, edited by T. Narahashi, New York: Plenum, 1988, vol. 1, p. 251–282.
 99. Eaton, D. C., K. L. Hamilton, and K. E. Johnson. Intracellular acidosis blocks the basolateral Na‐K pump in rabbit urinary bladder. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F946–F954, 1984.
 100. Eggena, P. P. Hydroosmotic responses to short pulses of vasotocin by toad bladder. Am. J. Physiol. 252 (Endocrinol. Metab. 15): E705–E711, 1987.
 101. Eggena, P., and A. Gibas. Inhibition of urea‐linked water flux and [14Clurea transport across the toad bladder by amiloride. Proc. Soc. Exp. Biol. Med. 167: 55–61, 1981.
 102. Eggena, P., I. L. Schwartz, and R. Walter. Action of aldosterone and hypertonicity on toad bladder permeability to water. In: Regulation of Body Fluid Volumes by the Kidney, edited by J. H. Cort and B. Lichardus. Basel: Karger, 1970, p. 182–192.
 103. Eisenman, G., and R. Horn. Ionic selectivity revisited: the role of kinetic and equilibrium processes in ion permeation through channels. J. Membr. Biol. 76: 197–225, 1983.
 104. Erlij, D., and M. W. Smith. Sodium uptake by frog skin and its modification by inhibitors of transepithelial sodium transport. J. Physiol. (Lond.) 228: 221–239, 1973.
 105. Eskesen, K., and H. H. Ussing. Determination of the electromotive force of active sodium transport in frog skin epithelium (Rana temporaria) from presteady‐state flux ratio experiments. J. Membr. Biol. 86: 105–111, 1985.
 106. Essig, A., and A. Leaf. The role of potassium in active transport of sodium by the toad bladder. J. Gen. Physiol. 46: 505–515, 1963.
 107. Feig, P. U., G. D. Wetzel, and H. S. Frazier. Dependence of the driving force of the sodium pump on rate of transport. Am. J. Physiol. 232 (Renal Fluid Electrolyte Physiol. 1): F448–F454, 1977.
 108. Ferreira, K. T. G., and H. G. Ferreira. The regulation of volume and ion composition in frog skin. Biochim. Biophys. Acta 646: 193–202, 1981.
 109. Ferreira, K. T. G., and B. S. Hill. The effect of low external pH on properties of the paracellular pathway and junctional structure in isolated frog skin. J. Physiol. (Lond.) 332: 59–67, 1982.
 110. Finn, A. L., and J. Bright. The paracellular pathway in toad urinary bladder: permselectivity and kinetics of opening. J. Membr. Biol. 44: 67–83, 1978.
 111. Finn, A. L., and L. Reuss. Effects of changes in the composition of the serosal solution on the electrical properties of the toad urinary bladder epithelium. J. Physiol. (Lond.) 250: 541–558, 1975.
 112. Fischbarg, J., and G. Whittembury. The effect of external pH on osmotic permeability, ion and fluid transport across isolated frog skin. J. Physiol. (Lond.) 275: 403–417, 1978.
 113. Forte, T. M., T. E. Machen, and J. G. Forte. Ultrastructural changes in oxyntic cells associated with secretory function: a membrane‐recycling hypothesis. Gastroenterology 73: 941–955, 1977.
 114. Foskett, J. K., and H. H. Ussing. Localization of chloride conductance to mitochondria‐rich cells in frog skin epithelium. J. Membr. Biol. 91: 251–258, 1986.
 115. Fossat, B., and B. Lahlou. Osmotic and solute permeabilities of isolated urinary bladder of the trout. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol. 2): F525–F531, 1977.
 116. Fossat, B., and B. Lahlou. The mechanism of coupled transport of sodium and chloride in isolated urinary bladder of the trout. J. Physiol. (Lond.) 294: 211–222, 1979.
 117. Fossat, B., and B. Lahlou. Ion flux changes induced by voltage clamping or by amphotericin B in the isolated urinary bladder of the trout. J. Physiol. (Lond.) 325: 111–123, 1982.
 118. Fox, H. The urogenital system of reptiles. In: Biology of the Reptilia: Morphology, B, edited by C. Gans and T. S. Parsons. New York: Academic, 1977, vol. 6, p. 1–157.
 119. Frazier, H. S. The electrical potential profile of the isolated toad bladder. J. Gen. Physiol. 45: 515–528, 1962.
 120. Frazier, H. S., E. F. Dempsey, and A. Leaf. Movement of sodium across the mucosal surface of the isolated toad bladder and its modification by vasopressin. J. Gen. Physiol. 45: 529–543, 1962.
 121. Frings, S., R. D. Purves, and A. D. C. Macknight. Single‐channel recordings from the apical membrane of the toad urinary bladder epithelial cell. J. Membr. Biol. 106: 157–172, 1988.
 122. Frizzell, R. A., and B. Jennings. Potassium influx across basolateral membranes of rabbit colon: relation to sodium absorption, abstracted. Federation Proc. 36: 360, 1977.
 123. Frömter, E., and J. M. Diamond. Route of passive ion permeation in epithelia. Nature [New Biol.] 235: 9–13, 1972.
 124. Frömter, E., and B. Gebler. Electrical properties of amphibian urinary bladder epithelia. III. The cell membrane resistances and the effect of amiloride. Pflugers Arch. 371: 99–108, 1977.
 125. Fuchs, W., E. H. Larsen, and B. Lindemann. Current‐voltage curve of sodium channels and concentration dependence of sodium permeability in frog skin. J. Physiol. (Lond.) 267: 137–166, 1977.
 126. Garcia‐Diaz, J. F., L. M. Baxendale, G. Klemperer, and A. Essig. Cell K activity in frog skin in the presence and absence of cell current. J. Membr. Biol. 85: 143–158, 1985.
 127. Gardos, G. The role of calcium in the potassium permeability of human erythrocytes. Acta Physiol. Acad. Sci. Hung. 15: 121–125, 1959.
 128. Garty, H. Amiloride blockade sodium fluxes in toad bladder membrane vesicles. J. Membr. Biol. 82: 269–279, 1984.
 129. Garty, H. Current‐voltage relations of the basolateral membrane in tight amphibian epithelia: use of nystatin to depolarize the apical membrane. J. Membr. Biol. 77: 213–222, 1984.
 130. Garty, H. Mechanism of aldosterone action in tight epithelia. J. Membr. Biol. 90: 193–205. 1986.
 131. Garty, H., and C. Asher. Ca2+‐dependent, temperature‐sensitive regulation of Na+ channels in tight epithelia: a study using membrane vesicles. J. Biol. Chem. 260: 8330–8335, 1985.
 132. Garty, H., and C. Asher. Ca2+ induced down regulation of Na+ channels in toad bladder epithelium. J. Biol Chem. 261: 7400–7406, 1986.
 133. Garty, H., C. Asher, and O. Yeger. Direct inhibition of epithelial Na+ channels by a pH‐dependent interaction with calcium, and by other divalent ions. J. Membr. Biol. 95: 151–162, 1987.
 134. Garty, H., and D. J. Benos. Characteristics and regulatory mechanisms of the amiloride‐blockable Na+ channel. Physiol. Rev. 68: 309–373, 1988.
 135. Garty, H., and M. M. Civan. Ba2+ ‐inhibitable 86Rb+ fluxes across membranes of vesicles from toad urinary bladder. J. Membr. Biol. 99: 93–101, 1987.
 136. Garty, H., E. D. Civan, and M. M. Civan. Effects of internal and external pH on amiloride‐blockable Na+ transport across toad urinary bladder vesicles. J. Membr. Biol. 87: 67–75, 1985.
 137. Garty, H., and I. S. Edelman. Amiloride‐sensitive trypsinization of apical sodium channels: analysis of hormonal regulation of sodium transport in toad bladder. J. Gen. Physiol. 81: 785–803, 1983.
 138. Garty, H., I. S. Edelman, and B. Lindemann. Metabolic regulation of apical sodium permeability in toad urinary bladder in the presence and absence of aldosterone. J. Membr. Biol. 74: 15–24, 1983.
 139. Garty, H., and B. Lindemann. Feedback inhibition of sodium uptake in K+‐depolarized toad urinary bladders. Biochim. Biophys. Acta 771: 89–98, 1984.
 140. Garty, H., J. Warncke, and B. Lindemann. An amiloride‐sensitive Na+ conductance in the basolateral membrane of toad urinary bladder. J. Membr. Biol. 95: 91–103, 1987.
 141. Garvin, J. L., S. A. Simon, E. J. Cragoe, Jr., and L. J. Mandel. Binding of 3H‐phenamil, an irreversible amiloride analog, to toad urinary bladder: effects of aldosterone and vasopressin. J. Membr. Biol. 90: 107–113, 1986.
 142. Gatzy, J. T., and W. O. Berndt. Isolated epithelial cells of the toad bladder: their preparation, oxygen consumption and electrolyte content. J. Gen. Physiol. 51: 770–784, 1968.
 143. Geck, P., C. Pietrzyk, B. C. Burckhardt, B. Pfeiffer, and E. Heinz. Electrically silent cotransport of Na+, K+ and Cl−in Ehrlich cells. Biochim. Biophys. Acta 600: 432–447, 1980.
 144. Geheb, M., R. Alvis, E. Hercker, and M. Cox. Mineralo‐corticoid‐specificity of aldosterone‐induced protein synthesis in giant‐toad (Bufo marinus) urinary bladder. Biochem. J. 214: 29–35, 1983.
 145. Geheb, M., E. Hercker, I. Singer, and M. Cox. Subcellular localization of aldosterone‐induced proteins in toad urinary bladders. Biochim. Biophys. Acta 641: 422–426, 1981.
 146. Geheb, M., G. Huber, E. Hercker, and M. Cox. Aldosterone‐induced proteins in toad urinary bladders: identification and characterization using two‐dimensional polyacrylamide gel electrophoresis. J. Biol. Chem. 256: 11716–11723, 1981.
 147. Germann, W. J., S. A. Ernst, and D. C. Dawson. Resting and osmotically induced basolateral K conductances in turtle colon. J. Gen. Physiol. 88: 253–274, 1986.
 148. Germann, W. J., M. E. Lowy, S. A. Ernst, and D. C. Dawson. Differentiation of two distinct K conductances in the basolateral membrane of turtle colon. J. Gen. Physiol. 88: 236–251, 1986.
 149. Giraldez, F., and K. T. G. Ferreira. Intracellular chloride activity and membrane potential in stripped frog skin (Rana temporaria). Biochim. Biophys. Acta 769: 625–628, 1984.
 150. Gluck, S., C. Cannon, and Q. AL‐Awqati. Exocytosis regulates urinary acidification in turtle bladder by rapid insertion of H+ pumps into the luminal membrane. Proc. Natl. Acad. Sci. USA 79: 4327–4331, 1982.
 151. Glynn, I. M. The electrogenic sodium pump. In: Electrogenic Transport: Fundamental Principles and Physiological Implications, edited by M. P. Blaustein and M. Lieberman. New York: Raven, 1984, p. 33–48.
 152. Glynn, I. M., and S. J. D. Karlish. The sodium pump. Annu. Rev. Physiol. 37: 13–55, 1975.
 153. Gordon, L. G. M. Effect of amiloride on conductance of toad urinary bladder. J. Membr. Biol. 52: 61–68, 1980.
 154. Gordon, L. G. M. Representations of the sodium pump of the toad urinary bladder. In: Epithelial Ion and Water Transport, edited by A. D. C. Macknight and J. P. Leader, New York: Raven, 1981, p. 297–306.
 155. Gordon, L. G. M. Electrical transients produced by the toad urinary bladder in response to altered medium osmolality. J. Physiol. (Lond.) 406: 371–392, 1988.
 156. Graber, M., P. R. Brink, D. De Lillo, P. Devine, and E. Pastoriza‐Munoz. Permeability the granular cell of toad and turtle bladder: lack of cell coupling. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F588–F594, 1987.
 157. Grinstein, S., S. Cohen, J. D. Goetz, and A. Rothstein. Na+/H+ exchange in volume regulation and cytoplasmic pH homeostasis in lymphocytes. Federation Proc. 44: 2508–2512, 1985.
 158. Gulyassy, P. F. Intracellular H+ concentration of the isolated urinary bladder of the toad. Nature 206: 511–512, 1965.
 159. Gulyassy, P. F., and I. S. Edelman. Hydrogen‐ion dependence of the antidiuretic action of vasopressin, oxytocin and deaminooxytocin. Biochim. Biophys. Acta 102: 185–197, 1965.
 160. Gupta, R. K., and P. Gupta. Direct observation of resolved resonances from intra‐ and extracellular sodium‐23 ions in NMR studies of intact cells and tissues using dysprosium (III) tripolyphosphate as paramagnetic shift reagent. ). Magnet. Reson. 47: 344–350, 1982.
 161. Hamilton, K. L., and D. C. Eaton. Single‐channel recordings from amiloride‐sensitive epithelial sodium channel. Am. J. Physiol. 249 (Cell Physiol. 18): C200–C207, 1985.
 162. Handler, J. S. Antidiuretic hormone moves membranes. Am. J. Physiol. 255 (Renal Fluid Electrolyte Physiol. 24): F375–F382, 1988.
 163. Hardy, M. A. Microfilaments and the effects of antidiuretic hormone on water permeability. Am. J. Physiol. 248 (Cell Physiol. 17): C183–C184, 1985.
 164. Hardy, M. A. Urea and Na+ permeabilities in toad urinary bladder: one or two solute pathways? Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F56–F63, 1985.
 165. Hardy, M. A., and D. R. Di Bona. Extracellular Ca2+ and the effect of antidiuretic hormone on the water permeability of the toad urinary bladder: an example of flow‐induced alteration of flow. J. Membr. Biol. 67: 27–44, 1982.
 166. Hardy, M. A., and D. R. Di Bona. Microfilaments and the hydroosmotic action of vasopressin in toad urinary bladder. Am. J. Physiol. 243 (Cell Physiol. 12): C200–C204, 1982.
 167. Hardy, M. A., Jr., R. Montoreano, and M. Parisi. Colchicine dissociates the toad (Bufo arenarum) urinary bladder responses to antidiuretic hormone and to serosal hypertonicity. Experientia 31: 803–804, 1975.
 168. Harris, H. W., Jr., H. R. Murphy, M. C. Willingham, and J. S. Handler. Isolation and characterization of specialized regions of toad bladder epithelial apical plasma membrane involved in the water permeability response to antidiuretic hormone. J. Membr. Biol. 96: 175–186, 1987.
 169. Harris, H. W., Jr., J. B. Wade, and J. S. Handler. Fluorescent markers to study membrane retrieval in antidiuretic hormone‐treated toad urinary bladder. Am. J. Physiol 251 (Cell Physiol. 20): C274–C284, 1986.
 170. Harris, H. W., Jr., J. B. Wade, and J. S. Handler. Transepithelial water flow regulates apical membrane retrieval in antidiuretic hormone‐stimulated toad urinary bladder. J. Clin. Invest. 78: 703–712, 1986.
 171. Hartwig, J. H., D. A. Ausiello, and D. Brown. Vasopressin‐induced changes in the three‐dimensional structure of toad bladder apical surface. Am. J. Physiol. 253 (Cell Physiol. 22): C707–C720, 1987.
 172. Harvey, B. J., and R. P. Kernan. Intracellular ion activities in frog skin in relation to external sodium and effects of amiloride and/or ouabain. J. Physiol. (Lond.) 349: 501–517, 1984.
 173. Hayhurst, R. A., and R. G. O'neill. Time course of Na‐dependent aldosterone stimulation of cortical collecting duct (CCD) Na‐K‐ATPase activity, abstracted. Kidney Int. 29: 397, 1986.
 174. Hays, R. M. Alteration of luminal membrane structure by antidiuretic hormone. Am. J. Physiol. 245 (Cell Physiol. 14): C289–C296, 1983.
 175. Hays, R. M., and A. Leaf. Studies on the movement of water through the isolated toad bladder and its modification by vasopressin. J. Gen. Physiol. 45: 905–919, 1962.
 176. Hays, R. M., J. Sasaki, S. M. Tilles, L. Meiteles, and N. Franki. Morphological aspects of the cellular action of antidiuretic hormone. In: Vasopressin, edited by R. W. Schrier. New York: Raven, 1985, p. 79–87.
 177. Hays, R. M., B. Singer, and S. Malamad. The effect of calcium withdrawal on the structure and function of the toad bladder. J. Cell Biol. 25: 195–208, 1965.
 178. Helman, S. I., and T. C. Cox. Basolateral membrane K+ transport in frog skin. Federation Proc. 43: 2490–2492, 1984.
 179. Helman, S. I., and R. S. Fisher. Microelectrode studies of the active Natransport pathway of frog skin. J. Gen. Physiol. 69: 571–604, 1977.
 180. Helman, S. I., B. M. Koeppen, K. W. Beyenbach, and L. M. Baxendale. Patch clamp studies of apical membranes of renal cortical collecting ducts. Pflugers Arch. 405 (Suppl. 1): S71–S76, 1985.
 181. Helman, S. I., W. Nagel, and R. S. Fisher. Ouabain on active transepithelial Natransport by frog skin: studies with microelectrodes. J. Gen. Physiol. 74: 105–127, 1979.
 182. Helman, S. I., and S. M. Thompson. Interpretation and use of electrical equivalent circuits in studies of epithelial tissues. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F519–F531, 1982.
 183. Higgins, J. T., Jr., B. Gebler, and E. Frömter. Electrical properties of amphibian urinary bladder epithelia. II. The cell potential profile in Necturus maculosus. Pflugers Arch. 371: 87–97, 1977.
 184. Hoffmann, E. K. Volume regulation by animal cells. Soc. Exp. Biol. 17 (Semin. Ser.): 55–80, 1983.
 185. Hoffmann, E. K. Role of separate K+ and Cl+ channels and of Na+/Cl− cotransport in volume regulation in Ehrlich cells. Federation Proc. 44: 2513–2519, 1985.
 186. Hong, C. D., and A. Essig. Effects of 2‐deoxy‐d‐glucose, amiloride, vasopressin, and ouabain on active conductance and ENa in the toad bladder. J. Membr. Biol. 28: 121–142, 1976.
 187. Hoshiko, T., and W. Van Driessche. Effect of sodium on amiloride‐ and triamterene‐induced current fluctuations in isolated frog skin. J. Gen. Physiol. 87: 425–442, 1986.
 188. Hughes, P.M., and A. D. C. Macknight. Cellular lithium and transepithelial transport across toad urinary bladder. J. Membr. Biol. 70: 69–88, 1982.
 189. Ilani, A., D. Lichstein, and M. B. Bacaner. Bretylium opens mucosal amiloride‐sensitive sodium channels. Biochim. Biophys. Acta 693: 503–506, 1982.
 190. Ilani, A., D. S. Yachin, and D. Lichstein. Comparison between bretylium and diphenylhydantoin interaction with mucosal sodium channels. Biochim. Biophys. Acta 777: 323–330, 1984.
 191. Jacobs, W. R., and L. J. Mandel. Fluorescent measurements of intracellular free calcium in isolated toad urinary bladder epithelial cells. J. Membr. Biol. 97: 53–62, 1987.
 192. Jacquez, J. A., and S. G. Shultz. A general relation between membrane potential, ion activities, and pump fluxes for symmetric cells in a steady state. Math. Biosc. 20: 19–25, 1974.
 193. Johnsen, D. W., T. Hirano, H. A. Bern, and F. P. Conte. Hormonal control of water and sodium movements in the urinary bladder of the starry flounder, Platichthys stellatus. Gen. Comp. Endocrinol. 19: 115–128, 1972.
 194. Jørgensen, P. L. Isolation and characterization of the components of the sodium pump. Q. Rev. Biophys. 7: 239–274, 1975.
 195. Kachadorian, W. A., R. A. Coleman, and J. B. Wade. Water permeability and particle aggregates in ADH‐, cAMP‐, and forskolin‐treated toad bladder. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F120–F125, 1987.
 196. Kachadorian, W. A., S. Sariban‐Sohraby, and K. R. Spring. Regulation of water permeability in toad urinary bladder at two barriers. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F260–F265, 1985.
 197. Kachadorian, W. A., J. B. Wade, and V. A. Di Scala. Vasopressin‐induced structural change in toad bladder luminal membrane. Science 190: 67–69, 1975.
 198. Kimura, G., S. Urakabe, S. Yuasa, S. Miki, Y. Takamitsu, Y. Orita, and H. Abe. Potassium activity and plasma membrane potentials in epithelial cells of toad bladder. Am. J. Physiol. 232 (Renal Fluid Electrolyte Physiol. 1): F196–F200, 1977.
 199. Kipnowski, J., C. S. Park, and D. D. Fanestil. Modification of carboxyl of Na+ channel inhibits aldosterone action on Na+ transport. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F726–F734, 1983.
 200. Kirk, K. L., D. R. Halm, and D. C. Dawson. Active sodium transport by turtle colon via an electrogenic Na‐K exchange pump. Nature 287: 237–239, 1980.
 201. Kirsten, E., R. Kirsten, A. Leaf, and G. W. G. Sharp. Increased activity of enzymes of the tricarboxylic acid cycle in response to aldosterone in the toad bladder. Pflugers Arch. 300: 213–225, 1968.
 202. Klahr, S., and N. S. Bricker. Natransport by isolated turtle bladder during anaerobiosis and exposure to KCN. Am. J. Physiol. 206: 1333–1339, 1964.
 203. Kleyman, T. R., T. Yulo, C. Ashbaugh, D. Landry, E. Cragoe, Jr., and Q. Al‐Awqati. Photoaffinity labeling of the epithelial sodium channel. J. Biol. Chem. 261: 2839–2845, 1986.
 204. Koefoed‐Johnsen, V., and H. H. Ussing. The nature of the frog skin potential. Acta Physiol. Scand. 42: 298–308, 1958.
 205. Kraehenbuhl, J. P., J. Pfeiffer, M. Rossier, and B. C. Rossier. Microfilament‐rich cells in the toad bladder epithelium. J. Membr. Biol. 48: 167–180, 1979.
 206. Kristensen, P., and H. H. Ussing. Epithelial organization. In: The Kidney: Physiology and Pathophysiology, edited by D. W. Seldin and G. Giebisch. New York: Raven, 1985, p. 173–188.
 207. La Barca, P., M. Canessa, and A. Leaf. Metabolic cost of sodium transport in toad urinary bladder. J. Membr. Biol. 32: 383–401, 1977.
 208. La Belle, E. F., and D. C. Eaton. Sulfhydryl reagents affect Na+ uptake into toad bladder membrane vesicles. J. Membr. Biol. 71: 39–45, 1983.
 209. La Belle, E. F., and M. E. Valentine. Inhibition by amiloride of 22Na+ transport into toad bladder microsomes. Biochim. Biophys. Acta 601: 195–205, 1980.
 210. Lang, M. A., S. R. Caplan, and A. Essig. Thermodynamic analysis of active sodium transport and oxidative metabolism in toad urinary bladder. J. Membr. Biol. 31: 19–29, 1977.
 211. Last, T. A., M. L. Gantzer, and C. D. Tyler. Ion‐gated channel induced in plasma bilayers by incorporation of (Na+,K+)‐ATPase. J. Biol. Chem. 258: 2399–2404, 1983.
 212. Lau, K., R. L. Hudson, and S. G. Schultz. Cell swelling increases a barium‐inhibitable energy dependent potassium conductance in the basolateral membrane of Necturus small intestine. Proc. Natl. Acad. Sci. USA 81: 3591–3594, 1984.
 213. Lauger, P. Kinetic properties of ion carriers and channels. J. Membr. Biol. 57: 163–178, 1980.
 214. Lauger, P. Ionic channels with conformational substates. Biophys. J. 47: 581–591, 1985.
 215. Leader, J. P., and A. D. C. Macknight. Alternative methods for measurements of membrane potentials in epithelia. Federation Proc. 41: 57–60, 1982.
 216. Leaf, A. Ion transport by the isolated bladder of the toad, abstracted. Int. Congr. Biochem. sect. 12–4, 1955.
 217. Leaf, A. Transepithelial transport and its hormonal control in toad bladder. Ergeb. Physiol. Biol. Chem. Exp. Pharmakol. 56: 216–263, 1965.
 218. Leaf, A. From toad bladder to kidney. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F103–F111, 1982.
 219. Leaf, A., J. Anderson, and L. B. Page. Active sodium transport by the isolated toad bladder. J. Gen. Physiol. 41: 657668, 1958.
 220. Leaf, A., G. Chu, and S. G. Schultz. The significance of relative membrane resistance in determining the work of transport across epithelia. In: Epithelial Ion and Water Transport, edited by A. D. C. Macknight and J. P. Leader. New York: Raven, 1981, p. 277–283.
 221. Leaf, A., and E. F. Dempsey. Some effects of mammalian neurohypophyseal hormones on metabolism and active transport of sodium by the isolated toad bladder. J. Biol. Chem. 235: 2160–2163, 1960.
 222. Leaf, A., and R. M. Hays. Permeability of the isolated toad bladder to solutes and its modification by vasopressin. J. Gen. Physiol. 45: 921–932, 1962.
 223. Leaf, A., A. Keller, and E. F. Dempsey. Stimulation of sodium transport in toad bladder by acidification of mucosal medium. Am. J. Physiol. 207: 547–552, 1964.
 224. Leaf, A., and A. D. C. Macknight. The site of the aldosterone induced stimulation of sodium transport. J. Steroid Biochem. 3: 237–245, 1972.
 225. Le Fevre, M. E. Effects of aldosterone on the isolated substrate‐depleted turtle bladder. Am. J. Physiol. 225: 1252–1256, 1973.
 226. Le Fevre, M. E., J. Norris, and R. Hammer. Sex differences in Necturus urinary bladders. Anat. Rec. 187: 47–62, 1977.
 227. Le Furgey, A., M. Dratwa, and C. C. Tisher. Efects of colchicine and cytochalasin B on vasopressin‐ and cyclic adenosine monophostate‐induced changes in toad urinary bladder. Lab. Invest. 45: 308–315, 1981.
 228. Le Furgey, A., and C. C. Tisher. Time course of vasopressin‐induced formation of microvilli in granular cells of toad urinary bladder. J. Membr. Biol. 61: 13–19, 1981.
 229. Lester, D. S., C. Asher, and H. Garty. Characterization of cAMP‐induced activation of epithelial sodium channels. Am. J. Physiol. 254 (Cell Physiol. 23): C802–C808, 1988.
 230. Le Vine, S. D. Vasopressin stimulation of the toad urinary bladder—characterization of the luminal membrane water transport system. In: Vasopressin, edited by R. W. Schrier. New York: Raven, 1985, p. 105–112.
 231. Levine, S. D. The effects of calcium on water transport. Miner. Electrolyte Metab. 14: 31–39, 1988.
 232. Levine, S. D., M. Jacoby, and A. Finkelstein. The water permeability of toad urinary bladder. II. The value of Pf/Pd(w) for the antidiuretic hormone‐induced water permeation pathway. J. Gen. Physiol. 83: 543–561, 1984.
 233. Lew, V. L., and L. Beauge. Passive cation fluxes in red cell membranes. In: Membrane Transport in Biology: Transport Across Single Biological Membranes, edited by D. C. Tosteson. Berlin: Springer‐Verlag, 1979, vol. II, p. 81–115.
 234. Lew, V. L., and H. G. Ferreira. Calcium transport and the properties of a calcium activated potassium channel in red cell membranes. Curr. Top. Membr. Transp. 10: 218–277, 1978.
 235. Lewis, S. A., A. G. Butt, J. M. Bowler, J. P. Leader, and A. D. C. Macknight. Effects of anions on cellular volume and transepithelial Na+ transport across toad urinary bladder. J. Membr. Biol. 83: 119–137, 1985.
 236. Lewis, S. A., and J. L. C. De Moura. Incorporation of cytoplasmic vesicles into apical membrane of mammalian urinary bladder epithelium. Nature 297: 656–688, 1982.
 237. Lewis, S. A., and J. L. C. De Moura. Apical membrane area of rabbit urinary bladder increases by fusion of intracellular vesicles: an electrophysiological study. J. Membr. Biol. 82: 123–136, 1984.
 238. Lewis, S. A., and J. M. Diamond. Na+ transport by rabbit urinary bladder, a tight epithelium. J. Membr. Biol. 28: 1–40, 1976.
 239. Lewis, S. A., D. C. Eaton, C. Clausen, and J. M. Diamond. Nystatin as a probe for investigating the electrical properties of a tight epithelium. J. Gen. Physiol. 70: 427–440, 1977.
 240. Lewis, S. A., D. C. Eaton, and J. M. Diamond. The mechanism of Na+ transport by rabbit urinary bladder. J. Membr. Biol. 28: 41–70, 1976.
 241. Lewis, S. A., and J. W. Hanrahan. Apical and basolateral membrane ionic channels in rabbit urinary bladder epithelium. Pflugers Arch. 405 (Suppl. 1): S83–S88, 1985.
 242. Lewis, S. A., and J. W. Hanrahan. Frequency and time domain analysis of epithelial transport regulation. In: New Insights Into Cell and Membrane Transport Processes, edited by G. Poste and S. T. Crooke. New York: Plenum, 1986, p. 305–326.
 243. Lewis, S. A., J. W. Hanrahan, and W. Van Driessche. Channels across epithelial cell layers. Curr. Top. Membr. Transp. 21: 253–293, 1984.
 244. Lewis, S. A., M. S. Ifshin, D. D. F. Loo, and J. M. Diamond. Studies of sodium channels in rabbit urinary bladder by noise analysis. Membr. Biol. 80: 135–151, 1984.
 245. Lewis, S. A., N. K. Wills. Electrical properties of rabbit urinary bladder assessed using gramicidin D. J. Membr. Biol. 67: 45–53, 1982.
 246. Lewis, S. A., and N. K. Wills. Apical membrane permeability and kinetic properties of the sodium pump in rabbit urinary bladder. J. Physiol. 341: 169–184, 1983.
 247. Lewis, S. A., N. K. Wills, and D. C. Eaton. Basolateral membrane potential of a tight epithelium: ionic diffusion and electrogenic pumps. J. Membr. Biol. 41: 117–148, 1978.
 248. Li, J. H.‐Y., L. G. Palmer, I. S. Edelman, and B. Lindemann. The role of sodium‐channel density in the natriferic response of the toad urinary bladder to an antidiuretic hormone. J. Membr. Biol. 64: 77–89, 1982.
 249. Lichtenstein, N. S., and A. Leaf. Effect of amphotercin B on the permeability of the toad bladder. J. Clin. Invest. 44: 1328–1342, 1965.
 250. Lindemann, B. The minimal information content of ENa. In: Hormonal Control of Epithelial Transport, edited by J. Bourguet. Paris: INSERM, 1979, p. 241–252.
 251. Lindemann, B. The beginning of fluctuation analysis of epithelial ion transport. J. Membr. Biol. 54: 1–11, 1980.
 252. Lindemann, B. Fluctuation analysis of sodium channels in epithelia. Annu. Rev. Physiol. 46: 497–515, 1984.
 253. Lindemann, B., and W. Van Driessche. Sodium‐specific membrane channels of frog skin and pores: current fluctuations reveal high turnover. Science 195: 292–294, 1977.
 254. Lipton, P. Effect of changes in osmolality on sodium transport across isolated toad bladder. Am. J. Physiol. 222: 821–828, 1972.
 255. Lipton, P., and I. S. Edelman. Effects of aldosterone and vasopressin on electrolytes of toad bladder epithelial cells. Am. J. Physiol. 221: 733–741, 1971.
 256. Loretz, C. A., and H. A. Bern. Ion transport by the urinary bladder of the gobiid teleost Gillichthys mirabilis. Am. J. Physiol. 239 (Regulatory Integrative Comp. Physiol. 8): R415–R423, 1980.
 257. Loretz, C. A., and H. A. Bern. Control of ion transport by Gillichthys mirabilis urinary bladder. Am. J. Physiol. 245 (Regulatory Integrative Comp. Physiol. 14): R45–R52, 1983.
 258. Lowenstein, W. R., S. J. Socolar, S. Higashino, Y. Kanno, and N. Davidson. Intercellular communication: renal, urinary bladder, sensory and salivary gland cells. Science 149: 295–298, 1965.
 259. Macknight, A. D. C. The contribution of mucosal chloride to chloride in toad bladder epithelial cells. J. Membr. Biol. 36: 55–63, 1977.
 260. Macknight, A. D. C. Comparison of analytic techniques: chemical, isotopic and microprobe analysis. Federation Proc. 39: 2881–2887, 1980.
 261. Macknight, A. D. C. The role of anions in cellular volume regulation. Pflugers Arch. 405 (Suppl. 1): S12–S16, 1985.
 262. Macknight, A. D. C., M. M. Civan, and A. Leaf. Some effects of ouabain on cellular ions and water in epithelial cells of toad urinary bladder. J. Membr. Biol. 10: 387–401, 1975.
 263. Macknight, A. D. C., M. M. Civan, and A. Leaf. The sodium transport pool in toad urinary bladder epithelial cells. J. Membr. Biol. 20: 365–386, 1975.
 264. Macknight, A. D. C., D. R. Di Bona, and A. Leaf. Sodium transport across toad urinary bladder: a model “tight” epithelium. Physiol. Rev. 60: 615–715, 1980.
 265. Macknight, A. D. C., and J. P. Leader. Intra‐ and transepithelial analytical techniques. CRC Crit. Rev. Clin. Lab. Sci. 18: 339–396, 1983.
 266. Macknight, A. D. C., A. Leaf, and M. M. Civan. Effects of vasopressin on the water and ionic composition of toad bladder epithelial cells. J. Membr. Biol. 6: 127–137, 1971.
 267. Macknight, A. D. C., and C. W. McLaughlin. Transepithelial sodium transport and carbon dioxide production by the toad urinary bladder in the absence of serosal sodium. J. Physiol. (Lond.) 269: 767–776, 1977.
 268. Maffly, R. H., and I. S. Edelman. The coupling of the shortcircuit current to metabolism in the urinary bladder of the toad. J. Gen. Physiol. 46: 733–754, 1963.
 269. Maloiy, G. M. O., editor. Comparative Physiology of Osmoregulation in Animals. New York: Academic, 1979, vol. 1; 1980, vol. 2.
 270. Mandel, L. J. Primary active sodium transport, oxygen consumption, and ATP: coupling and regulation. Kidney Int. 29: 3–9, 1986.
 271. Mandel, L. J., and R. S. Balaban. Stoichiometry and coupling of active transport to oxidative metabolism in epithelial tissues. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 9): F357–F371, 1981.
 272. Masur, S. K., S. Cooper, S. Massardo, G. Gronowicz, and M. S. Rubin. Isolation and characterization of granules of the toad bladder. J. Membr. Biol. 89: 39–51, 1986.
 273. Masur, S. K., S. Cooper, and M. S. Rubin. Effect of an osmotic gradient on antidiuretic hormone‐induced endocytosis and hydroosmosis in the toad urinary bladder. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 16): F370–F379, 1984.
 274. Masur, S. K., E. Holtzman, I. L. Schwartz, and R. Walter. Correlation between pinocytosis and hydroosmosis induced by neurohypophyseal hormones and mediated by adenosine 3′,5′‐cyclic monophosphate. J. Cell Biol. 49: 582–594, 1971.
 275. Masur, S. K., E. Holtzman, and R. Walter. Hormone‐stimulated exocytosis in the toad urinary bladder. J. Cell Biol. 52: 211–219, 1972.
 276. Masur, S. K., and S. Massardo. ADH and phorbol ester increase immunolabeling of the toad bladder apical membrane by antibodies made to granules. J. Membr. Biol. 96: 193–198, 1987.
 277. Masur, S. K., V. Sapirstein, and D. Rivero. Phorbol myristate acetate induces endocytosis as well as exocytosis and hydroosmosis in toad urinary bladder. Biochim. Biophys. Acta 821: 286–296, 1985.
 278. Masur, S. K., and A. S. Verkman. Osmotic water permeability and membrane fluidity of isolated toad bladder granules is extremely low, abstracted. Kidney Int. 33: 164, 1988.
 279. McLaughlin, C. W. Metabolic and transport effects of tissue culture medium on toad urinary bladder. In: Epithelial Ion and Water Transport, edited by A. D. C. Macknight and J. P. Leader. New York: Raven, 1981, p. 23–34.
 280. McLaughlin, C. W. Effects of hormonal and electrical stimulation of sodium transport on metabolism of toad urinary bladder. J. Physiol. (Lond.) 346: 419–437, 1984.
 281. Mills, J. W., and S. A. Ernst. Localization of sodium pump sites in frog urinary bladder. Biochim. Biophys. Acta 375: 268–273, 1975.
 282. Mills, J. W., and L. E. Malick. Mucosal surface morphology of the toad urinary bladder: scanning electron microscope study of the natriferic and hydroosmotic response to vasopressin. J. Cell Biol. 77: 598–610, 1978.
 283. Minnich, J. E. Reptiles. In: Comparative Physiology of Osmoregulation in Animals, edited by G. M. O. Maloiy. New York: Academic, vol. 1, 1979, p. 391–641.
 284. Muller, J., and W. A. Kachadorian. Aggregate‐carrying membranes during ADH stimulation and washout in toad bladder. Am. J. Physiol. 247 (Cell Physiol. 16): C90–C98, 1984.
 285. Muller, J., W. A. Kachadorian, and V. A. Discala. Evidence that ADH‐stimulated intramembrane particle aggregates are transferred from cytoplasmic to luminal membranes in toad bladder epithelial cells. J. Cell Biol. 85: 83–95, 1980.
 286. Mullins, L. J., and K. Noda. The influence of sodium‐free solutions on the membrane potential of frog muscle fibers. J. Gen. Physiol. 47: 117–132, 1963.
 287. Murer, H., and R. Kinne. The use of isolated membrane vesicles to study epithelial transport processes. Membr. Biol. 55: 81–95, 1980.
 288. Nagel, W. The intracellular electrical potential profile of the frog skin epithelium. Pflugers Arch. 365: 135–143, 1976.
 289. Nagel, W. The dependence of the electrical potentials across the membranes of the frog skin upon the epithelial concentration of sodium in the mucosal solution. J. Physiol. (Lond.) 269: 777–796, 1977.
 290. Nagel, W. Inhibition of potassium conductance by barium in frog skin epithelium. Biochim. Biophys. Acta 552: 346–357, 1979.
 291. Nagel, W. Basolateral membrane ionic conductance in frog skin. Pflugers Arch. 405 (Suppl. 1): S39–S43, 1985.
 292. Nagel, W. Origin of transport inhibition after omission of serosal sodium. Am. J. Physiol. 252 (Cell Physiol. 21): C623–C629, 1987.
 293. Nagel, W., and A. Essig. Relationship of transepithelial electrical potential to membrane potentials and conductance ratios in frog skin. J. Membr. Biol. 69: 125–136, 1982.
 294. Nagel, W., J. F. Garcia‐Diaz, and W. M. Armstrong. Intracellular ionic activities in frog skin. J. Membr. Biol. 61: 127–134, 1981.
 295. Nagel, W., J. F. Garcia‐Diaz, and A. Essig. Contribution of junctional conductance to the cellular voltage‐divider ratio in frog skins. Pflugers Arch. 399: 336–341, 1983.
 296. Narvarte, J., and A. L. Finn. Anion‐sensitive sodium conductance in the apical membrane of toad urinary bladder. J. Gen. Physiol. 76: 69–81, 1980.
 297. Narvarte, J., and A. L. Finn. Microelectrode studies in toad urinary bladder epithelium: effects of Na concentration changes in the mucosal solution on equivalent electromotive forces. J. Gen. Physiol. 75: 323–344, 1980.
 298. Narvarte, J., and A. L. Finn. Effects of changes in serosal chloride on electrical properties of toad urinary bladder. Am. J. Physiol. 244 (Cell Physiol. 13): C11–C16, 1983.
 299. Narvarte, J., and A. L. Finn. Effects of intracellular sodium and potassium iontophoresis on membrane potentials and resistances in toad urinary bladder. J. Membr. Biol. 84: 1–7, 1985.
 300. Nellans, H. N., and S. G. Schultz. Relations among transepithelial sodium transport, potassium exchange and cell volume in rabbit ileum. J. Gen. Physiol. 68: 441–464, 1976.
 301. Nicol, H. Biological Control of Insects. New York: Penguin, 1943.
 302. Nielsen, R. A 3 to 2 coupling of the Na‐K pump responsible for the transepithelial Natransport in frog skin disclosed by the effect of Ba. Acta Physiol. Scand. 107: 189–191, 1979.
 303. Nielsen, R. Effect of amiloride, ouabain and Ba+ + on the nonsteady‐state Na‐K pump flux and short‐circuit current in isolated frog skin epithelia. J. Membr. Biol. 65: 227–234, 1982.
 304. Olans, L., S. Sariban‐Sohraby, and D. J. Benos. Saturation behavior of single, amiloride‐sensitive Na* channels in planar lipid bilayers. Biophys. J. 46: 831–835, 1984.
 305. Orloff, J., J. S. Handler, and S. Bergstrom. Effect of prostaglandin (PGE‐1) on the permeability response of toad bladder to vasopressin, theophylline, and adenosine 3′,5′‐mon‐ophosphate. Nature 205: 397–398, 1965.
 306. Palfrey, H. C., and M. C. Rao. Na/K/Cl co‐transport and its regulation. Exp. Biol. 106: 43–54, 1983.
 307. Palmer, L.G. Ion selectivity of the apical membrane Na channel in the toad urinary bladder. J. Membr. Biol. 67: 91–98, 1982.
 308. Palmer, L. G. Na+ transport and flux ratio through apical Na+ channels in toad bladder. Nature 297: 688–690, 1982.
 309. Palmer, L. G. Use of potassium depolarization to study apical transport properties in epithelia. Curr. Top. Membr. Transp. 20: 105–121, 1984.
 310. Palmer, L. G. Voltage‐dependent block by amiloride and other monovalent cations of apical Na channels in the toad urinary bladder. J. Membr. Biol. 80: 153–165, 1984.
 311. Palmer, L. G. Modulation of apical Na permeability of the toad urinary bladder by intracellular Na, Ca and H. J. Membr. Biol. 83: 57–69, 1985.
 312. Palmer, L. G. Apical membrane K conductance in the toad urinary bladder. J. Membr. Biol. 92: 217–226, 1986.
 313. Palmer, L. G. Patch‐clamp technique in renal physiology. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F379–F385, 1986.
 314. Palmer, L. G. Ion selectivity of epithelial Na channels. J. Membr. Biol. 96: 97–106, 1987.
 315. Palmer, L. G., and I. S. Edelman. Control of apical sodium permeability in the toad urinary bladder by aldosterone. Ann. NY Acad. Sci. 372: 1–14, 1981.
 316. Palmer, L. G., I. S. Edelman, and B. Lindemann. Current‐voltage analysis of apical sodium transport in toad urinary bladder: effects of inhibitors of transport and metabolism. J. Membr. Biol. 57: 59–71, 1980.
 317. Palmer, L. G., and G. Frindt. Amiloride‐sensitive Na channels from the apical membrane of the rat cortical collecting tubule. Proc. Natl. Acad. Sci. USA 83: 2767–2770, 1986.
 318. Palmer, L. G., J. H.‐Y. Li, B. Lindemann, and I. S. Edelman. Aldosterone control of the density of sodium channels in the toad urinary bladder. J. Membr. Biol. 64: 91–102, 1982.
 319. Palmer, L. G., and M. Lorenzen. Antidiuretic hormone‐dependent membrane capacitance and water permeability in the toad urinary bladder. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F195–F204, 1983.
 320. Palmer, L. G., and N. Speez. Modulation of antidiuretic hormone‐dependent capacitance and water flow in toad urinary bladder. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F501–F508, 1984.
 321. Parisi, M., R. Montoreano, J. Chevalier, and J. Bourguet. Cellular pH and water permeability control in frog urinary bladder: a possible action on the water pathway. Biochim. Biophys. Acta 648: 267–274, 1981.
 322. Parisi, M., M. Pisam, J. Mérot, J. Chevalier, and J. Bourguet. The role of microtubules and microfilaments in the hydroosmotic response to antidiuretic hormone. Biochim. Biophys. Acta 817: 333–342, 1985.
 323. Parisi, M., J. Wietzerbin, and J. Bourguet. Intracellular pH, transepithelial pH gradients and ADH induced water channels. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F712–F718, 1983.
 324. Park, C. S. and I. S. Edelman. Effect of aldosterone on abundance and phosphorylation kinetics of Na‐K‐ATPase of toad urinary bladder. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F509–F516, 1984.
 325. Park, C. S., J. Kipnowski, and D. D. Fanestil. Role of carboxyl group in Na+‐entry step at apical membrane of toad urinary bladder. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F707–F715, 1983.
 326. Pearl, M., and A. Taylor. Actin filaments and vasopressin‐stimulated water flow in toad urinary bladder. Am. J. Physiol. 245 (Cell Physiol. 14): C28–C39, 1983.
 327. Pearl, M., and A. Taylor. Reply to letter to the editor. Am. J. Physiol. 248 (Cell Physiol. 17): C185, 1985.
 328. Petty, K. J., J. P. Kokko, and D. Marver. Secondary effect of aldosterone on Na‐K‐ATPase activity in the rabbit cortical collecting tubule. J. Clin. Invest. 68: 1514–1521, 1981.
 329. Plumstead, S. M., D. G. Rayns, J. P. Leader, and A. D. C. Macknight. Epithelium of toad urinary bladder: the assessment of tight junctions. Micron 13: 375–376, 1982.
 330. Post, R. L., and P. C. Jolly. The linkage of sodium, potassium and ammonium active transport across the human erythrocyte membrane. Biochim. Biophys. Acta 25: 118–128, 1957.
 331. Ramsay, A. G. Membrane potentials, resistances and conductances of toad bladder during Na+‐H+ transport and H+ transport. Proc. Soc. Exp. Biol. Med. 170: 94–102, 1982.
 332. Ramsay, A. G., D. L. Gallagher, R. L. Shoemaker, and G. Sachs. Barium inhibition of Na+ transport in toad bladder. Biochim. Biophys. Acta 436: 617–627, 1976.
 333. Rapoport, J., J. W. Mills, N. Franki, H. H. Church, and R. M. Hays. Autoradiographic studies of solute transport across the toad bladder. Kidney Int. 27: 726–730, 1985.
 334. Redekopp, C., C. H. G. Irvine, R. A. Donald, J. H. Livesey, W. Sadler, M. G. Nicholls, S. L. Alexander, and M. J. Evans. Spontaneous and stimulated adrenocorticotropin and vasopressin pulsatile secretion in the pituitary venous effluent of the horse. Endocrinology 118: 1410–1416, 1986.
 335. Renfro, J. L. Water and ion transport by the urinary bladder of the teleost Pseudopleuronectes americanus. Am. J. Physiol. 228: 52–61, 1975.
 336. Reuss, L., and A. L. Finn. Passive electrical properties of toad urinary bladder epithelium: intercellular electrical coupling and transepithelial cellular and shunt conductances. J. Gen. Physiol. 64: 1–25, 1974.
 337. Reuss, L., and A. L. Finn. Dependence of serosal membrane potential on mucosal membrane potential in toad urinary bladder. Biophys. J. 15: 71–75, 1975.
 338. Reuss, L., and A. L. Finn. Effects of changes in the composition of the mucosal solution on the electrical properties of the toad urinary bladder epithelium. J. Membr. Biol. 20: 191–204, 1975.
 339. Richards, N. W., and D. C. Dawson. Single potassium channels blocked by lidocaine and quinidine in isolated turtle colon epithelial cells. Am. J. Physiol. 251 (Cell Physiol. 20): C86–C89, 1986.
 340. Rick, R., and D. R. Di Bona. Intracellular solute gradients during osmotic water flow: an electron‐microprobe analysis. J. Membr. Biol. 96: 85–94, 1987.
 341. Rick, R., A. Dorge, A. D. C. Macknight, A. Leaf, and K. Thurau. Electron microprobe analysis of the different epithelial cells of toad urinary bladder. J. Membr. Biol. 39: 257–271, 1978.
 342. Rick, R., A. Dörge, E. Von Arnim, and K. Thurau. Electron microprobe analysis of frog skin epithelium: evidence for a syncytial Natransport compartment. J. Membr. Biol. 39: 313–331, 1978.
 343. Rick, R., C. Roloff, A. Dörge, F. X. Beck, and K. Thurau. Intracellular electrolyte concentrations in the frog skin epithelium: effect of vasopressin and dependence on the Na concentration in the bathing media. J. Membr. Biol. 78: 129–145, 1984.
 344. Rick, R., G. Spancken, and A. Dorge. Differential effects of aldosterone and ADH on intracellular electrolytes in the toad urinary bladder. J. Membr. Biol. 101: 275–282, 1988.
 345. Ripoche, P., J. Bourguet, and M. Parisi. The effect of hypertonic media on water permeability of frog urinary bladder: inhibition by catecholamines and prostaglandin E1. J. Gen. Physiol. 61: 110–124, 1973.
 346. Ripoche, P. and M. Pisam. Ultrastructural modifications of frog urinary bladder epithelium under the influence of hypertonic media. Z. Zellforsch. Mikrosk. Anat. 137: 13–19, 1973.
 347. Robinson, B. A., and A. D. C. Macknight. Relationships between serosal medium potassium concentration and sodium transport in toad urinary bladder. I. Effects of different medium potassium concentrations on electrical parameters. J. Membr. Biol. 26: 217–238, 1976.
 348. Robinson, B. A., and A. D. C. Macknight. Relationships between serosal medium potassium concentration and sodium transport in toad urinary bladder. II. Effects of different medium potassium concentrations on epithelial cell composition. J. Membr. Biol. 26: 239–268, 1976.
 349. Robinson, B. A., and A. D. C. Macknight. Relationships between serosal medium potassium concentration and sodium transport in toad urinary bladder. III. Exchangeability of epithelial cellular potassium. J. Membr. Biol. 26: 269–286, 1976.
 350. Rosenthal, S. J., J. G. King, and A. Essig. Time course of active Natransport and oxidative metabolism following transepithelial potential perturbation in toad urinary bladder. J. Membr. Biol. 63: 157–163, 1981.
 351. Rossier, B. C. Biosynthesis of Na+,K+‐ATPase in amphibian epithelial cells. Curr. Top. Membr. Transp. 20: 125–145, 1984.
 352. Saito, T., P. D. Lief, and A. Essig. Conductance of active and passive pathways in the toad bladder. Am. J. Physiol. 226: 1265–1271, 1974.
 353. Sakmann, B., and E. Neher, editors. Single Channel Recordings. New York: Plenum, 1983.
 354. Sariban‐Sohraby, S., and D. J. Benos. The amiloride‐sensitive sodium channel. Am. J. Physiol. 250 (Cell Physiol. 19): C175–C190, 1986.
 355. Sariban‐Sohraby, S., M. B. Burg, and R. J. Turner. Aldosterone‐stimulated sodium uptake by apical membrane vesicles from A6 cells. J. Biol. Chem. 259: 11221–11225, 1984.
 356. Sariban‐Sohraby, S., M. B. Burg, W. P. Wiessmann, P. K. Chiang, and J. P. Johnson. Methylation increases sodium transport into A6 apical membrane vesicles: possible mode of aldosterone action. Science 225: 745–746, 1984.
 357. Sariban‐Sohraby, S., R. Lattore, M. Burg, L. Olans, and D. Benos. Amiloride‐sensitive epithelial Na+ channels reconstituted into planar lipid bilayer membranes. Nature 308: 80–82, 1984.
 358. Sawyer, W. H., R. A. Munsick, and H. B. Van Dyke. Evidence for the presence of arginine vasotocin (8‐arginine oxytocin) and oxytocin in neurohypophyseal extracts from amphibians and reptiles. Gen. Comp. Endocrinol. 1: 30–36, 1961.
 359. Schafer, J. A. Membrane transport. Ion transport in the kidney and anuran epithelia—mechanisms of aldosterone action. In: Contemporary Nephrology, edited by S. Klahr and S. G. Massry. New York: Plenum, 1983, vol. 11, p. 1–58.
 360. Schlondorff, D., and S. D. Levine. Inhibition of vasopressin water flow in toad bladder by phorbol myristate acetate, dioctanoyglycerol and RHC‐80267. J. Clin. Invest. 76: 1071–1078, 1985.
 361. Schoen, H. F., and D. Erlij. Basolateral membrane responses to transport modifiers in the frog skin epithelium. Pflugers Arch. 405 (Suppl. 1): S33–S38, 1985.
 362. Schultz, S. G. Basic Principles of Membrane Transport. Cambridge, England: Cambridge University, 1980 (IUPAB. Biophys. ser. no. 2.).
 363. Schultz, S. G. Homocellular regulatory mechanisms in sodium‐transporting epithelia: avoidance of extinction by “flush‐through.” Am. J. Physiol. 241 (Renal Fluid Electrolyte Physiol. 10): F579–590, 1981.
 364. Schultz, S. G. A cellular model for active sodium absorption by mammalian colon. Annu. Rev. Physiol. 46: 435–451, 1984.
 365. Schultz, S. G. Regulatory mechanisms in sodium‐absorbing epithelia. In: The Kidney: Physiology and Pathophysiology, edited by D. W. Seldin and G. Giebisch. New York: Raven, 1985, p. 189–198.
 366. Schultz, S. G., R. A. Frizzell, and H. N. Nellans. An equivalent electrical circuit model for “sodium‐transporting” epithelia in the steady‐state. J. Theor. Biol. 65: 215–229, 1977.
 367. Schultz, S. G., S. M. Thompson, R. Hudson, S. R. Thomas, and Y. Suzuki. Electrophysiology of Necturus urinary bladder: II. Time‐dependent current‐voltage relations of the basolateral membranes. J. Membr. Biol. 79: 257–269, 1984.
 368. Schultz, S. G., S. M. Thompson, and Y. Suzuki. Equivalent electrical circuit models and the study of Natransport across epithelia: nonsteady‐state current‐voltage relations. Federation Proc. 40: 2443–2449, 1981.
 369. Sharp, G. W. G., and A. Leaf. Mechanisms of action of aldosterone. Physiol. Rev. 46: 593–633, 1966.
 370. Shoemaker, V. H., and K. A. Nagy. Osmoregulation in amphibians and reptiles. Annu. Rev. Physiol. 39: 449–471, 1977.
 371. Siebens, A. W. Cellular volume control. In: The Kidney: Physiology and Pathophysiology, edited by D. W. Seldin and G. Giebisch. New York: Raven, 1985, p. 91–115.
 372. Singer, I., and M. M. Civan. Effects of anions on sodium transport in toad urinary bladder. Am. J. Physiol. 221: 1019–1026, 1971.
 373. Sjodin, R. A. Contributions of electrogenic pumps to resting membrane potentials: the theory of electrogenic potentials. In: Electrogenic Transport: Fundamental Principles and Physiological Implications, edited by M. P. Blaustein and M. Lieberman. New York: Raven, 1984, p. 105–127.
 374. Skadhauge, E. Osmoregulation in Birds. New York: SpringerVerlag, 1981.
 375. Spinelli, F., A. Grosso, and R. C. De Sousa. The hydro‐osmotic effect of vasopressin: a scanning electron‐microscope study. J. Membr. Biol. 23: 139–156, 1975.
 376. Spring, K. R. Determinants of epithelial cell volume. Federation Proc. 44: 2526–2529, 1985.
 377. Steinmetz, P. R. Cellular mechanisms of urinary acidification. Physiol. Rev. 54: 890–956, 1974.
 378. Stetson, D. L., S. A. Lewis, W. Alles, and J. B. Wade. Evaluation by capacitance measurements of antidiuretic hormone induced membrane area changes in toad bladder. Biochim. Biophys. Acta 689: 267–274, 1982.
 379. Stetson, D. L., and J. B. Wade. Ultrastructural characterization of cholesterol distribution in toad bladder using filipin. J. Membr. Biol. 74: 131–138, 1983.
 380. Stoddard, J. S., E. Jakobsson, and S. I. Helman. Basolateral membrane chloride transport in isolated epithelia of frog skin. Am. J. Physiol. 249 (Cell Physiol. 18): C318–C329, 1985.
 381. Stokes, J. B., I. Lee, and M. D'amico. Sodium chloride absorption by the urinary bladder of the winter flounder: a thiazide‐sensitive, electrically neutral transport system. J. Clin. Invest. 74: 7–16, 1984.
 382. Strum, J. M., and D. Danon. Fine structure of the urinary bladder of the bullfrog (Rana catesbiana). Anat. Rec. 178: 15–40, 1974.
 383. Sudou, K., and T. Hoshi. Mode of action of amiloride in toad urinary bladder: an electrophysiological study of the drug action on sodium permeability of the mucosal border. J. Membr. Biol. 32: 115–132, 1977.
 384. Suzuki, K., and T. Kono. Evidence that insulin causes translocation of glucose transport activity to the plasma membrane from an intracellular storage site. Proc. Natl. Acad. Sci. USA 77: 2542–2545, 1980.
 385. Szerlip, H., and M. Cox. Aldosterone (aldo)‐induced proteins (AIPs) in toad urinary bladders (TUBs): relationship to changes in short‐circuit current (Isc) and conductance (K), abstracted. Kidney Int. 29: 408, 1986.
 386. Tang, J., F. J. Abramcheck, W. Van Driessche, and S. I. Helman. Electrophysiology and noise analysis of K+ ‐depolarized epithelia of frog skin. Am. J. Physiol. 249 (Cell Physiol. 18): C421–C429, 1985.
 387. Taylor, A. Role of microtubules and microfilaments in the action of vasopressin. In: Disturbances in Body Fluid Osmolality, edited by T. E. Andreoli, J. J. Grantham and F. C. Rector, Jr. Bethesda, MD: Am. Physiol. Soc., 1977, p. 97–125.
 388. Taylor, A., E. Eich, M. Pearl, A. S. Brem, and E. Q. Peeper. Cytosolic calcium and the action of vasopressin in toad urinary bladder. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F1028–F1041, 1987.
 389. Taylor, A., M. Mamelak, E. Reaven, and R. Maffly. Vasopressin: possible role of microtubules and microfilaments in its action. Science 181: 347–350, 1973.
 390. Taylor, A., and E. E. Windhager. Possible role of cytosolic calcium and Na‐Ca exchange in regulation of transepithelial sodium transport. Am. J. Physiol. 236 (Renal Fluid Electrolyte Physiol. 5): F505–F512, 1979.
 391. Taylor, A., and E. E. Windhager. Cytosolic calcium and its role in the regulation of transepithelial ion and water transport. In: The Kidney: Physiology and Pathophysiology, edited by D. W. Seldin and G. Giehisch. New York: Raven, 1985, vol. 2, p. 1297–1322.
 392. Thomas, S. R., Y. Suzuki, S. M. Thompson, and S. G. Schultz. Electrophysiology of Necturus urinary bladder. 1. “Instantaneous” current‐voltage relations in the presence of varying mucosal sodium concentrations. J. Membr. Biol. 73: 157–175, 1983.
 393. Thompson, S. M. Relations between chord and slope conductances and equivalent electromotive forces. Am. J. Physiol. 250 (Cell Physiol. 19): C333–339, 1986.
 394. Turnheim, K., S. M. Thompson, and S. G. Schultz. Relation between intracellular sodium and active sodium transport in rabbit colon. J. Membr. Biol. 76: 299–309, 1983.
 395. Urakabe, S., J. S. Handler, and J. Orloff. Effects of hypertonicity on permeability properties of the toad bladder. Am. J. Physiol. 318: 1179–1187, 1970.
 396. Ussing, H. H. Volume regulation of frog skin epithelium. Acta Physiol. Scand. 114: 363–369, 1982.
 397. Ussing, H. H. Volume regulation and basolateral co‐transport of sodium, potassium and chloride ions in frog skin epithelium. Pflugers Arch. 405 (Suppl. 1): S2–S7, 1985.
 398. Ussing, H. H., and K. Zerahn. Active transport of sodium as the source of electric current in the short‐circuited isolated frog skin. Acta Physiol. Scand. 23: 110–127, 1951.
 399. Van Driessche, W. Lidocaine blockage of basolateral potassium channels in the amphibian urinary bladder. J. Physiol. (Lond.) 381: 575–593, 1986.
 400. Van Driessche, W. Ca2+ channels in the apical membrane of the toad urinary bladder. Pflugers Arch. 410: 243–249, 1987.
 401. Van Driessche, W., I. Aelvoet, and D. Erlij. Oxytocin and cAMP stimulate monovalent cation movements through a Ca2+‐sensitive, amiloride‐insensitive channel in the apical membrane of toad urinary bladder. Proc. Natl. Acad. Sci. USA 84: 313–317, 1987.
 402. Van Driessche, W., and D. Erlij. Activation of K+ conductance in basolateral membrane of toad urinary bladder by oxytocin and cAMP. Am. J. Physiol. 254 (Cell Physiol. 23): C816–C821, 1988.
 403. Van Driessche, W., and B. Lindemann. Concentration dependence of currents through single‐sodium‐selective pores in frog skin. Nature 282: 519–520, 1979.
 404. Van Driessche, W., J. Simaels, I. Aelvoet, and D. Erlij. Cation‐selective channels in amphibian epithelia: electrophysiological properties and activation. Comp. Biochem. Physiol. 90A: 693–699, 1988.
 405. Van Driessche, W., and W. Zeiske. Ionic channels in epithelial cell membranes. Physiol. Rev. 65: 833–903, 1985.
 406. Verrey, F., E. Schaerer, P. Zoerkler, M. P. Paccolat, K. Geering, J. P. Kraehenbuhl, and B. C. Rossier. Regulation by aldosterone of Na+,K+‐ATPase mRNAs, protein synthesis, and sodium transport in cultured kidney cells. J. Cell Biol. 104: 1231–1237, 1987.
 407. Wade, J. B. Membrane structural specialization of the toad urinary bladder revealed by the freeze‐fracture technique. III. Location, structure and vasopressin dependence of intramembranous particle arrays. J. Membr. Biol. 40: (Spec. Suppl.): 281–296, 1978.
 408. Wade, J. B. Hormonal modulation of epithelial structure. Curr. Top. Membr. Transp. 13: 123–147, 1980.
 409. Wade, J. B. Membrane structural studies of the action of vasopressin. Federation Proc. 44: 2687–2692, 1985.
 410. Wade, J. B. Role of membrane fusion in hormonal regulation of epithelial transport. Annu. Rev. Physiol. 48: 213–223, 1986.
 411. Wade, J. B., V. Guckian, and I. Koeppen. Development of antibodies to apical membrane constituents associated with the action of vasopressin. Curr. Top. Membr. Transp. 20: 217–234, 1984.
 412. Wade, J. B., C. McCusker, and R. A. Coleman. Evaluation of granule exocytosis in toad urinary bladder. Am. J. Physiol. 251 (Cell Physiol. 20): C380–C386, 1986.
 413. Wade, J. B., J. P. Revel, and V. A. Discala. Effect of osmotic gradients on intercellular junctions of the toad bladder. Am. J. Physiol. 224: 407–415, 1973.
 414. Warncke, J., and B. Lindemann. Effect of ADH on the capacitance of apical epithelial membranes. In: Proc. Int. Congr. Physiol. Sci., 28th, Budapest, 1980. Budapest: Akadémiai Kiadó, vol. XIV, p. 129–133.
 415. Warncke, J., and B. Lindemann. Voltage dependence of Na channel blockage by amiloride: relaxation effects in admittance spectra. J. Membr. Biol. 86: 255–265, 1985.
 416. Weitzman, R. E., D. A. Fisher, J. J. Di Stefano III, and C. M. Bennett. Episodic secretion of arginine vasopressin. Am. J. Physiol. 233 (Endocrinol. Metab. Gastrointest. Physiol. 2): E32–E36, 1977.
 417. Welsh, M. J. Basolateral membrane potassium conductance is independent of sodium pump activity and membrane voltage in canine tracheal epithelium. J. Membr. Biol. 84: 25–33, 1985.
 418. Wills, N. K. Regulation of Na+ transport across tight epithelia. In: Intestinal Absorption and Secretion, edited by E. Skadhauge and K. Heintze. Lancaster, England: MTP, 1984, p. 221–231 (Falk Symp. ser. no. 36).
 419. Wills, N. K. Apical membrane potassium and chloride permeabilities in surface cells of rabbbit descending colon epithelium. J. Physiol. (Lond.) 358: 433–445, 1985.
 420. Wills, N. K., and S. A. Lewis. Intracellular Na+ activity as a function of Na+ transport rate across a tight epithelium. Biophys. J. 30: 181–186, 1980.
 421. Wills, N. K., S. A. Lewis, and D. C. Eaton. Active and passive properties of rabbit descending colon: a microelectode and nystatin study. J. Membr. Biol. 45: 81–108, 1979.
 422. Wills, N. K., and A. Zweifach. Recent advances in the characterization of epithelial ionic channels. Biochim Biophys. Acta 906: 1–31, 1987.
 423. Windhager, E. E., and A. Taylor. Regulatory role of intracellular calcium ions in epithelial Natransport. Annu. Rev. Physiol. 45: 519–532, 1983.
 424. Wolff, D., and A. Essig. Protocol‐dependence of equivalent circuit parameters of toad urinary bladder. J. Membr. Biol. 55: 53–68, 1980.
 425. Wong, S. M. E., and H. S. Chase, Jr. Role of intracellular calcium in cellular volume regulation. Am. J. Physiol. 250 (Cell Physiol. 19): C841–C852, 1986.
 426. Yonath, J., and M. M. Civan. Determination of the driving force of the Na+ pump in toad bladder by means of vasopressin. J. Membr. Biol. 5: 366–385, 1971.
 427. Zeuthen, T., and E. M. Wright. Epithelial potassium transport: tracer and electrophysiological studies in choroid plexus. J. Membr. Biol. 60: 105–128, 1981.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Anthony D. C. MacKnight. Ion and Water Transport in Toad Urinary Epithelia in Vitro. Compr Physiol 2011, Supplement 25: Handbook of Physiology, Renal Physiology: 271-321. First published in print 1992. doi: 10.1002/cphy.cp080107