Comprehensive Physiology Wiley Online Library

Cellular Mechanisms of H+ and HCO3− transport in tight urinary epithelia

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Transepithelial Proton and Bicarbonate Transport
1.1 Intercalated Cells
1.2 Proton Secretion
1.3 Bicarbonate Secretion
2 Molecules Involved in Acid‐Base Transport
2.1 Proton‐Translocating ATPases
2.2 Cl−−HCO3− Exchanger
2.3 Chloride Channel
2.4 Carbonic Anhydrase
3 Regulation of Proton Secretion
3.1 Transmembrane Electrochemical Gradient
3.2 Cell pH
3.3 Effect of CO2 and Role of Exocytosis
3.4 Role of Endocytosis
3.5 Aldosterone
3.6 Extracellular Acid‐Base Changes
3.7 Cyclic AMP
4 Regulation of Bicarbonate Secretion
4.1 Exfracellular Acid‐Base Changes
4.2 cAMP
4.3 Cell Calcium and the Calcium Ionophore A23187
5 Epithelial Polarity of Proton and Bicarbonate Transport
5.1 Biogenesis of Epithelial Polarity
5.2 Plasticity of Epithelial Polarity in the Intercalated Cell
5.3 Other Examples of Reversible Polarity
5.4 Potential Mechanisms for Plasticity in the Polarity of the Intercalated Cell
6 Developmental Biology of the Intercalated Cell
Figure 1. Figure 1.

Model for transepithelial H+ secretion by intercalated cell.

Figure 2. Figure 2.

Characteristics of the two types of intercalated cell. Left: secreting cell; right: H+‐secreting cell.

Figure 3. Figure 3.

H+ transport and development of membrane potential by proton‐translocating ATPase of Golgi membranes 51. Top: proton transport was measured as uptake of a weak base (acridine orange) from medium using dual wavelength spectrophotometer. Note that addition of valinomycin, by collapsing a membrane potential, accelerates development of pH gradient. Bottom: membrane potential measured as ejection of cationic dye di‐S‐C3(5). Addition of neutral proton ionophore nigericin increases apparent membrane potential, as does replacement of chloride by impermeant gluconate.

Figure 4. Figure 4.

Regulation of transepithelial H+ secretion in turtle urinary bladder by CO2. Top tracing: effect on short‐circuit current. Second tracing: effect on secretion of fluorescent dextran that had previously been internalized into acid vesicles. Third tracing: effect of CO2 on intracellular calcium as measured by excitation ratio fluorometry using quin 2. Fourth tracing: effect on cell pH as measured by excitation ratio fluorometry of 5,6‐carboxyfluorescein.

Figure 5. Figure 5.

Electron micrographs of the two types of intercalated cell in rabbit cortical collecting tubule. Left: H+‐secreting cell with typical fusion events on apical membrane. Right: secreting cell with its characteristic subapical cytoskeletal mesh. Inset: basolateral fusion figures and subapical coated vesicles from secreting cell. L, lumen.

Figure 6. Figure 6.

Plasticity of epithelial polarity in rabbit cortical collecting tubule. Bicarbonate‐ and proton‐secreting cells were counted before and after treatment of rabbits with an acid load. Bicarbonate‐secreting cells were identified by staining with fluorescein‐labeled peanut lectin. Proton‐secreting cells were identified as those cells that endocytosed rhodamine‐labeled albumin.



Figure 1.

Model for transepithelial H+ secretion by intercalated cell.



Figure 2.

Characteristics of the two types of intercalated cell. Left: secreting cell; right: H+‐secreting cell.



Figure 3.

H+ transport and development of membrane potential by proton‐translocating ATPase of Golgi membranes 51. Top: proton transport was measured as uptake of a weak base (acridine orange) from medium using dual wavelength spectrophotometer. Note that addition of valinomycin, by collapsing a membrane potential, accelerates development of pH gradient. Bottom: membrane potential measured as ejection of cationic dye di‐S‐C3(5). Addition of neutral proton ionophore nigericin increases apparent membrane potential, as does replacement of chloride by impermeant gluconate.



Figure 4.

Regulation of transepithelial H+ secretion in turtle urinary bladder by CO2. Top tracing: effect on short‐circuit current. Second tracing: effect on secretion of fluorescent dextran that had previously been internalized into acid vesicles. Third tracing: effect of CO2 on intracellular calcium as measured by excitation ratio fluorometry using quin 2. Fourth tracing: effect on cell pH as measured by excitation ratio fluorometry of 5,6‐carboxyfluorescein.



Figure 5.

Electron micrographs of the two types of intercalated cell in rabbit cortical collecting tubule. Left: H+‐secreting cell with typical fusion events on apical membrane. Right: secreting cell with its characteristic subapical cytoskeletal mesh. Inset: basolateral fusion figures and subapical coated vesicles from secreting cell. L, lumen.



Figure 6.

Plasticity of epithelial polarity in rabbit cortical collecting tubule. Bicarbonate‐ and proton‐secreting cells were counted before and after treatment of rabbits with an acid load. Bicarbonate‐secreting cells were identified by staining with fluorescein‐labeled peanut lectin. Proton‐secreting cells were identified as those cells that endocytosed rhodamine‐labeled albumin.

References
 1. Van Adelsberg, J., and Q. Al‐Awqati. Regulation of cell pH by calcium‐mediated exocytosis of H+ ATPases. J. Cell Biol. 102: 1638–1645, 1986.
 2. van Adelsberg, J., and Q. Al‐Awqati. Identification and purification of an apical membrane peanut‐lectin binding protein from HCO3−‐secreting intercalated cells. Kidney Int. 1: 37, 46A, 1990 (abstr.).
 3. Van Adelsberg, J., J. C. Edwards, D. Herzlinger, C. Cannon, M. Rater, and Q. Al‐Awqati. Isolation and culture of HCO3−‐secreting intercalated cells. Am. J. Physiol. 256 (Cell Physiol. 25): C1004–C1011, 1989.
 4. Al‐Awqati, Q. Proton translocating ATPases. Annu. Rev. Cell Biol. 2: 179–199, 1986.
 5. Al‐Awqati, Q., A. Mueller, and P. R. Steinmetz. Transport of H+ against electrochemical gradients in turtle urinary bladder. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol. 2): F502–F508, 1977.
 6. Al‐Awqati, Q., L. Norby, A. Mueller, and P. R. Steinmetz. Characteristics of stimulation of H+ transport by aldosterone in turtle urinary bladder. J. Clin. Invest. 58: 351–358, 1976.
 7. Alper, S. L., R. R. Kopito, S. M. Libresco, and H. F. Lodish. Cloning and characterization of a murine band 3‐related cDNA from kidney and from a lymphoid cell line. J. Biol. Chem. 263: 17092–17099, 1988.
 8. Amzel, L. M. and P. L. Pedersen. Proton ATPases: structure and mechanism. Annu. Rev. Biochem. 52: 801–824, 1983.
 9. Andersen, O. S., J. E. N. Silveira, and P. R. Steinmetz. Intrinsic characteristics of the proton pump in the luminal membrane of a tight urinary epithelium. The relation between transport rate and Δμh. J. Gen. Physiol. 86: 215–234, 1985.
 10. Atkins, J. L., and M. B. Burg. Bicarbonate transport by isolated perfused rat collecting ducts. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol 18): F485–F489, 1985.
 11. Balboni, E., and A. L. Lehninger. Entry and exit pathways of CO2 in rat liver mitochondria respiring in a bicarbonate buffer system. J. Biol. Chem. 261: 3563–3570, 1986.
 12. Baron, R., L. Neff, D. Louvard, and P. J. Courtay. Cell‐mediated extracellular acidification and bone resorption: evidence for a low pH in resorbing laconae and localization of a 100‐kDa lysosomal protein at the osteoclast ruffled border. J. Cell Biol. 101: 2210–2222, 1985.
 13. Beauwens, R., and Q. Al‐Awqati. Active H+ transport in the turtle urinary bladder: coupling of transport to glucose oxidation. J. Gen. Physiol. 68: 421–439, 1976.
 14. Bennett, V. The membrane skeleton of human erythrocytes and its implications for more complex cells. Annu. Rev. Biochem. 54: 273–304 1985.
 15. Blobel, G. Intracellular protein topogenesis. Proc. Natl. Acad. Sci. USA 77: 1496–1500, 1980.
 16. Bowman, E. J., K. Tenney, and B. J. Bowman. Isolation of genes encoding the neurospora vacuolar ATPase. Analysis of vma‐1 encoding the 67‐kDA subunit reveals homology to other ATPases. J. Biol. Chem. 263: 13994–14001, 1988.
 17. Bowman, E. J., K. Tenney, and B. J. Bowman. Isolation of genes encoding the neurospora vacuolar ATPase. Analysis of vma‐2 encoding the 57‐kDa polypeptide and comparison to vma‐1. J. Biol. Chem. 263: 13994–14001, 1988.
 18. Breyer, M. D. Peritubular (HCO3) modulates H+ but not HCO3 secretion in rabbit cortical collecting tubule, abstracted. Kidney Int. 31: 405, 1987.
 19. Brown, D. Freeze‐fracture of Xenopus laevis kidney: rod‐shaped particles in the canalicular membrane of the collecting tubule flask cell. J. Ultrastruct. Res. 63: 3–40, 1978.
 20. Brown, D., S. Gluck, and J. Hartwig. Structure of the novel membrane‐coating material in proton‐secreting epithelial cells and identification as an H+ ATPase. J. Cell Biol. 105: 1637–1648, 1987.
 21. Brown, D., S. Hirsch, and S. Gluck. An H+ ATPase is present in opposite plasma membrane domains in subpopulations of kidney epithelial cells. Nature 331: 622–624, 1988.
 22. Brown, N. L., J. M. Madsen, C. S. Wingo, A. Smolka, and C. C. Tisher. Translocation of H‐K ATPase to the apical membrane of intercalated cells of rat outer medullary collecting duct during potassium depletion, abstracted. Kidney Int. 37: 372A, 1990.
 23. Brown, D., and R. Montesano. Membrane specialization in the rat epididymis. I. Rod‐shaped intramembrane particles in the apical (mitochondria‐rich) cell. J. Cell Sci. 45: 187–198, 1980.
 24. Cannon, C., J. V. Adelsberg, S. Kelly, and Q. Al‐Awqati. Carbon dioxide induced exocytotic insertion of H+ pumps in turtle bladder luminal membrane: role of cell pH and calcium. Nature 314: 443–446, 1985.
 25. Cartwright, C. A., J. A. McRoberts, K. G. Mandel, and K. Dharmsathaphorn. Synergistic action of cyclic adenosine monophosphate and calcium mediated chloride secretion in a colonic epithelial cell line. J. Clin. Invest. 76: 1837–1842, 1985.
 26. Cidon, S., and N. Nelson. Purification of N‐ethylmaleimide‐sensitive ATPase from chromaffin granule membranes. J. Biol. Chem. 261: 9222–9227, 1986.
 27. Clausen, C. and T. E. Dixon. Membrane electrical parameters in turtle bladder measured using impedance analysis techniques. J. Membr. Biol. 92: 9–19, 1986.
 28. Cohen, L., A. Mueller, and P. R. Steinmetz. Inhibition of the bicarbonate exit step in urinary acidification by a disulfonic stilbene. J. Clin. Invest. 61: 981–986, 1978.
 29. Cohen, L. H., and P. R. Steinmetz. Control of active proton transport in turtle urinary bladder by cell pH. J. Gen. Physiol. 76: 381–393, 1980.
 30. Coleman, J. E. Carbonic anhydrase: zinc and the mechanism of catalysis. Ann. NY Acad. Sci. 429: 26–48, 1984.
 31. Cox, J. V., R. T. Moon, and E. Lazarides. Anion transporter: highly cell‐type‐specific expression of distinct polypeptides and transcripts in erythroid and non‐erythroid cells. J. Cell Biol. 100: 1548–1557, 1985.
 32. Demuth, D. R., L. C. Showe, M. Ballantine, A. Palumbo, P. J. Eraser, L. Cioe, G. Rovera, and P. J. Curtis. Cloning and structural characterization of a human non‐erythroid band 3 like protein. EMBO J. 5: 1205–1214, 1986.
 33. Denda, K., J. Konishi, T. Oshima, T. Date, and M. Yoshida. The membrane‐associated ATPase from sulfolobus acidocaldarius is distantly related to F1‐ATPase as assessed from the primary structure of its α‐subunit. J. Biol. Chem. 263: 6012–6015, 1988.
 34. Dixon, T. E., and Q. Al‐Awqati. H+/ATP stoichiometry of proton pump of turtle urinary bladder. J. Biol. Chem. 255: 3237–3239, 1980.
 35. Dixon, T. E., and Q. Al‐Awqati. Urinary acidification in turtle bladder is due to a reversible proton‐translocating ATPase. Proc. Natl. Acad. Sci. USA 76: 3135–3138, 1979.
 36. Dixon, T. E., C. Clausen, and D. Coachman. Constitutive and transport‐related endocytotic pathways in turtle bladder epithelium. J. Membr. Biol. 102 (1): 49–58, 1988.
 37. Dixon, T. E., C. Clausen, D. Coachman, and B. Lane. Proton transport and membrane shuttling in turtle bladder epithelium. J. Membr. Biol. 94 (3): 233–243, 1986.
 38. Dobyan, D. C., and R. E. Bulger. Renal carbonic anhydrase. Am. J. Physiol. 243 (Renal Fluid Electrolyte Physiol. 12): F311–F324, 1982.
 39. Drenckhahn, D., M. Oelmann, P. Schaef, M. Wagner, and S. Wagner. Band 3 is the basolateral anion exchanger of dark epithelial cells of turtle urinary bladder. Am. J. Physiol. 21: C570–C574, 1987.
 40. Drenckhahn, D., K. Schluter, D. P. Allen, and V. Bennett. Colocalization of band 3 with ankyrin and spectrin at the basal membrane of intercalated cells in the rat kidney. Science 230: 1287–1289, 1985.
 41. Durham, J., C. Matons, E. Schneider, and W. A. Brodsky. Evidence for neural regulation of alkali excretion in the turtle bladder. Kidney Int. 29: 365, 1986.
 42. Durham, J. H., C. Matons, and W. A. Brodsky. Vasoactive intestinal peptide stimulates alkali excretion in turtle urinary bladder. Am. J. Physiol. 21: C428–C435, 1987.
 43. Edwards, J. C., M. Rater, and Q. Al‐Awqati. Immortalization of rabbit cortical intercalated cells, abstracted. Kidney Int. 37: 43A, 1990.
 44. Ehrenspeck, G. Effect of calcium ionophore A23187 on electrogenic acid‐base transport in turtle bladder. Inhibition of acidification and stimulation of alkalinization. Biochim. Biophys. Acta 732: 146–153, 1983.
 45. Ehrenspeck, G., and W. A. Brodsky. Effects of 4‐acetamido‐4'‐isothiocyano‐2–2'‐disulfonic stilbene on ion transport in turtle bladder. Biochim. Biophys. Acta 419: 555–558, 1976.
 46. Field, M., D. Fromm, Q. Al‐Awqati, and W. B. Greenough III.. Effect of cholera enterotoxin on ion transport across isolated ileal mucosa. J. Clin. Invest. 51: 796–804, 1972.
 47. Fischer, J. L., R. F. Husted, and P. R. Steinmetz. Chloride dependence of the HCO3 exit step in urinary acidification by the turtle bladder. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F564–F568, 1983.
 48. Frizzell, R. A., G. Reckhammer, and R. L. Shoemaker. Altered regulation of airway epithelial chloride channels in cystic fibrosis. Science 233; 588–560, 1986.
 49. Futai, M. and H. Kanazawa. Structure and function of proton translocating ATPase (FoF1) Biochemical and molecular biological approaches. Microbiol. Rev. 47: 285–312, 1983.
 50. Garcia‐Aust, J., D. W. Good, M. B. Burg, and M. A. Knepper. Deoxycorticosterone stimulated bicarbonate secretion in rabbit cortical collecting ducts: effects of luminal chloride removal and in vivo acid loading. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F205–F212, 1985.
 51. Glickman, J., K. Croen, S. Kelly, and Q. Al‐Awqati. Golgi membranes contain an electrogenic H+ pump in parallel to a chloride conductance. J. Cell Biol. 97: 1704–1710, 1983.
 52. Gluck, S., and Q. Al‐Awqati. An electrogenic proton‐translocating adenosine triphosphatase from bovine kidney medulla. J. Clin. Invest. 73: 1704–1710, 1984.
 53. Gluck, S., and J. Caldwell. Immunoaffinity purification and characterization of H+ ATPase from bovine kidney. J. Biol. Chem. 262: 15780–15789, 1987.
 54. Gluck, S., C. Cannon, and Q. Al‐Awqati. Exocytosis regulates urinary acidification in turtle bladder by rapid insertion of H+ pumps into the luminal membrane. Proc. Natl. Acad. Sci. USA 79: 4327–4331. 1982.
 55. Gluck, S., S. Hirsch, and D. Brown. Immunocytochemical localization of H+ ATPase in rat kidney. Kidney Int. 31: 157. 1987 (abstr.).
 56. Gluck, S., S. Kelly, and Q. Al‐Awqati. The proton translocating ATPase responsible for urinary acidification. J. Biol. Chem. 257: 9230–9233, 1982.
 57. Goffeau, A., and C. W. Slayman. The proton translocating ATPase of the fungal plasma membrane. Biochim. Biophys. Acta 639: 58–61, 1981.
 58. Greger, R., E. Schlatter, F. Wang, and J. N. Forrest, Jr.. Mechanism of NaCl secretion in rectal gland tubules of spiny dogfish (Squalus acanthicus). III. Effects of a stimulation of secretion by cyclic AMP. Pflugers Arch. 402: 376–384, 1984.
 59. Hirsch, S., A. Strauss, K. Masood, S. Lee, V. Sukhatme, and S. Gluck. Isolation and sequence of a cDNA close encoding the 31‐kDa subunit of bovine kidney vacuolar H+‐ATPase. Proc. Natl. Acad. Sci. USA 85 (9): 3004–3008, 1988.
 60. Hansson, H. P. J. Histochemical demonstration of carbonic anhydrase activity. Histochemie 11: 112–128, 1967.
 61. Husted, R. P., A. Mueller, R. G. Kessel, and P. R. Steinmetz. Pathways for bicarbonate transfer across the serosal membrane of turtle urinary bladder: studies with disulfonic stilbene. J. Membr. Biol. 47: 27–37, 1979.
 62. Husted, R. F., A. Mueller, R. G. Kessel, and P. R. Steinmetz. Surface characteristics of carbonic‐anhydrase‐rich cells in turtle urinary bladder. Kidney Int. 19: 491–502, 1981.
 63. Husted, R. F., and P. R. Steinmetz. The effects of amiloride and ouabain on urinary acidification by turtle bladder. J. Pharmacol Exp. Ther. 210: 264–268, 1979.
 64. Jay, D., and L. Cantley. Structural aspects of the red cell anion exchange protein. Annu. Rev. Biochem. 55: 511–538, 1986.
 65. Johnson, L. M., V. A. Bankaitis, and S. D. Emr. Distinct sequence determinants direct intracellular sorting and modification of a yeast vacuolar protease. Cell 48: 875–885, 1987.
 66. Kaissling, B., and W. Kriz. Structural analysis of the rabbit kidney. Adv. Anat. Embryol. Cell Biol. 56: 1–123, 1979.
 67. Kashgarian, M., D. Biemesderfer, M. Caplan, and B. Forbush III.. Monoclonal antibody to Na, K‐ATPase: immunocytochemical localization along nephron segments. Kidney Int. 28: 899–913, 1985.
 68. Kelly, R. B. Pathways of protein secretion in eukaryotes. Science 230: 25–32, 1985.
 69. Kirk, K. L., A. Buku, and P. Eggena. Cell specificity of vasopressin binding in renal collecting duct: computer‐enhanced imaging of a fluorescent hormone analog. Proc. Natl. Acad. Sci. USA, in press.
 70. Koeppen, B. M. Conductive properties of the rabbit outer medullary collecting duct: inner stripe. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F500–F506, 1985.
 71. Koeppen, B. M. Conductive properties of the rabbit outer medullary collecting duct: outer strip. Am J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F70–F76, 1986.
 72. Kopito, R. R., M. M. Andersson, D. A. Herzlinger, and Q. Al‐Awqati. Structure and tissue‐specific expression of the mouse anion‐exchanger gene in erythroid and renal cells. In: Cell Physiology of Blood (Society of General Physiologists 41st Annual Symposium), edited by R. B. Gunn and J. C. Parker. New York: Rockefeller University Press, 1988, vol. 43, p. 151–162.
 73. Kopito, R. R., and H. F. Lodish. Primary structure and transmembrane orientation of the murine anion exchange protein. Nature 316: 234–238, 1985.
 74. Kornfeld, S. Trafficking of lysosomal enzymes in normal and disease states. J. Clin. Invest. 77: 1–6, 1986.
 75. Landry, D., M. H. Akabas, C. Redhead, A. Edelman, E. J. Cragoe, Jr., and Q. Al‐Awqati. Purification and reconstitution of renal and tracheal chloride channels. Science 244: 1469–1472. 1989.
 76. Landry, D. W., M. Reitman, E. J. Cragoe, Jr., and Q. Al‐Awqati. Epithelial chloride channel: development of inhibitory ligands. J. Gen. Physiol. 90: 779–798, 1987.
 77. Le Hir, M., B. Kaissling, B. M. Koeppen, and J. B. Wade. Binding of peanut lectin to specific epithelial cell types in kidney. Am. J. Physiol. 242 (Cell Physiol. 11): C117–C120, 1982.
 78. Leslie, B. R., J. H. Schwartz, and P. R. Steinmetz. Coupling between Cl− absorption and HCO3− secretion in turtle urinary bladder. Am. J. Physiol. 225: 610–617, 1973.
 79. Lief, P. D., B. F. Mutz, and N. Bank. Effects of cyclic AMP on hydrogen ion secretion by turtle urinary bladder. Kidney Int. 16: 103–112, 1979.
 80. Light, D. B., E. M. Schwiebert, G. Fejes Toth, A. Naray Fejes Toth, K. H. Karlson, F. V. McCann, B. A. Stanton. Chloride channels in the apical membrane of cortical collecting duct cells. Am. J. Physiol. 258 (Renal fluid Electrolyte Physiol. 27): F273–F280, 1990.
 81. Lisanti, M. P., I. W. Caras, M. A. Davitz, and E. Rodriguez‐Boulan. A glycophospholipid membrane anchor acts as an apical targeting signal in polarized epithelial cells. Cell Biol. 109 (5): 2145–2156, 1989.
 82. Lisanti, M. P., A. Le‐Bivic, A. R. Saltiel, E. Boulan‐Rodriguez. Preferred apical distribution of glycosylphosphatidylinositol (GPI) anchored proteins: a highly conserved feature of the polarized epithelial cell phenotype. J. Membr. Biol. 113 (2): 155–167, 1990.
 83. Lombard, W. E., J. P. Kokko, and H. R. Jacobson. Bicarbonate transport in cortical and outer medullary collecting tubules. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F296, 1983.
 84. Lonnerholm, G. Histochemical demonstration of carbonic anhydrase activity in the rat kidney. Acta Physiol. Scand. 81: 433–439, 1971.
 85. Lowenstein, W. R. Regulation of cell‐to‐cell communication by phosphorylation. Biochem. Soc. Symp. 50: 43–58, 1985.
 86. Ludens, J. H., and D. D. Fanestil. Aldosterone stimulation of acidification of urine by isolated urinary bladder of the Colombian toad. Am. J. Physiol. 226: 1321–1326, 1974.
 87. Ludens, J. H., D. A. Vaughn, and D. D. Fanestil. Stimulation of urinary acidification by aldosterone and inhibitors of RNA and protein synthesis. J. Membr. Biol. special issue: Epithelia as Hormone and Drug Receptors 1978, p. 199–211.
 88. Madsen, K. M., and C. C. Tisher. Structural‐functional relationships along the distal nephron. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F1–F15, 1986.
 89. Mandel, M., Y. Moriyama, J. D. Hulmes, Y.‐C. E. Pan, H. Nelson, and N. Nelson. cDNA sequence encoding the 16‐kDa proteolipid of chromaffin granules implies gene duplication in the evolution of H+‐ATPases. Proc. Natl. Acad. Sci. USA 85: 5521–5524, 1988.
 90. Mauchamp, J., A. Margotat, M. Chambard, B. Charrier, L. Remy, and M. Michel‐Bechet. Polarity of three dimensional structures derived from isolated hog thyroid cells in primary culture. Cell Tissue Res. 204: 417–430, 1979.
 91. McKinney, T. D., and M. B. Burg. Bicarbonate transport by rabbit cortical collecting tubules. Effect of acid and alkali loads in vivo on transport in vitro. J. Clin. Invest. 60: 766–768, 1977.
 92. McKinney, T. D., and M. B. Burg. Bicarbonate secretion by rabbit cortical collecting tubules in vitro. J. Clin. Invest. 61: 1421–1427, 1978.
 93. McKinney, T. D., and K. K. Davidson. Effects of respiratory acidosis on HCO3− transport by rabbit collecting tubules. Am. J. Physiol. 255 (Renal Fluid Electrolyte Physiol. 24): F656–F665, 1988.
 94. Miller, S. G., and M. B. Kennedy. Regulation of brain type ii Ca‐2+/calmodulin‐dependent protein kinase by autophosphorylation: a Ca2+‐triggered molecular switch. Cell 44 (6): 861–870, 1983.
 95. Mostov, K. E., J.‐P. Kraehenbuhl, and G. Blobel. Receptor‐mediated transcellular transport of immunoglobulin: synthesis of secretory component as multiple and larger transmembrane forms. Proc. Natl. Acad. Sci. USA 77: 7257–7261, 1980.
 96. Mueller, A., and P. R. Steinmetz. Spironolactone: an aldosterone agonist in the stimulation of H+ secretion by the turtle urinary bladder. J. Clin. Invest. 78: 1666–1670, 1978.
 97. Nelson, H., S. Mandiyan, and N. Nelson. A conserved gene encoding the 57 kDa subunit of the yeast vacuolar H+‐ATPase. J. Biol. Chem., in press.
 98. Nelson, W. J., and R. W. Hammerton. A membrane‐cytoskeletal complex containing Na+,K+‐ATPase, ankyrin, and Fodrin in Madin‐Darby canine kidney (MDCK) cells: implications for the biogenesis of epithelial cell polarity. J. Cell Biol. 108 (3): 893–902, 1989.
 99. Nelson, W. J., and P. J. Veshnock. Dynamics of membrane‐skeleton (Fodrin) organization during development of polarity in Madin‐Darby canine kidney epithelial cells. J. Cell Biol. 103: 1751–1765, 1986.
 100. Okamoto, H., N. Sone, H. Hirata, M. Yoshida, and Y. Kagawa. Purified proton conductor in proton translocating adenosine triphosphatase of a thermophilic bacterium. J. Biol. Chem. 252: 6125–6131, 1977.
 101. Okusa, M. D., R. Unwin, F. S. Wright, G. Giebisch, and M. J. Caplan. H+,K+‐ATPase mRNA expression in rat kidney, abstracted. Kidney Int. 37: 380A, 1990.
 102. Oliver, J. A., S. Himmelstein, and P. R. Steinmetz. Energy dependence of urinary bicarbonate secretion in turtle bladder. J. Clin. Invest. 55: 1003–1008, 1975.
 103. Reinhardt, R., R. J. Bridges, W. Rummel, and B. Lindemann. Properties of an anion‐selective channel from rat colonic enterocyte plasma membranes reconstituted into planar phospholipid bilayers. J. Membr. Biol. 95: 47–54, 1987.
 104. Rich, A., T. E. Dixon, and C. Clausen. Changes in membrane conductances and areas associated with bicarbonate secretion in turtle bladder. J. Membr. Biol. 113 (3): 211–219, 1990.
 105. Rodriguez‐Boulan, E., and W. J. Nelson. Morphogenesis of the polarized epithelial cell phenotype. Science 245: 718–725, 1989.
 106. Rosen, S. Localization of carbonic anhydrase activity in the vertebrate nephron. Histochem. J. 4: 35–38, 1972.
 107. Sachs, G., L. D. Faller, and E. Rabon. Proton/hydroxyl transport in gastric and intestinal epithelia. J. Membr. Biol. 64: 123–135, 1982.
 108. Schilb, T., and W. A. Brodsky. Acidification of mucosal fluid by transport of bicarbonate ion in turtle bladders. Am. J. Physiol. 210: 997–1008, 1966.
 109. Schlatter, E., and R. Greger. cAMP increases the basolateral chloride conductance in the isolated perfused medullary thick ascending limb. Pflugers Arch. 405: 367–376, 1985.
 110. Schuster, V. L. Cyclic adenosine monophosphate‐stimulated anion transport in rabbit cortical collecting tubule. Kinetics, stoichiometry and conductive pathways. J. Clin. Invest. 78: 1621–1630, 1986.
 111. Schuster, V. L., S. M. Bosnib, and M. L. Jennings. Two types of mitochondria‐rich (intercalated) cells: lectin and band 3 cytochemistry. Am. J. Physiol. 251 (Cell Physiol. 20): C347–C355, 1986.
 112. Schwartz, G. J., and Q. Al‐Awqati. Carbon dioxide causes exocytosis of vesicles containing H+ pumps in isolated perfused proximal and collecting tubules. J. Clin. Invest. 75: 1638–1644, 1985.
 113. Schwartz, G. J., J. Barasch, and Q. Al‐Awqati. Plasticity of functional epithelial polarity. Nature 318: 368–371, 1985.
 114. Schwartz, J. H. H+ current response to CO2 and carbonic anhydrase inhibition in turtle bladder. Am. J. Physiol. 231: 565–572, 1976.
 115. Silva, F., W. Schulz, L. Davis, and D. K. Stone. Immunocytochemical localization of the clathrin‐coated vesicle proton pump. Kidney Int. 31: 416, 1987 (abstr.).
 116. Simons, K., and S. D. Fuller. Cell surface polarity in epithelia. Annu. Rev. Cell Biol. 1: 243–288, 1985.
 117. Sly, W. S., D. Hewett‐Emmett, W. P. Whyte, Y. S. Yu, and R. E. Tashian. Carbonic anhydrase II deficiency identified as the primary defect in the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. Proc. Natl. Acad. Sci. USA 80: 2752–2756, 1983.
 118. Spray, D. C., R. L. White, F. Mazet, and M. V. Bennett. Regulation of gap junctional conductance. Am. J. Physiol. 248 (Heart Circ. Physiol. 17): H753–H764, 1985.
 119. Star, R. A., M. B. Burg, and M. A. Knepper. Bicarbonate secretion and chloride absorption by rabbit cortical collecting ducts. Role of chloride/bicarbonate exchange. J. Clin. Invest. 76: 1123–1130, 1985.
 120. Steinmetz, P. R. Cellular mechanisms of urinary acidification. Physiol. Rev. 54: 890–956, 1974.
 121. Steinmetz, P. R., and O. S. Andersen. Electrogenic proton transport in epithelial membranes. J. Membr. Biol. 65: 155–174, 1982.
 122. Steinmetz, P. R., R. F. Husted, A. Mueller, and R. Beauwens. Coupling between H+ transport and anaerobic glycolysis in turtle urinary bladder: effects of inhibitors of H+ ATPase. J. Membr. Biol. 59: 27–34, 1981.
 123. Steinmetz, P. R., and L. R. Lawson. Effect of luminal pH on ion permeability and flows of Na+ and H+ in turtle bladder. Am. J. Physiol. 220: 1573–1580, 1971.
 124. Steinmetz, P. R., R. S. Omachi, and H. S. Frazier. Independence of hydrogen ion secretion and transport of other electrolytes in turtle bladder. J. Clin. Invest. 46: 1541–1548, 1967.
 125. Stern, C. D., and D. O. MacKenzie. Sodium transport and the control of epiblast polarity in the early chick embryo. J. Embryol. Exp. Morphol. 77: 73–98, 1983.
 126. Stetson, D. L., R. Beauwens, J. Palmisano, P. P. Mitchell, and P. R. Steinmetz. A double‐membrane model for urinary bicarbonate secretion. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F546–F552, 1985.
 127. Stetson, D. L., and P. R. Steinmetz. Role of membrane fusion in co2 stimulation of protein secretion by turtle bladder. Am. J. Physiol. 245 (Cell Physiol. 14): C113–C120, 1983.
 128. Stetson, D. L., and P. R. Steinmetz. α and β types of carbonic anhydrase‐rich cells in turtle bladder. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F553–F565, 1985.
 129. Stone, D. K., D. W. Seldin, J. P. Kokko, and H. R. Jacobson. Anion dependence of rabbit medullary collecting duct acidification. J. Clin. Invest. 71: 1505–1508, 1983.
 130. Strange, K., and K. R. Spring. Cell membrane water permeability of rabbit cortical collecting duct. J. Membr. Biol. 96: 27–43, 1987.
 131. Tabcharani, J. A., T. J. Jensen, J. R. Riordan, and J. W. Hanrahan. Bicarbonate permeability of the outwardly rec tifying anion channel. J. Membr. Biol. 112 (2): 109–122, 1990.
 132. Tashian, R. E., D. Hewett‐Emmett, S. J. Dodgson, R. E. Forster II, and W. S. Sly. The value of inherited deficiencies of human carbonic anhydrase isozymes in understanding their cellular roles. Ann. NY Acad. Sci. 429: 262–275, 1984.
 133. Valls, L. A., C. P. Hunter, J. H. Rothman, and T. H. Stevens. Protein sorting in yeast: the localization determinant of yeast vacuolar carboxypeptidase Y resides in the propeptide. Cell 48: 887–897, 1987.
 134. Veech, R. L., J. W. Randolph, N. W. Cornell, and H. A. Krebs. Cytosolic phosporylation potential. J. Biol. Chem. 254: 6538–6547, 1979.
 135. Wade, J. B. Membrane structural specialization of the toad urinary bladder revealed by the freeze‐fracture technique. II. The mitochondria‐rich cell. J. Membr. Biol. 29: 111–126, 1976.
 136. Waiter, P., R. Gilmore, and G. Blobel. Protein translocation across the endoplasmic reticulum. Cell 35: 5–8, 1984.
 137. Wangemann, P., M. Wiitner, A. DiStefano, H. C. Englert, H. J. Lang, E. Schlaffer, and R. Gregor. Cl channel blocker in the thick ascending limb of the loop of Henle. Structure activity relationship. Pflügers Arch. 407 (Suppl. 2): S128–141, 1986.
 138. Welsh, M. J., and C. M. Liedtke. Chloride and potassium channels in cystic fibrosis airway epithelia. Nature 322: 467–470, 1986.
 139. Woods, C. M., and E. Lazarides. Degradation of unassembled α‐ and β‐spectrin by distinct intracellular pathways: regulation of spectrin topogenesis by β‐spectrin degradation. Cell 40: 959–969, 1985.
 140. Xie, X.‐S., and D. K. Stone. Isolation and reconstitution of the clathrin coated vesicle proton translocating complex. J. Biol. Chem. 261: 2492–2495, 1986.
 141. Xie, X. S., D. K. Stone, and E. Racker. Determinants of clathrin‐coated vesicle acidification. J. Biol. Chem. 258: 14834–14838, 1983.
 142. Young, G. P. H., J. Qiao, and Q. Al‐Awqati. Purification and reconstitution of the proton‐translocating ATPase of Ciolgi‐encircled membranes. Proc. Natl. Acad. Sci. USA 85: 9590–9594, 1988.
 143. Zigmond, S. H., H. I. Levitsky, and B. J. Kreel. Cell polarity: an examination of its behavioral expression and its consequences for leukocyte chemotaxis. J. Cell Biol. 89: 585–592, 1981.
 144. Zimniak, L., P. Dittrich, J. P. Gogarten, H. Kibak, and L. Taiz. The cDNA sequence of the 69‐kDa subunit of the carrot vacuolar H+‐ATPase. J. Biol. Chem. 263: 9102–9112, 1988.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Qais Al‐Awqati, Renaud Beauwens. Cellular Mechanisms of H+ and HCO3− transport in tight urinary epithelia. Compr Physiol 2011, Supplement 25: Handbook of Physiology, Renal Physiology: 323-350. First published in print 1992. doi: 10.1002/cphy.cp080108