Comprehensive Physiology Wiley Online Library

Mendelian Phenotypes as “Probes” of Renal Transport Systems for Amino Acids and Phosphate

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Genetic Considerations
1.1 Chemical Phenotypes
1.2 Polypeptide Phenotypes
1.3 Genotypes
2 Homeostasis: The Concept of Heritability
3 Physiological Considerations of Renal Transport
3.1 Radial Specificity
3.2 Axial Specificity
3.3 Chemical Specificity
4 Mendelian Phenotypes
4.1 Disorders of Cationic Amino Acid Transport
4.2 Disorders of Neutral Amino Acid Transport
4.3 Disorders of Anionic (Acidic) Amino Acid Transport
4.4 Disorders of Phosphate Transport
4.5 Fanconi Syndrome and Allied Disorders
5 Resumé of Findings in Mendelian Renal Transport Phenotypes and Their Implications
5.1 Taxonomy
5.2 Heterogeneity of Carriers
5.3 Homeostasis
6 Cell Biology and Molecular Genetics
Figure 1. Figure 1.

Top: model of renal reabsorption process (flux J1, J2) drawn to accommodate disorders affecting net reabsorption of metabolic substrates (S) such as amino acids and phosphate. Reabsorption begins at luminal membrane (flux J3) with substrate and Na+ moving from lumen to cell by coupled cotransport on symport. Influx of S can be against electrochemical gradient, while movement of Na+ is down its gradient. Steady state of S in open system (in vivo and in situ) is not necessarily equivalent to chemical equilibrium condition in corresponding closed system (in vitro) because of substrate “runout” into alternative chemical (metabolic) pools (flux B, J7) by backflux (J4) and paracellular leak (P) and transport (facilitated diffusion) by basolateral carriers to peritubular space (flux A, J5). Mediated uptake (flux J6) of S, for nutrient purposes, occurs at basolateral membrane (BLM) on carriers with chemical specificity. Whether efflux (J5, for reabsorptive process) and uptake (J6, for nutrition) of S occur on same or on different carriers is moot. Basolateral Na+,K+ ‐ATPase, required for primary active transport to maintain associated secondary active transport of S at brush border membrane (BBM), is implied but not shown. SL, luminal substrate; Sc, cellular substrate; SE, extracellular fluid substrate. Bottom: mendelian disorders that impair net reabsorption can affect , carriers for S at luminal membrane (by altering their number of carriers, their coupling to the Na+ gradient, or their affinity for S on either luminal or cytoplasmic surface) and either influx (decreased) as in or efflux (increased) as in ; , metabolic runout; and , mediated efflux at basolateral membrane. Open triangles, luminal origin of metabolite; closed triangles, cellular source of metabolite; open circles, conversion products of luminal metabolite; closed rectangles, impaired function; dashed arrows, deviant pathways.

From Bergeron and Scriver 27
Figure 2. Figure 2.

Effect of mutant allele (heterzygous genotype) on phenotype value (shown as net flux value, ordinate) when allele alters quantitative activity of one catalyst (shown as relative activity value, abscissa) in homeostatic system with one component or more (e.g., two, three, or nine components). Relation between variant genotype and flux value is linear in one‐component system and nonlinear in multiple‐component systems.

Adapted from Kacser and Burns 145
Figure 3. Figure 3.

Distribution of quantitative (phenotype) values in homeostatic system. A: normal distribution, with central tendency (mean value, x) and dispersion between outlier values (0 to 1). Central tendency is maintained by coherent behavior conferred by genotype (G). Dispersion is increased by experience (E) overriding the homeostatic system. B: deviant values, with mean distributions x' and x” in quasicontinuous and discontinuous variant phenotypes, respectively (see text for discussion).

Figure 4. Figure 4.

Top: relationship between fractional reabsorption (FR) of α‐aminoisobutyrate (AIB) and plasma AIB concentration in nine individual rats under uniform conditions of AIB infusion; plasma AIB is directly proportional to FRAIB. Open squares, low infusion rate; open circles, high infusion rate. Bottom: interindividual variation in fractional excretion (FE) of AIB is greater by ∼30‐fold than intraindividual variation (∼10%) in rats at steady state infused with AIB under uniform conditions. Evidence for heritability of FRAIB in rat.

Figure 5. Figure 5.

Topological heterogeneity in reabsorption processes shared by particular substrates in proximal nephron. Segments (S) SA and SB contain systems A and B, which have different properties (axial heterogeneity), A and A' and B and B' being different mediations of transmembrane transport (radial heterogeneity). Model is based on evidence from mendelian phenotypes and physiological studies.

Figure 6. Figure 6.

Plasma amino acid values in Hartnup patients and control siblings. Summed values are shown for 11 amino acids affected in Hartnup phenotype (A) and for remaining amino acids not thus affected (B). ○, Hartnup subjects; •, nonaffected controls. Lines crossing between columns indicate affected and nonaffected siblings; vertical lines within columns indicate siblings of like genotype. Mean values and distributions are not different in Hartnup and control groups. Two symptomatic Hartnup probands () are low outliers in A and B; their unaffected siblings are also low outliers in control group (A). Evidence that background genotype determines threshold for symptomatic expression of Hartnup mutation.

From Scriver et al. 276.
Figure 7. Figure 7.

Left: distribution of serum phosphorus values as inorganic phosphate in children and adolescents (6–17 yr). Right: association between age‐dependent mean serum phosphate values in male and female youths and adults and renal reabsorption expressed as Tmp/GFR.

Drawn from primary data on serum phosphate values and other data supplied by Kruse et al. 162


Figure 1.

Top: model of renal reabsorption process (flux J1, J2) drawn to accommodate disorders affecting net reabsorption of metabolic substrates (S) such as amino acids and phosphate. Reabsorption begins at luminal membrane (flux J3) with substrate and Na+ moving from lumen to cell by coupled cotransport on symport. Influx of S can be against electrochemical gradient, while movement of Na+ is down its gradient. Steady state of S in open system (in vivo and in situ) is not necessarily equivalent to chemical equilibrium condition in corresponding closed system (in vitro) because of substrate “runout” into alternative chemical (metabolic) pools (flux B, J7) by backflux (J4) and paracellular leak (P) and transport (facilitated diffusion) by basolateral carriers to peritubular space (flux A, J5). Mediated uptake (flux J6) of S, for nutrient purposes, occurs at basolateral membrane (BLM) on carriers with chemical specificity. Whether efflux (J5, for reabsorptive process) and uptake (J6, for nutrition) of S occur on same or on different carriers is moot. Basolateral Na+,K+ ‐ATPase, required for primary active transport to maintain associated secondary active transport of S at brush border membrane (BBM), is implied but not shown. SL, luminal substrate; Sc, cellular substrate; SE, extracellular fluid substrate. Bottom: mendelian disorders that impair net reabsorption can affect , carriers for S at luminal membrane (by altering their number of carriers, their coupling to the Na+ gradient, or their affinity for S on either luminal or cytoplasmic surface) and either influx (decreased) as in or efflux (increased) as in ; , metabolic runout; and , mediated efflux at basolateral membrane. Open triangles, luminal origin of metabolite; closed triangles, cellular source of metabolite; open circles, conversion products of luminal metabolite; closed rectangles, impaired function; dashed arrows, deviant pathways.

From Bergeron and Scriver 27


Figure 2.

Effect of mutant allele (heterzygous genotype) on phenotype value (shown as net flux value, ordinate) when allele alters quantitative activity of one catalyst (shown as relative activity value, abscissa) in homeostatic system with one component or more (e.g., two, three, or nine components). Relation between variant genotype and flux value is linear in one‐component system and nonlinear in multiple‐component systems.

Adapted from Kacser and Burns 145


Figure 3.

Distribution of quantitative (phenotype) values in homeostatic system. A: normal distribution, with central tendency (mean value, x) and dispersion between outlier values (0 to 1). Central tendency is maintained by coherent behavior conferred by genotype (G). Dispersion is increased by experience (E) overriding the homeostatic system. B: deviant values, with mean distributions x' and x” in quasicontinuous and discontinuous variant phenotypes, respectively (see text for discussion).



Figure 4.

Top: relationship between fractional reabsorption (FR) of α‐aminoisobutyrate (AIB) and plasma AIB concentration in nine individual rats under uniform conditions of AIB infusion; plasma AIB is directly proportional to FRAIB. Open squares, low infusion rate; open circles, high infusion rate. Bottom: interindividual variation in fractional excretion (FE) of AIB is greater by ∼30‐fold than intraindividual variation (∼10%) in rats at steady state infused with AIB under uniform conditions. Evidence for heritability of FRAIB in rat.



Figure 5.

Topological heterogeneity in reabsorption processes shared by particular substrates in proximal nephron. Segments (S) SA and SB contain systems A and B, which have different properties (axial heterogeneity), A and A' and B and B' being different mediations of transmembrane transport (radial heterogeneity). Model is based on evidence from mendelian phenotypes and physiological studies.



Figure 6.

Plasma amino acid values in Hartnup patients and control siblings. Summed values are shown for 11 amino acids affected in Hartnup phenotype (A) and for remaining amino acids not thus affected (B). ○, Hartnup subjects; •, nonaffected controls. Lines crossing between columns indicate affected and nonaffected siblings; vertical lines within columns indicate siblings of like genotype. Mean values and distributions are not different in Hartnup and control groups. Two symptomatic Hartnup probands () are low outliers in A and B; their unaffected siblings are also low outliers in control group (A). Evidence that background genotype determines threshold for symptomatic expression of Hartnup mutation.

From Scriver et al. 276.


Figure 7.

Left: distribution of serum phosphorus values as inorganic phosphate in children and adolescents (6–17 yr). Right: association between age‐dependent mean serum phosphate values in male and female youths and adults and renal reabsorption expressed as Tmp/GFR.

Drawn from primary data on serum phosphate values and other data supplied by Kruse et al. 162
References
 1. Agus, Z. S. Oncogenic hypophosphatemic osteomalacia. Kidney Int. 24: 113–123, 1983.
 2. Albright, F., A. M. Butler, and E. Bloomberg. Rickets resistant to vitamin D therapy. Am. J. Dis. Child. 54: 529–547, 1937.
 3. Allen, J. C., M. C. Neville, J. M. Seacat, C. E. Casey, and M. R. Neiffert. Amino acids in milk in cystinuria. N. Engl. J. Med. 310: 1332–1333, 1984.
 4. Almers, W., and C. Stirling. Distribution of transport proteins over animal cell membranes. J. Membr. Biol. 77: 169–186, 1984.
 5. Amstutz, M., M. Mohrmann, P. Gmaj, and H. Murer. Effect of pH on phosphate transport in rat renal brush border membrane vesicles. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F705–F710, 1985.
 6. Angielski, S. Amino acids in the urine of mono‐ and dizygotic twins. Acta Biochim. Pol. V: 75–89, 1958.
 7. Armstrong, M. D., K. Yates, Y. Kakimoto, K. Taniguchi, and T. Kappe. Excretion of β‐aminoisobutyric acid by man. J. Biol. Chem. 238: 1447–1455, 1963.
 8. Arnaud, C., F. Glorieux, and C. R. Scriver. Serum parathyroid hormone levels in acquired vitamin D deficiency of infancy. Pediatrics 49: 837–840, 1972.
 9. Aronson, P. S. Identifying secondary active solute transport in epithelia. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 9): F1–F11, 1981.
 10. Arrow, V. K., and R. G. Westall. Amino acid clearances in cystinuria. J. Physiol. 142–146, 1958.
 11. Asatoor, A. M., B. Cheng, K. D. G. Edwards, A. F. Lant, D. M. Matthews, M. D. Milne, F. Navab, and A. J. Richards. Intestinal absorption of two dipeptides in Hartnup disease. Gut 11: 380–387, 1970.
 12. Asatoor, A. M., M. R. Croughman, A. R. Harrison, F. W. Light, L. W. Loughridge, M. D. Milne, and A. J. Richards. Intestinal absorption of oligopeptides in cystinuria. Clin. Sci. 41: 23–33, 1971.
 13. Baerlocher, K. E., C. R. Scriver, and F. Mohyuddin. Ontogeny of iminoglycine transport in mammalian kidney. Proc. Natl. Acad. Sci. USA 65: 1009–1016, 1970.
 14. Bannai, S. Transport of cystine and cysteine in mammalian cells. Biochim. Biophys. Acta 779: 289–306, 1984.
 15. Barfuss, D. W., J. M. Mays, and J. A. Schafer. Peritubular uptake and transepithelial transport of glycine in isolated proximal tubules. Am. J. Physiol. 238 (Renal Fluid Electrolyte Physiol. 7): F324–F333, 1980.
 16. Barfuss, D. W., and J. S. Schafer. Active amino acid absorption by proximal convoluted and proximal straight tubules. Am. J. Physiol. 236 (Renal Fluid Electrolyte Physiol. 5): F149–F162, 1979.
 17. Baron, D. N., C. E. Dent, H. Harris, E. W. Hart, and J. B. Jepson. Hereditary pellagra‐like skin rash with temporary cerebellar ataxia, constant renal aminoaciduria and other bizarre biochemical features. Lancet 2: 421–428, 1956.
 18. Beadle, G. W. Genes and chemical reactions in neurospora. Science 129: 1715–1719, 1959.
 19. Bell, C. L. Transport studies in primary culture of mouse renal epithelial cells. Montreal: McGill University, 1986. Ph.D. Dissertation.
 20. Bell, C. L., H. S. Tenenhouse, and C. R. Scriver. Isolation and culture of murine proximal tubule cells: a system to study solute transport in mutants. Ann. N.Y. Acad. Sci. 456: 398–400, 1985.
 21. Bell, C. L., H. S. Tenenhouse, and C. R. Scriver. Initiation and characterization of primary mouse kidney epithelial cultures. In Vitro Cell. Dev. Biol. 24: 683–695, 1988.
 22. Bell, C. L., H. S. Tenenhouse, and C. R. Scriver. Primary cultures of renal epithelial cells from X‐linked hypophosphatemic (Hyp) mice express defects in phosphate transport and vitamin D metabolism. Am. J. Hum. Genet. 43: 293–303, 1988.
 23. Bergeron, M., L. Dubord, C. Hausser, and C. Schwab. Membrane permeability as a cause of transport defects in experimental Fanconi syndrome. J. Clin. Invest. 57: 1181–1189, 1976.
 24. Bergeron, M., P. Gaffiero, and G. Thiery. Segmental variations in the organization of the endoplasmic reticulum of the rat nephron. Cell Tissue Res. 247: 215–225, 1987.
 25. Bergeron, M., and A. Gougoux. The renal Fanconi syndrome. In: The Metabolic Basis of Inherited Disease (6th ed.), edited by C. R. Scriver, A. L. Beaudet, W. S. Sly, and D. Valle. New York: McGraw‐Hill, 1989, p. 2569–2580.
 26. Bergeron, M., and F. Morel. Amino acid transport in rat renal tubules. Am. J. Physiol. 216: 1139–1149, 1969.
 27. Bergeron, M., and C. R. Scriver. Pathophysiology of renal hyperaminoacidurias and glucosuria. In: The Kidney: Physiology and Pathophysiology, edited by D. W. Seldin and G. Giebisch. New York: Raven, 1985, p. 1725–1745.
 28. Biber, J., and H. Murer. Na–Pi co‐transport in LLC‐PK1 cells: fast adaptive response to Pi deprivation. Am. J. Physiol. 249 (Cell Physiol. 18): C430–434, 1985.
 29. Bindels, R. J. M., L. A. M. van den Broek, and C. H. van Os. Effect of pH on the kinetics of Na+‐dependent phosphate transport in rat renal brush‐border membranes. Biochim. Biophys. Acta 897: 83–92, 1987.
 30. Blazer‐Yost, B., R. Reynolds, and S. Segal. Amino acid content of rat renal cortex and the response to in vitro incubation. Am. J. Physiol. 236 (Renal Fluid Electrolyte Physiol. 5): F398–F404, 1979.
 31. Boneh, A., S. Mandla, and H. S. Tenenhouse. Phorbol myristate acetate activates protein kinase C, stimulates the phosphorylation of endogenous proteins and inhibits phosphate transport in mouse renal tubules. Biochim. Biophys. Acta 1012: 308–316, 1989.
 32. Boneh, A., T. M. Reade, C. R. Scriver, and E. Rishikof. Audiometric evidence for two forms of X‐linked hypophosphatemia in humans, apparent counterparts of Hyp and Gy mutations in mouse. Am. J. Med. Genet. 27: 997–1003, 1987.
 33. Boneh, A., and H. S. Tenenhouse. Protein kinase C in mouse kidney: effect of the Hyp mutation and phosphate deprivation. Kidney Int. 37: 682–688, 1990.
 34. Bonjour, J. P., and H. Fleisch. Tubular adaptation to the supply and requirement of phosphate. In: Renal Handling of Phosphate, edited by S. G. Massry and H. Fleisch. New York: Plenum, 1980, p. 243–264.
 35. Botschner, J., D. W. Smith, O. Simell, and C. R. Scriver. Comparison of ornithine metabolism in hyperornithinaemia‐hyperammonaemia‐homocitrullinuria syndrome, lysinuric protein intolerance and gyrate atrophy fibroblasts. J. Inherited Metab. Dis. 12: 33–40, 1989.
 36. Bovee, K. C., M. Bush, J. Dietz, P. Jezyk, and S. Segal. Cystinuria in the maned wolf of South America. Science 212: 919–920, 1981.
 37. Bovee, K. C., and S. Segal. Renal tubule reabsorption of amino acids after lysine loading of cystinuria dogs. Metabolism 33: 602–607, 1984.
 38. Bovee, K. C., S. O. Thier, C. Rea, and S. Segal. Renal clearance of amino acids in canine cystinuria. Metabolism. 23: 51–58, 1974.
 39. Bowen, J. W., and C. Levinson. Phosphate concentration and transport in Ehrlich ascites tumor cells: effect of sodium. J. Cell Physiol. 110: 149–154, 1982.
 40. Bremer, H. J., and E. Kohne. The excretion of diamines in human urine. II. Cadaverine, putressine 1,3‐diaminopropane, 2,2',dithiobis‐(ethylamine) and spermidine in urine of patients with cystinuria and cystinlysinuria. Clin. Chim. Acta 32: 407–418, 1971.
 41. Brenton, D. P., D. A. Isenberg, D. C. Cusworth, P. Garrod, S. Krywawych, and T. C. Stamp. The adult presenting idiopathic Fanconi syndrome. J. Inherited Metab. Dis. 4: 211–215, 1981.
 42. Brigham, M. P., W. H. Stein, and S. Moore. The concentrations of cysteine and cystine in human blood plasma. J. Clin. Invest. 39: 1633–1638, 1960.
 43. Brodehl, J., Postnatal development of tubular amino acid reabsorption. In: Amino Acid Transport and Uric Acid Transport, edited by S. Silbernagl, F. Lang, and R. Greger. Stuttgart: Georg Thieme, 1976, p. 128–135.
 44. Brodehl, J., K. Gellissen, and S. Kowalewski. Isolierter defekt der tubulären cystinrückresorption in einer familie mit idiopathischem Hypoparathyroidismus. Klin. Wochenschr. 45: 38–40, 1967.
 45. Brodehl, J., K. Gellissen, and H. P. Weber. Postnatal development of tubular phosphate reabsorption. Clin. Nephrol. 17: 163–171, 1982.
 46. Brown, C. E., C. A. Wilkie, M. H. Meyer, and R. A. Meyer. Response of tissue phosphate content to acute dietary phosphate deprivation in the X‐linked hypophosphatemic mouse. Calcif. Tissue Int. 37: 423–430, 1985.
 47. Brown, D. A., B. Crise, and J. K. Rose. Mechanism of membrane anchoring affects polarized expression of two proteins in MDCK cells. Science 245: 1499–1501, 1989.
 48. Brown, K. D., and J. F. Lamb. Na‐dependent phosphate transport in cultured cells. J. Physiol. (Lond.) 251: 58P–59P, 1975.
 49. Brown, M. S., and J. L. Goldstein. A receptor‐mediated pathway for cholesterol homeostasis. Science 232: 34–47, 1986.
 50. Brunette, M. G., M. Chan, U. Maag, and R. Beliveau. Phosphate uptake by superfical and deep nephron brush‐border membranes: effect of the dietary phosphate and parathyroid hormone. Pflugers Arch. 400: 356–362, 1984.
 51. Buchanan, J. A., D. S. Rosenblatt, and C. R. Scriver. Cultured human fibroblasts and plasma membrane vesicles to investigate transport function and the effects of genetic mutation. Ann. N.Y. Acad. Sci. 456: 401–403, 1985.
 52. Busse, D. Transport of L‐arginine in brush border vesicles derived from rabbit kidney cortex. Arch. Biochem. Biophys. 191: 551–560, 1978.
 53. Cabantchik, Z. I., P. Knauf, and A. Rothstein. The anion transport system of the red blood cell: the role of membrane protein evaluated by the use of “probes.” Biochim. Biophys. Acta 515: 239–302, 1978.
 54. Caplan, M. J., H. C. Anderson, G. E. Palade, and J. E. Jamieson. Intracellular sorting and polarized cell surface delivery of (Na+,K+) ATPase, an endogenous component of MDCK cell basolateral plasma membranes. Cell 46: 623–631, 1986.
 55. Caverzasio, J., J.‐P. Bonjour, and H. Fleisch. Tubular handling of Pj in young growing and adult rats. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F705–F710, 1982.
 56. Caverzasio, J., C. D. A. Brown, J. Biber, J.‐P. Bonjour, and H. Murer. Adaptation of phosphate transport in phosphate‐deprived LLC‐PKi cells. Am. J. Physiol. 248 (Renal Fluid Electrolyte Physiol. 17): F122–F127, 1985.
 57. Caverzasio, J., R. Rizzoli, and J.‐P. Bonjour. Sodium‐dependent phosphate transport inhibited by parathyroid hormone and cyclic AMP stimulation in an opossum kidney cell line. J. Biol. Chem. 261: 3233–3237, 1986.
 58. Chan, A. W. K., H. B. Burch, T. R. Alvey, and O. H. Lowry. A quantitative histochemical approach to renal transport. I. Aspartate and glutamate. Am. J. Physiol. 229: 1034–1044, 1975.
 59. Chase, L. R., and G. D. Aurbach. Parathyroid function and the renal excretion of 3',5'‐adenylic acid. Proc. Natl. Acad. Sci. USA 58: 518–526, 1967.
 60. Chatterjee, S., P. Gupta, and P. O. Kwiterovich, Jr. Separation of human urinary proximal tubular cells from familial hypercholesterolemic homozygotes by Ficoll gradient centrifugation: morphological and biochemical characteristics. Virchows Arch. 45: 365–376, 1984.
 61. Chen, C., T. Carpenter, N. Steg, R. Baron, and C. Anast. Hypercalciuric hypophosphatemic rickets, mineral balance, bone histomorphometry, and therapeutic implications of hypercalciuria. Pediatrics 84: 276–280, 1989.
 62. Cheng, L., and B. Sacktor. Sodium gradient–dependent phosphate transport in renal brush border membrane vesicles. J. Biol. Chem. 256: 1556–1564, 1981.
 63. Chesney, R. W. Etiology and pathogenesis of the Fanconi syndrome. Miner. Electrolyte Metab. 4: 303–316, 1980.
 64. Chesney, R. W., C. R. Scriver, and F. Mohyuddin. Localization of the membrane defect in transepithelial transport of taurine by parallel studies in vivo and in vitro in hypertaurinuric mice. J. Clin. Invest. 57: 183–193, 1976.
 65. Christensen, H. N. Reactive sites and biological transport. Adv. Protein Chem. 15: 239–314, 1960.
 66. Christensen, H. N. Organic ion transport during seven decades: the amino acids. Biochim. Biophys. Acta 779: 255–269, 1984.
 67. Christensen, H. N. On the strategy of kinetic discrimination of amino acid transport systems. J. Membr. Biol. 84: 97–103, 1985.
 68. Cohn, R. M., M. J. Palmieri, and P. D. McNamara. Non‐equilibrium thermodynamics, non‐covalent forces, and water. In: Principles of Metabolic Control in Mammalian Systems, edited by R. H. Herman, R. M. Cohn, and P. D. McNamara. New York: Plenum, 1980, p. 63–92.
 69. Coicadan, L., M. Heyman, E. Grasset, and J. F. Desjeux. Cystinuria: reduced lysine permeability at the brush border of intestinal membrane cells. Pediatr. Res. 14: 109–112, 1980.
 70. Cole, J. A., S. L. Eber, R. E. Poelling, P. K. Thorne, and L. R. Forte. A dual mechanism for regulation of kidney phosphate transport by parathyroid hormone. Am. J. Physiol. 16 (Endocrinol. Metab. 15): E221–E227, 1987.
 71. Costa, T., P. J. Marie, C. R. Scriver, D. E. C. Cole, T. M. Reade, B. Nogrady, F. H. Glorieux, and E. E. Delvin. X‐linked hypophosphatemia: effect of calcitriol on renal handling of phosphate, serum phosphate, and bone mineralization. J. Clin. Endocrinol. Metab. 52: 463–472, 1981.
 72. Coweill, L. D., S. Goldfarb, M. Goldberg, E. Slatopolsky, and Z. S. Agus. Demonstration of an intrinsic renal tubular defect in mice with familial hypophosphatemic rickets. J. Clin. Invest. 63: 1203–1210, 1979.
 73. Craan, A. G., and M. Bergeron. Experimental cystinuria: the cycloleucine model. I. Amino acid interactions in renal and intestinal epithelia. Can. J. Physiol. Pharmacol. 53: 1027–1036, 1975.
 74. Craan, A. G., and M. Bergeron. Experimental cystinuria: the cycloleucine model. II. Amino acid efflux from intestinal and renal tissues. Metabolism 27: 1613–1625, 1978.
 75. Crawhall, J. C., P. Purkiss, R. W. E. Watts, and E. P. Young. The excretion of amino acids by cystinuric patients and their relatives. Ann. Hum. Genet. 33: 149–169, 1969.
 76. Crawhall, J. C, E. F. Scowen, C. J. Thompson, and R. W. E. Watts. The renal clearance of amino acids in cystinuria. J. Clin. Invest. 46: 1162–1171, 1967.
 77. Cunningham, J., H. Gomes, Y. Seino, and L. R. Chase. Abnormal 24‐hydroxylation of 25‐hydroxyvitamin D in the X‐linked hypophosphatemic mouse. Endocrinology 112: 633–638, 1983.
 78. Dantzler, W. H., and S. Silbernagl. Renal tubular reabsorption of taurine, γ‐aminobutyric acid (GABA) and β‐alanine studied by continuous microperfusion. Pflugers Arch. 367: 123–128, 1976.
 79. Dennis, V. W., E. Bello‐Reuss, and R. R. Robinson. Response of phosphate transport to parathyroid hormone in segments of rabbit nephron. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol. 2): F29–F38, 1977.
 80. Dent, C. E., and G. A. Rose. Amino acid metabolism in cystinuria. Q. J. Med. 79: 205–220, 1951.
 81. Desjeux, J. F., R. O. Simell, A. M. Dumontier, and J. Perheentupa. Lysine fluxes across the jejunal epithelium in lysinuric protein intolerance. J. Clin. Invest. 65: 1382–1387, 1980.
 82. Desjeux, J. F., M. Von Lanthen, A. M. Dumontier, O. Simell, and M. Le Grain. Cystine fluxes across the isolated jejunal epithelium in cystinuria: increased efflux permeability at the luminal membrane. Pediatr. Res. 21: 477–481, 1987.
 83. de Vries, A., S. Kochwa, J. Lazebnik, M. Frank, and M. Djaldetti. Glycinuria, a hereditary disorder associated with nephrolithiasis. Am. J. Med. 23: 408–415, 1957.
 84. Eicher, E. M., J. L. Southard, C. R. Scriver, and F. H. Glorieux. Hypophosphatemia: mouse model for human familial hypophosphatemic (vitamin D–resistant) rickets. Proc. Natl. Acad. Sci. USA 73: 4667–4671, 1976.
 85. Eisenbach, G. M., M. Weise, and H. Stolte. Amino acid reabsorption in the rat nephron: free flow micropuncture study. Pflugers Arch. 357: 63–76, 1975.
 86. Evers, J., H. Murer, and R. Kinne. Phenylalanine uptake in isolated renal brush border vesicles. Biochim. Biophys. Acta 426: 598–615, 1976.
 87. Fass, S. J., M. R. Hammerman, and B. Sacktor. Transport of amino acids in renal brush border membrane vesicles. J. Biol. Chem. 252: 583–590, 1977.
 88. Foreman, J. W., S. M. Hwang, and S. Segal. Transport interactions of cystine and dibasic amino acids in isolated rat renal tubules. Metabolism 29: 53–61, 1980.
 89. Foreman, J. W., P. D. McNamara, L. M. Pepe, K. Ginkinger, and S. Segal. Uptake of proline by brush border vesicles isolated from human kidney cortex. Biochem. Med. 34: 304–309, 1985.
 90. Foreman, J. W., P. D. McNamara, and S. Segal. Renal transport of cystine by isolated renal tubules and brush‐border membrane vesicles. In: Transport and Inherited Disease, edited by N. R. Belton and C. Toothill. Baltimore: University Park, 1981. p. 263–275.
 91. Fox, M., S. Thier, L. Rosenberg, W. Kiser, and S. Segal. Evidence against a single renal transport defect in cystinuria. N. Engl. J. Med. 270: 556–561, 1964.
 92. Friedman, A. L., C. W. Trygstad, and R. W. Chesney. Autosomal dominant Fanconi syndrome with early renal failure. Am. J. Med. Genet. 2: 225–232, 1978.
 93. Frimpter, G. W. Cystinuria: metabolism of the disulfide of cysteine and homocysteine. J. Clin. Invest. 42: 1956–1964, 1963.
 94. Gahl, W. A., N. Bashan, F. Iteze, I. Bernardini, and J. D. Schulman. Cystine transport is defective in isolated leukocyte lysosomes from patients with cystinosis. Science 217: 1263–1265, 1982.
 95. Gahl, W. A., and W. B. Rizzo. Normal free dibasic amino acids in breast milk of a woman with cystinuria. N. Engl. J. Med. 309: 1388–1389, 1983.
 96. Ganapathy, V., J. F. Mendicino, and F. H. Leibach. Transport of glycyl‐L‐proline into intestinal and renal brush border vesicles from rabbit. J. Biol. Chem. 256: 118–124, 1981.
 97. Ganapathy, V., J. Mendicino, D. H. Pashley, and F. H. Leibach. Carrier‐mediated transport of glycyl‐L‐proline in renal brush‐border vesicles. Biochem. Biophys. Res. Commun. 97: 1133–1139, 1980.
 98. Gargus, J. J., and M. Mitas. Physiological processes revealed through an analysis of inborn errors. Am. J. Physiol. 255 (Renal Fluid Electrolyte Physiol. 24): F1047–F1058, 1988.
 99. Garrod, A. E. The incidence of alkaptonuria: a study in chemical individuality. Lancet 2: 1616–1620, 1902.
 100. Garrod, A. E. Inborn Errors of Metabolism (1st ed.). London: Oxford, 1909.
 101. Giasson, S. D., M. G. Brunette, G. Danan, N. Vigneault, and S. Carriere. Micropuncture study of renal phosphorus transport in hypophosphatemic vitamin D resistant rickets mice. Pflugers Arch. 371: 33–38, 1977.
 102. Gilbert, J. B., Y. K. Lorene, L. Rogers, and R. J. Williams. The increase in urinary taurine after intraperitoneal administration of amino acids in the mouse. J. Biol. Chem. 235: 1055–1060, 1960.
 103. Glorieux, F. H., P. J. Marie, M. J. Pettifor, and E. E. Delvin. Bone response to phosphate salts, ergocalciferol, and calcitriol in hypophosphatemic vitamin D–resistant rickets. 754 Engl. J. Med. 303: 1023–1031, 1980.
 104. Glorieux, F. H., C. L. Morin, R. Travers, E. E. Delvin, and R. Poirier. Intestinal phosphate transport in familial hypophosphatemic rickets. Pediatr. Res. 10: 691–696, 1976.
 105. Glorieux, F., and C. R. Scriver. Loss of a parathyroid hormone–sensitive component of phosphate transport in X‐linked hypophosphatemia. Science 175: 997–1000, 1972.
 106. Glorieux, F. H., C. R. Scriver, E. Delvin, and F. Mohyuddin. Transport and metabolism of sarcosine in hypersarcosinemic and normal phenotypes. J. Clin. Invest. 50: 2313–2322, 1971.
 107. Gmaj, P., and H. Murer. Cellular mechanisms of inorganic phosphate transport in kidney. Physiol. Rev. 66: 36–70, 1986.
 108. Goldman, H., and C. R. Scriver. A transport system in mammalian kidney with preference for β‐amino compounds. Pediatr. Res. 1: 212–213, 1967.
 109. Gonick, H. C. Pathophysiology of human proximal tubular transport defects. Klin. Wochenschr. 60: 1201–1211, 1982.
 110. Gray, R. W., and J. L. Napoli. Dietary phosphate deprivation increases 1,25‐dihydroxyvitamin D3 synthesis in rat kidney in vitro. J. Biol. Chem. 258: 1152–1155, 1983.
 111. Greene, M. L., P. S. Lietman, L. E. Rosenberg, and J. E. Seegmiller. Familial hyperglycinuria: new defect in renal tubular transport of glycine and imino acids. Am. J. Med. 54: 265–271, 1973.
 112. Grinstein, S., R. J. Turner, M. Silverman, and A. Rothstein. Inorganic anion transport in kidney and intestinal brush‐border and basolateral membranes. Am. J. Physiol. 238 (Renal Fluid Electrolyte Physiol. 7): F452–F460.
 113. Groth, U., and L. E. Rosenberg. Transport of dibasic amino acids, cystine, and tryptophan by cultured human fibroblast: absence of a defect in cystinuria and Hartnup disease. J. Clin. Invest. 51: 2130–2142, 1972.
 114. Hamilton, R. T., and M. Nilsen‐Hamilton. Transport of phosphate in membrane vesicles from mouse fibroblasts transformed by simian virus 40. J. Biol. Chem. 253: 8247–8256, 1978.
 115. Hammerman, M. R. Na+‐independent L‐arginine transport in rabbit renal brush border membrane vesicles. Biochim. Biophys. Acta 685: 71–77, 1982.
 116. Hammerman, M. R., and L. R. Chase. Pi transport, phosphorylation, and dephosphorylation in renal membranes from Hyp/Y mice. Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F701–F706, 1983.
 117. Hammerman, M. R., and K. A. Hruska. Cyclic AMP–dependent protein phosphorylation in canine renal brush‐border membrane vesicles is associated with decreased phosphate transport. J. Biol. Chem. 257: 992–999, 1982.
 118. Hammerman, M. R., and B. Sacktor. Transport of amino acids in renal brush border membrane vesicles: uptake of L‐proline. J. Biol. Chem. 252: 591–595, 1977.
 119. Hammerman, M., and B. Sacktor. Transport of β‐alanine in renal brush border membrane vesicles. Biochim. Biophys. Acta 509: 338–347, 1978.
 120. Hammerman, M. R., and B. Sacktor. Na+‐dependent transport of glycine in renal brush border membrane vesicles. Biochim. Biophys. Acta 686: 189–196, 1982.
 121. Haramati, A., J. A. Haas, and F. G. Knox. Nephron heterogeneity of phosphate reabsorption: effect of parathyroid hormone. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F155–F158, 1984.
 122. Haramati, A., and F. G. Knox. Is phosphate reabsorbed by the distal nephron? Miner. Electrolyte Metab. 6: 165–173, 1981.
 123. Harris, H., U. Mittwoch, E. B. Robson, and F. L. Warren. Phenotypes and genotypes in cystinuria. Ann. Hum. Genet. 20: 57–91, 1955.
 124. Harris, H., and A. G. Searle. Urinary amino‐acids in mice of different genotypes. Ann. Eugen. 17: 165–167, 1952–1953.
 125. Henderson, G. B., and E. M. Zevely. Intracellular phosphate and its possible role as an exchange anion for active transport of methotrexate in L1210 cells. Biochem. Biophys. Res. Commun. 104: 474–482, 1982.
 126. Herman, R. H., The principles of metabolic control. In: Principles of Metabolic Control in Mammalian Systems, edited by R. H. Herman, R. M. Cohn, and P. D. McNamara. New York: Plenum, 1980. p. 1–62.
 127. Hilden, S. A., and B. Sacktor. L‐arginine uptake into renal brush brush membrane vesicles. Arch. Biochem. Biophys. 210: 289–297, 1981.
 128. Hillman, R. E., I. Albrecht, and L. E. Rosenberg. Identification and analysis of multiple glycine transport systems in isolated mammalian renal tubules. J. Biol. Chem. 243: 5566–5571, 1968.
 129. Hillman, R. E., and L. E. Rosenberg. Amino acid transport by isolated mammalian renal tubules. II. Transport systems for L‐proline. J. Biol. Chem. 244: 4494–4498, 1969.
 130. Hillman, R. E., A. Stewart, and J. H. Miles. Amino acid transport defect in intestine not affecting kidney. Pediatr. Res. 20: 265A, 1986.
 131. Hoffman, N., M. Thees, and R. Kinne. Phosphate transport by isolated renal brush border vesicles. Pflugers Arch. 362: 147–156, 1976.
 132. Holmgren, G., L. hambraeus, and P. de Chateau. Histidinemia and “normohistidinemic histidinuria”: report of three cases and the effect of different protein intakes on urinary excretion of histidine. Acta Paediatr. Scand. 63: 220–224, 1974.
 133. Holtzapple, P. G., K. Bovee, C. F. Rea, and S. Segal. Amino acid uptake by kidney and jejunal tissue from dogs with cystine stones. Science 166: 1525–1527, 1969.
 134. Holtzapple, P., M. Genel, C. Rea, and S. Segal. Metabolism and uptake of L‐proline by human kidney cortex. Pediatr. Res. 7: 818–825, 1973.
 135. Hruska, K. A., M. Goligorsky, J. Scoble, M. Tsutsumi, S. Westbrook, and D. Moskowitz. Effects of parathyroid hormone on cytosolic calcium in renal proximal tubular primary cultures. Am. J. Physiol. 251 (Renal Fluid Electrolyte Physiol. 20): F188–F198, 1986.
 136. Hruska, K., and M. R. Hammerman. Parathyroid hormone inhibition of phosphate transport in renal brush border vesicles from phosphate‐depleted dogs. Biochim. Biophys. Acta 645: 351–356, 1981.
 137. Hruska, K. A., D. Moskowitz, P. Esbrit, R. Civitelli, S. Westbrook, and M. Huskey. Stimulation of inositol trisphosphate and diacylglycerol production in renal tubular cells by parathyroid hormone. J. Clin. Invest. 79: 230–239, 1987.
 138. Hull, R. N., W. R. Cherry, and G. W. Weaver. The origin and characteristics of a pig kidney cell strain LLC‐PK1. In Vitro Cell. Dev. Biol. 12: 670–677, 1976.
 139. Hwang, S. M., A. S. Karl, S. Roth, and S. Segal. L‐proline transport by isolated renal tubules from newborn and adult rats. Pediatr. Res. 17: 42–46, 1983.
 140. Inoue, I., T. Saheki, K. Kayanuma, U. Masanori, M. Nakajima, K. Takeshita, R. Koike, T. Yuasa, T. Miyatake, and K. Sakoda. Biochemical analysis of decreased ornithine transport activity in the liver mitochondria from patients with hyperornithinemia, hyperammonemia and homocitrullinuria. Biochim. Biophys. Acta 964: 90–95,1988.
 141. Insogna, K. L., A. E. Broadus, and J. M. Gertner. Impaired phosphorus conservation and 1,25 dihydroxyvitamin D generation during phosphorus deprivation in familial hypophosphatemic rickets. J. Clin. Invest. 71: 1562–1569, 1983.
 142. Johnstone, R. The basic asymmetry of Na+‐dependent glycine transport in Ehrlich cells. Biochim. Biophys. Acta 512: 199–213, 1978.
 143. Jonas, A. J., A. A. Greene, M. L. Smith, and J. A. Schneider. Cystine accumulation and loss in normal, heterozygous, and cystinotic fibroblasts. Proc. Natl. Acad. Sci. USA 79: 4442–4445, 1982.
 144. Jones, G. A new pathway of 25‐hydroxyvitamin D3 metabolism. Methods Enzymol. 123: 141–154, 1986.
 145. Kacser, H., and J. A. Burns. The molecular basis of dominance. Genetics 97: 639–666, 1981.
 146. Kamin, H., and P. H. Handler. Effect of infusion of single amino acids upon excretion of other amino acids. Am. J. Physiol. 164: 654–661, 1951.
 147. Kamoun, P. P., P. Parvy, L. Cathelineau, and B. Meyer. Renal histidinuria. J. Inherited Metab. Dis. 4: 217–219, 1981.
 148. Kato, T. Renal handling of dibasic amino acids and cystine in cystinuria. Clin. Sci. Mol. Med. 53: 9–15, 1977.
 149. Kato, T. Hyperglycinuria: a family report. Nagoya J. Med. Sci. 42: 7–12, 1979.
 150. Kato, T. Renal transport of lysine and arginine in cystinuria. Tohoku J. Exp. Med. 139: 9–16, 1983.
 151. Kato, T., N. Mizutani, and M. Ban. Renal transport of lysine and arginine in lysinuric protein intolerance. Eur. J. Pediatr. 139: 181–184, 1982.
 152. Kawashima, H., S. Torikai, and K. Kurokawa. Localization of 25‐hydroxyvitamin D3 1α‐hydroxylase along the rat nephron. Proc. Natl. Acad. Sci. USA 78: 1199–1203, 1981.
 153. Kempson, S. A., J. J. Berndt, S. T. Turner, D. Zimmerman, F. Knox, and T. P. Dousa. Relationship between renal phosphate reabsorption and renal brush border membrane transport. Am. J. Physiol. 244 (Regulatory Integrative Comp. Physiol. 13): R216–R223, 1983.
 154. Kessler, R. J., and D. A. Vaughn. Divalent metal is required for both phosphate transport and phosphate binding to phosphorin, a proteolipid isolated from brush‐border membrane vesicles. J. Biol. Chem. 259: 9059–9063, 1984.
 155. Kihara, H., M. Valente, M. T. Porter, and A. L. Fluharty. Hyperdibasicaminoaciduria in a mentally retarded homozygote with a peculiar response to phenothiazines. Pediatrics 51: 223–229, 1973.
 156. Knox, F. G., H. Osswald, G. R. Marchand, W. S. Spielman, J. A. Haas, T. Berndt, and S. P. Youngberg. Phosphate reabsorption along the nephron. Am. J. Physiol. 233 (Renal Fluid Electrolyte Physiol. 2): F261–F268, 1977.
 157. Konno, R., K. Isobe, A. Niwa, and Y. Yasumura. Lack of D‐amino‐acid oxidase activity causes a specific renal aminoaciduria in the mouse. Biochim. Biophys. Acta 967: 382–390, 1988.
 158. Kopito, R. R., and H. F. Lodish. Primary structure and transmembrane orientation of the murine anion exchange protein. Nature 316: 234–238, 1985.
 159. Kragh‐Hansen, U., H. Rigaard‐Petersen, C. Jacobsen, and M. I. Sheikh. Renal transport of neutral amino acids: tubular localization of Na+‐dependent phenylalanine‐ and glucose‐transport systems. Biochem. J. 220: 15–24, 1984.
 160. Kramer, H. J., and U. G. Burgard. Further studies on epithelial transport defect in experimental and human Fanconi syndrome: effects of maleic acid and L‐cystine on sodium transport and (Na+‐K+)‐ATPase of the isolated frog skin. Clin. Chim. Acta 55: 57–63, 1974.
 161. Kramer, H. J., and H. C. Gonick. Experimental Fanconi syndrome. I. Effect of maleic acid on renal cortical Na‐K‐ATPase activity and ATP levels. J. Lab. Clin. Med. 76: 799–808, 1970.
 162. Kruse, K., U. Kracht, and G. Gopfert. Renal threshold phosphate concentration (TmPO4/GFR). Arch. Dis. Child. 57: 217–223, 1982.
 163. Kurnik, B. R. C., and K. A. Hruska. Effects of 1,25‐dihydroxycholecalciferol on phosphate transport in vitamin D–deprived rats. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 15): F177–F184, 1984.
 164. Kyte, J., and R. F. Doolittle. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157: 105–132, 1982.
 165. Lasley, L., and C. R. Scriver. Ontogeny of amino acid reabsorption in human kidney: evidence from the homozygous infant with familial renal iminoglycinuria for multiple proline and glycine systems. Pediatr. Res 13: 65–70, 1979.
 166. Leaf, A., The syndrome of osteomalacia, renal glucosuria, aminoaciduria, and increased phosphorus clearance (the Fanconi syndrome). In: The Metabolic Basis of Inherited Disease (2nd ed.), edited by J. B. Stanbury, D. S. Wyngaarden, and J. B. Fredrickson New York: McGraw‐Hill, 1966. p. 1205–1220.
 167. Lemieux, B., C. Auray‐Blais, R. Giguere, D. Shapcott, and C. R. Scriver. Newborn urine screening experience with over one million infants in the Quebec Network of Genetic Medicine. J. Inherited Metab. Dis. 11: 45–55, 1988.
 168. Leopolder, A., G. Burchhardt, and H. Murer. Transport of L‐ornithine across isolated brush border membrane vesicles from proximal tubule. Renal Physiol. 2: 157–158, 1980.
 169. Lester, F. T., and D. C. Cusworth. Lysine infusion in cystinuria: theoretical renal thresholds for lysine. Clin. Sci. 44: 99–111, 1973.
 170. Lever, J. Active phosphate ion transport in plasma membrane vesicles isolated from mouse fibroblasts. J. Biol. Chem. 253: 2081–2084, 1978.
 171. Levy, H. L., Hartnup disorder. In: The Metabolic Basis of Inherited Disease (6th ed.), edited by C. R. Scriver, A. L. Beaudet, W. S. Sly, and D. Valle. New York: McGraw‐Hill, 1989, p. 2515–2527.
 172. Lobaugh, B., and M. K. Drezner. Abnormal regulation of renal 25‐hydroxyvitamin D‐1α‐hydroxylase activity in the X‐linked hypophosphatemic mouse. J. Clin. Invest. 71: 400–403, 1983.
 173. Lohnes, D., and G. Jones. Side chain metabolism of vitamin D3 in osteosarcoma cell line UMR‐106. J. Biol. Chem. 262: 14394–14401, 1987.
 174. Lyles, K. W., and M. K. Drezner. Parathyroid hormone effects on serum 1,25‐dihydroxyvitamin D levels in patients with X‐linked hypophosphatemic rickets: evidence for abnormal 25‐hydroxyvitamin D‐1‐hydroxylase activity. J. Clin. Endocrinol. Metab. 54: 638–644, 1982.
 175. Lyon, M. F. Sex chromatin and gene action in the mammalian X‐chromosome. Am. J. Hum. Genet. 14: 135–148, 1962.
 176. Lyon, M. F., C. R. Scriver, L. R. I. Baker, H. S. Tenenhouse, J. Kronick, and S. Mandla. The Gy mutation: another cause of X‐linked hypophosphatemia in mouse. Proc. Natl. Acad. Sci. USA 83: 4899–4903, 1986.
 177. Lyon, M. L., and R. F. Pitts. Species differences in renal glutamine synthesis in vivo. Am. J. Physiol. 216: 177–122, 1969.
 178. Mächler, M., D. Frey, A. Gal, U. Orth, T. F. Wienker, A. Fanconi, and W. Schmid. X‐linked dominant hypophosphatemia is closely linked to DNA markers DXS41 and DXS43 at Xp22. Hum. Genet. 73: 271–275, 1986.
 179. MacLennan, D. H., C. J. Brandl, B. Korczak, and N. M. Green. Amino‐acid sequence of a Ca2+ + Mg2+‐dependent ATPase from rabbit muscle sarcoplasmic reticulum, deduced from its complementary DNA sequence. Nature 316: 696–700, 1985.
 180. Mandla, S., C. R. Scriver, and H. S. Tenenhouse. Decreased transport in renal basolateral membrane vesicles from hypertauriuric mice. Am. J. Physiol. 255 (Renal Fluid Electrolyte Physiol. 24): F88–F95, 1988.
 181. Manz, F., R. Waldherr, H. P. Fritz, P. Lutz, W. Nutzenadel, B. Reitter, K. Scharer, H. Schmidt, and F. Trefz. Idiopathic de Toni‐Debré‐Fanconi syndrome with absence of proximal tubular brush border. Clin. Nephrol. 22: 149–157, 1984.
 182. McCarthy, C. F., J. R. Borland, Jr., H. J. Lynch, Jr., E. E. Owen, and M. P. Tyor. Defective uptake of basic amino acids and L‐cystine by intestinal mucosa of patients with cystinuria. J. Clin. Invest. 43: 1518–1524, 1964.
 183. McInnes, R. R., F. Mohyuddin, and C. R. Scriver. Tubular reabsorption of α‐amino‐isobutyric acid in the presteady state: evidence for a cell‐to‐lumen flux. Can. J. Physiol. Pharmacol. 58: 557–563, 1980.
 184. McInnes, R. R., and C. R. Scriver. Net reabsorption of alpha‐aminoisobutyric acid by rat kidney in vivo. Am. J. Physiol. 237 (Renal Fluid Electrolyte Physiol. 6): F274–F284, 1979.
 185. McKusick, V. A. Mendelian Inheritance in Man: Catalogs of Autosomal Dominant, Autosomal Recessive, and X‐Linked Phenotypes (9th ed.). Baltimore: Johns Hopkins, 1990.
 186. McNamara, P. D., B. Ozegovic, L. M. Pepe, and S. Segal. Proline and glycine uptake by renal brush border membrane vesicles. Proc. Natl. Acad. Sci. USA 73: 4521–4525, 1976.
 187. McNamara, P. D., L. M. Pepe, and S. Segal. Sodium gradient dependence of proline and glycine uptake in rat renal brush border membrane vesicles. Biochim. Biophys. Acta 556: 151–160, 1979.
 188. McNamara, D., M. Pepe, and S. Segal. Cystine uptake by rat renal brush border vesicles. Biochem. J. 194: 443–449, 1981.
 189. McNamara, P. D., C. T. Rea, K. C. Bovee, R. A. Reynolds, and S. Segal. Cystinuria in dogs: comparison of the cystinuric component of the Fanconi syndrome in Basenji dogs to isolate cystinuria. Metabolism 38: 8–15, 1989.
 190. McQueen, N., K. D. P. Naya, E. B. Stephen, and R. W. Compans. Polarized expression of a chimeric protein in which the transmembrane and cytoplasmic domains of the influenza virus hemagglutinin have been replaced by those of the vasicular stomatitis virus G protein. Proc. Natl. Acad. Sci. USA 83: 9318–9322, 1986.
 191. Melançon, S. B., L. Dallaire, B. Lemieux, P. Robitaille, and M. Potier. Dicarboxylic aminoaciduria: an inborn error of amino acid conservation. J. Pediatr. 91: 422–427, 1977.
 192. Melançon, S. B., B. Grenier, L. Dallaire, M. Potier, G. Fontaine, B. Grignon, G. Geoffroy, B. Lemieux, and A. Barbeau. Dicarboxylic amino acid uptake in normal, Friedreich's ataxia, and dicarboxylic aminoaciduria fibro‐blasts. J. Can. Sci. Neurol. 6: 262–273, 1979.
 193. Meyer, R. A., R. W. Gray, and M. H. Meyer. Abnormal vitamin D metabolism in the X‐linked hypophosphatemic mouse. Endocrinology 107: 1577–1581, 1980.
 194. Meyer, R. A., Jr., M. H. Meyer, and R. W. Gray. Parabiosis suggests a humoral factor is involved in X‐linked hypophosphatemia in mice. J. Bone Miner. Res. 4: 493–500, 1989.
 195. Meyer, R. A., Jr., H. S. Tenenhouse, M. H. Meyer, and A. H. Klugerman. The renal phosphate transport defect in normal mice parabiosed to X‐linked hypophosphatemic mice persists after parathyroidectomy. J. Bone Miner. Res. 4: 523–532, 1989.
 196. Mircheff, A. K., I. Kippen, B. Hirangama, and E. M. Wright. Delineation of sodium‐stimulated amino acid transport pathways in rabbit kidney brush border vesicles. J. Membr. Biol. 64: 113–122, 1982.
 197. Mizgala, C. L., and G. A. Quamme. Renal handling of phosphate. Physiol. Rev. 65: 431–466, 1985.
 198. Mohyuddin, F., and C. R. Scriver. Amino acid transport in mammalian kidney: multiple systems for imino acids and glycine in rat kidney. Am. J. Physiol. 219: 1–8, 1970.
 199. Morel, F. Sites of hormone action in the mammalian nephron. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 9): F159–F164, 1981.
 200. Morin, C. L., M. W. Thompson, S. H. Jackson, and A. Sass‐Kortsak. Biochemical and genetic studies in cystinuria: observations on double heterozygotes of genotype I/II. J. Clin. Invest. 50: 1961–1976, 1971.
 201. Mueckler, M., C. Caruso, S. A. Baldwin, M. Panico, I. Blench, H. R. Morris, W. J. Allard, G. E. Lienhard, and H. F. Lodish. Sequence and structure of a human glucose transporter. Science 229: 941–945, 1985.
 202. Murer, H., and B. Hildmann. Transcellular transport of calcium and inorganic phosphate in the small intestinal epithelium. Am. J. Physiol. 240 (Gastrointest. Liver Physiol. 3): G409–G416, 1981.
 203. Murphy, E. A., and R. E. Pyeritz. Homeostasis VII. A conspectus. Am. J. Med. Genet. 24: 735–751, 1986.
 204. Navab, F., and A. M. Asatoor. Studies on intestinal absorption of amino acids and a dipeptide in a case of Hartnup disease. Gut 11: 373–379, 1970.
 205. Neiberger, R. E., M. Barac‐Nieto, and A. Spitzer. Renal reabsorption of phosphate during development: transport kinetics in BBMV. Am. J. Physiol. 257 (Renal Fluid Electrolyte Physiol. 26): F268–F274, 1989.
 206. Nesbitt, T., M. K. Drezner, and B. Lobaugh. Abnormal parathyroid hormone stimulation of 25‐hydroxyvitamin D–1‐alpha‐hydroxylase activity in the hypophosphatemic mouse. J. Clin. Invest. 77: 181–187, 1986.
 207. Noall, M. W., T. R. Riggs, L. M. Walker, and H. N. Christensen. Endocrine control of amino acid transfer: distribution of an unmetabolized amino acid. Science 126: 1002–1005, 1957.
 208. Norio, R., J. Perheentupa, M. Kekomaki, and J. K. Visakorpi. Lysinuric protein intolerance, an autosomal recessive disease: a genetic study of 10 Finnish families. Clin. Genet. 2: 214–222, 1971.
 209. Nutzenadel, W., and C. R. Scriver. Uptake and metabolism of β‐alanine and L‐carnosine by rat tissues in vitro: role in nutrition. Am. J. Physiol. 230: 643–651, 1976.
 210. Oberiter, V., Z. Puretic, and V. Fabecic‐Sabadi. Hyper‐glycinuria with nephrolithiasis. Eur. J. Pediatr. 127: 279–285, 1978.
 211. Ohno, S. Ancient linkage groups and frozen accidents. Nature 244: 259–262, 1973.
 212. Omura, K., N. Yamanaka, S. Higami, O. Matsuoka, A. Fujimoto, G. Issiki, and K. Tada. Lysine malabsorption syndrome: a new type of transport defect. Pediatrics 57: 102–105, 1976.
 213. Oxender, D. L., E. J. Collarini, M. A. Shotwell, C. D. Lobaten, A. Moreno, and G. S. Campbell. Regulation and genetics of amino acid transport. Ann. N.Y. Acad. Sci. 456: 404–416, 1985.
 214. Oyanagi, K., R. Miura, and T. Yamanouchi. Congenital lysinuria: a new inherited transport disorder of dibasic amino acids. J. Pediatr. 77: 259–266, 1970.
 215. Ozegovic, B., D. McNamara, and S. Segal. Cystine uptake by rat jejunal brush border membrane vesicles. Biosci. Rep. 2: 913–920, 1982.
 216. Pastoriza‐Munoz, E., R. E. Colindres, W. E. Lassiter, and C. Lechene. Effect of parathyroid hormone on phosphate reabsorption in rat distal convolution. Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol. 4): F321–F330, 1978.
 217. Perheentupa, J., and J. K. Visakorpi. Protein intolerance with deficient transport of basic amino acids: another inborn error of metabolism. Lancet 2: 813–816, 1965.
 218. Pisoni, R. L., J. G. Thoene, and H. N. Christensen. Detection and characterization of carrier‐mediated cationic amino acid transport in lysosomes of normal and cystinotic human fibroblasts. J. Biol. Chem. 260: 4791–4798, 1985.
 219. Pisoni, R. L., J. G. Thoene, R. M. Lemones, and H. N. Christensen. Important differences in cationic amino acid transport by lysosomal system c and system y+ of the human fibroblast. J. Biol. Chem. 262: 15011–15018, 1987.
 220. Pitts, R. F. A comparison of the reabsorptive processes for several amino acids. Am. J. Physiol. 140: 535–547, 1944.
 221. Prigogine, I. Time, structure, and fluctuations. Science 201: 777–785, 1978.
 222. Rabito, C. A. Phosphate uptake by a kidney cell line (LLC‐PK1). Am. J. Physiol. 245 (Renal Fluid Electrolyte Physiol. 14): F22–F31, 1983.
 223. Rajantie, J. Orotic aciduria in lysinuric protein intolerance: dependence on the urea cycle intermediates. Pediatr. Res. 15: 115–119, 1981.
 224. Rajantie, J., O. Simell, and J. Perheentupa. Basolateral‐membrane transport defect for lysine in lysinuric protein intolerance. Lancet 1: 1219–1221, 1980.
 225. Rajantie, J., O. Simell, and J. Perheentupa. Intestinal absorption in lysinuric protein intolerance: impaired for diamino acids, normal for citrulline. Gut 21: 519–524, 1980.
 226. Rajantie, J., O. Simell, and J. Perheentupa. Lysinuric protein intolerance. J. Clin. Invest. 67: 1078–1082, 1981.
 227. Rajantie, J., O. Simell, and J. Perheentupa. “Basolateral” and mitochondrial membrane transport defect in the hepatocytes in lysinuric protein intolerance. Acta Paediatr. Scand. 72: 65–70, 1983.
 228. Rajantie, J., O. Simell, and J. Perheentupa. Oral administration of epsilon N‐acetyllysine and homocitrulline in lysinuric protein intolerance. J. Pediatr. 102: 388–390, 1983.
 229. Rajantie, J., O. Simell, and J. Perheentupa. Oral administration of urea cycle intermediates in lysinuric protein intolerance: effect on plasma and urinary arginine and ornithine. Metabolism 32: 49–51, 1983.
 230. Rasmussen, H., and H. S. Tenenhouse. Hypophosphatemias. In: The Metabolic Basis of Inherited Disease (6th ed.), edited by C. R. Scriver, A. L. Beaudet, W. S. Sly, and D. Valle. New York: McGraw‐Hill, 1989, p. 2581–2604.
 231. Read, A. P., R. V. Thakker, K. E. Davies, R. C. Mountford, D. P. Brenton, M. Davies, F. Glorieux, R. Harris, G. N. Hendy, A. King, S. McGlade, C. J. Peacock, R. Smith, and J. L. H. O'Riordan. Mapping of human X‐linked hypophosphatemic rickets by multilocus linkage analysis. Hum. Genet. 73: 267–270, 1986.
 232. Revsin, B., and G. Morrow III. Imino acid transport in human diploid fibroblasts. Exp. Cell Res. 119: 55–61, 1979.
 233. Reynolds, R., P. D. McNamara, and S. Segal. On the maleic acid induced Fanconi syndrome: effects on transport by isolated rat kidney brush border membrane vesicles. Life Sci. 22: 39–44, 1978.
 234. Reynolds, R. A., H. Wald, and S. Segal. Glutamine uptake by rat renal basolateral membrane vesicles. Biosci. Rep. 2: 883–890, 1982.
 235. Rindler, M. J., L. M. Chuman, L. Shaffer, and M. H. Sauer. Retention of differentiated properties in an established dog kidney epithelial cell line (MDCK). J. Cell Biol. 81: 635–648, 1979.
 236. Robson, E. B., and G. A. Rose. The effect of intravenous lysine of the renal clearances of cystine, arginine and ornithine in normal subjects in patients with cystinuria and Fanconi syndrome and in their relatives. Clin. Sci. 16: 75–93, 1957.
 237. Rodriguez‐Boulan, E., and W. J. Nelson. Morphogenesis of the polarized epithelial cell phenotype. Science 245: 718–726, 1989.
 238. Roesel, R. A., P. R. Blankenship, V. Ganapathy, and F. H. Leibach. 5‐hydroxy‐L‐lysine excretion in cystinuria. J. Inherited Metab. Dis. 8: 123–126, 1985.
 239. Rose, R. C., J. Bianchi, and S. A. Schuette. Effective use of renal slices in transport and metabolic studies. Biochim. Biophys. Acta 821: 431–436, 1985.
 240. Rosenberg, L. E. Cystinuria: genetic heterogeneity and allelism. Science 154: 1341–1343, 1966.
 241. Rosenberg, L. E., I. Albrecht, and S. Segal. Lysine transport in human kidney: evidence for two systems. Science 155: 1426–1428, 1967.
 242. Rosenberg, L. E., S. Downing, J. L. Durant, and S. Segal. Cystinuria: biochemical evidence for three genetically distinct diseases. J. Clin. Invest. 45: 365–371, 1966.
 243. Rosenberg, L. E., S. J. Downing, and S. Segal. Competitive inhibition of dibasic amino acid transport in rat kidney. J. Biol. Chem. 237: 2265–2270, 1962.
 244. Rosenberg, L. E., J. L. Durant, and L. J. Elsas. Familial iminoglycinuria: an inborn error of renal tubular transport. N. Engl. J. Med. 278: 1407–1414, 1968.
 245. Rozen, R., C. R. Scriver, and F. Mohyuddin. Hypertaurinuria in the C57BL/6J mouse: altered transport at the renal basolateral membrane. Am. J. Physiol. 244 (Renal Fluid Electrolyte Physiol. 13): F150–F155, 1983.
 246. Rozen, R., H. S. Tenenhouse, and C. R. Scriver. Taurine transport in renal brush border membrane vesicles. Biochem. J. 180: 245–248, 1979.
 247. Sabater, J., C. Ferre, M. Puliol, and A. Maya. Histidinuria: a renal and intestinal histidine transport deficiency found in two mentally retarded children. Clin. Genet. 9: 117–124, 1976.
 248. Sacktor, B., and L. Cheng. Sodium gradient–dependent phosphate transport in renal brush border membrane vesicles: effect of an intravesicular extravesicular proton gradient. J. Biol. Chem. 256: 8080–8084, 1981.
 249. Sacktor, B., I. L. Rosenbloom, C. T. Liang, and L. Cheng. Sodium gradient and sodium plus potassium gradient–dependent L‐glutamate uptake in renal basolateral membrane vesicles. J. Membr. Biol. 60: 63–71, 1981.
 250. Samarzija, I., and E. Frömter. Electrophysiological analysis of rat renal sugar and amino acid transport. III. Neutral amino acids. Pflugers Arch. 393: 199–209, 1982.
 251. Samarzija, I., and E. Frömter. Electrophysiological analysis of rat renal sugar and amino acid transport. IV. Basic amino acids. Pflugers Arch. 393: 210–214, 1982.
 252. Samarzija, I., and E. Frömter. Electrophysiological analysis of rat renal sugar and amino acid transport. V. Acidic amino acids. Pflugers Arch. 393: 215–221, 1982.
 253. Sato, G., and M. Taub. Growth of functional primary cultures of kidney epithelial cells in defined medium. J. Cell. Physiol. 105: 369–378, 1980.
 254. Schafer, J. A., and D. W. Barfuss. Membrane mechanisms for transepithelial amino acid absorption and secretion. Am. J. Physiol. 238 (Renal Fluid Electrolyte Physiol. 7): F335–F346, 1980.
 255. Schafer, J. A., and M. L. Watkins. Transport of L‐cystine in isolated perfused proximal straight tubules. Pflugers Arch. 401: 143–151, 1984.
 256. Schafer, J. A., and J. C. Williams, Jr. Transport of metabolic substrates by the proximal nephron. Annu. Rev. Physiol. 47: 103–125, 1985.
 257. Schali, C., D. A. Vaughn, and D. D. Fanestil. Reconstitution of the partially purified renal phosphate (Pi) transporter. Biochem. J. 235: 189–197, 1986.
 258. Schneider, E. G., M. R. Hammerman, and B. Sacktor. Sodium gradient–dependent L‐glutamate transport in renal brush border membrane vesicles. J. Biol. Chem. 255: 7650–7656, 1980.
 259. Schneider, E. G., and B. Sacktor. Sodium gradient–dependent L‐glutamate transport in renal brush border membrane vesicles. J. Biol. Chem. 255: 7645–7649, 1980.
 260. Schnell, K. F., E. Besl, and R. V. der Mosel. Phosphate transport in human red blood cells: concentration dependence and pH dependence of the unidirectional phosphate flux at equilibrium conditions. J. Membr. Biol. 61: 173–192, 1981.
 261. Schwab, S. J., M. R. Hammerman. Electrogenic Na+‐independent Pi transport in canine renal basolateral membrane vesicles. Am. J. Physiol. 250 (Renal Fluid Electrolyte Physiol. 19): F419–F424, 1986.
 262. Schwab, S. J., S. Klahr, and M. R. Hammerman. Na+‐dependent Pi uptake in basolateral membrane vesicles from dog kidney. Am. J. Physiol. 246 (Renal Fluid Electrolyte Physiol. 15): F663–F669, 1984.
 263. Schwartzman, L., A. Blair, and S. Segal. A common renal transport system for lysine, ornithine, arginine and cysteine. Biochem. Biophys. Res. Commun. 23: 220–226, 1966.
 264. Scriver, C. R. Renal tubular transport of proline, hydroxyproline, and glycine. III. Genetic basis for more than one mode of transport in human kidney. J. Clin. Invest. 47: 823–835, 1968.
 265. Scriver, C. R., Familial iminoglycinuria. In: The Metabolic Basis of Inherited Disease (6th ed.), edited by C. R. Scriver, A. L. Beaudet, W. S. Sly, and D. Valle. New York: McGraw‐Hill, 1989, p. 2529–2538.
 266. Scriver, C. R., Mendelian phenotypes as probes of membrane transport systems for cationic amino acid and phosphate anion. In: Highlights of Modern Biochem, edited by A. Kotyk, T. Skoda, V. Pačes, and V. Kosta. Zeist, Netherlands: VSP International, 1989, p. 1507–1516.
 267. Scriver, C. R., M.‐F. Arthus, and M. Bergeron. Neonatal iminoglycinuria: evidence that the prolinuria originates in selective deficiency of transport activity in the proximal nephron. Pediatr. Res. 16: 684–687, 1982.
 268. Scriver, C. R., and M. Bergeron. Amino acid transport in kidney: the use of mutation to dissect membrane and trans‐epithelial transport. In: Heritable Disorders of Amino Acid Metabolism, edited by W. L. Nyhan. New York: Wiley, 1974, p. 515–592.
 269. Scriver, C. R., R. W. Chesney, and R. R. McInnes. Genetic aspects of renal tubular transport: diversity and topology of carriers. Kidney Int. 9: 149–171, 1976.
 270. Scriver, C. R., C. L. Clow, T. M. Reade, P. Goodyer, C. Auray‐Blais, R. Giguere, and B. Lemieux. Ontogeny modifies manifestations of cystinuria genes: implications for counseling. J. Pediatr. 106: 411–416, 1985.
 271. Scriver, C. R., M. L. Efron, and I. A. Schafer. Renal tubular transport of proline, hydroxy‐proline and glycine in health and in familial hyperprolinemia. J. Clin. Invest. 43: 374–385, 1964.
 272. Scriver, C. R., and H. Goldman. Renal tubular transport of proline, hydroxy‐proline and glycine. II. Hydroxy‐L‐proline as substrate and as inhibitor in vivo. J. Clin. Invest. 45: 1357–1363, 1966.
 273. Scriver, C. R., D. M. Gregory, D. Sovetts, and G. Tissenbaum. Normal plasma free amino acid values in adults: the influence of common physiological variables. Metabolism 34: 868–873, 1985.
 274. Scriver, C. R., and P. Hechtman. Human genetics of membrane transport with emphasis on amino acids. Adv. Hum. Genet. 1: 211–274, 1970.
 275. Scriver, C. R., W. MacDonald, T. Reade, F. H. Glorieux, and B. Nogrady. Hypophosphatemic non‐rachitic bone disease: an entity distinct from X‐linked hypophosphatemia in the renal defect, bone involvement, and inheritance. Am. J. Med. Genet. 1: 101–117, 1977.
 276. Scriver, C. R., B. Mahon, H. L. Levy, C. L. Clow, T. M. Reade, J. Kronick, B. Lemieux, and C. Laberge. The Hartnup phenotype: mendelian transport disorder, multifactorial disease. Am. J. Hum. Genet. 40: 401–412, 1987.
 277. Scriver, C. R., R. R. McInnes, and F. Mohyuddin. Role of epithelial architecture and intracellular metabolism in proline uptake and transtubular reclamation in PRO/Re mouse kidney. Proc. Natl. Acad. Sci. USA 72: 1431–1435, 1975.
 278. Scriver, C. R., S. Pueschel, and E. Davies. Hyper‐β‐alaninemia associated with β‐aminoaciduria and γ‐aminobutyric‐aciduria, somnolence and seizures. N. Engl. J. Med. 274: 636–643, 1966.
 279. Scriver, C. R., and T. M. Reade. Renal hypophosphatemia has several mendelian forms. Lancet 2: 918, 1987.
 280. Scriver, C. R., and L. E. Rosenberg. Amino Acid Metabolism and Its Disorders. Philadelphia: W. B. Saunders, 1973, p. 39–60.
 281. Scriver, C. R., and H. S. Tenenhouse. On the heritability of rickets, a common disease (Mendel, mammals and phosphate). Johns Hopkins Med. J. 149: 179–187, 1981.
 282. Scriver, C. R., D. T. Whelan, C. L. Clow, and L. Dallaire. Cystinuria: increased prevalence in patients with mental disease. N. Engl. J. Med. 283: 783–786, 1970.
 283. Seakins, J. W., Hartnup disease. In: Handbook of Clinical Neurology: Metabolic and Deficiency Diseases of the Nervous System, Part III, edited by P. J. Vinken and G. W. Bruyn in collaboration with H. L. Klawans. Amsterdam: North‐Holland, 1977, p. 149–170.
 284. Segal, S. Disorders of renal amino acid transport. N. Engl. J. Med. 294: 1044–1051, 1976.
 285. Segal, S., P. D. McNamara, and L. M. Pepe. Transport interaction of cystine and dibasic amino acids in renal brush border vesicles. Science 197: 169–171, 1977.
 286. Segal, S., C. Rea, and I. Smith. Separate transport systems for sugars and amino acids in developing rat kidney cortex. Proc. Natl. Acad. Sci. USA 68: 372–376, 1971.
 287. Segal, S., and S. O. Thier. The renal handling of amino acid. In: Handbook of Physiology. Renal Physiology, edited by J. Orloff and R. W. Berliner. Washington, DC: Am. Physiol. Soc., 1973, p. 653–676.
 288. Segal, S., and S. O. Thier. Cystinuria. In: The Metabolic Basis of Inherited Disease (6th ed.), edited by C. R. Scriver, A. L. Beaudet, W. S. Sly, and D. Valle. New York: McGraw‐Hill, 1989, p. 2479–2496.
 289. Shih, V. E., E. M. Bixby, D. H. Alpers, C. S. Bartsocas, and S. O. Thier. Studies of intestinal transport defect in Hartnup disease. Gastroenterology 61: 445–453, 1971.
 290. Short, E. M., H. J. Binder, and L. E. Rosenberg. Familial hypophosphatemic rickets: defective transport of inorganic phosphate by intestinal mucosa. Science 179: 700–702, 1973.
 291. Shull, G. E., A. Schwartz, and J. B. Lingrel. Amino‐acid sequence of the catalytic subunit of the (Na+ +K+) ATPase deduced from a complementary DNA. Nature 316: 691–695, 1985.
 292. Silbernagl, S. Renal handling of amino acids and oligopeptides. Contrib. Nephrol. 24: 18–29, 1981.
 293. Silbernagl, S. Kinetics and localization of tubular resorption of “acidic” amino acids: a microperfusion and free flow micropuncture study in rat kidney. Pflugers Arch. 396: 218–224, 1983.
 294. Silbernagl, S., Amino acids and oligopeptides. In: The Kidney: Physiology and Pathophysiology, edited by D. W. Seldin and G. Giebisch. New York: Raven, 1985, p. 1677–1701.
 295. Silbernagl, S., E. C. Foulkes, and P. Deetjen. Renal transport of amino acids. Rev. Physiol. Biochem. Pharmacol. 74: 105–167, 1975.
 296. Silbernagl, S., and H. Volkl. Molecular specificity of the tubular resorption of “acidic” amino acids: a continuous microperfusion study in rat kidney in vivo. Pflugers Arch. 396: 225–230, 1983.
 297. Simell, O. Diamino acid transport into granulocytes and liver slices of patients with lysinuric protein intolerance. Pediatr. Res. 9: 504–508, 1975.
 298. Simell, O., and J. Perheentupa. Defective metabolic clearance of plasma arginine and ornithine in lysinuric protein intolerance. Metabolism 23: 691–701, 1974.
 299. Simell, O., and J. Perheentupa. Renal handling of diamino acids in lysinuric protein intolerance. J. Clin. Invest. 54: 9–17, 1974.
 300. Simell, O., J. Perheentupa, J. Rapola, J. K. Visakorpi, and K.‐E. Eskelin. Lysinuric protein intolerance. Am. J. Med. 59: 229–240, 1975.
 301. Slack, E. N., C.‐C. T. Liang, and B. Sacktor. Transport of L‐proline and D‐glucose in luminal (brush border) and contraluminal (basal–lateral) membrane vesicles from the renal cortex. Biochem. Biophys. Res. Commun. 77: 891–897, 1977.
 302. Smith, D. W., C. R. Scriver, and O. Simell. Lysinuric protein intolerance mutation is not expressed in the plasma membrane or erythrocytes. Hum. Genet. 80: 395–396, 1988.
 303. Smith, D. W., C. R. Scriver, H. S. Tenenhouse, and O. Simell. The lysinuric protein intolerance mutation is expressed in plasma membrane of cultured skin fibroblasts. Proc. Natl. Acad. Sci. USA 84: 7711–7715, 1987.
 304. Sober, E. The Nature of Selection: Evolutionary Theory in Philosophical Focus. New York: MIT, 1985, p. 278–281.
 305. Steiger, B., G. Stange, J. Biber, and H. Murer. Transport of L‐lysine by rat renal brush border membrane vesicles. Pflugers Arch. 397: 106–113, 1983.
 306. Stephens, A. D., and D. Perrett. Cystinuria: a new genetic variant. Clin. Sci. Mol. Med. 51: 27–32, 1976.
 307. Stevens, B. R., H. J. Ross, and E. M. Wright. Multiple transport pathways for neutral amino acids in rabbit jejunal brush border vesicles. J. Membr. Biol. 66: 213–225, 1982.
 308. Stoll, R., R. Kinne, H. Murer, H. Fleisch, and J.‐P. Bonjour. Phosphate transport by rat renal brush border membrane vesicles: influence of dietary phosphate, thyroparathyroidectomy, and 1,25‐dihydroxyvitamin D3. Pflugers Arch. 380: 47–52, 1979.
 309. Sutton, H.E., Beta‐aminoisobutyricaciduria. In: The Metabolic Basis of Inherited Disease (1st ed.), edited by J. B. Stanbury, J. B. Wyngaarden, and D. S. Fredrickson. New York: McGraw‐Hill, 1960, p. 792–806.
 310. Szczepanska‐Konkel, M., A. N. K. Yusufi, and T. P. Dousa. Interactions of [14C]phosphonoformic acid with renal cortical brush‐border membranes. J. Biol. Chem. 262: 8000–8010, 1987.
 311. Szczesna‐Skorupa, E., N. Browne, D. Mead, and B. Kemper. Positive changes at the NH2 terminus convert the membrane anchor signal peptide of cytochrome P‐450 to a secretory signal peptide. Proc. Natl. Acad. Sci. USA 85: 738–742, 1988.
 312. Tada, K., T. Morikawa, T. Ando, T. Yoshida, and A. Muragawa. Prolinuria: a new renal tubular defect in transport of proline and glycine. Tohoku J. Exp. Med. 87: 133–143, 1965.
 313. Tenenhouse, H. S. Abnormal renal mitochondrial 25‐hydroxyvitamin D3‐1‐hydroxylase activity in the vitamin D and calcium deficient X‐linked Hyp mouse. Endocrinology 113: 816–818, 1983.
 314. Tenenhouse, H. S. Investigation of the mechanism for abnormal renal 25‐hydroxyvitamin D3‐1‐hydroxylase activity in the X‐linked Hyp mouse. Endocrinology 115: 634–639, 1984.
 315. Tenenhouse, H. S., and G. Jones. Abnormal regulation of renal vitamin D catabolism by dietary phosphate in murine X‐linked hypophosphatemic rickets. J. Clin Invest. 85: 1450–1455, 1990.
 316. Tenenhouse, H. S., D. E. C. Cole, and C. R. Scriver. Mendelian hypophosphatemias as probes of phosphate and sulphate transport by mammalian kidney. In: Transport and Inherited Disease, edited by N. R. Belton and C. Toothill. New York: MTP, 1981, p. 231–262.
 317. Tenenhouse, H. S., D. K. Fast, C. R. Scriver, and M. Koltay. Intestinal transport of phosphate is not impaired in the Hyp (hypophosphatemic) mouse. Biochem. Biophys. Res. Commun. 100: 537–543, 1981.
 318. Tenenhouse, H. S., and M. Ghahremani. Intestinal metabolism of 25‐hydroxyvitamin D3: effect of the X‐linked Hyp mutation and 1,25‐dihydroxyvitamin D3 treatment. In: Vitamin D. Molecular, Cellular & Clinical Endocrinology, Eds, Norman, A. W., K. Schaefer, H. G. Grigoleit, Dv. Herrath. New York: Walter de Gruyter, 1988, p. 116–117.
 319. Tenenhouse, H. S., A. H. Klugerman, and J. L. Neal. Effect of phosphonoformic acid, dietary phosphate and the Hyp mutation on kinetically distinct phosphate transport processes in mouse kidney. Biochim. Biophys. Acta 984: 207–213, 1989.
 320. Tenenhouse, H. S., and J. Lee. Sulfate inhibits [14C] phosphonoformic acid binding to renal brush‐border membranes. Am. J. Physiol. 259 (Renal Fluid Electrolyte Physiol. 28): F286–F292, 1990.
 321. Tenenhouse, H. S., and C. R. Scriver. Orthophosphate transport in the erythrocyte of normal subjects and of patients with X‐linked hypophosphatemia. J. Clin. Invest. 55: 644–654, 1975.
 322. Tenenhouse, H. S., and C. R. Scriver. The defect in transcellular transport of phosphate in the nephron is located in brush border membranes in X‐linked hypophosphatemia (Hyp mouse model). Can. J. Biochem. 56: 640–646, 1978.
 323. Tenenhouse, H. S., and C. R. Scriver. Renal adaptation to phosphate deprivation in the Hyp mouse with X‐linked hypophosphatemia. Can. J. Biochem. 57: 938–944, 1979.
 324. Tenenhouse, H. S., and C. R. Scriver. Renal brush border membrane adaptation to phosphorus deprivation in the Hyp/Y mouse. Nature 281: 225–227, 1979.
 325. Tenenhouse, H. S., C. R. Scriver, R. R. McInnes, and F. H. Glorieux. Renal handling of phosphate in vivo and in vitro by the X‐linked hypophosphatemic male mouse: evidence for a defect in the brush border membrane. Kidney Int. 14: 236–244, 1978.
 326. Tenenhouse, H. S., and A. Veksler. Effect of the Hyp mutation and diet‐induced hyperparathyroidism on renal parathyroid hormone and forskolin‐stimulated adenosine 3',5'‐monophosphate production and brush border membrane phosphate transport. Endocrinology 118: 1047–1053, 1986.
 327. Tenenhouse, H. S., A. Yip, and G. Jones. Increased renal catabolism of 1,25‐dihydroxyvitamin D3 in murine X‐linked hypophosphatemic rickets. J. Clin. Invest. 81: 461–465, 1988.
 328. Thakker, R. V., A. P. Read, K. E. Davies, M. P. Whyte, R. Weksberg, F. Glorieux, M. Davies, R. C. Mountford, R. Harris, A. King, G. S. Kim, D. Fraser, S. W. Kooh, and J. L. H. O'Riordan. Bridging markers defining the map position of X‐linked hypophosphataemic rickets. J. Med. Genet. 24: 756–760, 1987.
 329. Thier, S., M. Fox, and S. Segal. Cystinuria: in vitro demonstration of an intestinal transport defect. Science 143: 482–484, 1964.
 330. Tieder, M., D. Modai, R. Samuel, R. Arie, A. Halabe, I. Bab, D. Gabizon, and U. A. Liberman. Hereditary hypophosphatemic rickets with hypercalciuria. N. Engl. J. Med. 312: 611–617, 1985.
 331. Tieder, M., D. Modai, U. Shared, R. Samuel, R. Arie, A. Halabe, J. Maor, J. Weissgarten, Z. Averbukh, N. Cohen, S. Edelstein, and U. A. Liberman. “Idiopathic” hypercalciuria and hereditary hypophosphatemic rickets: two phenotypical expressions of a common genetic defect. N. Engl. J. Med. 316: 125–129, 1987.
 332. Tiejema, H. L., H. H. van Gelderen, M. A. H. Giesberts, M. S. L. Laurent de Angulo. Dicarboxylic aminoaciduria: an inborn error of glutamate and aspartate transport with metabolic implications in combination with hyperprolinemia. Metabolism 23: 115–123, 1974.
 333. Treacher, R. J. Quantitative studies on the excretion of the basic amino acids in canine cystinuria. Br. Vet. J. 120: 178–185, 1964.
 334. Tune, B. M., and M. B. Burg. Glucose transport by proximal renal tubules. Am. J. Physiol. 221: 580–585, 1971.
 335. Turner, R. J., and A. Moran. Heterogeneity of sodium‐dependent D‐glucose transport sites along the proximal tubule: evidence from vesicle studies. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F406–F414, 1982.
 336. Turner, S.T., and T. P. Dousa. Phosphate transport by brush border membranes from superficial and juxtamedullary cortex. Kidney Int. 27: 879–885, 1985.
 337. Valle, D., and O. Simell. Hyperornithinemias. In: The Metabolic Basis of Inherited Disease (6th ed.), edited by C. R. Scriver, A. L. Beaudet, W. S. Sly, and D. Valle. New York: McGraw‐Hill, 1989, p. 599–627.
 338. Vogel, F. Clinical consequences of heterozygosity for autosomal‐recessive diseases. Clin. Genet. 25: 381–415, 1984.
 339. Vogel, F., and A. G. Motulsky. Human Genetics: Problems and Approaches. New York: Springer‐Verlag, 1979, p. 152–154, 165.
 340. Volkl, H., and S. Silbernagl. Mutual inhibition of L‐cystine/cysteine and other neutral amino acids during tubular reabsorption: a microperfusion study in rat kidney. Pflugers Arch. 395: 190–195, 1982.
 341. Volkl, H., and S. Silbernagl. Reexamination of the interplay between dibasic amino acids and L‐cystine/L‐cysteine during tubular reabsorption. Pflugers Arch. 395: 196–200, 1982.
 342. Volkl, H., S. Silbernagl, and P. Deetjen. Kinetics of L‐proline reabsorption in rat kidney studies by continuous microperfusion. Pflugers Arch. 382: 115–121, 1979.
 343. Walker, J. J., T. S. Yan, and G. A. Quamme. Presence of multiple sodium‐dependent phosphate transport processes in proximal brush border membranes. Am. J. Physiol. 252 (Renal Fluid Electrolyte Physiol. 21): F226–F231, 1987.
 344. Waqar, M. A., J. Seto, S. D. Chung, S. Hiller‐Grohol, and M. Taub. Phosphate uptake by primary renal proximal tubule cell cultures grown hormonally defined medium. J. Cell. Physiol. 124: 411–423, 1985.
 345. Webber, W. A. Interactions of neutral and acidic amino acids in renal tubular transport. Am. J. Physiol. 202: 577–583, 1962.
 346. Webber, W. A. Characteristics of acidic amino acid transport in mammalian kidney. Can. J. Biochem. Physiol. 41: 131–137, 1963.
 347. Webber, W. A., J. L. Brown, and R. F. Pitts. Interactions of amino acids in renal tubular transport. Am. J. Physiol. 200: 380–386, 1961.
 348. Wehrle, J. P., and P. L. Pedersen. Characteristics of phosphate uptake by Ehrlich ascites tumor cells. J. Biol. Chem. 257: 9698–9703, 1982.
 349. Wen, S.‐F. Micropuncture studies of phosphate transport in the proximal tubule of the dog. The relationship to sodium reabsorption. J. Clin. Invest. 53: 143–153, 1974.
 350. Whelan, D. T., and C. R. Scriver. Hyperdibasicaminoaciduria: an inherited disorder of amino acid transport. Pediatr. Res. 2: 525–534, 1968.
 351. White, M. F. The transport of cationic amino acids across the plasma membrane of mammalian cells. Biochim. Biophys. Acta 822: 355–374, 1985.
 352. White, M. F., and H. N. Christensen. Cationic amino acid transport into cultured animal cells. J. Biol. Chem. 257: 4450–4457, 1982.
 353. Wickner, W. Assembly of proteins into membranes. Science 210: 861–868, 1980.
 354. Wickner, W. T., and H. F. Lodish. Multiple mechanisms of protein insertion into and across membranes. Science 230: 400–407, 1985.
 355. Wilson, O. H., and C. R. Scriver. Specificity of transport of neutral and basic amino acids in rat kidney. Am. J. Physiol. 213: 185–190, 1967.
 356. Winters, R. W., J. B. Graham, T. F. Williams, V. M. McFalls, and C. H. Burnett. A genetic study of familial hypophosphatemia and vitamin D resistant rickets with a review of the literature. Medicine (Baltimore) 37: 97–142, 1958.
 357. Wollaston, W. H. On cystic oxide, a new species of urinary calculus. Philos. Trans. R. Soc. Lond. [B.] 100: 223–230, 1810.
 358. Wright, E. M., V. Harms, A. K. Mircheff, and C. H. van Os. Transport properties of intestinal basolateral membranes. Ann. N.Y. Acad. Sci. 372: 626–636, 1981.
 359. Yamaoka, K., Y. Seino, K. Satomura, Y. Tanaka, H. Yabuuchi, and M. R. Haussler. Abnormal relationship between serum phosphate concentration and renal 25‐hydroxycholecalciferol–1‐alpha‐hydroxylase activity in X‐linked hypophosphatemic mice. Miner. Electrolyte Metab. 12: 194–198, 1986.
 360. Yusufi, A. N. K., M. Szczepanska‐Konkel, A. Hoppe, and T. P. Dousa. Different mechanisms of adaptive increase in Na+‐Pi cotransport across renal brush‐border membrane. Am. J. Physiol. 256 (Renal Fluid Electrolyte Physiol. 25): F852–F861, 1989.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Charles R. Scriver, Harriet S. Tenenhouse. Mendelian Phenotypes as “Probes” of Renal Transport Systems for Amino Acids and Phosphate. Compr Physiol 2011, Supplement 25: Handbook of Physiology, Renal Physiology: 1977-2016. First published in print 1992. doi: 10.1002/cphy.cp080242