Comprehensive Physiology Wiley Online Library

Formation of Reactive Metabolites of Foreign Compounds and their Covalent Binding to Cellular Constituents

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Theoretical Considerations
2 Examples
2.1 Acetaminophen
2.2 Bromobenzene
2.3 Furosemide
2.4 Isoniazid and Iproniazid
3 Conclusion
Figure 1. Figure 1.

Mechanisms of toxicity.

Figure 2. Figure 2.

Kinetics of covalent binding of reactive metabolites. In this model, kfo is the first‐order rate constant for the excretion of the unchanged foreign compound into urine, kfm is the sum of the first‐order rate constants for the conversion of the foreign compound to inactive metabolites (Mf), and kfp is the first‐order rate constant for the formation of the proximate metabolite. The comparable first‐order rate constants for the proximate metabolite are kpo, kpm, and kpr, and the first‐order rate constants for the reactive metabolite are kro, krm, and krc.

Figure 3. Figure 3.

Pathways of acetaminophen metabolism.

Figure 4. Figure 4.

Pathways of bromobenzene metabolism.

Figure 5. Figure 5.

Possible pathway of furosemide metabolism.

Figure 6. Figure 6.

Major pathways of isoniazid metabolism.



Figure 1.

Mechanisms of toxicity.



Figure 2.

Kinetics of covalent binding of reactive metabolites. In this model, kfo is the first‐order rate constant for the excretion of the unchanged foreign compound into urine, kfm is the sum of the first‐order rate constants for the conversion of the foreign compound to inactive metabolites (Mf), and kfp is the first‐order rate constant for the formation of the proximate metabolite. The comparable first‐order rate constants for the proximate metabolite are kpo, kpm, and kpr, and the first‐order rate constants for the reactive metabolite are kro, krm, and krc.



Figure 3.

Pathways of acetaminophen metabolism.



Figure 4.

Pathways of bromobenzene metabolism.



Figure 5.

Possible pathway of furosemide metabolism.



Figure 6.

Major pathways of isoniazid metabolism.

References
 1. Azouz, W. M., D. V. Parke, and R. T. Williams. Studies in detoxification. 51. The determination of catechols in urine and the formation of catechols in rabbits receiving halogenobenzene and other compounds. Dihydroxylation in vivo. Biochem. J. 55: 146–151, 1953.
 2. Baumann, E., and C. Preusse. Über Bromphenylmercaptursaüre. Chem. Ber. 12: 806–810, 1879.
 3. Boyd, E. M., and G. M. Bereczky. Liver necrosis from paracetamol. Brit. J. Pharmacol 26: 606–614, 1966.
 4. Brodie, B. B., Idiosyncrasy and intolerance. In: Drug Responses in Man, edited by G. Wolstenholme and R. Porter. London: Churchill, 1967, 188‐213.
 5. Brodie, B. B., W. D. Reid, A. K. Cho, G. Sipes, G. Krishna, and J. R. Gillette. Possible mechanism of liver necrosis caused by aromatic organic compounds. Proc. Nat. Acad. Sci. US 68: 160–164, 1971.
 6. Daly, J. W., D. M. Jerina, and B. Witkop. Arene oxides and the NIH shift. The metabolism, toxicity and carcinogenicity of aromatic compounds. Experientia 28: 1129–1149, 1972.
 7. Davis, D. C., W. Z. Potter, D. J. Jollow, and J. R. Mitchell. Species differences in hepatic glutathione depletion, covalent binding and hepatic necrosis after acetaminophen. Life Sci. 14: 2099–3109, 1974.
 8. Farber, E. Biochemistry of carcinogenesis. Cancer Res. 28: 1859–1869, 1968.
 9. Gillette, J. R., Factors that affect the covalent binding and toxicity of drugs. In: Toxicological Problems. Pharmacology and the Future of Man, edited by T. A. Loomis. Basel: Karger, 1973, vol. 2, p. 187. (Proc. Intern. Congr. Pharmacol., 5th, San Francisco, July 1972.).
 10. Gillette, J. R. A perspective on the role of chemically reactive metabolites of foreign compounds in toxicity— II. Alterations in the kinetics of covalent binding. Biochem. Pharmacol. 23: 2927–2938, 1974.
 11. Gillette, J. R., Mechanisms of hepatic necrosis induced by halogenated aromatic hydrocarbons. In: The Pathogenesis and Mechanisms of Liver Cell Necrosis, edited by D. Keppler. Lancaster, Engl.: Med. Tech. Publ. Co., 1975, p. 239‐254.
 12. Gillette, J. R., J. R. Mitchell, and B. B. Brodie. Biochemical basis for drug toxicity. Ann. Rev. Pharmacol. 14: 271–288, 1974.
 13. Jollow, D. J., J. R. Mitchell, W. Z. Potter, D. C. Davis, J. R. Gillette, and B. B. Brodie. Acetaminophen‐induced hepatic necrosis —II. Role of covalent binding in vivo. J. Pharmacol. Exptl. Therap. 187: 195–202, 1973.
 14. Jollow, D. J., J. R. Mitchell, N. Zampaglione, and J. R. Gillette. Bromobenzene‐induced liver necrosis. Protective role of glutathione and evidence for 3,4‐bromobenzene oxide as the hepatotoxic metabolite. Pharmacology 11: 151–169, 1974.
 15. Jollow, D. J., S. S. Thorgeirsson, W. Z. Potter, M. Hashimoto, and J. R. Mitchell. Acetaminophen‐induced hepatic necrosis. VI. Metabolic disposition of toxic and nontoxic doses of acetaminophen. Pharmacology 12: 251–271, 1974.
 16. Kalow, W. P. Pharmacogenetics; Heredity and the Response to Drugs. Philadelphia: Saunders, 1962, p. 99.
 17. Knight, R. H., and L. Young. Biochemical studies of toxic agents. 11. The occurrence of premercapturic acids. Biochem. J. 70: 111–119, 1958.
 18. Kostrzewa, R. M., and D. M. Jacobowitz. Pharmacological actions of 6‐hydroxy dopamine. Pharmacol. Rev. 26: 199–288, 1974.
 19. Magee, P. N., and J. M. Barnes. Carcinogenic nitroso compounds. Adv. Cancer Res. 10: 163–246, 1967.
 20. McLean, A. E. M., and P. A. Day. The effect of diet on the toxicity of paracetamol and the safety of paracetamol‐methionine mixtures. Biochem. Pharmacol. 24: 37–42, 1975.
 21. Miller, E. C., and J. A. Miller. Mechanisms of chemical carcinogenesis: Nature of proximate carcinogens and interaction with macromolecules. Physiol. Rev. 18: 805–838, 1966.
 22. Miller, J. A. Carcinogenesis by chemicals: An overview. G. H. A. Memorial Lecture. Cancer Res. 30: 559–576, 1970.
 23. Mitchell, J. R., D. J. Jollow, W. Z. Potter, D. C. Davis, J. R. Gillette, and B. B. Brodie. Acetaminophen‐induced hepatic necrosis —I. Role of drug metabolism. J. Pharmacol. Exptl. Therap. 187: 185–194, 1973.
 24. Mitchell, J. R., D. J. Jollow, W. Z. Potter, J. R. Gillette, and B. B. Brodie. Acetaminophen‐induced hepatic necrosis—IV. Protective role of glutathione. J. Pharmacol. Exptl. Therap. 187: 211–217, 1975.
 25. Mitchell, J. R., W. Z. Potter, J. A. Hinson, W. R. Snodgrass, J. A. Timbrell and J. R. Gillette. Toxic drug reactions. In: Concepts in Biochemical Pharmacology: Pharmacokinetics, edited by J. R. Gillette and J. R. Mitchell. New York: Springer‐Verlag, 1975, p. 383‐419. (Handbook of Experimental Pharmacology, vol. 28.).
 26. Mitchell, J. R., W. Z. Potter, and D. J. Jollow. Massive hepatic necrosis caused by furosemide. Nature 251: 508–511, 1974.
 27. Mitchell, J. R., U. P. Thorgeirsson, M. Black, J. A. Timbrell, W. R. Snodgrass, W. Z. Potter, D. J. Jollow, and H. R. Keiser. Increased incidence of isoniazid hepatitis in rapid acetylators: Possible relation to hydrazine metabolites. Clin. Pharmacol. Therap. 18: 70–79, 1975.
 28. Nelson, S. D., W. R. Snodgrass, and J. R. Mitchell. Metabolic activation of hydrazines to reactive intermediates: Mechanistic implications for isoniazid and iproniazid hepatitis (Abstract). Federation Proc. 34: 784, 1975.
 29. Potter, W. Z., D. C. Davis, J. R. Mitchell, D. J. Jollow, J. R. Gillette, and B. B. Brodie. Acetaminophen‐induced hepatic necrosis. III. Cytochrome P‐450‐mediated covalent binding in vitro. J. Pharmacol. Exptl. Therap. 187: 203–210, 1973.
 30. Potter, W. Z., S. S. Thorgeirsson, D. J. Jollow, and J. R. Mitchell. Acetaminophen‐induced hepatic necrosis. V. Correlation of hepatic necrosis, covalent binding and glutathione depletion in hamsters. Pharmacology 12: 129–143, 1974.
 31. Prescott, L. F., N. Wright, P. Roscoe, and S. S. Brown. Plasma paracetamol half‐life and hepatic necrosis in patients with paracetamol overdosage. Lancet 1: 519–522, 1971.
 32. Rao, D. V. N., D. A. Mitchison, N. G. K. Nair, K. Prena, and S. P. Tripathy. Sulphadimidine acetylation test for classification of patients as slow or rapid inactivators of isoniazid. Brit. Med. J. 3: 495–497, 1970.
 33. Recknagel, R. D., and E. A. Glende, Jr.. Carbon tetrachloride hepatotoxicity: An example of lethal cleavage. C.R.C. Critical Rev. in Toxicol. 2: 263–297, 1973.
 34. Reid, W. D., B. Christie, M. Eichelbaum, and G. Krishna. 3‐Methylcholanthrene blocks hepatic necrosis induced by administration of bromobenzene or carbon tetrachloride. Exptl. Mol. Pathol. 15: 363–372, 1971.
 35. Reid, W. D., K. F. Ilett, J. M. Glick, and G. Krishna. Metabolism and binding of aromatic hydrocarbons in the lung. Relationship to experimental bronchiolar necrosis. Am. Rev. Respirat. Diseases 107: 539–551, 1973.
 36. Reid, W. D., and G. Krishna. Centrolobular hepatic necrosis related to covalent binding of metabolites of halogenated aromatic compounds. Exptl. Mol. Pathol. 18: 80–99, 1973.
 37. Reid, W. D., G. Krishna, J. R. Gillette, and B. B. Brodie. Biochemical mechanism of hepatic necrosis induced by aromatic hydrocarbons. Pharmacology 10: 193–214, 1973.
 38. Reynolds, E. S. Comparison of early injury to liver endoplasmic reticulum by halomethanes hexachloro ethane, benzene, toluene, bromobenzene, ethionine, thioacetamide and dimethyl nitrosamine. Biochem. Pharmacol. 21: 2555–2561, 1972.
 39. Slater, T. F. Necrogenic action of carbon tetrachloride in the rat: A speculative mechanism based on activation. Nature 209: 36–40, 1966.
 40. Weisburger, J. H., and G. M. Williams. Metabolism of chemical carcinogens. In: Cancer. A Comprehensive Treatise, edited by F. F. Becker. New York: Plenum Press, 1975, vol. 1, p. 185.
 41. Zampaglione, N., D. J. Jollow, J. R. Mitchell, B. Stripp, M. Hamrick, and J. R. Gillette. Role of detoxifying enzymes in bromobenzene‐induced liver necrosis. J. Pharmacol. Exptl. Therap. 187: 218‐227, 1973.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

James R. Gillette. Formation of Reactive Metabolites of Foreign Compounds and their Covalent Binding to Cellular Constituents. Compr Physiol 2011, Supplement 26: Handbook of Physiology, Reactions to Environmental Agents: 577-589. First published in print 1977. doi: 10.1002/cphy.cp090137