Comprehensive Physiology Wiley Online Library

Quantitative Ultrastructure of Mammalian Skeletal Muscle

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Physiological Functions
1.1 Excitation‐Contraction Coupling
1.2 Contractile System
1.3 Metabolic Systems
1.4 Other Systems
2 Methods of Observation
2.1 Selection of Muscle for Morphometric Analysis
2.2 Electron Microscopy
2.3 Stereological Analysis
3 Morphometric Results
3.1 Membrane Systems
3.2 Contractile Systems
3.3 Metabolic Systems
4 Muscle Fiber Diversity
4.1 Contractile and Metabolic Systems
4.2 Metabolic and EC Coupling Systems
4.3 Contractile and EC Coupling Systems
5 Muscle Fiber Plasticity
Figure 1. Figure 1.

Schematic drawing of part of a mammalian skeletal muscle fiber showing relationship of sarcoplasmic reticulum, terminal cisternae, T system, and mitochondria to a few myofibrils. [From Eisenberg et al. 70.]

Figure 2. Figure 2.

White vastus muscle of the guinea pig. Light micrograph of plastic‐embedded muscle cut in a 0.5‐μm‐thick longitudinal section. Fibers are striated with dark (A) and light (I) bands. Note peripherally located nuclei (n) and connective tissue (CT).

Figure 3. Figure 3.

Soleus muscle from guinea pig. Light micrograph of plastic‐embedded muscle cut as a 0.5‐μn‐thick cross section. Fibers are irregularly shaped and contain peripheral nuclei (n). Note small blood vessels (bv) and connective tissue (CT). Dark A band, light I band, and Z disk vary in orientation from one fiber to another, giving fibers a marbled appearance. Pattern in fiber X is formed from only one A and one I band, indicating a nearly true cross section, whereas in fiber O, striation patterns indicate an oblique section. [From Eisenberg et al. 70.]

Figure 4. Figure 4.

Arrangement of structures in T‐SR junction. This diagram is a fanciful melding of morphological data [Eisenberg 64,65,71, Franzini‐Armstrong 96, Kelly and Kuda 165, and Somlyo 301] with the electrical model of T‐SR coupling [Mathias et al. 193,194]. Fine structure of pillar shown in inset is certainly beyond the practical resolution of the electron microscope.

Adapted from Eisenberg and Eisenberg 64
Figure 5. Figure 5.

Electron micrograph of T‐SR junctional region from longitudinally sectioned mouse extensor digitorum longus muscle (fast twitch) fixed with oxygenated glutaraldehyde 155. T‐system membrane (T) lies between 2 terminal cisternae (TC). Free SR (FSR) extends beyond the TC. Note projections from TC membranes (indicated by lines), some of which form connecting T‐SR pillars (arrows).

Micrograph courtesy of J. E. Rash
Figure 6. Figure 6.

Slow‐twitch fibers from guinea pig soleus muscle. Micrographs are at the same magnification. A: longitudinal section showing paired mitochondria on either side of the Z line (Z), extensive SR in I band (I), lack of mitochondria and SR around the A band (A), and M line (M) in center. B: cross section entirely in plane of Z disk showing extensive SR (sr) that divides the Z disk into irregular myofibrils (mf). C: cross section in A band (A). Note thick myosin filaments, sparse mitochondria, and SR. Myofibrils are ill‐defined. D: cross section in I band (I). Note thin actin filaments and elongated mitochondria (mit) almost encircling myofibrils. [From Eisenberg et al. 69.]

Figure 7. Figure 7.

Fast‐twitch fiber from guinea pig white vastus lateralis muscle. A: longitudinal section showing SR in the A band (srA) and I band (srI). Terminal cisternae (tc) contain granular material and flank the elliptical T system (tt). Z line is thin, but note variation in width across several myofibrils. M, M line. [From Eisenberg and Kuda 66.] B, C: cross sections at a lower magnification showing extensive SR in Z‐disk (Z) and I‐band (I) regions and less SR in the A band (A). Myofibrils are irregular structures outlined by SR that are better defined in the I band than in the A band. (B. R. Eisenberg, unpublished micrographs.)

Figure 8. Figure 8.

Longitudinal section of parts of adult guinea pig muscle. A: white vastus (fast twitch, glycolytic). B: red vastus (fast twitch, oxidative, glycolytic). C: soleus (slow twitch, oxidative). Mitochondria (m) are sparse in the white vastus (A), intermediate to frequent in the red vastus (B), and intermediate in the soleus (C). Sarcoplasmic reticulum (sr) and T system (T) are more abundant in fast‐twitch muscles of the white and red vastus (A and B) than in slow‐twitch muscle of the soleus (C). Z‐line (Z) widths are narrower in fast‐twitch fibers (A and B) than in slow‐twitch fiber (C). M, M lines. [From Eisenberg 60.]

Figure 9. Figure 9.

Models of longitudinal sections through Z disks of different complexity. A: simplest Z disk has one layer of connecting filaments giving a zigzag appearance like that found in fish 92. B: another 38‐nm segment added to each filament and a second layer of connecting filaments give an appearance more typical of mammalian skeletal Z lattice of fast‐twitch, glycolytic muscle such as rat EDL or guinea pig white vastus. C: one more 38‐nm layer is added to give 2 complete subunits. This Z lattice corresponds to Z widths found in fast‐twitch, oxidative, glycolytic fibers and some slow‐twitch, oxidative fibers. D: a final layer is added to give 3 complete subunits and a Z lattice typical for the soleus muscle 117 and canine cardiac muscle. Note that the number of subunits is not constant throughout an entire Z disk. Fast‐twitch fibers usually have 1–2 or 2–3 subunits, whereas cardiac and slow‐twitch have 2–4 subunits. [Figure was kindly provided by M. A. Goldstein, modified from Goldstein et al. 115.]

Figure 10. Figure 10.

Longitudinal section through a peripheral myofibril of a frog fiber that was skinned and exposed to a ferritin suspension. Positions of N1 and N2 lines are marked. Large granules between the fibrils are glycogen granules. Sarcomere length is 2.8 μm. [From Franzini‐Armstrong 87.]

Figure 11. Figure 11.

Longitudinal sections through parts of vastus lateralis muscle of the adult guinea pig. Dotted line is drawn 1 μm from the sarcolemma to divide outer annulus (O) from fiber core (C). Mitochondria in outer annulus (mitO) are oriented longitudinally (mitL) and transversely (mitX) to fiber axis; sr, sarcoplasmic reticulum; L, lipid droplet. Both micrographs are at same magnification. A: red portion of vastus lateralis muscle is mainly composed of fast‐twitch, oxidative, glycolytic fibers. B: white portion of vastus lateralis muscle is mainly composed of fast‐twitch, glycolytic fibers. [A from Eisenberg and Kuda 67, B from Eisenberg and Kuda 66.]

Figure 12. Figure 12.

Longitudinal section through part of a soleus muscle slow‐twitch fiber of the guinea pig. Lipid droplets (lip) and mitochondria (mitO) lie close to sarcolemma (SM). Dense Z line (Z), moderate M line (M), dark A band (A), and light I band (I) give the fiber a regularly striated appearance. Arrows point to triads located at junction of A and I bands, between some, but not all, myofibrils (mf). Mitochondria in the I band (mitI) are often paired and A‐band mitochondria are sparse. A portion of a stereological test grid is shown oriented at optimal angle θ = 19° and 71° 293. Light‐line spacing ∼0.4 μm and heavy‐line spacing ∼1.8;um. [From Eisenberg et al. 70.]

Figure 13. Figure 13.

Oblique section of soleus muscle from the guinea pig showing parts of 2 fibers and a capillary (bv). Note peripheral accumulation of mitochondria (mitO) near sarcolemma (SM), the numerous, large mitochondria in the I band (mitI), small mitochondria in the A band (mitA), and sarcomere repeats between Z disks (Z); note also spherical lipid droplets (L). [From Eisenberg et al. 70.]

Figure 14. Figure 14.

Light micrograph of cross section through rabbit tibialis anterior muscle showing a nerve bundle (N) and a muscle spindle (MS) containing intrafusal muscle fibers. A thick layer of epimysial connective tissue (CT) wraps around a fascicle of muscle fibers.

Figure 15. Figure 15.

Serial cross sections of guinea pig medial gastrocnemius muscle. A: section stained from myofibrillar ATPase at pH 9.4. Light fibers are type I or slow twitch; dark unlabeled fibers are type II or fast twitch. B: frozen section stained for succinic dehydrogenase. Note there is a continuous range in staining density of the fibers. Type I fibers from A all stain at darker end of the range. Type II fibers are distributed throughout whole density range. C: 30‐μm frozen cross section thawed by immersion in glutaraldehyde fixative, postfixed in osmium tetroxide, embedded in Epon, and photographed through Epon block. D: narrow strip cut by rotating Epon block (C) through 90°. Fibers are longitudinally sectioned and about 30 μm in length. Alignment between fibers in C and D allows comparison between a cross and a longitudinal section of the same fibers.

From Eisenberg and Kuda 68, reprinted from J. Histochem. Cytochem. Copyright 1977 by The Histochemical Society, Inc
Figure 16. Figure 16.

Histograms of surface area of T system from 300 fibers in 3 muscles of the guinea pig. Note that fast‐twitch red and white vastus fibers show identical distributions, but differ from slow‐twitch soleus fibers. [From Eisenberg and Kuda 67.]

Figure 17. Figure 17.

Histograms of surface area of terminal cisternae from 3 muscles of the adult guinea pig. [From Eisenberg and Kuda 67.]

Figure 18. Figure 18.

Histograms of surface area of sarcoplasmic reticulum are similar for all 3 guinea pig muscles. [From Eisenberg and Kuda 67.]

Figure 19. Figure 19.

Segments of Z‐line structure from longitudinally sectioned muscle of the adult guinea pig. Range in width of Z line is seen: A, white vastus; B, red vastus; C, soleus muscle. D: histogram of widths of Z‐line structure from segments of Z line similar to those in A, B, and C. The Z lines from 300 guinea pig fibers were measured. [From Eisenberg 60.]

Figure 20. Figure 20.

Histograms of volume of mitochondria in fiber core from 300 fibers in 3 muscles of the guinea pig. Note large range and skewed distribution for fast‐twitch fibers. [Redrawn from Eisenberg and Kuda 67.]

Figure 21. Figure 21.

Histogram of volume of mitochondria in fiber core of human muscle from quadriceps of adult males. Population was arbitrarily divided into 2 groups: stippled histogram is from fibers with a Z‐line width >100 nm (presumed slow twitch), and empty histogram is of fibers with a Z‐line width <100 nm (presumed fast twitch). (Unpublished data of B. R. Eisenberg.)

Figure 22. Figure 22.

Scattergram of Z‐line width vs. mitochondrial volume in core of fibers. Slow‐twitch soleus fibers form a separate cluster from fast‐twitch red and white vastus fibers. Within fast‐twitch fiber population there is some correlation (r = 0.57) between Z‐line width and mitochondrial volume. [From Eisenberg 60.]

Figure 23. Figure 23.

Scattergram of Z‐line width vs. mitochondrial volume measured from electron micrographs of medial gastrocnemius muscle fibers of the guinea pig that had been frozen, thawed, and then fixed. Serial cryostat sections were used to determine histochemical stains of myofibrillar ATP and succinic dehydrogenase (SDH) of each fiber to give the conventional fiber types: x, slow‐twitch, oxidative; •, fast‐twitch, oxidative, glycolytic; and ○, fast‐twitch, glycolytic (see Fig. 15). The 3 types form 1 large cluster that can be separated into 3 subclusters only by reference to histochemical profile of the fiber.

From Eisenberg and Kuda 68, reprinted from J. Histochem. Cytochem. Copyright 1977 by The Histochemical Society, Inc
Figure 24. Figure 24.

Scattergram of surface area of terminal cisternae plotted against volume of the mitochondria for 300 fibers from guinea pig muscle. Ad hoc lines are drawn by eye to separate the 3 muscles into 3 areas. Tallies of correct fiber allocations are given in ref. 67. Note that soleus fiber symbols are tightly clustered. However, red vastus fiber symbols form a large cloud not readily separated from the white vastus fiber symbols. x, Soleus; •, red vastus; ○, white vastus. [From Eisenberg and Kuda 67.]

Figure 25. Figure 25.

Scattergram of Z‐band width vs. number of T profiles per unit fiber area QT/AF for rabbit muscle. A: open circles represent 80 control tibialis anterior (TA) fibers and open crosses, 89 control soleus fibers. Note that most TA control fibers are in upper left quadrant; most soleus fibers are in lower right quadrant. Quadrants are created by lines at Z = 90 nm and QT/Af = 0.58 μm−2 computed at Gaussian crossover points. B: scattergram of Z‐band width vs. number of T profiles for stimulated TA fibers from rabbit muscle. Symbols indicate duration of stimulation. Open circles, at an early stage (0–2 days) stimulated fibers occupy upper left quadrant (fast‐twitch type); squares, at times for periods of stimulation from 5 to 12 days, most fibers occupy lower left quadrant (transitional type); open crosses, after 2 wk of stimulation most fibers occupy lower right quadrant (slow‐twitch type). [From Eisenberg and Salmons 75.]



Figure 1.

Schematic drawing of part of a mammalian skeletal muscle fiber showing relationship of sarcoplasmic reticulum, terminal cisternae, T system, and mitochondria to a few myofibrils. [From Eisenberg et al. 70.]



Figure 2.

White vastus muscle of the guinea pig. Light micrograph of plastic‐embedded muscle cut in a 0.5‐μm‐thick longitudinal section. Fibers are striated with dark (A) and light (I) bands. Note peripherally located nuclei (n) and connective tissue (CT).



Figure 3.

Soleus muscle from guinea pig. Light micrograph of plastic‐embedded muscle cut as a 0.5‐μn‐thick cross section. Fibers are irregularly shaped and contain peripheral nuclei (n). Note small blood vessels (bv) and connective tissue (CT). Dark A band, light I band, and Z disk vary in orientation from one fiber to another, giving fibers a marbled appearance. Pattern in fiber X is formed from only one A and one I band, indicating a nearly true cross section, whereas in fiber O, striation patterns indicate an oblique section. [From Eisenberg et al. 70.]



Figure 4.

Arrangement of structures in T‐SR junction. This diagram is a fanciful melding of morphological data [Eisenberg 64,65,71, Franzini‐Armstrong 96, Kelly and Kuda 165, and Somlyo 301] with the electrical model of T‐SR coupling [Mathias et al. 193,194]. Fine structure of pillar shown in inset is certainly beyond the practical resolution of the electron microscope.

Adapted from Eisenberg and Eisenberg 64


Figure 5.

Electron micrograph of T‐SR junctional region from longitudinally sectioned mouse extensor digitorum longus muscle (fast twitch) fixed with oxygenated glutaraldehyde 155. T‐system membrane (T) lies between 2 terminal cisternae (TC). Free SR (FSR) extends beyond the TC. Note projections from TC membranes (indicated by lines), some of which form connecting T‐SR pillars (arrows).

Micrograph courtesy of J. E. Rash


Figure 6.

Slow‐twitch fibers from guinea pig soleus muscle. Micrographs are at the same magnification. A: longitudinal section showing paired mitochondria on either side of the Z line (Z), extensive SR in I band (I), lack of mitochondria and SR around the A band (A), and M line (M) in center. B: cross section entirely in plane of Z disk showing extensive SR (sr) that divides the Z disk into irregular myofibrils (mf). C: cross section in A band (A). Note thick myosin filaments, sparse mitochondria, and SR. Myofibrils are ill‐defined. D: cross section in I band (I). Note thin actin filaments and elongated mitochondria (mit) almost encircling myofibrils. [From Eisenberg et al. 69.]



Figure 7.

Fast‐twitch fiber from guinea pig white vastus lateralis muscle. A: longitudinal section showing SR in the A band (srA) and I band (srI). Terminal cisternae (tc) contain granular material and flank the elliptical T system (tt). Z line is thin, but note variation in width across several myofibrils. M, M line. [From Eisenberg and Kuda 66.] B, C: cross sections at a lower magnification showing extensive SR in Z‐disk (Z) and I‐band (I) regions and less SR in the A band (A). Myofibrils are irregular structures outlined by SR that are better defined in the I band than in the A band. (B. R. Eisenberg, unpublished micrographs.)



Figure 8.

Longitudinal section of parts of adult guinea pig muscle. A: white vastus (fast twitch, glycolytic). B: red vastus (fast twitch, oxidative, glycolytic). C: soleus (slow twitch, oxidative). Mitochondria (m) are sparse in the white vastus (A), intermediate to frequent in the red vastus (B), and intermediate in the soleus (C). Sarcoplasmic reticulum (sr) and T system (T) are more abundant in fast‐twitch muscles of the white and red vastus (A and B) than in slow‐twitch muscle of the soleus (C). Z‐line (Z) widths are narrower in fast‐twitch fibers (A and B) than in slow‐twitch fiber (C). M, M lines. [From Eisenberg 60.]



Figure 9.

Models of longitudinal sections through Z disks of different complexity. A: simplest Z disk has one layer of connecting filaments giving a zigzag appearance like that found in fish 92. B: another 38‐nm segment added to each filament and a second layer of connecting filaments give an appearance more typical of mammalian skeletal Z lattice of fast‐twitch, glycolytic muscle such as rat EDL or guinea pig white vastus. C: one more 38‐nm layer is added to give 2 complete subunits. This Z lattice corresponds to Z widths found in fast‐twitch, oxidative, glycolytic fibers and some slow‐twitch, oxidative fibers. D: a final layer is added to give 3 complete subunits and a Z lattice typical for the soleus muscle 117 and canine cardiac muscle. Note that the number of subunits is not constant throughout an entire Z disk. Fast‐twitch fibers usually have 1–2 or 2–3 subunits, whereas cardiac and slow‐twitch have 2–4 subunits. [Figure was kindly provided by M. A. Goldstein, modified from Goldstein et al. 115.]



Figure 10.

Longitudinal section through a peripheral myofibril of a frog fiber that was skinned and exposed to a ferritin suspension. Positions of N1 and N2 lines are marked. Large granules between the fibrils are glycogen granules. Sarcomere length is 2.8 μm. [From Franzini‐Armstrong 87.]



Figure 11.

Longitudinal sections through parts of vastus lateralis muscle of the adult guinea pig. Dotted line is drawn 1 μm from the sarcolemma to divide outer annulus (O) from fiber core (C). Mitochondria in outer annulus (mitO) are oriented longitudinally (mitL) and transversely (mitX) to fiber axis; sr, sarcoplasmic reticulum; L, lipid droplet. Both micrographs are at same magnification. A: red portion of vastus lateralis muscle is mainly composed of fast‐twitch, oxidative, glycolytic fibers. B: white portion of vastus lateralis muscle is mainly composed of fast‐twitch, glycolytic fibers. [A from Eisenberg and Kuda 67, B from Eisenberg and Kuda 66.]



Figure 12.

Longitudinal section through part of a soleus muscle slow‐twitch fiber of the guinea pig. Lipid droplets (lip) and mitochondria (mitO) lie close to sarcolemma (SM). Dense Z line (Z), moderate M line (M), dark A band (A), and light I band (I) give the fiber a regularly striated appearance. Arrows point to triads located at junction of A and I bands, between some, but not all, myofibrils (mf). Mitochondria in the I band (mitI) are often paired and A‐band mitochondria are sparse. A portion of a stereological test grid is shown oriented at optimal angle θ = 19° and 71° 293. Light‐line spacing ∼0.4 μm and heavy‐line spacing ∼1.8;um. [From Eisenberg et al. 70.]



Figure 13.

Oblique section of soleus muscle from the guinea pig showing parts of 2 fibers and a capillary (bv). Note peripheral accumulation of mitochondria (mitO) near sarcolemma (SM), the numerous, large mitochondria in the I band (mitI), small mitochondria in the A band (mitA), and sarcomere repeats between Z disks (Z); note also spherical lipid droplets (L). [From Eisenberg et al. 70.]



Figure 14.

Light micrograph of cross section through rabbit tibialis anterior muscle showing a nerve bundle (N) and a muscle spindle (MS) containing intrafusal muscle fibers. A thick layer of epimysial connective tissue (CT) wraps around a fascicle of muscle fibers.



Figure 15.

Serial cross sections of guinea pig medial gastrocnemius muscle. A: section stained from myofibrillar ATPase at pH 9.4. Light fibers are type I or slow twitch; dark unlabeled fibers are type II or fast twitch. B: frozen section stained for succinic dehydrogenase. Note there is a continuous range in staining density of the fibers. Type I fibers from A all stain at darker end of the range. Type II fibers are distributed throughout whole density range. C: 30‐μm frozen cross section thawed by immersion in glutaraldehyde fixative, postfixed in osmium tetroxide, embedded in Epon, and photographed through Epon block. D: narrow strip cut by rotating Epon block (C) through 90°. Fibers are longitudinally sectioned and about 30 μm in length. Alignment between fibers in C and D allows comparison between a cross and a longitudinal section of the same fibers.

From Eisenberg and Kuda 68, reprinted from J. Histochem. Cytochem. Copyright 1977 by The Histochemical Society, Inc


Figure 16.

Histograms of surface area of T system from 300 fibers in 3 muscles of the guinea pig. Note that fast‐twitch red and white vastus fibers show identical distributions, but differ from slow‐twitch soleus fibers. [From Eisenberg and Kuda 67.]



Figure 17.

Histograms of surface area of terminal cisternae from 3 muscles of the adult guinea pig. [From Eisenberg and Kuda 67.]



Figure 18.

Histograms of surface area of sarcoplasmic reticulum are similar for all 3 guinea pig muscles. [From Eisenberg and Kuda 67.]



Figure 19.

Segments of Z‐line structure from longitudinally sectioned muscle of the adult guinea pig. Range in width of Z line is seen: A, white vastus; B, red vastus; C, soleus muscle. D: histogram of widths of Z‐line structure from segments of Z line similar to those in A, B, and C. The Z lines from 300 guinea pig fibers were measured. [From Eisenberg 60.]



Figure 20.

Histograms of volume of mitochondria in fiber core from 300 fibers in 3 muscles of the guinea pig. Note large range and skewed distribution for fast‐twitch fibers. [Redrawn from Eisenberg and Kuda 67.]



Figure 21.

Histogram of volume of mitochondria in fiber core of human muscle from quadriceps of adult males. Population was arbitrarily divided into 2 groups: stippled histogram is from fibers with a Z‐line width >100 nm (presumed slow twitch), and empty histogram is of fibers with a Z‐line width <100 nm (presumed fast twitch). (Unpublished data of B. R. Eisenberg.)



Figure 22.

Scattergram of Z‐line width vs. mitochondrial volume in core of fibers. Slow‐twitch soleus fibers form a separate cluster from fast‐twitch red and white vastus fibers. Within fast‐twitch fiber population there is some correlation (r = 0.57) between Z‐line width and mitochondrial volume. [From Eisenberg 60.]



Figure 23.

Scattergram of Z‐line width vs. mitochondrial volume measured from electron micrographs of medial gastrocnemius muscle fibers of the guinea pig that had been frozen, thawed, and then fixed. Serial cryostat sections were used to determine histochemical stains of myofibrillar ATP and succinic dehydrogenase (SDH) of each fiber to give the conventional fiber types: x, slow‐twitch, oxidative; •, fast‐twitch, oxidative, glycolytic; and ○, fast‐twitch, glycolytic (see Fig. 15). The 3 types form 1 large cluster that can be separated into 3 subclusters only by reference to histochemical profile of the fiber.

From Eisenberg and Kuda 68, reprinted from J. Histochem. Cytochem. Copyright 1977 by The Histochemical Society, Inc


Figure 24.

Scattergram of surface area of terminal cisternae plotted against volume of the mitochondria for 300 fibers from guinea pig muscle. Ad hoc lines are drawn by eye to separate the 3 muscles into 3 areas. Tallies of correct fiber allocations are given in ref. 67. Note that soleus fiber symbols are tightly clustered. However, red vastus fiber symbols form a large cloud not readily separated from the white vastus fiber symbols. x, Soleus; •, red vastus; ○, white vastus. [From Eisenberg and Kuda 67.]



Figure 25.

Scattergram of Z‐band width vs. number of T profiles per unit fiber area QT/AF for rabbit muscle. A: open circles represent 80 control tibialis anterior (TA) fibers and open crosses, 89 control soleus fibers. Note that most TA control fibers are in upper left quadrant; most soleus fibers are in lower right quadrant. Quadrants are created by lines at Z = 90 nm and QT/Af = 0.58 μm−2 computed at Gaussian crossover points. B: scattergram of Z‐band width vs. number of T profiles for stimulated TA fibers from rabbit muscle. Symbols indicate duration of stimulation. Open circles, at an early stage (0–2 days) stimulated fibers occupy upper left quadrant (fast‐twitch type); squares, at times for periods of stimulation from 5 to 12 days, most fibers occupy lower left quadrant (transitional type); open crosses, after 2 wk of stimulation most fibers occupy lower right quadrant (slow‐twitch type). [From Eisenberg and Salmons 75.]

References
 1. Allbrook, D. Skeletal muscle regeneration. Muscle Nerve 4: 234–245, 1981.
 2. Almers, W. Gating currents and charge movements in excitable membranes. Rev. Physiol. Biochem. Pharmacol. 82: 97–190, 1978.
 3. Andersson‐Cedergren, E. Ultrastructure of motor end‐plate and sarcoplasmic components of mouse skeletal muscle fibre as revealed by three‐dimensional reconstruction from serial sections. J. Ultrastruct. Res. 1 Suppl. 5: 1–191, 1959.
 4. ÄNgquist, K. A., and M. SjöStröm. Intermittent claudication and muscle fiber fine structure: morphometric data on mitochondrial volumes. Ultrastruct. Pathol. 1: 461–470, 1980.
 5. Anversa, P., A. V. Loud, F. Giacomelli, and J. Wiener. Absolute morphometric study of myocardial hypertrophy in experimental hypertension. II. Ultrastructure of myocytes and interstitium. Lab. Invest. 38: 597–609, 1978.
 6. Anversa, P., G. Olivetti, M. Melissari, and A. V. Loud. Morphometric study of myocardial hypertrophy induced by abdominal aortic stenosis. Lab. Invest. 40: 341–349, 1979.
 7. Ariano, M. A., R. B. Armstrong, and V. R. Edgerton. Hindlimb muscle fiber population of five mammals. J. Histochem. Cytochem. 21: 51–55, 1973.
 8. Ashmore, C. R., and L. Doerr. Comparative aspects of muscle fiber types in different species. Exp. Neurol. 31: 408–418, 1971.
 9. BÁRÁNy, M. ATPase activity of myosin correlated with speed of muscle shortening. J. Gen. Physiol. 50: 197–216, 1967.
 10. Barnard, R. J., V. R. Edgerton, T. Furukawa, and J. B. Peter. Histochemical, biochemical, and contractile properties of red, white, and intermediate fibers. Am. J. Physiol. 220: 410–414, 1971.
 11. Barnard, R. J., V. R. Edgerton, and J. B. Peter. Effect of exercise on skeletal muscle. I. Biochemical and histochemical properties. J. Appl. Physiol. 28: 762–766, 1970.
 12. Baskin, R. J. Ultrastructure and calcium transport in microsomes from developing muscle. J. Ultrastruct. Res. 49: 348–371, 1974.
 13. Bennett, H. S., and K. R. Porter. An electron microscopic study of sectioned breast muscle of domestic fowl. Am. J. Anat. 93: 61–105, 1953.
 14. Beringer, T. A freeze‐fracture study of sarcoplasmic reticulum from fast and slow muscle of the mouse. Anat. Rec. 184: 647–664, 1975.
 15. Billeter, R., H. Weber, H. Lutz, H. Howald, M. Eppen‐Berger, and E. Jenny. Myosin types in human skeletal muscle fibres. Histochemistry 65: 249–259, 1980.
 16. Borg, T. K., and J. B. Caulfield. Morphology of connective tissue in skeletal muscle. Tissue Cell 12: 197–207, 1980.
 17. Bormioli, S. P., and S. Schiaffino. A procedure for correlated histological, histochemical and ultrastructural study of skeletal muscle tissue. J. Submicrosc. Cytol. 7: 361–371, 1975.
 18. Bossen, E. H., J. R. Sommer, and R. A. Waugh. Comparative stereology of the mouse and finch left ventricle. Tissue Cell 10: 773–784, 1978.
 19. Bowman, W. On the minute structure and movement of voluntary muscle. Philos. Trans. R. Soc. London Ser. B 130: 457–501, 1840.
 20. Bray, D. F., D. G. Rayns, and E. B. Wagenaar. Intramembrane particle densities in freeze‐fractured sarcoplasmic reticulum. Can. J. Zool. 56: 140–145, 1978.
 21. Brooke, M. H., and W. K. Engel. The histographic analysis of human muscle biopsies with regard to fiber types. 1. Adult male and female. Neurology 19: 221–233, 1969.
 22. Brooke, M. H., and K. K. Kaiser. Muscle fiber types: how many and what kind? Arch. Neurol. Chicago 23: 369–379, 1970.
 23. Brücke, E. Untersuchungen über den Bau der Muskelfasern mit Hülfe des polarisierten Lichtes. Denkschr. Acad. Wiss. Math‐Naturw. Wien 15: 69–84, 1858.
 24. Buchthal, F., and H. Schmalbruch. Motor unit of mammalian muscle. Physiol. Rev. 60: 90–142, 1980.
 25. Buffon, G. Essai d'arithmétique morale. Suppl. Histoire Naturelle Paris 4: 1777.
 26. Burke, R. E., and V. R. Edgerton. Motor unit properties and selective involvement in movement. Exercise Sport Sci. Rev. 3: 31–81, 1975.
 27. Burke, R. E., D. N. Levine, M. Salcman, and P. Tsairis. Motor units in cat soleus muscle: physiological, histochemical and morphological characteristics. J. Physiol. London 238: 503–514, 1974.
 28. Burke, R. E., D. N. Levine, P. Tsairis, and F. E. Zajac. Physiological types and histochemical profiles in motor units of the cat gastrocnemius. J. Physiol. London 234: 723–748, 1973.
 29. Burke, R. E., D. N. Levine, F. E. Zajac, P. Tsairis, and W. K. Engel. Mammalian motor units: physiological‐histochemical correlation in three types in cat gastrocnemius. Science 174: 709–712, 1971.
 30. Burke, R. E., and P. Tsairis. Anatomy and innervation ratios in motor units of cat gastrocnemius. J. Physiol. London 234: 749–765, 1973.
 31. Burke, R. E., and P. Tsairis. Trophic functions of the neuron. II. Denervation and regulation of muscle. The correlation of physiological properties with histochemical characteristics in single muscle unit. Ann. NY Acad. Sci. 228: 145–159, 1974.
 32. Castillo De Maruenda, E., and C. Franzini‐Armstrong. Satellite and invasive cells in frog sartorius muscle. Tissue Cell 10: 749–772, 1978.
 33. Chandler, W. K., R. F. Rakowski, and M. F. Schneider. Effects of glycerol treatment and maintained depolarization on charge movement in skeletal muscle. J. Physiol. London 254: 285–316, 1976.
 34. Chase, D., K. Dasse, A. H. Goldberg, and W. C. Ullrick. Influence of acute hypoxia on Z‐line width of cardiac muscle. J. Mol. Cell. Cardiol. 10: 1077–1080, 1978.
 35. Chase, D., and W. C. Ullrick. Changes in Z‐disc width of vertebrate skeletal muscle following tenotomy. Experientia 33: 1177–1178, 1977.
 36. Close, R. I. Dynamic properties of mammalian skeletal muscles. Physiol. Rev. 52: 129–197, 1972.
 37. Costantin, L. L. Contractile activation in skeletal muscle. Prog. Biophys. Mol. Biol. 29: 197–224, 1975.
 38. Costill, D., W. Fink, L. Getchell, J. Ivy, and F. Witzmann. Lipid metabolism in skeletal muscle of endurance‐trained males and females. J. Appl. Physiol. 47: 787–791, 1979.
 39. Crowe, L. M., and R. J. Baskin. Stereological analysis of developing sarcotubular membranes. J. Ultrastruct. Res. 58: 10–21, 1977.
 40. Crowe, L. M., and R. J. Baskin. Freeze fracture of intact sarcotubular membranes. J. Ultrastruct. Res. 62: 147–154, 1978.
 41. Cullen, M. J., and J. J. Fulthorpe. Stages in fibre breakdown in Duchenne muscular dystrophy. An electron‐microscopic study. J. Neurol. Sci. 24: 179–200, 1975.
 42. Cullen, M. J., and D. Weightman. The ultrastructure of normal human muscle in relation to fibre type. J. Neurol. Sci. 25: 43–56, 1975.
 43. Dainty, J. Water relations of plant cells. Adv. Bot. Res. 1: 279–326, 1963.
 44. Davey, D. F., and G. M. O'Brien. The sarcoplasmic reticulum and T‐system of rat extensor digitorum longus muscles exposed to hypertonic solutions. Aust. J. Exp. Biol. Med. Sci. 56: 409–419, 1978.
 45. Davey, D. F., and S. Y. P. Wong. Morphometric analysis of rat extensor digitorium longus and soleus muscles. Aust. J. Exp. Biol. Med. Sci. 58: 213–230, 1980.
 46. Davidowitz, J., G. Philips, and G. M. Breinin. Variation of mitochondrial volume fraction along multiply innervated fibers in rabbit extraocular muscle. Tissue Cell 12: 449–457, 1980.
 47. Dawes, C. J. Biological Techniques for Transmission and Scanning Electron Microscopy. Burlington, VT: Ladd Research Industries, 1979.
 48. Dhoot, G. K., and S. V. Perry. Distribution of polymorphic forms of troponin components and tropomyosin in skeletal muscle. Nature London 278: 714–718, 1979.
 49. Dobie, W. M. Observations on the minute structure and mode of contraction of voluntary muscular fibre. Ann. Mag. Nat. Hist. 3: 109–119, 1849.
 50. Dodd, L., S. D. Gray, O. Hudlická, and E. M. Renkin. Evaluation of capillary density in relation to fibre types in electrically stimulated muscles. J. Physiol. London 301: 11P–12P, 1980.
 51. Donaldson, S. K. Single skinned skeletal fiber Ca2+ and H+ sensitivities: comparison of the various histochemical types (Abstract). Biophys. J. 33: 57a, 1981.
 52. Dubowitz, V., and M. H. Brooke. Muscle Biopsy; a Modern Approach. London: Saunders, 1973.
 53. Dubowitz, V., and A. G. E. Pearse. Reciprocal relationship of Phosphorylase and oxidative enzymes in skeletal muscle. Nature London 185: 701–702, 1960.
 54. Dulhunty, A. F., and M. Dlutowski. Fiber types in red and white segments of rat sternomastoid muscle. Am. J. Anat. 156: 51–61, 1979.
 55. Dulhunty, A. F., and C. Franzini‐Armstrong. The relative contribution of the folds and caveolae to the surface membrane of frog skeletal muscle fibres at different sarcomere lengths. J. Physiol. London 250: 513–539, 1975.
 56. Eastwood, A. B., M. Sorenson, J. A. Leavens, and K. Bock. Distinctive ultrastructural and biochemical characteristics of skinned fibers on mammalian fast‐ and slow‐twitch muscles (Abstract). Biophys. J. 25: 107a, 1979.
 57. Eaton, B. L., and F. A. Pepe. M band protein. Two components isolated from chicken breast muscle. J. Cell Biol. 55: 681–695, 1972.
 58. Edgerton, V. R., R. J. Barnard, J. B. Peter, A. Maier, and D. R. Simpson. Properties of immobilized hind‐limb muscles of the Galago senegalensis. Exp. Neurol. 46: 115–131, 1975.
 59. Edgerton, V. R., and D. R. Simpson. The intermediate muscle fiber of rats and guinea pigs. J. Histochem. Cytochem. 17: 828–839, 1969.
 60. Eisenberg, B. R. Can electron microscopy distinguish fiber types? In: Recent Advances in Myology, edited by W. G. Bradley, D. Gardner‐Medwin, and J. N. Walton. Amsterdam: Excerpta Med. 1975, p. 316–321. (Int. Cong. Ser. 360.)
 61. Eisenberg, B.R. Quantitative ultrastructural analysis of adult mammalian skeletal muscle fibers. In: Exploratory Concepts in Muscular Dystrophy II, edited by A. T. Milhorat. Amsterdam: Excerpta Med. 1974, p. 258–270. (Int. Cong. Ser. 333.)
 62. Eisenberg, B. R. Skeletal muscle fibers: stereology applied to anisotropic and periodic structures. In: Stereological Methods For Biological Morphometry. Practical Methods, edited by E. R. Weibel. London: Academic, 1979, vol. 1, p. 274–284.
 63. Eisenberg, B. R., and R. S. Eisenberg. Selective disruption of the sarcotubular system in frog sartorius muscle. A quantitative study with exogenous peroxidase as a marker. J. Cell Biol. 39: 451–467, 1968.
 64. Eisenberg, B. R., and R. S. Eisenberg. The T‐SR junction in contracting single skeletal muscle fibers. J. Gen. Physiol. 79: 1–19, 1982.
 65. Eisenberg, B. R., and A. Gilai. Structural changes in single muscle fibers after stimulation. J. Gen. Physiol. 74: 1–16, 1979.
 66. Eisenberg, B. R., and A. M. Kuda. Stereological analysis of mammalian skeletal muscle. II. White vastus muscle of the adult guinea pig. J. Ultrastruct. Res. 51: 176–187, 1975.
 67. Eisenberg, B. R., and A. M. Kuda. Discrimination between fiber populations in mammalian skeletal muscle by using ultra‐structural parameters. J. Ultrastruct. Res. 54: 76–88, 1976.
 68. Eisenberg, B. R., and A. M. Kuda. Retrieval of cryostat sections for comparison of histochemistry and quantitative electron microscopy in a muscle fiber. J. Histochem. Cytochem. 25: 1169–1177, 1977.
 69. Eisenberg, B. R., A. Kuda, and J. B. Peter. Morphometric analysis of the slow‐twitch fibers of the guinea pig. Proc. Annu. Meet. Electron Microsc. Soc. Am., 30th, edited by C. J. Arcencaux. Baton Rouge, LA: Claitor's, 1972, p. 36–37.
 70. Eisenberg, B. R., A. M. Kuda, and J. B. Peter. Stereological analysis of mammalian skeletal muscle. I. Soleus muscle of the adult guinea pig. J. Cell Biol. 60: 732–754, 1974.
 71. Eisenberg, B. R., R. T. Mathias, and A. Gilai. Intracellular localization of markers within injected or cut frog muscle fibers. Am. J. Physiol. 237 (Cell Physiol. 6): C50–C55, 1979.
 72. Eisenberg, B. R., and B. A. Mobley. Size changes in single muscle fibers during fixation and embedding. Tissue Cell 7: 383–387, 1975.
 73. Eisenberg, B. R., and L. D. Peachey. The network parameters of the t‐system in frog muscle measured with the high voltage electron microscope. Proc. Annu. Meeting Electron Microscopy Soc. Am., 33rd, edited by G. W. Bailey. Baton Rouge, LA: Claitor's, 1975, p. 550–551.
 74. Eisenberg, B. R., and S. Salmons. Stereological analysis of sequential ultrastructural changes in the adaptive response of fast muscle to chronic stimulation. Muscle Nerve 3: 277, 1980.
 75. Eisenberg, B. R., and S. Salmons. The reorganization of subcellular structure in muscle undergoing fast‐to‐slow type transformation: a stereological study. Cell Tissue Res. 220: 449–471, 1981.
 76. Elias, H. Address of the President. In: Proceedings First International Congress for Stereology, edited by H. Haug. Vienna: Congressprint, 1963, p. 2.
 77. Elias, H. Stereology of parallel, straight, circular cylinders. J. Microsc. Oxford 107: 199–202, 1976.
 78. Elliott, G. F. Donnan and osmotic effects in muscle fibres without membranes. J. Mechanochem. Cell Motil. 2: 83–89, 1973.
 79. Elliott, G. F. The muscle fiber: liquid‐crystalline and hydraulic aspects. Ann. NY Acad. Sci. 204: 564–574, 1973.
 80. Endo, M. Entry of fluorescent dyes into the sarcotubular system of the frog muscle. J. Physiol. London 185: 224–238, 1966.
 81. Engel, A. G., T. Santa, H. H. Stonnington, F. Jerusalem, M. Tsujihata, A. K. W. Brownell, H. Sakakibara, B. Q. Banker, K. Sahashi, and E. H. Lambert. Morphometric study of skeletal muscle ultrastructure. Muscle Nerve 2: 229–237, 1979.
 82. Engel, W. K. The essentiality of histo‐ and cytochemical studies of skeletal muscle in the investigation of neuromuscular disease. Neurology 12: 778–794, 1962.
 83. Essen, B. Intramuscular substrate utilization during prolonged excercise. Ann. NY Acad. Sci. 301: 30–43, 1977.
 84. Etlinger, J. D., and D. A. Fischman. M and Z band components and the assembly of myofibrils. Cold Spring Harbor Symp. Quant. Biol. 37: 511–522, 1972.
 85. Fiehn, W., and J. B. Peter. Properties of fragmented sarcoplasmic reticulum from fast twitch and slow twitch muscles. J. Clin. Invest. 50: 570–573, 1971.
 86. Ford, L. E., A. F. Huxley, and R. M. Simmons. The relation between stiffness and filament overlap in stimulated frog muscle fibres. J. Physiol. London 311: 219–249, 1981.
 87. Franzini‐Armstrong, C. Details of the I band structure as revealed by the localization of ferritin. Tissue Cell 2: 327–338, 1970.
 88. Franzini‐Armstrong, C. Studies of the triad. I. Structure of the junction in frog twitch fibers. J. Cell Biol. 47: 488–499, 1970.
 89. Franzini‐Armstrong, C. Studies of the triad. II. Penetration of tracers into the junctional gap. J. Cell Biol. 49: 196–203, 1971.
 90. Franzini‐Armstrong, C. Studies of the triad. III. Structure of the junction in fast twitch fibers. Tissue Cell 4: 469–478, 1972.
 91. Franzini‐Armstrong, C. Studies of the triad. IV. Structure of the junction in frog slow fibers. J. Cell Biol. 56: 120–128, 1973.
 92. Franzini‐Armstrong, C. The structure of a simple Z line. J. Cell Biol. 58: 630–642, 1973.
 93. Franzini‐Armstrong, C. Freeze fracture of skeletal muscle from the tarantula spider. Structural differentiations of sarcoplasmic reticulum and transverse tubular system membranes. J. Cell Biol. 61: 501–513, 1974.
 94. Franzini‐Armstrong, C. Membrane particles and transmission at the triad. Federation Proc. 34: 1382–1389, 1975.
 95. Franzini‐Armstrong, C. The comparative structure of intracellular junctions in striated muscle fibers. In: Pathogenesis of Human Muscular Dystrophies, edited by L. P. Rowland. Amsterdam: Excerpta Med. 1977, p. 612–625. (Int. Cong. Ser. 404.)
 96. Franzini‐Armstrong, C. Structure of sarcoplasmic reticulum. Federation Proc. 39: 2403–2409, 1980.
 97. Franzini‐Armstrong, C., L. Landmesser, and G. Pilar. Size and shape of transverse tubule openings in frog twitch muscle fibers. J. Cell Biol. 64: 493–496, 1975.
 98. Franzini‐Armstrong, C., and K. R. Porter. Sarcolemmal invaginations constituting the T‐system of fish muscle fibers. J. Cell Biol. 22: 675–696, 1964.
 99. Franzini‐Armstrong, C., and K. R. Porter. Sarcolemmal invaginations and the T‐system in fish skeletal muscle. Nature London 202: 355–357, 1964.
 100. Gauthier, G. F. On the relationship of ultrastructural and cytochemical features to color in mammalian skeletal muscle. Z. Zellforsch. Mikrosk. Anat. 95: 462–482, 1969.
 101. Gauthier, G. F. The structural and cytochemical heterogeneity of mammalian skeletal muscle fibers. In: The Contractility of Muscle Cells and Related Processes, edited by R. J. Podolsky. Englewood Cliffs, NJ: Prentice‐Hall, 1971.
 102. Gauthier, G. F. Some ultrastructural and cytochemical features of fiber populations in the soleus muscle. Anat. Rec. 180: 551–564, 1974.
 103. Gauthier, G. F. Ultrastructural identification of muscle fiber types by immunocytochemistry. J. Cell Biol. 82: 391–400, 1979.
 104. Gauthier, G. F., and R. A. Dunn. Ultrastructural and cytochemical features of mammalian skeletal muscle fibers following denervation. J. Cell Biol. 12: 525–547, 1973.
 105. Gauthier, G. F., and S. Lowey. Polymorphism of myosin among skeletal muscle fiber types. J. Cell Biol. 74: 760–779, 1977.
 106. Gauthier, G. F., and S. Lowey. Distribution of myosin isoenzymes among skeletal muscle fiber types. J. Cell Biol. 81: 10–25, 1979.
 107. Gauthier, G. F., S. Lowey, and A. W. Hobbs. Fast and slow myosin in developing muscle fibres. Nature London 274: 25–29, 1978.
 108. Gauthier, G. F., and H. A. Padykula. Cytological studies of fiber types in skeletal muscle. A comparative study of the mammalian diaphragm. J. Cell Biol. 28: 333–354, 1966.
 109. Gibson, M. C., and E. Schulz. Skeletal muscle satellite cell populations decrease with age (Abstract). J. Cell Biol. 87: 264a, 1980.
 110. Glauert, A. M. Practical Methods in Electron Microscopy. New York: Elsevier, 1974, vol. 3.
 111. Goldspink, G. The proliferation of myofibrils during postembryonic muscle fibre growth. J. Cell Sci. 6: 593–604, 1970.
 112. Goldspink, G. Changes in striated muscle fibres during contraction and growth with particular reference to myofibril splitting. J. Cell Sci. 9: 123–137, 1971.
 113. Goldspink, G., and P. E. Williams. The nature of the increased passive resistance in muscle following immobilization of the mouse soleus muscle (Abstract). J. Physiol. London 289: 55P, 1979.
 114. Goldstein, M. A., J. P. Schroeter, and R. L. Sass. Optical diffraction of the Z lattice in canine cardiac muscle. J. Cell Biol. 75: 818–836, 1977.
 115. Goldstein, M. A., J. P. Schroeter, and R. L. Sass. The Z lattice in canine cardiac muscle. J. Cell Biol. 83: 187–204, 1979.
 116. Goldstein, M. A., M. H. Stromer, J. P. Schroeter, and R. L. Sass. Optical diffraction and reconstruction of Z bands in skeletal muscle (Abstract). J. Cell Biol. 87: 261a, 1980.
 117. Goldstein, M. A., M. H. Stromer, J. P. Schroeter, and R. L. Sass. Optical reconstruction of nemaline rods. Exp. Neurol. 70: 83–97, 1980.
 118. Goldstein, M. A., P. T. Thyrum, D. L. Murphy, J. H. Martin, and A. Schwartz. Ultrastructural and contractile characteristics of isolated papillary muscle exposed to acute hypoxia. J. Mol. Cell. Cardiol. 9: 285–295, 1977.
 119. Guth, L., and H. Yellin. The dynamic nature of the so‐called “fiber types” of mammalian skeletal muscle. Exp. Neurol. 31: 277–300, 1971.
 120. Hayashida, Y., and H. Schmalbruch. Zur Grösse der Fettpartikel in mitochondrienreichen Skelettmuskelfasern der Ratte in Abhängigkeit von der Nahrungsaufnahme. Z. Zellforsch. Mikrosk. Anat. 127: 374–381, 1972.
 121. Hayat, M. A. Principles and Techniques of Electron Microscopy: Biological Applications. New York: Van Nostrand Reinhold, 1970, vol. 1.
 122. Henkart, M., D. M. D. Landis, and T. S. Reese. Similarity of junctions between plasma membranes and endoplasmic reticulum in muscle and neurons. J. Cell Biol. 70: 338–347, 1976.
 123. Henriksson, J. Training induced adaptation of skeletal muscle and metabolism during submaximal exercise. J. Physiol. London 270: 661–675, 1977.
 124. Hensen, V. Ueber ein neues Strukturverhältniss der quergestreiften Muskelfaser. Arb. Kieler Physiol. Inst. 1: 26, 1868.
 125. Hill, A. V. On the time required for diffusion and its relation to processes in muscle. Proc. R. Soc. London Ser. B 135: 446–453, 1948.
 126. Hill, A. V. Trails and Trials in Physiology. London: Arnold, 1965.
 127. Hill, D. K. The space accessible to albumin within the striated muscle fibre of the toad. J. Physiol. London 175: 275–294, 1964.
 128. Hillard, J. E. Assessment of sampling errors in stereological analyses. Proc. Fourth Int. Congr. Stereology, edited by E. E. Underwood, R. de Wit, and G. A. Moore. Washington, DC: U.S. Government Printing Office, Washington 1976, p. 59–67. (Natl. Bureau of Standards Spec. Publ. 431.)
 129. Holloszy, J., M. Rennie, R. Hickson, R. Conlee, and J. HÄGberg. Physiological consequences of the biochemical adaptations to endurance excercise. Ann. NY Acad. Sci. 301: 440–450, 1977.
 130. Holmes, A. H. Petrographic Methods and Calculations. London: Murby, 1927.
 131. Hoppeler, H. Structural quantification of muscle‐tissue by stereological methods. Ultramicroscopy 5: 367–368, 1980.
 132. Hoppeler, H., P. LÜThi, H. Claassen, E. R. Weibel, and H. Howald. The ultrastructure of the normal human skeletal muscle. A morphometric analysis on untrained men, women and well‐trained orienteers. Pfluegers Arch. 344: 217–232, 1973.
 133. Hoppeler, H., O. Mathieu, R. Kauer, H. Claassen, R. B. Armstrong, and E. R. Weibel. Design of the mammalian respiratory system. VI. Distribution of mitochondria and capillaries in various muscles. Respir. Physiol. 44: 87–112, 1981.
 134. Hoppeler, H., O. Mathieu, E. R. Weibel, R. Krauer, S. L. Lindstedt, and C. R. Taylor. Design of the mammalian respiratory system. VIII. Capillaries in skeletal muscles. Respir. Physiol. 44: 129–150, 1981.
 135. Howell, J. N. Intracellular binding of ruthenium red in frog skeletal muscle. J. Cell Biol. 62: 242–247, 1974.
 136. Hudlická, O., and K. R. Tyler. Importance of different patterns of frequency in the development of contractile properties and histochemical characteristics of fast skeletal muscle. J. Physiol. London 301: 10P–11P, 1980.
 137. Huxley, A. F. Muscle structure and theories of contraction. Prog. Biophys. Biophys. Chem. 7: 255–318, 1957.
 138. Huxley, A. F. Muscle. Annu. Rev. Physiol. 26: 131–152, 1964.
 139. Huxley, A. F. The Croonian lecture, 1967. The activation of striated muscle and its mechanical response. Proc. R. Soc. London Ser. B 178: 1–27, 1971.
 140. Huxley, A. F. Looking back on muscle. In: The Pursuit of Nature, Informal Essays on the History of Physiology. Cambridge, UK: Cambridge Univ. Press, 1977, p. 23–64.
 141. Huxley, A. F., and R. Niedergerke. Interference microscopy of living muscle fibres. Nature London 173: 971–973, 1954.
 142. Huxley, A. F., and R. E. Taylor. Function of Krause's membrane. Nature London 176: 1068, 1955.
 143. Huxley, A. F., and R. E. Taylor. Local activation of striated muscle fibres. J. Physiol. London 144: 426–441, 1958.
 144. Huxley, H. E. Evidence for continuity between the central elements of the triads and extracellular space in frog sartorius muscle. Nature London 202: 1067–1071, 1964.
 145. Huxley, H. E. The mechanism of muscular contraction. Science 164: 1356–1366, 1969.
 146. Huxley, H. E. The Croonian lecture, 1970. The structural basis of muscular contraction. Proc. R. Soc. London Ser. B 178: 131–140, 1971.
 147. Huxley, H. E., and J. Hanson. Changes in the cross‐striations of muscle during contraction and stretch and their structural interpretation. Nature London 173: 973–976, 1954.
 148. Ishikawa, H. Formation of elaborate networks of t‐system tubules in cultured skeletal muscle with special reference to the t‐system formation. J. Cell Biol. 38: 51–66, 1968.
 149. James, N. T., and G. A. Meek. Stereological analyses of the structure of mitochondria in pigeon skeletal muscle. Cell Tissue Res. 202: 493–503, 1979.
 150. Jenny, E., H. Weber, H. Lutz, and R. Billeter. Fibre populations in rabbit skeletal muscles from birth to old age. In: Plasticity of Muscle, edited by D. Pette. New York: de Gruyter, 1980, p. 97–109.
 151. Jerusalem, F., A. G. Engel, and M. R. Gomez. Duchenne dystrophy. I. Morphometric study of the muscle microvasculature. Brain 97: 115–122, 1974.
 152. Jerusalem, F., A. G. Engel, and H. A. Peterson. Human muscle fiber fine structure: morphometric data on controls. Neurology 25: 127–134, 1975.
 153. Jerusalem, F., M. Rakusa, A. G. Engel, and R. D. Mac‐Donald. Morphometric analysis of skeletal muscle capillary ultrastructure in inflammatory myopathies. J. Neurol. Sci. 23: 391–402, 1974.
 154. Johansson, B. R. Quantitative ultrastructural morphometry of blood capilary endothelium in skeletal muscle. Effect of venous pressure. Microvasc. Res. 17: 118–130, 1979.
 155. Johnson, T. J. A., and J. E. Rash. Glutaraldehyde chemistry: fixation reactions consume O2 and are inhibited by tissue anoxia (Abstract). J. Cell Biol. 87: 231a, 1980.
 156. Jolesz, F., and F. A. Sréter. Development, innervation, and activity‐pattern induced changes in skeletal muscle. Annu. Rev. Physiol. 43: 531–552, 1981.
 157. Jorgensen, A. O., V. Kalnins, and D. H. Maclennan. Localization of sarcoplasmic reticulum proteins in rat skeletal muscle by immunofluorescence. J. Cell Biol. 80: 372–384, 1979.
 158. Kamieniecka, Z., and H. Schmalbruch. Neuro‐muscular disorders with abnormal muscle mitochondria. Int. Rev. Cytol. 65: 321–357, 1980.
 159. Karpati, G., S. Carpenter, and A. A. Eisen. Experimental core‐like lesions and nemaline rods. A correlative morphological and physiological study. Arch. Neurol. Chicago 27: 237–251, 1972.
 160. Katchalsky, A., and O. Kedem. Thermodynamics of flow processes in biological systems. Biophys. J. 2: 53, 1962.
 161. Kelly, A. M. Sarcoplasmic reticulum and T tubules in differentiating rat skeletal muscle. J. Cell Biol. 49: 335–344, 1971.
 162. Kelly, A. M. Perisynaptic satellite cells in the developing and mature rat soleus muscle. Anat. Rec. 190: 891–904, 1978.
 163. Kelly, D. E. The fine structure of skeletal muscle triad junctions. J. Ultrastruct. Res. 29: 37–49, 1969.
 164. Kelly, D. E., and M. A. Cahill. Filamentous and matrix components of skeletal muscle Z‐disks. Anat. Rec. 172: 623–642, 1972.
 165. Kelly, D. E., and A. M. Kuda. Subunits of the triadic junction in fast skeletal muscle as revealed by freeze‐fracture. J. Ultra‐struct Res. 68: 220–233, 1979.
 166. Kendall, M. G., and A. Stuart. The advanced theory of statistics. In: Design and Analysis and Time‐Series. New York: Hafner, 1968, p. 314–341.
 167. Khan, M. A. Histochemical characteristics of vertebrate striated muscle: a review. Prog. Histochem. Cytochem. 8: 1–48, 1976.
 168. Kiessling, K. H. Comparison between muscle morphology and metabolism. Acta Agr. Scand. S21: 39–46, 1979.
 169. Kiessling, K. H., L. Pilström, A.‐C. Bylund, B. Saltin, and K. Piehl. Enzyme activities and morphometry in skeletal muscle of middle‐aged men after training. Scand. J. Clin. Lab. Invest. 33: 63–69, 1974.
 170. Kiessling, K. H., L. Pilström, J. Karlsson, and K. Piehl. Mitochondrial volume in skeletal muscle from young and old physically untrained and trained healthy men and from alcoholics. Clin Sci. 44: 547–554, 1973.
 171. Knappeis, G. G., and F. Carlsen. The ultrastructure of the Z disc in skeletal muscle. J. Cell Biol. 13: 323–335, 1962.
 172. Knappeis, G. G., and F. Carlsen. The ultrastructure of the M line in skeletal muscle. J. Cell Biol. 38: 202–211, 1968.
 173. KÖLliker, A. V. Zur kenntnis der quergestreiften Muskelfasern. Z. Wiss. Zool. 47: 689–710, 1888.
 174. Krause, W. Mikroskopische Untersuchungen über die quergestreifte Muskelsubstanz. Nachrichten Gesellsch. Univ. Goettingen Mitt Path Inst. 17: 357, 1868.
 175. Krüger, P. Tetanus and Tonus der quergestreiften Skelettmuskeln der Wirbeltiere und des Menschen. Leipzig: Akad. Verlags Geest & Portig, 1952.
 176. Kugelberg, E. Adaptive transformation of rat soleus motor units during growth. J. Neurol. Sci. 27: 269–289, 1976.
 177. Kundrat, E., and F. A. Pepe. The M band. Studies with fluorescent antibody staining. J. Cell Biol. 48: 340–347, 1971.
 178. Landon, D. N. Change in Z‐disk structure with muscular contraction. J. Physiol. London 211: 44P–45P, 1970.
 179. Landon, D. N. The influence of fixation upon the fine structure of the Z‐disk of rat striated muscle. J. Cell Sci. 6: 257–276, 1970.
 180. Lazarides, E. Intermediate filaments as mechanical integrators of cellular space. Nature London 283: 249–256, 1980.
 181. Lazarides, E., and D. R. Balzer, JR. Specificity of desmin to avian and mammalian muscle cell. Cell 14: 429–438, 1978.
 182. Lazarides, E., and B. L. Granger. Fluorescent localization of membrane sites in glycerinated chicken skeletal muscle fibres and the relationship of these sites to the protein composition of the Z‐disk. Proc. Natl. Acad. Sci. USA 75: 3683–3687, 1978.
 183. VAN Leeuwenhoek, A. A letter from Mr. Anthony van Leeuwenhoek, F.R.S. Containing his observations upon the seminal vesicles, muscular fibres, and blood of whales. Philos. Trans. R. Soc. Lond. Ser. B 27: 438–446, 1712.
 184. Lithell, H., J. ÖRlander, R. Schéle, T. Sjödin, and J. Karlsson. Changes in lipoprotein‐lipase activity and lipid stores in human skeletal muscle with prolonged heavy exercise. Acta Physiol. Scand. 107: 257–261, 1979.
 185. Loats, J. T., A. H. Sillau, and N. Banchero. How to quantify skeletal muscle capillarity. In: Oxygen Transport to Tissue III, edited by I. A. Silver, M. Erecinska, and H. I. Bicher. New York: Plenum, 1978, p. 41–48.
 186. LØMo, T., R. H. Westgaard, and L. Engebretsen. Different stimulation patterns affect contractile properties of denervated rat soleus muscles. In: Plasticity of Muscle, edited by D. Pette. New York: de Gruyter, 1980, p. 297–309.
 187. Loud, A. V. Quantitative estimation of the loss of membrane images resulting from oblique sectioning. Proc. Annu. Meet. Electron Microsc. Soc. Am., 25th, edited by C. J. Arceneaux. Baton Rouge, LA: Claitor's, 1967, p. 144–145.
 188. Luff, A. R. Dynamic properties of the inferior rectus, extensor digitorum longus, diaphragm and soleus muscles of the mouse. J. Physiol. London 313: 161–171, 1981.
 189. Luff, A. R., and H. L. Atwood. Changes in the sarcoplasmic reticulum and transverse tubular system of fast and slow skeletal muscles of the mouse during postnatal development. J. Cell Biol. 51: 369–383, 1971.
 190. Luff, A. R., and H. L. Atwood. Membrane properties and contraction of single muscle fibers in the mouse. Am. J. Physiol. 222: 1435–1440, 1972.
 191. Lutz, H., H. Weber, R. Billeter, and E. Jenny. Fast and slow myosin within single skeletal muscle fibers of adult rabbits. Nature London 281: 142–144, 1979.
 192. Maier, A., and E. Eldred. Postnatal growth of the extra‐ and intrafusal fibers in the soleus and medial gastrocnemius muscles of the cat. Am. J. Anat. 141: 161–178, 1974.
 193. Mathias, R. T., R. A. Levis, and R. S. Eisenberg. Electrical models of excitation‐contraction coupling and charge movement in skeletal muscle. J. Gen. Physiol. 76: 1–31, 1980.
 194. Mathias, R. T., R. A. Levis, and R. S. Eisenberg. An alternative interpretation of charge movement in skeletal muscle. In: UCLA Forum in Medical Sciences 22: The Regulation of Muscle Contraction: Excitation‐Contraction Coupling, edited by A. D. Grinnell and M. A. B. Brazier. New York: Academic, 1981, p. 39–52.
 195. Mathieu, O., R. Krauer, H. Hoppeler, P. Gehr, S. L. Lindstedt, R. MCN. Alexander, C. R. Taylor, and E. R. Weibel. Design of the mammalian respiratory system. VII. Scaling mitochondrial volume in skeletal muscle to body mass. Respir. Physiol. 44: 113–128, 1981.
 196. Mauro, A. Muscle Regeneration. New York: Raven, 1979.
 197. Mccallister, L. P., and R. Hadek. Transmission electron microscopy and stereo ultrastructure of the T‐system in frog skeletal muscle. J. Ultrastruct. Res. 33: 360–368, 1970.
 198. Mcdonald, O. B., and F. H. Schachat. Multiple forms of structural proteins in rabbit skeletal muscles (Abstract). J. Cell Biol. 87: 264a, 1980.
 199. Merz, W. A. Streckenmessung an gerichteten Strukturen im Mikroskop und ihre Anwendung zur Bestimmung von Oberflächen‐Volumen‐Relationen im Knochengewebe. Mikroskopie 22: 132–142, 1967.
 200. Minguetti, G., and W. G. P. Mair. Ultrastructure of human intramuscular blood vessels in development. Arq. Neuro‐Psiquiatr. 37: 127–137, 1979.
 201. Mobley, B. A., and B. R. Eisenberg. Sizes of components in frog skeletal muscle measured by methods of stereology. J. Gen. Physiol. 66: 31–45, 1975.
 202. Mobley, B. A., and E. Page. The surface area of sheep cardiac Purkinje fibres. J. Physiol. London 220: 547–563, 1972.
 203. Musch, B. C., T. A. Papapetropoulos, D. A. Mcqueen, P. Hudgson, and D. Weightman. A comparison of the structure of small blood vessels in normal, denervated and dystrophic human muscle. J. Neurol. Sci. 26: 221–234, 1975.
 204. Myrhage, R. Microvascular supply of skeletal muscle fibres. A micro angiographic, histochemical and intravital study of hindlimb muscles in the rat, rabbit and cat. Acta Orthop. Scand. 48: 2–46, 1977.
 205. Nakajima, S., and J. Bastian. Membrane properties of the transverse tubular system in amphibian skeletal muscle. In: Electrobiology of Nerve, Synapse and Muscle, edited by J. P. Reuben, D. P. Purpura, M. V. L. Bennett, and E. R. Kandel. New York: Raven, 1976, p. 243–268.
 206. Nakao, T. Fine structure of the myotendinous junction and terminal coupling in the skeletal muscle of the lamprey, Lampetra japonica. Anat. Rec. 182: 321–338, 1975.
 207. Needham, D. M. Machina Garnis. The Biochemistry of Muscular Contraction in its Historical Development. Cambridge, UK: Cambridge Univ. Press, 1971.
 208. Nemeth, P. M., and D. Pette. The limited correlation of myosin‐based and metabolism‐based classifications of skeletal muscle fibers. J. Histochem. Cytochem. 29, 89–90, 1981.
 209. Nemeth, P. M. D. Pette, and G. Vrbová. Malate dehydrogenase homogeneity of single fibres of the motor unit. In: Plasticity of Muscle, edited by D. Pette. New York: de Gruyter, 1980, p. 45–54.
 210. Nemeth, P. M., D. Pette, and G. Vrbová. Comparison of enzyme activities among single muscle fibres within defined motor units. J. Physiol. London 311: 489–495, 1981.
 211. Neville, H. Ultrastructural changes in disease of human skeletal muscle. In: Handbook of Clinical Neurology. Disease of Muscle, edited by P. J. Vinken and G. W. Bruyn. Amsterdam: North‐Holland, 1979, vol. 40, p. 63–123.
 212. Odusote, K., G. Karpati, and S. Carpenter. An experimental morphometric study of neutral lipid accumulation in skeletal muscles. Muscle Nerve 4: 3–9, 1981.
 213. Olivetti, G., P. Anversa, M. Melissari, and A. V. Loud. Morphometric study of the atrioventricular node in normal and hypertrophic rat heart. Lab. Invest. 40: 331–340, 1979.
 214. Ontell, M., and R. F. Dunn. Neonatal muscle growth: a quantitative study. Am. J. Anat. 152: 539–556, 1978.
 215. Orenstein, J., D. Hogan, and S. Bloom. Surface cables of cardiac myocytes. J. Mol. Cell. Cardiol. 12: 771–780, 1980.
 216. ÖRlander, J., K. H. Kiessling, J. Karlsson, and B. Ekblom. Low intensity training in sedentary men. Acta Physiol. Scand. 101: 351–362, 1977.
 217. Padykula, H. A., and G. F. Gauthier. Morphological and cytochemical characteristics of fiber types in normal mammalian skeletal muscle. In: Exploratory Concepts in Muscular Dystrophy and Related Disorders, edited by A. T. Milhorat. New York: Excerpta Med., 1967, p. 117–131. (Int. Cong. Ser. 147.)
 218. Padykula, H. A., and G. F. Gauthier. The ultrastructure of the neuromuscular junctions of mammalian red, white, and intermediate skeletal muscle fibers. J. Cell Biol. 46: 27–41, 1979.
 219. Page, E. Quantitative ultrastructural analysis in cardiac membrane physiology. Am. J. Physiol. 235 (Cell Physiol. 4): C147–C158, 1978.
 220. Page, S. G. The organization of the sarcoplasmic reticulum in frog muscle (Abstract). J. Physiol. London 175: 10P, 1964.
 221. Page, S. G. A comparison of the fine structure of frog slow and twitch muscle fibres. J. Cell Biol. 26: 477–497, 1965.
 222. Page, S. G., and H. E. Huxley. Filament lengths in striated muscle. J. Cell Biol. 19: 369–390, 1963.
 223. Payne, C., I. Stern, R. Curless, and L. Hannapel. Ultra‐structural fiber typing in normal and diseased human muscle. J. Neurol. Sci. 25: 99–108, 1975.
 224. Peachey, L. D. Thin sections 1. A study of section thickness and physical distortion produced during microtomy. J. Biophys. Biochem. Cytol. 4: 233–242, 1958.
 225. Peachey, L. D. The sarcoplasmic reticulum and transverse tubules of the frog's sartorius. J. Cell Biol. 25: 209–231, 1965.
 226. Peachey, L. D., and B. R. Eisenberg. Helicoids in the T system and striatums of frog skeletal muscle seen by high voltage electron microscopy. Biophys. J. 22: 145–154, 1978.
 227. Peachey, L. D., and K. R. Porter. Intracellular impulse conduction in muscle cells. Science 129: 721–722, 1959.
 228. Pellegrino, C., and C. Franzini. An electron microscope study of denervation atrophy in red and white skeletal muscle fibers. J. Cell Biol. 17: 327–349, 1963.
 229. Peng, B. H., J. J. Wolosewick, and P. C Cheng. The development of myofibrils in cultured muscle cells. A whole‐mount and thin‐section electron microscopic study. Dev. Biol. 88: 121–136, 1981.
 230. Pepe, F. A. Structure of muscle filaments from immunohisto‐chemical and ultrastructural studies. J. Histochem. Cytochem. 23: 543–562, 1975.
 231. Peter, J. B. Histochemical, biochemical and physiological studies of skeletal muscle and its adaptation to exercise. In: Contractility Of Muscle Cells And Related Processes, edited by R. J. Podolsky. Englewood Cliffs, NJ: Prentice Hall, 1971.
 232. Peter, J. B., R. J. Barnard, V. R. Edgerton, C. A. Gillespie, and K. E. Stempel. Metabolic profiles of three fiber types of skeletal muscle in guinea pigs and rabbits. Biochem. 11: 2627–2633, 1972.
 233. Pette, D. (editor). Plasticity of Muscle. New York: de Gruyter, 1980.
 234. Pette, D., W. Muller, E. Leisner, and G. Vrbová. Time dependent effects on contractile properties, fibre population, myosin light chains and enzymes of energy metabolism in intermittently and continuously stimulated fast twitch muscle of the rabbit. Pfluegers Arch. 364: 103–112, 1976.
 235. Pette, D., B. U. Ramirez, W. Muller, R. Simon, G. U. Exner, and R. Hildebrand. Influence of intermittent long‐term stimulation on contractile, histochemical and metabolic properties of fibre populations in fast and slow rabbit muscles. Pfluegers Arch. 361: 1–7, 1975.
 236. Pette, D., and U. Schnez. Myosin light change patterns of individual fast‐ and slow‐twitch fibres of rabbit muscles. Histochem. 54: 97–107, 1977.
 237. Plyley, M. J., and A. C. Groom. Geometrical distribution of capillaries in mammalian striated muscle. Am. J. Physiol. 228: 1376–1383, 1975.
 238. Porter, K. R. The sarcoplasmic reticulum in muscle cells of Amblystoma larvae. J. Biophys. Biochem Cytol. 2: 163–169, 1956.
 239. Porter, K. R. The sarcoplasmic reticulum: its recent history and present status. J. Biophys. Biochem. Cytol. 10: 219–226, 1961.
 240. Porter, K. R., and G. E. Palade. Studies on the endoplasmic reticulum. III. Its form and distribution in striated muscle cells. J. Biophys. Biochem. Cytol. 3: 269–300, 1957.
 241. Prince, F. P., R. S. Hikida, F. C. Hagerman, R. S. Staron, and W. H. Allen. A morphometric analysis of human muscle fibers with relation to fiber types and adaptations to exercise. J. Neurol. Sci. 49: 165–179, 1981.
 242. Ramirez, B. U., and D. Pette. Effects of long‐term electrical stimulation on sarcoplasmic reticulum of fast rabbit muscle. FEBS Lett. 49: 188–190, 1974.
 243. Ranvier, M. L. Des muscles rouges et des muscles blancs chez les rongeurs. C. R. Acad. Sci. 77: 1030, 1873.
 244. Rao, C. R. Linear Statistical Inference and Its Applications, edited by R. A. Bradley, J. S. Hunter, D. G. Kendall, and G. S. Watson. New York: Wiley, 1973.
 245. Rash, J. E. Ultrastructure of normal and myasthenic end‐plates. In: Myasthenia Gravis, edited by E. Albuquerque and M. E. Eldifrawi. London: Chapman & Hall, 1982.
 246. Rash, J. E., and M. H. Ellisman. Studies of excitable membranes. I. Macromolecular specialization of the neuromuscular junction and the nonjunctional sarcolemma. J. Cell Biol. 63: 567–586, 1974.
 247. Rash, J. E., and C. S. Hudson. Freeze‐Fracture: Methods, Artifiacts and Interpretations. New York: Raven, 1979.
 248. Rayns, D. G., C. E. Devine, and C. L. Sutherland. Freeze fracture studies of membrane systems in vertebrate muscle. I. Striated muscle. J. Ultrastruct. Res. 50: 306–321, 1975.
 249. Rayns, D. G., F. O. Simpson, and W. S. Bertaud. Surface features of striated muscle. I. Guinea pig cardiac muscle. J. Cell Sci. 3: 467–474, 1968.
 250. Rayns, D. G., F. O. Simpson, and W. S. Bertaud. Surface features of striated muscle. II. Guinea pig skeletal muscle. J. Cell Sci. 3: 475–488, 1968.
 251. Reedy, M. K. In discussion on “The physical and chemical basis of muscular contraction,” by J. Hanson and J. Lowy. Proc. R. Soc. London Ser. B 160: 458–460, 1964.
 252. Resnick, J. S., W. K. Engel, and P. G. Nelson. Changes in the Z disk of skeletal muscle induced by tenotomy. Neurology 18: 737–740, 1968.
 253. Revel, J.‐P. The sarcoplasmic reticulum of the bat cricothyroid muscle. J. Cell Biol. 12: 571–588, 1962.
 254. Rich, T. L., and G. A. Langer. A comparison of excitation‐contraction coupling heart and skeletal muscle: an examination of “calcium‐induced calcium release.” J. Mol. Cell. Cardiol. 7: 747–765, 1975.
 255. Robbins, N., G. Karpati, and W. K. Engel. Histochemical and contractile properties in the cross innervated guinea pig soleus muscle. Arch. Neurol. Chicago 20: 318–329, 1969.
 256. Romanul, F. C. A. Enzymes in muscle. 1. Histochemical studies of enzymes in individual muscle fibers. Arch. Neurol. Chicago 11: 355–368, 1964.
 257. Romanul, F. C. A. Capillary supply and metabolism of muscle fibers. Arch. Neurol. Chicago 12: 497–509, 1965.
 258. Romanul, F. C. A., F. A. Sréter, S. Salmons, and J. Gergely. The effects of a changed pattern of activity on histochemical characteristics of muscle fibres. In: Exploratory Concepts in Muscular Dystrophy II, edited by A. T. Milhorat. New York: Excerpta Med. 1974, p. 344–348. (Int. Cong. Ser. 333.)
 259. Rosse, C., and D. K. Clawson. The Musculoskeletal System in Health and Disease. Hagerstown, MD: Harper & Row, 1980.
 260. Rowe, R. W. D. The ultrastructure of Z disks from white, intermediate, and red fibers of mammalian striated muscles. J. Cell Biol. 57: 261–277, 1973.
 261. Rowe, R. W. D., and G. Goldspink. Muscle fibre growth in five different muscles in both sexes of mice. I. Normal mice. J. Anat. 104: 519–530, 1969.
 262. Roy, R. K., K. Mabuchi, S. Sarkar, C. Mis, and F. A. Sréter. Changes in tropomyosin subunit pattern in chronic electrically stimulated rat fast muscles. Biochem. Biophys. Res. Commun. 89: 181–187, 1979.
 263. Rubinstein, N., K. Mabuchi, F. Pepe, S. Salmons, J. Gergely, and F. A. Sréter. Use of type‐specific antimyosins to demonstrate the transformation of individual fibers in chronically stimulated rabbit fast muscles. J. Cell Biol. 79: 252–261, 1978.
 264. Salmons, S., D. R. Gale, and F. A. Sréter. Ultrastructural aspects of the transformation of muscle fibre type by long term stimulation: changes in Z discs and mitochondria. J. Anat. 127: 17–31, 1978.
 265. Salmons, S., and J. Henriksson. The adaptive response of skeletal muscle to increased use. Muscle Nerve 4: 94–105, 1981.
 266. Salmons, S., and F. A. Sréter. Significance of impulse activity in the transformation of skeletal muscle type. Nature London 263: 30–34, 1976.
 267. Salmons, S., and G. Vrbova. The influence of activity on some contractile characteristics of mammalian fast and slow muscles. J. Physiol. London 201: 535–549, 1969.
 268. Saltis, L. M., and J. R. Mendell. The fine structural differences in human muscle fiber types based on peroxidase activity. J. Neuropathol. Exp. Neurol. 33: 632–640, 1974.
 269. Santa, T., and A. G. Engel. Histometric analysis of neuromuscular junction ultrastructure in rat red, white and intermediate muscle fibers. In: Developments in Electromyography and Clinical Neurophysiology, edited by J. E. Desmedt. Basel: Karger, 1973, vol. 1, p. 41–54.
 270. Scales, D. J., and R. Sabbadini. Microsomal T‐system: a stereological analysis of purified microsomes derived from normal and dystrophic skeletal muscle. J. Cell Biol. 83: 33–46, 1979.
 271. Schachat, F. H., A. D. Magid, D. D. Bronson, O. B. Mcdonald, and W. Garrett. Gene expression in single muscle fibers from rabbit skeletal muscles (Abstract). J. Cell Biol. 87: 263a, 1980.
 272. Schiaffino, S., V. Hanzlikova, and S. Pierobon. Relations between structure and function in rat skeletal muscle fibers. J. Cell Biol. 47: 107–119, 1970.
 273. Schmalbruch, H. The sarcolemma of skeletal muscle fibres as demonstrated by a replica technique. Cell Tissue Res. 150: 377–387, 1974.
 274. Schmalbruch, H. The membrane systems in different fibre types of the triceps surae muscle of cat. Cell Tissue Res. 204: 187–200, 1979.
 275. Schmalbruch, H. Square arrays in the sarcolemma of human skeletal muscle fibers. Nature London 281: 145–146, 1979.
 276. Schmalbruch, H. Delayed fixation alters the pattern of intra‐membrane particles in mammalian muscle fibers. J. Ultra‐struct. Res. 70: 15–20, 1980.
 277. Schmalbruch, H., and U. Hellhammer. The number of nuclei in adult rat muscles with special reference to satellite cells. Anat. Rec. 189: 169–176, 1977.
 278. Schmalbruch, H., and U. Hellhammer. The number of satellite cells in normal human muscle. Anat. Rec. 185: 279–288, 1976.
 279. Schmalbruch, H., and Z. Kamieniecka. Fiber types in the human brachial biceps muscle. Exp. Neurol. 44: 313–328, 1974.
 280. Schmalbruch, H., and Z. Kamieniecka. Histochemical fiber typing and staining intensity in cat and rat muscles. J. Histochem. Cytochem. 23: 395–401, 1975.
 281. Schröder, J. M., P. T. Kemme, and L. Scholz. The fine structure of denervated and reinnervated muscle spindles: morphometric study of intrafusal muscle fibers. Acta Neuropathol. 46: 95–106, 1979.
 282. Schultz, E. A quantitative study of the satellite cell population in postnatal mouse lumbrical muscle. Anat. Rec. 180: 589–596, 1974.
 283. Shay, J. The economy of effort in electron microscopy morphometry. Am. J. Pathol. 81: 503–511, 1975.
 284. Shear, C. R., and G. Goldspink. Structural and physiological changes associated with the growth of avian fast and slow muscle. J. Morphol. 135: 351–372, 1971.
 285. Sickles, D. W., and C. A. Pinkstaff. Comparative histochemical study of prosimian primate hindlimb muscles. I. Muscle fiber types. Am. J. Anat. 160: 175–186, 1981.
 286. Sickles, D. W., and C. A. Pinkstaff. Comparative histochemical study of prosimian primate hindlimb muscles. II. Populations of fiber types. Am. J. Anat. 160: 187–194, 1981.
 287. Sillau, A. H., and N. Banchero. Effect of maturation on capillary density, fiber size and composition in rat skeletal muscle. Proc. Soc. Exp. Biol. Med. 154: 461–466, 1977.
 288. Sillau, A. H., and N. Banchero. Visualization of capillaries in skeletal muscle by the ATPase reaction. Pfluegers Arch. 369: 269–271, 1977.
 289. Sillau, A. H., and N. Banchero. Skeletal muscle fiber size and capillarity. Proc. Soc. Exp. Biol. Med. 158: 288–291, 1978.
 290. Silverman, H., and H. L. Atwood. Increase in oxidative capacity of muscle fibers in dystrophic mice and correlation with overactivity in these fibers. Exp. Neurol. 68: 97–113, 1980.
 291. Silverman, H., and H. L. Atwood. Surface density of T tubules in normal and dystrophic mouse muscle. Exp. Neurol. 70: 40–46, 1980.
 292. Simmons, R. M., and B. R. Jewell. Mechanics and models of muscular contraction. In: Recent Advances in Physiology, edited by R. J. Linden. Edinburgh: Churchill Livingstone, 1974, p. 87–147.
 293. Sitte, H. Morphometrische Untersuchungen an Zellen. In: Quantitative Methods in Morphology, edited by E. R. Weibel and H. Elias. New York: Springer‐Verlag, 1967, p. 167–198.
 294. SJÖSTRÖM, M., K. A. ÄNgquist, and O. Rais. Intermittent claudication and muscle fiber fine structure: correlation between clinical and morphological data. Ultrastruct. Pathol. 1: 309–326, 1980.
 295. SjöStröm, M., and J. Henriksson. Abstracts of the international symposium on the functional specificity of human muscle fibers. Muscle Nerve 3: 263–279, 1980.
 296. SjöStröm, M., S. I. W. Kidman, K. Larsén, and K. A. ÄNgquist. Z and M band appearance in different histochemically defined types of human skeletal muscle fibers. J. Histo‐chem. Cytochem. 30: 1–11, 1982.
 297. SjöStröm, M., and J. M. Squire. Fine structure of the A‐band in cryo‐sections. The structure of the A‐band of human skeletal muscle fibres from ultra‐thin cryo‐sections negatively stained. J. Mol. Biol. 109: 49–68, 1977.
 298. Slinde, E., and H. Kryvi. Studies on the nature of the Z‐discs in skeletal muscle fibres of sharks, Etmopterus spinax L. and Galeus melastomus Rafinesque‐Schmaltz. J. Fish Biol. 16: 299–308, 1980.
 299. Sneath, P. H. A., and R. Sokal. Numerical Taxonomy, edited by D. Kennedy and R. B. Park. San Francisco: Freeman, 1973.
 300. Solomon, H. Geometric probability . In: Society for Industrial and Applied Mathematics. Bristol, UK: Arrowsmith, 1978.
 301. Somlyo, A. V. Bridging structures spanning the junctional gap at the triad of skeletal muscle. J. Cell Biol. 80: 743–750, 1979.
 302. Sommer, J. R., and E. A. Johnson. Ultrastructure of cardiac muscle. In: Handbook of Physiology. The Cardiovascular System, edited by R. Burns. Bethesda, MD: Am. Physiol. Soc, 1979, sec. 2, vol. I, chapt. 5, p. 113–186.
 303. Sommer, J. R., N. R. Wallace, and W. Hasselbach. The collapse of the sarcoplasmic reticulum in skeletal muscle. Z. Naturforsch. 33: 561–573, 1978.
 304. Spurway, N. Interrelationship between myosin‐based and metabolism‐based classifications of skeletal muscle fibers. J. Histochem. Cytochem. 29: 87–90, 1981.
 305. Spurway, N. C. Objective characterization of cells in terms of microscopical parameters: an example from muscle histochemistry. Histochem. J. 13: 269–317, 1981.
 306. Squire, J. The Structural Basis of Muscular Contraction. New York: Plenum, 1981.
 307. Sréter, F. A., J. Gergely, S. Salmons, and F. Romanul. Synthesis of fast muscle of myosin light chains characteristic of slow muscle in response to long term stimulation. Nature London New Biol. 241: 17–19, 1973.
 308. Sréter, F. A., F. C. A. Romanul, S. Salmons, and J. Gergely. The effect of a changed pattern of activity on some biochemical characteristics of muscle. In: Exploratory Concepts of Muscular Dystrophy II, edited by A. T. Milhorat. 1974, p. 338–343. (Int. Cong. Ser. 333.)
 309. Staverman, A. J. The theory of measurement of osmotic pressure. Reel. Trav. Chim. Pays‐Bas 70: 344–352, 1951.
 310. Stein, J. M., and H. A. Padykula. Histochemical classification of individual skeletal muscle fibers of the rat. Am. J. Anat. 110: 103–104, 1962.
 311. Stonnington, H. H., and A. G. Engel. Normal and denervated muscle. A morphometric study of fine structure. Neurology 23: 714–724, 1973.
 312. Strehler, E. E., G. Pelloni, C. W. Heizmann, and H. M. Eppenberger. Biochemical and ultrastructural aspects of Mr 165,000 M‐protein in cross‐striated chicken muscle. J. Cell Biol. 86: 775–783, 1980.
 313. Te Kronnie, G., C. W. Pool, G. Scholten, and W. VAN Raamsdonk. Myofibrillar differences among mammalian skeletal‐muscle fibers at the ultrastructural level. A comparison of immunocytochemical and morphometrical parameters. Eur. J. Cell Biol. 22: 772–779, 1980.
 314. Thornell, L. E., L. Edström, A. Eriksson, K. G. Henriksson, and K. A. ÄNgquist. The distribution of intermediate filament protein (skeletin) in normal and diseased human skeletal muscle. An immunohistochemical and electron‐microscopic study. J. Neurol. Sci. 47: 153–170, 1980.
 315. Tiegs, O. W. On the arrangement of the striations of voluntary muscle fibres in double spirals. Trans. Proc. R. Soc. South Aust. 46: 222–224, 1922.
 316. Tiegs, O. W. The flight muscle of insects—their anatomy and histology: with some observations on the structure of striated muscle in general. Philos. Trans. R. Soc. London Ser. B 238: 221–348, 1955.
 317. Tomanek, R. J., C. R. Asmundson, R. R. Cooper, and R. J. Barnard. Fine structure of fast‐twitch and slow‐twitch guinea pig muscle fibers. J. Morphol. 139: 47–65, 1973.
 318. Tomanek, R. J., and D. D. Lund. Degeneration of different types of skeletal muscle fibers. II. Immobilization. J. Anat. 118: 531–541, 1974.
 319. Ullrick, W. C., P. A. Toselli, J. D. Saide, and W. P. C. Phear. Fine structure of the vertebrate Z‐disc. J. Mol. Biol. 115: 61–74, 1977.
 320. Van Winkle, W. B., and A. Schwartz. Morphological and biochemical correlates of skeletal muscle contractility in the cat. I. Histochemical and electron microscopic studies. J. Cell. Physiol. 97: 99–120, 1978.
 321. Veratti, E. Investigations on the fine structure of striated muscle fiber [transl, from Italian]. J. Biophys. Biochem. Cytol. 10: 1–60, 1961.
 322. Vracko, R., and E. P. Bendit. Basal lamina: the scaffold for orderly cell replacement. J. Cell Biol. 55: 406–419, 1972.
 323. Vrbova, G., T. Gordon, and R. Jones. Nerve‐Muscle Interaction. New York: Wiley, 1978.
 324. Wagner, P. D., and A. G. Weeds. Studies on the role of myosin alkali light chains. J. Mol. Biol. 109: 455–473, 1977.
 325. Wallace, N., and J. R. Sommer. Fusion of sarcoplasmic reticulum with ruthenium red. Proc. Annu. Meet. Electron Microsc. Soc. Am., 33rd, edited by G. W. Bailey. Baton Rouge, LA: Claitor's, 1975, p. 500–501.
 326. Wang, K., and C. L. Williamson. Identification of an N2 line protein of striated muscle. Proc. Natl. Acad. Sci. USA 77: 3254–3258, 1980.
 327. Weeds, A. Myosin light chains, polymorphism and fibre types in skeletal muscles. In: Plasticity of Muscle, edited by D. Pette. New York: de Gruyter, 1980, p. 55–68.
 328. Weeds, A. G., R. Hall, and N. C. S. Spurway. Characterization of myosin light chains from histochemically identified fibres of rabbit psoas muscle. FEBS Lett. 49: 320–324, 1975.
 329. Weibel, E. R. A stereological method for estimating volume and surface of sarcoplasmic reticulum. J. Microsc. Oxford 95: 229–242, 1972.
 330. Weibel, E. R. Stereological Methods. I. Practical Methods for Biological Morphometry. New York: Academic, 1979.
 331. Weibel, E. R. Stereological Methods. II. Theoretical Foundations. New York: Academic, 1980.
 332. Weibel, E. R., and R. P. Bolender. Stereological techniques for electron microscopic morphometry. In: Principles and Techniques of Electron Microscopy, edited by M. A. Hayat. New York: Van Nostrand Reinhold, 1973, p. 237–296.
 333. Whitehouse, W. J. A stereological method for calculating internal surface areas in structures which have become anisotropic as the result of linear expansions or contractions. J. Microsc. Oxford 101: 169–176, 1974.
 334. Whitehouse, W. J. Errors in area measurement in thick sections, with special reference to trabecular bone. J. Microsc. Oxford 107: 183–187, 1976.
 335. Wiley, C. A., and M. H. Ellisman. Rows of dimeric‐particles within the axolemma and juxtaposed particles within glia, incorporated into a new model for the paranodal glial‐axonal junction at the node of Ranvier. J. Cell Biol. 84: 261–280, 1980.
 336. Wroblewski, R., and E. Jansson. Fine structure of single fibres of human skeletal muscle. Cell Tissue Res. 161: 471–476, 1975.
 337. Yamaguchi, M., M. H. Stromer, R. M. Robson, B. Anderson, and W. D. Anderson. Studies on the basic structural unit of muscle Z lines (Abstract). J. Cell Biol. 87: 259a, 1980.
 338. Yellin, H., and L. Guth. The histochemical classification of muscle fibers. Exp. Neurol. 26: 424–432, 1970.
 339. Zampighi, G., J. Vergara, and F. Ramon. On the connection between the transverse tubules and the plasma membrane in frog semitendinosus skeletal muscle. Are caveolae the mouth of the transverse tubule system? J. Cell Biol. 64: 734–740, 1975.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Brenda R. Eisenberg. Quantitative Ultrastructure of Mammalian Skeletal Muscle. Compr Physiol 2011, Supplement 27: Handbook of Physiology, Skeletal Muscle: 73-112. First published in print 1983. doi: 10.1002/cphy.cp100103