Comprehensive Physiology Wiley Online Library

Mechanism of Ca2+ Transport by Sarcoplasmic Reticulum

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Structure of Sarcoplasmic Reticulum and Transverse Tubules
1.1 Structure of Plasmalemma and T Tubules
1.2 Sarcoplasmic Reticulum
1.3 Junction Between T Tubules and SR
2 Mechanism of Excitation‐Contraction Coupling
3 Isolation of SR, T Tubules, and Surface Membrane Elements from Skeletal Muscle
3.1 Separation of Membrane Fractions by Calcium Oxalate or Calcium Phosphate Loading
4 Protein Composition of SR
4.1 Structure of Ca2+‐Transport ATPase and Its Disposition in SR Membrane
4.2 Fragmentation of Ca2+‐ATPase With Proteolytic Enzymes
4.3 Primary Sequence of Ca2+‐Transport ATPase From Rabbit SR
4.4 Structure of Proteolipids
4.5 Structure and Distribution of Calsequestrin and High‐Affinity Ca2+‐Binding Protein in SR
5 Lipid Composition of SR
5.1 Distribution of Phospholipids in Membrane Bilayer
6 Role of Phospholipids in Atpase Activity and CA2+ Transport
6.1 Boundary Lipids and the Problem of Lipid Annulus
6.2 Rate of ATP Hydrolysis and Physical Properties of the Lipid Phase
6.3 Mobility of Phospholipids and Ca2+‐Transport ATPase in SR
7 Mechanism of ATP Hydrolysis and CA2+ Transport
7.1 Introduction of Reaction Sequence
7.2 Ca2+ Binding to SR
7.3 Binding of Ca2+ to Ca2+‐Transport ATPase
7.4 Binding of Mg2+ to Ca2+‐ATPase
7.5 Binding of ATP to Ca2+‐ATPase
7.6 Binding of Various Substrates to Ca2+‐ATPase
7.7 Influence of ATP on Mobility and Reactivity of Protein Side‐Chain Groups
7.8 Formation of Enzyme‐Substrate Complex
7.9 Formation and Properties of Phosphoproteins
7.10 Kinetics of E∼P Formation
7.11 Relationship Between Enzyme Phosphorylation and Translocation of Calcium
7.12 Changes in Ca2+ Affinity of Phosphoenzyme During Ca2+ Translocation
7.13 ADP‐Sensitive and ADP‐insensitive Phosphoprotein Intermediates
7.14 Effect of Potassium on ATPase Activity and Ca2+ Transport
8 Reversal of the CA2+ Pump
8.1 Ca2+ Release Induced by ADP + Pi
8.2 Ca2+ Gradient‐Dependent Phosphorylation of ATPase by Pi
8.3 Arsenate‐Induced Ca2+ Release
8.4 Mechanism of Ca2+ Release Induced by ADP + Pi
8.5 Ca2+ Gradient‐Independent Phosphorylation of Ca2+‐ATPase by Pi
8.6 Role of Ca2+‐Protein Interactions in ATP Synthesis
8.7 Pi HOH Exchange
8.8 NTP Pi Exchange
9 Physical Basis of CA2+ Translocation
10 Protein‐Protein Interactions in SR and Their Functional Significance
10.1 Electron Microscopy
10.2 Fluorescence‐Energy Transfer
10.3 Electron Spin Resonance Studies
10.4 ATPase‐ATPase Interactions in Detergent Solutions
10.5 Chemical Cross‐Linking
10.6 Effects of Inhibitors on ATPase Activity
10.7 Possibility of Subunit Heterogeneity
10.8 Conclusion
11 Permeability of SR
11.1 Monovalent‐Cation Channels in SR
11.2 Anion Channels in SR
11.3 Effect of Membrane Proteins on Permeability of SR Membranes
12 Relationship Between Membrane Potential and Calcium Fluxes Across SR Membrane
12.1 Probes as Indicators of SR Membrane Potential
12.2 Influence of SR Membrane Potential on Calcium Permeability
12.3 Influence of Membrane Potential on Active Calcium Transport
12.4 Effect of Calcium Uptake on Membrane Potential of SR
12.5 A Critical Analysis of Experimental Findings on Effects of Ca2+ Transport on Membrane Potential
12.6 Effect of Calcium on Optical Response of Positive Cyanine Dyes
12.7 Response of Negatively Charged Dyes to Calcium Transport by SR Vesicles
12.8 Membrane Potential of SR In Vivo
12.9 Effect of Ca2+ Release on Membrane Potential of SR
13 Transport of CA2+ by Cardiac SR
14 Kinetic Differences Between SR of Fast‐Twitch and Slow‐Twitch Skeletal Muscles
15 Regulation of CA2+ Transport by Membrane Phosphorylation
15.1 Role of Protein Kinase‐Dependent Membrane Phosphorylation in Regulation of Ca2+ Transport by Skeletal Muscle SR
15.2 Physiological Significance of Phospholamban Phosphorylation
16 Biosynthesis of SR
16.1 Studies on SR Development In Vivo
16.2 Assembly of SR in Cultured Skeletal and Cardiac Muscle
16.3 Synthesis of Ca2+‐Transport ATPase in Cell‐Free Systems and Its Insertion into the Membrane
16.4 Synthesis of Calsequestrin
16.5 Regulation of Synthesis of Ca2+‐Transport ATPase
16.6 Myogenic Regulation
16.7 Neural Influence on Concentration of Ca2+‐ATPase in Muscle Cells
Figure 1. Figure 1.

Longitudinal section of toadfish swim‐bladder muscle. Four triads are shown. T, T tubule; C, terminal cisternae. Single arrow points to a “foot” with a core of low density. Double arrow, foot that forms an apparent intermediate line in the junctional gap. Junctional sarcoplasmic reticulum is the portion of the lateral sacs that is located between arrowheads. × 110,000.

[From Franzini‐Armstrong
Figure 2. Figure 2.

A: heavy microsomal fraction obtained by sucrose‐gradient centrifugation at 39%–41% sucrose. Arrows, triad junctions; double arrow, expanded T tubule. Bar line, 250 nm. B: ouabain‐binding vesicles isolated from the heavy microsomal fraction, shown in A, by French‐press treatment and sucrose‐gradient centrifugation (22%–25% sucrose). Long arrows, vesicles with double profiles; short arrows, vesicles without clearly defined membranes.

[From Lau et al.
Figure 3. Figure 3.

A: terminal cisternae vesicles isolated from the heavy microsomal fraction by French‐press treatment and sucrose‐gradient centrifugation at 31%–33% sucrose concentration. Bar, 250 nm. B: terminal cisternae vesicles obtained as above but at 39%–41% sucrose concentration. Note electron‐dense content, which is presumed to represent calsequestrin. Bar, 250 nm.

[From Lau et al.
Figure 4. Figure 4.

Protein composition of rabbit, chicken, and lobster sarcoplasmic reticulum. Microsomes were prepared as described in ref. . For the removal of surface proteins microsomes were suspended in 0.25 M sucrose, 1 mM EGTA, 20 mM Tris‐HCl, 2 mM dithiothreitol, pH 8.0, and 50 μg/ml phenylmethylsulfonylfluoride and incubated at 4°C for 30 min . After centrifugation at 145,000 g for 30 min, supernatant was carefully decanted and washing step was repeated. Combined supernatant was precipitated with 10% trichloroacetic acid (TCA) and sediments were neutralized with 0.1 N NaOH. Gel electrophoresis (5%–12% gradient gel) was carried out using 20‐ to 75‐μg samples. Samples 1–3, rabbit microsomes; 4–6, chicken microsomes; 7–9, lobster microsomes; 10, bovine serum albumin; 11, rabbit skeletal muscle actomyosin. Samples 1, 4, 7, microsomes before EGTA washing. Samples 2, 5, 8, microsomes after EGTA washing (intrinsic membrane proteins). Samples 3, 6, 9, concentrated EGTA extract (surface proteins).

[From Ohnoki and Martonosi , © 1980, with permission from Pergamon Press, Ltd
Figure 5. Figure 5.

Temperature dependence of the ATPase activity of microsomes, purified ATPase, and reconstituted vesicles containing dipalmitoyl, dimyristoyl, and dioleoyl lecithin. Enzyme preparations were obtained as described by Nakamura et al. . Mixing ratio of protein, phospholipid, and cholate was usually 1:4:1. ATPase activities were measured in a medium of 0.5 m KCl, 10 mM imidazole, 5 mM MgCl2, 5 mM ATP, 0.5 mM EGTA, and 0.45 mM CaCl2. Time of incubation and concentration of enzyme were varied in order to define reaction velocity from the linear portion of the time curve at each temperature. ○——○, Dipalmitoyl lecithin‐ATPase; ▵——▵, dimyristoyl lecithin‐ATPase; ▴——▴, dioleyl lecithin‐ATPase; □——□, microsomes; •——•, purified ATPase without added lipid.

[From Nakamura et al.
Figure 6. Figure 6.

Dependence on ATP concentration of transient enzyme phosphorylation (A) and transient inorganic phosphate (Pi) liberation (B) by sarcoplasmic reticulum vesicles. Final ATP concentration in μM: , 0.5; ○——○, 1; •——•, 2.5; ▵——▵, 5; ▴——▴, 10; □——□, 25; ▪——▪, 100.

[From Froehlich and Taylor
Figure 7. Figure 7.

A: time resolution of the Ca2+ translocation burst with ATP as substrate. Phosphoenzyme (EP) was measured by acid quenching (•) and Ca2+ uptake by the EGTA‐quenching method (○). The reaction medium contained 20 mM morpholinopropane sulfonic acid (MOPS), pH 6.8, 80 mM KCl, 5 mM MgCl2, 0.4 mg of protein/ml, 35/μM CaCl2, and 2μM[γ‐32P]ATP (•) or 35 μM 45CaCl2 and 2 μM ATP (○). B: enzyme phosphorylation by ITP, Ca2+ uptake and Pi production during the transient state. [ITP] = 1 mM. Phosphoenzyme (▵) and Pi (⋄) were assayed by acid‐quenching method, and Ca2+ uptake (•) by EGTA‐quenching method.

[A from Verjovski‐Almeida and Inesi , B from Verjovski‐Almeida et al. , reprinted with permission from Biochemistry, © 1978 American Chemical Society
Figure 8. Figure 8.

Relation between Ca2+ release and rebinding, and formation and decay of the phosphorylated enzyme. Final concentration of [γ‐32P]ATP was 5 μM. For other details see Ikemoto . Note that the ordinates are drawn in a 2:1 ratio to facilitate comparison of the amount of phosphorylated intermediate with that of the released Ca2+. ○, Amount of released Ca2+; •, phosphorylated enzyme.

[From Ikemoto
Figure 9. Figure 9.

Formation of ATP from E‐P and ADP. Sarcoplasmic reticulum (11 mg/ml protein) was phosphorylated with 5.0 μM [32P]ATP in 0.909 ml of reaction medium containing 1.1 mM MgCl2, 55 μM CaCl2, 165 mM KCl, and 110 mM Tris‐HCl at pH 8.8 and 15°C. After 1.5 s, the phosphorylation reaction was stopped by addition (↓) of 0.091 ml of solution containing 366 mM EGTA and 2.2 mM ADP at pH 8.8 (•, ▴), or of 366 mM EGTA alone at pH 8.8 (○, ▵). At intervals after the start of phosphorylation, SR was denatured with perchloric acid, and the concentrations of [32P]ATP (•, ○) and EP (▴, ▵) were measured.

[From Kanazawa et al.
Figure 10. Figure 10.

Structure of dyes used as membrane potential indicators. Oxacarbocyanine (I), oxadicarbocyanine (II, III), thiadicarbocyanine (IV, V), and indodicarbocyanine (VI) have delocalized positive charges. Nile blue A (VII) contains one localized positive charge. Oxonol VI (VIII) and Di‐Ba‐C4 (IX) have delocalized negative charges, whereas merocyanine 540 (X), WW781 (XI), and ANS (XII) contain a localized negative charge. Dyes with delocalized charges penetrate across membranes, while those with localized charges are relatively impermeant. Mechanisms of dye response to potential are different in each class .

Figure 11. Figure 11.

Correlation between membrane potential and the rate of Ca2+ uptake. A: generation of membrane potential. Microsomes (4 mg protein/ml) suspended in 0.15 M K‐glutamate, 10.0 mM imidazole, 5.0 mM Mg2+‐maleate were diluted 50‐fold into media containing 5 mM Mg2+‐maleate, 10 mM imidazole, 0.1 mM Ca2+‐maleate, 10 μM 3,3′‐diethylthiodicarbocyanine and 1 μM valinomycin, with glycine and K‐glutamate at the following concentrations: 1) 0.150 M K‐glutamate, no glycine; 2) 0.075 M K‐glutamate, 0.150 M glycine; 3) 0.040 M K‐glutamate, 0.225 M glycine; 4) 0.022 M K‐glutamate, 0.262 M glycine; 5) 0.012 M K‐glutamate, 0.281 M glycine; 6) no K‐glutamate, 0.300 M glycine. Absorbance change of 3,3′‐diethylthiodicarbocyanine at 660 mm was monitored using 600 nm as a reference wavelength. Temperature, 15° C. B: effect of membrane potential on Ca2+ uptake. Experiment was similar to that described in A except that microsome concentration was 10 times greater, and dilution medium contained 1 mM ATP (diNa) as energy source for Ca2+ transport and arsenazo III (50 μM) instead of 3,3′‐diethylthiodicarbocyanine to monitor Ca2+ transport. Absorbance response of arsenazo III to Ca2+ (10–100 μM), measured at 660 nm using 685 nm as a reference wavelength, was 20% less in 0.15 M K‐glutamate than in 0.3 M glycine.

[Adapted from Beeler
Figure 12. Figure 12.

Tryptic peptide maps of [36S]methionine‐labeled Ca2+‐transport ATPases. Maps were prepared from tryptic digests of reduced and carboxymethylated ATPases isolated from muscle or synthesized in vitro. Plates were sprayed with 7% 2,5‐diphenyloxazole in acetone and exposed on X‐ray film at −70°C for fluorography. A: ninhydrin‐stained peptide map of Ca2+‐transport ATPase purified from adult chicken pectoralis muscle. B: diagram of the peptide pattern in A; positions of the principal [36S]methionine‐labeled peptides of C are indicated by filled circles. C: autoradiogram of [35S]methionine‐labeled peptides in tryptic digests of Ca2+‐transport ATPase from 5‐day‐old cultured chicken muscle cells, labeled for 24 h in a culture medium containing 50 μCi of [35S]methionine/ml. ATPase was isolated by immunoprecipitation and purified by gel electrophoresis. D: autoradiogram of [35S]methionine‐labeled peptides in tryptic digests of ATPase synthesized in vitro by bound polysomes. ATPase was isolated by immunoprecipitation and purified by gel electrophoresis.

[From Chyn et al.


Figure 1.

Longitudinal section of toadfish swim‐bladder muscle. Four triads are shown. T, T tubule; C, terminal cisternae. Single arrow points to a “foot” with a core of low density. Double arrow, foot that forms an apparent intermediate line in the junctional gap. Junctional sarcoplasmic reticulum is the portion of the lateral sacs that is located between arrowheads. × 110,000.

[From Franzini‐Armstrong


Figure 2.

A: heavy microsomal fraction obtained by sucrose‐gradient centrifugation at 39%–41% sucrose. Arrows, triad junctions; double arrow, expanded T tubule. Bar line, 250 nm. B: ouabain‐binding vesicles isolated from the heavy microsomal fraction, shown in A, by French‐press treatment and sucrose‐gradient centrifugation (22%–25% sucrose). Long arrows, vesicles with double profiles; short arrows, vesicles without clearly defined membranes.

[From Lau et al.


Figure 3.

A: terminal cisternae vesicles isolated from the heavy microsomal fraction by French‐press treatment and sucrose‐gradient centrifugation at 31%–33% sucrose concentration. Bar, 250 nm. B: terminal cisternae vesicles obtained as above but at 39%–41% sucrose concentration. Note electron‐dense content, which is presumed to represent calsequestrin. Bar, 250 nm.

[From Lau et al.


Figure 4.

Protein composition of rabbit, chicken, and lobster sarcoplasmic reticulum. Microsomes were prepared as described in ref. . For the removal of surface proteins microsomes were suspended in 0.25 M sucrose, 1 mM EGTA, 20 mM Tris‐HCl, 2 mM dithiothreitol, pH 8.0, and 50 μg/ml phenylmethylsulfonylfluoride and incubated at 4°C for 30 min . After centrifugation at 145,000 g for 30 min, supernatant was carefully decanted and washing step was repeated. Combined supernatant was precipitated with 10% trichloroacetic acid (TCA) and sediments were neutralized with 0.1 N NaOH. Gel electrophoresis (5%–12% gradient gel) was carried out using 20‐ to 75‐μg samples. Samples 1–3, rabbit microsomes; 4–6, chicken microsomes; 7–9, lobster microsomes; 10, bovine serum albumin; 11, rabbit skeletal muscle actomyosin. Samples 1, 4, 7, microsomes before EGTA washing. Samples 2, 5, 8, microsomes after EGTA washing (intrinsic membrane proteins). Samples 3, 6, 9, concentrated EGTA extract (surface proteins).

[From Ohnoki and Martonosi , © 1980, with permission from Pergamon Press, Ltd


Figure 5.

Temperature dependence of the ATPase activity of microsomes, purified ATPase, and reconstituted vesicles containing dipalmitoyl, dimyristoyl, and dioleoyl lecithin. Enzyme preparations were obtained as described by Nakamura et al. . Mixing ratio of protein, phospholipid, and cholate was usually 1:4:1. ATPase activities were measured in a medium of 0.5 m KCl, 10 mM imidazole, 5 mM MgCl2, 5 mM ATP, 0.5 mM EGTA, and 0.45 mM CaCl2. Time of incubation and concentration of enzyme were varied in order to define reaction velocity from the linear portion of the time curve at each temperature. ○——○, Dipalmitoyl lecithin‐ATPase; ▵——▵, dimyristoyl lecithin‐ATPase; ▴——▴, dioleyl lecithin‐ATPase; □——□, microsomes; •——•, purified ATPase without added lipid.

[From Nakamura et al.


Figure 6.

Dependence on ATP concentration of transient enzyme phosphorylation (A) and transient inorganic phosphate (Pi) liberation (B) by sarcoplasmic reticulum vesicles. Final ATP concentration in μM: , 0.5; ○——○, 1; •——•, 2.5; ▵——▵, 5; ▴——▴, 10; □——□, 25; ▪——▪, 100.

[From Froehlich and Taylor


Figure 7.

A: time resolution of the Ca2+ translocation burst with ATP as substrate. Phosphoenzyme (EP) was measured by acid quenching (•) and Ca2+ uptake by the EGTA‐quenching method (○). The reaction medium contained 20 mM morpholinopropane sulfonic acid (MOPS), pH 6.8, 80 mM KCl, 5 mM MgCl2, 0.4 mg of protein/ml, 35/μM CaCl2, and 2μM[γ‐32P]ATP (•) or 35 μM 45CaCl2 and 2 μM ATP (○). B: enzyme phosphorylation by ITP, Ca2+ uptake and Pi production during the transient state. [ITP] = 1 mM. Phosphoenzyme (▵) and Pi (⋄) were assayed by acid‐quenching method, and Ca2+ uptake (•) by EGTA‐quenching method.

[A from Verjovski‐Almeida and Inesi , B from Verjovski‐Almeida et al. , reprinted with permission from Biochemistry, © 1978 American Chemical Society


Figure 8.

Relation between Ca2+ release and rebinding, and formation and decay of the phosphorylated enzyme. Final concentration of [γ‐32P]ATP was 5 μM. For other details see Ikemoto . Note that the ordinates are drawn in a 2:1 ratio to facilitate comparison of the amount of phosphorylated intermediate with that of the released Ca2+. ○, Amount of released Ca2+; •, phosphorylated enzyme.

[From Ikemoto


Figure 9.

Formation of ATP from E‐P and ADP. Sarcoplasmic reticulum (11 mg/ml protein) was phosphorylated with 5.0 μM [32P]ATP in 0.909 ml of reaction medium containing 1.1 mM MgCl2, 55 μM CaCl2, 165 mM KCl, and 110 mM Tris‐HCl at pH 8.8 and 15°C. After 1.5 s, the phosphorylation reaction was stopped by addition (↓) of 0.091 ml of solution containing 366 mM EGTA and 2.2 mM ADP at pH 8.8 (•, ▴), or of 366 mM EGTA alone at pH 8.8 (○, ▵). At intervals after the start of phosphorylation, SR was denatured with perchloric acid, and the concentrations of [32P]ATP (•, ○) and EP (▴, ▵) were measured.

[From Kanazawa et al.


Figure 10.

Structure of dyes used as membrane potential indicators. Oxacarbocyanine (I), oxadicarbocyanine (II, III), thiadicarbocyanine (IV, V), and indodicarbocyanine (VI) have delocalized positive charges. Nile blue A (VII) contains one localized positive charge. Oxonol VI (VIII) and Di‐Ba‐C4 (IX) have delocalized negative charges, whereas merocyanine 540 (X), WW781 (XI), and ANS (XII) contain a localized negative charge. Dyes with delocalized charges penetrate across membranes, while those with localized charges are relatively impermeant. Mechanisms of dye response to potential are different in each class .



Figure 11.

Correlation between membrane potential and the rate of Ca2+ uptake. A: generation of membrane potential. Microsomes (4 mg protein/ml) suspended in 0.15 M K‐glutamate, 10.0 mM imidazole, 5.0 mM Mg2+‐maleate were diluted 50‐fold into media containing 5 mM Mg2+‐maleate, 10 mM imidazole, 0.1 mM Ca2+‐maleate, 10 μM 3,3′‐diethylthiodicarbocyanine and 1 μM valinomycin, with glycine and K‐glutamate at the following concentrations: 1) 0.150 M K‐glutamate, no glycine; 2) 0.075 M K‐glutamate, 0.150 M glycine; 3) 0.040 M K‐glutamate, 0.225 M glycine; 4) 0.022 M K‐glutamate, 0.262 M glycine; 5) 0.012 M K‐glutamate, 0.281 M glycine; 6) no K‐glutamate, 0.300 M glycine. Absorbance change of 3,3′‐diethylthiodicarbocyanine at 660 mm was monitored using 600 nm as a reference wavelength. Temperature, 15° C. B: effect of membrane potential on Ca2+ uptake. Experiment was similar to that described in A except that microsome concentration was 10 times greater, and dilution medium contained 1 mM ATP (diNa) as energy source for Ca2+ transport and arsenazo III (50 μM) instead of 3,3′‐diethylthiodicarbocyanine to monitor Ca2+ transport. Absorbance response of arsenazo III to Ca2+ (10–100 μM), measured at 660 nm using 685 nm as a reference wavelength, was 20% less in 0.15 M K‐glutamate than in 0.3 M glycine.

[Adapted from Beeler


Figure 12.

Tryptic peptide maps of [36S]methionine‐labeled Ca2+‐transport ATPases. Maps were prepared from tryptic digests of reduced and carboxymethylated ATPases isolated from muscle or synthesized in vitro. Plates were sprayed with 7% 2,5‐diphenyloxazole in acetone and exposed on X‐ray film at −70°C for fluorography. A: ninhydrin‐stained peptide map of Ca2+‐transport ATPase purified from adult chicken pectoralis muscle. B: diagram of the peptide pattern in A; positions of the principal [36S]methionine‐labeled peptides of C are indicated by filled circles. C: autoradiogram of [35S]methionine‐labeled peptides in tryptic digests of Ca2+‐transport ATPase from 5‐day‐old cultured chicken muscle cells, labeled for 24 h in a culture medium containing 50 μCi of [35S]methionine/ml. ATPase was isolated by immunoprecipitation and purified by gel electrophoresis. D: autoradiogram of [35S]methionine‐labeled peptides in tryptic digests of ATPase synthesized in vitro by bound polysomes. ATPase was isolated by immunoprecipitation and purified by gel electrophoresis.

[From Chyn et al.
References
 1. Abramson, J. J., and A. E. Shamoo. Purification and characterization of the 45,000 dalton fragment from tryptic digestion of (Ca2+ + Mg2+)‐adenosine triphosphatase of sarcoplasmic reticulum. J. Membr. Biol. 44: 233–257, 1978.
 2. Aderem, A. A., D. B. McIntosh, and M. C. Berman. Occurrence and role of tightly bound adenine nucleotides in sarcoplasmic reticulum of rabbit skeletal muscle. Proc. Natl. Acad. Sci. USA 76: 3622–3626, 1979.
 3. Adrian, R. H. Charge movement in the membrane of striated muscle. Annu. Rev. Biophys. Bioeng. 7: 85–112, 1978.
 4. Åkerman, K. E. O., and C. H. J. Wolff. Charge transfer during Ca2+ uptake by rabbit skeletal muscle sarcoplasmic reticulum vesicles as measured with oxonol VI. FEBS Lett. 100: 291–295, 1979.
 5. Allen, G. On the primary structure of the Ca2+‐ATPase of sarcoplasmic reticulum. In: Membrane Proteins, edited by P. Nicholls, J. V. Møller, P. L. Jørgensen, and A. J. Moody. New York: Pergamon, 1977, p. 159–168. (Proc. FEBS, 11th, Copenhagen, 1977.)
 6. Allen, G. The primary structure of the calcium‐transporting adenosine triphosphatase of rabbit skeletal sarcoplasmic reticulum. Soluble tryptic peptides from the succinylated carboxymethylated protein. Biochem. J. 187: 545–563, 1980.
 7. Allen, G. Primary structure of the calcium ion‐transporting adenosine triphosphatase of rabbit skeletal sarcoplasmic reticulum. Soluble peptides from the α‐chymotryptic digest of the carboxymethylated protein. Biochem. J. 187: 565–575, 1980.
 8. Allen, G., R. C. Bottomley, and B. J. Trinnaman. Primary structure of the calcium ion‐transporting adenosine triphosphatase from rabbit skeletal sarcoplasmic reticulum. Some peptic, thermolytic, tryptic and staphylococcal‐proteinase peptides. Biochem. J. 187: 577–589, 1980.
 9. Allen, G., and N. M. Green. A 31‐residue tryptic peptide from the active site of the [Ca++]‐transporting adenosine triphosphatase of rabbit sarcoplasmic reticulum. FEBS Lett. 63: 188–192, 1976.
 10. Allen, G., and N. M. Green. Primary structures of cysteine containing peptides from the calcium ion transporting adenosine triphosphatase of rabbit sarcoplasmic reticulum. Biochem. J. 173: 393–402, 1978.
 11. Allen, G., B. J. Trinnaman, and N. M. Green. The primary structure of the calcium ion‐transporting adenosine triphosphatase protein of rabbit skeletal sarcoplasmic reticulum. Peptides derived from digestion with cyanogen bromide, and the sequences of three long extramembranous segments. Biochem. J. 187: 591–616, 1980.
 12. Andersen, J. P., P. Fellmann, J. V. Møller, and P. F. Devaux. Immobilization of a spin‐labeled fatty acid chain covalently attached to Ca2+‐ATPase from sarcoplasmic reticulum suggests an oligomeric structure. Biochemistry 20: 4928–4936, 1981.
 13. Andersen, J. P., and J. V. Møller. Reaction of sarcoplasmic reticulum Ca2+‐ATPase in different functional states with 5,5'‐dithiobis (2‐nitrobenzoate). Biochim. Biophys. Acta 485: 188–202, 1977.
 14. Anzai, K., Y. Kirino, and H. Shimizu. Temperature‐induced change in the Ca2+‐dependent ATPase activity and in the state of the ATPase protein of sarcoplasmic reticulum membrane. J. Biochem. Tokyo 84: 815–821, 1978.
 15. Ariki, M., and P. D. Boyer. Characterization of medium inorganic phosphate‐water exchange catalyzed by sarcoplasmic reticulum vesicles. Biochemistry 19: 2001–2004, 1980.
 16. Armstrong, C. M., F. M. Bezanilla, and P. Horowicz. Twitches in the presence of ethylene glycol bis(β‐aminoethyl ether)‐N,N′‐tetraacetic acid. Biochim. Biophys. Acta 267: 605–608, 1972.
 17. Barlogie, B., W. Hasselbach, and M. Makinose. Activation of calcium efflux by ADP and inorganic phosphate. FEBS Lett. 12: 267–268, 1971.
 18. Barrett, J. N., and E. F. Barrett. Excitation‐contraction coupling in skeletal muscle: blockade by high extracellular concentrations of calcium buffers. Science 200: 1270–1272, 1978.
 19. Barzilay, M., and Z. I. Cabantchik. Anion transport in red blood cells. II. Kinetics of reversible inhibition by nitroaromatic sulfonic acids. Membr. Biochem. 2: 255–281, 1979.
 20. Barzilay, M., and Z. I. Cabantchik. Anion transport in red blood cells. III. Sites and sidedness of inhibition by high‐affinity reversible binding probes. Membr. Biochem. 2: 297–322, 1979.
 21. Barzilay, M., S. Ship, and Z. I. Cabantchik. Anion transport in red blood cells. I. Chemical properties of anion recognition sites as revealed by structure‐activity relationships of aromatic sulfonic acids. Membr. Biochem. 2: 227–254, 1979.
 22. Baskin, R. J. Ultrastructure and calcium transport in crustacean muscle microsomes. J. Cell Biol. 48: 49–60, 1971.
 23. Baskin, R. J. Ultrastructure and calcium transport in microsomes from developing muscle. J. Ultrastruct. Res. 49: 348–371, 1974.
 24. Bastide, F., G. Meissner, S. Fleischer, and R. L. Post. Similarity of the active site of phosphorylation of the adenosine triphosphate for transport of sodium and potassium ions in kidney to that for transport of calcium ions in the sarcoplasmic reticulum of muscle. J. Biol. Chem. 248: 8385–8391, 1973.
 25. Baylor, S. M., W. K. Chandler, and M. W. Marshall. Studies in the skeletal muscle using the optical probes of membrane potential. In: Regulation of Muscle Contraction: Excitation‐Contraction Coupling, edited by A. D. Grinnell and M. A. B. Brazier. New York: Academic, 1981, p. 97–130. (UCLA Forum Med. Sci. 22.)
 26. Baylor, S. M., and H. Oetliker. Birefringence experiments on isolated skeletal muscle fibres suggest a possible signal from the sarcoplasmic reticulum. Nature London 253: 97–101, 1975.
 27. Baylor, S. M., and H. Oetliker. A large birefringence signal preceding contraction in single twitch fibres of the frog. J. Physiol. London 264: 141–162, 1977.
 28. Baylor, S. M., and H. Oetliker. The optical properties of birefringence signals from single muscle fibres. J. Physiol. London 264: 163–198, 1977.
 29. Baylor, S. M., and H. Oetliker. Birefringence signals from surface and T‐system membranes of frog single muscle fibres. J. Physiol. London 264: 199–213, 1977.
 30. Beeler, T. J. Relationship between calcium uptake and membrane potential of the sarcoplasmic reticulum. Federation Proc. 39: 1663, 1980.
 31. Beeler, T. J. Ca2+ uptake and membrane potential in sarcoplasmic reticulum vesicles. J. Biol. Chem. 255: 9156–9161, 1980.
 32. Beeler, T. J., R. H. Farmen, and A. N. Martonosi. The mechanism of voltage‐sensitive dye responses on sarcoplasmic reticulum. J. Membr. Biol. 62: 113–137, 1981.
 33. Beeler, T. J., J. T. Russell, and A. Martonosi. Optical probe responses on sarcoplasmic reticulum: oxacarbocyanines as probes of membrane potential. Eur. J. Biochem. 95: 579–591, 1979.
 34. Beil, F. U., D. Chak, and W. Hasselbach. Phosphorylation from inorganic phosphate and ATP synthesis of sarcoplasmic membranes. Eur. J. Biochem. 81: 151–164, 1977.
 35. Beil, F. U., D. Chak, W. Hasselbach, and H. H. Weber. Competition between oxalate and phosphate during active calcium accumulation by sarcoplasmic vesicles. Z. Naturforsch. Teil C 32: 281–287, 1977.
 36. Bennett, J. P., K. A. McGill, and G. B. Warren. The role of lipids in the functioning of a membrane protein: the sarcoplasmic reticulum calcium pump. Curr. Top. Membr. Transp. 14: 127–164, 1980.
 37. Bennett, J. P., G. A. Smith, M. D. Houslay, T. R. Hesketh, J. C. Metcalfe, and G. B. Warren. The phospholipid head‐group specificity of an ATP‐dependent calcium pump. Biochim. Biophys. Acta 513: 310–320, 1978.
 38. Beringer, T. A freeze fracture study of sarcoplasmic reticulum from fast and slow muscle of the mouse. Anat. Rec. 184: 647–664, 1976.
 39. Bertaud, W. S., D. G. Rayns, and F. O. Simpson. Freeze‐etch studies on fish skeletal muscle. J. Cell Sci. 6: 537–557, 1970.
 40. Bezanilla, F., and P. Horowicz. Fluorescence intensity changes associated with contractile activation in frog muscle stained with Nile Blue A. J. Physiol. London 246: 709–735, 1975.
 41. Bianchi, C. P., and T. C. Bolton. Action of local anesthetics on coupling systems in muscle. J. Pharmacol. Exp. Ther. 157: 388–405, 1967.
 42. Biltonen, R. L., and E. Freire. Thermodynamic characterization of conformational states of biological macromolecules using differential scanning calorimetry. Crit. Rev. Biochem. 5: 85–124, 1978.
 43. Birks, R. I., and D. F. Davey. Osmotic responses demonstrating the extracellular character of the sarcoplasmic reticulum. J. Physiol. London 202: 171–188, 1969.
 44. Blaustein, M. P. The ins and outs of calcium transport in squid axons: internal and external ion activation of calcium efflux. Federation Proc. 35: 2574–2578, 1976.
 45. Boland, R., T. Chyn, D. Roufa, E. Reyes, and A. Martonosi. The lipid composition of muscle cells during development. Biochim. Biophys. Acta 489: 349–359, 1977.
 46. Boland, R., and A. Martonosi. The lipid composition and Ca transport function of sarcoplasmic reticulum (SR) membranes during development in vivo and in vitro. In: Function and Biosynthesis of Lipids, edited by N. G. Bazan, R. R. Brenner, and N. M. Guisto. New York: Plenum, 1976, p. 233–239.
 47. Boland, R., A. Martonosi, and T. W. Tillack. Developmental changes in the composition and function of sarcoplasmic reticulum. J. Biol. Chem. 249: 612–623, 1974.
 48. Bonnet, J. P., M. Galante, D. Brethes, J. C. Dedieu, and J. Chevallier. Purification of sarcoplasmic reticulum vesicles through their loading with calcium phosphate. Arch. Biochem. Biophys. 191: 32–41, 1978.
 49. Bornet, E. P., M. L. Entman, W. B. Van Winkle, A. Schwartz, D. C. Lehotay, and G. S. Levey. Cyclic AMP modulation of calcium accumulation by sarcoplasmic reticulum from fast skeletal muscle. Biochim. Biophys. Acta 468: 188–193, 1977.
 50. Boyer, P. D. A model for conformational coupling of membrane potential and proton translocation to ATP synthesis and to active transport. FEBS Lett. 58: 1–6, 1975.
 51. Boyer, P. D., and M. Ariki. 18O probes of phosphoenzyme formation and cooperativity with sarcoplasmic reticulum ATPase. Federation Proc. 39: 2410–2421, 1980.
 52. Boyer, P. D., B. Chance, L. Ernster, P. Mitchell, E. Racker, and E. C. Slater. Oxidative phosphorylation and photophosphorylation. Annu. Rev. Biochem. 46: 955–1026, 1977.
 53. Boyer, P. D., L. De Meis, M. da G. C. Carvalho, and D. D. Hackney. Dynamic reversal of enzyme carboxyl group phosphorylation as the basis of the oxygen exchange catalyzed by sarcoplasmic reticulum adenosine triphosphatase. Biochemistry 16: 136–140, 1977.
 54. Brandt, N. R., A. H. Caswell, and J.‐P. Brunschwig. ATP‐energized Ca2+ pump in isolated transverse tubules of skeletal muscle. J. Biol. Chem. 255: 6290–6298, 1980.
 55. Bray, D. F., and D. G. Rayns. A comparative freeze‐etch study of the sarcoplasmic reticulum of avian fast and slow muscle fibers. J. Ultrastruct. Res. 57: 251–259, 1976.
 56. Bray, D. F., D. G. Rayns, and E. B. Wagenaar. Intramembrane particle densities in freeze fractured sarcoplasmic reticulum. Can. J. Zool. 56: 140–145, 1978.
 57. Briggs, F. N., R. M. Wise, and J. A. Hearn. The effect of lithium and potassium on the transient state kinetics of the (Ca + Mg)‐ATPase of cardiac sarcoplasmic reticulum. J. Biol. Chem. 253: 5884–5885, 1978.
 58. Brinley, F. J., Jr. Calcium buffering in squid axons. Annu. Rev. Biophys. Bioeng. 7: 363–392, 1978.
 59. Bürkli, A., and R. J. Cherry. Rotational motion and flexibility of Ca2+, Mg2+ dependent adenosine 5'‐triphosphatase in sarcoplasmic reticulum membranes. Biochemistry 20: 138–145, 1981.
 60. Cabantchik, Z. I., P. A. Knauf, and A. Rothstein. The anion transport system of the red blood cell. The role of membrane protein evaluated by the use of probes.' Biochim. Biophys. Acta 515: 239–302, 1978.
 61. Campbell, K. P., C. Franzini‐Armstrong, and A. E. Shamoo. Further characterization of light and heavy sarcoplasmic reticulum vesicles. Identification of the “sarcoplasmic reticulum feet” associated with heavy sarcoplasmic reticulum vesicles. Biochim. Biophys. Acta 602: 97–116, 1980.
 62. Caputo, C. Excitation and contraction processes in muscle. Annu. Rev. Biophys. Bioeng. 7: 63–83, 1978.
 63. Carafoli, E., F. Clementi, W. Drabikowski, and A. Margreth (editors). Calcium Transport in Contraction and Secretion. Amsterdam: North‐Holland, 1975.
 64. Carafoli, E., and M. Crompton. The regulation of intracellular calcium. Curr. Top. Membr. Transp. 10: 151–216, 1978.
 65. Carley, W. W., and E. Racker. ATP dependent phosphate transport in sarcoplasmic reticulum, and reconstituted proteo‐liposomes. J. Membr. Biol. In press.
 66. Carraway, K. L., and D. E. Koshland, Jr. Carbodiimide modification of proteins. Methods Enzymol. 25: 616–623, 1972.
 67. Carsten, M. E. The cardiac calcium pump. Proc. Natl. Acad. Sci. USA 52: 1456–1462, 1964.
 68. Carvalho, A. P. Effects of potentiators of muscular contraction on binding of cations by sarcoplasmic reticulum. J. Gen. Physiol. 51: 427–442, 1968.
 69. Carvalho, A. P., and B. Leo. Effects of ATP on the interaction of Ca++, Mg++, and K+, with fragmented sarcoplasmic reticulum isolated from rabbit skeletal muscle. J. Gen. Physiol. 50: 1327–1352, 1967.
 70. Carvalho, M. Da G. C., D. G. de Souza, and L. de Meis. On a possible mechanism of energy conservation in sarcoplasmic reticulum membrane. J. Biol. Chem. 251: 3629–3636, 1976.
 71. Caswell, A. H., S. P. Baker, H. Boyd, L. T. Potter, and M. Garcia. β‐Adrenergic receptor and adenylate cyclase in transverse tubules of skeletal muscle. J. Biol. Chem. 253: 3049–3054, 1978.
 72. Caswell, A. H., Y. H. Lau, and J.‐P. Brunschwig. Ouabain binding vesicles from skeletal muscle. Arch. Biochem. Biophys. 176: 417–430, 1976.
 73. Caswell, A. H., Y. H. Lau, M. Garcia, and J. P. Brunschwig. Recognition and junction formation by isolated transverse tubules and terminal cisternae of skeletal muscle. J. Biol. Chem. 254: 202–208, 1979.
 74. Chacko, S. DNA synthesis, mitosis, and differentiation in cardiac myogenesis. Dev. Biol. 35: 1–18, 1973.
 75. Chaloub, R. M., H. Guimaraes‐Motta, S. Verjovski‐Almeida, L. de Meis, and G. Inesi. Sequential reactions in Pi utilization for ATP synthesis by sarcoplasmic reticulum. J. Biol. Chem. 254: 9464–9468, 1979.
 76. Champeil, P., S. Bushlen‐Boucly, F. Bastide, and C. Gary‐Bobo. Sarcoplasmic reticulum ATPase. Spin labeling detection of ligand‐induced changes in the relative reactivities of certain sulfhydryl groups. J. Biol. Chem. 253: 1179–1186, 1978.
 77. Champeil, P., J. L. Rigaud, and C. M. Gary‐Bobo. Calcium translocation mechanism in sarcoplasmic reticulum vesicles, deduced from location studies of protein‐bound spin labels. Proc. Natl. Acad. Sci. USA 77: 2405–2409, 1980.
 78. Chandler, W. K., R. F. Rakowski, and M. F. Schneider. A non‐linear voltage dependent charge movement in frog skeletal muscle. J. Physiol. London 254: 245–283, 1976.
 79. Chevallier, J., and R. A. Butow. Calcium binding to the sarcoplasmic reticulum of rabbit skeletal muscle. Biochemistry 10: 2733–2737, 1971.
 80. Chiesi, M., D. Lewis, and G. Inesi. Ca2+‐H+ exchange mechanism in sarcoplasmic reticulum (SR) vesicles. Federation Proc. 39: 2037, 1980.
 81. Chyn, T., and A. N. Martonosi. Chemical modification of sarcoplasmic reticulum membranes. Biochim. Biophys. Acta 468: 114–126, 1977.
 82. Chyn, T. L., A. N. Martonosi, T. Morimoto, and D. D. Sabatini. In vitro synthesis of the Ca2+ transport ATPase by ribosomes bound to sarcoplasmic reticulum membranes. Proc. Natl. Acad. Sci. USA 76: 1241–1245, 1979.
 83. Coan, C. R., and G. Inesi. Ca2+ dependent effect of acetyl‐phosphate on spin‐labeled sarcoplasmic reticulum. Biochem. Biophys. Res. Commun. 71: 1283–1288, 1976.
 84. Coan, C. R., and G. Inesi. Ca2+‐dependent effect of ATP on spin‐labeled sarcoplasmic reticulum. J. Biol. Chem. 252: 3044–3049, 1977.
 85. Coan, C., S. Verjovski‐Almeida, and G. Inesi. Ca2+ regulation of conformational states in the transport cycle of spin‐labeled sarcoplasmic reticulum ATPase. J. Biol. Chem. 254: 2968–2974, 1979.
 86. Coetzee, G. A., and W. Gevers. Myosin in primary cultures of hamster heart cells. Dev. Biol. 63: 128–138, 1978.
 87. Coffey, R. L., E. Lagwinska, M. Oliver, and A. N. Martonosi. The mechanism of ATP hydrolysis by sarcoplasmic reticulum. Arch. Biochem. Biophys. 170: 37–48, 1975.
 88. Cohen, A., and Z. Selinger. Calcium binding properties of sarcoplasmic reticulum membranes. Biochim. Biophys. Acta 183: 27–35, 1969.
 89. Cohen, L. B., and B. M. Salzberg. Optical measurement of membrane potential. Rev. Physiol. Biochem. Pharmacol. 83: 35–88, 1978.
 90. Cohen, P. The role of cyclic AMP dependent protein kinase in the regulation of glycogen metabolism in mammalian skeletal muscle. Curr. Top. Cell. Regul. 14: 117–196, 1978.
 91. Conti, F. Fluorescent probes in nerve membranes. Annu. Rev. Biophys. Bioeng. 4: 287–310, 1975.
 92. Coronado, R., and C. Miller. Voltage‐dependent caesium blockade of a cation channel from fragmented sarcoplasmic reticulum. Nature London 280: 807–810, 1979.
 93. Costantin, L. L. The role of sodium current in the radial spread of contraction in frog muscle fibers. J. Gen. Physiol. 55: 703–715, 1970.
 94. Costantin, L. L. Contractile activation in skeletal muscle. Prog. Biophys. Mol. Biol. 29: 197–224, 1975.
 95. Costantin, L. L., C. Franzini‐Armstrong, and R. J. Podolsky. Localization of calcium‐accumulating structures in striated muscle fibers. Science 147: 158–160, 1965.
 96. Costantin, L. L., and R. J. Podolsky. Depolarization of the internal membrane system in the activation of frog skeletal muscle. J. Gen. Physiol. 50: 1101–1124, 1967.
 97. Crowe, L. M., and R. J. Baskin. Stereological analysis of developing sarcotubular membranes. J. Ultrastruct. Res. 58: 10–22, 1977.
 98. Dahms, A. S., T. Kanazawa, and P. D. Boyer. Source of the oxygen in the C‐O‐P linkage of the acyl phosphate in transport adenosine triphosphatases. J. Biol. Chem. 248: 6592–6595, 1973.
 99. Damiani, E., R. Betto, S. Salvatori, P. Volpe, G. Salviati, and A. Margreth. Polymorphism of sarcoplasmic‐reticulum adenosine triphosphatase of rabbit skeletal muscle. Biochem. J. 197: 245–248, 1981.
 100. Davis, D. G., G. Inesi, and T. Gulik‐Krzywicki. Lipid molecular motion and enzyme activity in sarcoplasmic reticulum membrane. Biochemistry 15: 1271–1276, 1976.
 101. Deamer, D. W. Isolation and characterization of a lysolecithinadenosinetriphosphatase complex from lobster muscle microsomes. J. Biol. Chem. 248: 5477–5485, 1973.
 102. Deamer, D. W., and R. J. Baskin. Ultrastructure of sarcoplasmic reticulum preparations. J. Cell Biol. 42: 296–307, 1969.
 103. Deamer, D. W., and R. J. Baskin. ATP synthesis in sarcoplasmic reticulum. Arch. Biochem. Biophys. 153: 47–54, 1972.
 104. Dean, W. L., and C. Tanford. Reactivation of lipid depleted Ca2+ ATPase by nonionic detergent. J. Biol. Chem. 252: 3551–3553, 1977.
 105. Dean, W. L., and C. Tanford. Properties of a delipidated detergent‐activated Ca2+‐ATPase. Biochemistry 17: 1683–1690, 1978.
 106. De Boland, A. R., R. L. Jilka, and A. N. Martonosi. Passive Ca2+ permeability of phospholipid vesicles and sarcoplasmic reticulum membranes. J. Biol. Chem. 250: 7501–7510, 1975.
 107. De Foor, P. H., D. Levitsky, T. Biryukova, and S. Fleischer. Immunological dissimilarity of the calcium pump protein of skeletal and cardiac muscle sarcoplasmic reticulum. Arch. Biochem. Biophys. 200: 196–205, 1980.
 108. Degani, C., and P. D. Boyer. A borohydride reduction method for characterization of the acyl phosphate linkage in proteins and its application to sarcoplasmic reticulum adenosine triphosphatase. J. Biol. Chem. 248: 8222–8226, 1973.
 109. Deguchi, N., P. L. Jørgensen, and A. B. Maunsbach. Ultrastructure of the sodium pump. Comparison of thin sectioning, negative staining and freeze fracture of purified membrane bound (Na+, K+) ATPase. J. Cell Biol. 75: 619–634, 1977.
 110. De Kruijff, B., A. M. H. P. van Den Besselaar van Den Bosch, H., and L. L. M. van Deenen. Inside‐outside distribution and diffusion of phosphatidylcholine in rat sarcoplasmic reticulum as determined by 13C NMR and phosphatidylcholine exchange protein. Biochim. Biophys. Acta 555: 181–192, 1979.
 111. De Meis, L. Activation of Ca2+ uptake by acetyl phosphate in muscle microsomes. Biochim. Biophys. Acta 172: 343–344, 1969.
 112. De Meis, L. Ca2+ uptake and acetyl phosphatase of skeletal muscle microsomes. Inhibition by Na+, K+, Li+ and adenosine triphosphate. J. Biol. Chem. 244: 3733–3739, 1969.
 113. De Meis, L. Allosteric inhibition by alkali ions of the Ca2+ uptake and adenosine triphosphatase activity of skeletal muscle microsomes. J. Biol. Chem. 246: 4764–4773, 1971.
 114. De Meis, L. Phosphorylation of the membranous protein of the sarcoplasmic reticulum; inhibition by Na+ and K+. Biochemistry 11: 2460–2465, 1972.
 115. De Meis, L. Regulation of steady state level of phosphoenzyme and ATP synthesis in sarcoplasmic reticulum vesicles during reversal of the Ca2+ pump. J. Biol. Chem. 251: 2055–2062, 1976.
 116. De Meis, L., and P. D. Boyer. Induction by nucleotide triphosphate hydrolysis of a form of sarcoplasmic reticulum ATPase capable of medium phosphate‐oxygen exchange in presence of calcium. J. Biol. Chem. 253: 1556–1559, 1978.
 117. De Meis, L., and M. Da G. C. Carvalho. On the sidedness of membrane phosphorylation by Pi and ATP synthesis during reversal of the Ca2+ pump of sarcoplasmic reticulum vesicles. J. Biol. Chem. 251: 1413–1417, 1976.
 118. De Meis, L., and M. C. F. de Mello. Substrate regulation of membrane phosphorylation and of Ca2+ transport in the sarcoplasmic reticulum. J. Biol. Chem. 248: 3691–3701, 1973.
 119. De Meis, L., and W. Hasselbach. Acetyl phosphate as substrate for Ca2+ uptake in skeletal muscle microsomes. Inhibition by alkali ions. J. Biol. Chem. 246: 4759–4763, 1971.
 120. De Meis, L., and H. Masuda. Phosphorylation of the sarcoplasmic reticulum membrane by orthophosphate through two different reactions. Biochemistry 13: 2057–2062, 1974.
 121. De Meis, L., and R. K. Tume. A new mechanism by which an H+ concentration gradient drives the synthesis of adenosine triphosphate, pH jump, and adenosine triphosphate synthesis by the Ca2+‐dependent adenosine triphosphatase of sarcoplasmic reticulum. Biochemistry 16: 4455–4463, 1977.
 122. De Meis, L., and A. L. Vianna. Energy interconversion by the Ca2+‐dependent ATPase of the sarcoplasmic reticulum. Annu. Rev. Biochem. 48: 275–292, 1979.
 123. Devaux, P. F., and J. Davoust. Current views on boundary lipids deduced from electron‐spin resonance studies. In: Membranes and Transport, edited by A. Martonosi. New York: Plenum, 1982, vol. 1, p. 125–133.
 124. Devine, C. E., and D. G. Rayns. Freeze fracture studies of membrane systems in vertebrate muscle. II. Smooth muscle. J. Ultrastruct. Res. 51: 293–306, 1975.
 125. Duggan, P. F. Some properties of the monovalent‐cation‐stimulated adenosine triphosphatase of frog sartorius microsomes. Biochim. Biophys. Acta 99: 144–155, 1965.
 126. Duggan, P. F. Potassium‐activated adenosinetriphosphatase and calcium uptake by sarcoplasmic reticulum. Life Sci. 6: 561–567, 1967.
 127. Duggan, P. F. The monovalent cation‐stimulated calcium pump in frog skeletal muscle. Life Sci. 7: 913–919, 1968.
 128. Duggan, P. F. Calcium uptake and associated adenosine triphosphatase activity in fragmented sarcoplasmic reticulum. Requirement for potassium ions. J. Biol. Chem. 252: 1620–1627, 1977.
 129. Duggan, P. F., and A. Martonosi. Sarcoplasmic reticulum. IX. The permeability of sarcoplasmic reticulum membranes. J. Gen. Physiol. 56: 147–167, 1970.
 130. Dupont, Y. Fluorescence studies of the sarcoplasmic reticulum calcium pump. Biochem. Biophys. Res. Commun. 71: 544–550, 1976.
 131. Dupont, Y. Kinetics and regulation of sarcoplasmic reticulum ATPase. Eur. J. Biochem. 72: 185–190, 1977.
 132. Dupont, Y. Mechanism of the sarcoplasmic reticulum calcium pump. Fluorometric study of the phosphorylated intermediates. Biochem. Biophys. Res. Commun. 82: 893–900, 1978.
 133. Dupont, Y. Electrogenic calcium transport in the sarcoplasmic reticulum membrane. In: Cation Flux Across Biomembranes, edited by Y. Mukohata and L. Packer. New York: Academic, 1979, p. 141–160.
 134. Dupont, Y. Occlusion of divalent cations in the phosphorylated calcium pump of sarcoplasmic reticulum. Eur. J. Biochem. 109: 231–238, 1980.
 135. Dupont, Y., S. C. Harrison, and W. Hasselbach. Molecular organization in the sarcoplasmic reticulum membrane studied by X‐ray diffraction. Nature London 244: 555–558, 1973.
 136. Dupont, Y., and J. B. Leigh. Transient kinetics of sarcoplasmic reticulum Ca2+ + Mg2+ ATPase studied by fluorescence. Nature London 273: 396–398, 1978.
 137. Dutton, A., E. D. Rees, and S. J. Singer. An experiment eliminating the rotating carrier mechanism for the active transport of Ca ion in sarcoplasmic reticulum membranes. Proc. Natl. Acad. Sci. USA 73: 1532–1536, 1976.
 138. Ebashi, S. Calcium binding activity of vesicular relaxing factor. J. Biochem. 50: 236–244, 1961.
 139. Ebashi, S. Excitation‐contraction coupling. Annu. Rev. Physiol. 38: 293–313, 1976.
 140. Ebashi, S. Muscle contraction and pharmacology. Trends Pharmacol. Sci. 1: 29–31, 1979.
 141. Ebashi, S. Ca ion and muscle contraction. In: Advances in Pharmacology and Therapeutics. Ions‐Cyclic Nucleotides‐Cholinergy, edited by J. C. Stoclet. Oxford, UK: Pergamon, 1979, vol. 3, p. 81–98.
 142. Ebashi, S., and M. Endo. Calcium ion and muscle contraction. Prog. Biophys. Mol. Biol. 18: 123–183, 1968.
 143. Ebashi, S., M. Endo, and I. Ohtsuki. Control of muscle contraction. Q. Rev. Biophys. 2: 351–384, 1969.
 144. Ebashi, S., and F. Lipmann. Adenosine triphosphate‐linked concentration of calcium ions in a particulate fraction of rabbit muscle. J. Cell Biol. 14: 389–400, 1962.
 145. Eckert, K., R. Grosse, D. O. Levitski, A. V. Kuzmin, V. N. Smirnov, and K. R. H. Repke. Determination and functional significance of low affinity nucleotide sites of Ca2+ + Mg2+‐dependent ATPase of sarcoplasmic reticulum. Acta Biol. Med. Ger. 36: K1–K10, 1977.
 146. Eisenberg, E., and L. E. Greene. The relation of muscle biochemistry to muscle physiology. Annu. Rev. Physiol. 42: 293–309, 1980.
 147. Endo, M. Calcium release from the sarcoplasmic reticulum. Physiol. Rev. 57: 71–108, 1977.
 148. Endo, M., Y. Kakuta, and T. Kitazawa. A further study of the Ca‐induced Ca release mechanism. In: Regulation of Muscle Contraction: Excitation‐Contraction Coupling, edited by A. D. Grinnell and M. A. B. Brazier. New York: Academic, 1981, p. 181–195. (UCLA Forum Med. Sci., 22.)
 149. Entman, M. L., E. P. Bornet, A. J. Garber, A. Schwartz, G. S. Levey, D. C. Lehotay, and L. A. Bricker. The cardiac sarcoplasmic reticulum‐glycogenolytic complex. A possible effector site for cyclic AMP. Biochim. Biophys. Acta 499: 228–237, 1977.
 150. Entman, M. L., M. A. Goldstein, and A. Schwartz. The cardiac sarcoplasmic reticulum‐glycogenolytic complex, an internal beta adrenergic receptor. Life Sci. 19: 1623–1630, 1976.
 151. Entman, M. L., K. Kaniike, M. A. Goldstein, T. E. Nelson, E. P. Bornet, T. W. Futch, and A. Schwartz. Association of glycogenolysis with cardiac sarcoplasmic reticulum. J. Biol. Chem. 251: 3140–3146, 1976.
 152. Epstein, M., Y. Kuriki, R. Biltonen, and E. Racker. Calorimetric studies of ligand‐induced modulation of calcium adenosine 5'‐triphosphatase from sarcoplasmic reticulum. Biochemistry 19: 5564–5568, 1980.
 153. Estep, T. N., and T. E. Thompson. Energy transfer in lipid bilayers. Biophys. J. 26: 195–208, 1979.
 154. Fabiato, A., and F. Fabiato. Relaxing and inotropic effects of cyclic AMP on skinned cardiac cells. Nature London 253: 556–558, 1975.
 155. Fabiato, A, and F. Fabiato. Calcium‐induced release of calcium from the sarcoplasmic reticulum of skinned cells from adult human, dog, cat, rabbit, rat, and frog hearts and from fetal and new‐born rat ventricles. Ann. NY Acad. Sci. 307: 491–522, 1978.
 156. Fabiato, A., and F. Fabiato. Cyclic AMP‐induced enhancement of calcium accumulation by the sarcoplasmic reticulum with no modification of the sensitivity of the myofilaments to calcium in skinned fibres from a fast skeletal muscle. Biochim. Biophys. Acta 539: 253–260, 1978.
 157. Fabiato, A., and F. Fabiato. Calcium and cardiac excitation‐contraction coupling. Annu. Rev. Physiol. 41: 473–484, 1979.
 158. Fanburg, B. L., D. B. Drachman, and D. Moll. Calcium transport in isolated sarcoplasmic reticulum during muscle maturation. Nature London 218: 962–964, 1968.
 159. Fanburg, B., R. M. Finkel, and A. Martonosi. The role of calcium in the mechanism of relaxation of cardiac muscle. J. Biol. Chem. 239: 2298–2306, 1964.
 160. Fanburg, B. L., and S. Matsushita. Phosphorylated intermediate of ATPase of isolated cardiac sarcoplasmic reticulum. J. Mol. Cell. Cardiol. 5: 111–115, 1973.
 161. Fiehn, W., and W. Hasselbach. The effect of phospholipase A on the calcium transport and the role of unsaturated fatty acids in ATPase activity of sarcoplasmic vesicles. Eur. J. Biochem. 13: 510–518, 1970.
 162. Fiehn, W., and A. Migala. Calcium binding to sarcoplasmic membranes. Eur. J. Biochem. 20: 245–248, 1971.
 163. Fiehn, W., J. B. Peter, J. F. Mead, and M. Gan‐Elepano. Lipids and fatty acids of sarcolemma, sarcoplasmic reticulum, and mitochondria from rat skeletal muscle. J. Biol. Chem. 246: 5617–5620, 1971.
 164. Fleischer, S., C. T. Wang, A. Saito, M. Pilarska, and J. T. McIntyre. Structural studies of sarcoplasmic reticulum in vitro and in situ. In: Cation Flux Across Biomembranes, edited by Y. Mukohata and L. Packer New York: Academic, 1979, p. 193–205.
 165. Ford, L. E., and R. J. Podolsky. Regenerative calcium release within muscle cells. Science 167: 58–59, 1970.
 166. Fozzard, H. A. Heart excitation‐contraction coupling. Annu. Rev. Physiol. 39: 201–220, 1977.
 167. Franzini‐Armstrong, C. Studies of the triad. I. Structure of the junction in frog twitch fibers. J. Cell Biol. 47: 488–499, 1970.
 168. Franzini‐Armstrong, C. Studies of the triad. II. Penetration of tracers into the junctional gap. J. Cell Biol. 49: 196–203, 1971.
 169. Franzini‐Armstrong, C. Studies of the triad. IV. Structure of the junction in frog slow fibers. J. Cell Biol. 56: 120–128, 1973.
 170. Franzini‐Armstrong, C. Freeze fracture of skeletal muscle from the tarantula spider. Structural differentiations of sarcoplasmic reticulum and transverse tubular system membranes. J. Cell Biol. 61: 501–513, 1974.
 171. Franzini‐Armstrong, C. Membrane particles and transmission at the triad. Federation Proc. 34: 1382–1389, 1975.
 172. Franzini‐Armstrong, C. Structure of sarcoplasmic reticulum. Federation Proc. 39: 2403–2409, 1980.
 173. Friedman, Z., and M. Makinose. Phosphorylation of skeletal muscle microsomes by acetylphosphate. FEBS Lett. 11: 69–72, 1970.
 174. Froehlich, J. P., and E. W. Taylor. Transient state kinetic studies of sarcoplasmic reticulum adenosine triphosphatase. J. Biol. Chem. 250: 2013–2021, 1975.
 175. Froehlich, J. P., and E. W. Taylor. Transient state kinetic effects of calcium ion on sarcoplasmic reticulum adenosine triphosphatase. J. Biol. Chem. 251: 2307–2315, 1976.
 176. Galani‐Kranias, E., R. Bick, and A. Schwartz. Phosphorylation of a 100,000 dalton component and its relationship to calcium transport in sarcoplasmic reticulum from rabbit skeletal muscle. Biochim. Biophys. Acta 628: 438–450, 1980.
 177. Garrahan, P. J., A. F. Rega, and G. L. Alonso. The interaction of magnesium ions with the calcium pump of sarcoplasmic reticulum. Biochim. Biophys. Acta 448: 121–132, 1976.
 178. Gattass, C. R., and L. de Meis. Ca2+ dependent inhibitory effects of Na+ and K+ on Ca2+ transport in sarcoplasmic reticulum vesicles. Biochim. Biophys. Acta 389: 506–515, 1975.
 179. Greenway, D. C., and D. H. MacLennan. Assembly of the sarcoplasmic reticulum. Synthesis of calsequestrin and the Ca2+ + Mg2+‐adenosine triphosphatase on membrane‐bound polyribosomes. Can. J. Biochem. 56: 452–456, 1978.
 180. Guillain, F., M. P. Gingold, S. Buschlen, and P. Champeil. A direct fluorescence study of the transient steps induced by calcium binding to sarcoplasmic reticulum ATPase. J. Biol. Chem. 255: 2072–2076, 1980.
 181. Gunn, R. B. Co‐ and counter‐transport mechanisms in cell membranes. Annu. Rev. Physiol. 42: 249–259, 1980.
 182. Ha, D. B., R. Boland, and A. Martonosi. Synthesis of the calcium transport ATPase of sarcoplasmic reticulum and other muscle proteins during development of muscle cells in vivo and in vitro. Biochim. Biophys. Acta 585: 165–187, 1979.
 183. Hasselbach, W. Relaxing factor and the relaxation of muscle. Prog. Biophys. Mol. Biol. 14: 167–222, 1964.
 184. Hasselbach, W. Relaxation and the sarcotubular calcium pump. Federation Proc. 23: 909–912, 1964.
 185. Hasselbach, W. Sarcoplasmic membrane ATPases. In: The Enzymes, edited by P. D. Boyer. New York: Academic, 1974, vol. X, p. 431–467.
 186. Hasselbach, W. The reversibility of the sarcoplasmic calcium pump. Biochim. Biophys. Acta 515: 23–53, 1978.
 187. Hasselbach, W. The sarcoplasmic calcium pump. A model of energy transduction in biological membranes. Top. Curr. Chem. 78: 1–56, 1979.
 188. Hasselbach, W., and L. G. Elfvin. Structural and chemical asymmetry of the calcium‐transporting membranes of the sarcotubular system as revealed by electron microscopy. J. Ultrastruct. Res. 17: 598–622, 1967.
 189. Hasselbach, W., and M. Makinose. Die Calciumpumpe der “Erschlaffungsgrana” des Muskels und ihre Abhängigkeit von der ATP‐Spaltung. Biochem. Z. 333: 518–528, 1961.
 190. Hasselbach, W., and M. Makinose. ATP and active transport. Biochem. Biophys. Res. Commun. 7: 132–136, 1962.
 191. Hasselbach, W., and M. Makinose. Über den Mechanismus des Calciumtransportes durch die Membranen des Sarkoplasmatischen Reticulums. Biochem. Z. 339: 94–111, 1963.
 192. Hasselbach, W., M. Makinose, and A. Migala. The arsenate induced calcium release from sarcoplasmic vesicles. FEBS Lett. 20: 311–315, 1972.
 193. Hasselbach, W., and A. Migala. Arrangement of proteins and lipids in the sarcoplasmic membrane. Z. Naturforsch. Teil C 30: 681–683, 1975.
 194. Hasselbach, W., and A. Migala. Calcium gradient dependent pyrophosphate formation by sarcoplasmic vesicles. Z. Naturforsch. Teil C 32: 993–996, 1977.
 195. Hasselbach, W., A. Migala, and B. Agostini. The location of the calcium precipitating protein in the sarcoplasmic membrane. Z. Naturforsch. Teil C 30: 600–607, 1975.
 196. Hasselbach, W., and K. Seraydarian. The role of sulfhydryl groups in calcium transport through the sarcoplasmic membranes of skeletal muscle. Biochem. Z. 345: 159–172, 1966.
 197. Hasselbach, W., J. Suko, M. H. Stromer, and R. The. Mechanism of calcium transport in sarcoplasmic reticulum. Ann. NY Acad. Sci. 264: 335–349, 1976.
 198. Hasselbach, W., and H. H. Weber. Anion specific carriers in the sarcoplasmic membranes. In: Membrane Proteins in Transport and Phosphorylation, edited by G. F. Azzone, M. E. Klingenberg, E. Quagliariello, and N. Siliprandi. Amsterdam: North‐Holland, 1974, p. 103–111.
 199. Haynes, D. Rapid kinetics of active Ca2+ transport by skeletal sarcoplasmic reticulum monitored by a fluorescent probe. Federation Proc. 39: 1663, 1980.
 200. Haynes, D. H., and V. C. K. Chiu. 1‐anilino‐8‐naphthalene‐sulfonate as a fluorescent probe of calcium transport: application to skeletal sarcoplasmic reticulum. Ann. NY Acad. Sci. 307: 217–220, 1978.
 201. Hebdon, G. M., L. W. Cunningham, and N. M. Green. Cross‐linking experiments with the adenosine triphosphatase of sarcoplasmic reticulum. Biochem. J. 179: 135–139, 1979.
 202. Heilmann, C., D. Brdiczka, E. Nickel, and D. Pette. ATPase activities, Ca2+ transport and phosphoprotein formation in sarcoplasmic reticulum subfractions of fast and slow rabbit muscles. Eur. J. Biochem. 81: 211–222, 1977.
 203. Heilmann, C., W. Muller, and D. Pette. Correlation between ultrastructural and functional changes in sarcoplasmic reticulum during chronic stimulation of fast muscle. J. Membr. Biol. 59: 143–149, 1981.
 204. Heilmann, C., and D. Pette. Molecular transformations in sarcoplasmic reticulum of fast‐twitch muscle by electro‐stimulation. Eur. J. Biochem. 93: 437–446, 1979.
 205. Henderson, R., and P. N. T. Unwin. Three‐dimensional model of purple membrane obtained by electron microscopy. Nature London 257: 28–32, 1975.
 206. Herbette, L., J. Marquardt, A. Scarpa, and J. K. Blasie. A direct analysis of lamellar x‐ray diffraction from hydrated oriented multilayers of fully functional sarcoplasmic reticulum. Biophys. J. 20: 245–272, 1977.
 207. Hesketh, T. R., G. A. Smith, M. D. Houslay, K. A. McGill, N. J. M. Birdsall, J. C. Metcalfe, and G. B. Warren. Annular lipids determine the ATPase activity of a calcium transport protein, complexed with dipalmitoyllecithin. Biochemistry 15: 4145–4151, 1976.
 208. Hicks, M. J., M. Shigekawa, and A. M. Katz. Mechanism by which cyclic adenosine 3':5'‐monophosphate‐dependent protein kinase stimulates calcium transport in cardiac sarcoplasmic reticulum. Circ. Res. 44: 384–391, 1979.
 209. Hidalgo, C. Inhibition of calcium transport in sarcoplasmic reticulum after modification of highly reactive amino groups. Biochem. Biophys. Res. Commun. 92: 757–765, 1980.
 210. Hidalgo, C., and N. Ikemoto. Disposition of proteins and aminophospholipids in the sarcoplasmic reticulum membrane. J. Biol. Chem. 252: 8446–8454, 1977.
 211. Hidalgo, C., N. Ikemoto, and J. Gergely. Role of phospholipids in the calcium‐dependent ATPase of the sarcoplasmic reticulum. Enzymatic and ESR studies with phospholipid‐replaced membranes. J. Biol. Chem. 251: 4224–4232, 1976.
 212. Hidalgo, C., D. D. Thomas, and N. Ikemoto. Effect of the lipid environment on protein motion and enzymatic activity of the sarcoplasmic reticulum calcium ATPase. J. Biol. Chem. 253: 6879–6887, 1978.
 213. Hobbs, A. S., and R. W. Albers. The structure of proteins involved in active membrane transport. Annu. Rev. Biophys. Bioeng. 9: 259–291, 1980.
 214. Hoffmann, W., M. G. Sarzala, and D. Chapman. Rotational motion and evidence for oligomeric structures of sarcoplasmic reticulum Ca activated ATPase. Proc. Natl. Acad. Sci. USA 76: 3860–3864, 1979.
 215. Holland, D. L., and S. V. Perry. The adenosine triphosphatase and calcium ion‐transporting activities of the sarcoplasmic reticulum of developing muscle. Biochem. J. 114: 161–170, 1969.
 216. Holland, P. C. Biosynthesis of the Ca2+ and Mg2+‐dependent adenosine triphosphatase of sarcoplasmic reticulum in cell cultures of embryonic chick heart. J. Biol. Chem. 254: 7604–7610, 1979.
 217. Holland, P. C., and D. H. MacLennan. Assembly of sarcoplasmic reticulum. Biosynthesis of the adenosine triphosphatase in rat skeletal muscle cell culture. J. Biol. Chem. 251: 2030–2036, 1976.
 218. Hörl, W. H., and L. M. G. Heilmeyer, Jr. Evidence for the participation of a Ca2+‐dependent protein kinase and protein phosphatase in the regulation of Ca2+ transport ATPase of the sarcoplasmic reticulum. 2. Effect of phosphorylase kinase and phosphorylase phosphatase. Biochemistry 17: 766–772, 1978.
 219. Hörl, W. H., H. P. Jennissen, and L. M. G. Heilmeyer. Evidence for the participation of a Ca2+‐dependent protein kinase and a protein phosphatase in the regulation of the Ca2+ transport ATPase of the sarcoplasmic reticulum. 1. Effect of inhibitors of the Ca2+‐dependent protein kinase and protein phosphatase. Biochemistry 17: 759–766, 1978.
 220. Hui, C. S., and W. F. Gilly. Mechanical activation and voltage‐dependent charge movement in stretched muscle fibres. Nature London 281: 223–225, 1979.
 221. Huxley, A. F., and R. E. Taylor. Local activation of striated muscle fibres. J. Physiol. London 144: 426–441, 1958.
 222. Ikemoto, N. The calcium binding sites involved in the regulation of the purified adenosine triphosphatase of the sarcoplasmic reticulum. J. Biol. Chem. 249: 649–651, 1974.
 223. Ikemoto, N. Transport and inhibitory Ca2+ binding sites on the ATPase enzyme isolated from the sarcoplasmic reticulum. J. Biol. Chem. 250: 7219–7224, 1975.
 224. Ikemoto, N. Behavior of the Ca2+ transport sites linked with the phosphorylation reaction of ATPase purified from the sarcoplasmic reticulum. J. Biol. Chem. 251: 7275–7277, 1976.
 225. Ikemoto, N. Conformation of various reaction intermediates of sarcoplasmic reticulum Ca2+‐ATPase. In: Cation Flux Across Biomembranes, edited by Y. Mukohata and L. Packer. New York: Academic, 1979, p. 77–87.
 226. Ikemoto, N., G. M. Bhatnagar, B. Nagy, and J. Gergely. Interaction of divalent cations with the 55,000‐dalton protein component of the sarcoplasmic reticulum. Studies of fluorescence and circular dichroism. J. Biol. Chem. 247: 7835–7837, 1972.
 227. Ikemoto, N., A. M. Garcia, and Y. Kurobe. Nonequivalent subunits in the calcium pump of sarcoplasmic reticulum (Abstract). Federation Proc. 39: 1663, 1980.
 228. Ikemoto, N., A. M. Garcia, Y. Kurobe, and T. L. Scott. Nonequivalent subunits in the calcium pump of sarcoplasmic reticulum. J. Biol. Chem. 256: 8593–8601, 1981.
 229. Ikemoto, N., A. M. Garcia, P. A. O'shea, and J. Gergely. New structural aspects of proteins (ATPase, calsequestrin) of the sarcoplasmic reticulum. J. Cell Biol. 67: 187a, 1975.
 230. Ikemoto, N., J. F. Morgan, and S. Yamada. Ca2+ controlled conformational states of the Ca2+ transport enzyme of sarcoplasmic reticulum. J. Biol. Chem. 253: 8027–8033, 1978.
 231. Ikemoto, N., B. Nagy, G. M. Bhatnagar, and J. Gergely. Studies on a metal‐binding protein of the sarcoplasmic reticulum. J. Biol. Chem. 249: 2357–2365, 1974.
 232. Ikemoto, N., F. A. Sréter, A. Nakamura, and J. Gergely. Tryptic digestion and localization of calcium uptake and ATPase activity in fragments of sarcoplasmic reticulum. J. Ultrastruct. Res. 23: 216–232, 1968.
 233. Inesi, G. p‐Nitrophenylphosphate hydrolysis and calcium ion transport in fragmented sarcoplasmic reticulum. Science 171: 901–903, 1971.
 234. Inesi, G. Active transport of calcium ion in sarcoplasmic membranes. Annu. Rev. Biophys. Bioeng. 1: 191–210, 1972.
 235. Inesi, G. The sarcoplasmic reticulum: structure, function and development. In: Aging, edited by G. Kaldor and W. J. Di‐Battista. New York: Raven, 1978, vol. 6, p. 159–177.
 236. Inesi, G. Transport across sarcoplasmic reticulum in skeletal and cardiac muscle. In: Membrane Transport in Biology, edited by G. Giebisch, D. C. Tosteson, and H. H. Ussing. Berlin: Springer‐Verlag, 1979, p. 357–393.
 237. Inesi, G., and J. Almendares. Interaction of fragmented sarcoplasmic reticulum with 14C‐ADP, 14C‐ATP, and 32P‐ATP. Effect of Ca and Mg. Arch. Biochem. Biophys. 126: 733–735, 1968.
 238. Inesi, G., and H. Asai. Trypsin digestion of fragmented sarcoplasmic reticulum. Arch. Biochem. Biophys. 126: 469–477, 1968.
 239. Inesi, G., C. Coan, S. Verjovski‐Almeida, M. Kurzmack, and D. E. Lewis. Mechanism of free energy utilization for active transport of calcium ions. In: Frontiers of Biological Energetics: From Electrons to Tissues, edited by P. L. Dutton, J. S. Leigh, and A. Scarpa. New York: Academic, 1978, vol. II, p. 1212–1219.
 240. Inesi, G., J. A. Cohen, and C. R. Coan. Two functional states of sarcoplasmic reticulum ATPase. Biochemistry 15: 5293–5298, 1976.
 241. Inesi, G., S. Ebashi, and S. Watanabe. Preparation of vesicular relaxing factor from bovine heart tissue. Am. J. Physiol. 207: 1339–1344, 1964.
 242. Inesi, G., J. J. Goodman, and S. Watanabe. Effect of diethyl ether on the adenosine triphosphatase activity and the calcium uptake of fragmented sarcoplasmic reticulum of rabbit skeletal muscle. J. Biol. Chem. 242: 4637–4643, 1967.
 243. Inesi, G., M. Kurzmack, C. Coan, and D. E. Lewis. Cooperative calcium binding and ATPase activation in sarcoplasmic reticulum vesicles. J. Biol. Chem. 255: 3025–3031, 1980.
 244. Inesi, G., M. Kurzmack, and S. Verjovski‐Almeida. ATPase phosphorylation and calcium ion translocation in the transient state of sarcoplasmic reticulum activity. Ann. NY Acad. Sci. 307: 224–227, 1978.
 245. Inesi, G., and N. Malan. Mechanisms of calcium release in sarcoplasmic reticulum. Life Sci. 18: 773–780, 1976.
 246. Inesi, G., E. Maring, A. J. Murphy, and B. H. McFarland. A study of the phosphorylated intermediate of sarcoplasmic reticulum ATPase. Arch. Biochem. Biophys. 138: 285–294, 1970.
 247. Inesi, G., M. Millman, and S. Eletr. Temperature induced transitions of function and structure in sarcoplasmic reticulum membranes. J. Mol. Biol. 81: 483–504, 1973.
 248. Inesi, G., and D. Scales. Tryptic cleavage of sarcoplasmic reticulum protein. Biochemistry 13: 3298–3306, 1974.
 249. Inesi, G., and A. Scarpa. Fast kinetics of adenosine triphosphate dependent Ca2+ uptake by fragmented sarcoplasmic reticulum. Biochemistry 11: 356–359, 1972.
 250. Jardetzky, O. Simple allosteric model for membrane pumps. Nature London 211: 969–970, 1966.
 251. Jencks, W. P. The utilization of binding energy in coupled vectorial processes. In: Advances in Enzymology and Related Areas of Molecular Biology, edited by A. Meister. New York: Wiley, 1980, vol. 51, p. 75–106.
 252. Jewett, P. H., J. R. Sommer, and E. A. Johnson. Cardiac muscle. Its ultrastructure in the finch and hummingbird with special reference to the sarcoplasmic reticulum. J. Cell Biol. 49: 50–65, 1971.
 253. Ji, T. H. The application of chemical crosslinking for studies on cell membranes and the identification of surface receptors. Biochim. Biophys. Acta 559: 39–69, 1979.
 254. Jilka, R. L., and A. N. Martonosi. The effect of calcium ion transport ATPase upon the passive calcium ion permeability of phospholipid vesicles. Biochim. Biophys. Acta 466: 57–67, 1977.
 255. Jilka, R. L., A. N. Martonosi, and T. W. Tillack. Effect of the purified [Mg2+ + Ca2+]‐activated ATPase of sarcoplasmic reticulum upon the passive Ca2+ permeability and ultrastructure of phospholipid vesicles. J. Biol. Chem. 250: 7511–7524, 1975.
 256. Johannsson, A., C. A. Keightley, G. A. Smith, and J. C. Metcalfe. Cholesterol in sarcoplasmic reticulum and the physiological significance of membrane fluidity. Biochem. J. 196: 505–511, 1981.
 257. Jolesz, F., and F. A. Sréter. Development, innervation, and activity‐pattern induced changes in skeletal muscle. Annu. Rev. Physiol. 43: 531–552, 1981.
 258. Jones, L. R. Mg2+ and ATP effects on K+ activation of the Ca2+‐transport ATPase of cardiac sarcoplasmic reticulum. Biochim. Biophys. Acta 557: 230–242, 1979.
 259. Jones, L. R., H. R. Besch, and A. M. Watanabe. Monovalent cation stimulation of Ca2+ uptake by cardiac membrane vesicles. Correlation with stimulation of Ca2+‐ATPase activity. J. Biol. Chem. 252: 3315–3323, 1977.
 260. Jones, L. R., H. R. Besch, and A. M. Watanabe. Regulation of the calcium pump of cardiac sarcoplasmic reticulum. Interactive roles of potassium and ATP on the phosphoprotein intermediate of the (K+, Ca2+)‐ATPase. J. Biol. Chem. 253: 1643–1653, 1978.
 261. Jorgensen, A. O., V. Kalnins, and D. H. MacLennan. Localization of sarcoplasmic reticulum proteins in rat skeletal muscle by immunofluorescence. J. Cell Biol. 80: 372–384, 1979.
 262. Jorgensen, A. O., V. I. Kalnins, E. Zubrzycka, and D. H. MacLennan. Assembly of the sarcoplasmic reticulum. Localization by immunofluorescence of sarcoplasmic reticulum proteins in differentiating rat skeletal muscle cell cultures. J. Cell Biol. 74: 287–298, 1977.
 263. Jørgensen, K. E., K. E. Lind, H. Røigaard‐petersen, and J. V. Møller. The functional unit of calcium‐plus‐magnesium‐ion‐dependent adenosine triphosphatase from sarcoplasmic reticulum. The aggregational state of the deoxycholate‐solubilized protein in an enzymically active form. Biochem. J. 169: 489–498, 1978.
 264. Jost, P., O. H. Griffith, R. A. Capaldi, and G. Vanderkooi. Identification and extent of fluid bilayer regions in membranous cytochrome oxidase. Biochim. Biophys. Acta 311: 141–152, 1973.
 265. Jost, P. C., O. H. Griffith, R. A. Capaldi, and G. Vanderkooi. Evidence for boundary lipid in membranes. Proc. Natl. Acad. Sci. USA 70: 480–484, 1973.
 266. Kalbitzer, H. R., D. Stehlik, and W. Hasselbach. The binding of calcium and magnesium to sarcoplasmic reticulum vesicles as studied by manganese electron paramagnetic resonance. Eur. J. Biochem. 82: 245–255, 1978.
 267. Kanazawa, T. Phosphorylation of solubilized sarcoplasmic reticulum by orthophosphate and its thermodynamic characteristics. The dominant role of entropy in the phosphorylation. J. Biol. Chem. 250: 113–119, 1975.
 268. Kanazawa, T., and P. D. Boyer. Occurrence and characteristics of a rapid exchange of phosphate oxygens catalyzed by sarcoplasmic reticulum vesicles. J. Biol. Chem. 248: 3163–3172, 1973.
 269. Kanazawa, T., M. Saito, and Y. Tonomura. Formation and decomposition of a phosphorylated intermediate in the reaction of Na+ + K+ dependent ATPase. J. Biochem. Tokyo 67: 693–711, 1970.
 270. Kanazawa, T., Y. Takakuwa, and F. Katabami. Entropy‐driven phosphorylation with Pi of the transport ATPase of sarcoplasmic reticulum. In: Cation Flux Across Biomembranes, edited by Y. Mukohata and L. Packer. New York: Academic, 1979, p. 127–128.
 271. Kanazawa, T., S. Yamada, and Y. Tonomura. ATP formation from ADP and a phosphorylated intermediate of Ca2+‐dependent ATPase in fragmented sarcoplasmic reticulum. J. Biochem. Tokyo 68: 593–595, 1970.
 272. Kanazawa, T., S. Yamada, T. Yamamoto, and Y. Tonomura. Reaction mechanism of the Ca2+‐dependent ATPase of sarcoplasmic reticulum from skeletal muscle. V. Vectorial requirements for calcium and magnesium ions of three partial reactions of ATPase: formation and decomposition of a phosphorylated intermediate and ATP‐formation from ADP and the intermediate. J. Biochem. Tokyo 70: 95–123, 1971.
 273. Kasai, M., T. Kanemasa, and S. Fukumoto. Determination of reflection coefficients for various ions and neutral molecules in sarcoplasmic reticulum vesicles through osmotic volume change studied by stopped flow technique. J. Membr. Biol. 51: 311–324, 1979.
 274. Kasai, M., and T. Kometani. Inhibition of anion permeability of sarcoplasmic reticulum vesicles by 4‐acetoamido‐4'‐isothio‐cyanostilbene‐2,2'‐disulfonate. Biochim. Biophys. Acta 557: 243–247, 1979.
 275. Kasai, M., and T. Kometani. Ionic permeability of sarcoplasmic reticulum membrane. In: Cation Flux Across Biomembranes, edited by Y. Mukohata and L. Packer. New York: Academic, 1979, p. 167–177.
 276. Kasai, M., and H. Miyamoto. Depolarization‐induced calcium release from sarcoplasmic reticulum fragments. I. Release of calcium taken up upon using ATP. J. Biochem. Tokyo 79: 1053–1066, 1976.
 277. Kasai, M., and H. Miyamoto. Depolarization‐induced calcium release from sarcoplasmic reticulum fragments. II. Release of calcium incorporated without ATP. J. Biochem. Tokyo 79: 1067–1076, 1976.
 278. Katz, A. M. Role of the contractile proteins and sarcoplasmic reticulum in the response of the heart to catecholamines: an historical review. In: Advances in Cyclic Nucleotide Research, New Assay Methods for Cyclic Nucleotides, edited by P. Greengard, R. Paoletti, and G. A. Robison. New York: Raven, 1979, vol. 11, p. 303–343.
 279. Katz, A. M., and D. I. Repke. Sodium and potassium sensitivity of calcium uptake and calcium binding by dog cardiac microsomes. Circ. Res. 21: 767–775, 1967.
 280. Katz, A. M., M. Tada, D. I. Repke, J. M. Iorio, and M. A. Kirchberger. Adenylate cyclase: its probable localization in sarcoplasmic reticulum as well as sarcolemma of the canine heart. J. Mol. Cell. Cardiol. 6: 73–78, 1974.
 281. Kawakita, M., K. Yasuoka, and Y. Kaziro. Effect of Ca2+ ions on the reactivity of the nucleotide binding site of sarcoplasmic reticulum Ca2+, Mg2+‐adenosine triphosphatase. In: Cation Flux Across Biomembranes, edited by Y. Mukohata and L. Packer. New York: Academic, 1979, p. 119–124.
 282. King, I. A., and C. F. Louis. The location of membrane components in sarcoplasmic reticulum membranes by using free and immobilized lactoperoxidase. Biochem. Soc. Trans. 4: 245–248, 1976.
 283. Kirchberger, M. A., and G. Chu. Correlation between protein kinase mediated stimulation of calcium transport by cardiac sarcoplasmic reticulum and phosphorylation of a 22,000 dalton protein. Biochim. Biophys. Acta 419: 559–562, 1976.
 284. Kirchberger, M. A., and A. Raffo. Decrease in calcium transport associated with phosphoprotein phosphatase‐catalyzed dephosphorylation of cardiac sarcoplasmic reticulum. J. Cyclic Nucleotide Res. 3: 45–53, 1977.
 285. Kirchberger, M. A., and M. Tada. Effects of adenosine 3',5'‐monophosphate‐dependent protein kinase on sarcoplasmic reticulum isolated from cardiac and slow and fast contracting skeletal muscles. J. Biol. Chem. 251: 725–729, 1976.
 286. Kirchberger, M. A., M. Tada, and A. M. Katz. Adenosine 3':5'‐monophosphate‐dependent protein kinase‐catalyzed phosphorylation reaction and its relationship to calcium transport in cardiac sarcoplasmic reticulum. J. Biol. Chem. 249: 6166–6173, 1974.
 287. Kirchberger, M. A., M. Tada, D. I. Repke, and A. M. Katz. Cyclic adenosine 3',5'‐monophosphate‐dependent protein kinase stimulation of calcium uptake by canine cardiac microsomes. J. Mol. Cell. Cardiol. 4: 673–680, 1972.
 288. Kirino, Y., K. Anzai, H. Shimizu, S. Ohta, M. Nakanishi, and M. Tsuboi. Thermotropic transition in the states of proteins in sarcoplasmic reticulum vesicles. J. Biochem. Tokyo 82: 1181–1184, 1977.
 289. Kirino, Y., T. Ohkuma, and H. Shimizu. Saturation transfer electron spin resonance study on the rotational diffusion of calcium and magnesium dependent adenosine triphosphatase in sarcoplasmic reticulum membranes. J. Biochem. Tokyo 84: 111–115, 1978.
 290. Kleemann, W., and H. M. McConnell. Interactions of proteins and cholesterol with lipids in bilayer membranes. Biochim. Biophys. Acta 419: 206–222, 1976.
 291. Klip, A., and D. H. MacLennan. Zeroing in on the ionophoric site of the (Ca2+ + Mg2+)‐ATPase. In: Frontiers in Biological Energetics: From Electrons to Tissues, edited by L. Dutton, J. Leigh, and A. Scarpa. New York: Academic, 1978, vol. II, p. 1137–1147.
 292. Klip, A., R. A. F. Reithmeier, and D. H. MacLennan. Alignment of the major tryptic fragments of the adenosine triphosphatase from sarcoplasmic reticulum. J. Biol. Chem. 255: 6562–6568, 1980.
 293. Knauf, P. A., W. Breuer, L. McCulloch, and A. Rothstein. N‐ (4‐Azido‐2‐Nitrophenyl)‐2‐aminoethylsul‐fonate (NAP‐taurine) as a photoaffinity probe for identifying membrane components containing the modifier site of the human red blood cell anion exchange system. J. Gen. Physiol. 72: 631–649, 1978.
 294. Knauf, P. A., G. P. Fuhrmann, S. S. Rothstein, and A. Rothstein. The relationship between anion exchange and net anion flow across the human red blood cell membrane. J. Gen. Physiol. 69: 363–386, 1977.
 295. Knauf, P. A., S. Ship, W. Breuer, L. McCulloch, and A. Rothstein. Asymmetry of the red cell anion exchange system. Different mechanisms of reversible inhibition by N‐(4‐azido‐2‐nitrophenyl)‐2‐aminoethylsulfonate (NAP‐taurine) at the inside and outside of the membrane. J. Gen. Physiol. 72: 607–630, 1978.
 296. Knowles, A. F., E. Eytan, and E. Racker. Phospholipid‐protein interactions in the Ca2+‐adenosine triphosphatase of sarcoplasmic reticulum. J. Biol. Chem. 251: 5161–5165, 1976.
 297. Knowles, A. F., A. Kandrach, E. Racker, and H. G. Khorana. Acetyl phosphatidylethanolamine in the reconstitution of ion pumps. J. Biol. Chem. 250: 1809–1813, 1975.
 298. Knowles, A. F., and E. Racker. Formation of adenosine triphosphate from Pi and adenosine diphosphate by purified Ca2+‐adenosine triphosphatase. J. Biol. Chem. 250: 1949–1951 1975.
 299. Knowles, A. F., and E. Racker. Properties of a reconstituted calcium pump. J. Biol. Chem. 250: 3538–3544, 1975.
 300. Knowles, A., P. Zimniak, M. Alfonzo, A. Zimniak, and E. Racker. Isolation and characterization of proteolipids from sarcoplasmic reticulum. J. Membr. Biol. 55: 233–239, 1980.
 301. Kolassa, N., C. Punzengruber, J. Suko, and M. Makinose. Mechanism of calcium‐independent phosphorylation of sarcoplasmic reticulum ATPase by orthophosphate. Evidence of magnesium‐phosphoprotein formation. FEBS Lett. 108: 495–500, 1979.
 302. Kometani, T., and M. Kasai. Ionic permeability of sarcoplasmic reticulum vesicles measured by light scattering method. J. Membr. Biol. 41: 295–308, 1978.
 303. Kondo, M., and M. Kasai. Photodynamic inactivation of sarcoplasmic reticulum vesicle membranes by xanthene dyes. Photochem. Photobiol. 19: 35–41, 1974.
 304. Kranias, E. G., F. Mandel, and A. Schwartz. Involvement of cAMP‐dependent protein kinase and pH on the regulation of cardiac sarcoplasmic reticulum. Biochem. Biophys. Res. Commun. 92: 1370–1376, 1980.
 305. Krasnow, N. Effects of lanthanum and gadolinium on cardiac sarcoplasmic reticulum. Biochim. Biophys. Acta 282: 187–194, 1972.
 306. Krebs, E. G., and J. A. Beavo. Phosphorylation‐dephosphorylation of enzymes. Annu. Rev. Biochem. 48: 923–959, 1979.
 307. Kretsinger, R. H. Calcium binding proteins. Annu. Rev. Biochem. 45: 239–266, 1976.
 308. Kuriki, Y., J. Halsey, R. Biltonen, and E. Racker. Calorimetric studies of the interaction of magnesium and phosphate with (Na+, K+) ATPase. Evidence for a ligand‐induced conformational change in the enzyme. Biochemistry 15: 4956–4961, 1976.
 309. Kurzmack, M., and G. Inesi. The initial phase of Ca2+ uptake and ATPase activity of sarcoplasmic reticulum vesicles. FEBS Lett. 74: 35–37, 1977.
 310. Kurzmack, M., S. Verjovski‐Almeida, and G. Inesi. Detection of an initial burst of Ca2+ translocation in sarcoplasmic reticulum. Biochem. Biophys. Res. Commun. 78: 772–776, 1977.
 311. Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature London 227: 680–685, 1970.
 312. Laggner, P. A highly α‐helical structure protein in sarcoplasmic reticulum membranes. Nature London 255: 427–428, 1975.
 313. Laggner, P., and M. D. Barratt. The interaction of a proteolipid from sarcoplasmic reticulum membranes with phospholipids. A spin label study. Arch. Biochem. Biophys. 170: 92–101, 1975.
 314. Laggner, P., and D. E. Graham. The effect of a proteolipid from sarcoplasmic reticulum on the physical properties of artificial phospholipid membranes. Biochim. Biophys. Acta 433: 311–317, 1976.
 315. Landis, D. M. D., M. Henkart, and T. S. Reese. Similar arrays of plasma membrane particles at subsurface cisterns in striated muscle and neurons. J. Cell Biol. 59: 184a, 1973.
 316. La Raia, P. J., and E. Morkin. Adenosine 3',5'‐monophosphate‐dependent membrane phosphorylation: a possible mechanism for the control of microsomal calcium transport in heart muscle. Circ. Res. 35: 298–306, 1974.
 317. Lau, Y. H., A. H. Caswell, and J.‐P. Brunschwig. Isolation of transverse tubules by fractionation of triad junctions of skeletal muscle. J. Biol. Chem. 252: 5565–5574, 1977.
 318. Lau, Y. H., A. H. Caswell, J.‐P. Brunschwig, R. J. Baer‐Wald, and M. Garcia. Lipid analysis and freeze fracture studies on isolated transverse tubules and sarcoplasmic reticulum subfractions of skeletal muscle. J. Biol. Chem. 254: 540–546, 1979.
 319. Lau, Y. H., A. H. Caswell, M. Garcia, and L. Letellier. Ouabain binding and coupled sodium, potassium, and chloride transport in isolated transverse tubules of skeletal muscle. J. Gen. Physiol. 74: 335–349, 1979.
 320. Lee, A. G., N. J. M. Birdsall, J. C. Metcalfe, P. A. Toon, and G. B. Warren. Clusters in lipid bilayers and the interpretation of thermal effects in biological membranes. Biochemistry 13: 3699–3705, 1974.
 321. Le Maire, M., K. E. Jprgensen, H. Røigaard‐petersen, and J. V. Møller. Properties of deoxycholate solubilized sarcoplasmic reticulum Ca2+‐ATPase. Biochemistry 15: 5805–5812, 1976.
 322. Le Maire, M., K. E. Lind, K. E. Jørgensen, H. Røigaard, J. V. Møller. Enzymatically active Ca2+ ATPase from sarcoplasmic reticulum membranes, solubilized by nonionic detergents. Role of lipid for aggregation of the protein. J. Biol. Chem. 253: 7051–7060, 1978.
 323. Le Maire, M., J. V. Møller, and C. Tanford. Retention of enzyme activity by detergent‐solubilized sarcoplasmic Ca2+‐ATPase. Biochemistry 15: 2336–2342, 1976.
 324. Le Peuch, C. J., C. Ferraz, M. P. Walsh, J. G. Demaille, and E. H. Fischer. Calcium and cyclic nucleotide dependent regulatory mechanisms during development of chick embryo skeletal muscle. Biochemistry 18: 5267–5273, 1979.
 325. Le Peuch, C. J., J. Haiech, and J. G. Demaille. Concerted regulation of cardiac sarcoplasmic reticulum calcium transport by cyclic adenosine monophosphate dependent and calcium‐calmodulin‐dependent phosphorylations. Biochemistry 18: 5150–5157, 1979.
 326. Liguri, G., M. Stefani, A. Berti, P. Nassi, and G. Ramponi. Effect of acylphosphates on Ca2+ uptake by sarcoplasmic reticulum vesicles. Arch. Biochem. Biophys. 200: 357–363, 1980.
 327. Lough, J. W., M. L. Entman, E. H. Bossen, and J. L. Hansen. Calcium accumulation by isolated sarcoplasmic reticulum of skeletal muscle during development in tissue culture. J. Cell. Physiol. 80: 431–436, 1972.
 328. Louis, C. F., R. Buonaffina, and B. Binks. Effect of trypsin on the proteins of skeletal muscle sarcoplasmic reticulum. Arch. Biochem. Biophys. 161: 83–92, 1974.
 329. Louis, C. F., and A. M. Katz. Lactoperoxidase‐coupled iodination of cardiac sarcoplasmic reticulum proteins. Biochim. Biophys. Acta 494: 255–265, 1977.
 330. Louis, C. F., M. J. Saunders, and J. A. Holroyd. The cross‐linking of rabbit skeletal muscle sarcoplasmic reticulum protein. Biochim. Biophys. Acta 493: 78–92, 1977.
 331. Louis, C. F., and E. M. Shooter. The proteins of rabbit skeletal muscle sarcoplasmic reticulum. Arch. Biochem. Biophys. 153: 641–655, 1972.
 332. Luttgau, H. C., and G. D. Moisescu. Ion movements in skeletal muscle in relation to the activation of contraction. In: Physiology of Membrane Disorders, edited by T. E. Andreoli, J. F. Hoffman, and D. D. Fanestil. New York: Plenum, 1978, p. 493–515.
 333. Lymn, R. W. Kinetic analysis of myosin and actomyosin ATPase. Annu. Rev. Biophys. Bioeng. 8: 145–163, 1979.
 334. MacLennan, D. H. Purification and properties of an adenosine triphosphatase from sarcoplasmic reticulum. J. Biol. Chem. 245: 4508–4518, 1970.
 335. MacLennan, D. H. Isolation of a second form of calsequestrin. J. Biol. Chem. 249: 980–984, 1974.
 336. MacLennan, D. H. Resolution of the calcium transport system of sarcoplasmic reticulum. Can. J. Biochem. 53: 251–261, 1975.
 337. MacLennan, D. H., and K. P. Campbell. Structure, function and biosynthesis of sarcoplasmic reticulum proteins. Trends Biochem. Sci. 4: 148–151, 1979.
 338. MacLennan, D. H., and P. C. Holland. Calcium transport in sarcoplasmic reticulum. Annu. Rev. Biophys. Bioeng. 4: 377–404, 1975.
 339. MacLennan, D. H., and P. C. Holland. The calcium transport ATPase of sarcoplasmic reticulum. In: The Enzymes of Biological Membranes, edited by A. Martonosi. New York: Plenum, 1976, vol. 3, p. 221–259.
 340. MacLennan, D. H., V. K. Khanna, and P. S. Stewart. Restoration of calcium transport in the trypsin‐treated (Ca2+ + Mg2+)‐dependent adenosine triphosphatase of sarcoplasmic reticulum exposed to sodium dodecyl sulfate. J. Biol. Chem. 251: 7271–7274, 1976.
 341. MacLennan, D. H., T. J. Ostwald, and P. S. Stewart. Structural components of the sarcoplasmic reticulum membrane. Ann. NY Acad. Sci. 227: 527–536, 1974.
 342. MacLennan, D. H., P. Seeman, G. H. Iles, and C. C. Yip. Membrane formation by the adenosine triphosphatase of sarcoplasmic reticulum. J. Biol. Chem. 246: 2702–2710, 1971.
 343. MacLennan, D. H., and P. T. S. Wong. Isolation of a calcium‐sequestering protein from sarcoplasmic reticulum. Proc. Natl. Acad. Sci. USA 68: 1231–1235, 1971.
 344. MacLennan, D. H., C. C. Yip, G. H. Iles, and P. Seeman. Isolation of sarcoplasmic reticulum proteins. Cold Spring Harbor Symp. Quant. Biol. 37: 469–477, 1972.
 345. MacLennan, D. H., E. Zubrzycka, A. O. Jorgensen, and V. I. Kalnins. Assembly of the sarcoplasmic reticulum. In: The Molecular Biology of Membranes, edited by S. Fleischer, Y. Hatefi, D. H. MacLennan, and A. Tzagoloff. New York: Plenum, 1978, p. 309–320.
 346. Madden, T. D., D. Chapman, and P. J. Quinn. Cholesterol modulates activity of the calcium dependent ATPase of the sarcoplasmic reticulum. Nature London 279: 538–540, 1979.
 347. Madden, T. D., and P. J. Quinn. Arrhenius discontinuities of Ca2+ ATPase activity are unrelated to changes in membrane lipid fluidity of sarcoplasmic reticulum. FEBS Lett. 107: 110–112, 1979.
 348. Madeira, V. M. C. Subunits of the calcium ion‐pump system of sarcoplasmic reticulum. Biochim. Biophys. Acta 464: 583–588, 1977.
 349. Madeira, V. M. C. Proton gradient formation during transport of Ca2+ by sarcoplasmic reticulum. Arch. Biochem. Biophys. 185: 316–325, 1978.
 350. Madeira, V. M. C. Alkalinization within sarcoplasmic reticulum during the uptake of calcium ions. Arch. Biochem. Biophys. 193: 22–27, 1979.
 351. Madeira, V. M. C. Proton movements across the membranes of sarcoplasmic reticulum during the uptake of calcium ions. Arch. Biochem. Biophys. 200: 319–325, 1980.
 352. Madeira, V. M. C., and M. C. Antunes‐Madeira. Resolution of Ca++‐ATPase of sarcoplasmic reticulum into subunits. Experientia 33: 188–190, 1977.
 353. Makinose, M. Die Nucleosidtriphosphat‐Nucleosiddiphos‐phat‐Transphosphorylase‐Aktivitat der Vesikel des sarkoplas‐matischen Reticulums. Biochem. Z. 345: 80–86, 1966.
 354. Makinose, M. The phosphorylation of the membranal protein of the sarcoplasmic vesicles during active calcium transport. Eur. J. Biochem. 10: 74–82, 1969.
 355. Makinose, M. Calcium efflux dependent formation of ATP from ADP and orthophosphate by the membranes of the sarcoplasmic vesicles. FEBS Lett. 12: 269–270, 1971.
 356. Makinose, M. Phosphoprotein formation during osmo‐chemical energy conversion in the membrane of the sarcoplasmic reticulum. FEBS Lett. 25: 113–115, 1972.
 357. Makinose, M. Possible functional states of the enzyme of the sarcoplasmic calcium pump. FEBS Lett. 37: 140–143, 1973.
 358. Makinose, M., and W. Boll. Reaction sequence in the sarcoplasmic calcium transport (II)—binding sequence of Ca, Mg, ATP and ADP. In: Function and Molecular Aspects of Bio‐membrane Transport, edited by E. M. Klingenberg, F. Palmieri, and E. Quagliariello. Amsterdam: Elsevier/North‐Holland, 1979, p. 115–117. (Proc. Symp. Bari, Italy, 1979.)
 359. Makinose, M., and W. Boll. The role of magnesium on the sarcoplasmic calcium pump. In: Cation Flux Across Biomembranes, edited by Y. Mukohata and L. Packer. New York: Academic, 1979, p. 89–100.
 360. Makinose, M., and W. Hasselbach. Der Einfluss von Oxalat auf den Calcium‐Transport isolierter Vesikel des sarkoplas‐matischen Reticulum. Biochem. Z. 343: 360–382, 1965.
 361. Makinose, M., and W. Hasselbach. ATP synthesis by the reverse of the sarcoplasmic calcium pump. FEBS Lett. 12: 271–272, 1971.
 362. Makinose, M., and R. The. Calcium‐Akkumulation und Nucleosidtriphosphat‐Spaltung durch die Vesikel des sarkoplas‐matischen Reticulum. Biochem. Z. 343: 383–393, 1965.
 363. Manuck, B. A., and B. D. Sykes. Rapid anisotropic motion of the Ca2+‐transport ATPase of the rabbit skeletal muscle sarcoplasmic reticulum. Can. J. Biochem. 55: 587–596, 1977.
 364. Marai, L., and A. Kuksis. Molecular species of glycerolipids of adenosine triphosphatase and sarcotubular membranes of rabbit skeletal muscle. Can. J. Biochem. 51: 1248–1261, 1973.
 365. Marai, L., and A. Kuksis. Comparative study of molecular species of glycerolipids in sarcotubular membranes of skeletal muscle of rabbit, rat, chicken, and man. Can. J. Biochem. 51: 1365–1379, 1973.
 366. Markham, R., S. Frey, and G. J. Hills. Methods for the enhancement of image detail and accentuation of structure in electron microscopy. Virology 20: 88–102, 1963.
 367. Martonosi, A. The activating effect of phospholipids on the ATPase activity and Ca++ transport of fragmented sarcoplasmic reticulum. Biochem. Biophys. Res. Commun. 13: 273–278, 1963.
 368. Martonosi, A. Role of phospholipids in ATPase activity and Ca2+ transport of fragmented sarcoplasmic reticulum. Federation Proc. 23: 913–921, 1964.
 369. Martonosi, A. The role of phospholipids in the ATPase activity of skeletal muscle microsomes. Biochem. Biophys. Res. Commun. 29: 753–757, 1967.
 370. Martonosi, A. Sarcoplasmic reticulum. IV. Solubilization of microsomal adenosine triphosphatase. J. Biol. Chem. 243: 71–81, 1968.
 371. Martonosi, A. Sarcoplasmic reticulum. V. The structure of sarcoplasmic reticulum membranes. Biochim. Biophys. Acta 150: 694–704, 1968.
 372. Martonosi, A. The protein composition of sarcoplasmic reticulum membranes. Biochem. Biophys. Res. Commun. 36: 1039–1044, 1969.
 373. Martonosi, A. Sarcoplasmic reticulum. VII. Properties of a phosphoprotein intermediate implicated in calcium transport. J. Biol. Chem. 244: 613–620, 1969.
 374. Martonosi, A. The structure and function of sarcoplasmic reticulum membranes. In: Biomembranes, edited by L. A. Manson. New York: Plenum, 1971, vol. 1, p. 191–256.
 375. Martonosi, A. Biochemical and clinical aspects of sarcoplasmic reticulum function. In: Current Topics in Membranes and Transport, edited by F. Bronner and A. Kleinzeller. New York: Academic, 1972, vol. 3, p. 83–197.
 376. Martonosi, A. Membrane transport during development in animals. Biochim. Biophys. Acta 415: 311–333, 1975.
 377. Martonosi, A. Some recent observations on the structure and function of sarcoplasmic reticulum. In: Biomembranes‐Lipids, Proteins and Receptors, edited by R. M. Burton and L. Packer. Webster Groves, MO: BI Sci. Publ. Div. 1975, p. 369–390. (Proc. NATO Adv. Study Inst. 1974.)
 378. Martonosi, A. The mechanism of calcium transport in sarcoplasmic reticulum. In: Calcium Transport in Contractions and Secretion, edited by E. Carafoli, F. Clementi, W. Drabikowski, and A. Margreth. Amsterdam: North‐Holland, 1975, p. 313–327.
 379. Martonosi, A. The effect of ATP upon the reactivity of SH groups in sarcoplasmic reticulum membranes. FEBS Lett. 67: 153–155, 1976.
 380. Martonosi, A. Protein‐protein interaction in sarcoplasmic reticulum: functional significance. In: Membrane Proteins, edited by P. Nicholls, J. V. Møller, P. L. Jørgensen, and A. J. Moody. Oxford: Pergamon, 1977, p. 135–140. (Proc. FEBS 11th, Copenhagen, 1977.)
 381. Martonosi, A. N. Calcium pumps (Introduction). Federation Proc. 39: 2401–2402, 1980.
 382. Martonosi, A., R. Boland, and R. A. Halpin. The biosynthesis of sarcoplasmic reticulum membranes and the mechanism of calcium transport. Cold Spring Harbor Symp. Quant. Biol. 37: 455–468, 1972.
 383. Martonosi, A. N., T. L. Chyn, and A. Schibeci. The calcium transport of sarcoplasmic reticulum. Ann. NY Acad. Sci. 307: 148–159, 1978.
 384. Martonosi, A., A. R. de BOland, R. Boland, J. M. Vanderkooi, and R. A. Halpin. The mechanism of Ca transport and the permeability of sarcoplasmic reticulum membranes. In: Myocardial Biology. Recent Advances in Studies on Cardiac Structure and Metabolism, edited by N. Dhalla. Baltimore, MD: University Park, 1974, vol. 4, p. 473–494.
 385. Martonosi, A., J. Donley, and R. A. Halpin. Sarcoplasmic reticulum. III. The role of phospholipids in the adenosine triphosphatase activity and Ca++ transport. J. Biol. Chem. 243: 61–70, 1968.
 386. Martonosi, A., J. R. Donley, A. G. Pucell, and R. A. Halpin. Sarcoplasmic reticulum. XI. The mode of involvement of phospholipids in the hydrolysis of ATP by sarcoplasmic reticulum membranes. Arch. Biochem. Biophys. 144: 529–540, 1971.
 387. Martonosi, A., and R. Feretos. Sarcoplasmic reticulum. I. The uptake of Ca++ by sarcoplasmic reticulum fragments. J. Biol. Chem. 239: 648–658, 1964.
 388. Martonosi, A., and R. Feretos. Sarcoplasmic reticulum. II. Correlation between adenosine triphosphatase activity and Ca++ uptake. J. Biol. Chem. 239: 659–668, 1964.
 389. Martonosi, A., and F. Fortier. The effect of anti‐ATPase antibodies upon the Ca++ transport of sarcoplasmic reticulum. Biochem. Biophys. Res. Commun. 60: 382–389, 1974.
 390. Martonosi, A., and R. A. Halpin. Sarcoplasmic reticulum. X. The protein composition of sarcoplasmic reticulum membranes. Arch. Biochem. Biophys. 144: 66–77, 1971.
 391. Martonosi, A., and R. A. Halpin. Sarcoplasmic reticulum. XVII. The turnover of proteins and phospholipids in sarcoplasmic reticulum membranes. Arch. Biochem. Biophys. 152: 440–450, 1972.
 392. Martonosi, A., R. L. Jilka, and F. Fortier. The permeability of sarcoplasmic reticulum membranes. In: Membrane Proteins in Transport and Phosphorylation, edited by G. F. Azzone, E. M. Klingenberg, E. Quagliariello, and N. Siliprandi. Amsterdam: North‐Holland, 1974, p. 113–124.
 393. Martonosi, A., E. Lagwinska, and M. Oliver. Elementary processes in the hydrolysis of ATP by sarcoplasmic reticulum membranes. Ann. NY Acad. Sci. 227: 549–567, 1974.
 394. Martonosi, A., H. Nakamura, R. L. Jilka, and J. M. Vanderkooi. Protein‐protein interactions and the functional states of sarcoplasmic reticulum membranes. In: Biochemistry of Membrane Transport, edited by G. Semenza and E. Carafoli. Berlin: Springer‐Verlag, 1977, p. 401–415.
 395. Martonosi, A., D. Roufa, R. Boland, E. Reyes, and T. W. Tillack. Development of sarcoplasmic reticulum in cultured chicken muscle. J. Biol. Chem. 252: 318–332, 1977.
 396. Martonosi, A., D. Roufa, D.‐B. Ha, and R. Boland. The biosynthesis of sarcoplasmic reticulum. Federation Proc. 39: 2415–2421, 1980.
 397. Martonosi, M. A. Thermal analysis of sarcoplasmic reticulum membranes. FEBS Lett. 47: 327–329, 1974.
 398. Masuda, H., and L. de Meis. Phosphorylation of the sarcoplasmic reticulum membrane by orthophosphate. Inhibition by calcium ions. Biochemistry 12: 4581–4585, 1973.
 399. Masuda, H., and L. de Meis. Calcium efflux from sarcoplasmic reticulum vesicles. Biochem. Biophys. Acta 332: 313–315, 1974.
 400. Masuda, H., and L. de Meis. Effect of temperature on the Ca2+ transport ATPase of sarcoplasmic reticulum. J. Biol. Chem. 252: 8567–8571, 1977.
 401. Mathias, R. T., R. A. Levis, and R. S. Eisenberg. Electrical models of excitation‐contraction coupling and charge movement in skeletal muscle. J. Gen. Physiol. 76: 1–31, 1980.
 402. McKinley, D., and G. Meissner. Sodium and potassium ion permeability of sarcoplasmic reticulum vesicles. FEBS Lett. 82: 47–50, 1977.
 403. McKinley, D., and G. Meissner. Evidence for a K+, Na+ permeable channel in sarcoplasmic reticulum. J. Membr. Biol. 44: 159–186, 1978.
 404. Meissner, G. ATP and Ca2+ binding by the Ca2+ pump protein of sarcoplasmic reticulum. Biochim. Biophys. Acta 298: 906–926, 1973.
 405. Meissner, G. Isolation and characterization of two types of sarcoplasmic reticulum vesicles. Biochim. Biophys. Acta 389: 51–68, 1975.
 406. Meissner, G. Effects of Ca2+ transport on a membrane potential in sarcoplasmic reticulum. Biophys. J. 25: 108a, 1979.
 407. Meissner, G. Calcium transport and monovalent cation and proton fluxes in sarcoplasmic reticulum vesicles. J. Biol. Chem. 256: 636–643, 1981.
 408. Meissner, G., G. E. Conner, and S. Fleischer. Isolation of sarcoplasmic reticulum by zonal centrifugation and purification of Ca2+‐pump and Ca2+‐binding proteins. Biochim. Biophys. Acta 298: 246–269, 1973.
 409. Meissner, G., and S. Fleischer. Characterization of sarcoplasmic reticulum from skeletal muscle. Biochim. Biophys. Acta 241: 356–378, 1971.
 410. Meissner, G., and S. Fleischer. The role of phospholipid in Ca2+ stimulated ATPase activity of sarcoplasmic reticulum. Biochim. Biophys. Acta 255: 19–33, 1972.
 411. Meissner, G., and D. McKinley. Permeability of sarcoplasmic reticulum membrane. The effect of changed ionic environments on Ca2+ release. J. Membr. Biol. 30: 79–98, 1976.
 412. Meissner, G., and R. C. Young. Proton permeability of sarcoplasmic reticulum vesicles. J. Biol. Chem. 255: 6814–6819, 1980.
 413. Mela, L. Mechanism and physiological significance of calcium transport across mammalian mitochondrial membranes. Curr. Top. Membr. Transp. 9: 321–366, 1977.
 414. Melgunov, V. I., and E. I. Akimova. On subunit structure of Ca2+ dependent ATPase of sarcoplasmic reticulum. FEBS Lett. 111: 197–200, 1980.
 415. Mermier, P., and W. Hasselbach. Comparison between strontium and calcium uptake by the fragmented sarcoplasmic reticulum. Eur. J. Biochem. 69: 79–86, 1976.
 416. Michalak, M., K. P. Campbell, and D. H. MacLennan. Localization of the high affinity calcium binding protein and an intrinsic glycoprotein in sarcoplasmic reticulum membranes. J. Biol. Chem. 255: 1317–1326, 1980.
 417. Michalak, M., and D. H. MacLennan. Assembly of the sarcoplasmic reticulum. Biosynthesis of the high affinity calcium binding protein in rat skeletal muscle cell cultures. J. Biol. Chem. 255: 1327–1334, 1980.
 418. Migala, A., B. Agostini, and W. Hasselbach. Tryptic fragmentation of the calcium transport system in the sarcoplasmic reticulum. Z. Naturforsch. Teil C 28: 178–182, 1973.
 419. Miller, C. Voltage‐gated cation conductance channel from fragmented sarcoplasmic reticulum: steady‐state electrical properties. J. Membr. Biol. 40: 1–23, 1978.
 420. Miller, C., P. Arvan, J. N. Telford, and E. Racker. Ca++ induced fusion of proteoliposomes: dependence on transmembrane osmotic gradient. J. Membr. Biol. 30: 271–282, 1976.
 421. Miller, C., and E. Racker. Ca++ induced fusion of fragmented sarcoplasmic reticulum with artificial planar bilayers. J. Membr. Biol. 30: 283–300, 1976.
 422. Miller, C., and R. L. Rosenberg. Modification of a voltage gated K+ channel from sarcoplasmic reticulum by a pronase‐derived specific endopeptidase. J. Gen. Physiol. 74: 457–478, 1979.
 423. Miller, C., and R. L. Rosenberg. A voltage gated cation conductance channel from fragmented sarcoplasmic reticulum. Effects of transition metal ions. Biochemistry 18: 1138–1145, 1979.
 424. Miyamoto, H., and M. Kasai. Asymmetric distribution of calcium binding sites of sarcoplasmic reticulum fragments. J. Biochem. Tokyo 85: 765–773, 1979.
 425. Møller, J. V., K. E. Lind, and J. P. Andersen. Enzyme kinetics and substrate stabilization of detergent solubilized and membraneous (Ca2+ + Mg2+) activated ATPase from sarcoplasmic reticulum. Effects of protein‐protein interactions. J. Biol. Chem. 255: 1912–1920 1980.
 426. Moore, B. M., B. R. Lentz, and G. Meissner. Effects of sarcoplasmic reticulum Ca2+‐ATPase on phospholipid bilayer fluidity: boundary lipid. Biochemistry 17: 5248–5255, 1978.
 427. Mope, L., G. B. McClellan, and S. Winegrad. Calcium sensitivity of the contractile system and phosphorylation of troponin in hyperpermeable cardiac cells. J. Gen. Physiol. 75: 271–282, 1980.
 428. Mostov, K. E., P. Defoor, S. Fleischer, and G. Blobel. Co‐translational membrane integration of calcium pump protein without signal sequence cleavage. Nature London 292: 87–88, 1981.
 429. Mukohata, Y., and L. Packer (editors). Cation Flux Across Biomembranes. New York: Academic, 1979.
 430. Murphy, A. J. Cross‐linking of the sarcoplasmic reticulum ATPase protein. Biochem. Biophys. Res. Commun. 70: 160–166, 1976.
 431. Murphy, A. J. Sulfhydryl group modification of sarcoplasmic reticulum membranes. Biochemistry 15: 4492–4496, 1976.
 432. Murphy, A. J. Sarcoplasmic reticulum adenosine triphosphatase: labeling of an essential lysyl residue with pyridoxal‐5'‐phosphate. Arch. Biochem. Biophys. 180: 114–120, 1977.
 433. Murphy, A. J. Effects of divalent cations and nucleotides on the reactivity of the sulfhydryl groups of sarcoplasmic reticulum membranes. Evidence for structural changes occurring during the calcium transport cycle. J. Biol. Chem. 253: 385–389, 1978.
 434. Nagasaki, K., and M. Kasai. Magnesium permeability of sarcoplasmic reticulum vesicles monitored in terms of Chlortetracycline fluorescence. J. Biochem. Tokyo 87: 709–716, 1980.
 435. Nakajima, Y., and M. Endo. Release of calcium induced by “depolarization” of the sarcoplasmic reticulum membrane. Nature London New Biol. 246: 216–218, 1973.
 436. Nakamaru, Y., and K. Nomura. Two types of sarcoplasmic reticulum‐orthophosphate interactions observed with dye probe. J. Biochem. Tokyo 81: 321–328, 1977.
 437. Nakamura, H. Spin‐labeling of adenosine triphosphatase in sarcoplasmic reticulum membrane and change in the state of the spin labels induced by deoxycholate. J. Biochem. Tokyo 82: 923–930, 1977.
 438. Nakamura, H., H. Hori, and T. Mitsui. Conformational change in sarcoplasmic reticulum induced by ATP in the presence of magnesium ion and calcium ion. J. Biochem. Tokyo 72: 635–646, 1972.
 439. Nakamura, H., R. L. Jilka, R. Boland, and A. N. Martonosi. Mechanism of ATP hydrolysis by sarcoplasmic reticulum and the role of phospholipids. J. Biol. Chem. 251: 5414–5423, 1976.
 440. Nakamura, H., and A. N. Martonosi. Effect of phospholipid substitution on the mobility of protein‐bound spin labels in sarcoplasmic reticulum. J. Biochem. Tokyo 87: 525–534, 1980.
 441. Nakamura, H., and A. N. Martonosi. Effect of phospholipid substitution on the mobility of spin labels bound to the ATPase of sarcoplasmic reticulum. J. Biochem. Tokyo 89: 21–28, 1981.
 442. Nakamura, J., Y. Endo, and K. Konishi. The formation of phosphoenzyme of sarcoplasmic reticulum. Requirement for membrane‐bound Ca2+. Biochim. Biophys. Acta 471: 260–272, 1977.
 443. Nakamura, M., and S. Ohnishi. Organization of lipids in sarcoplasmic reticulum membrane and Ca2+‐dependent ATPase activity. J. Biochem. Tokyo 78: 1039–1045, 1975.
 444. Nakamura, Y., and Y. Tonomura. Reaction mechanism of p‐nitrophenylphosphatase of sarcoplasmic reticulum: evidence for two kinds of phosphorylated intermediates with and without bound p‐nitrophenol. J. Biochem. Tokyo 83: 571–583, 1978.
 445. Nakamura, Y., Y. Tonomura, and B. Hagihara. Change in the ultraviolet spectrum of solubilized Ca2+‐dependent ATPase from sarcoplasmic reticulum due to binding with Ca2+ ions. J. Biochem. Tokyo 86: 443–446, 1979.
 446. Namm, D. H., E. L. Woods, and J. L. Zucker. Incorporation of the terminal phosphate of ATP into membranal protein of rabbit cardiac sarcoplasmic reticulum. Correlation with active calcium transport and study of the effects of cyclic AMP. Circ. Res. 31: 308–316, 1972.
 447. Narasimhan, R., R. K. Murray, and D. H. MacLennan. Presence of glycosphingolipids in the sarcoplasmic reticulum fraction of rabbit skeletal muscle. FEBS Lett. 43: 23–26, 1974.
 448. Neet, K. E., and N. M. Green. Kinetics of the cooperativity of the Ca2+ transporting adenosine triphosphatase of sarcoplasmic reticulum and the mechanism of the ATP interaction. Arch. Biochem. Biophys. 178: 588–597, 1977.
 449. Oetliker, H., S. M. Baylor, and W. K. Chandler. Simultaneous changes in fluorescence and optical retardation in single muscle fibres during activity. Nature London 257: 693–696, 1975.
 450. Ohnishi, S. T. A method for studying the depolarization‐induced calcium ion release from fragmented sarcoplasmic reticulum. Biochim. Biophys. Acta 587: 121–128, 1979.
 451. Ohnoki, S., and A. Martonosi. Purification and characterization of the proteolipid of rabbit sarcoplasmic reticulum. Biochim. Biophys. Acta 626: 170–178, 1980.
 452. Ohnoki, S., and A. Martonosi. Structural differences between Ca2+ transport ATPases isolated from sarcoplasmic reticulum of rabbit, chicken and lobster muscle. Comp. Biochem. Physiol. B 65: 181–189, 1980.
 453. Oldfield, E., K. M. Keough, and D. Chapman. The study of hydrocarbon chain mobility in membrane systems using spin‐label probes. FEBS Lett. 20: 344–346, 1972.
 454. Omura, T., P. Siekevitz, and G. E. Palade. Turnover of constituents of the endoplasmic reticulum membranes of rat hepatocytes. J. Biol. Chem. 242: 2389–2396, 1967.
 455. Ostwald, T. J., and D. H. MacLennan. Isolation of a high affinity calcium‐binding protein from sarcoplasmic reticulum. J. Biol. Chem. 249: 974–979, 1974.
 456. Ostwald, T. J., D. H. MacLennan, and K. J. Dorrington. Effects of cation binding on the conformation of calsequestrin and the high affinity calcium‐binding protein of sarcoplasmic reticulum. J. Biol. Chem. 249: 5867–5871, 1974.
 457. Ovchinnikov, Y. A. Physico‐chemical basis of ion transport through biological membranes: ionophores and ion channels. Eur. J. Biochem. 94: 321–336, 1979.
 458. Owens, K., R. C. Ruth, and W. B. Weglicki. Lipid composition of purified fragmented sarcoplasmic reticulum of the rabbit. Biochim. Biophys. Acta 288: 479–481, 1972.
 459. Packer, L., C. W. Mehard, G. Meissner, W. L. Zahler, and S. Fleischer. The structural role of lipids in mitochondrial and sarcoplasmic reticulum membranes. Freeze‐fracture electron microscopy studies. Biochim. Biophys. Acta 363: 159–181, 1974.
 460. Panet, R., and Z. Selinger. Specific alkylation of the sarcoplasmic reticulum ATPase by N‐ethyl‐[1‐14C]maleimide and identification of the labeled protein in acrylamide gel‐electrophoresis. Eur. J. Biochem. 14: 440–444, 1970.
 461. Pang, D. C., and F. N. Briggs. Reaction mechanism of the cardiac sarcotubule calcium(II) dependent adenosine triphosphatase. Biochemistry 12: 4905–4911, 1973.
 462. Pang, D. C., and F. N. Briggs. Effect of calcium and magnesium on binding of β‐γ‐methylene ATP to sarcoplasmic reticulum. J. Biol. Chem. 252: 3262–3266, 1977.
 463. Pang, D. C., F. N. Briggs, and R. S. Rogowski. Analysis of the ATP‐induced conformational changes in sarcoplasmic reticulum. Arch. Biochem. Biophys. 164: 332–340, 1974.
 464. Pick, U., and S. J. D. Karlish. Indications for an oligomeric structure and for conformational changes in sarcoplasmic reticulum Ca2+‐ATPase labeled selectively with fluorescein. Biochim. Biophys. Acta 626: 255–261, 1980.
 465. Pick, U., and E. Racker. Inhibition of the (Ca2+) ATPase from sarcoplasmic reticulum by dicyclohexylcarbodiimide. Evidence for location of the Ca2+ binding site in a hydrophobic region. Biochemistry 18: 108–113, 1979.
 466. Plank, B., G. Hellmann, C. Punzengruber, and J. Suko. ATP‐Pi and ITP‐Pi exchange by cardiac sarcoplasmic reticulum. Biochim. Biophys. Acta 550: 259–268, 1979.
 467. Prager, R., C. Punzengruber, N. Kolassa, F. Winkler, and J. Suko. Ionized and bound calcium inside isolated sarcoplasmic reticulum of skeletal muscle and its significance in phosphorylation of adenosine triphosphatase by orthophosphate. Eur. J. Biochem. 97: 239–250, 1979.
 468. Pucell, A., and A. Martonosi. Sarcoplasmic reticulum. XIV. Acetylphosphate and carbamylphosphate as energy sources for Ca++ transport. J. Biol. Chem. 246: 3389–3397, 1971.
 469. Punzengruber, C., R. Prager, N. Kolassa, F. Winkler, and J. Suko. Calcium gradient‐dependent and calcium gradient‐independent phosphorylation of sarcoplasmic reticulum by orthophosphate. The role of magnesium. Eur. J. Biochem. 92: 349–359, 1978.
 470. Racker, E. Reconstitution of a calcium pump with phospholipids and a purified Ca++‐adenosine triphosphatase from sarcoplasmic reticulum. J. Biol. Chem. 247: 8198–8200, 1972.
 471. Racker, E. Reconstitution, mechanism of action and control of ion pumps. Biochem. Soc. Trans. 3: 785–802, 1975.
 472. Racker, E. A New Look at Mechanisms in Bioenergetics. New York: Academic, 1976.
 473. Racker, E. Structure and function of ATP‐driven ion pumps. Trends Biochem. Sci. 1: 244–247, 1976.
 474. Racker, E. Proposal for a mechanism of Ca2+ transport. In: Calcium‐Binding Proteins and Calcium Function, edited by R. H. Wasserman, R. A. Corradino, E. Carafoli, R. H. Kretsinger, D. H. MacLennan, and F. L. Siegel. Amsterdam: Elsevier/North‐Holland, 1977, p. 155–163.
 475. Racker, E. Transport of ions. Ace. Chem. Res. 12: 338–344, 1979.
 476. Racker, E. Fluxes of Ca2+ and concepts. Federation Proc. 39: 2422–2426, 1980.
 477. Racker, E., J. A. Belt, W. W. Carley, and J. H. Johnson. Studies on anion transporters. Ann. NY Acad. Sci. 341: 27–36, 1980.
 478. Racker, E., T.‐F. Chien, and A. Kandrach. A cholate‐dilution procedure for the reconstitution of the Ca++ pump, 32Pi‐ATP exchange, and oxidative phosphorylation. FEES Lett. 57: 14–18, 1975.
 479. Racker, E., and E. Eytan. Reconstitution of an efficient calcium pump without detergents. Biochem. Biophys. Res. Commun. 55: 174–178, 1973.
 480. Racker, E., and E. Eytan. A coupling factor from sarcoplasmic reticulum required for the translocation of Ca2+ ions in a reconstituted Ca2+ ATPase pump. J. Biol. Chem. 250: 7533–7534, 1975.
 481. Racker, E., A. F. Knowles, and E. Eytan. Resolution and reconstitution of ion‐transport systems. Ann. NY Acad. Sci. 264: 17–33, 1975.
 482. Racker, E., B. Violand, S. O'neal, M. Alfonzo, and J. Telford. Reconstitution, a way of biochemical research; some new approaches to membrane‐bound enzymes. Arch. Biochem. Biophys. 198: 470–477, 1979.
 483. Rakowski, R. F. Inactivation and recovery of membrane charge movement in skeletal muscle. In: Regulation of Muscle Contraction: Excitation‐Contraction Coupling, edited by A. D. Grinnell and M. A. B. Brazier. New York: Academic, 1981, p. 23–38. (UCLA Forum Med. Sci. 22.)
 484. Rauch, B., D. Chak, and W. Hasselbach. Phosphorylation by inorganic phosphate of sarcoplasmic membranes. Z. Naturforsch. Teil C 32: 828–834, 1977.
 485. Rauch, B., D. V. Chak, and W. Hasselbach. An estimate of the kinetics of calcium binding and dissociation of the sarcoplasmic reticulum transport ATPase. FEBS Lett. 93: 65–68, 1978.
 486. Rayns, D. G., C. E. Devine, and C. L. Sutherland. Freeze fracture studies of membrane systems in vertebrate muscle. I. Striated muscle. J. Ultrastruct. Res. 50: 306–321, 1975.
 487. Reithmeier, R. A. F., S. de Leon, and D. H. MacLennan. Assembly of the sarcoplasmic reticulum. Cell‐free synthesis of the Ca2+ + Mg2+‐adenosine triphosphatase and calsequestrin. J. Biol. Chem. 255: 11839–11846, 1980.
 488. Reithmeier, R. A. F., and D. H. MacLennan. The NH2 terminus of the (Ca2+ + Mg2+)‐adenosine triphosphatase is located on the cytoplasmic surface of the sarcoplasmic reticulum membrane. J. Biol. Chem. 256: 5957–5960, 1981.
 489. Requena, J., and L. J. Mullins. Calcium movement in nerve fibres. Q. Rev. Biophys. 12: 371–460, 1979.
 490. Reuter, H., and H. Scholz. The regulation of the calcium conductance of cardiac muscle by adrenaline. J. Physiol. London 264: 49–62, 1977.
 491. Ribeiro, J. M. C., and A. L. Vianna. Allosteric modification by K+ of the (Ca2+ + Mg2+)‐dependent ATPase of sarcoplasmic reticulum. Interaction with Mg2+. J. Biol. Chem. 253: 3153–3157, 1978.
 492. Rizzolo, L. J., M. Le Maire, J. A. Reynolds, and C. Tanford. Molecular weights and hydrophobicity of the polypeptide chain of sarcoplasmic reticulum calcium(II) adenosine triphosphatase and of its primary tryptic fragments. Biochemistry 15: 3433–3437, 1976.
 493. Rizzolo, L. J., and C. Tanford. Denaturation of the tryptic fragments of the calcium(II) adenosine triphosphatase from sarcoplasmic reticulum by guanidinium hydrochloride. Biochemistry 17: 4044–4048, 1978.
 494. Rizzolo, L. J., and C. Tanford. Behavior of fragmented calcium(II) adenosine triphosphatase from sarcoplasmic reticulum in detergent solution. Biochemistry 17: 4049–4055, 1978.
 495. Rosemblatt, M., C. Hidalgo, C. Vergara, and N. Ikemoto. Immunological and biochemical properties of transverse tubule membranes isolated from rabbit skeletal muscle. J. Biol. Chem. 256: 8140–8148, 1981.
 496. Rossi, B., F. de Assis Leone, C. Gache, and M. Lazdunski. Pseudosubstrates of the sarcoplasmic Ca2+‐ATPase as tools to study the coupling between substrate hydrolysis and Ca2+ transport. J. Biol. Chem. 254: 2302–2307, 1979.
 497. Roufa, D., and A. N. Martonosi. The effect of Ca2+ ionophores upon the synthesis of muscle proteins in normal and fusion blocked cultured skeletal muscle. Federation Proc. 39: 954, 1980.
 498. Roufa, D., and A. N. Martonosi. Effect of curare on the development of chicken embryo skeletal muscle in ovo. Biochem. Pharmacol. 30: 1501–1505, 1981.
 499. Roufa; D., F. S. Wu, and A. N. Martonosi. The effect of Ca2+ ionophores upon the synthesis of proteins in cultured skeletal muscle. Biochim. Biophys. Acta 674: 225–237, 1981.
 500. Russell, J. T., T. Beeler, and A. Martonosi. Optical probe responses on sarcoplasmic reticulum. Oxacarbocyanines. J. Biol. Chem. 254: 2040–2046, 1979.
 501. Russell, J. T., T. Beeler, and A. Martonosi. Optical probe responses on sarcoplasmic reticulum: merocyanine and oxonol dyes. J. Biol. Chem. 254: 2047–2052, 1979.
 502. Saito, A., C. T. Wang, and S. Fleischer. Membrane asymmetry and enhanced ultrastructural detail of sarcoplasmic reticulum revealed with use of tannic acid. J. Cell Biol. 79: 601–616, 1978.
 503. Salama, G., and A. Scarpa. Optical signals of merocyanine dyes bound to sarcoplasmic reticulum during Ca++ transport. Biophys. J. 21: 12a, 1978.
 504. Sandow, A., M. K. D. Pagala, and E. C. Sphicas. Excitation‐contraction coupling: effects of zero'‐Ca2+ medium. Biochim. Biophys. Acta 404: 157–163, 1975.
 505. Sanslone, W. R., H. A. Bertrand, B. P. Yu, and E. J. Masoro. Lipid components of sarcotubular membranes. J. Cell. Physiol. 79: 97–102, 1972.
 506. Sarzala, M. G., and M. Michalak. Studies on the heterogeneity of sarcoplasmic reticulum vesicles. Biochim. Biophys. Acta 513: 221–235, 1978.
 507. Sarzala, M. G., and M. Pilarska. Phospholipid biosynthesis in sarcoplasmic reticulum membrane during development. Biochim. Biophys. Acta 441: 81–92, 1976.
 508. Sarzala, M. G., M. Pilarska, E. Zubrzycka, and M. Michalak. Changes in the structure, composition and function of sarcoplasmic reticulum membrane during development. Eur. J. Biochem. 57: 25–34, 1975.
 509. Sarzala, M. G., E. Zubrzycka, and M. Michalak. Comparison of some features of undeveloped and mature sarcoplasmic reticulum vesicles. In: Calcium Transport in Contraction and Secretion, edited by E. Carafoli, F. Clementi, W. Drabikowski, and A. Margreth. Amsterdam: Elsevier/North‐Holland, 1975, p. 329–338.
 510. Scales, D., and G. Inesi. Assembly of ATPase protein in sarcoplasmic reticulum membranes. Biophys. J. 16: 735–751, 1976.
 511. Scales, D. J., and R. A. Sabbadini. Microsomal T system. A stereological analysis of purified microsomes derived from normal and dystrophic skeletal muscle. J. Cell Biol. 83: 33–46, 1979.
 512. Scales, D., R. Sabbadini, and G. Inesi. The involvement of sarcotubular membranes in genetic muscular dystrophy. Biochim. Biophys. Acta 465: 535–549, 1977.
 513. Scandella, C. J., P. Devaux, and H. M. McConnell. Rapid lateral diffusion of phospholipids in rabbit sarcoplasmic reticulum. Proc. Natl. Acad. Sci. USA 69: 2056–2060, 1972.
 514. Scarpa, A., J. Baldassare, and G. Inesi. The effects of calcium ionophores on fragmented sarcoplasmic reticulum. J. Gen. Physiol. 60: 735–749, 1972.
 515. Scarpa, A., and E. Carafoli (editors). Calcium transport and cell function. Ann. NY Acad. Sci. 307: 1–655, 1978.
 516. Schibeci, A., and A. Martonosi. Ca2+ binding to muscle and liver nuclei. Federation Proc. 38: 494, 1979.
 517. Schibeci, A., and A. Martonosi. Ca2+‐binding proteins in nuclei. Eur. J. Biochem. 113: 5–14, 1980.
 518. Schmalbruch, H. Square arrays' in the sarcolemma of human skeletal muscle fibres. Nature London 281: 145–146, 1979.
 519. Schneider, M. F. Membrane charge movement and depolarization‐contraction coupling. Annu. Rev. Physiol. 43: 507–517, 1981.
 520. Schneider, M. F., and W. K. Chandler. Voltage dependent charge movement in skeletal muscle: a possible step in excitation‐contraction coupling. Nature London 242: 244–246, 1973.
 521. Schotland, D. L., E. Bonilla, and Y. Wakayama. Application of the freeze‐fracture technique to the study of human neuromuscular disease. Muscle Nerve 3: 21–27, 1980.
 522. Schwartz, A., M. L. Entman, K. Kaniike, L. K. Lane, W. B. Van Winkle, and E. P. Bornet. The rate of calcium uptake into sarcoplasmic reticulum of cardiac muscle and skeletal muscle. Effects of cyclic AMP‐dependent protein kinase and phosphorylase β kinase. Biochim. Biophys. Acta 426: 57–72, 1976.
 523. Scofano, H. M., A. Vieyra, and L. de Meis. Substrate regulation of the sarcoplasmic reticulum ATPase. Transient kinetic studies. J. Biol. Chem. 254: 10227–10231, 1979.
 524. Seelig, J., and W. Hasselbach. A spin label study of sarcoplasmic vesicles. Eur. J. Biochem. 21: 17–21, 1971.
 525. Sergeeva, N. S., A. F. Poglazov, and Y. A. Vladimirov. Investigation of permeability of planar lipid membranes in presence of vesicles of sarcoplasmic reticulum. Biofizika 20: 1029–1032, 1975.
 526. Shamoo, A. E. Ionophorous properties of the 20,000 dalton fragment of (Ca2+ + Mg2+)‐ATPase in phosphatidylcholine:cholesterol membranes. J. Membr. Biol. 43: 227–242, 1978.
 527. Shamoo, A. E., and J. J. Abramson. Ca2+ ionophore from Ca2+ + Mg2+ ATPase. In: Calcium‐Binding Proteins and Calcium Function, edited by R. H. Wasserman, R. A. Corradino, E. Carafoli, R. H. Kretsinger, D. H. MacLennan, and F. L. Siegel. Amsterdam: Elsevier/North‐Holland, 1977, p. 173–180.
 528. Shamoo, A. E., and D. A. Goldstein. Isolation of ionophores from ion transport systems and their role in energy transduction. Biochim. Biophys. Acta 472: 13–53, 1977.
 529. Shamoo, A. E., and D. H. MacLennan. A Ca++‐dependent and ‐selective ionophore as part of the Ca++ + Mg++‐dependent adenosinetriphosphatase of sarcoplasmic reticulum. Proc. Natl. Acad. Sci. USA 71: 3522–3526, 1974.
 530. Shamoo, A. E., and D. H. MacLennan. Separate effects of mercurial compounds on the ionophoric and hydrolytic functions of the (Ca++ + Mg++)‐ATPase of sarcoplasmic reticulum. J. Membr. Biol. 25: 65–74, 1975.
 531. Shamoo, A. E., and T. J. Murphy. Ionophores and ion transport across natural membranes. Curr. Top. Bioenerg. 9: 147–177, 1979.
 532. Shamoo, A. E., and T. E. Ryan. Isolation of ionophores from ion transport systems. Ann. NY Acad. Sci. 264: 83–97, 1975.
 533. Shamoo, A. E., T. E. Ryan, P. S. Stewart, and D. H. MacLennan. Localization of ionophore activity in a 20,000‐dalton fragment of the adenosine triphosphatase of sarcoplasmic reticulum. J. Biol. Chem. 251: 4147–4154, 1976.
 534. Sherman, R. G., and A. R. Luff. Structural features of the tarsal claw muscles of the spider Eurypelma marxi Simon. Can. J. Zool. 49: 1549–1556, 1971.
 535. Shigekawa, M., and A. A. Akowitz. On the mechanism of Ca2+‐dependent adenosine triphosphatase of sarcoplasmic reticulum. Occurrence of two types of phosphoenzyme intermediates in the presence of KCl. J. Biol. Chem. 254: 4726–4730, 1979.
 536. Shigekawa, M., and J. P. Dougherty. Reaction mechanism of Ca2+‐dependent ATP hydrolysis by skeletal muscle sarcoplasmic reticulum in the absence of added alkali metal salts. II. Kinetic properties of the phosphoenzyme formed at the steady state in high Mg2+ and low Ca2+ concentrations. J. Biol. Chem. 253: 1451–1457, 1978.
 537. Shigekawa, M., and J. P. Dougherty. Reaction mechanism of Ca2+‐dependent ATP hydrolysis by skeletal muscle sarcoplasmic reticulum in the absence of added alkali metal salts. III. Sequential occurrence of ADP‐sensitive and ADP‐insensitive phosphoenzymes. J. Biol. Chem. 253: 1458–1464, 1978.
 538. Shigekawa, M., J. P. Dougherty, and A. M. Katz. Reaction mechanism of Ca2+‐dependent ATP hydrolysis by skeletal muscle sarcoplasmic reticulum in the absence of added alkali metal salts. I. Characterization of steady state ATP hydrolysis and comparison with that in the presence of KCl. J. Biol. Chem. 253: 1442–1450, 1978.
 539. Shigekawa, M., J. M. Finegan, and A. M. Katz. Calcium transport ATPase of canine cardiac sarcoplasmic reticulum. A comparison with that of rabbit fast skeletal muscle sarcoplasmic reticulum. J. Biol. Chem. 251: 6894–6900, 1976.
 540. Shigekawa, M., and L. J. Pearl. Activation of calcium transport in skeletal muscle sarcoplasmic reticulum by monovalent cations. J. Biol. Chem. 251: 6947–6952, 1976.
 541. Sigrist, H., K. Sigrist‐Nelson, and C. Gitler. Single‐phase butanol extraction: a new tool for proteolipid isolation. Biochem. Biophys. Res. Commun. 74: 178–184, 1977.
 542. Sims, P. J., A. S. Waggoner, C.‐H. Wang, and J. F. Hoffman. Studies on the mechanism by which cyanine dyes measure membrane potential in red blood cells and phosphatidylcholine vesicles. Biochemistry 13: 3315–3330, 1974.
 543. Singer, S. J. The molecular organization of membranes. Annu. Rev. Biochem. 43: 805–833, 1974.
 544. Somlyo, A. P., A. V. Somlyo, H. Shuman, B. Sloane, and A. Scarpa. Electron probe analysis of calcium compartments in cryo sections of smooth and striated muscles. Ann. NY Acad. Sci. 307: 523–544, 1978.
 545. Somlyo, A. V. Bridging structures spanning the junctional gap at the triad of skeletal muscle. J. Cell Biol. 80: 743–750, 1979.
 546. Somlyo, A. V., H. Gonzalez‐Serratos, H. Shuman, G. McClellan, and A. P. Somlyo. Calcium release and ionic changes in the sarcoplasmic reticulum of tetanized muscle: an electron‐probe study. J. Cell Biol. 90: 577–594, 1981.
 547. Somlyo, A. V., H. Shuman, and A. P. Somlyo. Composition of sarcoplasmic reticulum in situ by electron probe X‐ray microanalysis. Nature London 268: 556–558, 1977.
 548. Somlyo, A. V., A. P. Somlyo, Gonzalez‐Serratos, H. Shuman, and G. McClellan. Sarcoplasmic reticulum and mitochondria in excitation‐contraction (E‐C) coupling in smooth and striated muscle. In: Regulation of Muscle Contraction: Excitation‐Contraction Coupling, edited by A. D. Grinnell and M. A. B. Brazier. New York: Academic, 1981, p. 199–214. (UCLA Forum Med. Sci. 22.)
 549. Souza, D. O. G., and L. de Meis. Calcium and magnesium regulation of phosphorylation by ATP and ITP in sarcoplasmic reticulum vesicles. J. Biol. Chem. 251: 6355–6359, 1976.
 550. Spitzer, N. C. Ion channels in development. Annu. Rev. Neurosci. 2: 363–397, 1979.
 551. Sréter, F. A. Temperature, pH and seasonal dependence of Ca‐uptake and ATPase activity of white and red muscle microsomes. Arch. Biochem. Biophys. 134: 25–33, 1969.
 552. Stefani, E., and D. J. Chiarandini. Skeletal muscle: dependence of potassium contractures on extracellular calcium. Pfluegers Arch. 343: 143–150, 1973.
 553. Stein, W. D. The Movement of Molecules Across Cell Membranes. New York: Academic, 1967.
 554. Stein, W. D., Y. Eilam, and W. R. Lieb. Active transport of cations across biological membranes. Ann. NY Acad. Sci. 227: 328–336, 1974.
 555. Stephens, E. M., and C. M. Grisham. Lithium‐7 nuclear magnetic resonance, water proton nuclear magnetic resonance, and gadolinium electron paramagnetic resonance studies of the sarcoplasmic reticulum calcium ion transport adenosine triphosphatase. Biochemistry 18: 4876–4885, 1979.
 556. Stewart, P. S., and D. H. MacLennan. Surface particles of sarcoplasmic reticulum membranes. Structural features of the adenosine triphosphatase. J. Biol. Chem. 249: 985–993, 1974.
 557. Stewart, P. S., D. H. MacLennan, and A. E. Shamoo. Isolation and characterization of tryptic fragments of adenosine triphosphatase of sarcoplasmic reticulum. J. Biol. Chem. 251: 712–719, 1976.
 558. Stromer, M., and W. Hasselbach. Fusion of isolated sarcoplasmic reticulum membranes. Z. Naturforsch. Teil C 31: 703–707, 1976.
 559. Stryer, L. Fluorescence energy transfer as a spectroscopic ruler. Annu. Rev. Biochem. 47: 819–846, 1978.
 560. Suarez‐Kurtz, G., and I. Parker. Birefringence signals and calcium transients in skeletal muscle. Nature London 270: 746–748, 1977.
 561. Suko, J., and W. Hasselbach. Characterization of cardiac sarcoplasmic reticulum ATP‐ADP phosphate exchange and phosphorylation of the calcium transport adenosine triphosphatase. Eur. J. Biochem. 64: 123–130, 1976.
 562. Sumida, M., T. Kanazawa, and Y. Tonomura. Reaction mechanism of the Ca2+‐dependent ATPase of sarcoplasmic reticulum from skeletal muscle. XI. Re‐evaluation of the transition of ATPase activity during the initial phase. J. Biochem. Tokyo 79: 259–264, 1976.
 563. Sumida, M., and S. Sasaki. Inhibition of Ca2+ uptake into fragmented sarcoplasmic reticulum by antibodies against purified Ca2+, Mg2+‐dependent ATPase. J. Biochem. Tokyo 78: 757–762, 1975.
 564. Sumida, M., and Y. Tonomura. Reaction mechanism of the Ca2+‐dependent ATPase of sarcoplasmic reticulum from skeletal muscle. X. Direct evidence for Ca2+ translocation coupled with formation of a phosphorylated intermediate. J. Biochem. Tokyo 75: 283–297, 1974.
 565. Sumida, M., T. Wang, F. Mandel, J. P. Froehlich, and A. Schwartz. Transient kinetics of Ca2+ transport of sarcoplasmic reticulum. A comparison of cardiac and skeletal muscle. J. Biol. Chem. 253: 8772–8777, 1978.
 566. Sumida, M., T. Wang, A. Schwartz, C. Younkin, and J. P. Froehlich. The Ca2+‐ATPase partial reactions in cardiac and skeletal sarcoplasmic reticulum. A comparison of transient state kinetic data. J. Biol. Chem. 255: 1497–1503, 1980.
 567. Sutherland, E. W., and T. W. Rall. The relation of adenosine‐3', 5'‐phosphate and phosphorylase to the actions of catecholamines and other hormones. Pharmacol. Rev. 12: 265–299, 1960.
 568. Sutherland, E. W., G. A. Robison, and R. W. Butcher. Some aspects of the biological role of adenosine 3',5'‐mono‐phosphate (cyclic AMP). Circulation 37: 279–306, 1968.
 569. Szabolcs, M., A. Kover, and L. Kovacs. Studies on the postnatal changes in the sarcoplasmatic reticular fraction of rabbit muscle. Acta Biochim. Biophys. Acad. Sci. Hung. 2: 409–415, 1967.
 570. Tada, M., and M. A. Kirchberger. Regulation of calcium transport by cyclic AMP. A proposed mechanism for the beta‐adrenergic control of myocardial contractility. Acta Cardiol. 30: 231–237, 1975.
 571. Tada, M., M. A. Kirchberger, and A. M. Katz. Phosphorylation of a 22,000 dalton component of the cardiac sarcoplasmic reticulum by adenosine 3',5'‐monophosphate‐dependent protein kinase. J. Biol. Chem. 250: 2640–2647, 1975.
 572. Tada, M., M. A. Kirchberger, and H. C. Li. Phosphoprotein phosphatase‐catalyzed dephosphorylation of the 22,000 dalton phosphoprotein of cardiac sarcoplasmic reticulum. J. Cyclic Nucleotide Res. 1: 329–338, 1975.
 573. Tada, M., M. A. Kirchberger, D. I. Repke, and A. M. Katz. The stimulation of calcium transport in cardiac sarcoplasmic reticulum by adenosine 3',5'‐monophosphate‐dependent protein kinase. J. Biol. Chem. 249: 6174–6180, 1974.
 574. Tada, M., F. Ohmori, N. Kinoshita, and H. Abe. Significance of two classes of phosphoproteins in the function of cardiac sarcoplasmic reticulum: phosphorylation of Ca2+‐dependent ATPase and phospholamban. In: Calcium‐Binding Proteins and Calcium Function, edited by R. H. Wasserman, R. A. Corradino, E. Carafoli, R. H. Kretsinger, D. H. MacLennan, and F. L. Siegel. Amsterdam: Elsevier/North‐Holland, 1977, p. 200–202.
 575. Tada, M., F. Ohmori, N. Kinoshita, and H. Abe. Cyclic‐AMP regulation of active calcium transport across membranes of sarcoplasmic reticulum: role of the 22,000 dalton protein phospholamban. Adv. Cyclic Nucleotide Res. 9: 355–369, 1978.
 576. Tada, M., F. Ohmori, N. Kinoshita, M. Kadoma, H. Matsuo, H. Sakakibara, Y. Nimura, and H. Abe. Effects of protein kinase modulator on cAMP‐ and cGMP‐dependent protein kinase‐catalyzed phosphorylation and the rate of calcium uptake by cardiac microsomes. J. Mol. Cell. Cardiol. 9, Suppl.: 45–46, 1977.
 577. Tada, M., F. Ohmori, M. Yamada, and H. Abe. Mechanism of the stimulation of Ca2+‐dependent ATPase of cardiac sarcoplasmic reticulum by adenosine 3', 5'‐monophosphate‐dependent protein kinase. Role of the 22,000‐dalton protein. J. Biol. Chem. 254: 319–326, 1979.
 578. Tada, M., M. Yamada, F. Ohmori, T. Kuzuya, and H. Abe. Mechanism of cyclic AMP regulation of active calcium transport by cardiac sarcoplasmic reticulum. In: Cation Flux Across Biomembranes, edited by Y. Mukohata and L. Packer. New York: Academic, 1979, p. 179–190.
 579. Tada, M., T. Yamamoto, and Y. Tonomura. Molecular mechanism of active calcium transport by sarcoplasmic reticulum. Physiol. Rev. 58: 1–79, 1978.
 580. Takakuwa, Y., and T. Kanazawa. Slow transition of phosphoenzyme from ADP‐sensitive to ADP‐insensitive forms in solubilized Ca2+, Mg2+‐ATPase of sarcoplasmic reticulum: evidence for retarded dissociation of Ca2+ from the phosphoenzyme. Biochem. Biophys. Res. Commun. 88: 1209–1216, 1979.
 581. Takisawa, H., and Y. Tonomura. Factors affecting the transient phase of the Ca2+ + Mg2+ dependent ATPase reaction of sarcoplasmic reticulum from skeletal muscle. J. Biochem. Tokyo 83: 1275–1284, 1978.
 582. Takisawa, H., and Y. Tonomura. ADP‐sensitive and ‐insensitive phosphorylated intermediates of solubilized Ca2+, Mg2+‐dependent ATPase of the sarcoplasmic reticulum from skeletal muscle. J. Biochem. Tokyo 86: 425–441, 1979.
 583. Tanford, C. The hydrophobic effect and the organization of living matter. Science 200: 1012–1018, 1978.
 584. Taylor, J. S., and D. Hattan. Biphasic kinetics of ATP hydrolysis by calcium dependent ATPase of the sarcoplasmic reticulum of skeletal muscle. J. Biol. Chem. 254: 4402–4407, 1979.
 585. Tenu, J. P., A. Dupaix, J. Yon, F. J. Seydoux, and J. Chevallier. A plausible model for calcium transport in sarcoplasmic reticulum. Biol. Cell. 33: 219–224, 1978.
 586. Tenu, J. P., C. Ghelis, D. S. Leger, J. Carrette, and J. Chevallier. Mechanism of an active transport of calcium. Ethoxyformylation of sarcoplasmic reticulum vesicles. J. Biol. Chem. 251: 4322–4329, 1976.
 587. The, R., and W. Hasselbach. Properties of the sarcoplasmic ATPase reconstituted by oleate and lysolecithin after lipid depletion. Eur. J. Biochem. 28: 357–363, 1972.
 588. The, R., and W. Hasselbach. Unsaturated fatty acids as reactivators of the calcium‐dependent ATPase of delipidated sarcoplasmic membranes. Eur. J. Biochem. 39: 63–68, 1973.
 589. The, R., and W. Hasselbach. Stimulatory and inhibitory effects of dimethyl sulfoxide and ethylene glycol on ATPase activity and calcium transport of sarcoplasmic membranes. Eur. J. Biochem. 74: 611–621, 1977.
 590. Thomas, D. D. Large scale rotational motions of proteins detected by electron paramagnetic resonance and fluorescence. Biophys. J. 24: 439–462, 1978.
 591. Thomas, D. D., and C. Hidalgo. Rotational motion of the sarcoplasmic reticulum Ca2+‐ATPase. Proc. Natl. Acad. Sci. USA 75: 5488–5492, 1978.
 592. Thorley‐Lawson, D. A., and N. M. Green. Studies on the location and orientation of proteins in the sarcoplasmic reticulum. Eur. J. Biochem. 40: 403–413, 1973.
 593. Thorley‐Lawson, D. A., and N. M. Green. Separation and characterization of tryptic fragments from the adenosine triphosphatase of sarcoplasmic reticulum. Eur. J. Biochem. 59: 193–200, 1975.
 594. Thorley‐Lawson, D. A., and N. M. Green. The reactivity of the thiol groups of the adenosine triphosphatase of sarcoplasmic reticulum and their location on tryptic fragments of the molecule. Biochem. J. 167: 739–748, 1977.
 595. Tillack, T. W., R. Boland, and A. N. Martonosi. The ultrastructure of developing sarcoplasmic reticulum. J. Biol. Chem. 249: 624–633, 1974.
 596. Tong, S. W. The acetylated NH2 terminus of Ca‐ATPase from rabbit skeletal muscle sarcoplasmic reticulum: a common NH2 terminal acetylated methionyl sequence. Biochem. Biophys. Res. Commun. 74: 1242–1248, 1977.
 597. Tong, S. W. Studies on the structure of the calcium‐dependent adenosine triphosphatase from rabbit skeletal muscle sarcoplasmic reticulum. Arch. Biochem. Biophys. 203: 780–791, 1980.
 598. Tonomura, Y. Muscle Proteins, Muscle Contraction and Cation Transport. Tokyo: Univ. of Tokyo Press, 1972.
 599. Tonomura, Y., and M. F. Morales. Change in state of spin labels bound to sarcoplasmic reticulum with change in enzymic state, as deduced from ascorbate‐quenching studies. Proc. Natl. Acad. Sci. USA 71: 3687–3691, 1974.
 600. Trotta, E. E., and L. de Meis. Adenosine 5'‐triphosphate orthophosphate exchange catalyzed by the Ca2+‐transport ATPase of brain. Activation by a small transmembrane Ca2+ gradient. J. Biol. Chem. 253: 7821–7825, 1978.
 601. Tsai, C. M., C. C. Huang, and E. S. Canellakis. Iodination of cell membranes. I. Optimal conditions for the iodination of exposed membrane components. Biochim. Biophys. Acta 332: 47–58, 1973.
 602. Tume, R. K. Iodination of calsequestrin in the sarcoplasmic reticulum of rabbit skeletal muscle: a reexamination. Austr. J. Biol. Sci. 32: 177–185, 1979.
 603. Ueno, T., and T. Serine. Study on calcium transport by sarcoplasmic reticulum vesicles using fluorescence probes. J. Biochem. Tokyo 84: 787–794, 1978.
 604. Ueno, T., and T. Serine. A role of H+ flux in active Ca2+ transport into sarcoplasmic reticulum vesicles. I. Effect on an artificially imposed H+ gradient on Ca2+ uptake. J. Biochem. Tokyo 89: 1239–1246, 1981.
 605. Ueno, T., and T. Serine. A role of H+ flux in active Ca2+ transport into sarcoplasmic reticulum vesicles. II. H+ ejection during Ca2+ uptake. J. Biochem. Tokyo 89: 1247–1252, 1981.
 606. Ulbrecht, M. Beruht der Phosphat‐Austausch zwischen Adenosin‐triphosphat und Adenosin [32P]‐diphosphate in gereinigten Fibrillen und Actomyosin Praparaten auf einer Verunreinigung durch Muskel‐grana? Biochim. Biophys. Acta 57: 438–454, 1962.
 607. Ulbrecht, M. Der Austausch und die Abspaltung des γ‐Phosphats des Adenosin‐Triphosphates durch Sarkosomen und kleine Grana des Kaninchen‐Muskels. Biochim. Biophys. Acta 57: 455–474, 1962.
 608. Vale, M. G. P. Localization of the amino phospholipids in sarcoplasmic reticulum membranes revealed by trinitrobenzenesulfonate and fluorodinitrobenzene. Biochim. Biophys. Acta 471: 39–48, 1977.
 609. Vale, M. G. P., and A. P. Carvalho. Utilization of X‐537A to distinguish between intravesicular and membrane‐bound calcium ions in sarcoplasmic reticulum. Biochim. Biophys. Acta 413: 202–212, 1975.
 610. Vale, M. G. P., and A. P. Carvalho. Effect of temperature on the reversal of the calcium ion pump in sarcoplasmic reticulum. Biochem. J. 186: 461–467, 1980.
 611. Vale, M. G. P., V. R. Osório, E. Castro, and A. P. Carvalho. Synthesis of adenosine triphosphate during release of intravesicular and membrane‐bound calcium ions from passively loaded sarcoplasmic reticulum. Biochem. J. 156: 239–244, 1976.
 612. Van Den Besselaar, A. M. P. H., B. de Kruijff, H. Van Den Bosch, and L. L. M. van Deenen. Transverse distribution and movement of lysophosphatidylcholine in sarcoplasmic reticulum membranes as determined by 13C NMR and lysophospholipase. Biochim. Biophys. Acta 555: 193–199, 1979.
 613. Vanderkooi, J. M., A. Ieroromos, H. Naramura, and A. Martonosi. Fluorescence energy transfer between Ca2+ transport ATPase molecules in artificial membranes. Biochemistry 16: 1262–1267, 1977.
 614. Vanderkooi, J., and A. Martonosi. Sarcoplasmic reticulum. VIII. Use of 8‐anilino‐1‐naphthalene sulfonate as conformational probe on biological membranes. Arch. Biochem. Biophys. 133: 153–163, 1969.
 615. Vanderkooi, J. M., and A. Martonosi. Sarcoplasmic reticulum. XII. The interaction of 8‐anilino‐1‐naphthalene sulfonate with skeletal muscle microsomes. Arch. Biochem. Bio‐phys. 144: 87–98, 1971.
 616. Vanderkooi, J. M., and A. Martonosi. Sarcoplasmic reticulum. XIII. Changes in the fluorescence of 8‐anilino‐1‐naphthalene sulfonate during Ca2+ transport. Arch. Biochem. Bio‐phys. 144: 99–106, 1971.
 617. Vanderkooi, J. M., and A. Martonosi. Sarcoplasmic reticulum. XVI. The permeability of phosphatidyl choline vesicles for calcium. Arch. Biochem. Biophys. 147: 632–646, 1971.
 618. Vanderkooi, J. M., and A. Martonosi. Use of 8‐anilino‐1‐naphthalene sulfonate as conformational probe on biological membranes. In: Probes of Structure and Function of Macro‐molecules and Membranes, edited by B. Chance, C. P. Lee, and J. K. Blasie. New York: Academic, 1971, vol. I, p. 293–301.
 619. Van Winkle, W. B., and M. L. Entman. Mini review. Comparative aspects of cardiac and skeletal muscle sarcoplasmic reticulum. Life Sci. 25: 1189–1200, 1979.
 620. Varsanyi, M., U. Gröschel‐Stewart, and L. M. G. Heilmeyer, Jr. Characterization of a Ca2+‐dependent protein kinase in skeletal muscle membranes of I‐strain and wild‐type mice. Eur. J. Biochem. 87: 331–340, 1978.
 621. Varsanyi, M., and L. M. G. Heilmeyer, Jr. Ca2+ regulation of sarcoplasmic reticular protein phosphatase activity. Biochemistry 18: 4869–4875, 1979.
 622. Varsanyi, M., and L. M. G. Heilmeyer. The protein kinase properties of calsequestrin. FEBS Lett. 103: 85–88, 1979.
 623. Vegh, K., P. Spiegler, C. Chamberlain, and W. F. H. M. Mommaerts. The molecular size of the calcium transport ATPase of sarcotubular vesicles estimated from radiation in‐activation. Biochim. Biophys. Acta 163: 266–268, 1968.
 624. Vergara, J., F. Bezanilla, and B. M. Salzberg. Nile blue fluorescence signals from cut single muscle fibers under voltage or current clamp conditions. J. Gen. Physiol. 72: 775–800, 1978.
 625. Verjovski‐Almeida, S., and G. Inesi. Fast kinetic evidence for an activating effect of ATP on the Ca2+ transport of sarcoplasmic reticulum ATPase. J. Biol. Chem. 254: 18–21, 1979.
 626. Verjovski‐Almeida, S., M. Kurzmack, and G. Inesi. Partial reactions in the catalytic and transport cycle of sarcoplasmic reticulum ATPase. Biochemistry 17: 5006–5013, 1978.
 627. Vianna, A. L. Interaction of calcium and magnesium in activating and inhibiting the nucleoside triphosphatase of sarcoplasmic reticulum vesicles. Biochim. Biophys. Acta 410: 389–406, 1975.
 628. Vieyra, A., H. M. Scofano, H. Guimaraes‐Motta, R. K. Tume, and L. de Meis. Transient state kinetic studies of phosphorylation by ATP and Pi of the calcium dependent ATPase from sarcoplasmic reticulum. Biochim. Biophys. Acta 568: 437–445, 1979.
 629. Waas, W., and Hasselbach, W. Interference of nucleoside diphosphates and inorganic phosphate with NTP‐dependent calcium fluxes and calcium dependent NTP hydrolysis in vesicular sarcoplasmic reticulum membranes. Eur. J. Biochem. 116: 601–608, 1981.
 630. Waggoner, A. Optical probes of membrane potential. J. Membr. Biol. 27: 317–334, 1976.
 631. Waggoner, A. S. Dye indicators of membrane potential. Annu. Rev. Biophys. Bioeng. 8: 47–58, 1979.
 632. Waku, K. Skeletal muscle. In: Lipid Metabolism in Mammals, edited by F. Snyder. New York: Plenum, 1977, vol. 2, p. 189–208.
 633. Waku, A., F. Hayakawa, and Y. Nakazawa. Regulation of the fatty acid pattern of phospholipids in rabbit sarcoplasmic reticulum. Specificity of glycerophosphate, 1‐acylglycerophosphate and 2‐acylglycerophosphorylcholine acyltransferase systems. J. Biochem. Tokyo 82: 671–677, 1977.
 634. Waku, K., H. Ito, T. Bito, and Y. Nakazawa. Fatty chains of acyl, alkenyl, and alkyl phosphoglycerides of rabbit sarcoplasmic reticulum. The metabolic relationship considered on the basis of structural analyses. J. Biochem. Tokyo 75: 1307–1312, 1974.
 635. Waku, K., and W. E. M. Lands. Acyl coenzyme A: 1‐alkenyl‐glycero‐3‐phosphoryl choline acyltransferase action in plasmalogen biosynthesis. J. Biol. Chem. 243: 2654–2659, 1968.
 636. Waku, K., and Y. Nakazawa. Acyltransferase activity to 1‐0‐alkyl‐glycero‐3‐phosphorylcholine in sarcoplasmic reticulum. J. Biochem. Tokyo 68: 459–466, 1970.
 637. Waku, K., and Y. Nakazawa. The rates of incorporation of inorganic orthophosphate, glycerol, and acetate into phospholipids of rabbit sarcoplasmic reticulum. J. Biochem. Tokyo 73: 497–504, 1973.
 638. Waku, K., Y. Uda, and Y. Nakazawa. Lipid composition in rabbit sarcoplasmic reticulum and occurrence of alkyl ether phospholipids. J. Biochem. Tokyo 69: 483–491, 1971.
 639. Wang, C. T., S. Saito, and S. Fleischer. Correlation of ultrastructure of reconstituted sarcoplasmic reticulum membrane vesicles with variation in phospholipid to protein ratio. J. Biol. Chem. 254: 9209–9219, 1979.
 640. Wang, T., A. O. Grassi De Gende, and A. Schwartz. Kinetic properties of calcium adenosine triphosphatase of sarcoplasmic reticulum isolated from cat skeletal muscles. A comparison of caudofemoralis (fast), tibialis (mixed), and soleus (slow). J. Biol. Chem. 254: 10675–10678, 1979.
 641. Wanson, J. C., and P. Drochmans. Role of the sarcoplasmic reticulum in glycogen metabolism. Binding of phosphorylase, phosphorylase kinase, and primer complexes of the sarcovesicles of rabbit skeletal muscle. J. Cell Biol. 54: 206–224, 1972.
 642. Warren, G. B., J. P. Bennett, T. R. Hesketh, M. D. Houslay, G. A. Smith, and J. C. Metcalfe. The lipids surrounding a calcium transport protein: their role in calcium transport and accumulation. Proc. FEBS Meet, 10th 41: 3–15, 1975.
 643. Warren, G. B., M. D. Houslay, J. C. Metcalfe, and N. J. M. Birdsall. Cholesterol is excluded from the phospholipid annulus surrounding an active calcium transport protein. Nature London 255: 684–687, 1975.
 644. Warren, G. B., P. A. Toon, N. J. M. Birdsall, A. G. Lee, and J. C. Metcalfe. Complete control of the lipid environment of membrane‐bound proteins: application to a calcium transport system. FEBS Lett. 41: 122–124, 1974.
 645. Warren, G. B., P. A. Toon, N. J. M. Birdsall, A. G. Lee, and J. C. Metcalfe. Reversible lipid titrations of the activity of pure adenosine triphosphatase‐lipid complexes. Biochemistry 13: 5501–5507, 1974.
 646. Warren, G. B., P. A. Toon, N. J. M. Birdsall, A. G. Lee, and J. C. Metcalfe. Reconstitution of a calcium pump using defined membrane components. Proc. Natl. Acad. Sci. USA 71: 622–626, 1974.
 647. Wasserman, R. H., R. A. Corradino, E. Carafoli, R. H. Kretsinger, D. H. MacLennan, and F. L. Siegel (editors). Calcium‐Binding Proteins and Calcium Function. New York: Elsevier/North‐Holland, 1977.
 648. Weber, A. Energized calcium transport and relaxing factors. In: Current Topics in Bioenergetics, edited by A. Sanadi. New York: Academic, 1966, vol. 1, p. 203–254.
 649. Weber, A. Regulatory mechanisms of the calcium transport system of fragmented rabbit sarcoplasmic reticulum. I. The effect of accumulated calcium on transport and adenosine triphosphate hydrolysis. J. Gen. Physiol. 57: 50–63, 1971.
 650. Weber, A. Regulatory mechanisms of the calcium transport system of fragmented rabbit sarcoplasmic reticulum. II. Inhibition of outflux in calcium‐free media. J. Gen. Physiol. 57: 64–70, 1971.
 651. Weber, A., R. Herz, and I. Reiss. The regulation of myofibrillar activity by calcium. Proc. R. Soc. London Ser. B 160: 489–501, 1964.
 652. Weber, A., R. Herz, and I. Reiss. Study of the kinetics of calcium transport by isolated fragmented sarcoplasmic reticulum. Biochem. Z. 345: 329–369, 1966.
 653. Weber, K., and M. Osborn. The reliability of molecular weight determinations by dodecyl sulfate‐polyacrylamide gel electrophoresis. J. Biol. Chem. 244: 4406–4412, 1969.
 654. Will, H., T. S. Levchenko, D. O. Levitsky, V. N. Smirnov, and A. Wollenberger. Partial characterization of protein kinase‐catalyzed phosphorylation of low molecular weight proteins in purified preparations of pigeon heart sarcolemma and sarcoplasmic reticulum. Biochim. Biophys. Acta 543: 175–193, 1978.
 655. Winegrad, S. Autoradiographic studies of intracellular calcium in frog skeletal muscle. J. Gen. Physiol. 48: 455–479, 1965.
 656. Winegrad, S. The location of muscle calcium with respect to the myofibrils. J. Gen. Physiol. 48: 997–1002, 1965.
 657. Winegrad, S. Intracellular calcium movements of frog skeletal muscle during recovery from tetanus. J. Gen. Physiol. 51: 65–83, 1968.
 658. Wollenberger, A. Cyclic nucleotides and the regulation of heart beat. Int. Congr. Pharmacol., 5th, Abstracts of Invited Presentations, 1972, p. 231–233.
 659. Wollenberger, A., and H. Will. Protein kinase‐catalyzed membrane phosphorylation and its possible relationship to the role of calcium in the adrenergic regulation of cardiac contraction. Life Sci. 22: 1159–1178, 1978.
 660. Worthington, C. R., and S. C. Liu. Structure of sarcoplasmic reticulum membranes at low resolution (17Å). Arch. Biochem. Biophys. 157: 573–579, 1973.
 661. Wray, H. L., and R. R. Gray. Cyclic AMP stimulation of membrane phosphorylation and Ca2+‐activated, Mg2+ dependent ATPase in cardiac sarcoplasmic reticulum. Biochim. Biophys. Acta 461: 441–459, 1977.
 662. Wray, H. L., R. R. Gray, and R. A. Olsson. Cyclic adenosine 3',5'‐monophosphate‐stimulated protein kinase and a substrate associated with cardiac sarcoplasmic reticulum. J. Biol. Chem. 248: 1496–1498, 1973.
 663. Wu, F. S., Y.‐C. Park, D. Roufa, and A. Martonosi. Selective stimulation of the synthesis of an 80,000 dalton protein by calcium ionophores. J. Biol. Chem. 256: 5309–5312, 1981.
 664. Wu, S. H., and H. M. McConnell. Phase separations in phospholipid membranes. Biochemistry 14: 847–854, 1975.
 665. Yamada, S., and N. Ikemoto. Distinction of thiols involved in the specific reaction steps of the Ca2+‐ATPase of the sarcoplasmic reticulum. J. Biol. Chem. 253: 6801–6807, 1978.
 666. Yamada, S., and N. Ikemoto. Reaction mechanism of calcium ATPase of sarcoplasmic reticulum. Substrates for phosphorylation reaction and back reaction, and further resolution of phosphorylated intermediates. J. Biol. Chem. 255: 3108–3119, 1980.
 667. Yamada, S., M. Sumida, and Y. Tonomura. Reaction mechanism of the Ca2+‐dependent ATPase of sarcoplasmic reticulum from skeletal muscle. VIII. Molecular mechanism of the conversion of osmotic energy to chemical energy in the sarcoplasmic reticulum. J. Biochem. Tokyo 72: 1537–1548, 1972.
 668. Yamada, S., and Y. Tonomura. Phosphorylation of the Ca2+‐Mg2+‐dependent ATPase of the sarcoplasmic reticulum coupled with cation translocation. J. Biochem. Tokyo 71: 1101–1104, 1972.
 669. Yamada, S., and Y. Tonomura. Reaction mechanism of the Ca2+‐dependent ATPase of sarcoplasmic reticulum from skeletal muscle. VII. Recognition and release of Ca2+ ions. J. Biochem. Tokyo 72: 417–425, 1972.
 670. Yamada, S., T. Yamamoto, T. Kanazawa, and Y. Tonomura. Reaction mechanism of the Ca2+‐dependent ATPase of sarcoplasmic reticulum from skeletal muscle. VI. Co‐operative transition of ATPase activity during the initial phase. J. Biochem. Tokyo 70: 279–291, 1971.
 671. Yamada, S., T. Yamamoto, and Y. Tonomura. Reaction mechanism of the Ca2+‐dependent ATPase of sarcoplasmic reticulum from skeletal muscle. III. Ca2+‐uptake and ATP‐splitting. J. Biochem. Tokyo 67: 789–794, 1970.
 672. Yamamoto, T., H. Takisawa, and Y. Tonomura. Reaction mechanisms for ATP hydrolysis and synthesis in the sarcoplasmic reticulum. Curr. Top. Bioenerg. 9: 179–236, 1979.
 673. Yamamoto, T., and Y. Tonomura. Reaction mechanism of the Ca2+‐dependent ATPase of sarcoplasmic reticulum from skeletal muscle. I. Kinetic studies. J. Biochem. Tokyo 62: 558–575, 1967.
 674. Yamamoto, T., and Y. Tonomura. Reaction mechanism of the Ca2+‐dependent ATPase of sarcoplasmic reticulum from skeletal muscle. II. Intermediate formation of phosphoryl protein. J. Biochem. Tokyo 64: 137–145, 1968.
 675. Yamamoto, T., and Y. Tonomura. Chemical modification of the Ca2+‐dependent ATPase of sarcoplasmic reticulum from skeletal muscle. II. Use of 2,4,6‐trinitrobenzenesulfonate to show functional movements of the ATPase molecule. J. Biochem. Tokyo 79: 693–707, 1976.
 676. Yamamoto, T., and Y. Tonomura. Chemical modification of the Ca2+‐dependent ATPase of sarcoplasmic reticulum from skeletal muscle. III. Changes in the distribution of exposed lysine residues among subfragments with change in enzymatic state. J. Biochem. Tokyo 82: 653–660, 1977.
 677. Yates, D. W., and V. C. Duance. The binding of nucleotides and bivalent cations to the calcium and magnesium ion dependent adenosine triphosphatase from rabbit muscle sarcoplasmic reticulum. Biochem. J. 159: 719–728, 1976.
 678. Yoshida, H., and Y. Tonomura. Chemical modification of the Ca2+‐dependent ATPase of sarcoplasmic reticulum from skeletal muscle. I. Binding of N‐ethylmaleimide to sarcoplasmic reticulum: evidence for sulfhydryl groups in the activity site of ATPase and for conformational changes induced by adenosine tri‐ and diphosphate. J. Biochem. Tokyo 79: 649–654, 1976.
 679. Yu, B. P., E. J. Masoro, and H. A. Bertrand. The functioning of histidine residues of sarcoplasmic reticulum in Ca2+ transport and related activities. Biochemistry 13: 5083–5087, 1974.
 680. Yu, B. P., E. J. Masoro, and T. F. Morley. Analysis of the arrangement of protein components in the sarcoplasmic reticulum of rat skeletal muscle. J. Biol. Chem. 251: 2037–2043, 1976.
 681. Zebe, E., and W. Rathmayer. Elektronenmikroskopische Untersuchungen an Spinnenmuskeln. Z. Zellforsch. Mikrosk. Anat. 92: 377–387, 1968.
 682. Zimniak, P., and E. Racker. Electrogenicity of Ca2+ transport catalyzed by the Ca2+‐ATPase from sarcoplasmic reticulum. J. Biol. Chem. 253: 4631–4637, 1978.
 683. Zubrzycka, E., and D. H. MacLennan. Assembly of the sarcoplasmic reticulum. Biosynthesis of calsequestrin in rat skeletal muscle cell cultures. J. Biol. Chem. 251: 7733–773

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Anthony N. Martonosi, Troy J. Beeler. Mechanism of Ca2+ Transport by Sarcoplasmic Reticulum. Compr Physiol 2011, Supplement 27: Handbook of Physiology, Skeletal Muscle: 417-485. First published in print 1983. doi: 10.1002/cphy.cp100115