Comprehensive Physiology Wiley Online Library

Skeletal Muscle Adaptability: Significance for Metabolism and Performance

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Motor Unit
1.1 Fibers per Motor Unit
1.2 Contractile Properties
1.3 Biochemical Basis for Differences in Twitch Properties
1.4 Histochemical Differentiation of Muscle Fibers
1.5 Ultrastructural Basis for Skeletal Muscle Fiber Typing
1.6 Maximal Contractile Force
1.7 Speed of Contraction
1.8 Fatigue Characteristics
1.9 Metabolic Characteristics
1.10 Ionic Composition of Skeletal Muscle
1.11 Summary
2 Muscle Fiber Composition in Human Skeletal Muscle
3 Motor‐Unit Recruitment
4 Adaptive Response in Skeletal Muscle
4.1 Muscle Size
4.2 Metabolic Capacity
5 Connective Tissue
6 Capillaries
6.1 Methodology
6.2 Anatomy
6.3 Capillary Density
6.4 Capillary Length and Diameter
6.5 Use and Disuse
6.6 Regulation
7 Significance of Adaptation
7.1 Muscular Size
7.2 Substrate Stores
7.3 Enzyme Activities
7.4 Summary
Figure 1. Figure 1.

Relationship between maximal speed of shortening and actin‐activated ATPase of myosin from a variety of animal species. Equation from the regression line is y = 0.34 + 1.37 x, and for the 2 variables, r = 0.97. [Plotted from original data published by Bárány .]

Figure 2. Figure 2.

Influence of pH on Ca2+‐activated ATPase activites of myosin from white [fast‐twitch, glycolytic (FG)] and red [fast‐twitch, oxidative, glycolytic (FOG)] portions of the vastus muscle and soleus [slow‐twitch, oxidative (SO)] muscle of the sedentary (○) and endurance‐trained (•) rats. ATPase activities were determined at 25°C. [From Watrus .]

Figure 3. Figure 3.

A: rat diaphragm, serial transverse sections. Left stained with antibody specific for alkali 1 light chain (anti‐Δ1); right stained with antibody for alkali 2 light chain (anti‐Δ2). Both antibodies react with same fibers (W, I, black R) that react with antibodies against whole white myosin. However, level of response to anti‐Δ2 is lower in fast‐twitch red fibers (black R) than in other fast‐twitch fibers (W, I). B: cat flexor digitorum longus, serial sections. Left, anti‐Δ1; right, anti‐Δ2. Response of most fast‐twitch fibers (W) is weak; compare with unreactive fibers (white R). However, level of response to anti‐Δ1 (left) is more intense in one type of red fibers (black R) than in other fast‐twitch fibers. Response to anti‐Δ2 is less intense in this fiber (black R) than in other fast‐twitch fibers. [From Gauthier .]

Figure 4. Figure 4.

Serial transverse‐sectioned frozen skeletal muscle from the lateral head of the gastrocnemius muscle of man (A) and the same muscle from rat (B). From top to bottom are the following stains (myofibrillar ATPase stained at pH 9.4 and preincubated at pH 10.3, 4.6, 4.3): nicotinamide adenine dinucleotide, reduced‐tetrazolium reductase (NADH); α‐GPDH, glycogen (periodic acid‐Schiff, PAS); capillaries (man = amylase‐treated sections stained with PAS; rat = alkaline phosphatase); and hematoxylin‐eosin.

Figure 5. Figure 5.

Part of a sarcomere from slow‐twitch, ST (micrograph and top panel), fast‐twitch, subtype a, FTa (middle panel), and fast‐twitch, subtype b, FTb (bottom panel) fibers in combination with a schematic drawing of the respective fiber types. [From Ängquist .]

Figure 6. Figure 6.

Important features of organization of motor units in medial gastrocnemius muscle of cat. Diameters of muscle fibers and unit mechanical responses are scaled appropriately for respective groups, representing typical observations. Shading in muscle fiber outlines denotes relative staining intensities found for each histochemical reaction (identified in the FF unit fibers). Note differences in pattern as well as intensity of staining in the oxidative enzyme reaction (3rd fiber from left in each unit sequence). Note also the somewhat smaller motoneuron innervating type S unit and relation between number of group la synapses and cell size; a low density of terminals (as in the FF unit) produces a relatively small la excitatory postsynaptic potential (EPSP), whereas increasing densities (in the FR and higher still in the type S unit) produce larger EPSPs. Motor unit type nomenclature: FF, fast twitch, fatiguable; FR, fast twitch, fatigue resistant; S, slow twitch. Histochemical profiles: FG, fast twitch, glycolytic; FOG, fast twitch, oxidative, glycolytic; SO, slow twitch, oxidative. These 2 systems are essentially interchangeable. [From Burke and Edgerton .]

Figure 7. Figure 7.

Examples of the 3 motor unit types found in human medial gastrocnemius. A, isometric twitch; B, isometric tetanus 10 pulses/s; C, isometric tetanus 20 pulses/s; and D, fatigue test, control and after 3,000 stimuli, expressed as a percentage of initial isometric tension. [From Garnett et al. .]

Figure 8. Figure 8.

Ca2+‐activated, K+‐activated, and actin‐activated ATPase activities of myosin from heart, soleus, red vastus, and white vastus muscles of sedentary and trained rats. Temperature, 37°C; pH 7.4. Vertical lines, SEM. *Sedentary vs. trained, P < 0.05. Ht, heart; SO, slow‐twitch, oxidative type from soleus; FOG, fast‐twitch, oxidative, glycolytic type from red vastus lateralis; FG, fast‐twitch, glycolytic type from white vastus lateralis.

Adapted from Watrus
Figure 9. Figure 9.

Predicted Vmax and apparent Km of actin‐activated ATPase activity of myosin from white vastus, red vastus, and soleus muscles of sedentary and trained rats. Vertical lines, SEM. FG, fast‐twitch, glycolytic type from white vastus; FOG, fast‐twitch, oxidative, glycolytic from red vastus; SO, slow‐twitch, oxidative type from soleus.

Adapted from Watrus
Figure 10. Figure 10.

The distribution of relative occurrence of ST fibers in vastus lateralis in young men and women.

Adapted from a study by Hedberg and Jansson ; some results are presented in Saltin et al.
Figure 11. Figure 11.

Intrapair comparison of slow‐twitch fiber distribution of m. vastus lateralis in monozygous (•) and dizygous (○) twins. [From Komi et al. .]

Figure 12. Figure 12.

Relative occurrence of ST fibers in some muscles of the body. A: muscle samples are obtained by multiple needle biopsy samples or (B) postmortem within 24 h after death. [A from Sjøgaard and G. Sjøgaard, unpublished material. B from Johnson et al. .]

Figure 13. Figure 13.

Schematic illustration of intensity of periodic acid‐Schiff (PAS) stain (glycogen) in human skeletal muscle fibers at rest and after various times during prolonged exercise at relative work intensities ranging from 31% to 85% of the subject's maximal oxygen uptake. Graph is a summary of several studies. Findings at 74% o2 max show the PAS stain evaluated by microphotometry, whereas in the other studies results are based on a subjective rating (dark = filled; and white = unfilled, with various levels between as crosshatched and hatched). [Data from Gollnick, Saltin, et al. . Findings at 74% o2 max from K. Vøllestad, unpublished material.]

Figure 14. Figure 14.

Changes in the percent water and concentration of protein in the sarcoplasmic and fibrillar fractions of human skeletal muscle as a result of growth and development.

Adapted from Dickerson and Widdowson
Figure 15. Figure 15.

Intracellular ion concentrations for human skeletal muscle from fetal life to adulthood. The data points marked (′) are averages of samples collected from the triceps brachii, vastus lateralis, and soleus of 6 male and 6 female adults. [Data from Dickerson and Widdowson , except those marked (′) from Sjøgaard .]

Figure 16. Figure 16.

Data are for muscle from human subjects ranging in age from 2 mo to 18 yr. Fiber areas for infants less than 1 yr are not plotted. A: relationship between age and muscle fiber cross‐sectional area in the lower limb muscles of humans. Equation of the regression line y = 115 + 111x. Between age and fiber area r = 0.92; between age and body height r = 0.98. B: relationship between age and muscle fiber cross‐sectional area in the upper limb muscles of humans. Equation of the regression line is y = 112 + 56x. Between age and fiber area r = 0.85 [Data from Aherne et al. .]

Figure 17. Figure 17.

A summary description of the relative occurrence of various fiber types in human skeletal muscle during gestation and 1st year of life. The slow‐twitch (ST) fibers are divided by size with the small fraction of Wohlfart's B fiber above the dashed line . [Data from Colling‐Saltin .]

Figure 18. Figure 18.

Relationship between cross‐sectional fiber area and lesser diameter in human skeletal muscle during gestation and 1st years of life (small graph), and adults (large graph). [Small graph from Colling‐Saltin ; large graph from Sjøgaard .]

Figure 19. Figure 19.

Comparison of the number of fibers in a control and enlarged plantaris muscle of the rat. Muscular enlargement was induced either by ablation of the gastrocnemius muscle (•) or a combination of ablation of the gastrocnemius muscle and treadmill exercise (○). [From Gollnick et al. .]

Figure 20. Figure 20.

A plot of the number of fibers vs. total wet weight for the plantaris muscles. •, Control muscles (including normal weanling, sham‐operated, thyroidectomized, and control muscles from experimental animals); ○, muscles enlarged by ablation of the gastrocnemius muscle; and , muscles enlarged by ablation of the gastrocnemius muscle and exercise. The smallest muscle weighed 25 mg and the heaviest 712 mg. [From Gollnick et al. .]

Figure 21. Figure 21.

Time courses for changes in 2 mitochondrial enzymes and o2 max during physical conditioning and deconditioning. *Significant changes in time (paired t test) for the selected variables.

Adapted from Henriksson and Reitman
Figure 22. Figure 22.

Mean change in percent of succinate dehydrogenase (SDH) activity of vastus lateralis with different training procedures. Note that the mean values ± SD for the absolute activities are similar before the training started. N, no training; S, sprint; E, endurance trained; *, significant difference, P < 0.05.

Adapted from Saltin, Gollnick, et al.
Figure 23. Figure 23.

Mean values for 2 mitochondrial enzymes [citrate synthase and 3‐hydroxyacyl‐CoA dehydrogenase (HAD)] determined from muscle samples from vastus lateralis in 9 sea‐level residents at sea level and after an average 32‐wk stay (6–52 wk) at elevation 3,700 m and 16 men born and permanently living at this altitude. Note that high‐altitude residents are divided into 2 groups, those who were physically inactive (job and leisure time) and those who were active. Maximal oxygen uptake (ml · kg−1 · min−1) for the sea‐level residents was 39 ml and 36 ml · kg−1 · min−1 at sea level and high altitude, respectively; inactive high‐altitude residents had 28 ml and active 46 ml · kg−1 · min−1.

Adapted from Saltin et al.
Figure 24. Figure 24.

A: schematic representation of the vascular arrangement in the tenuissimus muscle. CA, central artery; CV, central vein; TA, transverse arteriole; TV, transverse venule. B: detailed schematic representation of the vascular architecture of the tenuissimus muscle. Arterial vessels, open; venous vessels, filled. Sections of different depth are made into the muscle at II, III, and IV. At I a projection of the pre‐ and postcapillary vessels is shown. The section at II shows the vessels above, at III at the same, and IV under the level of the central vessels. C: graphic representation of a small arteriole (ART) subdividing into capillaries. Capillaries then run parallel to the muscle fibers. [A adapted from Eriksson and Myrhage .]

Figure 25. Figure 25.

Capillaries per muscle fiber related to maximal oxygen uptake. Diagram includes mean values obtained from the following: PAS method, light microscopy (PAS + LM) studies, open symbols , and electron microscopy (EM) studies, closed symbols . Circles, females; triangles, males. P = 0.001; r = 0.917. [From E. Nygard and H. Schmalbruch, unpublished observations.]

Figure 26. Figure 26.

Mean values for number of capillaries per 1,000 μm2 of muscle fiber area. Bar A shows results from a group of sedentary subjects . Bars B and C show values before and after 8 wk of conditioning . Bar D shows values from well‐trained men . Bars M and N are values from subjects deconditioned for 7–14 days (ref. ; B. Saltin, unpublished observations). Vo2 max below bars M and N was estimated from heart rate response to submaximal exercise (subjects were recovering from minor knee injury).

Figure 27. Figure 27.

Capillaries per fiber and fiber area in sea‐level residents at sea level and after an average 32 wk (6–52 wk) at elevation 3,500 m and in high‐altitude residents. For further details see Fig. .

Adapted from Saltin et al.
Figure 28. Figure 28.

A schematic summary with indication of relative importance of various energy stores and metabolic pathways for performance in strength, sprint, and endurance events. Included in the scheme are also indications of how oxygen delivery and the nervous system are interacting.

Figure 29. Figure 29.

A representation of the influence of changing the total enzyme concentration on the specific activity based on the rate (Vr). The velocity and any substrate concentration [S] can be estimated from the Michaelis constant (Km) and the maximal velocity (Vmax) for the equation . With a doubling of enzyme concentration, velocity of the reaction will be doubled at any substrate concentration. This relationship would be most important at low substrate concentrations where substrate could thereby be more efficiently directed into end‐terminal oxidative pathways. Conversely with a reduction in enzyme concentration such control would be lost. [From Gollnick and Saltin .]

Figure 30. Figure 30.

Summary of changes associated with a moderate (panel A) and a large (panel B) increase in o2max in response to physical conditioning. A: from longitudinal studies in which sedentary subjects were conditioned for 2–3 mo. B: (also longitudinal studies) subjects participated either in a conditioning program for 2–3 yr starting from a sedentary level [o2max 45 ml · kg−1 · min−1 ] or in an intense conditioning program for some months starting from very low o2max [34 ml O2‐kg−1 · min−1 ]. [A: circulatory data: . Leg blood flow and arteriovenous O2 differences are collected from several studies: and B. Saltin, unpublished observations. Muscle data: for enzymes, for capillaries. B: central circulatory data: . Leg arteriovenous O2 differences: ; muscle capillarization and enzyme data are from unpublished studies by B. Saltin, J. Halkjær‐Kristensen, and T. Ingemann‐Hansen.]

Figure 31. Figure 31.

Succinate dehydrogenase activity (μmol · g−1 wet wt · min−1) in trained (T) and nontrained (NT) leg (left), respiratory quotient (RQ) values (middle), and release/uptake of lactate (right) for both legs during a posttraining metabolic study. Means ± SE are given. * Significant difference between trained and nontrained leg (P < 0.05).

Adapted from Henriksson


Figure 1.

Relationship between maximal speed of shortening and actin‐activated ATPase of myosin from a variety of animal species. Equation from the regression line is y = 0.34 + 1.37 x, and for the 2 variables, r = 0.97. [Plotted from original data published by Bárány .]



Figure 2.

Influence of pH on Ca2+‐activated ATPase activites of myosin from white [fast‐twitch, glycolytic (FG)] and red [fast‐twitch, oxidative, glycolytic (FOG)] portions of the vastus muscle and soleus [slow‐twitch, oxidative (SO)] muscle of the sedentary (○) and endurance‐trained (•) rats. ATPase activities were determined at 25°C. [From Watrus .]



Figure 3.

A: rat diaphragm, serial transverse sections. Left stained with antibody specific for alkali 1 light chain (anti‐Δ1); right stained with antibody for alkali 2 light chain (anti‐Δ2). Both antibodies react with same fibers (W, I, black R) that react with antibodies against whole white myosin. However, level of response to anti‐Δ2 is lower in fast‐twitch red fibers (black R) than in other fast‐twitch fibers (W, I). B: cat flexor digitorum longus, serial sections. Left, anti‐Δ1; right, anti‐Δ2. Response of most fast‐twitch fibers (W) is weak; compare with unreactive fibers (white R). However, level of response to anti‐Δ1 (left) is more intense in one type of red fibers (black R) than in other fast‐twitch fibers. Response to anti‐Δ2 is less intense in this fiber (black R) than in other fast‐twitch fibers. [From Gauthier .]



Figure 4.

Serial transverse‐sectioned frozen skeletal muscle from the lateral head of the gastrocnemius muscle of man (A) and the same muscle from rat (B). From top to bottom are the following stains (myofibrillar ATPase stained at pH 9.4 and preincubated at pH 10.3, 4.6, 4.3): nicotinamide adenine dinucleotide, reduced‐tetrazolium reductase (NADH); α‐GPDH, glycogen (periodic acid‐Schiff, PAS); capillaries (man = amylase‐treated sections stained with PAS; rat = alkaline phosphatase); and hematoxylin‐eosin.



Figure 5.

Part of a sarcomere from slow‐twitch, ST (micrograph and top panel), fast‐twitch, subtype a, FTa (middle panel), and fast‐twitch, subtype b, FTb (bottom panel) fibers in combination with a schematic drawing of the respective fiber types. [From Ängquist .]



Figure 6.

Important features of organization of motor units in medial gastrocnemius muscle of cat. Diameters of muscle fibers and unit mechanical responses are scaled appropriately for respective groups, representing typical observations. Shading in muscle fiber outlines denotes relative staining intensities found for each histochemical reaction (identified in the FF unit fibers). Note differences in pattern as well as intensity of staining in the oxidative enzyme reaction (3rd fiber from left in each unit sequence). Note also the somewhat smaller motoneuron innervating type S unit and relation between number of group la synapses and cell size; a low density of terminals (as in the FF unit) produces a relatively small la excitatory postsynaptic potential (EPSP), whereas increasing densities (in the FR and higher still in the type S unit) produce larger EPSPs. Motor unit type nomenclature: FF, fast twitch, fatiguable; FR, fast twitch, fatigue resistant; S, slow twitch. Histochemical profiles: FG, fast twitch, glycolytic; FOG, fast twitch, oxidative, glycolytic; SO, slow twitch, oxidative. These 2 systems are essentially interchangeable. [From Burke and Edgerton .]



Figure 7.

Examples of the 3 motor unit types found in human medial gastrocnemius. A, isometric twitch; B, isometric tetanus 10 pulses/s; C, isometric tetanus 20 pulses/s; and D, fatigue test, control and after 3,000 stimuli, expressed as a percentage of initial isometric tension. [From Garnett et al. .]



Figure 8.

Ca2+‐activated, K+‐activated, and actin‐activated ATPase activities of myosin from heart, soleus, red vastus, and white vastus muscles of sedentary and trained rats. Temperature, 37°C; pH 7.4. Vertical lines, SEM. *Sedentary vs. trained, P < 0.05. Ht, heart; SO, slow‐twitch, oxidative type from soleus; FOG, fast‐twitch, oxidative, glycolytic type from red vastus lateralis; FG, fast‐twitch, glycolytic type from white vastus lateralis.

Adapted from Watrus


Figure 9.

Predicted Vmax and apparent Km of actin‐activated ATPase activity of myosin from white vastus, red vastus, and soleus muscles of sedentary and trained rats. Vertical lines, SEM. FG, fast‐twitch, glycolytic type from white vastus; FOG, fast‐twitch, oxidative, glycolytic from red vastus; SO, slow‐twitch, oxidative type from soleus.

Adapted from Watrus


Figure 10.

The distribution of relative occurrence of ST fibers in vastus lateralis in young men and women.

Adapted from a study by Hedberg and Jansson ; some results are presented in Saltin et al.


Figure 11.

Intrapair comparison of slow‐twitch fiber distribution of m. vastus lateralis in monozygous (•) and dizygous (○) twins. [From Komi et al. .]



Figure 12.

Relative occurrence of ST fibers in some muscles of the body. A: muscle samples are obtained by multiple needle biopsy samples or (B) postmortem within 24 h after death. [A from Sjøgaard and G. Sjøgaard, unpublished material. B from Johnson et al. .]



Figure 13.

Schematic illustration of intensity of periodic acid‐Schiff (PAS) stain (glycogen) in human skeletal muscle fibers at rest and after various times during prolonged exercise at relative work intensities ranging from 31% to 85% of the subject's maximal oxygen uptake. Graph is a summary of several studies. Findings at 74% o2 max show the PAS stain evaluated by microphotometry, whereas in the other studies results are based on a subjective rating (dark = filled; and white = unfilled, with various levels between as crosshatched and hatched). [Data from Gollnick, Saltin, et al. . Findings at 74% o2 max from K. Vøllestad, unpublished material.]



Figure 14.

Changes in the percent water and concentration of protein in the sarcoplasmic and fibrillar fractions of human skeletal muscle as a result of growth and development.

Adapted from Dickerson and Widdowson


Figure 15.

Intracellular ion concentrations for human skeletal muscle from fetal life to adulthood. The data points marked (′) are averages of samples collected from the triceps brachii, vastus lateralis, and soleus of 6 male and 6 female adults. [Data from Dickerson and Widdowson , except those marked (′) from Sjøgaard .]



Figure 16.

Data are for muscle from human subjects ranging in age from 2 mo to 18 yr. Fiber areas for infants less than 1 yr are not plotted. A: relationship between age and muscle fiber cross‐sectional area in the lower limb muscles of humans. Equation of the regression line y = 115 + 111x. Between age and fiber area r = 0.92; between age and body height r = 0.98. B: relationship between age and muscle fiber cross‐sectional area in the upper limb muscles of humans. Equation of the regression line is y = 112 + 56x. Between age and fiber area r = 0.85 [Data from Aherne et al. .]



Figure 17.

A summary description of the relative occurrence of various fiber types in human skeletal muscle during gestation and 1st year of life. The slow‐twitch (ST) fibers are divided by size with the small fraction of Wohlfart's B fiber above the dashed line . [Data from Colling‐Saltin .]



Figure 18.

Relationship between cross‐sectional fiber area and lesser diameter in human skeletal muscle during gestation and 1st years of life (small graph), and adults (large graph). [Small graph from Colling‐Saltin ; large graph from Sjøgaard .]



Figure 19.

Comparison of the number of fibers in a control and enlarged plantaris muscle of the rat. Muscular enlargement was induced either by ablation of the gastrocnemius muscle (•) or a combination of ablation of the gastrocnemius muscle and treadmill exercise (○). [From Gollnick et al. .]



Figure 20.

A plot of the number of fibers vs. total wet weight for the plantaris muscles. •, Control muscles (including normal weanling, sham‐operated, thyroidectomized, and control muscles from experimental animals); ○, muscles enlarged by ablation of the gastrocnemius muscle; and , muscles enlarged by ablation of the gastrocnemius muscle and exercise. The smallest muscle weighed 25 mg and the heaviest 712 mg. [From Gollnick et al. .]



Figure 21.

Time courses for changes in 2 mitochondrial enzymes and o2 max during physical conditioning and deconditioning. *Significant changes in time (paired t test) for the selected variables.

Adapted from Henriksson and Reitman


Figure 22.

Mean change in percent of succinate dehydrogenase (SDH) activity of vastus lateralis with different training procedures. Note that the mean values ± SD for the absolute activities are similar before the training started. N, no training; S, sprint; E, endurance trained; *, significant difference, P < 0.05.

Adapted from Saltin, Gollnick, et al.


Figure 23.

Mean values for 2 mitochondrial enzymes [citrate synthase and 3‐hydroxyacyl‐CoA dehydrogenase (HAD)] determined from muscle samples from vastus lateralis in 9 sea‐level residents at sea level and after an average 32‐wk stay (6–52 wk) at elevation 3,700 m and 16 men born and permanently living at this altitude. Note that high‐altitude residents are divided into 2 groups, those who were physically inactive (job and leisure time) and those who were active. Maximal oxygen uptake (ml · kg−1 · min−1) for the sea‐level residents was 39 ml and 36 ml · kg−1 · min−1 at sea level and high altitude, respectively; inactive high‐altitude residents had 28 ml and active 46 ml · kg−1 · min−1.

Adapted from Saltin et al.


Figure 24.

A: schematic representation of the vascular arrangement in the tenuissimus muscle. CA, central artery; CV, central vein; TA, transverse arteriole; TV, transverse venule. B: detailed schematic representation of the vascular architecture of the tenuissimus muscle. Arterial vessels, open; venous vessels, filled. Sections of different depth are made into the muscle at II, III, and IV. At I a projection of the pre‐ and postcapillary vessels is shown. The section at II shows the vessels above, at III at the same, and IV under the level of the central vessels. C: graphic representation of a small arteriole (ART) subdividing into capillaries. Capillaries then run parallel to the muscle fibers. [A adapted from Eriksson and Myrhage .]



Figure 25.

Capillaries per muscle fiber related to maximal oxygen uptake. Diagram includes mean values obtained from the following: PAS method, light microscopy (PAS + LM) studies, open symbols , and electron microscopy (EM) studies, closed symbols . Circles, females; triangles, males. P = 0.001; r = 0.917. [From E. Nygard and H. Schmalbruch, unpublished observations.]



Figure 26.

Mean values for number of capillaries per 1,000 μm2 of muscle fiber area. Bar A shows results from a group of sedentary subjects . Bars B and C show values before and after 8 wk of conditioning . Bar D shows values from well‐trained men . Bars M and N are values from subjects deconditioned for 7–14 days (ref. ; B. Saltin, unpublished observations). Vo2 max below bars M and N was estimated from heart rate response to submaximal exercise (subjects were recovering from minor knee injury).



Figure 27.

Capillaries per fiber and fiber area in sea‐level residents at sea level and after an average 32 wk (6–52 wk) at elevation 3,500 m and in high‐altitude residents. For further details see Fig. .

Adapted from Saltin et al.


Figure 28.

A schematic summary with indication of relative importance of various energy stores and metabolic pathways for performance in strength, sprint, and endurance events. Included in the scheme are also indications of how oxygen delivery and the nervous system are interacting.



Figure 29.

A representation of the influence of changing the total enzyme concentration on the specific activity based on the rate (Vr). The velocity and any substrate concentration [S] can be estimated from the Michaelis constant (Km) and the maximal velocity (Vmax) for the equation . With a doubling of enzyme concentration, velocity of the reaction will be doubled at any substrate concentration. This relationship would be most important at low substrate concentrations where substrate could thereby be more efficiently directed into end‐terminal oxidative pathways. Conversely with a reduction in enzyme concentration such control would be lost. [From Gollnick and Saltin .]



Figure 30.

Summary of changes associated with a moderate (panel A) and a large (panel B) increase in o2max in response to physical conditioning. A: from longitudinal studies in which sedentary subjects were conditioned for 2–3 mo. B: (also longitudinal studies) subjects participated either in a conditioning program for 2–3 yr starting from a sedentary level [o2max 45 ml · kg−1 · min−1 ] or in an intense conditioning program for some months starting from very low o2max [34 ml O2‐kg−1 · min−1 ]. [A: circulatory data: . Leg blood flow and arteriovenous O2 differences are collected from several studies: and B. Saltin, unpublished observations. Muscle data: for enzymes, for capillaries. B: central circulatory data: . Leg arteriovenous O2 differences: ; muscle capillarization and enzyme data are from unpublished studies by B. Saltin, J. Halkjær‐Kristensen, and T. Ingemann‐Hansen.]



Figure 31.

Succinate dehydrogenase activity (μmol · g−1 wet wt · min−1) in trained (T) and nontrained (NT) leg (left), respiratory quotient (RQ) values (middle), and release/uptake of lactate (right) for both legs during a posttraining metabolic study. Means ± SE are given. * Significant difference between trained and nontrained leg (P < 0.05).

Adapted from Henriksson
References
 1. Adams, R. P., P. Andersen, G. Sjøgaard, A. Thorboe, and B. Saltin. Knee‐extension as a model for the study of isolated exercising muscle in man (Abstract). Med. Sci. Sports Exerc. 13: 99, 1981.
 2. Aherne, W., D. R. Ayyar, P. A. Clarke, and J. N. Walton. Muscle fibre size in normal infants, children and adolescents. J. Neurol. Sci. 14: 171–182, 1971.
 3. Allbrook, D. B., M. F. Han, and A. E. Hellmuth. Population of muscle satellite cells in relation to age and mitotic activity. Pathology 3: 233–243, 1971.
 4. Allen, G. D. The influence of endurance training upon the fiber composition of rat skeletal muscle. Pullman: Washington State Univ., 1975. PhD thesis.
 5. Andersen, P. Capillary density in skeletal muscle of man. Acta Physiol. Scand. 95: 203–205, 1975.
 6. Andersen, P., and J. Henriksson. Capillary supply of the quadriceps femoris muscle of man: adaptive response to exercise. J. Physiol. London 270: 677–690, 1977.
 7. Andersen, P., and J. Henriksson. Training induced changes in the subgroups of human type II skeletal muscle fibres. Acta Physiol. Scand. 99: 123–125, 1977.
 8. Andersen, P., and A. J. Kroese. Capillary supply in soleus and gastrocnemius muscles of man. Pfluegers Arch. 375: 245–249, 1978.
 9. Ängquist, K. A. Human skeletal muscle fibre structure. Effects of physical training and arterial insufficiency. Umeå, Sweden: Umeå Univ. Medical Dissertations, 1978. New Series, No. 39.
 10. Ängquist, K. A., A. C. Bylund, T. Bjurö, G. Cederblad, J. Holm, K. Lundholm, T. Scherstén, and M. Sjöström. Physical training in man. Skeletal muscle metabolism in relation to muscle morphology and running ability. Eur. J. Appl. Physiol. Occup. Physiol. 36: 151–169, 1977.
 11. Aniansson, A., G. Grimby, M. Hedberg, and M. Krotkiewski. Muscle morphology, enzyme activity and muscle strength in elderly men and women. Clin. Physiol. 1: 73–86, 1981.
 12. Aniansson, A., G. Grimby, E. Nygaard, and B. Saltin. Muscle fiber composition and fiber area in various age groups. Muscle Nerve 3: 271–272, 1980.
 13. Appell, H.‐J. Zur Faserzusammensetzung und Kapillarversorgung besonders beanspruchter Muskeln. Untersuchungen am “roten” M. semitendinosus des Kaninchens (Lepus cuniculus) sowie dem M. gastrocnemius und M. tibialis ant. der japanischen Tanzmaus (Mus wagneri rotans). Cologne, W. Germany: Deutschen Sportshochschule Köln, 1977. Dissertation.
 14. Appell, H.‐J. Morphological studies on skeletal muscle capillaries under conditions of high‐altitude training. Int. J. Sport Med. 1: 103–109, 1980.
 15. Ariano, M. A., R. B. Armstrong, and V. R. Edgerton. Hindlimb muscle fiber populations of five mammals. J. Histochem. Cytochem. 21: 51–55, 1973.
 16. Armstrong, R. B., P. D. Gollnick, and C. D. Ianuzzo. Histochemical properties of skeletal muscle fibers in streptozotocin‐diabetic rats. Cell Tissue Res. 162: 387–394, 1975.
 17. Armstrong, R. B., P. Marum, C. W. Saubert IV, H. J. Seeherman, and C. R. Taylor. Muscle fiber activity as a function of speed and gait. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 43: 672–677, 1977.
 18. Armstrong, R. B., P. Marum, P. Tullson, and C. W. Saubert. IV. Acute hypertrophic response of skeletal muscle to removal of synergists. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 46: 835–842, 1979.
 19. Armstrong, R. B., C. W. Saubert IV, W. L. Sembrowich, R. E. Shepherd, and P. D. Gollnick. Glycogen depletion in rat skeletal muscle fibers at different intensities and durations of exercise. Pfluegers Arch. 352: 243–256, 1974.
 20. Ashton, W. Neovascularization in ocular disease. Trans. Ophthalmol. Soc. U.K. 81: 145–161, 1961.
 21. Bagby, G. J., H. J. Green, S. Katsuta, and P. D. Gollnick. Glycogen depletion in exercising rats infused with glucose, lactate, or pyruvate. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 45: 425–429, 1978.
 22. Bagby, G. J., W. L. Sembrowich, and P. D. Gollnick. Myosin ATPase and fiber composition from trained and untrained rat skeletal muscle. Am. J. Physiol. 223: 1415–1417, 1972.
 23. Baker, M. A., and S. M. Horvath. Influence of water temperature on oxygen uptake by swimming rats. J. Appl. Physiol. 19: 1215–1218, 1964.
 24. Baldwin, K. M., W. G. Cheadle, O. M. Martinez, and D. A. Cooke. Effect of functional overload on enzyme levels in different types of skeletal muscle. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 42: 312–317, 1977.
 25. Baldwin, K. M., R. H. Fitts, F. W. Booth, W. W. Winder, and J. O. Holloszy. Depletion of muscle and liver glycogen during exercise: protective effect of training. Pfluegers Arch. 354: 203–212, 1975.
 26. Baldwin, K. M., G. H. Klinkerfuss, R. L. Terjung, P. A. Mole, and J. O. Holloszy. Respiratory capacity of white, red, and intermediate muscle: adaptative response to exercise. Am. J. Physiol. 222: 373–378, 1972.
 27. Baldwin, K. M., J. S. Reitman, R. L. Terjung, W. W. Winder, and J. O. Holloszy. Substrate depletion in different types of muscle and in liver during prolonged running. Am. J. Physiol. 225: 1045–1050, 1973.
 28. Baldwin, K. M., W. W. Winder, and J. O. Holloszy. Adaptation of actomyosin ATPase in different types of muscle to endurance exercise. Am. J. Physiol. 229: 422–426, 1975.
 29. Baldwin, K. M., W. W. Winder, R. L. Terjung, and J. O. Holloszy. Glycolytic enzymes in different types of skeletal muscle: adaptation to exercise. Am. J. Physiol. 225: 962–966, 1973.
 30. Banchero, N. Capillary density of skeletal muscle in dogs exposed to simulated altitude. Proc. Soc. Exp. Biol. Med. 148: 435–439, 1975.
 31. Bárány, M. ATPase activity of myosin correlated with speed of muscle shortening. J. Gen. Physiol. 50, Suppl., pt. 2: 197–218, 1967.
 32. Bárány, M., K. Bárány, T. Reckard, and A. Volpe. Myosin of fast and slow muscles of the rabbit. Arch. Biochem. Biophys. 109: 185–191, 1965.
 33. Bárány, M., and R. I. Close. The transformation of myosin in cross‐innervated rat muscles. J. Physiol. London 213: 455–474, 1971.
 34. Barcroft, H., and J. L. E. Millen. The blood flow through muscle during sustained contractions. J. Physiol. London 97: 17–31, 1939.
 35. Barnard, R. J., V. R. Edgerton, T. Furukawa, and J. B. Peter. Histochemical, biochemical, and contractile properties of red, white, and intermediate fibers. Am. J. Physiol. 220: 410–414, 1971.
 36. Barnard, R. J., V. R. Edgerton, and J. B. Peter. Effect of exercise on skeletal muscle. I. Biochemical and histochemical properties. J. Appl. Physiol. 28: 762–766, 1970.
 37. Barnard, R. J., V. R. Edgerton, and J. B. Peter. Effect of exercise on skeletal muscle. II. Contractile properties. J. Appl. Physiol. 28: 767–770, 1970.
 38. Barnard, R. J., and J. B. Peter. Effect of training and exhaustion on hexokinase activity of skeletal muscle. J. Appl. Physiol. 27: 691–695, 1969.
 39. Barnard, R. J., and J. B. Peter. Effect of exercise on skeletal muscle. III. Cytochrome changes. J. Appl. Physiol. 31: 904–908, 1971.
 40. Basmajian, J. V., M. Baeza, and C. Fabrigar. Conscious control and training of individual spinal motor neurons in normal human subjects. J. New Drugs 5: 78–85, 1965.
 41. Bass, A., D. Bridczka, P. Eyer, S. Hofper, and D. Pette. Metabolic differentiation of distinct muscle types at the level of enzymatic organization. Eur. J. Biochem. 10: 198–206, 1969.
 42. Bass, A., E. Gutmann, V. Hanzliková, and J. Teisinger. Effects of ischaemia on enzyme‐activities in the soleus muscle of the rat. Pfluegers Arch. 379: 203–208, 1979.
 43. Bass, A., K. Vondra, R. Rath, and V. Vítek. M. quadriceps femoris of man, a muscle with an unusual enzyme activity pattern of energy supplying metabolism in mammals. Pfluegers Arch. 354: 249–255, 1975.
 44. Bedford, T. G., C. M. Tipton, N. C. Wilson, R. A. Oppliger, and C. V. Gisolfi. Maximum oxygen consumption of rats and its changes with various experimental procedures. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 47: 1278–1283, 1979.
 45. Bell, R. D., J. D. Macdougal, R. Billeter, and H. Howald. Muscle fiber types and morphometric analysis of skeletal muscle in six‐year‐old children. Med. Sci. Sports Exerc. 12: 28–31, 1980.
 46. Benzi, G., P. Panceri, M. De Bernardi, R. Villa, E. Arcelli, L. d'angelo, E. Arrigoni, and F. Bertè. Mitochondrial enzymatic adaptation of skeletal muscle to endurance training. J. Appl. Physiol. 38: 565–569, 1975.
 47. Bergh, U., A. Thorstensson, B. Sjödin, B. Hultén, K. Piehl, and J. Karlsson. Maximal oxygen uptake and muscle fiber types in trained and untrained humans. Med. Sci. Sports Exerc. 10: 151–154, 1978.
 48. Bergman, H., P. Björntorp, T.‐B. Conradson, M. Fahlén, J. Stenberg, and E. Varnauskas. Enzymatic and circulatory adjustments to physical training in middle‐aged men. Eur. J. Clin. Invest. 3: 414–418, 1973.
 49. Bergström, J. Muscle electrolytes in man. Scand. J. Clin. Lab. Invest. Suppl. 68: 1–110, 1962.
 50. Bergström, J., A. Alvestrand, P. Fürst, E. Hultman, K. Sahlin, E. Winnars, and A. Widström. Influence of severe potassium depletion and subsequent repletion with potassium on muscle electrolytes, metabolites, and amino acids in man. Clin. Sci. Mol. Med. 51: 589–599, 1976.
 51. Bergström, J., L. Hermansen, E. Hultman, and B. Saltin. Diet, muscle glycogen, and physical performance. Acta Physiol. Scand. 71: 140–150, 1967.
 52. Beznak, M. The effect of different degrees of subdiaphragmatic aortic constriction on heart weight and blood pressure of normal and hypophysectomized rats. Can. J. Biochem. Physiol. 33: 985–994, 1955.
 53. Bigland‐Ritchie, B. EMG and fatigue of human voluntary and stimulated contractions. In: Human Muscle Fatigue: Physiological Mechanisms. London: Pitman Medical, 1981, p. 130–156. (Ciba Found. Symp. 82.)
 54. Bigland, B., and O. C. J. Lippold. The relation between force, velocity, and integrated electrical activity in human muscles. J. Physiol. London 123: 214–224, 1954.
 55. Bigland, B., and O. C. J. Lippold. Motor unit activity in the voluntary contraction of human muscle. J. Physiol. London 125: 322–335, 1954.
 56. Binkhorst, R. A. The effect of training on some isometric contraction characteristics of a fast muscle. Pfluegers Arch. 309: 193–202, 1969.
 57. Binkhorst, R. A., and M. A. van'T Hof. Force‐velocity relationship and contraction time of the rat fast plantaris muscle due to compensatory hypertrophy. Pfluegers Arch. 342: 145–158, 1973.
 58. Bonde‐Petersen, F., H. Gradual, J. W. Hansen, and H. Hvid. The effect of varying the number of muscle contractions on dynamic muscle training. Int. Z. Angew. Physiol. Einschl. Arbeitsphysiol. 18: 268–273, 1961.
 59. Bonde‐Petersen, F., A.‐L. Mork, and E. Nielsen. Local muscle blood flow and sustained contractions of human arms and back muscle. Eur. J. Appl. Physiol. 34: 43–50, 1975.
 60. Booth, F. W. Time course of muscular atrophy during immobilization of hindlimbs in rats. J. Appl. Physiol: Respirat. Environ. Exercise Physiol. 43: 656–661, 1977.
 61. Booth, F. W., and E. W. Gould. Effects of training and disuse on connective tissue. In: Exercise and Sports Sciences Reviews, edited by J. H. Wilmore and J. F. Keogh. New York: Academic, 1975, p. 83–112.
 62. Booth, F. W., and J. O. Holloszy. Cytochrome c turnover in rat skeletal muscle. J. Biol. Chem. 252: 416–419, 1977.
 63. Booth, F. W., and K. A. Narahara. Vastus lateralis cytochrome oxidase activity and its relationship to maximal oxygen consumption in man. Pfluegers Arch. 349: 319–324, 1975.
 64. Booth, F. W., and M. J. Seider. Effects of disuse by limb immobilization on different muscle fiber types. In: Plasticity of Muscle, edited by D. Pette. New York: de Gruyter, 1980, p. 374–383.
 65. Bormioli, S. P., S. Sartore, M. Vitadello, and S. Schiaffino. “Slow” myosins in vertebrate skeletal muscle. An immunofluorescence study. J. Cell Biol. 85: 672–681, 1980.
 66. Bösiger, E. Vergleichende Untersuchungen über die Brust‐Muskulatur von Huhn, Wachtel und Star. Acta Anat. 10: 385–429, 1950.
 67. Bouisset, S., F. Lestienne, and B. Maton. Relative work of main agonists in elbow flexion. Biomechanics, edited by P. V. Komi. Baltimore, MD: University Park, 1969, vol. A, p. 272–279. (Int. Ser. Biomech. vol. 1a)
 68. Bowden, D. H., and R. A. Goyer. The size of muscle fibres in infants and children. Arch. Pathol. 69: 188–189, 1960.
 69. Brånemark, P.‐I. Capillary form and function.—The microcirculation of granulation tissue. Bibl. Anat. 7: 9–28, 1965.
 70. Braune, W., and O. Fischer. Die Rotationsmomente der Beugemuskeln am Ellbogengelenk des Menschen. Abh. Saechs. Ges. (Akad.) Wiss. 15: 243–310, 1890.
 71. Brevet, A., E. Pinto, J. Peacock, and F. E. Stockdale. Myosin synthesis increased by electrical stimulation of skeletal muscle cell culture. Science 193: 1152–1154, 1976.
 72. Bridge, D. T., and D. Allbrook. Growth of striated muscle in an Australian marsupial (Setonix brachyurus). J. Anat. 106: 285–295, 1970.
 73. Briskey, E. J. Muscle. In: Animal Growth and Nutrition, edited by E. S. E. Hafez and I. A. Dyer. Philadelphia, PA: Lea & Febiger, 1969, chapt. 11, p. 193–216.
 74. Brodal, P., F. Ingjer, and L. Hermansen. Capillary supply of skeletal muscle fibens in untrained and endurance‐trained men. Am. J. Physiol. 232 (Heart Circ. Physiol. 1): H705–H712, 1977.
 75. Brooke, M. H., and W. K. Engel. The histographic analysis of human muscle biopsies with regard to fiber types. 1. Adult male and female. Neurology 19: 221–223, 1969.
 76. Brooke, M. H., and W. K. Engel. The histographic analysis of human muscle biopsies with regard to fiber types. 4. Children's biopsies. Neurology 19: 591–605, 1969.
 77. Brooke, M. H., and K. Kaiser. Muscle fiber types: how many and what kind? Arch. Neurol. 23: 369–379, 1970.
 78. Brooke, M. H., and K. K. Kaiser. Three “myosin adenosine triphosphatase” systems: the nature of their pH lability and sulfhydryl dependence. J. Histochem. Cytochem. 18: 670–672, 1970.
 79. Brooke, M. H., and K. K. Kaiser. The use and abuse of muscle histochemistry. Ann. NY Acad. Sci. 228: 121–144, 1974.
 80. Brooke, M. H., E. Williamson, and K. K. Kaiser. The behavior of four fiber types in developing and reinnervated muscle. Arch. Neurol. 25: 360–366, 1971.
 81. Brooks, G. A., and T. P. White. Determination of metabolic and heart rate responses of rats to treadmill exercise. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 45: 1009–1015, 1978.
 82. Brown, M. C., J. K. S. Jansen, and D. Van Essen. Polyneuronal innervation of skeletal muscle in new‐born rats and its elimination during maturation. J. Physiol. London 261: 387–422, 1976.
 83. Brown, M. D. Role of activity in the differentiation of slow and fast muscle. Nature London 244: 178–179, 1973.
 84. Brown, M. D., M. A. Cotter, O. Hudlická, and G. Vrbová. The effects of different patterns of muscle activity on capillary density, mechanical properties and structure of slow and fast rabbit muscles. Pfluegers Arch. 361: 241–250, 1976.
 85. Brust, M., and H. W. Cosla. Contractility of isolated abdominal skeletal muscle. Arch. Phys. Med. Rehabil. 48: 543–555, 1967.
 86. Buchthal, F., K. Dahl, and P. Rosenfalck. Rise time of the spike potential in fast and slowly contracting muscle of man. Acta Physiol. Scand. 79: 435–452, 1970.
 87. Buchthal, F., F. Ermino, and P. Rosenfalck. Motor unit territory in different human muscles. Acta Physiol. Scand. 45: 72–87, 1959.
 88. Buchthal, F., C. Guld, and P. Rosenfalck. Multielectrode study of the territory of a motor unit. Acta Physiol. Scand. 39: 83–104, 1957.
 89. Buchthal, F., Z. Kamieniecka, and H. Schmalbruch. Fibre types in normal and diseased human muscles and their physiological correlates. In: Exploratory Concepts in Muscular Dystrophy II. Amsterdam: Excerpta Med., 1974, p. 526–551. (Int. Congr. Ser. 333.)
 90. Buchthal, F., and H. Schmalbruch. Spectrum of contraction times of different fibre bundles in the brachial biceps and triceps muscles of man. Nature London 22: 89, 1969.
 91. Buchthal, F., and H. Schmalbruch. Contraction times and fibre types in intact human muscle. Acta Physiol. Scand. 79: 435–452, 1970.
 92. Buchthal, F., and H. Schmalbruch. Motor unit of mammalian muscle. Physiol. Rev. 60: 90–142, 1980.
 93. Buller, A. J., J. C. Eccles, and R. M. Eccles. Differentiation of fast and slow muscles in the cat hind limb. J. Physiol. London 150: 399–416, 1960.
 94. Buller, A. J., and D. M. Lewis. Further observations on the differentiation of skeletal muscles in the kitten hind limb. J. Physiol. London 176: 355–370, 1965.
 95. Buller, N. P., H. M. Ismail, and K. W. Ranatunga. Recording of isometric contractions of human biceps brachii muscle (proceedings). J. Physiol. London 277: 11P–12P, 1978.
 96. Burke, E. R., F. Cerny, D. Costill, and W. Fink. Characteristics of skeletal muscle in competitive cyclists. Med. Sci. Sports 9: 109–112, 1977.
 97. Burke, R. E. Motor unit types of cat triceps surae muscle. J. Physiol. London 193: 141–160, 1967.
 98. Burke, R. E., and V. R. Edgerton. Motor unit properties and selective involvement in movement. Exercise Sport Sci. Rev. 3: 31–81, 1975.
 99. Burke, R. E., D. N. Levine, M. Salcman, and P. Tsairis. Motor units in cat soleus muscle: physiological, histochemical and morphological characteristics. J. Physiol. London 238: 503–514, 1974.
 100. Burke, R. E., D. N. Levine, P. Tsairis, and F. E. Zajac III. Physiological types and histochemical profiles in motor units of the cat gastrocnemius. J. Physiol. London 234: 723–748, 1973.
 101. Burke, R. E., D. N. Levine, F. E. Zajac III, P. Tsairis, and W. K. Engel. Mammalian motor units: physiological‐histological correlation in three types in cat gastrocnemius. Science 174: 709–712, 1971.
 102. Burke, R. E., and P. Tsairis. Anatomy and innervation ratios in motor units of cat gastrocnemius. J. Physiol. London 234: 749–765, 1973.
 103. Burke, R. E., and P. Tsairis. The correlation of physiological properties with histochemical characteristics in single muscle units. Ann. NY Acad. Sci. 301: 144–159, 1977.
 104. Bylund, A. C. Skeletal muscle metabolism in man. Studies with special reference to methodology and effects of physical training. Göteborg, Sweden: Univ. of Göteborg, 1977. Thesis.
 105. Bylund‐Fellenius, A. C., T. Bjurö, G. Cederblad, J. Holm, K.M. Lundholm, Sjöström, K.‐A. Ängqvist, and T. Scherstén. Physical training in man. Skeletal muscle metabolism in relation to muscle morphology and running ability. Eur. J. Appl. Physiol. Occup. Physiol. 36: 151–169, 1977.
 106. Bylund‐Fellenius, A. C., J. Hammarsten, J. Holm, and T. Scherstén. Enzyme activities in skeletal muscles from patients with peripheral arterial insufficiency. Eur. J. Clin. Invest. 6: 425–429, 1976.
 107. Bylund, A. C., J. Holm, K. Lundholm, and T. Scherstén. Incorporation rate of glucose carbon, palmitate carbon and leucine carbon into metabolites in relation to enzyme activities and RNA levels in human skeletal muscles. Enzyme 21: 39–52, 1976.
 108. Bylund, A. C., J. Holm, and T. Scherstén. Oxidation of palmitate by human skeletal muscles in vitro. Method and normal values. Scand. J. Clin. Lab. Invest. 35: 413–418, 1975.
 109. Campbell, C. J., A. Bonen, R. L. Kirby, and A. N. Belcastro. Muscle fiber composition and performance capacities of women. Med. Sci. Sports 11: 260–265, 1979.
 110. Campion, D. S. Resting membrane potential and ionic distribution in fast‐ and slow‐twitch mammalian muscle. J. Clin. Invest. 54: 514–518, 1974.
 111. Carrow, R. E., R. E. Brown, and W. D. Van Huss. Fiber sizes and capillary to fiber ratios in skeletal muscle of exercised rats. Anat. Rec. 159: 33–40, 1967.
 112. Casley‐Smith, J. R., H. S. Green, J. L. Harris, and P. J. Wadey. The quantitative morphology of skeletal muscle capillaries in relation to permeability. Microvasc. Res. 10: 43–64, 1975.
 113. Cassin, S., R. D. Gilbert, C. E. Bunnell, and E. M. Johnson. Capillary development during exposure to chronic hypoxia. Am. J. Physiol. 220: 448–451, 1971.
 114. Chepenoga, O. P. Muscle tissue dehydrogenase in training and fatigue. Ukr. Biokhim. Zh. 14: 5–12, 1939.
 115. Chiakulus, J. J., and J. E. Pauly. A study of postnatal growth of skeletal muscle in the rat. Anat. Rec. 152: 55–62, 1965.
 116. Christensen, E. Topography of terminal motor innervation in striated muscles from stillborn infants. Am. J. Phys. Med. 38: 65–78, 1959.
 117. Chutkov, J. G. Magnesium, potassium and sodium in “red” and “white” muscle in the rat. Proc. Soc. Exp. Biol. Med. 143: 430–443, 1973.
 118. Clark, D. A. Muscle counts of motor units: a study in innervation ratios. Am. J. Physiol. 96: 296–304, 1931.
 119. Clarkson, P. M., W. Kroll, and T. C. Mcbride. Plantar flexion fatigue and muscle fiber type in power and endurance athletes. Med. Sci. Sports Exercise 12: 262–267, 1980.
 120. Close, R. Dynamic properties of fast and slow skeletal muscles of the rat during development. J. Physiol. London 173: 74–95, 1964.
 121. Close, R. Properties of motor units in fast and slow skeletal muscles of the rat. J. Physiol. London 193: 45–55, 1967.
 122. Close, R. I. Dynamic properties of fast and slow skeletal muscle of the rat after nerve cross‐union. J. Physiol. London 204: 331–346, 1969.
 123. Close, R. I. Dynamic properties of mammalian skeletal muscles. Physiol. Rev. 52: 129–197, 1972.
 124. Colling‐Saltin, A.‐S. Enzyme histochemistry on skeletal muscle of the human foetus. J. Neurol. Sci. 39: 169–185, 1978.
 125. Colling‐Saltin, A.‐S. Some quantitative biochemical evaluations of developing skeletal muscles in the human foetus. J. Neurol. Sci. 39: 187–198, 1978.
 126. Colling‐Saltin, A.‐S. Skeletal muscle development in the human foetus and during childhood. In: Children and Exercise IX, edited by K. Berg and B. Eriksson. Baltimore, MD: University Park, 1980, p. 193–207.
 127. Conlee, R. K, R. C. Hickson, W. W. Winder, J. M. Hagberg, and J. O. Holloszy. Regulation of glycogen resynthesis in muscles of rats following exercise. Am. J. Physiol. 235 (Regulatory Integrative Comp. Physiol. 4): 145–150, 1978.
 128. Cooper, R. R. Alterations during immobilization and regeneration of skeletal muscle in cats. J. Bone Jt. Surg. 45: 919–953, 1972.
 129. Cooperstein, S. J., A. Lazarow, and N. J. Kurfess. A microspectrophotometric method for the determination of succinic dehydrogenase. J. Biol. Chem. 186: 129–139, 1950.
 130. Costill, D. L., E. F. Coyle, W. F. Fink, G. R. Lesmes, and F. A. Witzmann. Adaptations in skeletal muscle following strength training. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 46: 96–99, 1979.
 131. Costill, D. L., J. Daniels, W. Evans, W. Fink, G. Krahenbuhl, and B. Saltin. Skeletal muscle enzymes and fiber composition in male and female track athletes. J. Appl. Physiol. 40: 149–154, 1976.
 132. Costill, D. L., W. J. Fink, L. H. Getchell, J. L. Ivy, and F. A. Witzmann. Lipid metabolism in skeletal muscle of endurance‐trained males and females. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 47: 787–791, 1979.
 133. Costill, D. L., W. J. Fink, and M. L. Pollock. Muscle fiber composition and enzyme activities of elite distance runners. Med. Sci. Sports 8: 96–100, 1976.
 134. Costill, D. L., P. D. Gollnick, E. J. Jansson, B. Saltin, and E. M. Stein. Glycogen depletion patterns in human muscle fibres during distance running. Acta Physiol. Scand. 89: 374–383, 1973.
 135. Cotter, M., O. Hudlická, D. Pette, H. Staudte, and G. Vrbová. Changes of capillary density and enzyme patterns in fast rabbit muscles during long term stimulation. J. Physiol. London 230: 34P–35P, 1973.
 136. Cotter, M., O. Hudlická, and G. Vrbová. Growth of capillaries during long‐term activity in skeletal muscle. Bibl. Anat. 11: 395–398, 1973.
 137. Coyle, E. F., D. L. Costill, and G. R. Lesmes. Leg extension power and muscle fiber composition. Med. Sci. Sports 11: 12–15, 1979.
 138. Crabtree, B., and E. A. Newsholme. The activities of phosphophorylase, hexokinase, phosphofructokinase, lactate dehydrogenase, and the glycerol‐3‐phosphate dehydrogenase in muscle from vertebrates and invertebrates. Biochem. J. 126: 49–58, 1972.
 139. Crockett, J. L., V. R. Edgerton, S. R. Max, and R. J. Barnard. The neuromuscular junction in response to endurance training. Exp. Neurol. 51: 207–215, 1976.
 140. Curless, R. G., and M. B. Nelson. Needle biopsies of muscle in infants for diagnosis research. Dev. Med. Child Neurol. 17: 592–601, 1975.
 141. Dahllöf, A.‐G., P. Björntorp, J. Holm, and T. Scherstén. Metabolic activity of skeletal muscle in patients with peripheral arterial insufficiency. Eur. J. Clin. Invest. 4: 9–15, 1974.
 142. Datta, A. K., and J. A. Stephens. Differences in reflex effect of digital nerve stimulation on the firing of low and high threshold motor units in human first dorsal interosseous muscle. Soc. Neurol. Sci. 9: 367, 1979.
 143. Davies, K. J. A., L. Packer, and G. A. Brooks. Biochemical adaptation of mitochondria, muscle, and whole‐animal respiration to endurance training. Arch. Biochem. Biophys. 209: 538–553, 1981.
 144. Desmedt, J. E., and E. Godaux. Ballistic contractions in man: characteristic recruitment pattern of single motor units of the tibialis anterior muscle. J. Physiol. London 264: 673–693, 1977.
 145. Desmedt, J. E., and E. Godaux. Fast motor units are not preferentially activated in rapid voluntary contractions in man. Nature London 267: 717–719, 1977.
 146. Desmedt, J. E., and E. Godaux. Mechanism of the vibration paradox: excitatory and inhibitory effects of tendon vibration on single soleus muscle motor units in man. J. Physiol. London 285: 197–207, 1978.
 147. Desmedt, J. E. and E. Godaux. Recruitment patterns of single motor units in the human masseter muscle during brisk jaw clenching. Arch. Oral. Biol. 24: 171–178, 1979.
 148. Desmedt, J. E., and E. Godaux. Voluntary motor commands in human ballistic movements. Ann. Neurol. 5: 415–421, 1979.
 149. Dhoot, G., N. Frearson, and S. V. Perry. Polymorphic forms of troponin T and tropinin C and their localization in striated muscle cell types. Exp. Cell Res. 122: 339–350, 1979.
 150. Dhoot, G. K., P. G. H. Gell, and S. V. Perry. The localization of the different forms of troponin I in skeletal and cardiac muscle cells. Exp. Cell Res. 117: 357–370, 1978.
 151. Dhoot, G. K., and S. V. Perry. Distribution of polymorphic forms of troponin components and tropomyosin in skeletal muscle. Nature London 278: 714–718, 1979.
 152. Dhoot, G. K., and S. V. Perry. Factors determining the expression of the genes controlling the synthesis of the regulatory proteins in striated muscle. In: Plasticity of Muscle, edited by D. Pette. New York: de Gruyter, 1980, p. 256–267.
 153. Dickerson, J. W. T., and P. A. Mcanulty. The response of hindlimb muscles of the weanling rat to undernutrition and subsequent rehabilitation. Br. J. Nutr. 33: 171–180, 1975.
 154. Dickerson, J. W. T., and E. M. Widdowson. Chemical changes in skeletal muscle during development. Biochem. J. 74: 247–257, 1960.
 155. Dolken, G., and D. Pette. Turnover of several glycolytic enzymes in rabbit heart, soleus muscle and liver. Hoppe‐Seyler's Z. Physiol. Chem. 355: 289–299, 1974.
 156. Donaldson, S., S. K. Bolitho, and L. Hermansen. Differential, direct effects of H+ on Ca2+ activated force of skinned fibres from soleus, cardiac and adductor magnus muscles of rabbits. Pfluegers Arch. 376: 55–65, 1978.
 157. Doyle, A. M., and R. F. Mayer. Studies of the motor unit in the cat. Bull. Sch. Med., Univ. MD 54: 11–17, 1969.
 158. Drachman, D. B., and D. M. Johnston. Development of mammalian fast muscle: dynamic and biochemical properties correlated. J. Physiol. London 234: 29–42, 1973.
 159. Drahota, Z. Ionic composition of various types of muscle in relation to their functional activity. In: Membrane Transport and Metabolism, edited by A. Kleinzeller and A. Kotyk. New York: Academic, 1961, p. 571–578.
 160. Dubowitz, V. Enzyme histochemistry of skeletal muscle. J. Neurol. Neurosurg. Psychiatry 28: 516–524, 1965.
 161. Dubowitz, V. Contribution of histochemistry to the diagnosis of muscle pathology. Isr. J. Med. Sci. 13: 126–130, 1977.
 162. Duling, B. R., and E. Staples. Microvascular effects of hypertonic solutions in the hamster. Microvasc. Res. 11: 51–56, 1976.
 163. Eberstein, A., and J. Goodgold. The use of biopsies in the study of human skeletal muscle. Life Sci. 6: 655–661, 1967.
 164. Eberstein, A., and J. Goodgold. Slow and fast twitch fibers in human skeletal muscle. Am. J. Physiol. 215: 535–541, 1968.
 165. Eby, S. H., and N. Banchero. Capillary density of skeletal muscle in Andean dogs. Proc. Soc. Exp. Biol. Med. 151: 795–798, 1976.
 166. Eccles, J. C. The effect of nerve cross‐union on muscle contraction. In: Explanatory Concepts in Muscular Dystrophy and Related Disorders, edited by A. T. Milhorat. Amsterdam: Excerpta Med., 1967, p. 151–160.
 167. Eccles, J. C., R. M. Eccles, and W. Kozak. Further investigations on the influence of motoneurones on the speed of muscle contraction. J. Physiol. London 163: 324–339, 1962.
 168. Eccles, J. C., R. M. Eccles, and A. Lundberg. The action potentials of the alpha motoneurones supplying fast and slow muscles. J. Physiol. London 142: 275–291, 1958.
 169. Edgerton, V. R. Morphology and histochemistry of the soleus muscle from normal and exercised rats. Am. J. Anat. 127: 81–88, 1970.
 170. Edgerton, V. R., R. J. Barnard, J. B. Peter, C. A. Gillespie, and D. R. Simpson. Overloaded skeletal muscle of a nonhuman primate (Galago senegalensis). Exp. Neurol. 37: 322–339, 1972.
 171. Edgerton, V. R., R. J. Barnard, J. B. Peter, A. Maier, and D. R. Simpson. Properties of immobilized hind‐limb muscles of the Galago senegalensis. Exp. Neurol. 46: 115–131, 1975.
 172. Edgerton, V. R., B. Essén, B. Saltin, and D. R. Simpson. Glycogen depletion in specific types of human skeletal muscle fibers in intermittent and continuous exercise. In: Metabolic Adaptation to Prolonged Physical Exercise, edited by H. Howald and J. R. Poortmans. Basel: Birkhäuser, 1975, p. 402–416.
 173. Edgerton, V. R., L. Gerchman, and R. Carrow. Histochemical changes in rat skeletal muscle after exercise. Exp. Neurol. 24: 110–123, 1969.
 174. Edgerton, V. R., J. L. Smith, and D. R. Simpson. Muscle fibre type populations of human leg muscles. Histochem. J. 7: 259–266, 1975.
 175. Edström, L. Histochemical changes in upper motor lesions, parkinsonism and disuse. Differential effect on white and red muscle fibers. Experientia 24: 916–918, 1968.
 176. Edström, L., and B. Ekblom. Differences in sizes of red and white muscle fibres in vastus lateralis of musculus quadriceps femoris of normal individuals and athletes. Relation to physical performance. Scand. J. Clin. Lab. Invest. 30: 175–181, 1972.
 177. Edström, L., and E. Kugelberg. Histochemical composition, distribution of fibres and fatiguability of single motor units. J. Neurol. Neurosurg. Psychiatry 31: 424–433, 1968.
 178. Edström, L., and B. Nyström. Histochemical types and sizes of fibres in normal human muscles. Acta Neurol. Scand. 45: 257–269, 1969.
 179. Edström, L., and K. Torlegård. Area estimation of transversely sectioned muscle fibres. Z. Wiss. Mikr. 69: 166–178, 1969.
 180. Edwards, R. H. T. Physiological analysis of skeletal muscle weakness and fatigue. Clin. Sci. Mol. Med. 54: 463–470, 1978.
 181. Edwards, R. H. T., C. Maunder, D. A. Jones, and G. J. Batra. Needle biopsy for muscle chemistry. Lancet 1: 736–740, 1975.
 182. Edwards, R. H. T., A. Young, G. P. Hosking, and D. A. Jones. Human skeletal muscle function: description of tests and normal values. Clin. Sci. Mol. Med. 52: 283–290, 1977.
 183. Edwards, R. H. T., A. Young, and M. Wiles. Needle biopsy of skeletal muscle in the diagnosis of myopathy and the clinical study of muscle function and repair. N. Engl. J. Med. 302: 261–271, 1980.
 184. Eisen, A., G. Karpati, S. Carpenter, and J. Danton. The motor unit profile of the rat soleus in experimental myopathy and reinnervation. Neurology 24: 878–884, 1974.
 185. Ekblom, B. The effect of physical training on oxygen transport system in man. Acta Physiol. Scand. Suppl. 328: 1–45, 1969.
 186. Ekblom, B., P.‐O. Åstrand, B. Saltin, J. Stenberg, and B. Wallström. Effect of training on the circulatory response to exercise. J. Appl. Physiol. 24: 518–528, 1968.
 187. Elder, G. C. B., J. Fense, D. Sale, and J. R. Sutton. Relationship between the fatigue index of the quadriceps and the %FT distribution of the vastus lateralis (Abstract). Med. Sci. Sports Exercise 12: 143, 1980.
 188. Eldrige, L., and W. Mommaerts. Ability of electrically silent nerves to specify fast and slow muscle characteristics. In: Plasticity of Muscle, edited by D. Pette. New York: de Gruyter, 1980, p. 325–338.
 189. Eliot, T. S., R. C. Wigginton, and K. B. Corbin. The number and size of muscle fibres in the rat soleus in relation to age, sex, and exercise. Anat. Rec. 85: 307–308, 1943.
 190. Elliott, G. F., J. Lowy, and C. R. Worthington. An X‐ray and light‐diffraction study of the filament lattice of striated muscle in the living state and in rigor. J. Mol. Biol. 6: 295–305, 1963.
 191. Enesco, M., and C. P. Leblond. Increase in cell number as a factor in the growth of the organs and tissues of the young male rat. J. Embryol. Exp. Morphol. 10: 530–562, 1962.
 192. Enesco, M., and D. Puddy. Increase in the number of nuclei and weight in skeletal muscle of rats of various ages. Am. J. Anat. 111: 235–244, 1964.
 193. Engel, W. K. The essentiality of histo‐ and cytochemical studies of skeletal muscle in the investigation of neuromuscular disease. Neurology 12: 778–794, 1962.
 194. Engel, W. K. Fiber‐type nomenclature of human skeletal muscle for histochemical purposes. Neurology 24: 344–348, 1974.
 195. Erb, W. H. Dystrophia muscularis progressiva. Klinische und pathologische Studien. Dtsch. Z. Nervenheilk. 1: 173–261, 1891.
 196. Eriksson, B. O., P. D. Gollnick, and B. Saltin. Muscle metabolism and enzyme activities after training in boys 11–13 years old. Acta Physiol. Scand. 87: 485–497, 1973.
 197. Eriksson, E., and R. Myrhage. Microvascular dimensions of blood flow in skeletal muscle. Acta Physiol. Scand. 86: 211–222, 1972.
 198. Essén, B. Intramuscular substrate utilization during prolonged exercise. Ann. NY Acad. Sci. 301: 30–44, 1977.
 199. Essén, B. Studies on the regulation of metabolism in human skeletal muscle using intermittent exercise as an experimental model. Acta Physiol. Scand. Suppl. 454, 1978.
 200. Essén, B. Glycogen depletion of different fibre types in human skeletal muscle during intermittent and continuous exercise. Acta Physiol. Scand. 103: 446–455, 1978.
 201. Essén, B., L. Hagenfeldt, and L. Kaijser. Utilization of blood‐borne and intramuscular substrates during continuous and intermittent exercise in man. J. Physiol. London 265: 489–506, 1977.
 202. Essén, B., and J. Henrikson. Glycogen content of individual muscle fibres in man. Acta Physiol. Scand. 90: 645–647, 1974.
 203. Essén, B., and J. Henrikson. Metabolic characteristics of human type 2 skeletal muscle fibers (Abstract). Muscle Nerve 3: 263, 1980.
 204. Essén, B., E. Jansson, J. Henrikson, A. W. Taylor, and B. Saltin. Metabolic characteristics of fibre types in human skeletal muscle. Acta Physiol. Scand. 95: 153–165, 1975.
 205. Essén, B., A. Lindholm, and J. Thornton. Histochemical properties of muscle fibre types and enzyme activities in skeletal muscles of standard bred trotters of different ages. Equine Vet. J. 12: 175–180, 1980.
 206. Etemadi, A. A., and F. Hosseini. Frequency and size of muscle fibers in athletic body build. Anat. Rec. 162: 269–274, 1968.
 207. Etlinger, J. D., T. Kameyama, K. Toner, D. van Der Westhuyzen, and K. Matsumoto. Calcium and stretch‐dependent regulation of protein turnover and myofibrillar disassembly in muscle. In: Plasticity of Muscle, edited by D. Pette. New York: de Gruyter, 1980, p. 541–557.
 208. Eulenberg, A. Von, and R. Cohnheim. Ergebnisse der anatomischen Untersuchung eines Falles von sogenannter Muskelhypertrophie. Verh. Ber. Med. Ges. 1: 191–210, 1866.
 209. Exner, G. U., H. W. Staudte, and D. Pette. Isometric training of rats—effects upon fast and slow muscle and modification by an anabolic hormone (nandrolone decanoate). Pfluegers Arch. 345: 1–14, 1973.
 210. Ezekwo, M. O., and R. J. Martin. Cellular characteristics of skeletal muscle in selected strains of pigs and mice and the unselected controls. Growth 39: 95–106, 1975.
 211. Fahimi, H. D., and C. R. Amarasingham. Cytochemical localization of lactic dehydrogenase in white skeletal muscle. J. Cell Biol. 22: 29–48, 1964.
 212. Fahimi, H. D., and M. J. Karnovsky. Cytochemical localization of two glycolytic dehydrogenases in white skeletal muscle. J. Cell Biol. 29: 113–128, 1966.
 213. Farrell, P. R., and M. R. Fedde. Uniformity of structural characteristics throughout the length of skeletal muscle fibers. Anat. Rec. 164: 219–230, 1969.
 214. Faulkner, J. A., L. C. Maxwell, D. A. Brook, and D. A. Lieberman. Adaptation of guinea pig plantaris muscle fibers to endurance training. Am. J. Physiol. 221: 291–297, 1971.
 215. Faulkner, J. A., L. C. Maxwell, and D. A. Lieberman. Histochemical characteristics of muscle fibers from trained and detrained guinea pigs. Am. J. Physiol. 222: 836–840, 1972.
 216. Faulkner, J. A., J. H. Niemeyer, L. C. Maxwell, and T. P. White. Contractile properties of transplanted extensor digitorum longus muscles of cats. Am. J. Physiol. 238 (Cell Physiol. 7): C120–C126, 1980.
 217. Feinstein, B., B. Lindegård, E. Nyman, and G. Wohlfart. Morphologic studies of motor units in normal human muscles. Acta Anat. 23: 127–142, 1955.
 218. Fidler, M. W., R. L. Jowett, and J. D. G. Troup. Myosin ATPase activity in multifidus muscle from cases of lumbar spinal derangment. J. Bone Jt. Surg. 57: 220–227, 1975.
 219. Fiehn, W., and J. B. Peter. Properties of the fragmented sarcoplasmic reticulum from fast twitch and slow twitch muscles. J. Clin. Invest. 50: 570–573, 1971.
 220. Fiehn, W., and J. B. Peter. Lipid composition of muscles of nearly homogenous fiber type. Exp. Neurol. 39: 372–380, 1973.
 221. Fischer, E. H., L. M. G. Heilmeyer, Jr., and R. H. Haschke. Phosphorylase and the control of glycogen degradation. Curr. Top. Cell Regul. 3: 211–251, 1971.
 222. Fitch, W. M., and I. L. Chaikoff. Extent and patterns of adaptation of enzyme activities in livers of normal rats fed diets high in glucose and fructose. J. Biol. Chem. 235: 554–562, 1960.
 223. Fitts, R. H., F. W. Booth, W. W. Winder, and J. O. Holloszy. Skeletal muscle respiratory capacity, endurance, and glycogen utilization. Am. J. Physiol. 228: 1029–1033, 1975.
 224. Fitts, R. H., and J. O. Holloszy. Contractile properties of rat soleus muscle: effects of training and fatigue. Am. J. Physiol. 233 (Cell Physiol. 2): C86–C91, 1977.
 225. Flear, C. T. G., R. F. Crampton, and D. M. Matthews. An in vitro method for the determination of the inulin space of skeletal muscle with observations on the composition of human muscle. Clin. Sci. 19: 483–493, 1960.
 226. Fleckman, P., R. S. Bailyn, and S. Kaufman. Effects of the inhibition of DNA synthesis on hypertrophying skeletal muscle. J. Biol. Chem. 253: 3320–3327, 1978.
 227. Fletcher, J. E. Mathematical modeling of the microcirculation. Math. Biosci. 38: 159–202, 1978.
 228. Foster, C., D. L. Costill, J. T. Daniels, and W. J. Fink. Skeletal muscle enzyme activity, fiber composition and Vo2 max in relation to distance running performance. Eur. J. Appl. Physiol. 39 (2): 73–80, 1978.
 229. Fredman, D., and O. Feinschmidt. Über Einfluss des Trainierens des Muskels auf seinen Gehalt and Phosphorverbindungen. Hoppe‐Seyler's Z. Physiol. Chem. 183: 216–268, 1929.
 230. Freund, H.‐J., H. J. Buedingen, and V. Dietz. Activity of single motor units from human forearm muscles during voluntary isometric contractions. J. Neurophysiol. 38: 933–946, 1975.
 231. Fröberg, S. O. Determination of muscle lipids. Biochim. Biophys. Acta 144: 83–93, 1967.
 232. Fröberg, S. O. Effect of acute exercise on tissue lipids in rats. Metabolism 20: 714–720, 1971.
 233. Fröberg, S. O. Effects of training and of acute exercise in trained rats. Metabolism 20: 1044–1051, 1971.
 234. Fröberg, S. O., E. Hultman, and L. H. Nilsson. Effect of noradrenaline on triglyceride and glycogen concentrations in liver and muscle from man. Metabolism 24: 119–126, 1975.
 235. Fröberg, S. O., and F. Mossfeldt. Effect of prolonged strenuous exercise on the concentration of triglycerides, phospholipids and glycogen in muscle of man. Acta Physiol. Scand. 82: 167–171, 1971.
 236. Fröberg, S. O., I. Östman, and N. O. Sjöstrand. Effect of training on esterified fatty acids and carnitine in muscle and on lipolysis in adipose tissue in vitro. Acta Physiol. Scand. 86: 166–174, 1972.
 237. Fry, M. D., and M. F. Morales. A reexamination of the effects of creatine on muscle protein synthesis in tissue culture. J. Cell Biol. 84: 294–297, 1980.
 238. Garnett, R. A. F., M. J. O'donovan, J. A. Stephens, and A. Taylor. Motor unit organization of human medical gastrocnemius. J. Physiol. London 287: 33–43, 1978.
 239. Gauthier, G. F. On the relationship of ultrastructural and cytochemical features to color in mammalian skeletal muscle. Z. Zellforsch. Mikroskop. Anat. 96: 462–482, 1969.
 240. Gauthier, G. F. Ultrastructural identification of muscle fiber types by immunochemistry. J. Cell Biol. 82: 391–400, 1979.
 241. Gauthier, G. F. Distribution of myosin isoenzymes in adult and developing muscle fibers. In: Plasticity of Muscle, edited by D. Pette. New York: de Gruyter, 1980, p. 83–96.
 242. Gauthier, G. F., and R. A. Dunn. Ultrastructural and cytochemical features of mammalian skeletal muscle fibres following denervation. J. Cell Sci. 12: 525–547, 1973.
 243. Gauthier, G. F., and S. Lowey. Polymorphism of myosin among skeletal muscle fiber types. J. Cell Biol. 74: 760–779, 1977.
 244. Gauthier, G. F., and S. Lowey. Distribution of myosin isoenzymes among skeletal muscle fiber types. J. Cell Biol. 81: 10–25, 1979.
 245. Goldberg, A. L. Work‐induced growth of skeletal muscle in normal and hypophysectomized rats. Am. J. Physiol. 213: 1193–1198, 1967.
 246. Goldberg, A. L., and H. M. Goodman. Amino acid transport during work‐induced growth of skeletal muscle. Am. J. Physiol. 216: 1111–1115, 1969.
 247. Goldberg, A. L., and H. M. Goodman. Effects of disuse and denervation on amino acid transport by skeletal muscle. Am. J. Physiol. 216: 1116–1119, 1969.
 248. Goldberg, A. L., C. Jablecki, and J. B. Li. Effects of use and disuse on amino acid transport and protein turnover in muscle. Ann. NY Acad. Sci. 228: 190–201, 1974.
 249. Goldspink, D. F. The influence of activity on muscle size and protein turnover. J. Physiol. London 264: 283–296, 1977.
 250. Goldspink, G. Biochemical and physiological changes associated with the postnatal development on the biceps brachii. Comp. Biochem. Physiol. 7: 157–168, 1962.
 251. Goldspink, G. The combined effects of exercise and reduced food intake on skeletal muscle fibers. J. Cell. Comp. Physiol. 63: 209–216, 1964.
 252. Goldspink, G. Cytological basis of decrease in muscle strength during starvation. Am. J. Physiol. 209: 100–104, 1965.
 253. Goldspink, G. Sarcomere length during post‐natal growth of mammalian muscle fibres. J. Cell Sci. 3: 539–548, 1968.
 254. Goldspink, G. Succinic dehydrogenase content of individual muscle fibers at different ages and stages of growth. Life Sci. 8: 791–808, 1969.
 255. Goldspink, G. The proliferation of myofibrils during muscle fibre growth. J. Cell Sci. 6: 593–604, 1970.
 256. Goldspink, G., and K. F. Howells. Work‐induced hypertrophy in normal muscles of different ages and the reversibility of hypertrophy after cessation of exercise. J. Physiol. London 239: 179–193, 1974.
 257. Gollnick, P. D., and B. Saltin. Significance of skeletal oxidative enzyme enhancement with endurance training. Clin. Physiol. 2: 1–12, 1982.
 258. Gollnick, P. D. Exercise, adrenergic blockage, and free fatty acid mobilization. Am. J. Physiol. 213: 734–738, 1967.
 259. Gollnick, P. D. Free fatty acid turnover and the availability of substrates as a limiting factor in prolonged exercise. Ann. NY Acad. Sci. 301: 64–71, 1977.
 260. Gollnick, P. D., and R. B. Armstrong. Histochemical localization of lactate dehydrogenase isozymes in human skeletal muscle fibers. Life Sci. 18: 27–32, 1976.
 261. Gollnick, P. D., R. B. Armstrong, B. Saltin, C. W. Saubert IV, W. L. Sembrowich, and R. E. Shepherd. Effect of training on enzyme activity and fiber composition of human skeletal muscle. J. Appl. Physiol. 34: 107–111, 1973.
 262. Gollnick, P. D., R. B. Armstrong, C. W. Saubert IV, K. Piehl, and B. Saltin. Enzyme activity and fiber composition in skeletal muscle of untrained and trained men. J. Appl. Physiol. 33: 312–319, 1972.
 263. Gollnick, P. D., R. B. Armstrong, C. W. Saubert IV, W. L. Sembrowich, R. E. Shepherd, and B. Saltin. Glycogen depletion patterns in human skeletal muscle fibers during prolonged work. Pfluegers Arch. 344: 1–12, 1973.
 264. Gollnick, P. D., R. B. Armstrong, W. L. Sembrowich, R. E. Shepherd, and B. Saltin. Glycogen depletion pattern in human muscle fibers after heavy exercise. J. Appl. Physiol. 34: 615–618, 1973.
 265. Gollnick, P. D., and G. R. Hearn. Lactic dehydrogenase activities of heart and skeletal muscle of exercised rats. Am. J. Physiol. 201: 694–696, 1961.
 266. Gollnick, P. D., and L. Hermansen. Biochemical adaptations to exercise: anaerobic metabolism. In: Exercise and Sport Sciences Reviews, edited by J. PI. Wilmore. New York: Academic, 1973, p. 1–43.
 267. Gollnick, P. D., and C. D. Ianuzzo. Hormonal deficiencies and the metabolic adaptations of rats to training. Am. J. Physiol. 223: 278–282, 1972.
 268. Gollnick, P. D., J. Karlsson, K. Piehl, and B. Saltin. Selective glycogen depletion in skeletal muscle fibres of man following sustained contractions. J. Physiol. London 241: 59–67, 1974.
 269. Gollnick, P. D., and D. W. King. Effect of exercise and training on mitochondria of rat skeletal muscle. Am. J. Physiol. 216: 1502–1509, 1969.
 270. Gollnick, P. D., B. Pernow, B. Essén, E. Jansson, and B. Saltin. Availability of glycogen and plasma FFA for substrate utilization in leg muscle of man during exercise. Clin. Physiol. 1: 27–42, 1981.
 271. Gollnick, P. D., K. Piehl, and B. Saltin. Selective glycogen depletion pattern in human muscle fibers after exercise of varying intensity and at varying pedalling rates. J. Physiol. London 241: 45–57, 1974.
 272. Gollnick, P. D., K. Piehl, C. W. Saubert IV, R. B. Armstrong, and B. Saltin. Diet, exercise, and glycogen changes in human muscle fibers. J. Appl. Physiol. 33: 421–425, 1972.
 273. Gollnick, P. D., B. Sjödin, J. Karlsson, E. Jansson, and B. Saltin. Human soleus muscle: a comparison of fiber composition and enzyme activities with other leg muscles. Pfluegers Arch. 348: 247–255, 1974.
 274. Gollnick, P. D., R. G. Soule, A. W. Taylor, C. Williams, and C. D. Ianuzzo. Exercise‐induced glycogenolysis and lipolysis in the rat: hormonal influence. Am. J. Physiol. 219: 729–733, 1970.
 275. Gollnick, P. D., P. J. Struck, and T. P. Bogyo. Lactic dehydrogenase activities of heart and skeletal muscle after exercise and training. J. Appl. Physiol. 22: 623–627, 1967.
 276. Gollnick, P. D., B. F. Timson, R. L. Moore, and M. Riedy. Muscular enlargement and the number of fibers in the skeletal muscles of rats. J. Appl. Physiol: Respirat. Environ. Exercise Physiol. 50: 936–943, 1981.
 277. Gonyea, W. J. Role of exercise in inducing increases in skeletal muscle fiber number. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 48: 421–426, 1980.
 278. Gonyea, W., and F. Bonde‐Petersen. Contraction properties and fiber types of some forelimb and hind limb muscles in the cat. Exp. Neurol. 57: 637–644, 1977.
 279. Gonyea, W., and F. Bonde‐Petersen. Alterations in muscle contractile properties and fiber composition after weight‐lifting exercise in cats. Exp. Neurol. 59: 75–84, 1978.
 280. Gonyea, W. J., and G. C. Ericson. An experimental model for the study of exercise‐induced skeletal muscle hypertrophy. J. Appl. Physiol. 40: 630–633, 1976.
 281. Gonyea, W., G. C. Ericson, and F. Bonde‐Petersen. Skeletal muscle fiber splitting induced by weight‐lifting exercise in cats. Acta Physiol. Scand. 99: 105–109, 1977.
 282. Gorczynski, R. J., and B. R. Duling. Role of oxygen in arteriolar functional vasodilation in hamster striated muscle. Am. J. Physiol. 235 (Heart Circ. Physiol. 4): H505–H515, 1978.
 283. Gorski, J., and T. Kiryluk. The post‐exercise recovery of triglycerides in rat tissues. Eur. J. Appl. Physiol. Occup. Physiol. 45: 33–41, 1980.
 284. Gould, M. K., and W. A. Rawlinson. Biochemical adaptation as a response to exercise. I. Effect of swimming on the levels of lactic dehydrogenase, malic dehydrogenase, and Phosphorylase in muscles of 8‐, 11‐, and 15‐week‐old rats. Biochem. J. 73: 41–44, 1959.
 285. Graham, J. A., J. F. Lamb, and A. L. Linton. Measurements of body water and intracellular electrolytes by means of muscle biopsy. Lancet 2: 1172–1176, 1967.
 286. Gray, S. D., and E. M. Renkin. Microvascular supply in relation to fiber metabolic type in mixed skeletal muscles of rabbits. Microvasc. Res. 16: 404–425, 1978.
 287. Green, H. J. Glycogen depletion patterns during continuous and intermittent ice skating. Med. Sci. Sports Exercise 10: 183–187, 1978.
 288. Green, H. J., B. D. Daub, D. C. Painter, and J. A. Thomson. Glycogen depletion patterns during ice hockey performance. Med. Sci. Sports Exercise 10: 289–293, 1978.
 289. Green, H. J., and M. E. Houston. Blood lactate response to continuous and intermittent running in the rat. Pfluegers Arch. 360: 283–286, 1975.
 290. Green, H. J., J. A. Thomson, W. D. Daub, M. E. Houston, and D. A. Ranney. Fiber composition, fiber size and enzyme activities in vastus lateralis of elite athletes involved in high intensity exercise. Eur. J. Appl. Physiol. Occup. Physiol. 41: 109–117, 1979.
 291. Gregor, R. J., V. R. Edgerton, J. J. Perrine, D. S. Campion, and C. Debus. Torque‐velocity relationships and muscle fiber composition in elite female athletes. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 47: 388–392, 1979.
 292. Grimby, G., P. Björntorp, M. Fahlén, T. A. Hoskins, O. Höök, H. Oxhöj, and B. Saltin. Metabolic effects of isometric training. Scand. J. Clin. Lab. Invest. 31: 301–305, 1973.
 293. Grimby, G., C. Brobert, I. Krotkiewska, and M. Krotkiewski. Muscle fiber composition in patients with traumatic cord lesion. Scand. J. Rehabil. Med. 8: 37–42, 1976.
 294. Grimby, L., and J. Hannerz. Recruitment order of motor units on voluntary contraction: changes induced by proprioceptive afferent activity. J. Neurol. Neurosurg. Psychiatry 31: 565–573, 1968.
 295. Grimby, L., and J. Hannerz. Firing rate and recruitment order of toe extensor motor units in different modes of voluntary contraction. J. Physiol. London 264: 865–879, 1977.
 296. Grunewald, W. The influence of the three‐dimensional capillary pattern on the intercapillary oxygen diffusion—a new composed model for comparison of calculated and measured oxygen distribution. In: Oxygen Transport in Blood and Tissue, edited by D. W. Lubbers, V. C. Luft, G. Thews, and E. Witzleb. Stuttgart, West Germany: Thieme, 1968, p. 5–17.
 297. Guth, L., and H. Yellin. The dynamic nature of the so‐called “fiber types” of mammalian skeletal muscle. Exp. Neurol. 31: 277–300, 1971.
 298. Gutmann, E., and V. Hanzlikova. Motor unit in old age. Nature London 209: 921–922, 1966.
 299. Gydikov, A., and D. Kosarov. Some features of different motor units in human biceps brachii. Pfluegers Arch. 347: 75–88, 1974.
 300. Häggmark, T. A study of morphologic and enzymatic properties of the skeletal muscles after injuries and immobilization in man. Stockholm: Karolinska Institute, 1978. Thesis.
 301. Häggmark, T., and A. Thorstensson. Fibre types in human abdominal muscles. Acta Physiol. Scand. 107: 319–325, 1979.
 302. Halkjaer‐Kristensen, J., T. Ingemann‐Hansen, and B. Saltin. Cross‐sectional and fiber size changes in the quadriceps muscle of man with immobilization and physical training (Abstract). Muscle Nerve 3: 275, 1980.
 303. Halkjaer‐Kristensen, J., and T. Ingemann‐Hansen. Variations in single fibre areas and in fiber composition in needle biopsies from the quadriceps muscle in man. Scand. J. Clin. Lab. Invest. 41: 391–396, 1981.
 304. Hall‐Craggs, E. C. B. The longitudinal division of fibres in overloaded rat skeletal muscle. J. Anat. 107: 459–470, 1970.
 305. Hall‐Craggs, E. C. B. The significance of longitudinal fibre division in skeletal muscle. J. Neurol. Sci. 15: 27–33, 1972.
 306. Hall‐Craggs, E. C. B., and C. A. Lawrence. Longitudinal fibre division in skeletal muscle: a light‐ and electronmicroscopic study. Z. Zellforsch. Mikrosk. Anat. 109: 481–494, 1970.
 307. Hammersen, F. The pattern of the terminal vascular bed and the ultrastructure of capillaries in skeletal muscle. In: Oxygen Transport in Blood and Tissue, edited by D. W. Lubbers, V. C. Luft, G. Thews, and E. Witzleb. Stuttgart, West Germany: Thieme, 1968, p. 184–197.
 308. Hamosh, M., M. Lesch, J. Baron, and S. Kaufman. Enhanced protein synthesis in a cell‐free system from hypertrophied skeletal muscle. Science 157: 935–937, 1967.
 309. Hannerz, J. Discharge properties of motor units in relation to recruitment order in voluntary contraction. Acta Physiol. Scand. 91: 374–384, 1974.
 310. Hansen, T. E., and J. Lindhard. On the maximum work of human muscles especially the flexors of the elbow. J. Physiol. London 57: 287–300, 1923.
 311. Hansen‐Smith, F. M, D. Picou, and M. H. Golden. Growth of muscle fibres during recovery from severe malnutrition in Jamaican infants. Br. J. Nutr. 41: 275–282, 1979.
 312. Hanson, J. Effects of repetitive stimulation on membrane potentials and muscle contraction. In vitro studies of muscle fibres from frog, rat and man. Stockholm: Karolinska Institute, 1974. Thesis.
 313. Härkönen, M., S. Rehunen, H. Näveri, and K. Kuoppasalmi. High‐energy phosphate compounds in human slow‐twitch muscle fibers: methodological and functional aspects (Abstract). Muscle Nerve 3: 264, 1980.
 314. Harri, M. N. E. Effect of prolonged beta‐blockade on energy metabolism and adrenergic responses in the rat. Med. Biol. 55: 268–276, 1977.
 315. Haxton, H. A. Absolute muscle force in the ankle flexors of man. J. Physiol. London 103: 267–273, 1944.
 316. Havu, M., H. Rusko, P. V. Komi, J. Vos, and V. Vihko. Muscle fiber composition, work performance capacity and training in Finnish skiers. Int. Res. Commun. System/Hum. Biol. (73–10) 5–7‐8, 1973.
 317. Hearn, G. R. Succinate‐cytochrome c reductase, cytochrome oxidase, and aldolase activities of denervated rat skeletal muscle. Am. J. Physiol. 196: 465–466, 1959.
 318. Hearn, G. R., and W. W. Wainio. Succinic dehydrogenase activity of the heart and skeletal muscle of exercise rats. Am. J. Physiol. 185: 348–350, 1956.
 319. Hearn, G. R., and W. W. Wainio. Aldolase activity of the heart and skeletal muscle of exercised rats. Am. J. Physiol. 190: 206–208, 1957.
 320. Hedberg, G., and E. Jansson. Skelettmuskelfiberkomposition. Kapacitet och intresse för olika fysiska aktiviteter bland elever i gymnasieskolan. Umeå, Sweden: Pedagogiska Inst., 1976. (Rep. 54.)
 321. Hegarty, P. V. J., and A. C. Hooper. Sarcomere length and fibre diameter distributions in four different mouse skeletal muscles. J. Anat. 110: 249–257, 1971.
 322. Hegarty, P. V. J., and K. O. Kim. Changes in skeletal muscle cellularity in starved and refed young rats. Br. J. Nutr. 44: 123–127, 1980.
 323. Heikkinen, E., H. Suominen, M. Vihersaari, I. Vuori, and A. Kiiskinen. Effect of physical training on enzyme activities of bones, tendons, and skeletal muscle in mice. In: Metabolic Adaptation to Prolonged Physical Exercise, edited by H. Howald and J. R. Poortmans. Basel: Birkhäuser, 1973, p. 448–450.
 324. Heilig, A., and D. Pette. Changes induced in the enzyme activity pattern by electrical stimulation of fast‐twitch muscle. In: Plasticity of Muscle, edited by D. Pette. New York: de Gruyter, 1980, p. 409–420.
 325. Heilmann, C., and D. Pette. Molecular transformation in sarcoplasmic reticulum of fast‐twitch muscle by electrostimulation. Eur. J. Biochem. 93: 437–446, 1979.
 326. Heilmann, C., and D. Pette. Molecular transformations of sarcoplasmic reticulum in chronically stimulated fast‐twitch muscle. In: Plasticity of Muscle, edited by D. Pette. New York: de Gruyter, 1980, p. 421–440.
 327. Henderson, D. W., D. E. Goll, and M. E. Stromer. A comparison of shortening and Z‐line degradation in post‐mortem bovine, porcine, and rabbit muscle. Am. J. Anat. 128: 117–136, 1970.
 328. Henneman, E. Relation between size of neurons and their susceptibility to discharge. Science 126: 1345–1347, 1957.
 329. Henneman, E., H. P. Clamann, J. D. Gillies, and R. D. Skinner. Rank order of motoneurons within a pool: law of combination. J. Neurophysiol. 37: 1338–1349, 1974.
 330. Henneman, E., and C B. Olson. Relations between structure and function in the design of skeletal muscles. J. Neurophysiol. 28: 581–598, 1965.
 331. Henneman, E., G. Somjen, and D. O. Carpenter. Functional significance of cell size in spinal motoneurons. J. Neurophysiol. 28: 560–580, 1965.
 332. Henneman, E., G. Somjen, and D. O. Carpenter. Excitability and inhibitability of motoneurons of different sizes. J. Neurophysiol. 28: 599–620, 1965.
 333. Henriksson, J. Human skeletal muscle adaptation to physical activity. Copenhagen: Univ. of Copenhagen, 1976. PhD thesis.
 334. Henriksson, J. Training‐induced adaptation of skeletal muscle and metabolism during submaximal exercise. J. Physiol. London 270: 677–690, 1977.
 335. Henriksson, J., H. Galbo, and E. Blomstrand. The importance of the motor nerve for the stimulation‐induced oxidative enzymatic adaptation in cat skeletal muscle (Abstract). Muscle Nerve 3: 274, 1980.
 336. Henriksson, J., E. Jansson, and P. Schantz. Increase in myofibrillar ATPase intermediate skeletal muscle fibers with endurance training of extreme duration in man (Abstract). Muscle Nerve 3: 274, 1980.
 337. Henriksson, J., E. Nygaard, J. Andersson, and B. Eklöf. Enzyme activities, fibre types and capillarization in calf muscles of patients with intermittent claudication. Scand. J. Clin. Lab. Invest. 40: 361–369, 1980.
 338. Henriksson, J., and J. S. Reitman. Quantitative measures of enzyme activities in type I and type II muscle fibres of man after training. Acta Physiol. Scand. 97: 392–397, 1976.
 339. Henriksson, J., and J. S. Reitman. Time course of changes in human skeletal muscle succinate dehydrogenase and cytochrome oxidase activities and maximal oxygen uptake with physical activity and inactivity. Acta Physiol. Scand. 99: 91–97, 1977.
 340. Henriksson, J., J. Svedenhag, E. A. Richter, and H. Galbo. Significance of the sympathetic‐adrenal system for the exercise‐induced enzymatic adaptation of skeletal muscle (Abstract). Muscle Nerve 3: 277, 1980.
 341. Hermann, L. Zur Messung der Muskelkraft am Menschen. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 73: 429–437, 1898.
 342. Hermansen, L., E. Hultman, and B. Saltin. Muscle glycogen during prolonged severe exercise. Acta Physiol. Scand. 71: 129–139, 1967.
 343. Hermansen, L., and M. Wachtlova. Capillary density of skeletal muscle in well‐trained and untrained men. J. Appl. Physiol. 30: 860–863, 1971.
 344. Herring, H. K., R. C Cassens, and E. J. Briskey. Sarcomere length of free and restrained muscle at low temperature as related to tenderness. J. Sci. Food Agr. 16: 379–384, 1965.
 345. Hewer, E. E. The development of muscle in the human foetus. J. Anat. 62: 72–78, 1927‐28.
 346. Hickson, R. C., W. W. Heusner, and W. D. Van Huss. Skeletal muscle enzyme alterations after sprint and endurance training. J. Appl. Physiol. 40: 868–872, 1975.
 347. Hickson, R. C., M. J. Rennie, R. K. Conlee, W. W. Winder, and J. O. Holloszy. Effects of increased plasma fatty acids on glycogen utilization and endurance. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 43: 829–833, 1977.
 348. Hintz, C. S., C. V. Lowry, K. K. Kaiser, D. McKee, and O. H. Lowry. Enzyme levels in individual rat muscle fibers. Am. J. Physiol. 239 (Cell Physiol. 8): C58–C65, 1980.
 349. Hochrein, H., M. Reinert, and B. Kriegsmann. Der Extra‐cellulärraum des Herz‐ und Skelettmuskels. Z. Gesamte Exp. Med. 139: 79–93, 1965.
 350. Hoes, M. J. A. J. M., R. A. Binkhorst, A. E. M. C. Smeekes‐Kuyl, and A. C. A. Vissers. Measurements of forces exerted on pedal and crank during work on a bicycle ergometer at different loads. Int. Z. Angew. Physiol. Einschl. Arbeitsphysiol. 26: 33–42, 1968.
 351. Hogan, E. L., D. M. Dawson, and F. C. A. Romanul. Enzymatic changes in denervated muscle. Arch. Neurol. 13: 274–282, 1965.
 352. Hoh, J. F. Y. Neural regulation of mammalian fast and slow muscle myosins: an electrophoretic analysis. Biochemistry 14: 742–747, 1975.
 353. Hoh, J. F. Y., P. A. Mcgrath, and R. I. White. Electrophoretic analysis of multiple forms of myosin in fast‐twitch and slow‐twitch muscles of the chick. Biochem. J. 157: 87–95, 1976.
 354. Holloszy, J. O. Biochemical adaptations in muscle. Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. J. Biol. Chem. 242: 2278–2282, 1967.
 355. Holloszy, J. O., and F. W. Booth. Biochemical adaptations to endurance exercise in muscle. Annu. Rev. Physiol. 38: 273–291, 1976.
 356. Holloszy, J. O., and L. B. Oscai. Effect of exercise on α‐glycerophosphate dehydrogenase activity in skeletal muscle. Arch. Biochem. 130: 653–656, 1969.
 357. Holloszy, J. O., L. B. Oscai, I. J. Don, and P. A. Mole. Mitochondrial citric acid cycle and related enzymes: adaptive response to exercise. Biochem. Biophys. Res. Commun. 40: 1368–1373, 1970.
 358. Holloszy, J. O., L. B. Oscai, P. A. Mole, and I. J. Don. Biochemical adaptations to endurance exercise in skeletal muscle. In: Muscle Metabolism During Exercise, edited by B. Pernow and B. Saltin. New York: Plenum, 1977, p. 51–61.
 359. Holloszy, J. O., and W. W. Winder. Induction of δ‐amino‐levulinic acid synthetase in muscle by exercise or thyroxine. Am. J. Physiol. 236 (Regulatory Integrative Comp. Physiol. 5): R180–R183, 1979.
 360. Holly, R. G., J. G. Barnett, C. R. Ashmore, R. G. Taylor, and P. A. Mole. Stretch‐induced growth in chicken wing muscles: a new model of stretch hypertrophy. Am. J. Physiol. 238 (Cell Physiol. 7): C62–C71, 1980.
 361. Holm, J., P. Björntorp, and T. Scherstén. Metabolic activity in human skeletal muscle. Eur. J. Clin. Invest. 2: 321–325, 1972.
 362. Honig, C. R. Contributions of nerves and metabolites to exercise vasodilation: a unifying hypothesis. Am. J. Physiol. 236 (Heart Circ. Physiol. 5): H705–H719, 1979.
 363. Honig, C. R., and T. E. J. Gayeski. Capillary recruitment in exercise; relation to control mechanisms and tissue Po2 (Abstract). Proc. Int. Congr. Physiol. Sci. 28th, Budapest, 1980. vol. 14, p. 23.
 364. Hooper, A. C., and J. P. Hanrahan. The diameter and mean sarcomere length of individual muscle fibres. Life Sci. 16: 775–778, 1975.
 365. Hoppeler, H., P. Lüthi, H. Claassen, E. R. Weibel, and H. Howald. The ultrastructure of the normal human skeletal muscle: a morphometric analysis on untrained men, women, and well‐trained orienteers. Pfluegers Arch. 344: 217–232, 1973.
 366. Houston, M. E. The use of histochemistry in muscle adaptation: a critical assessment. Can. J. Appl. Sport Sci. 3: 109–118, 1978.
 367. Houston, M. E. Metabolic responses to exercise, with special reference to training and competition in swimming. In: Swimming Medicine IV, edited by B. Eriksson and B. Furberg. Baltimore, MD: University Park, 1978, p. 207–232.
 368. Houston, M. E., H. Bentzen, and H. Larsen. Interrelationships between skeletal muscle adaptations and performance as studied by detraining and retraining. Acta Physiol. Scand. 105: 163–170, 1979.
 369. Hubbard, R. W., C. D. Ianuzzo, W. T. Matthew, and J. D. Linduska. Compensatory adaptation of skeletal muscle composition to a long‐term functional overload. Growth 39: 85–93, 1975.
 370. Hudlická, O. Muscle Blood Flow. Its Relation to Muscle Metabolism and Function. Amsterdam: Swetz & Zeitlinger, 1973.
 371. Hudlická, O. Effect of training on macro‐ and microcirculatory changes in exercise. Exercise Sport Sci. Rev. 6: 181–230, 1980.
 372. Hudlicka, Ó., M. Brown, M. Cotter, M. Smith, and G. Vrbová. The effect of long‐term stimulation of fast muscles on their blood flow, metabolism, and ability to withstand fatigue. Pfluegers Arch. 369: 141–149, 1977.
 373. Hultén, B., A. Thorstensson, B. Sjödin, and J. Karlsson. Relationship between isometric endurance and fibre types in human leg muscles. Acta Physiol. Scand. 93: 135–138, 1975.
 374. Hultman, E. Studies on muscle metabolism of glycogen and active phosphate in man with special reference to exercise and diet. Scand. J. Clin. Lab. Invest. 19, Suppl. 94: 1–63, 1967.
 375. Hultman, E., J. Bergström, and N. McLennan Andersson. Breakdown and resynthesis of phosphorylcreatine and adenosine triphosphate in connection with muscular work in man. Scand. J. Clin. Lab. Invest. 19: 56–66, 1967.
 376. Hultman, E., H. Sjöholm, K. Sahlin, and L. Edstrom. The contents of adenine nucleotides and phosphagens in fast‐twitch and slow‐twitch muscles of rats and human (Abstract). Muscle Nerve 3: 264, 1980.
 377. Humphreys, P. W., and R. A. Lind. The blood flow through active and inactive muscles of the forearm during sustained hand‐grip contractions. J. Physiol. London 166: 120–135, 1963.
 378. Hursh, J. B. Conduction velocity and diameter of nerve fibers. Am. J. Physiol. 127: 131–139, 1939.
 379. Ianuzzo, C. D., and V. Chen. Metabolic character of hypertrophied rat muscle. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 46: 738–742, 1979.
 380. Ianuzzo, C. D., P. D. Gollinick, and R. B. Armstrong. Compensatory adaptations of skeletal muscle fibre types to a long‐term functional overload. Life Sci. 19: 1517–1524, 1976.
 381. Ihemelandu, E. C. Decrease in fibre numbers of dog pectineus muscle with age. J. Anat. 130: 69–73, 1980.
 382. Ikai, M., and T. Fukunaga. Calculation of muscle strength per unit cross‐sectional area of human muscle by means of ultrasonic measurement. Int. Z. Angew. Physiol. Einschl. Arbeitsphysiol. 26: 26–32, 1968.
 383. Ikai, M., and T. Fukunaga. A study on training effect on strength per unit cross‐sectional area of muscle by means of ultrasonic measurement. Int. Z. Angew. Physiol. Einschl. Arbeitsphysiol. 28: 173–180, 1970.
 384. Illg, D., and D. Pette. Turnover rates of hexokinase I, phosphofructokinase, pyruvate kinase, and creatinine kinase in slow‐twitch soleus muscle and heart of the rabbit. Eur. J. Biochem. 97: 267–273, 1979.
 385. Ingemann‐Hansen, T., and J. Halkjaer‐Kristensen. Computerized tomographic determinations of human thigh components. Scand. J. Rehabil. Med. 12: 27–31, 1980.
 386. Ingjer, F. Maximal aerobic power related to the capillary supply of the quadriceps femoris muscle in man. Acta Physiol. Scand. 104: 238–240, 1978.
 387. Ingjer, F. Effects of endurance training on muscle fibre ATPase activity, capillary supply, and mitochondrial content in man. J. Physiol. London 294: 419–422, 1979.
 388. Ingjer, F., and P. Brodal. Capillary supply of skeletal muscle fibers in untrained and endurance‐trained women. Eur. J. Appl. Physiol. Occup. Physiol. 38: 291–299, 1978.
 389. Ingwall, J. S., M. F. Morales, and F. E. Stockdale. Creatine and the control of myosin synthesis in differentiating skeletal muscle. Proc. Natl. Acad. Sci. USA 69: 2250–2253, 1972.
 390. Ingwall, J. S., C. D. Weiner, M. F. Morales, E. S. Davis, and F. E. Stockdale. Specificity of creatine in the control of protein synthesis. J. Cell Biol. 63: 145–151, 1974.
 391. Isaacs, E. R., W. G. Bradley, and G. Henderson. Longitudinal fibre splitting in muscular dystrophy: a serial cinematographic study. J. Neurol. Neurosurg. Psychiatry 36: 813–819, 1973.
 392. Ismail, H. M., and K. W. Ranatunga. Isometric tension development in a human skeletal muscle in relation to its working range of movement: the length‐tension relation of biceps brachii muscle. Exp. Neurol. 62: 595–604, 1978.
 393. Ivy, J. L., R. T. Withers, P. J. Van Handel, D. H. Elger, and D. L. Costill. Muscle respiratory capacity and fiber type as determinants of the lactate threshold. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 48: 523–527, 1980.
 394. Jablecki, C. K., J. E. Heuser, and S. Kaufman. Autoradiographic localization of new RNA synthesis in hypertrophying skeletal muscle. J. Cell Biol. 57: 743–759, 1973.
 395. James, N. T. Compensatory hypertrophy in the extensor digitorum longus muscle of the rat. J. Anat. 116: 57–65, 1973.
 396. James, N.T. Compensatory muscular hypertrophy in the extensor digitorum longus muscle of the mouse. J. Anat. 122: 121–131, 1976.
 397. Jansson, E. Diet and muscle metabolism in man. Acta Physiol. Scand. Suppl. 487: 1980.
 398. Jansson, E. Acid soluble and insoluble glycogen in human skeletal muscle. Acta Physiol. Scand. 113: 337–340, 1981.
 399. Jansson, E., and L. Kaijser. Muscle adaptation to extreme endurance training in man. Acta Physiol. Scand. 100: 315–324, 1977.
 400. Jansson, E., B. Sjödin, and P. Tesch. Changes in muscle fibre type distribution in man after physical training. Acta Physiol. Scand. 104: 235–237, 1978.
 401. Jansson, E., and C. Sylvén. Myoglobin and fibre types in human skeletal muscle. Acta Physiol. Scand. 112: 12A, 1981.
 402. Jennekens, F. G. I., B. E. Tomlinson, and J. N. Walton. The sizes of the two main histochemical fiber types in five limb muscles in man. J. Neurol. Sci. 13: 281–292, 1971.
 403. Jennekens, F. G. I., B. E. Tomlinson, and J. N. Walton. Data on the distribution of fibre type in five human limb muscles. J. Neurol. Sci. 14: 245–257, 1971.
 404. Jennekens, F. G. I., B. E. Tomlinson, and J. N. Walton. Histochemical aspects of five limb muscles in old age. J. Neurol. Sci. 14: 259–276, 1971.
 405. Jenny, E., H. Weber, H. Lutz, and R. Billeter. Fibre populations in rabbit skeletal muscles from birth to old age. In: Plasticity of Muscle, edited by D. Pette. New York: de Gruyter, 1980, p. 97–109.
 406. Jerusalem, F., A. G. Engel, and H. A. Peterson. Human muscle fiber fine structure: morphometric data on controls. Neurology 25: 127–134, 1975.
 407. Johnson, M. A., J. Polgar, D. Weightman, and D. Appleton. Data on the distribution of fiber types in thirty‐six human muscles. J. Neurol. Sci. 18: 111–129, 1973.
 408. Johnson, M. A., G. Sideri, D. Weightman, and D. Appleton. A comparison of fibre size, fibre type constitution and spatial fibre type distribution in normal human muscle and in muscle from cases of spinal muscular atrophy and from other neuromuscular disorders. J. Neurol. Sci. 20: 345–361, 1973.
 409. Jorfeldt, L., and J. Wahren. Leg blood flow during exercise in man. Clin Sci. Mol. Med. 41: 459–473, 1971.
 410. Jørgensen, K., and S. Bankov. Maximum strength of elbow flexors with pronated and supinated forearm. Med. Sports Basel 6: 174–180, 1971.
 411. Joubert, D. M. A study of pre‐natal growth and development in the sheep. J. Agric. Sci. 47: 382–388, 1956.
 412. Jözsa, L., J. Bálint, A. Réffy, M. Järvinen, and M. Kvist. Capillary density of tenotomized skeletal muscles. II. Observations on human muscles after spontaneous rupture of the tendon. Eur. J. Appl. Physiol. Occup. Physiol. 44: 183–188, 1980.
 413. Jözsa, L., M. Järvinen, M. Kvist, M. Lehto, and A. Mikola. Capillary density of tenotomized skeletal muscles. I. Experimental study in the rat. Eur. J. Appl. Physiol. Occup. Physiol. 44: 175–181, 1980.
 414. Julian, L. M., and G. H. Cardinet III. Fiber sizes of the biceps brachii muscle of dogs which differ greatly in body size. Anat. Rec. 139: 243, 1961.
 415. Kameyama, T., and J. D. Eltinleg. Calcium‐dependent regulation of protein synthesis and degradation in muscle. Nature London 279: 344–346, 1979.
 416. Karlsson, J., B. Diamant, and B. Saltin. Muscle metabolites during submaximal and maximal exercise in man. Scand. J. Clin. Lab. Invest. 26: 358–394, 1971.
 417. Karlsson, J., K. Frith, B. Sjödin, P. D. Gollnick, and B. Saltin. Distribution of LDH isozymes in human skeletal muscle. Scand. J. Clin. Lab. Invest. 33: 307–312, 1974.
 418. Karlsson, J., B. Hultén, and B. Sjödin. Substrate activation and product inhibition of LDH activity in human skeletal muscle. Acta Physiol. Scand. 92: 21–26, 1974.
 419. Karlsson, J., L.‐O Nordesjö, L. Jorfeldt, and B. Saltin. Muscle lactate, ATP, and CP levels during exercise after physical training in man. J. Appl. Physiol. 33: 199–203, 1972.
 420. Karlsson, J., B. Sjödin, A. Thorstensson, B. Hultén, and K. Frith. LDH isoenzymes in skeletal muscles of endurance and strength trained athletes. Acta Physiol. Scand. 93: 150–156, 1975.
 421. Keens, T. G., V. Chen, P. Patel, P. O'brien, H. Levison, and C. D. Ianuzzo. Cellular adaptations of the ventilatory muscles to a chronic increased respiratory load. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 44: 905–908, 1978.
 422. Kelly, A. M., and N. A. Rubinstein. Patterns of myosin synthesis in regenerating normal and denervated muscles of the rat. In: Plasticity of Muscle, edited by D. Pette. New York: de Gruyter, 1980, p. 161–175.
 423. Kiessling, K.‐H., L. Pilström, A.‐C. Bylund, B. Saltin, and K. Piehl. Enzyme activities and morphometry in skeletal muscle of middle‐aged men after training. Scand. J. Clin. Lab. Invest. 33: 63–69, 1974.
 424. Kiessling, K.‐H., L. Pilström, A.‐C. Bylund, B. Saltin, and K. Piehl. Morphometry and enzyme activities in skeletal muscle from middle‐aged men after training and from alcoholics. In: Metabolic Adaptation to Prolonged Physical Exercise, edited by H. Howald and J. R. Poortmans. Basel: Birkhäuser, 1975, p. 384–389.
 425. Kim, K. O., and P. V. J. Hegarty. Effect of total starvation on the number and size of fibres in different muscles from the young of four species. Proc. Nutr. Soc. 37: 114A, 1978.
 426. Klausen, K., L. B. Andersen, and I. Pelle. Adaptive changes in work capacity, skeletal capillarization and enzyme levels during training and detraining. Acta Physiol. Scand. 113: 9–16, 1981.
 427. Klemperer, H. G. Lowered proportion of polysomes and increased amino acid incorporation by ribosomes from denervated muscle. FEBS Lett. 28: 169–172, 1972.
 428. Knowlton, G. C., and H. M. Hines. The effects of growth and atrophy upon the strength of skeletal muscle. Am. J. Physiol. 128: 521–525, 1939/40.
 429. Knuttgen, H. G., and B. Saltin. Muscle metabolites and oxygen uptake in short‐term submaximal exercise in man. J. Appl. Physiol. 32: 690–694, 1972.
 430. Kobayashi, N., and Y. Yonemura. The extracellular space in red and white muscle of the rat. Jpn. J. Physiol. 17: 698–707, 1967.
 431. Komi, P. V., and J. Karlsson. Skeletal muscle fibre types, enzyme activities and physical performance in young males and females. Acta Physiol. Scand. 103: 210–218, 1978.
 432. Komi, P. V., J. H. T. Viitasalo, M. Havu, A. Thorstensson, B. Sjödin, and J. Karlsson. Skeletal muscle fibres and muscle enzyme activities in monozygous and dizygous twins of both sexes. Acta Physiol. Scand. 100: 385–392, 1977.
 433. Kooyman, G. L., M. A. Castellini, and R. W. Davis. Physiology of diving in marine mammals. Annu. Rev. Physiol. 43: 343–356, 1981.
 434. Kovanen, V., H. Suominen, and E. Heikkinen. Connective tissue of “fast” and “slow” skeletal muscle in rats—effects of endurance training. Acta Physiol. Scand. 108: 173–180, 1980.
 435. Kraus, H., and R. Kirsten. Die Wirkung von Schwimm‐ und Lauftraining auf die celluläre Funktion und Struktur des Muskels. Pfluegers Arch. 308: 57–79, 1969.
 436. Krogh, A. The number and distribution of capillaries in muscles with calculations in the oxygen pressure head necessary for supplying the tissue. J. Physiol. London 52: 405–415, 1919.
 437. Krogh, A. The supply of oxygen to the tissues and the regulation of the capillary circulation. J. Physiol. London 52: 457–474, 1919.
 438. Kugelberg, E. Histochemical composition, contraction speed, and fatiguability of rat soleus motor units. J. Neurol. Sci. 20: 177–198, 1973.
 439. Kugelberg, E. Adaptive transformation of rat soleus motor units during growth. Histochemistry and contraction speed. J. Neurol. Sci. 27: 269–289, 1976.
 440. Kugelberg, E., and L. Edström. Differential histochemical effects of muscle contractions on Phosphorylase and glycogen in various types of fibers: relation to fatigue. J. Neurol. Neurosurg. Psychiatry 31: 415–423, 1968.
 441. Kugelberg, E., L. Edström, and M. Abruzzese. Mapping of motor units in experimentally reinnervated rat muscle. J. Neurol. Neurosurg. Psychiatry 33: 319–329, 1970.
 442. Kugelberg, E., and B. Lindegren. Transmission and contraction fatigue of rat motor units in relation to succinate dehydrogenase activity of motor unit fibres. J. Physiol. London 288: 285–300, 1979.
 443. Lamb, D. R., J. B. Peter, R. N. Jeffress, and H. A. Wallace. Glycogen, hexokinase, and glycogen synthetase adaptations to exercise. Am. J. Physiol. 217: 1628–1632, 1969.
 444. Landin, S., L. Hagenfeldt, B. Saltin, and J. Wahren. Muscle metabolism during exercise in patients with Parkinson's disease. Clin. Sci. Mol. Med. 47: 493–506, 1974.
 445. Larsson, M. Studies on the extracellular fluid volume in the rat. Stockholm: Karolinska Institute, 1980. Thesis.
 446. Larsson, L., G. Grimby, and J. Karlsson. Muscle strength and speed of movement in relation to age and muscle morphology. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 46: 451–456, 1979.
 447. Laurent, G. J., M. P. Sparrow, P. C. Bates, and D. J. Millward. Turnover of muscle protein in the fowl. Collagen content and turnover in cardiac and skeletal muscles of the adult fowl and the changes during stretch‐induced growth. Biochem. J. 176: 419–427, 1978.
 448. Law, R. O., and C. F. Phelps. The size of the sucrose, raffinose, and inulin spaces in the gastrocnemius muscle of the rat. J. Physiol. London 186: 547–557, 1966.
 449. Lawrie, R. A. The activity of the cytochrome system in muscle and its relation to myoglobin. Biochem. J. 55: 298–305, 1953.
 450. Lawrie, R. A. The relation of energy‐rich phosphate in muscle to myoglobin and to cytochrome oxidase activity. Biochem. J. 55: 305–309, 1953.
 451. Lawrie, R. A. Effect of enforced exercise on myoglobin concentration in muscle. Nature London 171: 1069–1070, 1953.
 452. Lesch, M., W. W. Parmley, M. Hamosh, S. Kaufman, and E. H. Sonnenblick. Effects of acute hypertrophy on the contractile properties of skeletal muscle. Am. J. Physiol. 214: 685–690, 1968.
 453. Lewis, S., E. Nygaard, and B. Saltin. Circulatory control during isometric exercise studied by one‐legged strength training and autonomic blockade (Abstract). Med. Sci. Sports Exercise 12: 139, 1980.
 454. Lieb, F. J., and J. Perry. Quadriceps function. An anatomical and mechanical study using amputated limbs. J. Bone Jt. Surg. 50A: 1535–1548, 1968.
 455. Lillie, R. D. Various oil soluble dyes as fat stains in the supersaturated isopropanol technic. Stain Technol. 19: 55–58, 1944.
 456. Lin, E. C. C. Glycerol utilization and its regulation in mammals. Annu. Rev. Biochem. 46: 765–796, 1977.
 457. Lindhard, J. Der Skeletmuskel und seine Funktion. Ergeb. Physiol. 33: 337–557, 1931.
 458. Lindholm, A., H. Bjerneld, and B. Saltin. Glycogen depletion pattern in muscle fibres of trotting horses. Acta Physiol. Scand. 90: 475–484, 1974.
 459. Ling, G. N., and M. H. Kromash. The extracellular space of voluntary muscle tissue. J. Gen. Physiol. 50: 677–694, 1967.
 460. Lithell, H. Lipoprotein‐lipase activity in human skeletal muscle and adipose tissue. Acta Universitatis Upsaliensis, 272. Uppsala, Sweden: 1977. Thesis.
 461. Lithell, H., and J. Boberg. Determination of lipoprotein‐lipase activity in human skeletal muscle tissue. Biochim. Biophys. Acta 528: 58–68, 1978.
 462. Lithell, H., F. Lindgärde, E. Nygaard, and B. Saltin. Capillary supply and lipoprotein‐lipase activity in skeletal muscle in man. Acta Physiol. Scand. 111: 383–384, 1981.
 463. Lithell, H., J. Örlander, R. Schele, B. Sjödin, and J. Karlsson. Changes in lipoprotein‐lipase activity and lipid stores in human skeletal muscle with prolonged heavy exercise. Acta Physiol. Scand. 107: 257–261, 1979.
 464. Locker, R. H., and C. J. Hagyard. The myosin of rabbit red muscles. Arch. Biochem. Biophys. 127: 370–375, 1968.
 465. Lømo, T., and J. Rosenthal. Control of ACh sensitivity by muscle activity in the rat. J. Physiol. London 221: 493–513, 1972.
 466. Lømo, T., R. H. Westgaard, and L. Engebretsen. Different stimulation patterns affect contractile properties of denervated rat soleus muscle. In: Plasticity of Muscle, edited by D. Pette. New York: de Gruyter, 1980, p. 297–309.
 467. Lowey, S. An immunological approach to the isolation of myosin isoenzymes. In: Plasticity of Muscle, edited by D. Pette. New York: de Gruyter, 1980, p. 69–81.
 468. Lowey, S., and D. Risby. Light chains from fast and slow muscle myosin. Nature London 234: 81–85, 1971.
 469. Lowry, C. V., J. S. Kimmey, S. Felder, M. M.‐Y. Chi, K. K. Kaiser, P. N. Passonneau, K. A. Kirk, and O. H. Lowry. Enzyme patterns in single human muscle fibers. J. Biol. Chem. 253: 8269–8277, 1978.
 470. Lowry, O. H., C. V. Lowry, M. M.‐Y. Chi, C. S. Hintz, and S. Felder. Enzymological heterogeneity of human muscle fibers. In: Plasticity of Muscle, edited by D. Pette. New York: de Gruyter, 1980, p. 3–18.
 471. MacCallum, J. B. On the histogenesis of the striated muscle fiber, and the growth of the human sartorius muscle. Johns Hopkins Hosp. Bull. 9: 208–215, 1898.
 472. MacDougall, J. D., D. G. Sale, J. R. Moroz, G. C. B. Elder, J. R. Sutton, and H. Howald. Mitochondrial volume density in human skeletal muscle following heavy resistance training. Med. Sci. Sports Exercise 11: 164–166, 1979.
 473. MacDougall, J. D., G. R. Ward, D. G. Sale, and J. R. Sutton. Biochemical adaptation of human skeletal muscle to heavy resistance training and immobilization. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 43: 700–703, 1977.
 474. Mai, J. V., V. R. Edgerton, and R. J. Barnard. Capillary of red, white and intermediate muscle fibers in trained and untrained guinea‐pigs. Experientia 26: 1222–1223, 1970.
 475. Mann, W. S., and B. Salafsky. Enzyme and physiological studies of normal and disused developing fast and slow cat muscles. J. Physiol. London 208: 33–47, 1970.
 476. Margreth, A., L. D. Libera, and G. Salviati. Postnatal changes in myosin composition of slow muscle in relation to the differentiation of the motoneurons (Abstract). Muscle Nerve 3: 273, 1980.
 477. Margreth, A., G. Salviati, L. D. Libera, R. Betto, D. Biral, and S. Salvatori. Transition in membrane macro‐molecular composition and in myosin isozymes during development of fast‐twitch and slow‐twitch muscles. In: Plasticity of Muscle, edited by D. Pette. New York: de Gruyter, 1980, p. 193–208.
 478. Martin, E. G., E. C. Woolley, and M. Miller. Capillary counts in resting and active muscle. Am. J. Physiol. 100: 407–416, 1932.
 479. Maunder, C. A., R. Yarom, and V. Dubowitz. Electron‐microscopic X‐ray microanalysis of normal and diseased human muscle. J. Neurol. Sci. 33: 323–334, 1977.
 480. Max, S. R. Disuse atrophy of skeletal muscle: loss of functional activity of mitochondria. Biochem. Biophys. Res. Commun. 46: 1394–1398, 1972.
 481. Maxwell, L. C., J. K. Barclay, D. E. Mohrman, and J. A. Faulkner. Physiological characteristics of skeletal muscles of dogs and cats. Am. J. Physiol. 233: (Cell Physiol. 2): C14–C18, 1977.
 482. Maxwell, L. C., J. A. Faulkner, and G. J. Hyatt. Estimation of number of fibers in guinea pig skeletal muscles. J. Appl. Physiol. 37: 259–264, 1974.
 483. Maxwell, L. C., T. P. White, and J. A. Faulkner. Oxidative capacity, blood flow, and capillarity of skeletal muscles. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 49: 627–633, 1980.
 484. Mayrovitz, H. N., M. P. Wiedeman, and A. Noordegraaf. Microvascular hemodynamic variations accompanying micro‐vessel dimensional changes. Microvasc. Res. 10: 322–339, 1975.
 485. McArdle, W. D. Metabolic stress of endurance swimming in the laboratory rat. J. Appl. Physiol. 22: 50–54, 1967.
 486. McComas, A. J., P. R. W. Fawcett, M. J. Campbell, and R. E. P. Sica. Electrophysiological estimation of the number of motor units within human muscle. J. Neurol. Neurosurg. Psychiatry 34: 121–131, 1971.
 487. Mccomas, A. J., and H. C. Thomas. Fast and slow twitch muscles in man. J. Neurol. Sci. 7: 301–307, 1968.
 488. McKeen, C. P. Growth and development in the pig, with special reference to carcass quality characters. J. Agric. Sci. 30: 276, 1940.
 489. McLane, J. A., and J. O. Holloszy. Glycogen synthesis from lactate in the three types of skeletal muscle. J. Biol. Chem. 254: 6548–6553, 1979.
 490. McPhedran, A. M., R. B. Wuerker, and E. Henneman. Properties of motor units in a homogeneous red muscle (soleus) of the cat. J. Neurophysiol. 28: 71–84, 1965.
 491. Meara, P. J. Post‐natal growth and development of muscle, as exemplified by the gastrocnemius and psoas muscles of the rabbit. Onderstepoort J. Vet. Sci. Anim. Ind. 21: 329–482, 1947.
 492. Meerson, F. Z. The myocardium in hyperfunction and heart failure. Circ. Res. 25, Suppl. 2: 1–163, 1969.
 493. Mellander, S. Differentiation of fiber composition, circulation, and metabolism in limb muscles of dog, cat, and man. In: Mechanisms of Vasodilatation, edited by P.M. Vanhoutte and I. Leusen. New York: Raven, 1981, p. 243–254.
 494. Milner‐Brown, H. S., R. B. Stein, and R. G. Lee. Synchronization of human motor units: possible roles of exercise and suprasinal reflexes. Electroencephalogr. Clin. Neurophysiol. 38: 245–254, 1975.
 495. Milner‐Brown, H. S., R. B. Stein, and R. Yemm. The orderly recruitment of human motor units during voluntary isometric contractions. J. Physiol. London 230: 359–370, 1973.
 496. Molé, P. A., L. B. Oscai, and J. O. Holloszy. Adaptation of muscle to exercise. Increase in levels of palmityl CoA synthetase, carnitine palmityltransferase, and palmityl CoA dehydrogenase, and in the capacity to oxidize fatty acids. J. Clin. Invest. 50: 2323–2330, 1971.
 497. Montgomery, R. D. Growth of human striated muscle. Nature London 195: 194–195, 1962.
 498. Morgan, T. E., L. A. Cobb, F. A. Short, R. Ross, and D. R. Gunn. Effects of long‐term exercise on human muscle mitochondria. In: Muscle Metabolism During Exercise, edited by B. Pernow and B. Saltin. New York: Plenum, 1971, p. 87–95.
 499. Morgan, T. E., F. A. Short, and L. A. Cobb. Effect of long‐term exercise on skeletal muscle lipid composition. Am. J. Physiol. 216: 82–86, 1969.
 500. Morkin, E., and T. P. Ashford. Myocardial DNA synthesis in experimental cardiac hypertrophy. Am. J. Physiol. 215: 1409–1413, 1968.
 501. Morpurgo, B. Über Aktivitäts‐Hypertrophie der willkürlichen Muskeln. Virchows Arch. Pathol. Anat. Physiol. 150: 522–554, 1897.
 502. Morpurgo, B. Über die postembryonale Entwicklung der quergestreiften Muskeln von weissen Ratten. Anat. Am. 15: 200–206, 1898.
 503. Moss, F. P. The relationship between the dimensions of the fibers and the number of nuclei during normal growth of skeletal muscle in the domestic fowl. Am. J. Anat. 122: 555–564, 1968.
 504. Moss, F. P., and C P. Leblond. Nature of dividing nuclei in skeletal muscle of growing rats. J. Cell. Biol. 44: 459–462, 1970.
 505. Moulds, R. F. W., A. Young, D. A. Jones, and R. H. T. Edwards. A study of the contractility, biochemistry, and morphology of an isolated preparation of human skeletal muscle. Clin. Sci. Mol. Med. 52: 291–297, 1977.
 506. Müller, W. Temporal progress of muscle adaptation to endurance training in hind limb muscles of young rats. Cell Tissue Res. 156: 61–87, 1975.
 507. fibre splitting—a reappraisal. Lancet 1: 646, 1978.
 508. Myrhage, R., and E. Eriksson. Vascular arrangements in hind limb muscles of the cat. J. Anat. 131: 1–17, 1980.
 509. Myrhage, R., and O. Hudlická. The microvascular bed and capillary surface area in rat extensor hallucis proprius muscle (EHP). Microvasc. Res. 11: 315–323, 1976.
 510. Myrhage, R., and O. Hudlická. Capillary growth in chronically stimulated adult skeletal muscle. As studied by intravital microscopy and histological methods in rabbit and rat. Microvasc. Res. 12: 218–225, 1977.
 511. Neely, J. R., M. J. Rovetto, and J. F. Oram. Myocardial utilization of carbohydrates and lipids. Progr. Cardiovasc. Dis. 15: 389–396, 1972.
 512. Nemeth, P., H.‐W. Hofer, and D. Pette. Metabolic heterogeneity of muscle fibers classified by myosin ATPase. Histochemistry 63: 191–201, 1979.
 513. Nemeth, P., D. Pette, and G. Vrbová. Malate dehydrogenase activity indicating metabolic homogeneity of single fibres of the motor unit. J. Physiol. London 301: 73P–74P, 1979.
 514. Nemeth, P., D. Pette, and G. Vrbová. Malate dehydrogenase homogeneity of single fibers of the motor unit. In: Plasticity of Muscle, edited by D. Pette. New York: de Gruyter, 1980, p. 45–54.
 515. Nikkilä, E., M.‐R. Taskinen, S. Rehunen, and M. Härkonen. Lipoprotein lipase activity in adipose tissue and skeletal muscle of runners: relation to serum lipoproteins. Metabolism 27: 1661–1671, 1978.
 516. Nolte, J., and D. Pette. Microphotometric determination of enzyme activity in single cells in cryostat sections. II. Succinate dehydrogenase, lactate dehydrogenase and triosephosphate dehydrogenase activities in red, intermediate and white fibers of soleus and rectus femoris muscles of rat. J. Histochem. Cytochem. 20: 577–582, 1972.
 517. Norris, F. N., and E. L. Gasteiger. Action potential of single motor units in normal tissue. Electroencephalogr. Clin. Neurophysiol. 7: 115–126, 1955.
 518. Novikoff, A. B., W.‐Y. Shin, and J. Drucker. Mitochondrial localization of oxidative enzymes: staining results with two tetrazolium salts. J. Biophys. Biochem. Cytol. 9: 47–61, 1961.
 519. Noyes, F. R., P. J. Torvik, W. B. Hyde, and J. L. Delucas. Biomechanics of ligament failure. II. An analysis of immobilization, exercise, and reconditioning effects in primates. J. Bone Jt. Surg. 56A: 1406–1418, 1974.
 520. Nygaard, E. Number of fibers in skeletal muscle of man (Abstract). Muscle Nerve 3: 268, 1980.
 521. Nygaard, E. Morfologi og funktion im. biceps brachii. Copenhagen: Univ. of Copenhagen, 1981. Thesis.
 522. Nygaard, E. Skeletal msucle fibre characteristics in young women. Acta Physiol. Scand. 112: 299–304, 1982.
 523. Nygaard, E., P. Andersen, P. Nilsson, E. Eriksson, T. Kjessel, and B. Saltin. Glycogen depletion pattern and lactate accumulation in leg muscles during recreation downhill skiiing. Eur. J. Appl. Physiol. Occup. Physiol. 39: 261–269, 1978.
 524. Nygaard, E., and E. Nielsen. Skeletal muscle fiber capillarization with extreme endurance training in man. In: Swimming Medicine IV, edited by B. Eriksson and B. Furberg. Baltimore, MD: University Park, 1978, p. 282–293.
 525. Nyström, B. Succinic dehydrogenase in developing cat leg muscles. Nature London 212: 954–955, 1966.
 526. O'brien, R. A. D., A. J. C. Österberg, and G. Vrbová. Observations on the elimination of polyneuronal innervation in developing mammalian skeletal muscle. J. Physiol. London 282: 571–582, 1978.
 527. O'brien, R. A. D., R. D. Purves, and G. Vrbová. Effect of activity on the elimination of multiple innervation in soleus muscles of rats (Abstract). J. Physiol. London 271: 54P, 1977.
 528. O'brien, R. A. D., and G. Vrbová. Nerve muscle interactions during early development. In: Plasticity of Muscle, edited by D. Pette. New York: de Gruyter, 1980, p. 271–281.
 529. Olson, C. B., and C. P. Swett. A functional and histochemical characterization of motor units in a heterogeneous muscle (flexor digitorum longus) of the cat. J. Comp. Neurol. 128: 475–498, 1966.
 530. örlander, J., and A. Aniansson. Effects of physical training on skeletal muscle metabolism and ultrastructure in 70 to 75‐year‐old men. Acta Physiol. Scand. 109: 149–154, 1980.
 531. Örlander, J., K.‐H. Kiessling, and B. Ekblom. Time course of adaptation to low intensity training in sedentary men: dissociation of central and local effects. Acta Physiol. Scand. 108: 85–90, 1980.
 532. örlander, J., K.‐H. Kiessling, J. Karlsson, and B. Ekblom. Low intensity training, inactivity and resumed training in sedentary men. Acta Physiol. Scand. 101: 351–362, 1977.
 533. Oscai, L. B., and J. O. Holloszy. Biochemical adaptations in muscle. II. Response of mitochondrial adenosine triphosphatase, creatinine phosphokinase, and adenylate kinase activities in skeletal muscle to exercise. J. Biol. Chetn. 246: 6968–6972, 1971.
 534. Padykula, H. A., and E. Herman. The specificity of the histochemical method for adenosine triphosphatase. J. Histochem. Cytochem. 3: 170–183, 1955.
 535. Palladin, A., and D. Ferdmann. Über den Einfluss der Trainings der Muskeln auf ihren Kreatingehalt. Hoppe‐Seyler's. Z. Physiol. Chem. 174: 284–294, 1928.
 536. Pappenheimer, J. R. Passage of molecules through capillary walls. Physiol. Rev. 33: 387–423, 1953.
 537. Pappenheimer, J. R., E. M. Renkin, and L. M. Borrero. Filtration, diffusion and molecular sieving through peripheral capillary membranes. A contribution to the pore theory of capillary permeability. Am. J. Physiol. 167: 13–46, 1951.
 538. Pattengale, P. K., and J. O. Holloszy. Augmentation of skeletal muscle myoglobin by a program of treadmill running. Am. J. Physiol. 213: 783–785, 1967.
 539. Payne, C. M., L. Z. Stern, R. G. Curless, and L. K. Hannapel. Ultrastructural fiber typing in normal and diseased human muscle. J. Neurol. Sci. 25: 99–108, 1975.
 540. Person, R. S., and L. P. Kudina. Discharge frequency and discharge pattern of human motor units during voluntary contraction of muscle. Electroencephalogr. Clin. Neurophysiol. 32: 471–483, 1972.
 541. Peter, J. B., R. J. Barnard, V. R. Edgerton, C. A. Gillespie, and K. E. Stempel. Metabolic profiles of three fiber types of skeletal muscle in guinea pigs and rabbits. Biochemistry 11: 2627–2633, 1972.
 542. Peter, J. B., R. N. Jeffress, and D. A. Lamb. Exercise: effects of hexokinase activity in red and white skeletal muscle. Science 160: 200–201, 1968.
 543. Peter, J. B., S. Sawaki, R. J. Barnard, V. R. Edgerton, and C. A. Gillespie. Lactate dehydrogenase isoenzymes: distribution in fast‐twitch red, fast‐twitch white, and slow‐twitch intermediate fibers of guinea pig skeletal muscle. Arch. Bio‐chem. Biophys. 144: 304–307, 1971.
 544. Pette, D., and T. Bücher. Proportionskonstante Gruppen in Beziehung zu Differenzierung der Enzymaktivitätsmuster von Skelettmuskeln des Kaninchen. Hoppe‐Seyler's Z. Physiol. Chem. 331: 180–195, 1963.
 545. Pette, D., and G. Dölken. Some aspects of regulation of enzyme levels in muscle energy‐supplying metabolism. Adv. Enzyme Regul. 13: 355–377, 1975.
 546. Pette, D., J. Henriksson, and M. Emmerich. Myofibrillar protein patterns of single fibers from human muscle (Abstract). Muscle Nerve 3: 264, 1980.
 547. Pette, D., and H. W. Hofer. The constant proportion enzyme group concept in the selection of reference enzymes in metabolism. Trends in Enzyme Histochemistry and Cytochemistry. Amsterdam: Excerpta Med., 1980, vol. 73, p. 231–244. (Ciba Found. Symp.)
 548. Pette, D., and W. Luh. Constant‐proportion groups of multilocated enzymes. Biochem. Biophys. Res. Commun. 8: 283–287, 1962.
 549. Pette, D., W. Luh, and T. Bücher. A constant‐proportion in the enzyme activity pattern of the Embden‐Meyerhof chain. Biochem. Biophys. Res. Commun. 7: 419–424, 1962.
 550. Pette, D., W. Luh, M. Klingenberg, and T. Bücher. Comparable and specific proportions in the mitochondrial enzyme activity pattern. Biochem. Biophys. Res. Commun. 7: 425–429, 1962.
 551. Pette, D., W. Müller, E. Leisner, and G. Vrbová. Time dependent effect on contractile properties, fibre population, myosin light chains and enzymes of energy metabolism in intermittently and continuously stimulated fast‐twitch muscles of the rabbit. Pfluegers Arch. 364: 103–112, 1976.
 552. Pette, D., B. A. Ramirez, W. Müller, R. Simon, G. U. Exner, and R. Hildebrand. Influence of intermittent long‐term stimulation of contractile, histochemical, and metabolic properties of fibre populations in fast and slow rabbit muscles. Pfluegers Arch. 361: 1–7, 1975.
 553. Pette, D., and U. Schnez. Coexistence of fast and slow type myosin light chains in single muscle fibers during transformation as induced by long term stimulation. FEBS Lett. 83: 128–130, 1977.
 554. Pette, D., M. E. Smith, H. W. Staudte, and G. Vrbová. Effects of long‐term electrical stimulation on some contractile and metabolic characteristics of fast rabbit muscles. Pfluegers Arch. 338: 257–272, 1973.
 555. Pette, D., and C. Spamer. Metabolic subpopulations of muscle fibers. Diabetes 28, Suppl. 1: 25–29, 1979.
 556. Pette, D., H. Wasmund, and M. Wimmer. Principle and method of kinetic microphotometric enzyme activity determination in situ. Histochemistry 64: 1–10, 1979.
 557. Pette, D., and M. Wimmer. Kinetic microphotometric activity determination in enzyme containing gels and model studies with tissue secretions. Histochemistry 64: 11–22, 1979.
 558. Pette, D., and M. Wimmer. Microphotometric determination of enzyme activities in cryostat sections by the gel film technique. Trends in Enzyme Histochemistry and Cytochemistry. Amsterdam: Excerpta Med., 1980, vol. 73, p. 121–134. (Ciba Found. Symp.)
 559. Pette, D., M. Wimmer, and P. Nemeth. Do enzyme activities vary along muscle fibres? Histochemistry 67: 225–231, 1980.
 560. Piehl, K., S. Adolfsson, and K. Nazar. Glycogen storage and glycogen synthetase activity in trained and untrained muscle of man. Acta Physiol. Scand. 90: 779–788, 1974.
 561. Piehl, K. Time course for refilling of glycogen stores in human fibres following exercise‐induced glycogen depletion. Acta Physiol. Scand. 90: 297–302, 1974.
 562. Plyley, M. J., and A. C. Groom. Geometrical distribution of capillaries in mammalian striated muscle. Am. J. Physiol. 228: 1376–1383, 1975.
 563. Polgar, J., M. A. Johnson, D. Weightman, and D. Appleton. Data on fibre size in thirty‐six human muscles. J. Neurol. Sci. 19: 307–318, 1973.
 564. Porro, R. S., H. De F. Webster, and W. Tobin. Needle biopsy of skeletal muscle: a phase and electron microscopic evaluation of its usefulness in study of muscle disease. J. Neuropathol. Exp. Neurol. 28: 229–242, 1969.
 565. Powell, S. E., and E. D. Aberle. Cellular growth of skeletal muscle in swine differing in muscularity. J. Anim. Sci. 40: 476–485, 1975.
 566. Prince, F. P., R. S. Hikida, and F. C. Hagerman. Human muscle fiber types in power lifters, distance runners and untrained subjects. Pfluegers Arch. 363: 19–26, 1976.
 567. Prince, F. P., R. S. Hikida, and F. C. Hagerman. Muscle fiber types in women athletes and non‐athletes. Pfluegers Arch. 371: 161–165, 1977.
 568. Purves, D. Long‐term regulation in the vertebrate peripheral nervous system. In: Neurophysiology II, edited by R. Porter. Baltimore, MD: University Park, 1976, vol. 10, p. 125–177. (Int. Rev. Physiol. Ser.)
 569. Ramirez, B. U., and D. Pette. Effects of long‐term electrical stimulation on sarcoplasmic reticulum of fast rabbit muscle. FEBS Lett. 49: 188–190, 1974.
 570. Ranvier, L. Propriétés et structures différentes des muscles rouges et des muscles blancs chez les lapins et chez les raies. C. R. Acad. Bulg. Sci. 77: 1030–1034, 1873.
 571. Ranvier, L. Note sur les vaisseaux sanguine et la circulation dans muscles rouges. C. R. Hebd. Seances Mem. Soc. Biol. 26: 28–31, 1874.
 572. Rayne, J., and G. N. C. Crawford. Increase in fiber number of the rat pterygoid muscles during post‐natal growth. J. Anat. 119: 347–357, 1975.
 573. Reitman, J., K. M. Baldwin, and J. O. Holloszy. Intramuscular triglyceride utilization by red, white, and intermediate skeletal muscle and heart during exhausting exercise. Proc. Soc. Exp. Biol. Med. 142: 628–631, 1973.
 574. Reitsma, W. Skeletal muscle hypertrophy after heavy exercise in rats with surgically reduced muscle function. Am. J. Phys. Med. 48: 237–258, 1969.
 575. Reniers, J., L. Martin, and C. Joris. Histochemical and quantitative analysis of muscle biopsies. J. Neurol. Sci. 10: 349–367, 1970.
 576. Renkin, E. M., S. D. Gray, L. R. Dodd, and B. D. Lia. Heterogeneity of capillary distribution and capillary circulation in mammalian skeletal muscles. Symposium on O2 transport. Underwater Physiology. Proc. 7th Symp, edited by A. J. Bachrach and M. Matzen. Bethesda, MD: Undersea Med. Soc., 1981, p. 465–474.
 577. Rennie, M. J., and J. O. Holloszy. Inhibition of glucose uptake and glycogenolysis by availability of oleate in well‐oxygenated perfused skeletal muscle. Biochem. J. 168: 161–170, 1977.
 578. Rennie, M. J., W. W. Winder, and J. O. Holloszy. A sparing effect of increased plasma fatty acids on muscle and liver glycogen content in the exercising rat. Biochem. J. 156: 647–655, 1976.
 579. Renström, P. The below‐knee amputee. Thigh muscle atrophy in below‐knee amputees. Göteborg, Sweden: Univ. of Göteborg, 1981, p. 72–83. Thesis.
 580. Reske‐Nielsen, E., C. Coërs, and A. Harmsen. Qualitative and quantitative histological study of neuromuscular biopsies from healthy young men. J. Neurol. Sci. 10: 369–384, 1970.
 581. Reynafarje, B. Myoglobin content and enzymatic activity of human skeletal muscle. Their relation with the process of adaptation to high altitude. San Antonio, TX: U.S. Air Force Sch. Med., Aerosp. Med. Div., 1962. (Rep. 62: 89, 1: 8)
 582. Richter, E. A., H. Galbo, and N. J. Christensen. Control of exercise‐induced muscular glycogenolysis by adrenal medullary hormones in rats. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 50: 21–26, 1981.
 583. Rifenberick, D. H., J. G. Gamble, and S. R. Max. Response of mitochondrial enzymes to decreased muscular activity. Am. J. Physiol. 225: 1295–1299, 1973.
 584. Rifenberick, D. H., and S. R. Max. Substrate utilization by disused rat skeletal muscles. Am. J. Physiol. 226: 295–297, 1974.
 585. Ripoll, E., A. H. Sillau, and N. Banchero. Changes in the capillarity of skeletal muscle in the growing rat. Pfluegers Arch. 380: 153–158, 1979.
 586. Robinson, D. W. The cellular response of porcine skeletal muscle to prenatal and neonatal nutritional stress. Growth 33: 231–240, 1969.
 587. Rogozkin, V., and B. Feldkoren. The effect of retabolil and training on activity of RNA polymerase in skeletal muscle. Med. Sci. Sports Exercise 11: 345–347, 1979.
 588. Romanul, F. C. A. Enzymes in muscle. I. Histochemical studies of enzymes in individual muscle fibers. Arch. Neurol. 11: 355–368, 1964.
 589. Romanul, F. C. A. Capillary supply and metabolism of muscle fibers. Arch. Neurol. 12: 497–509, 1965.
 590. Romanul, F. C. A., and E. L. Hogan. Enzymatic changes in denervated muscle. I. Histochemical studies. Arch. Neurol. 13: 263–273, 1965.
 591. Romanul, F. C. A., and M. Pollock. The parallelism of changes in oxidative metabolism and capillary supply of skeletal muscle fibers. In: Modern Neurology, edited by S. Locke. Boston, MA: Little, Brown, 1969, p. 203–214.
 592. Rose, C. P., and C. A. Goresky. Constraints on the uptake of labeled palmitate by the heart. Circ. Res. 41: 534–545, 1977.
 593. Rowe, R. W. D. The effect of hypertrophy on the properties of skeletal muscle. Comp. Biochem. Physiol. 28: 1449–1453, 1969.
 594. Rowe, R. W. D., and G. Goldspink. Surgically induced hypertrophy in skeletal muscles of the laboratory mouse. Anat. Rec. 161: 69–75, 1968.
 595. Rowell, L. B. Factors affecting the prediction of the maximal oxygen intake from measurements made during submaximal work with observations related to factors which may limit maximal oxygen intake. Minneapolis: Univ. of Minnesota, 1962. Thesis.
 596. Rubinstein, N. A., and A. M. Kelly. The sequential appearance of fast and slow myosins during myogenesis. In: Plasticity of Muscle, edited by D. Pette. New York: de Gruyter, 1980, p. 147–159.
 597. Rubinstein, N., K. Mabuchi, F. Pepe, S. Salmons, J. Gergely, and F. Sretér. Use of type‐specific antimyosins to demonstrate the transformation of individual fibers in chronically stimulated rabbit fast muscles. J. Cell Biol. 79: 252–261, 1978.
 598. Rushton, W. A. H. As theory of the effects of fibre size in medullated nerve. J. Physiol. London 115: 101–122, 1951.
 599. Rusko, H., P. Rahkila, and E. Kärvinen. Anaerobic threshold, skeletal muscle enzymes and fiber composition in young female cross‐country skiers. Acta Physiol. Scand. 108: 263–268, 1980.
 600. Salmons, S., and F. A. Sréter. Significance of impulse activity in the transformation of skeletal muscle type. Nature London 263: 30–34, 1976.
 601. Salmons, S., and G. Vrbová. The influence of activity on some contractile characteristics of mammalian fast and slow muscles. J. Physiol. London 20: 535–549, 1969.
 602. Saltin, B., G. Blomqvist, J. H. Mitchell, R. L. Johnson, Jr., K. Wildenthal, and C. B. Chapmann. Response to exercise after bed rest and after training. Circulation 38, Suppl. 7: 1–78, 1968.
 603. Saltin, B., J. Henriksson, E. Nygaard, E. Jansson, and P. Andersen. Fiber types and metabolic potentials of skeletal muscles in sedentary man and endurance runners. Ann. NY Acad. Sci. 301: 3–29, 1977.
 604. Saltin, B., K. Nazar, D. L. Costill, E. Stein, E. Jansson, B. Essén, and P. Gollnick. The nature of the training response; peripheral and central adaptations to one‐legged exercise. Acta Physiol. Scand. 96: 289–305, 1976.
 605. Saltin, B., E. Nygaard, and B. Rasmussen. Skeletal muscle adaptation in man following prolonged exposure to high altitude (Abstract). Acta Physiol. Scand. 109: 31A, 1980.
 606. Saltin, B., and L. B. Rowell. Functional adaptations to physical activity and inactivity. Federation Proc. 39: 1506–1513, 1980.
 607. Samaha, F. J., L. Guth, and R. W. Albers. Differences between slow and fast muscle myosin. Adenosine triphosphatase activity and release of associated proteins by p‐chloro‐mercuriphenylsulfonate. J. Biol. Chem. 245: 219–224, 1970.
 608. Sargeant, A. J., A. Young, C. T. M. Davies, C. Maunder, and R. H. T. Edwards. Functional and structural changes following disuse of human muscle. Clin. Sci. Mol. Med. 52: 337–342, 1977.
 609. Saubert, C. W., IV, R. B. Armstrong, R. E. Shepherd, and P. D. Gollnick. Anaerobic enzyme adaptations to sprint training in rats. Pfluegers Arch. 341: 305–312, 1973.
 610. Schiaffino, S. Hypertrophy of skeletal muscle induced by tendon shortening. Experientia 30: 1163–1164, 1974.
 611. Schiaffino, S., S. P. Bormioli, and M. Aloisi. Cell proliferation in rat skeletal muscle during early stages of compensatory hypertrophy. Virchows Arch. B 11: 268–273, 1972.
 612. Schiaffino, S., S. P. Bormioli, and M. Aloisi. The fate of newly formed satellite cells during compensatory muscle hypertrophy. Virchows Arch. B 21: 113–118, 1976.
 613. Schiaffino, S., S. P. Bormioli, and M. Aloisi. Fiber branching and formation of new fibers during compensatory muscle hypertrophy. In: Muscle Regeneration, edited by A. Mauro. New York: Raven, 1979, p. 177–188.
 614. Schmalbruch, H. The morphology of regeneration of skeletal muscles in the rat. Tissue Cell 8: 673–692, 1976.
 615. Schmalbruch, H. Muscle fibre splitting and regeneration in diseased human muscle. Neuropathol. Appl. Neurobiol. 2: 3–19, 1976.
 616. Schmalbruch, H. Satellite cells of rat muscles as studied by freeze‐fracturing. Anat. Rec. 191: 371–376, 1978.
 617. Schmalbruch, H., and H. Hellhammer. The number of satellite cells in normal human muscle. Anat. Rec. 185: 279–282, 1976.
 618. Schmidt‐Nielsen, K., and P. Pennycuik. Capillary density in mammals in relation to body size and oxygen consumption. Am. J. Physiol. 200: 746–750, 1961.
 619. Schreiber, S. S., M. Oratz, C. D. Evans, I. Gueyikian, and M. A. Rothschild. Myosin, myoglobin, and collagen synthesis in acute cardiac overload. Am. J. Physiol. 219: 481–486, 1970.
 620. Schreiber, S. S., M. Oratz, C. Evans, E. Silver, and M. A. Rothschild. Effect of acute overload on cardiac muscle mRNA. Am. J. Physiol. 215: 1250–1259, 1968.
 621. Schreiber, S. S., M. Oratz, and M. A. Rothschild. Effect of acute overload on protein synthesis in cardiac muscle microsomes. Am. J. Physiol. 213: 1552–1555, 1967.
 622. Schreiber, S. S., M. Oratz, and M. A. Rothschild. Nuclear RNA polymerase activity in acute hemodynamic overload in the perfused heart. Am. J. Physiol. 217: 1305–1309, 1969.
 623. Schwartz, M. S., M. Sargeant, and M. Swash. Longitudinal fibre splitting in neurogenic muscular disorders—its relation to the pathogenesis of “myopathic” change. Brain 99: 617–636, 1976.
 624. Schwarzacher, H. G. Über die Länge und Anordnung der Muskelfasern in menschlichen Skelettmuskeln. Acta Anat. 37: 217–231, 1959.
 625. Seibert, W. W. Untersuchungen über Hypertrophie des Skelettmuskels. Z. Klin. Med. 109: 350–360, 1928.
 626. Sembrowich, W. L., C. D. Ianuzzo, C. W. Saubert IV, R. E. Shepherd, and P. D. Gollnick. Substrate mobilization during prolonged exercise in 6‐hydroxydopamine treated rats. Pfluegers Arch. 349: 57–62, 1974.
 627. Sexton, A. W. Isometric tension of glycerinated muscle fibers following adrenalectomy. Am. J. Physiol. 212: 313–316, 1967.
 628. Sexton, A. W., and J. W. Gersten. Isometric tension differences in fibers of red and white muscles. Science 157: 199, 1967.
 629. Shafiq, S. A., M. A. Gorycki, and A. Mauro. Mitosis during postnatal growth in skeletal and cardiac muscle of the rat. J. Anat. 103: 135–141, 1968.
 630. Shepherd, R. E., and P. D. Gollnick. Oxygen uptake of rats at different work intensities. Pfluegers Arch. 362: 219–222, 1976.
 631. Sica, R. E. P., and A. J. Mccomas. Fast and slow twitch units in a human muscle. J. Neurol. Neurosurg. Psychiatry 34: 113–120, 1971.
 632. Sillau, A. H., L. Aquin, M. V. Bui, and N. Banchero. Chronic hypoxia does not affect guinea pig skeletal muscle capillarity. Pfluegers Arch. 386: 39–45, 1980.
 633. Sillau, A. H., and N. Banchero. Effects of hypoxia on capillary density and fiber composition in rat skeletal muscle. Pfluegers Arch. 370: 227–232, 1977.
 634. Sillau, A. H., and N. Banchero. Effect of maturation on capillary density, fiber size and composition in rat skeletal muscle. Proc. Soc. Exp. Biol. Med. 154: 461–466, 1977.
 635. Sillau, A. H., and N. Banchero. Skeletal muscle fiber size and capillarity. Proc. Soc. Exp. Biol. Med. 158: 288–291, 1978.
 636. Sillau, A. H., and N. Banchero. Effect of hypoxia on the capillarity of guinea pig skeletal muscle. Proc. Soc. Exp. Biol. Med. 160: 368–373, 1979.
 637. Simon, L. M., and E. D. Robin. Relationship of cytochrome oxidase activity to vertebrate total and organ oxygen consumption. Int. J. Biochem. 2: 569–573, 1971.
 638. Sink, J. D., R. G. Cassens, W. G. Hoekstra, and E. J. Briskey. Rigor mortis pattern of skeletal muscle and sarcomere length of the myofibril. Biochim. Biophys. Acta 102: 309–311, 1965.
 639. Sjödin, B. Lactate dehydrogenase in human skeletal muscle. Acta Physiol. Scand. Suppl. 436: 5–32, 1976.
 640. Sjödin, B., A. Thorstensson, K. Frith, and J. Karlsson. Effect of physical training on LDH activity and LDH isozyme pattern in human skeletal muscle. Acta Physiol. Scand. 97: 150–157, 1976.
 641. Sjøgaard, G. Force‐velocity curve for bicycle work. In: Biomechanics VI A, edited by E. Asmussen and K. Jørgensen. Baltimore, MD: University Park, 1978, p. 93–99.
 642. Sjøgaard, G. Water spaces and electrolyte concentrations in human skeletal muscle. Copenhagen: Univ. of Copenhagen, 1979. Thesis.
 643. Sjøgaard, G., M. E. Houston, E. Nygaard, and B. Saltin. Subgrouping of fast twitch fibres in skeletal muscles of man. Histochemistry 58: 79–87, 1978.
 644. Sjöström, M., S. Kidman, K. Larsen‐Henriksson, and K. A. Ängquist. Z‐ and M‐band appearance in different histo‐chemically defined types of human skeletal muscle fibers. J. Histochem. Cytochem. 30: 1–11, 1982.
 645. Sjöström, M., J. Lexell, and K. Larsen‐Henriksson. Distribution of different fibres inm. vastus lateralis. Panamerican Congress and Int. Course on Sports Medicine and Exercise Science. Abstracts. May, 1981, Miami, p. 12.
 646. Smith, J. H. Relation of body size to muscle cell size and number in the chicken. Poult. Sci. 12: 283–290, 1963.
 647. Snow, D. H., and P. S. Guy. The effect of training and detraining on several enzymes in horse skeletal muscle. Arch. Int. Physiol. Biochim. 87: 87–93, 1979.
 648. Sobel, B. E., and S. Kaufman. Enhanced RNA polymerase activity in skeletal muscle undergoing hypertrophy. Arch. Biochem. Biophys. 137: 469–476, 1970.
 649. Sola, O. M., D. L. Christensen, and A. W. Martin. Hypertrophy and hyperplasia of adult chicken anterior latissimus dorsi muscles following stretch with and without denervation. Exp. Neurol. 41: 76–100, 1973.
 650. Song, S. K., N. Shimada, and P. J. Anderson. Orthogonal diameters in the analysis of muscle fibre size and form. Nature London 200: 1220–1221, 1963.
 651. Spalteholz, W. Die Vertheilung der Blutgefässe im Muskel. Abh. Math.‐Phys. K. Königl. Saechs. Ges. Wiss. 14: 509–528, 1888.
 652. Spamer, C., and D. Pette. Activity patterns of phosphofruc‐tokinase, glyceraldehydephosphate dehydrogenase, lactate dehydrogenase, and malate dehydrogenase in microdissected fast and slow fibers from rabbit psoas and soleus muscle. Histochemistry 52: 201–216, 1977.
 653. Spamer, C., and D. Pette. Activities of malate dehydrogenase, 3‐hydroxyacyl‐CoA dehydrogenase and fructose‐1,6‐diphosphatase with regard to metabolic subpopulations of fast‐and slow‐twitch fibers in rabbit muscles. Histochemistry 60: 9–19, 1979.
 654. Spamer, C., and D. Pette. Metabolic subpopulations of rabbit skeletal muscle fibres. In: Plasticity of Muscle, edited by D. Pette. New York: de Gruyter, 1980, p. 19–30.
 655. Sréter, F. A., A. R. Luft, and J. Gergely. Effect of cross‐reinnervation on physiological parameters and on properties of myosin and sarcoplasmic reticulum of fast and slow muscles of the rabbit. J. Gen. Physiol. 66: 811–821, 1975.
 656. Sréter, F. A., S. Sarkar, and J. Gergely. Myosin light chains of slow twitch muscle. Nature London 239: 124–125, 1972.
 657. Sréter, F. A., J. C. Seidel, and J. Gergely. Studies on myosin from red and white skeletal muscles of the rabbit. I. Adenosine triphosphatase activity. J. Biol. Chem. 241: 5772–5776, 1966.
 658. Sréter, F. A., and G. Woo. Cell water, sodium, and potassium in red and white mammalian muscle. Am. J. Physiol. 205: 1290–1294, 1963.
 659. Stankiewicz‐Choroszucha, B., and J. Gorski. Effect of beta‐adrenergic blockade on intramuscular triglyceride mobilization during exercise. Experientia 34: 357–358, 1978.
 660. Staudte, H. W., G. U. Exner, and D. Pette. Effects of short‐term, high intensity (sprint) training on some contractile and metabolic characteristics of fast and slow muscle of the rat. Pfluegers Arch. 344: 159–168, 1973.
 661. Staun, H. Various factors affecting number and size of muscle fibers in the pig. Acta Agric. Scand. 13: 293–322, 1963.
 662. Stephens, J. A., and T. P. Usherwood. The mechanical properties of human motor units with special reference to their fatigability and recruitment threshold. Brain Res. 125: 91–97, 1977.
 663. Stromer, M. H., and D. E. Goll. Molecular properties of post‐mortem muscle. J. Food Sci. 32: 386–389, 1967.
 664. Sullivan, T. E., and R. B. Armstrong. Rat locomotory muscle fiber activity during trotting and galloping. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 44: 358–363, 1978.
 665. Suominen, H., and E. Heikkinen. Enzyme activities in muscle and connective tissue of m. vastus lateralis in habitually training and sedentary 33‐ to 70‐year‐old men. Eur. J. Appl. Physiol. Occup. Physiol. 34: 249–254, 1975.
 666. Suominen, H., E. Heikkinen, and T. Parkatti. Effect of eight weeks' physical training on muscle and connective tissue of the m. vastus lateralis in 69‐year‐old men and women. J. Gerontol. 32: 33–37, 1977.
 667. Suominen, H., A. Kiiskinen, and E. Heikkinen. Effects of physical training on metabolism of connective tissues in young mice. Acta Physiol. Scand. 108: 17–22, 1980.
 668. Susheela, A. K., and J. N. Walton. Note on the distribution of histochemical fibre types in some normal human muscles. J. Neurol. Sci. 8: 201–207, 1969.
 669. Swash, M., and M. S. Schwartz. Implications of longitudinal muscle fibre splitting in neurogenic and myopathic disorders. J. Neurol. Neurosurg. Psychiatry 40: 1152–1159, 1977.
 670. Syrovy, I., E. Gutmann, and J. Melichna. Effect of exercise on skeletal muscle myosin ATPase activity. Physiol. Bohemoslov. 21: 633–638, 1972.
 671. Syska, H., S. V. Perry, and I. P. Trayer. A new method for preparation of troponin I (inhibitory protein) using affinity chromatography. Evidence for three different forms of troponin I in striated muscle. FEBS Lett. 40: 253–257, 1974.
 672. Takács, Ö., I. Sohár, T. Pelle, F. Guba, and T. Szilágyi. Experimental investigations on hypokinesis of skeletal muscles with different functions. III. Changes in protein fractions of subcellular components. Acta Biol. Acad. Sci. Hung. 28: 213–219, 1977.
 673. Takács, Ö., I. Sohár, T. Szilágyi, and F. Guba. Experimental investigations on hypokinesis of skeletal muscles with different function. IV. Changes in the sarcoplasmic proteins. Acta Biol. Acad. Sci. Hung. 28: 221–230, 1977.
 674. Taylor, A. W., S. Cary, M. McNulty, J. Garrod, and D. C. Secord. Effects of food restriction and exercise upon the disposition and mobilization of energy stores in the rat. J. Nutr. 104: 218–222, 1974.
 675. Taylor, A. W., S. La Voie, G. Lemieux, C. Dufresne, J. S. Skinner, and J. Vallée. Effects of endurance training on the fiber area and enzyme activities of skeletal muscle of French‐Canadians. In: Biochemistry of Exercise, edited by F. Landey and W. A. R. Orban. Miami, FL: Symposia Specialists, 1978, p. 267–278.
 676. Taylor, A. W., D. C. Secord, P. Murray, and G. Bailey. The effect of castration and repositol testosterone treatment on exercise‐induced glycogen and free fatty acid mobilization. Endokrinologie 61: 13–20, 1973.
 677. Taylor, A. W., R. Thayer, and S. Rao. Human skeletal muscle glycogen synthase activities with exercise and training. Can. J. Physiol. Pharmacol. 50: 411–415, 1972.
 678. Terblanche, S. E., R. D. Fell, A. C. Juhlin‐Dannfelt, B. W. Craig, and J. O. Holloszy. Effects of glycerol feeding before and after exhausting exercise in rats. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 50: 94–101, 1981.
 679. Terjung, R. L. Cytochrome c turnover in skeletal muscle. Biochem. Biophys. Res. Commun. 66: 173–178, 1975.
 680. Terjung, R. L. Muscle fiber involvement during training of different intensities and durations. Am. J. Physiol. 230: 946–950, 1976.
 681. Terjung, R. L., K. M. Baldwin, W. W. Winder, and J. O. Holloszy. Glycogen repletion in different types of muscle and in liver after exhausting exercise. Am. J. Physiol. 226: 1387–1391, 1974.
 682. Terjung, R. L., and J. E. Koerner. Biochemical adaptations in skeletal muscle of trained thyroidectomized rats. Am. J. Physiol. 230: 1194–1197, 1976.
 683. Tesch, P., L. Larsson, A. Eriksson, and J. Karlsson. Muscle glycogen depletion and lactate concentration during downhill skiing. Med. Sci. Sports Exerc. 10: 85–90, 1978.
 684. Tesch, P., K. Piehl, G. Wilson, and J. Karlsson. Physiological investigations of Swedish elite canoe competitors. Med. Sci. Sports 8: 214–218, 1976.
 685. Tesch, P., B. Sjödin, and J. Karlsson. Relationship between lactate accumulation, LDH activity, LDH isozyme and fibre type distribution in human skeletal muscle. Acta Physiol. Scand. 103: 40–46, 1978.
 686. Thompson, E. H., A. S. Levine, P. V. J. Hegarty, and C. E. Allen. An automated technique for simultaneous determinations of muscle fiber number and diameter. J. Anim. Sci. 48: 328–337, 1979.
 687. Thorner, S. H. Trainierungsversuche an Hunde. 3. Histologische Beobachtungen an Herz und Skelettmuskel. Arbeitsphysiologie 8: 359–370, 1935.
 688. Thorstensson, A. Muscle strength, fibre types and enzyme activities in man. Acta Physiol. Scand. Suppl. 443: 1976.
 689. Thorstensson, A., L. Larsson, P. Tesch, and J. Karlsson. Muscle strength and fiber composition in athletes and sedentary men. Med. Sci. Sports 9: 26–30, 1977.
 690. Thorstensson, A., B. Sjödin, and J. Karlsson. Enzyme activities and muscle strength after “sprint training” in man. Acta Physiol. Scand. 94: 313–318, 1975.
 691. Thorstensson, A., B. Sjödin, and J. Karlsson. Separation of isozymes of creatine Phosphokinase and lactate dehydrogenase in human heart muscle by isoelectric focusing. In: Progress sin Isoelectric Focusing and Isotachophoresis, edited by P. G. Righetti. Amsterdam: North‐Holland, 1975, p. 213–222.
 692. Thorstensson, A., B. Sjödin, P. Tesch, and J. Karlsson. Actomyosin ATPase, myokinase, CPK and LDH in human fast and slow twitch muscle fibres. Acta Physiol. Scand. 99: 225–229, 1977.
 693. Tipton, C. M., R. D. Matthes, J. A. Maynard, and R. A. Carey. The influence of physical activity on ligaments and tendons. Med. Sci. Sports 7: 165–175, 1975.
 694. Tipton, C. M., R. D. Matthes, A. C. Vailas, and C. L. Schonebelen. The response of the Galago senegalensis to physical training. Comp. Biochem. Physiol. 63A: 29–36, 1979.
 695. Tipton, C. M., and T. K. Tchen. Influence of physical training, aortic constriction and exogenous anterior pituitary hormones on the weights of hypophysectomized rats. Pfluegers Arch. 325: 103–112, 1971.
 696. Tipton, C. M., R. L. Terjung, and R. J. Barnard. Response of thyroidectomized rats to training. Am. J. Physiol. 215: 1137–1142, 1968.
 697. Tomanek, R. J. A histochemical study of postnatal differentiation of skeletal muscle with reference to functional overload. Dev. Biol. 42: 305–314, 1975.
 698. Tomanek, R. J. Ultrastructural differentiation of skeletal muscle fibers and their diversity. J. Ultrastruct. Res. 55: 212–227, 1976.
 699. Tomanek, J., and A. S. Colling‐Saltin. Cytological differentiation of human fetal skeletal muscle. Am. J. Anat. 149: 227–246, 1977.
 700. Turto, H., S. Lindy, and J. Halme. Protocollagen proline hydroxylase activity in work‐induced hypertrophy of rat muscle. Am. J. Physiol. 226: 63–65, 1974.
 701. Valdiva, E. Total capillary bed in striated muscle of guinea pigs native to the Peruvian mountains. Am. J. Physiol. 194: 585–589, 1958.
 702. Valentin, N., and K. H. Olesen. Measurements of muscle tissue water and electrolytes. Scand. J. Clin. Lab. Invest. 32: 155–160, 1973.
 703. Van Linge, B. The response of muscle to strenuous exercise. J. Bone Jt. Surg. 44B: 711–721, 1962.
 704. Van Wijhe, M., M. C. Blanchaer, and S. St. George‐Stubbs. The distribution of lactate dehydrogenase isozymes in human skeletal muscle fibres. J. Histochem. Cytochem. 12: 608–614, 1964.
 705. Varnauskas, E., P. Björntorp, M. Fahlén, I. Prerovsky, and J. Stenberg. Effects of physical training on exercise blood flow and enzymatic activity in skeletal muscle. Cardiovasc. Res. 4: 418–422, 1970.
 706. Vaughan, H. S., and G. Goldspink. Fibre number in a surgically overloaded muscle. J. Anat. 129: 293–303, 1979.
 707. Vihko, V., Y. Hirsimaki, H. Rusko, M. Ha Vu, P. V. Komi, and A. U. Arstilla. Adaptation of skeletal muscle to endurance training: succinate dehydrogenase activities in highly trained skiers. Int. Res. Commun. System 2: 1033, 1974.
 708. Viidik, A. The effect of training on the tensile strength of isolated rabbit tendons. Scand. J. Plast. Reconstr. Surg. 1: 141–147, 1967.
 709. Viidik, A. Elasticity and tensile strength of the anterior cruciate ligaments in rabbits as influenced by training. Acta Physiol. Scand. 74: 372–380, 1969.
 710. Viidik, A. Tensile strength properties of achilles tendon systems in trained and untrained rabbits. Acta Orthop. Scand. 40: 261–272, 1969.
 711. Vrbová, G. The effect of motoneurone activity on the speed of contraction of striated muscle. J. Physiol. London 169: 513–526, 1963.
 712. Wachtlová, M., and J. Parízková. Comparison of capillary density in skeletal muscles of animals suffering in respect of their physical activity—the hare (Lepus europaeus), the domestic rabbit (Oryctolagus domesticus), the brown rat (Rattus norvegicus), and the trained and untrained rat. Physiol. Bohemoslov. 21: 489–495, 1972.
 713. Wahren, J., B. Saltin, L. Jorfeldt, and B. Pernow. Influence of age on the local circulatory adaptation to leg exercise. Scand. J. Clin. Lab. Invest. 33: 79–86, 1974.
 714. Walker, M. G. The effect of exercise on skeletal muscle fibres. Comp. Biochem. Physiol. 19: 791–797, 1966.
 715. Watrus, J. M. Influence of chronic exercise on myosin from cardiac and skeletal muscles of hamster and rats. Pullman: Washington State University, 1980. PhD thesis.
 716. Wattenberg, L. W., and J. L. Leong. Effects of coenzyme Q10 and menadione on succinic dehydrogenase activity as measured by tetrazolium salt reduction. J. Histochem. Cytochem. 8: 296–303, 1960.
 717. Weeds, A. Myosin: polymorphism and promiscuity. Nature London 274: 417–418, 1978.
 718. Weeds, A. Myosin light chains, polymorphism and fibre types in skeletal muscles. In: Plasticity of Muscle, edited by D. Pette. New York: de Gruyter, 1980, p. 55–68.
 719. Weeds, A. G., and B. Pope. Chemical studies on light chains from cardiac and skeletal muscle. Nature London 234: 85–88, 1971.
 720. Whalen, R. G. Contractile protein isozymes in muscle development: the embryonic phenotype. In: Plasticity of Muscle, edited by D. Pette. New York: de Gruyter, 1980, p. 177–191.
 721. Wigglesworth, V. B. The utilization of reserve substances in Drosophila during flight. J. Exp. Biol. 26: 150–163, 1949.
 722. Wiles, C. M., A. Young, D. A. Jones, and R. H. T. Edwards. Relaxation rate of constituent muscle‐fibre types in human quadriceps. Clin. Sci. 56: 47–52, 1979.
 723. Wilkie, D. R. The relation between force and velocity in human muscle. J. Physiol. London 110: 249–280, 1950.
 724. Williamson, J. R., and R. H. Cooper. Regulation of the citric acid cycle in mammalian systems. FEBS Lett. 117, Suppl.: K73–K85, 1980.
 725. Winder, W. W., K. W. Baldwin, and J. O. Holloszy. Enzymes involved in ketone utilization in different types of muscle: adaptation to exercise. Eur. J. Biochem. 47: 461–467, 1974.
 726. Wittenberg, B., and J. B. Wittenberg. Role of myoglobin in the oxygen supply to red skeletal muscle. J. Biol. Chem. 250: 9038–9043, 1975.
 727. Wohlfart, G. Über das Vorkommen verscheidener Arten von Muskelfasern in der Skelettmuskulatur des Menschen und einiger Säugetiere. Acta Psychiatr. Neurol. Scand. Suppl. 12: 1–119, 1937.
 728. Wood, D. S., J. Zollman, J. P. Reuben, and P. W. Brandt. Human skeletal muscle: properties of the “chemically skinned” fiber. Science 187: 1075–1076, 1975.
 729. Wroblewski, R., G. M. Roomans, E. Jansson, and L. Edström. Electron probe X‐ray microanalysis of human muscle biopsies. Histochemistry 55: 281–292, 1978.
 730. Yamaki, T., S. Baez, and L. R. Orkin. Microvasculature in open cremaster muscle of mouse. Microcirculation 1, edited by J. Grayson and W. Zingg. New York: Plenum, 1976, p. 402–403.
 731. Yamamoto, Y. Comparison of histochemical and physiological characteristics, of m. digastricus and m. semitendinosus of the guinea pig. Jpn. J. Physiol. 23: 509–528, 1973.
 732. Yampolskaya, L. I. Biochemical changes in the muscle of trained and untrained animals under the influence of small loads (English translation). Sechenov Physiol. J. USSR 39: 91–99, 1952.
 733. Yellin, H. Changes in fibre types of the hypertrophying denervated hemidiaphragm. Exp. Neurol. 42: 412–428, 1974.
 734. Zíka, K., Z. Lojda, and M. Kucera. Activities of some oxidative and hydrolytic enzymes in musculus biceps brachii of rats after tonic stress. Histochemie 35: 153–164, 1973.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Bengt Saltin, Philip D. Gollnick. Skeletal Muscle Adaptability: Significance for Metabolism and Performance. Compr Physiol 2011, Supplement 27: Handbook of Physiology, Skeletal Muscle: 555-631. First published in print 1983. doi: 10.1002/cphy.cp100119