Comprehensive Physiology Wiley Online Library

Control of Blood Flow to Cardiac and Skeletal Muscle During Exercise

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Hemodynamics and Control of Blood Flow
1.1 Determinants of Vascular Resistance
1.2 Central Vascular Control Mechanisms
1.3 Local Vascular Control Mechanisms
2 Coronary Vascular Response to Exercise
2.1 Effect of Exercise on Left Ventricular Blood Flow
2.2 Right Ventricular Blood Flow during Exercise
2.3 Mechanisms Of Coronary Vasodilation during Exercise
2.4 Autonomic Nervous System Influences
2.5 Extravascular Determinants of Coronary Blood Flow
2.6 Epicardial Coronary Arteries
3 Effects of Physical Conditioning on the Coronary Circulation
3.1 Structural Adaptations
3.2 Adaptations of Neurohumoral Control
3.3 Local Coronary Vascular Control
3.4 Integrated Coronary Vascular Adaptations
3.5 Extravascular Determinants of Coronary Blood Flow
4 Skeletal Muscle Blood Flow During Exercise
4.1 Skeletal Muscle Blood Flow during Isometric Contraction
4.2 Skeletal Muscle Exercise Hyperemia
4.3 Regional Distribution of Skeletal Muscle Blood Flow
4.4 Mechanisms of Exercise Hyperemia
4.5 Regulation of Transcapillary Fluid and Solute Exchange in Skeletal Muscle
4.6 Regulation of Tissue Oxygenation in Exercising Skeletal Muscles
4.7 Determinants of Skeletal Muscle Arteriovenous Oxygen Difference
5 Effects of Physical Conditioning on Skeletal Muscle Vascular Beds
5.1 Skeletal Muscle Blood Flow Capacity
5.2 Skeletal Muscle Capillary Diffusion Capacity
5.3 Structural Vascular Adaptation
5.4 Adaptations of Vascular Control
6 Conclusion
Figure 1. Figure 1.

Relationship between blood flow and exercise intensity in skeletal muscles of different fiber‐type composition in rats and miniature swine. A, Data for the red (VLR) and white (VLW) portions of the vastus lateralis muscle and the soleus muscle (S) for rat skeletal muscles are shown on the left. The percentage fiber‐type compositions for these muscle are: VLR = 2% SO (slow‐twitch, oxidative), 64% FOG (fast‐twitch, oxidative, glycolytic), 34% FG (fast‐twitch, glycolytic); VLW = 0% SO, 1% FOG, 99% FG; S = 77% SO, 23% FOG, 0% FG . Rest data are from Laughlin and Armstrong for anesthetized rats. PE = preexercise (i.e. data collected with the animals standing on the treadmill involved in normal activity). PE data and data for rats running on the treadmill at speeds of 15–105 m/min are from Laughlin and Armstrong and Armstrong and Laughlin . B, Data for the medial head (MH) and the deep (LHR) and superficial (LHW) portions of the long head of triceps brachii muscles of miniature swine are presented on the right. The percentage fiber‐type compositions for these muscles are: LHR = 46% SO, 43% FOG, 12% FG; LHW = 8% SO, 38% FOG, 54% FG; MH = 91% SO, 9% FOG, 0% SO.

Rest data are unpublished observations from anesthetized pigs. PE data and data for pigs running on a treadmill at speeds of 4.8–17.7 km/h are from Armstrong et al. was demonstrated at a running speed of 14.5 km/h in these pigs
Figure 2. Figure 2.

Myocardial oxygen balance in awake dogs at rest and during four incremental levels of treadmill exercise. The increase in myocardial oxygen consumption was for the most part accommodated for by an increase in coronary blood flow with only modest contributions of increases in hematocrit and oxygen extraction. MVO2, myocardial oxygen consumption; Hct, hematocrit; Art O2 sat, arterial oxygen saturation; CVO2 sat = coronary venous oxygen saturation. Data are mean SEM, and are from von Restorff et al. .

Figure 3. Figure 3.

Relationship between heart rate (HR) and left ventricular myocardial blood flow (LVMBF) at rest and during treadmill exercise in fogs , swing , horses , and humans .

Figure 4. Figure 4.

Distribution of cardiac output to skeletal muscle (muscle), heart, visceral organs, and other tissues of miniature swine as a function of oxygen consumption, over the full range of oxygen uptake from rest to . Data are from Armstrong et al. . Note that blood flow to the heart and skeletal muscle increases with increases in exercise intensity, whereas visceral blood flows decrease.

Figure 5. Figure 5.

Relationship between heart rate and coronary blood flow at rest and during four incremental levels of treadmill exercise in dogs, under control conditions (Control, open circles), during channel blockade (glibenclamide, 50 μg · kg−1 · min−1, intracoronary) (Glib, open squares), and during combined adenosine receptor blockade (8‐phenyltheophylline, 5 mg/kg intravenously) and channel blockade (Glib+8PT, closed squares). channel blockade alone decreased coronary blood flow at rest but did not affect the exercise‐induced increase in coronary flow. In contrast, combined adenosine receptor and KATP + channel blockade decreased coronary blood flow at rest and markedly attenuated the increase in coronary flow produced by exercise. Data are mean ± SEM, n = 11. Data are from Duncker et al. .

Figure 6. Figure 6.

Effects of exercise training on the myocardial oxygen balance in awake dogs at rest and during four incremental levels of treadmill exercise. A, Exercise training had no effect on the arterial oxygen‐carrying capacity, but caused a small but significant increase in myocardial oxygen extraction and decreased coronary blood flow at comparable workloads during exercise (reflected by total‐body oxygen consumption. B, However, the relationship between myocardial oxygen consumption and coronary blood flow was not altered by exercise training, as the increase in myocardial oxygen extraction was too small to result in a measurable decrease in coronary blood flow. Body , total body oxygen consumption; MVO2, myocardial oxygen consumption; Hct, hematocrit; Art O2 sat, arterial oxygen saturation; CVO2 sat, coronary venous oxygen saturation. Data are mean ± SEM, and are from von Restorff et al. .

Figure 7. Figure 7.

Hemodynamic effects of rhythmic, 0.2 ms duration, tetanic contractions of cat calf muscle at a frequency of one tetanic contraction per second. Femoral venous pressure was increased to 50 mm Hg by elevations of outflow catheter as described by Folkow et al. .

Adapted from Folkow et al.
Figure 8. Figure 8.

Effects of frequency of contraction on vascular conductance of the dog hind limb. Data from Sheriff et al. . Note that doubling contraction frequency by increasing treadmill speed from 2 mph to 4 mph at 0% grade resulted in the initial rise in conductance to approximately double. In contrast, when the treadmill grade was increased from 0% to 10% and running speed held the same at 4 mph, the initial increase in vascular conductance is similar. Finally, note that the steady‐state vascular conductance (15–30 s) appeared to be related to metabolic rate under all three conditions. These results were obtained from dogs in which cardiovascular reflex responses were blocked with hexamethonium (10 mg/kg, intravenously), atropine (0.2 mg/kg, intravenously), and captopril (1 mg/kg, intravenously) and during AV‐linked ventricular pacing as described in Sheriff et al. .

Figure 9. Figure 9.

Apparent vascular conductance and blood flows of rat skeletal muscle.

Adapted from Laughlin .] Vascular conductance was calculated for perfusion pressures of 130 mm Hg with equations derived from linear regression analysis of conductance (for each muscle) and perfusion pressure (corrected for effects of viscosity). Data for resting conditions are from Laughlin and Ripperger , data for twitch and tetanic conditions are from Mackie and Terjung , and data for running rats are from Armstrong and Laughlin . Data for twitch contractions were collected after 10 min of contraction and for tetanic contractions after 1 min of contractions
Figure 10. Figure 10.

Blood flow to rat skeletal muscles as a function of time during high‐intensity treadmill exercise. Rats ran at 60 m/min from time 0 through 3 min. Recovery blood flows were measured at 30 s and 3 min following exercise. Data are presented for red (triangles) and white (boxes) vastus lateralis, biceps femoris (open circles), and total hindlimb muscle (filled circles).

Adapted from Armstrong and Laughlin
Figure 11. Figure 11.

Overview of changes in autonomic control of the cardiovascular system associated with increase intensity in humans. At rest, vagal control is important. Sympathetic nervous activity starts to increase as vagal control is withdrawn. Vagal control is negligible and sympathetic activity beginning to increase when exercise intensity produces heart rates of about 100 bpm. Indices of increased sympathetic nervous activity include: decreases in blood flow to splanchnic (SBF) and renal (RBF) vascular beds, increased plasma norepinephrine (NE) concentrations, increased plasma renin activity (PRA), and increased muscle sympathetic nerve activity (MSNA). Blood lactate concentration (HLa) does not increase until exercise intensity is 50%–60% of (Heart rates of 130–140 bpm).

Adapted from Rowell et al.


Figure 1.

Relationship between blood flow and exercise intensity in skeletal muscles of different fiber‐type composition in rats and miniature swine. A, Data for the red (VLR) and white (VLW) portions of the vastus lateralis muscle and the soleus muscle (S) for rat skeletal muscles are shown on the left. The percentage fiber‐type compositions for these muscle are: VLR = 2% SO (slow‐twitch, oxidative), 64% FOG (fast‐twitch, oxidative, glycolytic), 34% FG (fast‐twitch, glycolytic); VLW = 0% SO, 1% FOG, 99% FG; S = 77% SO, 23% FOG, 0% FG . Rest data are from Laughlin and Armstrong for anesthetized rats. PE = preexercise (i.e. data collected with the animals standing on the treadmill involved in normal activity). PE data and data for rats running on the treadmill at speeds of 15–105 m/min are from Laughlin and Armstrong and Armstrong and Laughlin . B, Data for the medial head (MH) and the deep (LHR) and superficial (LHW) portions of the long head of triceps brachii muscles of miniature swine are presented on the right. The percentage fiber‐type compositions for these muscles are: LHR = 46% SO, 43% FOG, 12% FG; LHW = 8% SO, 38% FOG, 54% FG; MH = 91% SO, 9% FOG, 0% SO.

Rest data are unpublished observations from anesthetized pigs. PE data and data for pigs running on a treadmill at speeds of 4.8–17.7 km/h are from Armstrong et al. was demonstrated at a running speed of 14.5 km/h in these pigs


Figure 2.

Myocardial oxygen balance in awake dogs at rest and during four incremental levels of treadmill exercise. The increase in myocardial oxygen consumption was for the most part accommodated for by an increase in coronary blood flow with only modest contributions of increases in hematocrit and oxygen extraction. MVO2, myocardial oxygen consumption; Hct, hematocrit; Art O2 sat, arterial oxygen saturation; CVO2 sat = coronary venous oxygen saturation. Data are mean SEM, and are from von Restorff et al. .



Figure 3.

Relationship between heart rate (HR) and left ventricular myocardial blood flow (LVMBF) at rest and during treadmill exercise in fogs , swing , horses , and humans .



Figure 4.

Distribution of cardiac output to skeletal muscle (muscle), heart, visceral organs, and other tissues of miniature swine as a function of oxygen consumption, over the full range of oxygen uptake from rest to . Data are from Armstrong et al. . Note that blood flow to the heart and skeletal muscle increases with increases in exercise intensity, whereas visceral blood flows decrease.



Figure 5.

Relationship between heart rate and coronary blood flow at rest and during four incremental levels of treadmill exercise in dogs, under control conditions (Control, open circles), during channel blockade (glibenclamide, 50 μg · kg−1 · min−1, intracoronary) (Glib, open squares), and during combined adenosine receptor blockade (8‐phenyltheophylline, 5 mg/kg intravenously) and channel blockade (Glib+8PT, closed squares). channel blockade alone decreased coronary blood flow at rest but did not affect the exercise‐induced increase in coronary flow. In contrast, combined adenosine receptor and KATP + channel blockade decreased coronary blood flow at rest and markedly attenuated the increase in coronary flow produced by exercise. Data are mean ± SEM, n = 11. Data are from Duncker et al. .



Figure 6.

Effects of exercise training on the myocardial oxygen balance in awake dogs at rest and during four incremental levels of treadmill exercise. A, Exercise training had no effect on the arterial oxygen‐carrying capacity, but caused a small but significant increase in myocardial oxygen extraction and decreased coronary blood flow at comparable workloads during exercise (reflected by total‐body oxygen consumption. B, However, the relationship between myocardial oxygen consumption and coronary blood flow was not altered by exercise training, as the increase in myocardial oxygen extraction was too small to result in a measurable decrease in coronary blood flow. Body , total body oxygen consumption; MVO2, myocardial oxygen consumption; Hct, hematocrit; Art O2 sat, arterial oxygen saturation; CVO2 sat, coronary venous oxygen saturation. Data are mean ± SEM, and are from von Restorff et al. .



Figure 7.

Hemodynamic effects of rhythmic, 0.2 ms duration, tetanic contractions of cat calf muscle at a frequency of one tetanic contraction per second. Femoral venous pressure was increased to 50 mm Hg by elevations of outflow catheter as described by Folkow et al. .

Adapted from Folkow et al.


Figure 8.

Effects of frequency of contraction on vascular conductance of the dog hind limb. Data from Sheriff et al. . Note that doubling contraction frequency by increasing treadmill speed from 2 mph to 4 mph at 0% grade resulted in the initial rise in conductance to approximately double. In contrast, when the treadmill grade was increased from 0% to 10% and running speed held the same at 4 mph, the initial increase in vascular conductance is similar. Finally, note that the steady‐state vascular conductance (15–30 s) appeared to be related to metabolic rate under all three conditions. These results were obtained from dogs in which cardiovascular reflex responses were blocked with hexamethonium (10 mg/kg, intravenously), atropine (0.2 mg/kg, intravenously), and captopril (1 mg/kg, intravenously) and during AV‐linked ventricular pacing as described in Sheriff et al. .



Figure 9.

Apparent vascular conductance and blood flows of rat skeletal muscle.

Adapted from Laughlin .] Vascular conductance was calculated for perfusion pressures of 130 mm Hg with equations derived from linear regression analysis of conductance (for each muscle) and perfusion pressure (corrected for effects of viscosity). Data for resting conditions are from Laughlin and Ripperger , data for twitch and tetanic conditions are from Mackie and Terjung , and data for running rats are from Armstrong and Laughlin . Data for twitch contractions were collected after 10 min of contraction and for tetanic contractions after 1 min of contractions


Figure 10.

Blood flow to rat skeletal muscles as a function of time during high‐intensity treadmill exercise. Rats ran at 60 m/min from time 0 through 3 min. Recovery blood flows were measured at 30 s and 3 min following exercise. Data are presented for red (triangles) and white (boxes) vastus lateralis, biceps femoris (open circles), and total hindlimb muscle (filled circles).

Adapted from Armstrong and Laughlin


Figure 11.

Overview of changes in autonomic control of the cardiovascular system associated with increase intensity in humans. At rest, vagal control is important. Sympathetic nervous activity starts to increase as vagal control is withdrawn. Vagal control is negligible and sympathetic activity beginning to increase when exercise intensity produces heart rates of about 100 bpm. Indices of increased sympathetic nervous activity include: decreases in blood flow to splanchnic (SBF) and renal (RBF) vascular beds, increased plasma norepinephrine (NE) concentrations, increased plasma renin activity (PRA), and increased muscle sympathetic nerve activity (MSNA). Blood lactate concentration (HLa) does not increase until exercise intensity is 50%–60% of (Heart rates of 130–140 bpm).

Adapted from Rowell et al.
References
 1. Adair, T. H., W. J. Gay, and J. Montani. Growth regulation of the vascular system: evidence for a metabolic hypothesis. Am. J. Physiol. 259 (Regulatory Integrative Comp. Physiol. 28): R393–R404, 1990.
 2. Adolfsson, J. The time dependence of training‐induced increase in skeletal muscle capillarization and the spatial capillary to fibre relationship in normal and neovascularized skeletal muscle of rats. Acta Physiol. Scand. 128: 259–266, 1986.
 3. Adolfsson, J., A. Ljungqvist, G. Tornling, and G. Unge. Capillary increase in the skeletal muscle of trained young and adult rats. J. Physiol. 310: 529–532, 1981.
 4. Afonso, S., G. T. Bandow, and G. G. Rowe. Indomethacin and the prostaglandin hypothesis of coronary blood flow regulation. J. Physiol. (Lond.) 241: 299–308, 1974.
 5. Alexander, R. W., K. M. Kent, J. J. Pasano, H. R. Keiser, and T. Cooper. Regulation of postocclusive hyperemia by endogenously synthesized prostaglandins in the dog heart. J. Clin. Invest. 55: 1174–1181, 1975.
 6. Altman, J. D., J. Kinn, D. J. Duncker, and R. J. Bache. Effect of inhibition of nitric oxide formation on coronary blood flow during exercise in the dog. Cardiovasc. Res. 28: 119–124, 1994.
 7. Andersen, P. Capillary density in skeletal muscle of man. Acta. Physiol. Scand. 95: 203–205, 1975.
 8. Andersen, P., and J. Henriksson. Capillary supply of the quadriceps femoris muscle of man: adaptive response to exercise. J. Physiol. (Lond.) 270: 670–690, 1977.
 9. Andersen, P., and J. Henricksson. Training induced changes in the subgroups of human type II skeletal muscle fibres. Acta Physiol. Scand. 99: 123–125, 1977.
 10. Andersen, P., and A. J. Kroese. Capillary supply in soleus and gastrocnemius muscles of man. Pflugers Arch. 375: 245–249, 1978.
 11. Andersen, P., and B. Saltin. Maximal perfusion of skeletal muscle in man. J. Physiol. (Lond.) 366: 233–249, 1985.
 12. Anderson, K. M., and J. E. Faber. Differential sensitivity of arteriolar α1‐ and α2‐adrenoceptor constriction to metabolic inhibition during rat skeletal muscle contraction. Circ. Res. 69: 174–184, 1991.
 13. Aniansson, A., G. Grimby, M. Hedberg, and M. Krotkiewski. Muscle morphology, enzyme activity and muscle strength in elderly men and women. Clin. Physiol. 1: 73–86, 1981.
 14. Antal, J. Changes in blood flow during exercise in unanesthetized animals. Circulation in Skeletal Muscle. New York: Pergaman Press, 1968, p. 181–187.
 15. Anversa, P., C. Beghi, V. Levicky, S. L. McDonald, and Y. Kikkawa. Morphometry of right ventricular hypertrophy induced by strenuous exercise in rat. Am. J. Physiol. 243 (Heart Circ. Physiol. 12): H857–H861, 1982.
 16. Anversa, P., C. Beghi, V. Levicky, S. L. McDonald, Y. Kikkawa, and G. Olivetti. Effects of strenuous exercise on the quantitative morphology of left ventricular myocardium in rat. J. Mol. Cell Cardiol. 17: 587–595, 1985.
 17. Anversa, P., V. Levicky, C. Beghi, S. L. McDonald, and Y. Kikkawa. Morphometry of exercise‐induced right ventricular hypertrophy in the rat. Circ. Res. 52: 57–64, 1983.
 18. Anversa, P., R. Ricci, and G. Olivetti. Effects of exercise on the capillary vasculature of the rat heart. Circulation 75 (Suppl. I): I‐12–I‐18, 1987.
 19. Archie, J. P., Jr.. Transmural distribution of intrinsic and transmitted left ventricular diastolic intramyocardial pressure in dogs. Cardiovasc. Res. 12: 255–262, 1978.
 20. Armstrong, R. B., M. D. Delp, E. F. Goljan, and M. H. Laughlin. Distribution of blood flow in muscles of miniature swine during exercise. J. Appl. Physiol. 62: 1285–1298, 1987.
 21. Armstrong, R. B., M. D. Delp, E. F. Goljan, and M. H. Laughlin. Progressive elevations in muscle blood flow during prolonged exercise in swine. J. Appl. Physiol. 63: 285–291, 1987.
 22. Armstrong, R. B., B. Essen‐Gustavsson, H. Hoppeler, J. H. Jones, S. R. Kayer, M. H. Laughlin, A. Lindholm, K. E. Longsworth, C. R. Taylor, and E. R. Weibel. O2 delivery at V.o2 max and oxidative capacity in muscles of standardbred horses. J. Appl. Physiol. 73: 2274–2282, 1992.
 23. Armstrong, R. B., and M. H. Laughlin. Blood flows within and among rat muscles as a function of time during high speed treadmill exercise. J. Physiol. (Lond.) 344: 189–208, 1983.
 24. Armstrong, R. B., and M. H. Laughlin. Metabolic indicators of fiber recruitment in mammalian muscles during locomotion. J. Exp. Biol. 115: 201–231, 1985.
 25. Armstrong, R. B., and M. H. Laughlin. Rat muscle blood flows during high speed locomotion. J. Appl. Physiol. 59: 1322–1328, 1985.
 26. Armstrong, R. B., and M. H. Laughlin. Atropine: no effect on anticipatory or exercise muscle hyperemia in conscious rats. J. Appl. Physiol. 61: 679–692, 1986.
 27. Armstrong, R. B., and M. H. Laughlin. Adrenoreceptor effects on rat muscle blood flow during treadmill exercise. J. Appl. Physiol. 62: 1465–1472, 1987.
 28. Armstrong, R. B., P. Marum, C. W. Saubert, IV, H. W. Seeherman, and C. R. Taylor. Muscle fiber activity as a function of speed and gait. J. Appl. Physiol. 43: 672–677, 1977.
 29. Armstrong, R. B., C. B. Vanderakker, and M. H. Laughlin. Muscle blood flow patterns during exercise in partially‐curarized rats. J. Appl. Physiol. 58: 698–701, 1985.
 30. Arturson, O., and I. Kjellmer. Capillary permeability in skeletal muscle during rest and activity. Acta. Physiol. Scand. 62: 41–49, 1964.
 31. Åstrand, P., and B. Saltin. Plasma and red cell volume after prolonged severe exercise. J. Appl. Physiol. 19: 829–832, 1964.
 32. Åstrand, P. O., and K. Rodahl. Textbook of Work Physiology. New York: McGraw‐Hill, 1977, p. 681.
 33. Aversano, T., F. J. Klocke, R. E. Mates, and J. M. Canty. Preload‐induced alterations in capacitance‐free diastolic pressure–flow relationships. J. Appl. Physiol. 259 (Heart Circ. Physiol. 28): H643–H647, 1984.
 34. Bacchus, A., G. Gamble, D. Anderson, and J. Scott. Role of the myogenic response in exercise hyperemia. Microvasc. Res. 21: 92–102, 1981.
 35. Bacchus, A. N., S. W. Ely, R. M. Knabb, R. Rubio, and R. M. Berne. Adenosine and coronary blood flow in conscious dogs during normal physiological stimuli. Am. J. Physiol. 243 (Heart Circ. Physiol. 12): H628–H633, 1982.
 36. Bache, R. J., and F. R. Cobb. Effect of maximal coronary vasodilation on transmural myocardial perfusion during tachycardia in the awake dog. Circ. Res. 41: 648–653, 1977.
 37. Bache, R. J., and X.‐Z. Dai. Myocardial oxygen consumption during exercise in the presence of left ventricular hypertrophy secondary to supravalvular aortic stenosis. J. Am. Coll. Cardiol. 15: 1157–1164, 1990.
 38. Bache, R. J., X.‐Z. Dai, D. Alyono, T. R. Vrobel, and D. C. Homans. Myocardial blood flow during exercise in dogs with left ventricular hypertrophy produced by aortic banding and perinephritic hypertension. Circulation 76: 835–842, 1987.
 39. Bache, R. J., X. Dai, C. A. Herzog, and J. S. Schwartz. Effects of non‐selective and selective α1‐adrenergic blockade on coronary blood flow during exercise. Circ. Res. 61 (Suppl. II): II‐36–II‐41, 1987.
 40. Bache, R. J., X.‐Z. Dai, J. S. Schwartz, and D. C. Homans. Role of adenosine in coronary vasodilation during exercise. Circ. Res. 62: 846–853, 1988.
 41. Bache, R. J., D. C. Homans, J. S. Schwartz, and X.‐Z. Dai. Differences in the effects of α‐1 adrenergic blockade with prazosin and indoramin on coronary blood flow during exercise. J. Pharmacol. Exp. Ther. 245: 232–237, 1988.
 42. Bache, R. J., and J. S. Schwartz. Effect of perfusion pressure distal to a coronary stenosis on transmural myocardial blood flow. Circulation 65: 928–935, 1982.
 43. Bache, R. J., T. R. Vrobel, W. S. Ring, R. W. Emery, and R. W. Andersen. Regional myocardial blood flow during exercise in dogs with chronic left ventricular hypertrophy. Circ. Res. 48: 76–87, 1981.
 44. Baker, C. H., and D. L. Davis. Isolated skeletal muscle blood flow and volume changes during contractile activity. Blood Vessels 11: 32–37, 1974.
 45. Baldwin, K. M. Effects of chronic exercise on biochemical and functional properties of the heart. Med. Sci. Sports Exerc. 17: 522–528, 1985.
 46. Ball, R. M., R. J. Bache, F. R. Cobb, and J. C. Greenfield, Jr.. Regional myocardial blood flow during graded treadmill exercise in the dog. J. Clin. Invest. 55: 43–49, 1975.
 47. Baran, K. W., R. J. Bache, X.‐Z. Dai, and J. S. Schwartz. Effect of α‐adrenergic blockade with prazosin on large coronary diameter during exercise. Circulation 85: 1139–1145, 1992.
 48. Barclay, J. K., and W. N. Stainsby. The role of blood flow in limiting maximal metabolic rate in muscle. Med. Sci. Sports Exerc. 7: 116–119, 1975.
 49. Barcroft, H. Circulation in skeletal muscle. Handbook of Physiology. Bethesda, MD: Am. Physiol. Soc., 1963, p. 1353–1385.
 50. Barcroft, H., and A. C. Dornhorst. Blood flow through the human calf during rhythmic exercise. J. Physiol. (Lond.) 109: 402–411, 1949.
 51. Bardenheuer, H., and J. Schrader. Supply‐to‐demand ratio for oxygen determine formation of adenosine by the heart. Am. J. Physiol. 250 (Heart Circ. Physiol. 19): H173–H180, 1986.
 52. Barnard, R. J., H. W. Duncan, K. M. Baldwin, G. Grim‐ditch and G. D. Buckberg. Effects of intensive exercise training on myocardial performance and coronary blood flow. J. Appl. Physiol. 49: 444–449, 1980.
 53. Barnard, R. J., H. W. Duncan, J. J. Livesay, and G. D. Buckberg. Coronary vasodilator reserve and flow distribution during near‐maximal exercise in dogs. J. Appl. Physiol. 43: 988–992, 1977.
 54. Barr, D. P., H. E. Himwich, and H. P. Green. Studies in the physiology of muscular exercise. I. Changes in acid–base equilibrium following short periods of vigorous muscular exercise. J. Biol. Chem. 55: 459–515, 1923.
 55. Bassenge, E., J. Holtz, W. Von Restorff, and K. Oversohl. Effect of chemical sympathectomy on coronary flow and cardiovascular adjustment to exercise in dogs. Pflugers Arch. 341: 285–296, 1973.
 56. Bassenge, E., M. Kucharczyk, J. Holtz, and D. Stolan. Treadmill exercise in dogs under β‐adrenergic blockade: adaptation of coronary and systemic hemodynamics. Pflugers Arch. 332: 40–55, 1972.
 57. Baur, T. S., G. R. Brodowicz, and D. R. Lamb. Indomethacin suppresses the coronary flow response to hypoxia in exercise trained and sedentary rats. Cardiovasc. Res. 24: 733–736 1990.
 58. Bebout, D. E., M. C. Hogan, S. C. Hempleman, and P. D. Wagner. Effects of training and immobilization on V.o2 and Do2 in dog gastrocnemius muscle in situ. J. Appl. Physiol. 74: 1697–1703, 1993.
 59. Bedford, T. G., and C. M. Tipton. Exercise training and the arterial baroreflex. J. Appl. Physiol. 63: 1926–1932, 1987.
 60. Bell, R. D., and R. L. Rasmussen. Exercise and the myocardial capillary‐fiber ratio during growth. Growth 38: 237–244, 1974.
 61. Berne, R. M., and R. Rubio. Regulation of coronary blood flow. Adv. Cardiol. 12: 303–317, 1974.
 62. Bevegård, S. Studies on the regulation of the circulation in man. Acta Physiol. Scand. Suppl. 200: 1–36, 1963.
 63. Binak, K., N. Harmanci, N. Sirmaci, N. Ataman, and H. Ogan. Oxygen extraction rate of the myocardium at rest and on exercise in various conditions. Br. Heart J. 29: 422, 1967.
 64. Bjornberg, J., M. Maspers, and S. Mellander. Metabolic control of large‐bore arterial resistance vessels, arterioles, and veins in cat skeletal muscle during exercise. Acta Physiol. Scand. 135: 83–94, 1989.
 65. Blair, D. A., W. E. Gloves, and I. C. Roddie. Vasomotor response in the human arm during leg exercise. Circ. Res. 9: 264–274, 1961.
 66. Block, A. J., S. Poole, and J. R. Vane. Modification of basal release of prostaglandins from rabbit isolated hearts. Prostaglandins 7: 473–486, 1974.
 67. Blomquist, C., and B. Saltin. Cardiovascular adaptations to physical training. Ann. Rev. Physiol. 45: 169–189, 1983.
 68. Bloor, C. M., and A. S. Leon. Interaction of age and exercise on the heart and its blood supply. Lab. Invest. 22: 160–165, 1970.
 69. Bloor, C. M., F. C. White, and T. M. Sanders. Effects of exercise on collateral development in myocardial ischemia in pigs. J. Appl. Physiol. 56: 656–665, 1984.
 70. Bolter, C. P., R. L. Hughson, and J. B. Critz. Intrinsic rate and cholinergic sensitivity of isolated atria from trained and sedentary rats. Proc. Soc. Exp. Biol. Med. 144: 364–367, 1973.
 71. Booth, F. W., and D. B. Thomason. Molecular and cellular adaptation of muscle in response to exercise: perspectives of various models. Physiol. Rev. 71: 541–586, 1991.
 72. Bove, A. A., and J. D. Dewey. Proximal coronary vasomotor reactivity after exercise training in dogs. Circulation 71: 620–625, 1985.
 73. Bove, A. A., P. B. Hultgren, T. F. Ritzer, and R. A. Carey. Myocardial blood flow and hemodynamic responses to exercise training in dogs. J. Appl. Physiol. 46: 571–578, 1979.
 74. Brandi, G., and M. McGregor. Intramural pressure in the left ventricle of the dog. Cardiovasc. Res. 3: 472–475, 1969.
 75. Breisch, E. A., F. C. White, L. E. Nimmo, and C. M. Bloor. Cardiac vasculature and flow during pressure–overload hypertrophy. Am. J. Physiol. 251 (Heart Circ. Physiol. 20): H1031–H1037, 1986.
 76. Breisch, E. A., F. C. White, L. E. Nimmo, M. D. McKirnan, and C. M. Bloor. Exercise‐induced cardiac hypertrophy: a correlation of blood flow and microvasculature. J. Appl. Physiol. 60: 1259–1267, 1986.
 77. Brodal, P., F. Ingjer, and L. Hermansen. Capillary supply of skeletal muscle fibers in untrained and endurance‐trained men. Am. J. Physiol. 232 (Heart Circ. Physiol. 1): H705–H712, 1977.
 78. Brown, B. G., A. B. Lee, E. L. Bolson, and H. T. Dodge. Reflex constriction of significant coronary stenosis as a mechanism contributing to ischemic left ventricular dysfunction during isometric exercise. Circulation 70: 18–24, 1984.
 79. Burcher, E., and D. Garlick. Antagonism of vasoconstrictor responses by exercise in the gracilis muscle of the dog. J. Pharmacol. Exp. Ther. 187: 78–85, 1973.
 80. Burke, R. E. Motor units: anatomy, physiology, and functional organization. Handbook of Physiology, The Nervous System, Motor Control, edited by V. B. Brooks. Bethesda, MD: Am. Physiol. Soc., 1981, p. 345–422.
 81. Burt, J. J., and R. Jackson. The effects of physical exercise on the coronary collateral circulation of dogs. J. Sports Med. Physiol. 4: 203–206, 1965.
 82. Buttrick, P. M., H. A. Levitye, T. F. Schaible, G. Ciambrone, and J. Scheuer. Early increases in coronary vascular reserve in exercised rats are independent of cardiac hypertrophy. J. Appl. Physiol. 59: 1861–1865, 1985.
 83. Buttrick, P. M., and J. Scheuer. Physiologic, biochemical, and coronary adaptation to exercise conditioning. Cardiol. Clin. 5: 259–270, 1987.
 84. Carey, R. A., W. P. Santamore, J. J. Michelle, and A. A. Bove. Effects of endurance training on coronary resistance in dogs. Med. Sci. Sports Exerc. 15: 355–359, 1983.
 85. Carlsson, S., A. Ljungqvist, G. Tornling, and G. Unge. The myocardial vasculature in repeated physical exercise. Acta Pathol. Microbiol. Scand. 86: 117–119, 1978.
 86. Carrow, R., R. Brown, and W. Van Huss. Fiber sizes and capillary to fiber ratios in skeletal muscle of exercised rats. Anat. Rec. 159: 33–40, 1967.
 87. Cerretelli, P., and P. E. Di Prampero. Gas exchange in exercise. In: Handbook of Physiology, The Respiratory System, Gas Exchange, edited by L. E. Farhi and S. M. Tenney. Bethesda, MD: Am. Physiol. Soc., 1987.
 88. Chang, P. C., E. Kreik, J. van der Krogt, and P. van Brummelen. Does regional norepinephrine spillover represent local sympathetic activity? Hypertension 18: 56–66, 1991.
 89. Chilian, W. M., C. L. Eastham, M. L. Marcus. Microvascular distribution of coronary vascular resistance in beating left ventricle. Am. J. Physiol. 251 (Heart Circ. Physiol. 20): H779–H788, 1986.
 90. Chilian, W. M., D. G. Harrison, C. W. Haws, W. D. Snyder, and M. L. Marcus. Adrenergic coronary tone during submaximal exercise in the dog is produced by circulating catecholamines. Evidence for adrenergic denervation supersensitivity in the myocardium but not in coronary vessels. Circ. Res. 58: 68–82, 1986.
 91. Chilian, W. M., S. M. Lyne, E. C. Klausner, C. L. Eastham, and M. L. Marcus. Redistribution of coronary microvascular resistance produced by dipyridamole. Am. J. Physiol. 256 (Heart Circ. Physiol. 25): H383–H390, 1989.
 92. Clausen, J. Circulatory adjustments to dynamic exercise and effect of physical training in normal subjects and in patients with coronary artery disease. Prog. Cardiovasc. Dis. 18: 459–495, 1976.
 93. Clausen, J., O. Larsen, and J. Trap‐Jensen. Physical training in the management of coronary artery disease. Circulation 40: 143–154, 1969.
 94. Coates, G., H. O'Brodovich, and G. Goeree. Hindlimb and lung lymph flows during prolonged exercise. J. Appl. Physiol. 75: 633–638, 1993.
 95. Cobbold, A., B. Folkow, I. Kjellmer, and S. Mellander. Nervous and local chemical control of pre‐capillary sphincters in skeletal muscle as measured by changes in filtration coefficient. Acta Physiol. Scand. 57: 180–192, 1963.
 96. Cocks, T. M., and J. A. Angus. Endothelium‐dependent relaxation of coronary arteries by noradrenaline and serotonin. Nature 305: 627–630, 1983.
 97. Cohen, M. V. Coronary vascular reserve in the greyhound with left ventricular hypertrophy. Cardiovasc. Res. 20: 182–194, 1986.
 98. Cohen, M. V. Training in dogs with normal coronary arteries: lack of effect on collateral development. Cardiovasc. Res. 24: 121–128, 1990.
 99. Cohen, M. V. Lack of effect of propranolol on canine coronary collateral development during progressive coronary collateral development during progressive coronary stenosis and occlusion. Cardiovasc. Res. 27: 249–254, 1993.
 100. Cohen, M. V., T. Yipintsoi, A. Malhotra, S. Penpargkul, and J. Scheuer. Effect of exercise on collateral development in dogs with normal coronary arteries. J. Appl. Physiol. 45: 797–805, 1978.
 101. Cohen, M. V., T. Yipintsoi, and J. Scheuer. Coronary collateral stimulation by exercise in dogs with stenotic coronary arteries. Appl. Physiol. 52: 664–671, 1982.
 102. Colan, S. D. Mechanisms of left ventricular systolic and diastolic function in physiologic hypertrophy of the athletic heart. Cardiol. Clin. 10: 227–240, 1992.
 103. Connett, R. J., and C. R. Honig. Regulation of V.O2 in red muscle: do current biochemical hypotheses fit in vivo data? Am. J. Physiol. 256 (Regulatory Integrative Comp. Physiol. 25): R898–R906, 1989.
 104. Corcondilas, A., G. T. Koroxenidis, and J. T. Shepherd. Effect of brief contraction of forearm muscles on forearm blood flow. J. Appl. Physiol. 19: 142–146, 1964.
 105. Cousineau, D., R. J. Ferguson, J. de Champlain, P. Gauthier, P. Cote, and M. Bourassa. Catecholamines in coronary sinus during exercise in man before and after training. J. Appl. Physiol. 43: 801–806, 1977.
 106. Crone, C. Does “restricted diffusion” occur in muscle capillaries? Proc. Soc. Exp. Biol. Med. 112: 453–455, 1963.
 107. Crone, C. Permeability of capillaries in various organs as determined by use of the “indicator diffusion” method. Acta Physiol. Scand. 58: 292–305, 1963.
 108. Cutilletta, A. F., K. Edmiston, and R. T. Dowell. Effect of a mild exercise program on myocardial function and the development of hypertrophy. J. Appl. Physiol. 46: 354–360, 1979.
 109. Dai, X.Z., and R. J. Bache. Effect of indomethacin on coronary blood flow during graded treadmill exercise in the dog. Am. J. Physiol. 247 (Heart Circ. Physiol. 16): H452–458, 1984.
 110. Dai, X.Z., C. A. Herzog, J. S. Schwartz, and R. J. Bache. Coronary blood flow during exercise following nonselective and selective alpha 1‐adrenergic blockade with indoramin. J. Cardiovasc. Pharm. 8: 574–581, 1986.
 111. Dai, X.Z., E. Sublett, P. Lindstrom, J. S. Schwartz, D. C. Homans, and R. J. Bache. Coronary flow during exercise after selective alpha 1‐ and alpha 2‐adrenergic blockade. Am. J. Physiol. 256 (Heart Circ. Physiol. 25): H1148–H1155, 1989.
 112. Damon, D. H., and B. R. Duling. Evidence that capillary perfusion heterogeneity is not controlled in striated muscle. Am. J. Physiol. 248 (Heart Circ. Physiol. 18): H386–H392, 1986.
 113. Daniel, T. O., and H. E. Ives. Endothelial control of vascular function. News Physiol. Sci. 4: 139–142, 1989.
 114. Davies, P. F., and S. C. Tripathi. Mechanical stress mechanisms and the cell: an endothelial paradigm. Circ. Res. 72: 239–245, 1993.
 115. Daut, J., W. M. Rudolph, N. von Beckerath, G. Meherke, K. Gunther, and L. G. Meinen. Hypoxic dilation of coronary arteries is mediated by ATP‐sensitive potassium channels. Science 247: 1341–1344, 1990.
 116. Delashaw, J. B., and B. R. Duling. A study of the functional elements regulating capillary perfusion in striated muscle. Microvasc. Res. 36: 162–180, 1988.
 117. Delp, M. D., R. M. McAllister, and M. H. Laughlm. Exercise training alters endothelium‐dependent vasoreactivity of rat abdominal aorta. J. Appl. Physiol. 75: 1354–1363, 1993.
 118. Dempsey, J. A., P. Hanson, and K. Henderson. Exercise‐induced arterial hypoxemia in healthy humans at sea‐level. J. Physiol. (Lond.) 161–175, 1984.
 119. DiCarlo, S. E., and V. S. Bishop. Regional vascular resistance during exercise: role of cardiac afferents and exercise training. Am. J. Physiol. 258 (Heart Circ. Physiol. 27): H842–H847, 1990.
 120. DiCarlo, S. E., R. W. Blair, V. S. Bishop, H. L. Stone. Role of beta 2‐adrenergic receptors on coronary resistance during exercise. J. Appl. Physiol. 64: 2287–2293, 1988.
 121. DiCarlo, S. E., R. W. Blair, V. S. Bishop, and H. L. Stone. Daily exercise enhances coronary resistance vessel sensitivity to pharmacological activation. J. Appl. Physiol. 66: 421–428, 1989.
 122. Djojosugito, A. M., B. Folkow, B. Lisander, and H. Sparks. Mechanisms of escape of skeletal muscle resistance vessels from the influence of sympathetic cholinergic vasodilator fibre activity. Acta Physiol. Scand. 72: 148–156, 1968.
 123. Dodd, L. R., and P. C. Johnson. Antagonism of vasoconstriction by muscle contraction differs with alpha‐adrenergic subtype. Am. J. Physiol. 264 (Heart Circ. Physiol. 33): H892–H900, 1993.
 124. Dodd‐o, J. M., and P. A. Gwirtz. Cardiac response to acute coronary artery occlusion in exercise‐trained dogs. Med. Sci. Sports Exerc. 24: 1245–1251, 1992.
 125. Donald, D. E. Myocardial performance after excision of the extrinsic cardiac nerves in the dog. Circ. Res. 34: 417, 1974.
 126. Donald, D. E., D. J. Rowlands, and D. A. Ferguson. Similarity of blood flow in the normal and the sympathetec‐tomized dog hind limb during graded exercise. Circ. Res. 46: 185–199, 1970.
 127. Downey, J. M., and E. S. Kirk. Inhibition of coronary blood flow by a vascular waterfall mechanism. Circ. Res. 36: 753–760, 1975.
 128. Duling, B. R. Coordination of microcirculatory function with oxygen demand in skeletal muscle. In: Advances in Physiology. Cardiovascular Physiology: Microcirculation and Capillary Exchange. Budapest: Akademiai Kaido, 1981, p. 1–16.
 129. Duling, B. R. Control of striated muscle blood flow. The Lung: Scientific Foundations. New York: Raven Press, 1991, p. 1497–1505.
 130. Duling, B. R., and R. M. Berne. Longitudinal gradients in periarteriolar oxygen tension. A possible mechanism for the participation of oxygen in local regulation of blood flow. Circ. Res. 27: 669–678, 1970.
 131. Duling, B. R., and R. M. Berne. Propagated vasodilation in the microcirculation of the hamster cheek pouch. Circ. Res. 26: 163–170, 1970.
 132. Duling, B. R., and B. Klitzman. Local control of microvascular function: role in tissue oxygen supply. Ann. Rev. Physiol. 42: 373–382, 1980.
 133. Duncker, D. J., and R. J. Bache. Inhibition of nitric oxide production aggravates myocardial hypoperfusion during exercise in the presence of a coronary artery stenosis. Circ. Res. 74: 629–640, 1994.
 134. Duncker, D. J., D. D. Laxson, P. Lindstrom, and R. J. Bache. Endogenous adenosine and coronary vasoconstriction in hypoperfused myocardium during exercise. Cardiovasc. Res. 27: 1592–1597, 1993.
 135. Duncker, D. J., E. O. McFalls, R. Krams, and P. D. Verdouw. Pressure–maximal coronary flow relationship in regionally stunned porcine myocardium. Am. J. Physiol. 262 (Heart Circ. Physiol. 31): H1744–H1751, 1992.
 136. Duncker, D. J., P. R. Saxena, and P. D. Verdouw. The effects of nisoldipine alone and in combination with beta‐adren‐oceptor blockade on systemic hemodynamics and myocardial performance in conscious pigs. Eur. Heart J. 8: 1332–1339, 1987.
 137. Duncker, D. J., N. S. van Zon, J. D. Altman, T. J. Pavek, and R. J. Bache. Role of K+ATP channels in coronary vasodilation during exercise. Circulation 88: 1245–1253, 1993.
 138. Duncker, D. J., N. S. van Zon, M. Crampton, S. Herringer, D. C. Homans, and R. J. Bache. Coronary pressure–flow relationship and exercise: contributions of heart rate, contractility, and α1‐adrenergic tone. Am. J. Physiol. 266 (Heart Circ. Physiol. 35): H795–H810, 1994.
 139. Duncker, D. J., N. S. van Zon, T. J. Pavek, S. K. Herrlinger, and R. J. Bache. Endogenous adenosine mediates coronary vasodilation in response to exercise after K+ATP channel blockade. J. Clin. Invest. 95: 285–295, 1995.
 140. Duncker, D. J., J. Zhang, and R. J. Bache. Coronary pressure–flow relationship in left ventricular hypertrophy: importance of changes in back pressure versus changes in minimum resistance. Circ. Res. 72: 579–587, 1993.
 141. Duncker, D. J., J. Zhang, T. Pavek, P. Lindstrom, and R. J. Bache. α1‐adrenergic tone does not influence the transmural distribution of myocardial blood flow during exercise in dogs with pressure overload left ventricular hypertrophy. Basic Res. Cardiol. 90: 73–83, 1995.
 142. Dzau, V. J., and G. H. Gibbons. The role of the endothelium in vascular remodeling. In: Cardiovascular Significance of Endothelium‐Derived Vasoactive Factors. Mount Kisco, NY: Futura Publishing Co., Inc., 1991, p. 281–291.
 143. Eckstein, R. W. Effect of exercise and coronary artery narrowing on coronary collateral circulation. Circ. Res. 5: 230–235, 1957.
 144. Edlund, A., A. Sollevi, and A. Wennmalm. The role of adenosine and prostacyclin in coronary flow regulation in healthy man. Acta Physiol. Scand. 135: 39–46, 1989.
 145. Edwards, M. T., and J. N. Diana. Effect of exercise on pre‐ and postcapillary resistance in the spontaneously hypertensive rat. Am. J. Physiol. 234 (Heart Circ. Physiol. 3): H439–H446, 1978.
 146. Edwards, J. G., C. M. Tipton, and R. D. Matthes. Influence of exercise training on reactivity and contractility of arterial strips from hypertensive rats. J. Appl. Physiol. 58: 1683–1688, 1985.
 147. Ehsani, A. A., J. M. Hagberg, and R. C. Hickson. Rapid changes in left ventricular dimensions and mass in response to physical conditioning and deconditioning. Am. J. Cardiol. 42: 52–56, 1978.
 148. Ekelund, U., J. Bjornberg, U. Albert, P. O. Grande, and S. Mellander. Myogenic vascular regulation in skeletal muscle in vivo is not dependent on endothelium‐derived nitric oxide. Acta Physiol. Scand. 144: 199–207, 1992.
 149. Ekelund, U., and S. Mellander. Role of endothelium‐derived nitric oxide in the regulation of tonus in large‐bore arterial resistance vessels, arterioles and veins in cat skeletal muscle. Acta Physiol. Scand. 140: 301–309, 1990.
 150. Ekstrom‐Jodal, B., E. Haggendal, R. Malmberg, and N. Svedmyr. The effect of adrenergic β‐receptor blockade on coronary circulation in man during work. Acta Med. Scand. 191: 245–248, 1972.
 151. Ellis, A. K., and F. J. Klocke. Effects of preload on the transmural distribution of perfusion and pressure–flow relationships in the canine coronary vascular bed. Circ. Res. 46: 68–77, 1979.
 152. Ely, S. W., R. M. Knabb, A. N. Bacchus, R. Rubio, and R. M. Berne. Measurements of coronary plasma and pericardial infusate adenosine concentrations during exercise in conscious dog: relationship to myocardial oxygen consumption and coronary blood flow. J. Mol. Cell Cardiol. 15: 673–683, 1983.
 153. Engelhardt, W. V. Cardiovascular effects of exercise and training in horses. Adv. Vet. Sci. Comp. Med. 7: 173–205, 1977.
 154. Eriksen, M., G. A. Waaler, L. Walloe, and J. Wesche. Dynamics and dimensions of cardiac output changes in humans at the onset and at the end of moderate rhythmic exercise. J. Physiol. (Lond.) 426: 423–437, 1990.
 155. Eriksson, E., and B. Lisander. Changes in precapillary resistance in skeletal muscle vessels studied by intravital microscopy. Acta Physiol. Scand. 84: 295–305, 1972.
 156. Essen, B., A. Lindholm, and J. Thornton. Histochemical properties of muscle fibre types and enzyme activities in skeletal muscles of standard bred trotters of different ages. Equine Vet. J. 12: 175–180, 1980.
 157. Faber, J. E. In situ analysis of alpha‐adrenoceptors on arteriolar and venular smooth muscle in rat skeletal muscle microcirculation. Circ. Res. 62: 37–50, 1988.
 158. Faber, J. E. Effect of local tissue cooling on microvascular smooth muscle and postjunctional α‐adrenoceptors. Am. J. Physiol. 255 (Heart Circ. Physiol. 24): H121–H130, 1988.
 159. Faber, J. E., P. D. Harris, and I. G. Joshua. Microvascular response to blockade of prostaglandin synthesis in rat skeletal muscle. Am. J. Physiol. 243 (Heart Circ. Physiol. 12): H51–H60, 1982.
 160. Faber, J. E., P. D. Harris, and F. N. Miller. Microvascular sensitivity to PGE2 and PGI2 in skeletal muscle of decerebrate rat. Am. J. Physiol. 243 (Heart Circ. Physiol. 12): H844–H851, 1982.
 161. Faber, J. E., and G. A. Meininger. Selective interaction of a adrenoceptors with myogenic regulation of microvascular smooth muscle. Am. J. Physiol. 259 (Heart Circ. Physiol. 28): H1126–H1133, 1990.
 162. Fagraeus, L. Cardiorespiratory and metabolic functions during exercise in the hyperbaric environment. Acta Physiol. Scand. Suppl. 414: 1–40, 1974.
 163. Falcone, J. C., M. J. Davis, and G. A. Meininger. Endothelial independence of myogenic response in isolated skeletal muscle arterioles. Am. J. Physiol. 260 (Heart Circ. Physiol. 29): H130–H135, 1991.
 164. Feigl, E. O. Coronary physiology. Physiol. Rev. 63: 1–205, 1983.
 165. Feigl, E. O. The paradox of adrenergic coronary vasoconstriction. Circulation 75: 737–745, 1987.
 166. Fixler, D. E., J. M. Atkins, J. H. Mitchell, and L. D. Horwitz. Blood flow to respiratory, cardiac and limb muscles in dogs during graded exercise. Am. J. Physiol. 231: 1515–1519, 1976.
 167. Flaim, S. F., W. J. Minteer, D. P. Clark, and R. Zelis. Cardiovascular response to acute aquatic and treadmill exercise in the untrained rat. J. Appl. Physiol. 46: 302–308, 1979.
 168. Flavahan, N. A. Atherosclerosis or lipoprotein‐induced endothelial dysfunction: potential mechanisms underlying reduction in EDRF/nitric oxide activity. Circulation 85: 1927–1938, 1992.
 169. Folkow, B., P. Gaskell, and B. A. Waaler. Blood flow through limb muscles during heavy rhythmic exercise. Acta Physiol. Scand. 80: 61–72, 1970.
 170. Folkow, B., U. Haglund, M. Jodal, and O. Lundgren. Blood flow in the calf muscle of man during heavy rhythmic exercise. Acta Physiol. Scand. 81: 157–163, 1971.
 171. Folkow, B., and H. D. Halicka. A comparison between red and white muscle with respect to blood supply, capillary surface area and oxygen uptake during rest and exercise. Microvasc. Res. 1: 1–14, 1968.
 172. Folkman, J., and M. Klagsbrun. Angiogenic factors. Science 235: 442–447, 1987.
 173. Frame, M. D. S., and I. H. Sarelius. Regulation of capillary perfusion by small arterioles is spatially organized. Circ. Res. 73: 155–163, 1993.
 174. Frank, A. Experimentelle Herzhypertrophie. Z. Ges. Exp. Med. 115: 312–349, 1950.
 175. Franklin, B. A. Exercise training and coronary collateral circulation. Med. Sci. Sports. Exerc. 23: 648–653, 1991.
 176. Furchgott, R. F. Role of endothelium in responses of vascular smooth muscle. Circ. Res. 53: 557–573, 1983.
 177. Furuya, F., H. Yoshitaka, H. Morita, and H. Hosomi. Neural, humoral, and metabolic control of coronary vascular resistance during exercise. Jpn. J. Physiol. 42: 117–130, 1992.
 178. Gage, J. E., O. M. Hess, T. Murakami, M. Ritter, J. Grimm, and H. P. Krayenbuehl. Vasoconstriction of stenotic coronary arteries during dynamic exercise in patients with classic angina pectoris: reversibility by nitroglycerin. Circulation 73: 865–876, 1986.
 179. Gaglione, A., O. M. Hess, W. J. Corin, M. Ritter, J. Grimm, and H. P. Krayenbuehl. Is there coronary vasoconstriction after intracoronary beta‐adrenergic blockade in patients with coronary artery disease. J. Am. Coll. Cardiol. 10: 299–310, 1987.
 180. Gaskell, W. H. On the changes of the blood stream in muscle through stimulation of their nerves. J. Anat. 11: 360–402, 1977.
 181. Gayeski, T. E. J., R. J. Connett, and C. R. Honig. Minimum intracellular PO2 for maximum cytochrome turnover in red muscle in situ. Adv. Exp. Med. Biol. 200: 487–494, 1987.
 182. Gayeski, T. E. J., and C. R. Honig. Intracellular PO2 in long axis of individual fibers in working dog gracilis muscle. Am. J. Physiol. 254 (Heart Circ. Physiol. 23): H1179–H1186, 1988.
 183. Gerová, M., E. Barta, and J. Gero. Sympathetic control of major coronary artery diameter in the dog. Circ. Res. 44: 459–467, 1979.
 184. Gleeson, T. T., and K. M. Baldwin. Cardiovascular response to treadmill exercise in untrained rats. J. Appl. Physiol. 50: 1206–1211, 1981.
 185. Gleeson, T. T., W. J. Mullin, and K. M. Baldwin. Cardiovascular response to treadmill exercise in rats: effects of training. J. Appl. Physiol. 54: 789–793, 1983.
 186. Glen, G. M., M. H. Laughlin, and R. B. Armstrong. Muscle blood flow and fiber activity in partially curarized rats during exercise. J. Appl. Physiol. 63: 1450–1456, 1987.
 187. Gorczynski, R. J., B. Klitzman, and B. R. Duling. Interrelations between contracting striated muscle and precapillary microvessels. Am. J. Physiol. 235 (Heart Circ. Physiol. 4): H494–H504, 1978.
 188. Gordon, J. B., P. Ganz, E. G. Nabel, R. D. Fish, J. Zebede, G. H. Mudge, R. W. Alexander, and A. P. Selwyn. Atherosclerosis influences the vasomotor response of epicardial coronary arteries to exercise. J. Clin. Invest. 83: 1946–1952, 1989.
 189. Gorlin, R., N. Krasnow, H. J. Levine, and J. V. Messer. Effect of exercise on cardiac performance in human subjects with minimal heart disease. Am. J. Physiol. 13: 293–300, 1964.
 190. Granger, H. J., J. L. Borders, G. A. Meininger, A. H. Goodman, and G. E. Barnes. Microcirculatory control systems. In: Physiology and Pharmacology of the Microcirculation. Bethesda, MD: Academic Press, 1983, p. 209–236.
 191. Granger, H. J., A. H. Goodman, and D. N. Granger. Role of resistance and exchange vessels in local microvascular control of skeletal muscle oxygenation in the dog. Circ. Res. 38: 379–385, 1976.
 192. Granger, H. J., G. A. Meininger, J. L. Borders, R. J. Morff, and A. H. Goodman. Microcirculation of skeletal muscle. In: Physiology and Pharmacology of the Microcirculation. Bethesda, MD: Academic Press, 1984, p. 181–265.
 193. Gray, S. D. Responsiveness of the terminal vascular bed in fast and slow skeletal muscle to adrenergic stimulation. Angiologica 8: 285–296, 1971.
 194. Gray, S. D., and E. M. Renkin. Microvascular supply in relation to fiber metabolic type in mixed skeletal muscles of rabbits. Microvasc. Res. 16: 404–425, 1978.
 195. Gregg, D. E., E. M. Khouri, D. E. Donald, H. S. Lowensohn, and S. Pasyk. Coronary circulation in the conscious dog with cardiac neural ablation. Circ. Res. 31: 129–144, 1972.
 196. Grossman, E., P. C. Chang, A. Hoffman, M. Tamrat, I. J. Kopin, and D. S. Goldstein. Tracer norepinephrine kinetics: dependence on regional blood flow and the site of infusion. Am. J. Physiol. 260 (Regulatory Integrative Comp. Physiol. 29): R946–R952, 1991.
 197. Gruner, J. A., and J. Altman. Swimming in the rat: analysis of locomotor performance in comparison to stepping. Exp. Brain. Res. 40: 374–382, 1980.
 198. Gute, D. C., M. H. Laughlin, and J. F. Amann. Regional distribution of capillary angiogenesis in interval‐sprint and low‐intensity, endurance training. Microcirculation 1: 183–193, 1994.
 199. Gute, D. C., J. Muller, R. McAllister, and M. H. Laughlin. Effects of exercise training on femoral arterial smooth muscle in miniature swine. Med. Sci. Sports. Exerc. 23: S88, 1991.
 200. Gwirtz, P. A., J. M. Dodd‐o, M. A. Brandt, and C. E. Jones. Augmentation of coronary flow improves myocardial function in exercise. J. Cardiovasc. Pharmacol. 15: 752–758, 1990.
 201. Gwirtz, P. A., H. J. Mass, J. R. Strader, and C. E. Jones. Coronary and cardiac responses to exercise after chronic ventricular sympathectomy. Med. Sci. Sports. Exerc. 20: 126–135, 1988.
 202. Gwirtz, P. A., S. P. Overn, H. J. Mass, and C. E. Jones. Alpha 1‐adrenergic constriction limits coronary flow and cardiac function in running dogs. Am. J. Physiol. 250 (Heart Circ. Physiol. 19): H1117–H1126, 1986.
 203. Gwirtz, P. A., and H. L. Stone. Coronary blood flow changes following activation of adrenergic receptors in the conscious dog. Am. J. Physiol. 243 (Heart Circ. Physiol. 12): H13–H19, 1982.
 204. Gwirtz, P. A., and H. L. Stone. Coronary blood flow and myocardial oxygen consumption after alpha adrenergic blockade during submaximal exercise. J. Pharmacol. Exp. Ther. 217: 92–98, 1981.
 205. Gwirtz, P. A., and H. L. Stone. Coronary vascular response to adrenergic stimulation in exercise‐conditioned dogs. J. Appl. Physiol. 243: 315–320, 1984.
 206. Haddy, F. J., and J. B. Scott. Metabolic factors in peripheral circulatory regulation. Federation Proc. 34: 2006–2011, 1975.
 207. Hakkila, J. Studies on the myocardial capillary concentration in cardiac hypertrophy due to training. Ann. Med. Exp. Biol. Venn. 33: 1–79, 1955.
 208. Hammond, H. K., F. C. White, L. L. Brunton, and J. C. Longhurst. Association of decreased myocardial β‐receptors and chronotropic response to isoproterenol and exercise in pigs following chronic dynamic exercise. Circ. Res. 60: 720–726, 1987.
 209. Harri, M. N. E. Physical training under the influence of beta‐blockade in rats. II. Effects on vascular reactivity. Eur. J. Appl. Physiol. 42: 151–157, 1979.
 210. Harrison, M. H. Effect of thermal stress and exercise on blood volume in humans. Physiol. Rev. 65: 149–199, 1985.
 211. Haskell, W. L., C. Sims, J. Myll, W. M. Bortz, F. G. Goar, and E. L. Alderman. Coronary artery size and dilating capacity in ultradistance runners. Circulation 87: 1076–1082, 1993.
 212. Hastings, A. B., F. C. White, T. M. Sanders, and C. M. Bloor. Comparative physiological responses to exercise stress. J. Appl. Physiol. 52: 1077–1083, 1982.
 213. Hathaway, D. R., K. L. March, J. A. Lash, L. P. Adam, and R. L. Wilensky. Vascular smooth muscle: a review of the molecular basis of contractility. Circulation 83: 382–390, 1991.
 214. Hautamaa, P. V., X.‐Z. Dai, D. C. Homans, and R. J. Bache. Vasomotor activity of moderately well‐developed canine coronary collateral circulation. Am. J. Physiol. 256 (Heart Circ. Physiol. 25): H890–H897, 1989.
 215. Heaton, W. H., K. C. Marr, N. L. Capurro, R. E. Goldstein, and S. E. Epstein. Beneficial effect of physical training on blood flow to myocardium perfused by chronic collaterals in the exercising dog. Circulation 57: 575–581, 1978.
 216. Hess, D. S., and R. J. Bache. Transmural distribution of myocardial blood flow during systole in the awake dog. Circ. Res. 38: 5–15, 1976.
 217. Heiss, H. W., J. Barmeyer, K. Wink, G. Hell, F. J. Cerny, J. Keul, and H. Reindell. Studies on the regulation of myocardial blood flow in man. I. Training effects on blood flow and metabolism of the healthy heart at rest and during standardized heavy exercise. Basic Res. Cardiol. 71: 658–675, 1976.
 218. Hester, R. L., A. Eraslan, and Y. Saito. Differences in EDNO contribution to arteriolar diameters at rest and during functional dilation in striated muscle. Am. J. Physiol. 265 (Heart Circ. Physiol. 34): H146–H151, 1993.
 219. Heyndrickx, G. R., P. Muylaert, and J. L. Pannier. α‐Adrenergic control of oxygen delivery to myocardium during exercise in conscious dogs. Am. J. Physiol. 242 (Heart Circ. Physiol. 11): H805–H809, 1982.
 220. Heyndrickx, G. R., J. L. Pannier, P. Muylaert, C. Mabilde, and I. Leusen. Alteration in myocardial oxygen balance during exercise after beta‐adrenergic blockade in dogs. J. Appl. Physiol. 49: 28–33, 1980.
 221. Heyndrickx, G. R., J. P. Vilaine, E. J. Moerman, and I. Leusen. Role of prejunctional α2‐adrenergic receptors in the regulation of myocardial performance during exercise in conscious dogs. Circ. Res. 54: 683–693, 1984.
 222. Hill, A. V. The pressure developed in muscle during contraction. J. Physiol. (Lond.) 107: 518–526, 1948.
 223. Hilton, S. M. A peripheral arterial conducting mechanism underlying dilatation of the femoral artery and concerned in functional vasodilation in skeletal muscle. J. Physiol. (Lond.) 149: 93–111, 1959.
 224. Hilton, S. M., O. Hudlická, and J. M. Marshall. Possible mediators of functional hyperemia in skeletal muscle. J. Physiol. (Lond.) 282: 131–147, 1978.
 225. Hilton, S. M., M. G. Jefferies, and G. Vrboba. Functional specialization of the vascular bed of soleus J. Physiol. (Lond.) 206: 131–147, 1970.
 226. Hintze, T. H., and G. Kaley. Prostaglandins and the control of blood flow in the canine myocardium. Circ. Res. 40: 313–320, 1977.
 227. Hintze, T. H., and S. F. Vatner. Reactive dilation of large coronary arteries in conscious dogs. Circ. Res. 54: 50–57, 1984.
 228. Hirai, T., M. D. Visneski, K. J. Keams, R. Zelis, and T. I. Musch. Role of endothelial function in rat muscular blood flow response to submaximal treadmill exercise. Circulation 88: 1–376, 1993.
 229. Ho, K. W., R. R. Roy, R. Taylor, W. W. Heusner, and W. D. Van Huss. Differential effects of running and weight‐lifting on the rat coronary arterial tree. Med. Sci. Sports. Exerc. 6: 472–477, 1983.
 230. Hogan, M. C., P. G. Arthur, D. E. Bebout, P. W. Hochachka, and P. D. Wagner. Role of O2 in regulating tissue respiration in dog muscle working in situ. J. Appl. Physiol. 73: 728–736, 1992.
 231. Hogan, M. C., D. D. Bebout, and P. D. Wagner. Effect of blood flow reduction on maximal O2 uptake in canine gastrocnemius muscle in situ. J. Appl. Physiol. 74: 1742–1747, 1993.
 232. Hogan, M. C., S. Nioka, W. F. Brechue, and B. Chance. A 31P‐NMR study of tissue respiration in working dog muscle during reduced O2 delivery conditions. J. Appl. Physiol. 73: 1662–1670, 1992.
 233. Hogan, M. C., J. Roca, P. D. Wagner, and J. B. West. Limitation of maximal O2 uptake and performance by acute hypoxia in dog muscle in situ. J. Appl. Physiol. 65: 815–821, 1988.
 234. Hogan, M. C., J. Roca, J. B. West, and P. D. Wagner. Dissociation of maximal O2 uptake from O2 delivery in canine gastrocnemius in situ. J. Appl. Physiol. 66: 1219–1226, 1989.
 235. Hogan, M. C., D. C. Willford, P. E. Kiepert, N. S. Faithfull, and P. D. Wagner. Increased plasma O2 solubility improves O2 uptake of in situ dog muscle working maximally. J. Appl. Physiol. 73: 2470–2475, 1992.
 236. Holmberg, S., W. Serzysko, and E. Varnauskas. Coronary circulation during heavy exercise in control subjects and patients with coronary heart disease. Acta Med. Scand. 190: 465–480, 1971.
 237. Holtz, J., M. Giesler, and E. Bassenge. Two dilatory mechanisms of anti‐anginal drugs on epicardial coronary arteries in vivo: indirect, flow‐dependent, endothelium‐mediated dilation and direct smooth muscle relaxation. Z. Kardiol. 72 (Suppl. 3): 98–106, 1983.
 238. Honig, C. R. Contributions of nerves and metabolites to exercise vasodilation: a unifying hypothesis. Am. J. Physiol. 236 (Heart Circ. Physiol. 5): H705–H719, 1979.
 239. Honig, C. R., T. E. J. Gayeski, W. Federspeil, A. Clark, Jr., and P. Clark. Muscle O2 gradients from hemoglobin to cytochrome: new concepts, new complexities. Adv. Exp. Med. Biol. 169: 23–38, 1984.
 240. Honig, C. R., and C. L. Odoroff. Calculated dispersion of capillary transit times: significance for oxygen exchange. Am. J. Physiol. 240 (Heart Circ. Physiol. 9): H199–H208, 1981.
 241. Honig, C. R., C. L. Odoroff, and J. L. Frierson. Active and passive capillary control in red muscle at rest and in exercise. Am. J. Physiol. 243 (Heart Circ. Physiol. 12): H196–H206, 1982.
 242. Horwitz, L. D., J. M. Atkins, and S. J. Leshin. Role of the Frank‐Starling mechanism in exercise. Circ. Res. 31: 868–875, 1972.
 243. Houston, M. E., H. Bentzen, and H. Larsen. Interrelationships between skeletal muscle adaptations and performance as studied by detraining and retraining. Acta. Physiol. Scand. 105: 163–170, 1979.
 244. Huang, A. H., and E. O. Feigl. Adrenergic coronary vasoconstriction helps maintain uniform transmural blood flow distribution during exercise. Circ. Res. 62: 286–298, 1988.
 245. Hudlická, O. Regulation of muscle blood flow. Clin. Physiol. 5: 201–229, 1985.
 246. Hudlická, O. Effect of training on macro‐ and microcirculatory changes in exercise. Exerc. Sport Sci. Rev. 5: 181–230, 1977.
 247. Hudlická, O. Muscle Blood Flow: Its Relation to Muscle Metabolism and Function. Amsterdam: Swets and Zeitlinger, 1973.
 248. Hudlická, O. Growth of vessels—historical review. Prog. Appl. Microcirc. 4: 1–8, 1984.
 249. Hudlická, O. Capillary growth: role of mechanical factors. News Physiol. Sci. 3: 117–120, 1988.
 250. Hudlická, O., and S. Price. The role of blood flow and/or muscle hypoxia in capillary growth in chronically stimulated fast muscles. Pflugers Arch. 417: 67–72, 1990.
 251. Hudlická, O., and K. R. Tyler. Angiogenesis. New York: Academic Press, 1986.
 252. Hull, S. S., Jr., L. Kaiser, M. D. Jaffe, and H. V. Sparks. Endothelium‐dependent flow induced dilation of canine femoral and saphenous arteries. Blood Vessels 23: 183–198, 1986.
 253. Hurley, B. F., D. R. Seals, A. A. Ehsani, L.‐J. Cartier, D. P. Dalsky, J. M. Hagberg, and J. O. Holloszy. Effects of high‐intensity strength training on cardiovascular function. Med. Sci. Sports. Exerc. 16: 483–488, 1984.
 254. Ignarro, L. J., R. E. Byrns, G. M. Buga, and K. S. Wood. Endothelium‐derived relaxing factor from pulmonary artery and vein possesses pharmacologic and chemical properties identical to those of nitric oxide radical. Circ. Res. 61: 866–879, 1987.
 255. Ingjer, F. Effects of endurance training on muscle fiber ATP‐ase activity, capillary supply and mitochondrial content in man. J. Physiol. (Lond.) 294: 419–432, 1979.
 256. Ingjer, F. Maximal aerobic power related to the capillary supply of the quadriceps femoris muscle in man. Acta Physiol. Scand. 104: 238–240, 1978.
 257. Ingjer, F., and P. Brodal. Capillary supply of skeletal muscle fibers in untrained and endurance‐trained women. Eur. J. Appl. Physiol. 38: 291–299, 1978.
 258. Iriuchijima, J., Y. Kawane, and Y. Teranishi. Blood flow distribution in transposition response of the rat. Jpn. J. Physiol. 32: 807–816, 1982.
 259. Jacobs, T. B., R. O. Bell, and J. D. McClements. Exercise, age and the development of the myocardial vasculature. Growth 48: 148–157, 1984.
 260. Jacobsson, S., and I. Kjellmer. Flow and protein content of lymph in resting and exercising skeletal muscle. Acta Physiol. Scand. 60: 278–285, 1964.
 261. Jacobsson, S., and I. Kjellmer. Accumulation of fluid in exercising muscle. Acta Physiol. Scand. 60: 286–295, 1964.
 262. Jennekens, F. G. I., B. E. Tomlinson, and J. N. Walton. Data on the distribution of fibre type in five human limb muscles. J. Neurol. Sci. 14: 245–257, 1971.
 263. Johnson, J. M., and L. B. Rowell. Forearm skin and muscle vascular responses to prolonged leg exercise in man. J. Appl. Physiol. 39: 920–924, 1975.
 264. Johnson, P. C. The myogenic response. In: Handbook of Physiology, The Cardiovascular System, Vascular Smooth Muscle, edited by D. F. Bohr, A. P. Somlyo, and H. V. Sparks, Jr. Bethesda, MD: Am. Physiol. Soc., 1980. p. 409–442.
 265. Jones, D. P. Intracellular diffusion gradients of oxygen and ATP. Am. J. Physiol. 250 (Cell Physiol. 19): C663–C675, 1986.
 266. Jorgensen, C. R., F. L. Gobel, H. L. Taylor, and Y. Wang. Myocardial blood flow and oxygen consumption during exercise. Ann. N. Y. Acad. Sci. 301: 213–223, 1977.
 267. Jorgensen, C. R., K. Kitamura, F. L. Gobel, H. L. Taylor, and Y. Wang. Long‐term precision of the N2O method for coronary flow during heavy upright exercise. J. Appl. Physiol. 30: 338–344, 1971.
 268. Jorgensen, C. R., K. Wang, Y. Wang, F. L. Gobel, R. R. Nelson, and H. Taylor. Effect of propranolol on myocardial oxygen consumption and its hemodynamic correlates during upright exercise. Circulation 48: 1173–1182, 1973.
 269. Joyner, M. J., L. A. Nauss, M. A. Warner, and D. O. Warner. Sympathetic modulation of blood flow and O2 uptake in rhythmically contracting human forearm muscles. Am. J. Physiol. 263 (Heart Circ. Physiol. 32): H1078–H1083, 1992.
 270. Kaley, G., A. Koller, J. M. Rodenburg, E. J. Messina, and M. S. Wolin. Regulation of arteriolar tone and responses via l‐arginine pathway in skeletal muscle. Am. J. Physiol. 262 (Heart Circ. Physiol. 31): H987–H992, 1992.
 271. Kanstrup, I., and B. Ekblom. Blood volume and hemoglobin concentration as determinants of maximal aerobic power. Med. Sci. Sports. Exerc. 16: 256–262, 1984.
 272. Kaye, M. P., G. G. Brynjolfsson, and W. P. Geis. Chemical epicardiectomy: a method of myocardial denervation. Cardiologia 53: 139–149, 1968.
 273. Kayer, B., H. Hoppeler, H. Claasen, and P. Cerretelli. Muscle structure and performance capacity of Himalayan Sherpas. J. Appl. Physiol. 70: 1938–1942, 1991.
 274. Kelley, K. O., and E. O. Feigl. Segmental α‐receptor‐mediated vasoconstriction in the canine coronary circulation. Circ. Res. 43: 908–917, 1978.
 275. Khayutin, V. M. Determinants of working hyperaemia in skeletal muscle. In: Circulation in Skeletal Muscle. New York: Permagon Press, 1968, p. 145–157.
 276. Khouri, E. M., D. E. Gregg, and C. R. Rayford. Effect of exercise on cardiac output, left coronary flow and myocardial metabolism in the unanesthetized dog. Circ. Res. 17: 427–437, 1965.
 277. Kirkebo, A., and A. Wisnes. Regional tissue fluid pressure in rat calf muscle during sustained contraction or stretch. Acta Physiol. Scand. 114: 551–556, 1982.
 278. Kitamura, K., C. R. Jorgensen, F. L. Gobel, H. L. Taylor, and Y. Wang. Hemodynamic correlates of myocardial oxygen consumption during upright exercise. J. Appl. Physiol. 32: 516, 1972.
 279. Kjellmer, I. An indirect method for estimating tissue pressure with special reference to tissue pressure in muscle during exercise. Acta Physiol. Scand. 62: 31–40, 1964.
 280. Kjellmer, I. On competition between metabolic vasodilation and neurogenic vasoconstriction in skeletal muscle. Acta Physiol. Scand. 63: 450–459, 1965.
 281. Kjellmer, I. Studies on exercise hyperemia. Acta Physiol. Scand. 224: 1–64, 1965.
 282. Kjellmer, I. The effect of exercise on the vascular bed of skeletal muscle. Acta Physiol. Scand. 62: 18–30, 1964.
 283. Klausen, K., L. Andersen, and I. Pelle. Adaptive changes in work capacity, skeletal muscle capillarization and enzyme levels during training and detraining. Acta Physiol. Scand. 113: 9–16, 1981.
 284. Klausen, K., N. Secher, J. Clausen, O. Harding, and J. Trap‐Jensen. Central and regional circulatory adaptations to one‐leg training. J. Appl. Physiol. 52: 976–983, 1982.
 285. Klabunde, R. E., M. H. Laughlin, and R. B. Armstrong. Systemic adenosine deaminase administration does not reduce active hyperemia in running rats. J. Appl. Physiol. 64: 108–114, 1988.
 286. Klocke, F. J., R. E. Mates, J. M. Canty, and A. K. Ellis. Coronary pressure–flow relationships: controversial issues and probable implications. Circ. Res. 56: 310–323, 1985.
 287. Knight, D. R., and H. L. Stone. Alteration of ischemic cardiac function in normal heart by daily exercise. J. Appl. Physiol. 55: 52–60, 1983.
 288. Koch‐Weser, J., and J. R. Blinks. Influence of the interval between beats on myocardial contractility. Pharmacol. Rev. 15: 610–652, 1963.
 289. Koerner, J. E., and R. L. Terjung. Effect of physical training on coronary collateral circulation of the rat. J. Appl. Physiol. 52: 376–387, 1982.
 290. Koller, A., and G. Kaley. endothelial regulation of wall shear stress and blood flow in skeletal muscle microcirculation. Am. J. Physiol. 260 (Heart Circ. Physiol. 29): H862–H868, 1991.
 291. Koller, A., D. Sun, and G. Kaley. Role of shear stress and endothelial prostaglandins in flow‐ and viscosity‐induced vasodilation of arterioles in vitro. Circ. Res. 72: 1276–1284, 1993.
 292. Koller, A., M. S. Wolin, E. J. Messina, P. D. Cherry, and G. Kaley. Endothelium‐derived vasodilator factors in skeletal muscle microcirculation. In: Endothelium‐Derived Vasoactive Factors. Basel: Drager Press, 1990, p. 303–314.
 293. Komaru, T., K. G. Lamping, C. L. Eastham, and K. C. Dellsperger. Role of ATP‐sensitive potassium channels in coronary microvascular auto‐regulatory responses. Circ. Res. 69: 1146–1151, 1991.
 294. Kowalchuk, J. M., C. S. Klein, and R. L. Hughson. The effect of beta‐adrenergic blockade on leg blood flow with repeated maximal contractions of the triceps surae muscle group in man. Eur. J. Appl. Physiol. 60: 360–364, 1990.
 295. Krams, R., P. Sipkema, J. Zegers, and N. Westerhof. Contractility is the main determinant of coroary systolic flow impediment. Am. J. Physiol. 257 (Heart Circ. Physiol. 26): H1936–H1944, 1989.
 296. Kramsch, D. M., A. J. Aspen, B. M. Abramowitz, T. Kreimendahl, and W. B. Hood, Jr.. Reduction of coronary atherosclerosis by moderate conditioning exercise in monkeys on an atherogenic diet. N. Engl. J. Med. 305: 1483–1489, 1981.
 297. Krogh, A. The Anatomy & Physiology of Capillaries. New Haven: Yale University Press, 1929, p. 30.
 298. Kuo, L., M. J. Davis, and W. M. Chilian. Endothelium‐dependent, flow‐induced dilation of isolated coronary arterioles. Am. J. Physiol. 259 (Heart Circ. Physiol. 28): H1063–H1070, 1990.
 299. Laine, G. A., E. E. Smith, and H. J. Granger. Transcapillary fluid balance in exercising skeletal muscle (Abstract). Federation Proc. 40: 406, 1981.
 300. Lamping, K. G., and W. P. Dole. Flow‐mediated dilation attenuates constriction of large coronary arteries to serotonin. Am. J. Physiol. 255 (Heart Circ. Physiol. 24): H1317–H1324, 1988.
 301. Landis, E. M. Capillary pressure and permeability. Physiol. Rev. 14: 404–481, 1932.
 302. Langer, S. Z. Presynaptic receptors and their role in the regulation of transmitter release. Br. J. Pharmacol. 60: 481–497, 1977.
 303. Lash, J., and H. G. Bohlen. Functional adaptations of rat skeletal muscle arterioles to aerobic exercise training. J. Appl. Physiol. 72: 2052–2062, 1992.
 304. Lash, J. M., T. Reilly, M. Thomas, and H. G. Bohlen. Adrenergic and pressure–dependent vascular regulation in sedentary and trained rats. Am. J. Physiol. 265 (Heart Circ. Physiol. 34): H1064–H1073, 1993.
 305. Laughlin, M. H. Coronary transport reserve in normal dogs. J. Appl. Physiol. 57: 551–561, 1984.
 306. Laughlin, M. H. Effects of exercise training on coronary transport capacity. J. Appl. Physiol. 58: 468–476, 1985.
 307. Laughlin, M. H. Skeletal muscle blood flow capacity: role of muscle pump in exercise hyperemia. Am. J. Physiol. 253 (Heart Circ. Physiol. 22): H993–H1004, 1987.
 308. Laughlin, M. H. Distribution of skeletal muscle blood flow during locomotory exercise. In: Oxygen Transfer from Atmosphere to Tissues. New York: Plenum Publishing, 1988, p. 87–102.
 309. Laughlin, M. H. Heterogeneity of blood flow in striated muscle. The Lung: Scientific Foundations. New York: Raven Press, 1991, p. 1507–1516.
 310. Laughlin, M. H., and R. B. Armstrong. Muscle blood flow during locomotory exercise. Exerc. Sport Sci. Rev. 13: 95–136, 1985.
 311. Laughlin, M. H., and R. B. Armstrong. Muscular blood flow distribution patterns as a function of running speed in rats. Am. J. Physiol. 243 (Heart Circ. Physiol. 12): H296–H306, 1982.
 312. Laughlin, M. H., and R. B. Armstrong. Rat muscle blood flow as a function of time during prolonged slow treadmill exercise. Am. J. Physiol. 244 (Heart Circ. Physiol. 13): H814–H824, 1983.
 313. Laughlin, M. H., and R. B. Armstrong. Adrenoreceptor effects on rat muscle blood flow during treadmill exercise. J. Appl. Physiol. 62: 1465–1472, 1987.
 314. Laughlin, M. H., J. W. Burns, J. Fanton, J. Ripperger, and D. F. Peterson. Coronary blood flow reserve during +G2 stress and treadmill exercise in miniature swine. J. Appl. Physiol. 64: 2589–2596, 1988.
 315. Laughlin, M. H., and J. N. Diana. Myocardial transcapillary exchange in the hypertrophied heart of the dog. Am. J. Physiol. 229: 838–846, 1975.
 316. Laughlin, M. H., J. N. Diana, and C. M. Tipton. Effects of chronic exercise training on coronary reactive hyperemia and coronary blood flow in the dog. J. Appl. Physiol. 45: 604–610, 1978.
 317. Laughlin, M. H., C. C. Hale, L. Novela, D. Gute, N. Hamilton, and C. D. Ianuzzo. Biochemical characterization of exercise‐trained porcine myocardium. J. Appl. Physiol. 71: 229–235, 1991.
 318. Laughlin, M. H., R. E. Klabunde, M. D. Delp, and R. B. Armstrong. Effects of dipyridamole on muscle blood flow in exercising miniature swine. Am. J. Physiol. 257 (Heart Circ. Physiol. 26): H1507–H1515, 1989.
 319. Laughlin, M. H., and R. J. Korthuis. Control of muscle blood flow during sustained physiological exercise. Can. J. Sport Sci. 12: 77S–83S, 1987.
 320. Laughlin, M. H., R. J. Korthuis, W. L. Sexton, and R. B. Armstrong. Regional muscle blood flow capacity and exercise hyperemia in high‐intensity trained rats. J. Appl. Physiol. 64: 2420–2427, 1988.
 321. Laughlin, M. H., and R. M. McAllister. Exercise training‐induced coronary vascular adaptation. J. Appl. Physiol. 73: 2209–2225, 1992.
 322. Laughlin, M. H., R. M. McAllister, and M. D. Delp. Physical activity and the microcirculation in cardiac and skeletal muscle. In: Physical Activity, Fitness, and Health: International Proceedings and Consensus Statement. Champaign, IL: Human Kinetics Publishes, Inc., 1994, p. 302–319.
 323. Laughlin, M. H., S. J. Mohrman, and R. B. Armstrong. Muscular blood flow distribution patterns in the hind limb of swimming rats. Am. J. Physiol. 246 (Heart Circ. Physiol. 15): H398–H403, 1984.
 324. Laughlin, M. H., K. A. Overholser, and M. Bhatte. Exercise training increases coronary transport reserve in miniature swine. J. Appl. Physiol. 67: 1140–1149, 1989.
 325. Laughlin, M. H., and J. Ripperger. Vascular transport capacity of hind limb muscles of exercise‐trained rats. J. Appl. Physiol. 62: 438–443, 1987.
 326. Laughlin, M. H., W. Sexton, R. J. Korthuis, and R. B. Armstrong. Regional muscle blood flow capacity and exercise hyperemia in high‐intensity trained rats. J. Appl. Physiol. 64: 2420–2427, 1988.
 327. Laughlin, M. H., and R. J. Tomanek. Myocardial capillarity and maximal capillary diffusion capacity in exercise‐trained dogs. J. Appl. Physiol. 63: 1481–1486, 1987.
 328. Laxson, D. D., X.‐Z. Dai, D. C. Homans, and R. J. Bache. The role of α1‐ and α2‐adrenergic receptors in mediation of coronary vasoconstriction in hypoperfused ischemic myocardium during exercise. Circ. Res. 65: 1688–1697, 1989.
 329. Laxson, D. D., X.‐Z. Dai, D. C. Homans, and R. J. Bache. Coronary vasodilator reserve in ischemic myocardium of the exercising dog. Circulation 85: 313–322, 1992.
 330. Laxson, D. D., D. C. Homans, and R. J. Bache. Inhibition of adenosine‐mediated coronary vasodilation exacerbates myocardial ischemia during exercise. Am. J. Physiol. 265 (Heart Circ. Physiol. 34): H1471–H1477, 1993.
 331. LeBlanc, J., M. Boulay, S. Dulac, M. Jobin, A. Labrie, and S. Rousseau‐Migneron. Metabolic and cardiovascular responses to norepinephrine in trained and nontrained human subjects. J. Appl. Physiol. 42: 166–173, 1977.
 332. Leon, A. S., and C. M. Bloor. Effects of exercise and its cessation on the heart and its blood supply. J. Appl. Physiol. 24: 485–490, 1968.
 333. Leon, A. S., and C. M. Bloor. The effect of complete and partial deconditioning on exercise‐induced cardiovascular changes in the rat. Adv. Cardiol. 18: 81–92, 1976.
 334. Liang, I. Y. S., M. Hamara, and H. L. Stone. Maximum coronary blood flow and minimum coronary resistance in exercise trained dogs. J. Appl. Physiol. 56: 641–647, 1984.
 335. Liang, I. Y. S., and H. L. Stone. Effect of exercise conditioning on coronary resistance. J. Appl. Physiol. 53: 631–636, 1982.
 336. Liang, I. Y., and H. L. Stone. Changes in diastolic coronary resistance during submaximal exercise in conditioned dogs. J. Appl. Physiol. 54: 1057–1062, 1983.
 337. Liang, I. Y., H. L. Stone, and P. A. Gwirtz. Effect of beta 1‐receptor blockade on coronary resistance in partially trained dogs. Med. Sci. Sports. Exerc. 19: 382–388, 1987.
 338. Lindbom, L., R. F. Tuma, and K. E. Arfors. Influence of oxygen on perfused capillary density and capillary red cell velocity in rabbit skeletal muscle. Microvasc. Res. 19: 197–208, 1980.
 339. Ljungquist, A., and G. Unge. Capillary proliferative activity in myocardium and skeletal muscle of exercised rats. J. Appl. Physiol. 43: 306–307, 1977.
 340. Lombardo, T. A., L. Rose, M. Taeschler, S. Tuluy, and R. J. Bing. The effect of exercise on coronary blood flow, myocardial oxygen consumption and cardiac efficiency in man. Circulation 7: 71–78, 1953.
 341. Ludbrook, J. Aspects of Venous Function in the Lower Limbs. Springfield, IL: Charles C Thomas Publishers, Inc., 1966.
 342. Lundvall, J. Tissue hyperosmolarity as a mediator of vasodilation and transcapillary fluid flux in exercising skeletal muscle. Acta Physiol. Scand. 379: 1–81, 1972.
 343. Lundvall, J., and J. Hillman. Noradrenaline‐evoked beta adrenergic dilation of precapillary sphincters in skeletal muscle. Acta Physiol. Scand. 102: 126–128, 1978.
 344. Lundvall, J., S. Mellander, and H. Sparks. Myogenic response of resistance vessels and precapillary sphincters in skeletal muscle during exercise. Acta Physiol. Scand. 70: 257–268, 1967.
 345. Lundvall, J., S. Mellander, H. Westling, and T. White. Fluid transfer between blood and tissues during exercise. Acta Physiol. Scand. 85: 258–267, 1972.
 346. Mackie, B., and R. Terjung. Influence of training on blood flow to different skeletal muscle fiber types. J. Appl. Physiol. 55: 1072–1078, 1983.
 347. Mai, J., V. R. Edgerton, and R. Barnard. Capillarity of red, white, and intermediate muscle fibers in trained and untrained guinea‐pigs. Experientia 26: 1222–1223, 1970.
 348. Mann, S. J., L. R. Krakoff, K. Felton, and K. Yeager. Cardiovascular responses to infused epinephrine: effect of the state of physical conditioning. J. Cardiovasc. Pharmacol. 6: 339–343, 1984.
 349. Manohar, M. Vasodilator reserve in respiratory muscles during maximal exertion in ponies. J. Appl. Physiol. 60: 1571–1577, 1986.
 350. Manohar, M. Transmural coronary vasodilator reserve and flow distribution during maximal exercise in normal and splenectomized ponies. J. Physiol. (Lond.) 387: 425–440, 1987.
 351. Maron, B. J. Structural features of the athlete heart as defined by echocardiography. J. Am. Coll. Cardiol. 7: 190–203, 1986.
 352. Marshall, J. M., and H. C. Tandon. Direct observations of muscle arterioles and venules following contraction of skeletal muscle fibers in the rat. J. Physiol. (Lond.) 350: 447–459, 1984.
 353. Martin, W. H., W. M. Kohrt, M. T. Malley, E. Korte, and S. Stoltz. Exercise training enhances leg vasodilatory capacity of 65‐yr‐old men and women. J. Appl. Physiol. 69: 1804–1809, 1990.
 354. Martin, W. H., T. Ogawa, W. M. Kohrt, W. T. Malley, E. Korte, P. S. Kieffer, and K. B. Schechtmann. Effects of aging, gender, and physical training on peripheral vascular function. Circulation 84: 654–664, 1991.
 355. Martin, W. H., R. J. Spina, E. Korte, and T. Ogawa. Effects of chronic and acute exercise on cardiovascular β‐adrenergic responses. J. Appl. Physiol. 71: 1523–1528, 1991.
 356. Martin, E. G., E. C. Woolley, and M. Miller. Capillary counts in resting and active muscle. Am. J. Physiol. 100: 407–416, 1932.
 357. Marzilli, M., S. Goldstein, H. N. Sabbah, T. Lee, and P. D. Stein. Modulating effect of regional myocardial performance on local myocardial perfusion in the dog. Circ. Res. 45: 634–641, 1979.
 358. Maspers, M., U. Ekelund, J. Bjornberg, and S. Mellander. Protective role of sympathetic nerve activity to exercising skeletal muscle in the regulation of capillary pressure and fluid filtration. Acta Physiol. Scand. 141: 351–361, 1991.
 359. Mass, H., and P. A. Gwirtz. Myocardial flow and function after regional beta‐blockade in exercising dogs. Med. Sci. Sports. Exerc. 19: 443–450, 1987.
 360. Mayrovitz, H. N., M. P. Wiedeman, and A. Noordergraaf. Microvascular hemodynamic variations accompanying microvessel dimensional changes. Microvasc. Res. 10: 322–329, 1975.
 361. McAllister, R. M., and S. J. K. Lee. The effects of exercise training in patients with coronary artery disease taking beta‐blockers. J. Cardiopulmonary Rehab. 6: 245–250, 1986.
 362. McAllister, R. M., and R. L. Terjung. Training‐induced muscle adaptations: increased performance and oxygen consumption. J. Appl. Physiol. 70: 1569–1574, 1991.
 363. McElroy, C. L., S. A. Gissen, and M. C. Fishbein. Exercised‐induced reduction in myocardial infarct size after coronary artery occlusion in the rat. Circulation 57: 958–962, 1978.
 364. McKenzie, J. E., R. P. Steffen, and F. J. Haddy. Relationships between adenosine and coronary resistance in conscious exercising dogs. Am. J. Physiol. 242 (Heart Circ. Physiol. 11): H24–H29, 1982.
 365. McLeod, A. A., W. E. Kraus, and R. S. Williams. Effects of beta1‐selective and nonselective beta‐adrenoceptor blockade during exercise conditioning in healthy adults. Am. J. Physiol. 253 (Heart Circ. Physiol. 22): H1656–H1661, 1987.
 366. McSorley, P. D., and P. J. Warren. Effects of propranolol and metoprolol and the peripheral circulation. BMJ 2: 1598–1600, 1978.
 367. Meininger, G. A., and M. J. Davies. Cellular mechanisms involved in the vascular myogenic response. Am. J. Physiol. 263 (Heart Circ. Physiol. 32): H647–H659, 1992.
 368. Mellander, S. Differentiation of fiber type composition, circulation and metabolism in limb muscles of dog cat and man. In: Vasodilation. New York: Raven Press, 1981, p. 243–254.
 369. Mellander, S., and J. Bjornberg. Regulation of vascular smooth muscle tone and capillary pressure. News Physiol. Sci. 7: 113–119, 1992.
 370. Mellander, S., and B. Johansson. Control of resistance, exchange, and capacitance functions in the peripheral circulation. Pharmacol. Rev. 20: 117–196, 1968.
 371. Messer, J. V., R. J. Wagman, H. J. Levine, W. A. Neill, N. Krasnow, and R. Gorlin. Patterns of human myocardial oxygen extraction during rest and exercise. J. Clin. Invest. 41: 725–742, 1962.
 372. Metting, P. J., D. L. Weldy, T. F. Ronau, and S. L. Britton. Effect of aminophylline on hind limb blood flow autoregulation during increased metabolism in dogs. J. Appl. Physiol. 60: 1857–1864, 1986.
 373. Miller, V. M., L. A. Aarhus, and P. M. Vanhoutte. Modulation of endothelium‐dependent responses by chronic alterations of blood flow. Am. J. Physiol. 251 (Heart Circ. Physiol. 20): H520–H527, 1986.
 374. Miller, V. M., and P. M. Vanhoutte. Enhanced release of endothelium‐derived factors by chronic increases in blood flow. Am. J. Physiol. 255 (Heart Circ. Physiol. 24): H446–H451, 1988.
 375. Mohrman, D. E. Local metabolic influences on resistance vessels. In: The Resistance Vasculature. Totowa, NJ: Humana Press, 1991, p. 241–249.
 376. Mohrman, D. E., and E. O. Feigl. Competition between sympathetic vasoconstriction and metabolic vasodilation in the canine coronary circulation. Circ. Res. 42: 79–86, 1978.
 377. Mohrman, D. E., and H. V. Sparks. Myogenic hyperemia following brief tetanus of canine skeletal muscle. Am. J. Physiol. 227: 531–535, 1974.
 378. Moncada, S., R. M. J. Palmer, and E. A. Higgs. Biosynthesis of nitric oxide from l‐arginine. A pathway for the regulation of cell function and communication. Biochem. Pharmacol. 38: 1709–1715, 1989.
 379. Moreland, R. S. Regulation of Smooth Muscle Contraction. New York: Plenum Press, 1991.
 380. Morff, R. J., and H. J. Granger. Autoregulation of blood flow within individual arterioles in the rat cremaster muscle. Circ. Res. 51: 43–55, 1982.
 381. Morrow, N. G., W. E. Kraus, J. W. Moore, R. S. Williams, and J. L. Swain. Increased expression of fibroblast growth factors in a rabbit skeletal muscle model of exercise conditioning. J. Clin. Invest. 85: 1816–1820, 1990.
 382. Muller, J. M., P. R. Myers, and M. H. Laughlin. Vasodilator responses of coronary resistance arteries of exercise trained pigs. Circulation 89: 2308–2314, 1994.
 383. Muller, J. M., P. R. Myers, and M. H. Laughlin. Exercise training alters myogenic responses in porcine coronary resistance arteries. J. Appl. Physiol. 75: 2677–2682, 1993.
 384. Muller, W. Subsarcolemmal mitochondrial and capillarization of soleus muscle fibers in young rats subjected to endurance training. Cell Tiss. Res. 174: 367–389, 1976.
 385. Mundie, T. G., A. J. Januszkiewicz, and G. R. Ripple. Effects of epinephrine, phenoxybenzamine, and propranolol on maximal exercise in sheep. Lab. Anim. Sci. 42: 486, 1992.
 386. Murray, P. A., and S. F. Vatner. α‐Adrenoceptor attenuation of coronary vascular response to severe exercise in the conscious dog. Circ. Res. 45: 654–660, 1979.
 387. Musch, T. I., G. C. Haidet, G. A. Ordway, J. C. Longhurst, and J. H. Mitchell. Training effects on regional blood flow response to maximal exercise in fox hounds. J. Appl. Physiol. 62: 1724–1732, 1987.
 388. Musch, T. I., C. T. Nguyen, H. V. Pham, and R. L. Moore. Training effects on the regional blood flow response to exercise in myocardial infarcted rats. Am. J. Physiol. 262 (Heart Circ. Physiol. 31): H1846–H1852, 1992.
 389. Needleman, P. The synthesis and function of prostaglandins in the heart. Federation Proc. 35: 2376–2381, 1976.
 390. Neill, W. A., and J. M. Oxendine. Exercise can promote coronary collateral development without improving perfusion of ischemic myocardium. Circulation 60: 1513–1519, 1979.
 391. Neillsen, H. V. Effect of vein pump activation upon muscle blood flow and venous pressure in the human leg. Acta Physiol. Scand. 114: 481–485, 1982.
 392. Nelson, R. R., F. L. Gobel, C. R. Jorgensen, K. Wang, Y. Wang, and H. L. Taylor. Hemodynamic predictors of myocardial oxygen consumption during static and dynamic exercise. Circulation 50: 1179–1189, 1974.
 393. Norton, K. I., M. D. Delp, C. Duan, J. A. Warren, and R. B. Armstrong. Hemodynamic responses during exercise at and above V.o2max in swine. J. Appl. Physiol. 69: 1587–1593, 1990.
 394. Nutter, D. O., and E. O. Fuller. The role of isolated cardiac muscle preparations in the study of training effects on the heart. Med. Sci. Sports. Exerc. 9: 239–245, 1977.
 395. Nygaard, E. Skeletal muscle characteristics in young women. Acta Physiol. Scand. 112: 299–304, 1982.
 396. Nygaard, E., and E. Neilsen. Skeletal muscle fiber capillarization with extreme endurance training in man. In: Swimming Medicine IV. Baltimore, MD: University Park Press, 1978, p. 282–293.
 397. Ohyanagi, M., J. E. Faber, and K. Nishigaki. Differential activation of α1‐ and α2‐adrenoceptors on microvascular smooth muscle during sympathetic nerve stimulation. Circ. Res. 68: 232–244, 1991.
 398. Ohyanagi, M., K. Nishigaki, and J. E. Faber. Interaction between microvascular α1‐ and α2‐adrenoceptors and endothelium‐derived relaxing factor. Circ. Res. 71: 188–200, 1992.
 399. Olsson, R. A., R. Bunger, and J. A. E. Spaan. Coronary circulation. In: The Heart and Cardiovascular System. New York: Raven Press, 1992, p. 1393–1426.
 400. Oltman, C. L., J. L. Parker, H. R. Adams, and M. H. Laughlin. Effects of exercise training on vasomotor reactivity of porcine coronary arteries. Am. J. Physiol. 263 (Heart Circ. Physiol. 32): H372–H382, 1992.
 401. Oltman, C. L., J. L. Parker, and M. H. Laughlin. Endothelium‐dependent vasodilation of proximal coronary arteries from exercise‐trained pigs. J. Appl. Physiol. 79: 33–72, 1995.
 402. Opie, L. H. The Heart: Physiology and Metabolism. New York: Raven Press, 1991, p. 208–246.
 403. Owen, T. L., I. C. Ehrhart, W. S. Weidner, J. B. Scott, and F. J. Haddy. Effects of indomethacin on local blood flow regulation in canine heart and kidney. Proc. Soc. Exp. Biol. Med. 149: 871–876, 1975.
 404. Paaske, W. P. Capillary permeability in skeletal muscle. Acta Physiol. Scand. 101: 1–14, 1977.
 405. Paaske, W. P., and P. Sejrsen. Transcapillary exchange of 14‐C insulin by free diffusion in channels of fused vesicles. Acta Physiol. Scand. 100: 437–445, 1977.
 406. Pagny, J. Y., F. Peronnet, L. Beliveau, F. Sestier, and R. Nadeau. Systemic and regional blood flows during graded treadmill exercise in dogs. J. Physiol. (Paris) 81: 368–373, 1986.
 407. Palmer, R. M. J., A. G. Ferrige, and S. Moncada. Nitric oxide release accounts for the biological activity of endothelium‐derived relaxing factor. Nature 327: 524–526, 1987.
 408. Parent, R., R. Pare, and M. Lavallee. Contribution of nitric oxide to dilation of resistance coronary vessels in conscious dogs. Am. J. Physiol. 262 (Heart Circ. Physiol. 31): H10–H16, 1992.
 409. Parizkova, J., M. Wachtlová, and M. Soukupova. The impact of different motor activity on body composition, density of capillaries and fibers in the heart and soleus muscles, and cell's migration in vitro in male rats. Int. Z. Angew Physiol. 30: 207–216, 1972.
 410. Parks, C. M., and M. Manohar. Transmural coronary vasodilator reserve and flow distribution during severe exercise in ponies. J. Appl. Physiol. 54: 1641–1652, 1983.
 411. Pelliccia, A., A. Spataro, M. Granata, A. Biffi, G. Caselli, and A. Alabiso. Coronary arteries in physiological hypertrophy: echocardiographic evidence of increased proximal size in elite athletes. Int. J. Sports. Med. 11: 120–126, 1990.
 412. Penpargkul, S., and J. Scheuer. The effects of physical training upon the mechanical and metabolic performance of the rat heart. J. Clin. Invest. 49: 1859–1868, 1970.
 413. Peronnét, F., J. Cléroux, H. Perrault, D. Cousineau, J. De Champlain, and R. Nadeau. Plasma norepinephrine response exercise before and after training in humans. J. Appl. Physiol. 51: 812–815, 1981.
 414. Persson, M. G., L. E. Gustafsson, N. P. Wiklund, P. Hedquist, and S. Moncada. Endogenous nitric oxide as a modulator of rabbit skeletal muscle microcirculation in vivo. Br. J. Pharmacol. 100: 463–466, 1990.
 415. Persson, M. G., N. P. Wiklund, and L. E. Gustafsson. Nitric oxide requirement for vasomotor nerve‐induced vasodilation and modulation of resting blood flow in muscle microcirculation. Acta Physiol. Scand. 141: 49–56, 1991.
 416. Peterson, D. F., R. B. Armstrong, and M. H. Laughlin. Sympathetic neural influences on muscle blood flow in rats during submaximal exercise. J. Appl. Physiol. 65: 434–440, 1988.
 417. Petrén, T., T. Sjöstrand, and B. Sylvén. Der influss des trainings auf die häufigkeit der capillaren in herz‐ und skelet‐muskulatur. Arbeitsphysiologie 9: 376–386, 1930.
 418. Petrén X, and B. Sylvén. Weitere Untersuchungen uber den Einfluss des Traiings auf die Kapillarisierung der Herzuskulatur. Morphol. Jahrb. 80: 439–444, 1937.
 419. Petrorfsky, J. S., and D. M. Hendershot. The interrelationship between blood pressure, intramuscular pressure, and isometric endurance in fast and slow twitch skeletal muscle in the cat. Eur. J. Appl. Physiol. 53: 106–111, 1984.
 420. Piiper, J., and P. Haab. Oxygen supply and uptake in tissue models with unequal distribution of blood flow and shunt. Respir. Physiol. 84: 261–271, 1991.
 421. Ping, P., and P. C. Johnson. Arteriolar network response to pressure reduction during sympathetic nerve stimulation in cat skeletal muscle. Am. J. Physiol. 266 (Heart Circ. Physiol. 35): H1251–H1259, 1994.
 422. Pohl, U., J. Holtz, R. Busse, and E. Bassenge. Crucial role of endothelium in the vasodilation response to increased flow in vivo. Hypertension 8: 37–44, 1986.
 423. Poliner, L. R., G. J. Dehmer, S. E. Lewis, R. W. Parkey, C. G. Blomqvist, and J. T. Willerson. Left ventricular performance in normal subjects: a comparison of the responses to exercise in the upright and supine positions. Circulation 62: 528–534, 1980.
 424. Pollack, A. A., B. E. Taylor, T. T. Myers, and E. H. Wood. The effect of exercise and body position in patients having venous valvular defects. J. Clin. Invest. 23: 559–563, 1949.
 425. Pollack, A. A., and E. H. Wood. Venous pressure in the saphenous vein at the ankle in man during exercise and changes in posture. J. Appl. Physiol. 1: 649–662, 1949.
 426. Poole, D. C., O. Mathieu‐Costello, and J. B. West. Capillary tortuosity in rat soleus muscle is not affected by endurance training. Am. J. Physiol. 256 (Heart Circ. Physiol. 25): H1110–H1116, 1989.
 427. Popel, A. S. Oxygen diffusive shunts under conditions of heterogenous oxygen delivery. J. Theor. Biol. 96: 533–541, 1982.
 428. Raff, W. F., F. Kosche, and W. Lochner. Extravascular coronary resistance and its relation to the microcirculation. Am. J. Cardiol. 29: 598–603, 1972.
 429. Ranvier, L. Note sur les vaisseaux sanguine et la circulation dans muscles rouges. C. R. Hebd. Seances Mem. Soc. Biol. 26: 28–31, 1874. Cited in Saltin and Gollnick, 1983.
 430. Raven, P. B., D. Rohm‐Young, and C. G. Blomqvist. Physical fitness and cardiovascular response to lower body negative pressure. J. Appl. Physiol. 56: 138–144, 1984.
 431. Reed, R. K. Interstitial fluid volume, colloid osmotic pressure and hydrostatic pressures in rat skeletal muscle. Effect of venous stasis and muscle activity. Acta Physiol. Scand. 112: 7–17, 1981.
 432. Reed, R. K., S. Johansen, and H. Noddeland. Turnover rate of interstitial albumin in rat skin and skeletal muscle. Effects of limb movements and motor activity. Acta Physiol. Scand. 125: 711–718, 1985.
 433. Regan, T. J., G. Timmis, M. Gray, K. Binak, and H. K. Hellems. Myocardial oxygen consumption during exercise in fasting and lipemic subjects. Clin. Invest. 40: 624–630, 1961.
 434. Remensnyder, J. P., J. H. Mitchell, and S. J. Sarnoff. Functional sympatholysis during muscular activity. Circ. Res. 11: 370–380, 1962.
 435. Renkin, E. M. Transport of potassium‐42 from blood to tissue in isolated mammalian skeletal muscle. Am. J. Physiol. 197: 1205–1210, 1959.
 436. Renkin, E. M. Control of Microcirculation and exchange. Handbook of Physiology, Cardiovascular System, Microcirculation, edited by E. M. Renkin and C. C. Michel. Bethesda, MD: Am. Physiol. Soc., 1984, p. 627–687.
 437. Renkin, E. M., O. Hudlická, and R. M. Sheehan. Influence of metabolic vasodilation on blood‐tissue diffusion in skeletal muscle. Am. J. Physiol. 211: 87–98, 1966.
 438. Renkin, R. M., and S. Rosell. Effects of different types of vasodilator mechanisms on vascular tonus and on transcapillary exchange of diffusible material in skeletal muscle. Acta. Physiol. Scand. 54: 241–251, 1962.
 439. Roca, J., A. G. N. Agusti, A. Alonso, D. C. Poole, C. Viegas, J. A. Barbera, R. Rodriguez‐Roisin, A. Ferrer, and P. D. Wagner. Effects of training on muscle O2 transport at V.O2max. J. Appl. Physiol. 73: 1067–1076, 1992.
 440. Roca, J., M. C. Hogan, D. Story, D. E. Bebout, P. Haab, R. Gonzales, O. Ueno, and P. D. Wagner. Evidence for tissue diffusion limitation of V.O2max in normal humans. J. Appl. Physiol. 67: 291–299, 1989.
 441. Rogers, P. J., T. D. Miller, B. A. Bauer, M. M. Brum, A. A. Bove, and P. M. Vanhoutte. Exercise training and responsiveness of isolated coronary arteries. J. Appl. Physiol. 71: 2346–2351, 1991.
 442. Romanul, F. C. A. Capillary supply and metabolism of muscle fibers. Arch. Neurol. 12: 497–509, 1965.
 443. Romanul, F. C. A., and M. Pollock. The parallelism of changes in oxidative metabolism and capillary supply of skeletal muscle fibers. In: Modern Neurology. Boston, MA: Little, Brown, 1969, p. 204–214.
 444. Rose, C. P., C. A. Goresky, P. Belanger, and M. Chen. Effect of vasodilation and flow rate on capillary permeability surface product and interstitial space size in the coronary circulation. Circ. Res. 47: 312–328, 1980.
 445. Roth, D. M., F. C. White, M. L. Nichols, S. L. Dobbs, J. C. Longhurst, and C. M. Bloor. Effect of long‐term exercise on regional myocardial function and coronary collateral development after gradual coronary artery occlusion in pigs. Circulation 82: 1778–1789, 1990.
 446. Rowell, L. B. Human cardiovascular adjustments to exercise and thermal stress. Physiol. Rev. 54: 75–159, 1974.
 447. Rowell, L. B. Active neurogenic vasodilation in man. Vasodilation. New York: Raven Press, 1981, p. 1–17.
 448. Rowell, L. B. Cardiovascular adaptations to chronic physical activity and inactivity. Human Circulation. New York: Oxford University Press, 1986, p. 257–286.
 449. Rowell, L. B. Human Cardiovascular Control. New York: Oxford University Press, 1993, p. 1–483.
 450. Rowell, L. B., B. Saltin, B. Kiens, and N. J. Christensen. Is peak quadriceps blood flow in humans even higher during exercise with hypoxemia? Am. J. Physiol. 251 (Heart Circ. Physiol. 20): H1038–H1044, 1986.
 451. Rowlands, D. J., and D. E. Donald. Sympathetic vasoconstrictive responses during exercise‐ or drug‐induced vasodilation. Circ. Res. 23: 45–60, 1968.
 452. Rubanyi, G. M., J. C. Romero, and P. M. Vanhoutte. Flow‐induced release of endothelium‐derived relaxing factor. Am. J. Physiol. 250 (Heart Circ. Physiol. 19): H1145–H1149, 1986.
 453. Sabel, D. L., H. L. Brammell, M. W. Sheehan, A. S. Nies, J. Gerber, and L. D. Horwitz. Attenuation of exercise conditioning by beta‐adrenergic blockade. Circulation 65: 679–684, 1982.
 454. Saltin, B., and P. D. Gollnick. Skeletal muscle adaptability: significance for metabolism and performance. Handbook of Physiology, Skeletal Muscle, edited by L. D. Peachey, R. H. Adrian, and S. R. Geiger. Bethesda, MD: Am. Physiol. Soc., 1983, p. 555–631.
 455. Saltin, B., J. Henriksson, E. Nygaard, E. Jansson, and P. Andersen. Fiber types and metabolic potentials of skeletal muscles in sedentary man and endurance runners. Ann. N. Y. Acad. Sci. 301: 3–29, 1977.
 456. Saltin, B., and L. B. Rowell. Functional adaptations to physical activity and inactivity. Federation Proc. 39: 1506–1513, 1980.
 457. Saltin, B., and J. Stenberg. Circulatory response to prolonged severe exercise. J. Appl. Physiol. 19: 833–838, 1964.
 458. Samaha, F. F., F. W. Heineman, C. Ince, J. Fleming, and R. S. Balaban. ATP‐sensitive potassium channel is essential to maintain basal coronary vascular tone in vivo. Am. J. Physiol. 262 (Cell Physiol. 31): C1220–C1227, 1992.
 459. Sanders, M., F. White, and C. Bloor. Cardiovascular responses of dogs and pigs exposed to similar physiological stress. Comp. Biochem. Physiol. 58: 365–370, 1977.
 460. Sanders, M., F. C. White, and C. M. Bloor. Myocardial blood flow distribution in miniature pigs during exercise. Basic Res. Cardiol. 72: 326–331, 1977.
 461. Sanders, M., F. C. White, T. M. Peterson, and C. M. Bloor. Characteristics of coronary blood flow and transmural distribution in miniature pigs. Am. J. Physiol. 235 (Heart Circ. Physiol. 4): H601–H609, 1978.
 462. Sanders, M., F. C. White, T. M. Peterson, and C. M. Bloor. Effects of endurance exercise on coronary collateral blood flow in miniature swing. Am. J. Physiol. 234 (Heart Circ. Physiol. 3): H614–H619, 1978.
 463. Sarelius, I. H. Cell flow path influences transit time through striated muscle capillaries. Am. J. Physiol. 250 (Heart Circ. Physiol. 19): H899–H907, 1986.
 464. Sarelius, I. H. An analysis of microcirculatory flow heterogeneity using measurements of transit time. Microvasc. Res. 40: 88–98, 1990.
 465. Sarelius, I. H. Cell and oxygen flow in arterioles controlling capillary perfusion. Am. J. Physiol. 265 (Heart Circ. Physiol. 34): H1682–H1687, 1993.
 466. Schaffartzik, W., E. D. Barton, D. C. Poole, K. Tsukimoto, M. C. Hogan, D. E. Bebout, and P. D. Wagner. Effect of reduced hemoglobin concentration on leg oxygen uptake during maximal exercise in humans. J. Appl. Physiol. 75: 419–498, 1993.
 467. Schaper, W. Influence of physical exercise on coronary collateral blood flow in chronic experimental two‐vessel occlusion. Circulation 65: 905–912, 1982.
 468. Scheel, K. W., L. A. Ingram, and J. L. Wilson. Effects of exercise on the coronary and collateral vasculature of beagles with and without coronary occlusion. Circ. Res. 48: 523–530, 1981.
 469. Scheffer, M. G., and P. D. Verdouw. Decreased incidence of ventricular fibrillation after an acute coronary artery ligation in exercised pigs. Basic Res. Cardiol. 78: 298–309, 1983.
 470. Scheuer, J. Effects of physical training on myocardial vascularity and perfusion. Circulation 66: 491–495, 1982.
 471. Scheuer, J., and S. W. Stezoski. Effect of physical training on the mechanical and metabolic response of the rat heart to hypoxia. Circ. Res. 30: 418–429, 1972.
 472. Scheuer, J., and C. M. Tipton. Cardiovascular adaptations to physical training. Ann. Rev. Physiol. 39: 221–251, 1977.
 473. Schrör, K., S. Moncada, F. B. Ubatuba, and J. R. Vane. Transformation or arachidonic acid and prostaglandin endoperoxides by the guinea pig heart. Eur. J. Pharmacol. 47: 103–114, 1978.
 474. Schwartz, J. S., K. W. Baran, and R. J. Bache. Effect of stenosis on exercise‐induced dilation of large coronary arteries. Am. Heart J. 119: 520–524, 1990.
 475. Schwartz, L. M., and J. E. McKenzie. Adenosine and active hyperemia in soleus and gracilis muscle of cats. Am. J. Physiol. 259 (Heart Circ. Physiol. 28): H1295–H1304, 1990.
 476. Schwartz, P. J., and H. L. Stone. Effects of unilateral stellectomy upon cardiac performance during exercise in dogs. Circ. Res. 44: 637–645, 1979.
 477. Seals, D. R. Sympathetic neural adjustments to stress in physically trained and untrained humans. Hypertension 17: 36–43, 1991.
 478. Seals, D. R., and R. G. Victor. Regulation of muscle sympathetic nerve activity during exercise in humans. Exerc. Sports Sci. Rev. 19: 313–349, 1991.
 479. Segal, S. S. Microvascular recruitment in hamster striated muscle: role for conducted vasodilation. Am. J. Physiol. 261 (Heart Circ. Physiol. 30): H181–H189, 1991.
 480. Segal, S. S. Communication among endothelial and smooth muscle cells coordinates blood flow control during exercise. News Physiol. Sci. 7: 152–156, 1992.
 481. Segal, S. S., and J. L. Beny. Intracellular recording and dye transfer in arterioles during blood flow control. Am. J. Physiol. 263 (Heart Circ. Physiol. 32): H1–H7, 1992.
 482. Segal, S. S., D. N. Damon, and B. R. Duling. Propagation of vasomotor responses coordinates arteriolar resistances. Am. J. Physiol. 256 (Heart Circ. Physiol. 25): H832–H837, 1989.
 483. Segal, S. S., and B. R. Duling. Conduction of vasomotor responses in arterioles: a role for cell‐to‐cell coupling? Am. J. Physiol. 256 (Heart Circ. Physiol. 25): H838–H845, 1989.
 484. Segal, S. S., D. T. Kurjiaka, and A. L. Caston. Endurance training increases arterial wall thickness in rats. J. Appl. Physiol. 74: 722–726, 1993.
 485. Seitelberger, R., B. D. Guth, G. Heusch, J.‐D. Lee, K. Katayama, and J. Ross, Jr.. Intracoronary α2‐adrenergic receptor blockade attenuates ischemia in conscious dogs during exercise. Circ. Res. 62: 436–442, 1988.
 486. Sejersted, O. M., A. R. Hargens, K. R. Kardel, P. Blom, O. Jensen, and L. Hermansen. Intramuscular fluid pressure during isometric contraction of human skeletal muscle. J. Appl. Physiol. 56: 287–295, 1984.
 487. Sejrsen, P., and K. H. Tonnesen. Shunting by diffusion of inert gas in skeletal muscle. Acta. Physiol. Scand. 86: 82–91, 1972.
 488. Sessa, W. C., K. Pritchard, N. Seyedi, J. Wang, and T. H. Hintze. Chronic exercise in dogs increases coronary vascular nitric oxide production and endothelial cell nitric oxide synthase gene expression. Circ. Res. 74: 349–353, 1994.
 489. Sexton, W. L., R. J. Korthuis, and M. H. Laughhn. High‐intensity exercise training increases vascular transport capacity of rat hindquarters. Am. J. Physiol. 254 (Heart Circ. Physiol. 23): H274–H278, 1988.
 490. Sexton, W. L., and M. H. Laughlin. Influence of exercise intensity on distribution of vascular adaptations in skeletal muscle. Am. J. Physiol. 266 (Heart Circ. Physiol. 35): H483–H490, 1994.
 491. Shepherd, J. T. Circulation to skeletal muscle. In: Handbook of Physiology, The Cardiovascular System, Peripheral Circulation and Organ Blood Flow, edited by J. T. Shepherd and F. M. Abboud. Bethesda, MD: Am. Physiol. Soc., 1983, p. 319–370.
 492. Shepherd, J. T. Behavior of resistance and capacity vessels in human limbs during exercise. Circ. Res. 20 (Suppl. 1): 170–182, 1967.
 493. Shepherd, R., and P. Gollnick. Oxygen uptake of rats at different work intensities. Pflugers Arch. 362: 219–222, 1976.
 494. Shepherd, J. T., and P. M. Vanhoutte. Skeletal‐muscle blood flow:neurogenic determinants. In: The Peripheral Circulation. New York: Grune & Stratten, 1975, p. 3–55.
 495. Sheriff, D. D., L. B. Rowell, and A. M. Scher. Is rapid rise in vascular conductance at onset of dynamic exercise due to muscle pump? Am. J. Physiol. 265 (Heart Circ. Physiol. 34): H1227–H1234, 1993.
 496. Silber, D., D. McLaughlin, and L. Sinoway. Leg exercise conditioning increases peak forearm blood flow. J. Appl. Physiol. 71: 1568–1573, 1991.
 497. Sinoway, L. I., T. I. Musch, J. R. Minotti, and R. Zelis. Enhanced maximal metabolic vasodilation in the dominant forearms of tennis players. J. Appl. Physiol. 61: 673–678, 1986.
 498. Sinoway, L., R. Rea, M. Smith, and A. Mark. Physical training induces desensitization of the muscle metaboreflex (Abstract). Circulation 80: 11–290, 1989.
 499. Sinoway, L. I., J. Shenberger, J. Wilson, D. McLaughlin, T. Musch, and R. Zelis. A 30 day forearm work protocol increases maximal forearm blood flow. J. Appl. Physiol. 62: 1063–1067, 1987.
 500. Skalak, T. C., G. W. Schmid‐Schonbein, and B. W. Zwiefach. New morphological evidence for a mechanism of lymph formation in skeletal muscle. Microvasc. Res. 28: 9–112, 1984.
 501. Skinner, N. S. Skeletal muscle blood flow: Metabolic determinants. In: The Peripheral Circulations. New York: Grune & Stratton, 1975, p. 57–79.
 502. Smith, M. L., and P. B. Raven. Cardiovascular responses to lower body negative pressure in endurance and static exercise‐trained men. Med. Sci. Sports. Exerc. 18: 545–550, 1986.
 503. Snell, P. G., W. H. Martin, J. C. Buckey, and C. G. Blomqvist. Maximal vascular leg conductance in trained and untrained men. J. Appl. Physiol. 62: 606–610, 1987.
 504. Somers, V. K., K. C. Leo, M. P. Green, and A. L. Mark. Forearm training attenuates the sympathetic nerve response to isometric handgrip (Abstract). Circulation 78: II–177, 1988.
 505. Somlyo, A. Modulation of the Ca2+ switch: by G proteins, kinase and phosphatase. News Physiol. Sci. 8: 2, 1993.
 506. Somlyo, A., and A. Somlyo. Vascular smooth muscle. Pharmacol. Rev. 20: 197–272, 1968.
 507. Spaan, J. A. E. Coronary diastolic pressure–flow relations and zero flow pressure explained on the basis of intramyocardial compliance. Circ. Res. 56: 293–309, 1985.
 508. Sparks, H. V. Skin and muscle. In: Peripheral Circulation. New York: John Wiley & Sons, 1978, p. 193–230.
 509. Sparks, H. V. Effect of local metabolic factors on vascular smooth muscle. In: Handbook of Physiology, The Cardiovascular System, Vascular Smooth Muscle, edited by D. F. Bohr, A. P. Somlyo, and H. V. Sparks, Jr. Bethesda, MD: Am. Physiol. Soc., 1980.
 510. Sparks, H. V., Jr., and H. Bardenheuer. Regulation of adenosine formation by the heart. Circ. Res. 58: 193–201, 1986.
 511. Sparks, H. V., R. J. Korthuis, and J. B. Scott. Pharmacology of Hemodynamic Factors in Fluid Balance. Edema, NY: Raven Press, 1984, p. 425–439.
 512. Sparks, H. V., and D. E. Mohrman. Heterogeneity of flow as an explanation of the multiexponential washout of inert gas from skeletal muscle. Microvasc. Res. 13: 181–184, 1977.
 513. Spear, K. L., J. E. Koerner, and R. L. Terjung. Coronary blood flow in physically trained rats. Cardiovasc. Res. 12: 135–143, 1978.
 514. Stainsby, W. N. Local control of regional blood flow. Ann Rev. Physiol. 35: 151–168, 1973.
 515. Stainsby, W. N., W. F. Brechue, D. M. O'Drobinak, and J. K. Barclay. Oxidation reduction state of cytochrome oxidase during repetitive contractions. J. Appl. Physiol. 67: 2158–2162, 1989.
 516. Standen, N. B., J. M. Quayle, N. W. Davies, J. E. Brayden, Y. Huang, and M. T. Nelson. Hyperpolarizing vasodilators activate ATP‐sensitive K+ channels in arterial smooth muscle. Science 245: 177–180, 1989.
 517. Stegall, H. F. Muscle pumping in the dependent leg. Circ. Res. 19: 180–190, 1966.
 518. Stehno‐Bittel, L., M. H. Laughlin, and M. Sturek. Exercise training alters Ca release from coronary smooth muscle sarcoplasmic reticulum. Am. J. Physiol. 259 (Heart Circ. Physiol. 28): H643–H647, 1990.
 519. Stehno‐Bittel, L., M. H. Laughlin, and M. Sturek. Exercise training depletes sarcoplasmic reticulum calcium in coronary smooth muscle. J. Appl. Physiol. 71: 1764–1773, 1991.
 520. Stevenson, J. A., V. Feleki, and P. Rechnitzer. Effect of exercise on coronary tree size in the rat. Circ. Res. 15: 265–269, 1964.
 521. Stick, C., H. Jaeger, and E. Witzleb. Measurements of volume changes and venous pressure in the human lower leg during walking and running. J. Appl. Physiol. 72: 2063–2068, 1992.
 522. Stone, H. L. Coronary flow, myocardial oxygen consumption and exercise training in dogs. J. Appl. Physiol. 49: 759–768, 1980.
 523. Stowe, D. F., T. L. Owen, D. K. Anderson, and J. B. Scott. Interaction of O2 and CO2 in sustained exercise hyperemia of canine skeletal muscle. Am. J. Physiol. 229: 28–33, 1975.
 524. Strader, J. R., P. A. Gwirtz, and C. E. Jones. Comparative effects of alpha‐1 and alpha‐2 adrenoceptors in modulation of coronary flow during exercise. J. Pharm. Exp. Ther. 246: 772–778, 1988.
 525. Strandell, T., and J. T. Shepherd. The effect in humans of increased sympathetic activity on the blood flow to active muscles. Acta Med. Scand. 472: 146–167, 1967.
 526. Sullivan, T. E. and R. B. Armstrong. Rat locomotory muscle fiber activity during trotting and galloping, J. Appl. Physiol. 44: 358–363, 1978.
 527. Sun, D., A. Huang, A. Roller, and G. Kaley. Short‐term daily exercise enhances endothelial nitric oxide synthesis in skeletal muscle arterioles of rats. J. Appl. Physiol. 76: 2241–2247, 1994.
 528. Sun, D., G. Kaley, and A. Koller. Role of endothelium in function of isolated arterioles of rat mesentery and gracilis muscle. Endothelium 1: 115–122, 1993.
 529. Svendenhag, J. The sympathoadrenal system in physical conditioning. Acta Physiol. Scand. Suppl. 543: 1–73, 1985.
 530. Svedenhag, J., A. Martinsson, B. Ekblom, and P. Hjemdahl. Altered cardiovascular responsiveness to adrenoceptor agonists in endurance‐trained men. J. Appl. Physiol. 70: 531–538, 1991.
 531. Svedenhag, J., B. G. Wallin, G. Sundlöf, and J. Henriksson. Skeletal muscle sympathetic activity at rest in trained and untrained subjects. Acta Physiol. Scand. 120: 499–504, 1984.
 532. Sweeney, T. E., and I. H. Sarelius. Arteriolar control of capillary cell flow in striated muscle. Circ. Res. 64: 112–120, 1989.
 533. Symons, J. D., K. F. Pitsillides, and J. C. Longhurst. Chronic reduction of myocardial ischemia does not attenuate coronary collateral development in miniswine. Circulation 86: 660–671, 1992.
 534. Taylor, A. E., and D. N. Granger. Exchange of macromol‐ecules across the microcirculation. Handbook of Physiology, The Cardiovascular System, Microcirculation, edited by E. M. Renkin and C. C. Michel. Bethesda, MD: Am. Physiol. Soc., 1984, p. 467–520.
 535. Tepperman, J., and D. Pearlman. Effects of exercise and anemia on coronary arteries in small animals as revealed by the corrosion‐cast technique. Circ. Res. 9: 576–584, 1961.
 536. Terrados, N., M. Mizuno, and H. Andersen. Reduction in maximal oxygen uptake at low altitudes: role of training status and lung function. Clin. Physiol. 5: 75–79, 1985.
 537. Tharp, G. D., and C. T. Wagner. Chronic exercise and cardiac vascularization. Eur. J. Appl. Physiol. 48: 97–104, 1982.
 538. Thomas, D. P. Effects of acute and chronic exercise on myocardial ultrastructure. Med. Sci. Sports. Exerc. 17: 546–553, 1985.
 539. Thomas, G. D., J. Hansen, and R. G. Victor. Inhibition of α2‐adrenergic vasoconstriction during contraction of glycolytic, not oxidative, rat hindlimb muscle. Am. J. Physiol. 266 (Heart Circ. Physiol. 35): H920–H929, 1994.
 540. Thompson, L. P., and D. E. Mohrman. Blood flow and oxygen consumption in skeletal muscle during sympathetic stimulation. Am. J. Physiol. 245 (Heart Circ. Physiol. 14): H66–H71, 1983.
 541. Thörner, W. Trainingsversuche an Hunden. III. Histologische Beobachtungen und Herz‐ und Skeletmuskeln. Arbeitphysiologie 8: 359–370, 1935.
 542. Tomanek, R. J. Effects of age and exercise on the extent of the myocardial capillary bed. Anat. Rec. 167: 55–62, 1970.
 543. Trimble, J., and J. Downey. Contribution of myocardial contractility to myocardial perfusion. Am. J. Physiol. 236 (Heart Circ. Physiol. 5): H121–H126, 1979.
 544. Unge, G., S. Carlsson, A. Ljungqvist, G. Tornling, and J. Adolfsson. The proliferative activity of myocardial capillary wall cells in variously aged swimming‐exercised rats. Acta Pathol. Microbiol. Scand. 87: 15–17, 1979.
 545. Utley, J., E. L. Carlson, J. I. E. Hofman, H. H. Martinez, and G. D. Buckberg. Total and regional myocardial blood flow measurements with 25μ, 15μ, 9μ and filtered 1–10 μm diameter microspheres and antipyrine in dogs and sheep. Circ. Res. 34: 391–405, 1974.
 546. Van Leeuwen, B. E., G. J. Barendsen, J. Lubbers, and L. De Pater. Calf blood flow and posture: Doppler ultrasound measurements during and after exercise. J. Appl. Physiol. 72: 1675–1680, 1992.
 547. Van Citters, R. B., and D. L. Franklin. Cardiovascular performance of Alaska sled dogs during exercise. Circ. Res. 24: 33–42, 1969.
 548. Vanhoutte, P. M., T. J. Verbeuren, and R. C. Webb. Local modulation of adrenergic neuroeffector interaction in the blood vessel wall. Physiol. Rev. 61: 151–247, 1981.
 549. Vatner, S. F., D. Franklin, C. B. Higgins, T. Patrick, and E. Braunwald. Left ventricular response to severe exertion in untethered dogs. J. Clin. Invest. 51: 3052–3060, 1972.
 550. Vatner, S. F., D. Franklin, R. C. Van Citters, and E. Braunwald. Effects of carotid sinus nerve stimulation on blood flow distribution in conscious dogs at rest and during exercise. Circ. Res. 27: 495–503, 1970.
 551. Vatner, S. R., C. B. Higgins, D. Franklin, and E. Braunwald. Role of tachycardia in mediating the coronary hemodynamic response to severe exercise. J. Appl. Physiol. 32: 380–385, 1972.
 552. Vatner, S. F., C. B. Higgins, R. W. Millard, and D. Franklin. Role of the spleen in the peripheral vascular response to severe exercise in untethered dogs. Cardiovasc. Res. 8: 276–282, 1974.
 553. Vatner, S. F., C. B. Higgins, S. White, T. Patrick, and D. Franklin. The peripheral vascular response to severe exercise in untethered dogs before and after complete heart block. J. Clin. Invest. 50: 1950–1960, 1971.
 554. Vatner, S. F., and M. S. Pagani. Cardiovascular adjustments to exercise: hemodynamics and mechanisms. Prog. Cardiovasc. Dis. 19: 91–108, 1976.
 555. Vatner, S. F., M. Pagani, and W. T. Manders, and A. D. Pasipoularides. Alpha adrenergic vasoconstriction and nitroglycerin vasodilation of large coronary arteries in the conscious dog. J. Clin. Invest. 65: 5–14, 1980.
 556. von Restorff, W., B. Hofling, J. Holtz, and E. Bassenge. Effect of increased blood fluidity through hemodilution on coronary circulation at rest and during exercise in dogs. Pflugers Arch. 357: 15–24, 1975.
 557. von Restorff, W., J. Holtz, and E. Bassenge. Exercise induced augmentation of myocardial oxygen extraction in spite of normal coronary dilatory capacity in dogs. Pflugers Arch. 372: 181–185, 1977.
 558. Wachtlová, M., K. Rakusan, and O. Poupa. The coronary terminal vascular bed in the heart of the hare and the rabbit. Physiol. Biochem. 14: 328–331, 1965.
 559. Wachtlová, M., K. Rakusan, Z. Roth, and O. Poupa. The terminal vascular bed of the myocardium in the wild rat (Rattus norvegicus) and the laboratory rat (Rattus norvegicus lab). Physiol. Bohemoslov. 16: 548–554, 1967.
 560. Wagner, P. D. An integrated view of the determinants of maximum oxygen uptake. Adv. Exp. Med. Biol. 227: 245–256, 1988.
 561. Wagner, P. D. Central and peripheral aspects of oxygen transport and adaptations with exercise. Sports Med. 11: 133–142, 1991.
 562. Walloe, L., and J. Wesche. Time course and magnitude of blood flow changes in the human quadriceps muscles during and following rhythmic exercise. J. Physiol. (Lond.) 405: 257–273, 1988.
 563. Walmsley, B., J. A. Hodgson, and R. E. Burke. Forces produced by medial gastrocnemius and soleus muscles during locomotion in freely moving cats. J. Neurophysiol. 41: 1103–1216, 1978.
 564. Wang, J., M. S. Wolin, and T. H. Hintze. Chronic exercise enhances endothelium‐mediated dilation of epicardial coronary artery in conscious dogs. Circ. Res. 73: 829–838, 1993.
 565. Watkinson, W. P., D. H. Foley, R. Rubio, and R. M. Berne. Myocardial adenosine formation with increased cardiac performance in the dog. Am. J. Physiol. 236 (Heart Circ. Physiol. 5): H13–H21, 1979.
 566. Weiss, H. R. Regional oxygen consumption and supply in the dog heart; effect of atrial pacing. Am. J. Physiol. 236 (Heart Circ. Physiol. 5): H231–H237, 1979.
 567. White, F. C., M. D. McKirnan, E. A. Breisch, B. D. Guth, Y. Liu, and C. M. Bloor. Adaptation of the left ventricle to exercise‐induced hypertrophy. J. Appl. Physiol. 62: 1097–1110, 1987.
 568. White, F. C., M. Sanders, and C. M. Bloor. Coronary reserve at maximal heart rate in the exercising swine. Cardiac. Rehab. 1: 31–39, 1981.
 569. Wiegman, D. L., P. D. Harris, I. G. Joshua, and F. N. Miller. Decreased vascular sensitivity to norepinephrine following exercise training. J. Appl. Physiol. 51: 282–287, 1981.
 570. Williams, R. S. Role of receptor mechanisms in the adaptive response to habitual exercise. Am. J. Cardiol. 55: 68D–73D, 1985.
 571. Wilson, J. R., and S. Kapoor. Contribution of endothelium‐derived relaxing factor to exercise‐induced vasodilation in humans. J. Appl. Physiol. 75: 2740–2744, 1993.
 572. Winder, W. W., J. M. Hagberg, R. C. Hickson, A. A. Eh‐sani, and J. A. McLane. Time course of sympathoadrenal adaptation to endurance exercise training in man. J. Appl. Physiol. 45: 370–374, 1978.
 573. Winder, W. W., R. C. Hickson, J. M. Hagberg, A. A. Eh‐sani, and J. A. McLane. Training‐induced changes in hormonal and metabolic responses to submaximal exercise. J. Appl. Physiol. 46: 766–771, 1979.
 574. Wolfel, E. E., W. R. Hiatt, H. L. Brammell, V. H. Travis, and L. D. Horwitz. Plasma catecholamine responses to exercise after training with beta‐adrenergic blockade. J. Appl. Physiol. 68: 586–593, 1990.
 575. Wolfson, S., and R. Gorlin. Cardiovascular pharmacology of propranolol in man. Circulation 40: 501–511, 1969.
 576. Wyatt, H. L., and J. H. Mitchell. Influences of physical training on the heart of dogs. Circ. Res. 35: 883, 1974.
 577. Wyatt, H. L., and J. Mitchell. Influences of physical conditioning and deconditioning on coronary vasculature of dogs. J. Appl. Physiol. 45: 619–625, 1978.
 578. Yamabe, H., K. Okumura, H. Ishizaka, T. Tsuchiya, and H. Yasue. Role of endothelium‐derived nitric oxide in myocardial reactive hyperaemia. Am. J. Physiol. 263 (Heart Circ. Physiol. 32): H8–H14, 1992.
 579. Yasuda, Y., and M. Miyamura. Cross transfer effects of muscular training on blood flow in the ipsilateral and contralateral forearms. Eur. J. Appl. Physiol. 51: 321–329, 1983.
 580. Yipintsoi, T., J. Rosenkrantz, M. A. Codini, and J. Scheuer. Myocardial blood flow responses to acute hypoxia and volume loading in physically trained rats. Cardiovasc. Res. 14: 50–57, 1980.
 581. Zhang, J., G. Path, D. C. Homans, V. Chepuri, H. Merkle, K. Hendrich, M. M. Meyn, R. J. Bache, K. Ugurbil, and A. H. L. From. Bioenergetic and functional consequences of dobutamine infusion in tachycardic, blood flow limited myocardium. Circulation 86 (Suppl. I): I–338, 1992.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

M. Harold Laughlin, Ronald J. Korthuis, Dirk J. Duncker, Robert J. Bache. Control of Blood Flow to Cardiac and Skeletal Muscle During Exercise. Compr Physiol 2011, Supplement 29: Handbook of Physiology, Exercise: Regulation and Integration of Multiple Systems: 705-769. First published in print 1996. doi: 10.1002/cphy.cp120116