Comprehensive Physiology Wiley Online Library

Glucose Utilization

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Molecular Basis for Glucose Transport
1.1 Family of Glucose Transporters
1.2 Translocation of Glucose Transporters
1.3 Intrinsic Activity
1.4 Fiber‐Type Specific Expression of GLUT4
2 Role of Glut4 in Contraction‐Induced Skeletal Muscle Glucose Transport
3 Signaling Mechanisms Involved in Contraction‐Induced Increase in Glucose Transport
4 Regulation of Glucose Utilization in Vivo
4.1 Glucose Supply
4.2 Membrane Glucose Transport Capacity
4.3 Glucose Metabolism
5 Regulation of Glucose Utilization at Rest
6 Regulation of Glucose Utilization During Exercise
6.1 Effect of Exercise Intensity
6.2 Effect of Exercise Duration
6.3 Effect of Exercise Type
6.4 Alternative Substrates
6.5 Glucose Utilization During Exercise in Adverse Environment
6.6 Humoral Regulation of Glucose Utilization During Exercise
6.7 Effect of Physical Training Status
6.8 Exercise in States of Altered Glucose Utilization
7 Regulation of Glucose Utilization in the Postexercise State
7.1 Membrane Glucose Transport Capacity Induced by Contraction
7.2 Insulin Sensitivity
Figure 1. Figure 1.

Proposed mechanism of glucose transport. The glucose transporter alternates from an outward to an inward facing conformation.

For details, see Oka et al.
Figure 2. Figure 2.

Low‐power electron micrograph of nonstimulated soleus muscle fibers immunostained with anti‐GLUT4 showing subsarcolemmal aggregation of mitochondria. A stack of flattened cirsternae (open arrows) resembling Golgi apparatus is stained. Plasma membrane (curved arrow) is unstained. Note weak staining of several triadic junctions (small arrows).

Reproduced from Bornemann et al. , with permission
Figure 3. Figure 3.

Schematic drawing of a muscle cell showing distribution of GLUT1 and GLUT4 and effect of insulin and contractions. It is indicated that the intracellular pool of GLUT4 may possibly be divided into an insulin‐sensitive and a contraction‐sensitive pool, but this is not certain. GLUT4 recycles between intracellular pool and sarcolemma, and insulin has in adipocytes been shown to increase mainly the exocytotic rate and may or may not decrease the internalization rate constant . Thus, a similar effect of insulin in muscle is hypothesized. Whether contractions affect the exocytotic and/or endocytotic pathway is unknown. If present in myocytes, GLUT1 resides mainly in the plasma membrane. GT1, GLUT1; GT4, GLUT4.

Figure 4. Figure 4.

Schematic drawing of a muscle cell showing hypothesized effect of insulin and contractions on GLUT4 translocation and Rab protein participation. The subtypes of Rab proteins in muscle associated with GLUT4‐containing vesicles are yet unidentified. SR, sarcoplasmic reticulum; IR, insulin receptor.

Figure 5. Figure 5.

Relationship between stimulated glucose transport and GLUT4 protein content in epitrochlearis (•), soleus (○), EDL (▪), and FDB (□) muscles. Glucose transport (2‐Deoxyglucose uptake) was stimulated by insulin alone (A), contractions alone (B), and insulin and contractions in combination (C).

Adapted from Henriksen et al. with permission
Figure 6. Figure 6.

Glucose uptake across the human thigh during dynamic knee‐extensor exercise at moderate intensity. Glucose uptake was measured after 30 min exercise at each plasma glucose concentration and plasma insulin concentration was clamped at basal levels by infusion of somatostatin and replacement insulin. Values are means ±SE of four observations. Km was calculated to 10.5 mM and Vmax to 1.67 mmol · kg−1 · min−1.

Figure 7. Figure 7.

Isotopically measured whole‐body glucose disappearance (dotted line) and directly measured two‐leg glucose uptake (solid line) in man at rest and during ergometer cycling with legs only and with added arm crancking from 30–50 min exercise. Values are means ± SE of seven observations.

Reproduced from Kjaer et al. , with permission
Figure 8. Figure 8.

Arterial blood glucose concentration and leg glucose uptake at rest and during ergometer cycling with the legs.

Adapted from Wahren et al. , with permission
Figure 9. Figure 9.

One‐leg blood flow, A‐V difference for blood glucose, and two‐leg glucose uptake in man at rest and during bicycling at light, moderate, and heavy exercise. Each workload corresponds to a pulmonary oxygen uptake of ∼1.2, 2.2, and 3.3 liters/min, respectively. Values are from references and are recorded after 40 min of exercise except at the highest workload, which was sustained for only 3.5 min but preceeded by 15 min submaximal exercise .

Figure 10. Figure 10.

Increase in hindlimb glucose uptake with electrical stimulation. Perfusate flow was either increased from 9 ml/min to 15 ml/min at the onset of contractions (broken line) or was constant at 15 ml/min both at rest and during contractions (full line). Values are means ± SE of 11–12 observations.

Figure 11. Figure 11.

Schematic presentation of possible biochemical mechanisms involved in regulation of glucose utilization by the alternative substrates glycogen and free fatty acids (FFA) in muscle during exercise. Glycogen breakdown may inhibit glucose phosphorylation via production of glucose 6‐phosphate in turn inhibiting hexokinase. In addition, rapid glycogenolysis may by virtue of lactate production decrease pH, which decreases intrinsic activity of GLUT4 . Finally, 6%–7% of glycogen is broken down to free glucose via activity of the debranching enzyme. In concert with hexokinase inhibition this may lead to decreased glucose gradient from interstitium to cytosol. FFA is proposed to inhibit glucose utilization via pyruvatedehydrogenase and phosphofructokinase inhibition, again leading to build‐up of glucose 6‐phosphate and hexokinase inhibition. However, evidence for this mechanism in contracting muscle is weak. FFA may possibly have direct inhibitory effects on glucose transport. G, glucose; G‐6‐P, glucose 6‐phosphate; FFA, free fatty acids; HK, hexokinase; PFK, phosphofructokinase; PDH, pyruvatedehydrogenase.

Figure 12. Figure 12.

Arterial concentrations of glucose, and glucose uptake before, during, and after 1 h of one‐legged dynamic knee extensions. Subjects exercised with one leg during control conditions (plasma FFA ∼0.50 mM) and with the other leg during intralipid infusion (plasma FFA ∼1.1 mM). Values are means ± SE of seven observations. * P < 0.05 compared with values during control conditions.

Adapted from Hargreaves et al. with permission
Figure 13. Figure 13.

Glucose uptake at rest and during electrical stimulation in perfused rat hindlimb. Perfusate contained no insulin (squares) or insulin at 100 μ/ml (circles). Filled symbols denote addition of caffeine at 77 μM. *Values in the presence of caffeine are significantly lower than in the absence during muscle contractions. Values are means ± SE of 13–27 observations.

Adapted from Vergauen et al. , with permission
Figure 14. Figure 14.

Relationship between GLUT4 concentration in vastus lateralis muscle and whole‐body glucose disappearence after 40 min of bicycle exercise at 72% of peak oxygen uptake, r = −0.89, P < 0.01.

Adapted from McConnell et al. , with permission
Figure 15. Figure 15.

Dose‐response curve for insulin‐stimulated glucose uptake in perfused rat hindquarters. Rats were either rested or exercised on a treadmill for 45 min before perfusion.

Adapted from Richter et al. , with permission
Figure 16. Figure 16.

Concentration of GLUT4 protein in eccentrically exercised and in the nonexercised control vastus lateralis muscle immediately after exercise and 1, 2, 4, and 7 days later. Before exercise, GLUT4 was only measured in the control leg. Values are means ± SE of seven observations and are expressed as concentration relative to a rat heart standard.* P < 0.05 compared to contralateral control leg.

Reproduced from Asp et al. , with permission


Figure 1.

Proposed mechanism of glucose transport. The glucose transporter alternates from an outward to an inward facing conformation.

For details, see Oka et al.


Figure 2.

Low‐power electron micrograph of nonstimulated soleus muscle fibers immunostained with anti‐GLUT4 showing subsarcolemmal aggregation of mitochondria. A stack of flattened cirsternae (open arrows) resembling Golgi apparatus is stained. Plasma membrane (curved arrow) is unstained. Note weak staining of several triadic junctions (small arrows).

Reproduced from Bornemann et al. , with permission


Figure 3.

Schematic drawing of a muscle cell showing distribution of GLUT1 and GLUT4 and effect of insulin and contractions. It is indicated that the intracellular pool of GLUT4 may possibly be divided into an insulin‐sensitive and a contraction‐sensitive pool, but this is not certain. GLUT4 recycles between intracellular pool and sarcolemma, and insulin has in adipocytes been shown to increase mainly the exocytotic rate and may or may not decrease the internalization rate constant . Thus, a similar effect of insulin in muscle is hypothesized. Whether contractions affect the exocytotic and/or endocytotic pathway is unknown. If present in myocytes, GLUT1 resides mainly in the plasma membrane. GT1, GLUT1; GT4, GLUT4.



Figure 4.

Schematic drawing of a muscle cell showing hypothesized effect of insulin and contractions on GLUT4 translocation and Rab protein participation. The subtypes of Rab proteins in muscle associated with GLUT4‐containing vesicles are yet unidentified. SR, sarcoplasmic reticulum; IR, insulin receptor.



Figure 5.

Relationship between stimulated glucose transport and GLUT4 protein content in epitrochlearis (•), soleus (○), EDL (▪), and FDB (□) muscles. Glucose transport (2‐Deoxyglucose uptake) was stimulated by insulin alone (A), contractions alone (B), and insulin and contractions in combination (C).

Adapted from Henriksen et al. with permission


Figure 6.

Glucose uptake across the human thigh during dynamic knee‐extensor exercise at moderate intensity. Glucose uptake was measured after 30 min exercise at each plasma glucose concentration and plasma insulin concentration was clamped at basal levels by infusion of somatostatin and replacement insulin. Values are means ±SE of four observations. Km was calculated to 10.5 mM and Vmax to 1.67 mmol · kg−1 · min−1.



Figure 7.

Isotopically measured whole‐body glucose disappearance (dotted line) and directly measured two‐leg glucose uptake (solid line) in man at rest and during ergometer cycling with legs only and with added arm crancking from 30–50 min exercise. Values are means ± SE of seven observations.

Reproduced from Kjaer et al. , with permission


Figure 8.

Arterial blood glucose concentration and leg glucose uptake at rest and during ergometer cycling with the legs.

Adapted from Wahren et al. , with permission


Figure 9.

One‐leg blood flow, A‐V difference for blood glucose, and two‐leg glucose uptake in man at rest and during bicycling at light, moderate, and heavy exercise. Each workload corresponds to a pulmonary oxygen uptake of ∼1.2, 2.2, and 3.3 liters/min, respectively. Values are from references and are recorded after 40 min of exercise except at the highest workload, which was sustained for only 3.5 min but preceeded by 15 min submaximal exercise .



Figure 10.

Increase in hindlimb glucose uptake with electrical stimulation. Perfusate flow was either increased from 9 ml/min to 15 ml/min at the onset of contractions (broken line) or was constant at 15 ml/min both at rest and during contractions (full line). Values are means ± SE of 11–12 observations.



Figure 11.

Schematic presentation of possible biochemical mechanisms involved in regulation of glucose utilization by the alternative substrates glycogen and free fatty acids (FFA) in muscle during exercise. Glycogen breakdown may inhibit glucose phosphorylation via production of glucose 6‐phosphate in turn inhibiting hexokinase. In addition, rapid glycogenolysis may by virtue of lactate production decrease pH, which decreases intrinsic activity of GLUT4 . Finally, 6%–7% of glycogen is broken down to free glucose via activity of the debranching enzyme. In concert with hexokinase inhibition this may lead to decreased glucose gradient from interstitium to cytosol. FFA is proposed to inhibit glucose utilization via pyruvatedehydrogenase and phosphofructokinase inhibition, again leading to build‐up of glucose 6‐phosphate and hexokinase inhibition. However, evidence for this mechanism in contracting muscle is weak. FFA may possibly have direct inhibitory effects on glucose transport. G, glucose; G‐6‐P, glucose 6‐phosphate; FFA, free fatty acids; HK, hexokinase; PFK, phosphofructokinase; PDH, pyruvatedehydrogenase.



Figure 12.

Arterial concentrations of glucose, and glucose uptake before, during, and after 1 h of one‐legged dynamic knee extensions. Subjects exercised with one leg during control conditions (plasma FFA ∼0.50 mM) and with the other leg during intralipid infusion (plasma FFA ∼1.1 mM). Values are means ± SE of seven observations. * P < 0.05 compared with values during control conditions.

Adapted from Hargreaves et al. with permission


Figure 13.

Glucose uptake at rest and during electrical stimulation in perfused rat hindlimb. Perfusate contained no insulin (squares) or insulin at 100 μ/ml (circles). Filled symbols denote addition of caffeine at 77 μM. *Values in the presence of caffeine are significantly lower than in the absence during muscle contractions. Values are means ± SE of 13–27 observations.

Adapted from Vergauen et al. , with permission


Figure 14.

Relationship between GLUT4 concentration in vastus lateralis muscle and whole‐body glucose disappearence after 40 min of bicycle exercise at 72% of peak oxygen uptake, r = −0.89, P < 0.01.

Adapted from McConnell et al. , with permission


Figure 15.

Dose‐response curve for insulin‐stimulated glucose uptake in perfused rat hindquarters. Rats were either rested or exercised on a treadmill for 45 min before perfusion.

Adapted from Richter et al. , with permission


Figure 16.

Concentration of GLUT4 protein in eccentrically exercised and in the nonexercised control vastus lateralis muscle immediately after exercise and 1, 2, 4, and 7 days later. Before exercise, GLUT4 was only measured in the control leg. Values are means ± SE of seven observations and are expressed as concentration relative to a rat heart standard.* P < 0.05 compared to contralateral control leg.

Reproduced from Asp et al. , with permission
References
 1. Anonymous. Diabetes Mellitus and Exercise, edited by J. T. Devlin, E. S. Horton, and M. Vranic, London: Smith‐Gordon, 1992, p. 1–258.
 2. Acevedo‐Duncan, M., D. Cooper, M. Standaert, and R. Farese. Immunological evidence that insulin activates protein kinase C in BC3H‐1 myocytes. FEBS Lett. 244: 174–176, 1989.
 3. Ahlborg, G. Mechanism for glycogenolysis in nonexercising human muscle during and after exercise. Am. J. Physiol. 248 (Endocrinol. Metab. 11): E540–E545, 1985.
 4. Ahlborg, G., and P. Felig. Lactate and glucose exchange across the forearm, legs and splanchnic bed during and after prolonged leg exercise. J. Clin. Invest. 69: 45–54, 1982.
 5. Ahlborg, G., P. Felig, L. Hagenfeldt, R. Hendler, and J. Wahren. Substrate turnover during prolonged exercise in man. Splanchinc and leg metabolism of glucose, free fatty acids and amino acids. J. Clin. Invest. 53: 1080–1090, 1974.
 6. Ahlborg, G., L. Hagenfeldt, and J. Wahren. Substrate utilization by the inactive leg during one‐leg or arm exercise. J. Appl. Physiol. 39: 718–723, 1975.
 7. Ahlborg, G., and M. Jensen‐Urstad. Metabolism in exercising arm vs. leg muscle. Clin. Physiol. 11: 459–468, 1991.
 8. Ahlborg, G., J. Wahren, and P. Felig. Splanchnic and peripheral glucose and lactate metabolism during and after prolonged arm exercise. J. Clin. Invest. 77: 690–699, 1986.
 9. Andersen, P., and B. Saltin. Maximal perfusion of skeletal muscle in man. J. Physiol. (Lond.) 366: 233–249, 1985.
 10. Andersen, P. H., S. Lund, O. Schmitz, S. Junker, B. B. Kahn, and O. Pedersen. Increased insulin‐stimulated glucose uptake in athletes: the importance of GLUT 4 mRNA, GLUT 4 protein and fibre type composition of skeletal muscle. Acta Physiol. Scand. 149: 393–404, 1993.
 11. Andersen, P. H., S. Lund, H. Vestergaard, S. Junker, B. B. Kahn, and O. Pedersen. Expression of the major insulin regulatable glucose transporter (GLUT4) in skeletal muscle of noninsulin‐dependent diabetic patients and healthy subjects before and after insulin infusion. J. Clin. Endocrinol. Metab. 77: 27–32, 1993.
 12. Asmussen, E. Positive and negative muscular work. Acta Physiol. Scand. 28: 364–382, 1952.
 13. Asp, S., J. R. Daugaard, and E. A. Richter. Eccentric exercise decreases GLUT4 protein in human skeletal muscle. J. Physiol. (Lond.) 482: 705–712, 1995.
 14. Asp S., S. Kristiansen, and E. A. Richter. Eccentric muscle damage transiently decreases rat skeletal muscle GLUT4 protein. J. Appl. Physiol. 79: 1338–1345, 1995.
 15. Balch, W. E. Small GTP‐binding proteins in vesicular transport. Trends Biochem. Sci. 15: 473–477, 1990.
 16. Baldini, G., T. Hohl, H. Y. Lin, and H. F. Lodish. Cloning of a Rab3 isotype predominately expressed in adipocytes. Proc. Natl. Acad. Sci. U. S. A. 89: 5049–5052, 1992.
 17. Baldini, G., R. Hohman, M. J. Charron, and H. F. Lodish. Insulin and nonhydrolyzable GTP analogs induce translocation of GLUT 4 to the plasma membrane in alpha‐toxin‐permeabilized rat adipose cells. J. Biol. Chem. 266: 4037–4040, 1991.
 18. Bangsbo, J., P. Gollnick, T. Graham, C. Juel, B. Kiens, M. Mizuno, and B. Saltin. Anaerobic energy production and O2 deficit‐debt relationship during exhaustive exercise in humans. J. Physiol. (Lond.) 422: 539–559, 1990.
 19. Banks, E. A., J. T. Brozinick, Jr., B. B. Yaspelkis, III, H. Y. Kang, and J. L. Ivy. Muscle glucose transport, GLUT‐4 content and degree of exercise training in obese Zucker rats. Am. J. Physiol. 263 (Endocrinol. Metab. 26): E1010–E1015, 1992.
 20. Barnett, J. E. G., G. D. Holman, R. A. Chalkley, and K. A. Munday. Evidence for two asymmetric conformational states in the human erythrocyte sugar‐transport system. Biochem. J. 145: 417–426, 1975.
 21. Begum, N., W. Leitner, J. E.‐B. Reusch, K. E. Sussman, and B. Draznin. GLUT‐4 phosphorylation and its intrinsic activity. J. Biol. Chem. 268: 3352–3356, 1993.
 22. Bell, G., T. Kayano, J. Buse, C. Burant, J. Takeda, D. Lin, H. Fukumoto, and S. Seino. Molecular biology of mammalian glucose transporters. Diabetes Care 13: 198–208, 1990.
 23. Bell, G. I., C. F. Burant, J. Takeda, and G. W. Gould. Structure and function of mammalian facilitative sugar transporters. J. Biol. Chem. 268: 19161–19164, 1993.
 24. Berger, M., S. Hagg, M. Goodman, and N. Ruderman. Glucose metabolism in perfused skeletal muscle. Biochem. J. 158: 191–202, 1976.
 25. Bergström, J., E. Hultman, L. Jorfeldt, B. Pernow, and J. Wahren. Effect of nicotinic acid on physical working capacity and on metabolism of muscle glycogen in man. J. Appl. Physiol. 26: 170–176, 1969.
 26. Bihler, I., P. Sawh, and I. Sloan. Dual effect of adrenalin on sugar transport in rat diaphragm muscle. Biochim. Biophys. Acta 510: 349–360, 1978.
 27. Birnbaum, M. The insulin‐sensitive glucose transporter. Int. Rev. Cytol. 137A: 239–297, 1992.
 28. Björkman, O., P. Milles, D. Wasserman, L. Lickley, and M. Vranic. Regulation of glucose turnover during exercise in pancreatectomized, totally insulin‐deficient dogs. J. Clin. Invest. 81: 1759–1767, 1988.
 29. Björkman, O., K. Sahlin, L. Hagenfeldt, and J. Wahren. Influence of glucose and fructose ingestion on the capacity for long‐term exercise in well‐trained men. Clin. Physiol. 4: 483–494, 1984.
 30. Block, N. E., D. R. Menick, K. A. Robinson, and M. G. Buse. Effect of denervation on the expression of two glucose transporter isoforms in rat hindlimb muscle. J. Clin. Invest. 88: 1546–1552, 1991.
 31. Boden, G., F. Jadali, J. White, Y. Liang, M. Mozzoli, X. Chen, E. Coleman, and C. Smith. Effects of fat on insulin‐stimulated carbohydrate metabolism in normal men. J. Clin. Invest. 88: 960–966, 1991.
 32. Bogardus, C., P. Thuillez, E. Ravussin, B. Vasquez, M. Na‐rimiga, and S. Azhar. Effect of muscle glycogen depletion on in vivo insulin action in man. J. Clin. Invest. 72: 1605–1610, 1983.
 33. Bonadonna, R., K. Zych, C. Boni, E. Ferrannini, and R. De Fronzo. Time dependence of the interaction between lipid and glucose in humans. Am. J. Physiol. 257 (Endocrinol. Metab. 20): E49–E56, 1989.
 34. Bonadonna, R. C., M. P. Saccomani, L. Seely, K. S. Zych, E. Ferrannini, C. Cobelli, and R. A. De Fronzo. Glucose transport in human skeletal muscle. Diabetes 42: 191–198, 1993.
 35. Bonen, A., P. A. Clune, and M. H. Tan. Chronic exercise increases insulin binding in muscles but not liver. Am. J. Physiol. 251 (Endocrinol. Metab. 14): E196–E203, 1986.
 36. Bonen, A., G. C. Elder, and M. Tan. Hindlimb suspension increases insulin binding and glucose metabolism. J. Appl. Physiol. 65: 1833–1839, 1988.
 37. Bonen, A., L. A. Megeney, S. C. McCarthy, J. C. McDermott, and M. H. Tan. Epinephrine administration stimulates GLUT 4 translocation but reduces glucose transport in muscle. Biochem. Biophys. Res. Commun. 187: 685–691, 1992.
 38. Bonen, A., M. Tan, P. Clune, and R. Kirby. Effects of exercise on insulin binding to human muscle. Am. J. Physiol. 248 (Endocrinol. Metab. 11): E403–E408, 1985.
 39. Bonen, A., M. Tan, and W. Watson‐Wright. Effects of exercise on insulin binding and glucose metabolism in muscle. Can. J. Physiol. Pharmacol. 62: 1500–1504, 1984.
 40. Borkman, M., L. V. Campbell, D. J. Chisholm and L. H. Storlien. Comparison of the effects on insulin sensitivity of a high carbohydrate and high fat diets in normal subjects. J. Clin. Endocrinol. Metab. 28: 731–736, 1991.
 41. Borkman, M., D. Chisholm, S. Furler, L. Storlien, E. Kraegen, L. Simons, and C. Chesterman. Effects of fish oil supplementation on glucose and lipid metabolism in NIDDM. Diabetes 38: 1314–1319, 1989.
 42. Borkman, M., L. H. Storlien, D. A. Pan, A. B. Jenkins, D. J. Chisholm, and L. V. Campbell. The relation between insulin sensitivity and the fatty‐acid composition of skeletal‐muscle phospholipids. N. Engl. J. Med. 328: 238–244, 1993.
 43. Bornemann, A., T. Ploug, and H. Schmalbruch. Subcellular localization of GLUT4 in nonstimulated and insulin‐stimulated soleus muscle of the rat. Diabetes 41: 215–221, 1992.
 44. Bourey, R. E., A. R. Coggan, W. M. Kohrt, J. P. Kirwan, D. S. King, and J. O. Holloszy. Effect of exercise on glucose disposal: response to a maximal insulin stimulus. J. Appl. Physiol. 69: 1689–1694, 1990.
 45. Brand, S. H., and J. D. Castle. Scamp‐37, a new marker within the general cell‐surface recycling system. EMBO J. 12: 3753–3761, 1993.
 46. Broberg, S., A. Katz, and K. Sahlin. Propranolol enhances adenine nucleotide degradation in human muscle during exercise. J. Appl. Physiol. 65: 2478–2483, 1988.
 47. Broberg, S., and K. Sahlin. Hyperammoniemia during prolonged exercise: an effect of glycogen depletion? J. Appl. Physiol. 65: 2475–2477, 1988.
 48. Brooks, G., and C. Donovan. Effect of endurance training on glucose kinetics during exercise. Am. J. Physiol. 244 (Endocrinol. Metab. 7): E505–E512, 1983.
 49. Brooks, G. A., G. E. Butterfield, R. R. Wolfe, B. M. Groves, R. S. Mazzeo, J. R. Sutton, E. E. Wolfel, and J. T. Reeves. Increased dependence on blood glucose after acclimatization to 4,300 m. J. Appl. Physiol. 70: 919–927, 1991.
 50. Brooks, G. A., E. E. Wolfel, B. M. Groves, P. R. Bender, G. E. Butterfield, A. Cymerman, R. S. Mazzeo, J. R. Sutton, R. R. Wolfe, and J. T. Reeves. Muscle accounts for glucose disopsal but not blood lactate appearance during exercise after acclimatization to 4,300 m. J. Appl. Physiol. 72: 2435–2445, 1992.
 51. Brozinick, J. T. J., G. J. J. Etgen, B. B. Yaspelkis, III, and J. L. Ivy. Contraction‐activated glucose uptake is normal in insulin‐resistant muscle of the obese Zucker rat. J. Appl. Physiol. 73: 382–387, 1992.
 52. Burant, C., S. Lemmon, M. Treutelaar, and M. Buse. Insulin resistance of denervated rat muscle: a model for impaired receptor‐function coupling. Am. J. Physiol. 247 (Endocrinol. Metab. 10): E657–E666, 1984.
 53. Burant, C. F., J. Takeda, E. Brot‐Laroche, I. Graeme, B. Davidson, and N. O. Davidson. Fructose transporter in human spermatozoa and small intestine is GLUT5. J. Biol. Chem. 267: 14523–14526, 1992.
 54. Burant, C. F., M. K. Treutelaar, and M. G. Buse. In vitro and in vivo activation of the insulin receptor kinase in control and denervated skeletal muscle. J. Biol. Chem. 261: 8985–8993, 1986.
 55. Burdett, E., T. Beeler, and A. Klip. Distribution of glucose transporters and insulin receptors in the plasma membrane and transverse tubules of skeletal muscle. Arch. Biochem. Biophys. 253: 279–286, 1987.
 56. Burstein, E. S., W. H. Brondyk, I. G. Macara, and Y. Takai. Regulation of the GTPase cycle of the neuronally expressed raslike GTP‐binding protein rab3a. J. Biol. Chem. 268: 22247–22250, 1993.
 57. Burstein, E. S., and I. G. Macara. Characterization of a guanine nucleotide‐releasing factor and a GTPase‐activating protein that are specific for the ras‐related protein p25 super(rab3A). Proc. Natl. Acad. Sci. U. S. A. 89: 1154–1158, 1992.
 58. Cain, C. C., W. S. Trimble, and G. E. Lienhard. Members of the VAMP family of synaptic vesicle proteins are components of glucose transporter‐containing vesicles from rat adipocytes. J. Biol. Chem. 267: 11681–11684, 1992.
 59. Calles, J., J. Cunningham, L. Nelson, N. Brown, and E. Nadel. Glucose turnover during recovery from intensive exercise. Diabetes 32: 734–738, 1983.
 60. Carruthers, A., and A. Helgerson. The human erythrocyte sugar transporter is also a nucleotide binding protein. Biochemistry 28: 8337–8346, 1989.
 61. Cartee, G., D. Young, M. Sleeper, J. Zierath, H. Wallberg‐Henriksson, and J. Holloszy. Prolonged increase in insulin‐stimulated glucose transport in muscle after exercise. Am. J. Physiol. 256 (Endocrinol. Metab. 19): E494–E499, 1989.
 62. Cartee, G. D., A. G. Douen, T. Ramlal, A. Klip, and J. O. Holloszy. Stimulation of glucose transport in skeletal muscle by hypoxia. J. Appl. Physiol. 70: 1593–1600, 1991.
 63. Cartee, G. D., and J. O. Holloszy. Exercise increases susceptibility of muscle glucose transport to activation by various stimuli. Am. J. Physiol. 258 (Endocrinol. Metab. 21): E390–E393, 1990.
 64. Castillo, C., C. Bogardus, R. Bergman, P. Thuillez, and S. Lillioja. Interstitial insulin concentrations determine glucose uptake rates but not insulin resistance in lean and obese men. J. Clin. Invest. 93: 10–16, 1994.
 65. Chauveau, M. A., and M. Kaufmann. Experiences pour la determination du coefficient de l'activite nutritive et respir‐atoire des muscles en repos et en travail. C. R. Acad. Sci. 104: 1126–1132, 1887.
 66. Cheatham, B., and C. R. Kahn. Insulin action and the insulin signaling network. Endocr. Rev. 16: 117–142, 1995.
 67. Chen, J., and P. D. Gollnick. Effect of exercise on hexoki‐nase distribution and mitochondrial respiration in skeletal muscle. Pflugers Arch. 427: 257–263, 1994.
 68. Chen, K. S., J. C. Friel, and N. B. Ruderman. Regulation of phosphatidylinositol 3‐kinase by insulin in rat skeletal muscle. Am. J. Physiol. 265 (Endocrinol. Metab. 28): E736–E742, 1993.
 69. Cherqui, G., M. Caron, D. Wicek, O. Lascols, J. Capeau, and J. Picard. Insulin stimulation of glucose metabolism in rat adipocytes: possible implication of protein kinase C. Endocrinology 118: 1759–1769, 1986.
 70. Chiasson, J.‐L., H. Shikama, D. T. W. Chu, and J. H. Ex‐ton. Inhibitory effect of epinephrine on insulin‐stimulated glucose uptake by rat skeletal muscle. J. Clin. Invest. 68: 706–713, 1981.
 71. Christensen, R., D. Shade, C. Graves, and J. McDonald. Evidence that protein kinase c is involved in regulating glucose transport in the adipocyte. Int. J. Biochem. 19: 259–265, 1987.
 72. Clausen, T. The role of calcium in the activation of the glucose transport system. Cell Calcium 1: 311–325, 1980.
 73. Clausen, T., J. Elbrink, and A. B. Dahl‐Hansen. The relationship between the transport of glucose and cations across cell membranes in isolated tissues. IX. The role of cellular calcium in the activation of the glucose transport system in rat soleus muscle. Biochem. Biophys. Acta 375: 2392–2408, 1975.
 74. Cleland, P. J., K. Abel, S. Rattigan, and M. Clark. Long‐term treatment of isolated rat soleus muscle with phorbol ester leads to loss of contraction‐induced glucose transport. Biochem. J. 267: 659–663, 1990.
 75. Cleland, P. J., G. Appleby, S. Rattigan, and M. Clark. Exercise‐induced translocation of protein kinase C and production of diacylglycerol and phosphatidic acid in rat skeletal muscle in vivo. J. Biol. Chem. 264: 17704–17711, 1989.
 76. Coggan, A., W. Kohrt, R. Spina, D. Bier, and J. Holloszy. Endurance training decreases plasma glucose turnover and oxidation during moderate‐intensity exercise in men. J. Appl. Physiol. 68: 990–996, 1990.
 77. Coggan, A. R., W. M. Kohrt, R. J. Spina, J. P. Kirwan, D. M. Bier, and J. O. Holloszy. Plasma glucose kinetics during exercise in subjects with high and low lactate thresholds. J. Appl. Physiol. 73: 1873–1880, 1992.
 78. Coggan, A. R., R. J. Spina, W. M. Kohrt, and J. O. Holloszy. Effect of prolonged exercise on muscle citrate concentration before and after endurance training in men. Am. J. Physiol. 264 (Endocrinol. Metab. 27): E215–E220, 1993.
 79. Constable, S., R. Favier, G. Cartee, D. Joung, and J. Holloszy. Muscle glucose transport: interactions of in vitro contractions, insulin and exercise. J. Appl. Physiol. 64: 2329–2332, 1988.
 80. Constable, S., R. Favier, J. McLane, R. Fell, M. Chen, and J. Holloszy. Energy metabolism in contracting rat skeletal muscle: adaption to exercise training. Am. J. Physiol. 251 (Cell Physiol. 22): C316–C322, 1987.
 81. Cooper, D., T. Konda, M. Standaert, J. Davis, R. Pollet, and R. Farese. Insulin increases membrane and cytosolic protein kinase c activity in BC3H‐1 myocytes. J. Biol. Chem. 262: 3633–3639, 1987.
 82. Cooper, D. M., D. H. Wasserman, M. Vranic, and K. Was‐serman. Glucose turnover in response to exercise during high‐ and low‐FIO2 breathing in man. Am. J. Physiol. 251 (Endocrinol. Metab. 14): E209–E214, 1986.
 83. Cooper, D. R., J. E. Watson, H. Hernandez, B. Yu, M. L. Standaert, D. K. Ways, T. T. Arnold, T. Ishizuka, and R. Farese. Direct evidence for protein kinase c involement in insulin‐stimulated hexose uptake. Biochem. Biophys. Res. Commun. 188: 142–148, 1992.
 84. Cormont, M., J.‐F. Tanti, A. Zahraoui, E. Van Obberghen, A. Tavitian, and Y. Le Marchand‐Brustel. Insulin and oka‐daic acid induce Rab4 redistribution in adipocytes. J. Biol. Chem. 268: 19491–19497, 1993.
 85. Costill, D. L., E. Coyle, G. Dalsky, W. Evans, W. Fink, and D. Hoopes. Effects of elevated plasma FFA and insulin on muscle glycogen usage during exercise. J. Appl. Physiol. 43: 695–699, 1977.
 86. Costill, D. L., D. D. Pascoe, J. Fink, R. A. Robergs, S. I. Barr, and D. Pearson. Impaired muscle glycogen resynthesis after eccentric exercise. J. Appl. Physiol. 69: 46–50, 1990.
 87. Coyle, E., A. Coggan, M. Hemmert, and J. Ivy. Muscle glycogen utilization during prolonged strenuous exercise when fed carbohydrate. J. Appl. Physiol. 61: 165–172, 1986.
 88. Coyle, E. F., M. T. Hamilton, J. G. Alonso, S. J. Montain, and J. L. Ivy. Carbohydrate metabolism during intense exercise when hyperglycemic. J. Appl. Physiol. 70: 834–840, 1991.
 89. Crone, C., and D. G. Levitt. Capillary permeability to small solutes. In: Handbook of Physiology, Cardiovascular System, Microcirculation, edited by E. M. Renkin and C. C. Michel. Bethesda, MD: Am. Physiol. Soc., 1984, p. 411–466.
 90. Cushman, S. W., and L. J. Wardzala. Potential mechanism of insulin action on glucose transport in the isolated rat adipose cell. J. Biol. Chem. 255: 4758–4762, 1980.
 91. Czech, M. P., and J. M. Buxton. Insulin action on the internalization of the GLUT4 glucose transporter in isolated rat adipocytes. J. Biol. Chem. 268: 9187–9190, 1993.
 92. Dagenais, G., R. Tancredi, and K. Zierler. Free fatty acid oxidation by forearm muscle at rest and evidence for an intramuscular lipid pool in the human forearm. J. Clin. Invest. 58: 421–431, 1976.
 93. De‐Camilli, P., and R. Jahn. Pathways to regulated exocy‐tosis in neurons. Ann. Rev. Physiol. 52: 625–645, 1990.
 94. De Feo, P., G. Perriello, E. Torlone, M. Ventura, and F. San‐teusanio. Demonstration of a role for growth hormone in glucose counterregulation. Am. J. Physiol. 256 (Endocrinol. Metab. 19): E835–E843, 1989.
 95. De Fronzo, R. The triumvirate: β‐cell, muscle, liver. A collusion responsible for NIDDM. Diabetes 37: 667–687, 1988.
 96. De Fronzo, R., E. Ferrannini, Y. Sato, P. Felig, and J. Wahren. Synergistic interaction between exercise and insulin on peripheral glucose uptake. J. Clin. Invest. 68: 1468–1474, 1981.
 97. De Fronzo, R., R. Gunnarsson, O. Björkman, M. Olsson, and J. Wahren. Effects of insulin on peripheral and splanchnic glucose metabolism in noninsulin‐dependent (type II) diabetes mellitus. J. Clin. Invest. 76: 149–155, 1985
 98. Deibert, D. C., and R. A. De Fronzo. Epinephrine‐induced insulin resistance in man. J. Clin. Invest. 65: 717–721, 1980.
 99. Dela, F., A. Handberg, K. J. Mikines, J. Vinten, and H. Galbo. GLUT 4 and insulin receptor binding and kinase activity in trained human muscle. J. Physiol. (Lond.) 469: 615–624, 1993.
 100. Dela, F., K. J. Mikines, M. von Linstow, N. H. Secher, and H. Galbo. Effect of training on insulin‐mediated glucose uptake in human muscle. Am. J. Physiol. 263 (Endocrinol. Metab. 26): E1134–E1143, 1992.
 101. Devlin, J., J. Barlow, and E. Horton. Whole body and regional fuel metabolism during early postexercise recovery. Am. J. Physiol. 256 (Endocrinol. Metab. 19): E167–E172, 1989.
 102. Devlin, J., M. Hirshman, and E. Horton. Enhanced peripheral and splanchnic insulin sensitivity in NIDDM men after single bout of exercise. Diabetes 36: 434–439, 1987.
 103. Dohm, G., M. Sinha, and J. Caro. Insulin receptor binding and protein kinase activity in muscles of trained rats. Am. J. Physiol. 252 (Endocrinol. Metab. 15): E170–E175, 1987.
 104. Dohm, G. L., P. L. Dolan, W. R. Frisell, and R. W. Dudek. Role of transverse tubules in insulin stimulated muscle glucose transport. J. Cell. Biochem. 52: 1–7, 1993.
 105. Dohm, G. L., C. W. Elton, J. E. Friedman, P. F. Pilch, W. J. Pories, S. M. J. Atkinson, and J. F. Caro. Decreased expression of glucose transporter in muscle from insulin‐resistant patients. Am. J. Physiol. 260 (Endocrinol. Metab. 23): E459–E463, 1991.
 106. Donovan, C., and K. Sumida. Training improves glucose homeostasis in rats during exercise via glucose production. Am. J. Physiol. 258 (Regulatory Integrative Comp. Physiol. 27): R770–R776, 1990.
 107. Douen, A., T. Ramlal, G. Cartee, and A. Klip. Exercise modulates the insulin‐induced translocation of glucose transporters in rat skeletal muscle. FEBS Lett. 261: 256–260, 1990.
 108. Douen, A., T. Ramlal, A. Klip, D. Young, G. Cartee, and J. Holloszy. Exercise‐induced increase in glucose transporters in plasma membranes of rat skeletal muscle. Endocrinology 124: 449–454, 1989.
 109. Douen, A., T. Ramlal, S. Rastogi, P. Bilan, G. Cartee, M. Vranic, J. Holloszy, and A. Klip. Exercise induces recruitment of the “insulin‐responsive glucose transporter.” J. Biol. Chem. 265: 13427–13430, 1990.
 110. Doyle, J. A., W. M. Sherman, and R. L. Strauss. Effects of eccentric and concentric exercise on muscle glycogen replenishment. J. Appl. Physiol. 74: 1848–1855, 1993.
 111. Dudek, R. W., G. L. Dohm, G. D. Holman, S. W. Cushman, and C. M. Wilson. Glucose transporter localization in rat skeletal muscle. Auto‐radiographic study using ATB‐(2–3H)BMPA photolabel. FEBS Lett. 339: 205–208, 1994.
 112. Dyck, D. J., C. T. Putman, G. J. F. Heigenhauser, E. Hult‐man, and L. L. Spriet. Regulation of fat‐carbohydrate interaction in skeletal muscle during intense aerobic cycling. Am. J. Physiol. 265 (Endocrinol. Metab. 28): E852–E859, 1993.
 113. Dyck, D. J., and L. L. Spriet. Elevated muscle citrate does not reduce carbohydrate utilization during tetanic stimulation. Can. J. Physiol. Pharmacol. 72: 117–125, 1994.
 114. Ebeling, P., R. Bourey, L. Koranyi, J. A. Tuominen, L. C. Groop, J. Henriksson, M. Mueckler, A. Sovijärvi, and V. A. Koivisto. Mechanism of enhanced insulin sensitivity in athletes. J. Clin. Invest. 92: 1623–1631, 1993.
 115. Etgen, G. J. J., J. T. J. Brozinick, H. Y. Kang, and J. L. Ivy. Effects of exercise training on skeletal muscle glucose uptake and transport. Am. J. Physiol. 264 (Cell Physiol. 33): C727–C733, 1993.
 116. Etgen, G. J. J., R. P. Farrar, and J. L. Ivy. Effect of chronic electrical stimulation on GLUT‐4 protein content in fast‐twitch muscle. Am. J. Physiol. 264 (Regulatory Integrative Comp. Physiol. 33): R816–R819, 1993.
 117. Etgen, G. J. J., A. R. Memon, G. A. Thompson, and J. L. Ivy. Insulin‐ and contraction‐stimulated translocation of GTP‐binding proteins and GLUT4 protein in skeletal muscle. J. Biol. Chem. 268: 20164–20169, 1993.
 118. Ferrannini, E., E. Barrett, B. Bevilacqua, and R. De Fronzo. Effect of fatty acids on glucose production and utilization in man. J. Clin. Invest. 72: 1737–1747, 1983.
 119. Fielding, R. A., T. J. Manfredi, W. Ding, M. A. Fiatarone, W. J. Evans, and J. G. Cannon. Acute phase response in exercise III. Neutrophil and IL‐1β accumulation in skeletal muscle. Am. J. Physiol. 265 (Regulatory Integrative Comp. Physiol. 34): R166–R172, 1993.
 120. Foley, J., and T. Huecksteadt. Glucose 6‐phosphate effects on deoxyglucose, glucose and methylglucose transport in rat adipocytes. Biochim. Biophys. Acta 805: 313–316, 1984.
 121. Friedman, J., W. Sherman, M. Reed, C. Elton, and G. Dohm. Exercise training increases glucose transport protein GLUT‐4 in skeletal muscle of obese Zucker (fa/fa) rats. FEBS Lett. 268: 13–16, 1990.
 122. Friedman, J. E., R. W. Dudek, D. S. Whitehead, D. L. Downes, W. R. Frisell, J. F. Caro, and G. L. Dohm. Immunolocalization of glucose transporter GLUT4 within human skeletal muscle. Diabetes 40: 150–154, 1991.
 123. Fuchi, T., H. Rosdahl, R. C. Hickner, U. Ungerstedt, and J. Henriksson. Microdialysis of rat skeletal muscle and adipose tissue: dynamics of the interstitial glucose pool. Acta Physiol. Scand. 151: 249–260, 1994.
 124. Fukagawa, N. K., J. W. Anderson, G. Hageman, V. R. Young, and K. L. Minaker. High‐carbohydrate, high‐fiber diets increase peripheral insulin sensitivity in healthy young and old adults. Am. J. Clin. Nutr. 52: 524–528, 1990.
 125. Furler, S. M., A. B. Jenkins, L. H. Storlien, and E. W. Krae‐gen. In vivo location of the rate‐limiting step of hexose uptake in muscle and brain tissue of rats. Am. J. Physiol. 261 (Endocrinol. Metab. 24): E337–E347, 1991.
 126. Galbo, H. Hormonal and Metabolic Adaptation to Exercise. New York: Georg Thieme, 1983, p. 1–116.
 127. Galbo, H. Integrated endocrine responses and exercise. In: Endocrinology, edited by L. J. De Groot. Philadelphia: W.B. Saunders Company, 1995, p. 2692–2701.
 128. Gao, J., E. A. Gulve, and J. O. Holloszy. Contraction‐induced increase in muscle insulin sensitivity: requirement for a serum factor. Am. J. Physiol. 266 (Endocrinol. Metab. 29): E186–E192, 1994.
 129. Garetto, L. P., E. A. Richter, M. N. Goodman, and N. B. Ruderman. Enhanced muscle glucose metabolism after exercise in the rat: the two phases. Am. J. Physiol. 246 (Endocrinol. Metab. 9): E471–E475, 1984.
 130. Garippa, R. J., T. W. Judge, D. E. James, and T. E. McGraw. The amino terminus of GLUT4 functions as an internalization motif but not an intracellular retention signal when substituted for the transferrin receptor cytoplasmic domain. J. Cell Biol. 124: 705–715, 1994.
 131. Garvey, W. T., and M. J. Birnbaum. Cellular insulin action and insulin resistance. In: Bailliere's Clinical Endocrinology and Metabolism, edited by E. Ferrannini, London: Bailliere Tindal, 1993, p. 785–874.
 132. Geppert, M., V. Y. Bolshakov, S. A. Siegelbaum, K. Takei, P. De Camilli, R. E. Hammer, and T. C. Südhof. The role of Rab3A in neurotransmitter release. Nature 369: 493–497, 1994.
 133. Goldstein, M. S., V. Mullick, B. Huddlestun, and R. Levine. Action of muscular work on transfer of sugars across cell barriers: comparison with action of insulin. Am. J. Physiol. 173: 212–216, 1953.
 134. Gollnick, P., B. Pernow, B. Essen, E. Jansson, and B. Saltin. Availability of glycogen and plasma ffa for substrate utilization in leg muscle of man during exercise. Clin. Physiol. 1: 27–42, 1981.
 135. Goodyear, L., M. Hirshman, P. King, E. Horton, and C. Thompson. Skeletal muscle plasma membrane glucose transport and glucose transporters after exercise. J. Appl. Physiol. 68: 193–198, 1990.
 136. Goodyear, L. J., M. F. Hirshman, and E. S. Horton. Exercise‐induced translocation of skeletal muscle glucose transporters. Am. J. Physiol. 261 (Endocrinol. Metab. 24): E795–E799, 1991.
 137. Goodyear, L. J., M. F. Hirshman, R. J. Smith, and E. S. Horton. Glucose transporter number, activity and isoform content in plasma membranes of red and white skeletal muscle. Am. J. Physiol. 261 (Endocrinol. Metab. 24): E556–E561, 1991.
 138. Goodyear, L. J., P. A. King, M. F. Hirshman, C. M. Thompson, E. D. Horton, and E. S. Horton. Contractile activity increases plasma membrane glucose transporters in absence of insulin. Am. J. Physiol. 258 (Endocrinol. Metab. 21): E667–E672, 1990.
 139. Goonewardene, I. P., and F. Karim. Attenuation of exercise vasodilatation by adenosine deaminase in anaesthetized dogs. J. Physiol. (Lond.) 442: 65–79, 1991.
 140. Gorga, F. R., and G. E. Lienhard. Equilibria and kinetics of ligand binding to the human erythrocyte glucose transporter. Evidence for an alternating conformational model for transport. Biochemistry 20: 5108–5133, 1981.
 141. Gould, G. W., and G. D. Holman. The glucose transporter family: structure, function and tissue‐specific expression. Biochetn. J. 295: 329–341, 1993.
 142. Green, A. The insulin‐like effect of sodium vanadate on adipocyte glucose transport is mediated at a post‐insulin‐receptor level. Biochem. J. 238: 663–669, 1986.
 143. Grimditch, G., R. J. Barnard, S. A. Kaplan, and E. Sternlicht. Effect of training on insulin binding to rat skeletal muscle sarcolemmal vesicles. Am. J. Physiol. 250 (Endocrinol. Metab. 13): E570–E575, 1986.
 144. Grubb, B., and J. Snarr. Effect of flow rate and glucose concentration on glucose uptake rate by the rat limb. Proc. Soc. Exp. Biol. Med. 154: 33–36, 1977.
 145. Gulve, E. A., G. D. Carter, J. R. Zierath, V. M. Corpus, and J. O. Holloszy. Reversal of enhanced muscle glucose transport after exercise: roles of insulin and glucose. Am. J. Physiol. 259 (Endocrinol. Metab. 22): E685–E691, 1990.
 146. Guma, A., J. R. Zierath, H. Wallberg‐Henriksson, and A. Klip. Insulin induces translocation of GLUT‐4 glucose transporters in human skeletal muscle. Am. J. Physiol. 268 (Endocrinol. Metab. 31): E613–E622, 1995.
 147. Hall, A. Ras‐related proteins. Curr. Opin. Cell. Biol. 5: 265–268, 1993.
 148. Handberg, A., L. Kayser, P. E. Høyer, and J. Vinten. A substantial part of GLUT‐1 in crude membranes from muscle originates from perineurial sheaths. Am. J. Physiol. 262 (Endocrinol. Metab. 25): E721–E727, 1992.
 149. Handberg, A., A. Vaag, P. Damsbo, H. Beck‐Nielsen, and J. Vinten. Expression of insulin regulatable glucose transporters in skeletal muscle from type 2 (non‐insulin‐dependent) diabetic patients. Diabetologia 33: 625–627, 1990.
 150. Hardy, R. W., J. H. Ladenson, E. J. Henriksen, J. O. Holloszy, and J. M. McDonald. Palmitate stimulates glucose transport in rat adipocytes by a mechanism involving translocation of the insulin sensitive glucose transporter (GLUT 4). Biochem. Biophys. Res. Commun. 177: 343–349, 1991.
 151. Hargreaves, M., B. Kiens, and E. A. Richter. Effect of increased plasma free fatty acid concentrations on muscle metabolism in exercising men. J. Appl. Physiol. 70: 194–201, 1991.
 152. Havel, R. J., B. Pernow, and N. L. Jones. Uptake and release of free fatty acids and other metabolites in the legs of exercising men. J. Appl. Physiol. 23: 90–99, 1967.
 153. Henriksen, E., K. J. Rodnick, and J. O. Holloszy. Activation of glucose transport in skeletal muscle by phospholipase C and phorbol ester. J. Biol. Chem. 264: 21536–21543, 1989.
 154. Henriksen, E., M. Tischler, and D. Johnson. Increased response to insulin of glucose metabolism in the 6‐day unloaded rat soleus muscle. J. Biol. Chem. 261: 10707–10712, 1986.
 155. Henriksen, E. J., R. E. Bourey, K. J. Rodnick, L. Koranyi, M. A. Permutt, and J. O. Holloszy. Glucose transporter protein content and glucose transport capacity in rat skeletal muscles. Am. J. Physiol. 259 (Endocrinol. Metab. 22): E593–E598, 1990.
 156. Henriksen, E. J., K. J. Rodnick, C. E. Mondon, D. James, and J. O. Holloszy. Effect of denervation or unweighting on GLUT‐4 protein in rat soleus muscle. J. Appl. Physiol. 70: 2322–2327, 1991.
 157. Henriksson, J. Training induced adaptations of skeletal muscle and metabolism during submaximal exercise. J. Physiol. (Lond.) 270: 661–675, 1977.
 158. Hespel, P., and E. A. Richter. Glucose uptake and transport in contracting, perfused rat muscle with different precon‐traction glycogen concentrations. J. Physiol. (Lond.) 427: 347–359, 1990.
 159. Hespel, P., L. Vergauen, K. Vandenberghe, and E. A. Richter. Important role of insulin and flow in stimulating glucose uptake in contracting skeletal muscle. Diabetes 44: 210–215, 1995.
 160. Hirshman, M., L. Goodyear, L. Wardzala, and E. Horton. Identification of an intracellular pool of glucose transporters from basal and insulin‐stimulated rat skeletal muscle. J. Biol. Chem. 265: 987–991, 1990.
 161. Holloszy, J., and H. Narahara. Enhanced permeability to sugar associated with muscle contraction. J. Gen. Physiol. 50: 551–562, 1967.
 162. Holloszy, J. O., and H. T. Narahara. Studies of tissue permeability. J. Biol. Chem. 240: 3493–3500, 1965.
 163. Holloszy, J. O., and H. T. Narahara. Nitrate ions: potentiation of increased permeability to sugar associated with muscle contractions. Science 155: 573–575, 1967.
 164. Holman, G. D., I. J. Kozka, A. E. Clark, C. J. Flower, J. Saltis, A. D. Habberfield, I. A. Simpson, and S. W. Cushman. Cell surface labeling of glucose transporter isoform GLUT4 by bismannose photolabel. J. Biol. Chem. 265: 18172–18179, 1990.
 165. Horton, E. Exercise and diabetes mellitus. Med. Clin. North Am. 72: 1301–1321, 1988.
 166. Houmard, J. A., M. H. Shinebarger, P. L. Dolan, N. Legget‐Frazier, R. K. Bruner, M. R. McCammon, R. G. Israel, and G. L. Dohm. Exercise training increases GLUT‐4 protein concentration in previously sedentary middle‐aged men. Am. J. Physiol. 264 (Endocrinol. Metab. 27): E896–E901, 1993.
 167. Hundal, H. S., A. Ahmed, A. Guma, Y. Mitsumoto, A. Marette, M. J. Rennie, and A. Klip. Biochemical and im‐munocytochemical localization of the “GLUT5 glucose transporter” in human skeletal muscle. Biochem. J. 286: 339–343, 1992.
 168. Huycke, E., and P. Kruhøffer. Effects of insulin and muscular exercise upon the uptake of hexoses by muscle cells. Acta Physiol. Scand. 34: 231–249, 1955.
 169. Ishizuka, T., D. Cooper, and R. Farese. Insulin stimulates the translocation of protein kinase C in rat adipocytes. FEBS Lett. 257: 337–340, 1989.
 170. Ishizuka, T., D. Cooper, H. Hernandez, D. Buckley, M. Standaert, and R. Farese. Effects of insulin on diacylglycerol‐protein kinase c signaling in rat diaphragm and soleus muscles and relationship to glucose transport. Diabetes 39: 181–190, 1990.
 171. Issekutz, B. Role of beta‐adrenergic receptors in mobilization of energy sources in exercising dogs. J. Appl. Physiol. 44: 869–876, 1978.
 172. Issekutz, B. Effect of epinephrine on carbohydrate metabolism in exercising dogs. Metabolism 34: 457–464, 1985.
 173. Iversen, P. O., and G. Nicolaysen. Local blood flow and glucose uptake within resting and exercising rabbit skeletal muscle. Am. J. Physiol. 260 (Heart Circ. Physiol. 29): H1795–H1801, 1991.
 174. James, D., K. Burleigh, and E. Kraegen. In vivo glucose metabolism in individual tissues of the rat. J. Biol. Chem. 261: 6366–6374, 1986.
 175. James, D., E. Kraegen, and D. Chisholm. Effects of exercise training on in vivo insulin action in individual tissues of the rat. J. Clin. Invest. 76: 657–666, 1985.
 176. Jansson, E., P. Hjemdahl, and L. Kaijser. Epinephrine‐induced changes in muscle carbohydrate metabolism during exercise in male subjects. J. Appl. Physiol. 60: 1466–1470, 1986.
 177. Jansson, E., and L. Kaijser. Effect of diet on muscle glycogen and blood glucose utilization during short‐term exercise in man. Acta Physiol. Scand. 115: 341–347, 1982.
 178. Jansson, E., and L. Kaijser. Substrate utilization and enzymes in skeletal muscle of extremely endurance‐trained men. J. Appl. Physiol. 62: 999–1005, 1987.
 179. Jansson, P., J. Fowelin, U. Smith, and P. Lönnroth. Characterization by microdialysis of intercellular glucose level in subcutaneous tissue in humans. Am. J. Physiol. 255 (Endocrinol. Metab. 18): E218–E220, 1988.
 180. Jensen‐Urstad, M., and G. Ahlborg. Is the high lactate release during arm exercise due to a low training status? Clin. Physiol. 12: 487–496, 1992.
 181. Jhun, B. H., A. L. Rampal, H. Liu, M. Lachaal, and C. Y. Jung. Effects of insulin on steady state kinetics of GLUT4 subcellular distribution in rat adipocytes. J. Biol. Chem. 267: 17710–17715, 1992.
 182. Jorfeldt, L., and J. Wahren. Human forearm muscle metabolism during exercise. V. Quantitative aspects of glucose uptake and lactate production during exercise. Scand. J. Clin. Lab. Invest. 26: 73–81, 1970.
 183. Kahn, B. B., A. S. Rosen, J. F. Bak, P. H. Andersen, P. Damsbo, S. Lund, and O. Pedersen. Expression of GLUT 1 and GLUT 4 glucose transporters in skeletal muscle of humans with insulin‐dependent diabetes mellitus: regulatory effects of metabolic factors. J. Clin. Endocrinol. Metab. 74: 1101–1109, 1992.
 184. Kasanicki, M., and P. Pilch. Regulation of glucose‐transporter function. Diabetes Care 13: 219–227, 1990.
 185. Katz, A., S. Broberg, K. Sahlin, and J. Wahren. Leg glucose uptake during maximal dynamic exercise in humans. Am. J. Physiol. 251 (Endocrinol. Metab. 14): E65–E70, 1986.
 186. Katz, A., I. Raz, M. K. Spencer, R. Rising, and D. M. Mott. Hyperglycemia induces accumulation of glucose in human skeletal muscle. Am. J. Physiol. 260 (Regulatory Integrative Comp. Physiol. 29): R698–R703, 1991.
 187. Katz, A., K. Sahlin, and S. Broberg. Regulation of glucose utilization in human skeletal muscle during moderate dynamic exercise. Am. J. Physiol. 260 (Endocrinol. Metab. 23): E411–E415, 1991.
 188. Kelley, D. E., M. Mokan, J. Simoneau, and L. J. Mandarino. Interaction between glucose and free fatty acid metabolism in human skeletal muscle. J. Clin. Invest. 92: 91–98, 1993.
 189. Kern, M., P. L. Dolan, R. S. Mazzeo, J. A. Wells, and G. L. Dohm. Effect of aging and exercise on GLUT‐4 glucose transporters in muscle. Am. J. Physiol. 263 (Endocrinol. Metab. 26): E362–E367, 1992.
 190. Kiens, B., B. Essen‐Gustavsson, N. J. Christensen, and B. Saltin. Skeletal muscle substrate utilization during submax‐imal exercise in man: effect of endurance training. J. Physiol. (Lond.) 469: 459–478, 1993.
 191. Kiens, B., and E. A. Richter. Types of carbohydrate in an ordinary diet affect insulin action and muscle substrates in humans. Am. J. Clin. Nutr. 1996 (in press).
 192. King, D., G. Dalsky, W. Clutter, D. Young, and M. Staten. Effects of exercise and lack of exercise on insulin sensitivity and responsiveness. J. Appl. Physiol. 64: 1942–1946, 1988.
 193. King, D., G. Dalsky, M. Staten, W. Clutter, D. van Houten, and J. Holloszy. Insulin action and secretion in endurance‐trained and untrained humans. J. Appl. Physiol. 63: 2247–2252, 1987.
 194. King, D. S., T. L. Feltmeyer, P. J. Baldus, R. L. Sharp, and J. Nespor. Effects of eccentric exercise on insulin secretion and action in humans. J. Appl. Physiol. 75: 2151–2156, 1993.
 195. King, P. A., J. J. Berts, E. D. Horton, and E. S. Horton. Exercise, unlike insulin, promotes glucose transporter translocation in obese Zucker rat muscle. Am. J. Physiol. 265 (Regulatory Integrative Comp. Physiol. 34): R447–R452, 1993.
 196. King, P. A., M. F. Hirshman, E. D. Horton, and E. S. Horton. Glucose transport in skeletal muscle membrane vesicles from control and exercised rats. Am. J. Physiol. 257 (Cell Physiol. 26): C1128–C1134, 1989.
 197. Kirwan, J., D. Costill, H. Kuipers, M. Burrell, and W. Fink. Substrate utilization in leg muscle of men after heat acclimation. J. Appl. Physiol. 63: 31–35, 1987.
 198. Kirwan, J. P., R. C. Hickner, K. E. Yarasheski, W. M. Kohrt, B. V. Wiethop, and J. O. Holloszy. Eccentric exercise induces transient insulin resistance in healthy individuals. J. Appl. Physiol. 72: 2197–2202, 1992.
 199. Kjær, M., P. Farrell, N. Christensen, and H. Galbo. Increased epinephrine response and inaccurate glucoregulation in exercising athletes. J. Appl. Physiol. 61: 1693–1700, 1986.
 200. Kjær, M., C. Hollenbeck, B. Frey‐Hewitt, H. Galbo, W. Haskell, and G. Reaven. Glucoregulation and hormonal responses to maximal exercise in non‐insulin‐dependent diabetes. J. Appl. Physiol. 68: 2067–2074, 1990.
 201. Kjasr, M., B. Kiens, M. Hargreaves, and E. A. Richter. Influence of active muscle mass on glucose homeostasis during exercise in humans. J. Appl. Physiol. 71: 552–557, 1991.
 202. Klip, A., and T. Ramlal. Protein kinase C is not required for insulin stimulation of hexose uptake in muscle cells in culture. Biochem. J. 242: 131–136, 1987.
 203. Knapik, J., C. Meredith, B. Jones, L. Suek, V. Young, and W. Evans. Influence of fasting on carbohydrate and fat metabolism during rest and exercise in men. J. Appl. Physiol. 64: 1923–1929, 1988.
 204. Koch, L. G., S. L. Britton, and P. J. Metting. Adenosine is not essential for exercise hyperaemia in the hindlimb in conscious dogs. J. Physiol. (Lond.) 429: 63–75, 1990.
 205. Koivisto, V. A., R. E. Bourey, H. Vuorinen‐Markkola, and L. Koranyi. Exercise reduces muscle glucose transport protein (GLUT‐4) mRNA in type 1 diabetic patients. J. Appl. Physiol. 74: 1755–1760, 1993.
 206. Kolterman, O. G., M. Greenfield, G. M. Reaven, M. Saekow, and J. M. Olefsky. Effect of a high carbohydrate diet on insulin binding to adipocytes and on insulin action in vivo in man. Diabetes 28: 731–736, 1979.
 207. Kong, X., J. Manchester, S. Salmons, and J. C. Lawrence, Jr. Glucose transporters in single skeletal muscle fibers. J. Biol. Chem. 269: 12963–12967, 1994.
 208. Kono, T., F. W. Robinson, T. L. Blevins, and O. Ezaki. Evidence that translocation of the glucose transport activity is the major mechanism of insulin action on glucose transport in fat cells. J. Biol. Chem. 257: 10942–10947, 1982.
 209. Koranyi, L. I., R. E. Bourey, H. Vuorinen‐Markkola, V. A. Koivisto, M. Mueckler, M. A. Permutt, and H. Yki‐Järvinen. Level of skeletal muscle glucose transporter protein correlates with insulin‐stimulated whole body glucose disposal in man. Diabetologia 34: 763–765, 1991.
 210. Kraegen, E., D. James, L. Storlien, K. Burleigh, and D. Chisholm. In vivo insulin resistance in individual peripheral tissues of the high fat fed rat: assessment by euglycaemic clamp plus deoxyglucose administration. Diabetologia 29: 192–198, 1986.
 211. Kraegen, E., L. Storlien, A. Jenkins, and D. James. Chronic exercise compensates for insulin resistance induced by a high‐fat diet in rats. Am. J. Physiol. 256 (Endocrinol. Metab. 19): E242–E249, 1989.
 212. Kristiansen, S., J. Wojtaszewski, C. Juel, and E. A. Richter. Effect of glucose‐6‐phosphate and pH on glucose transport in muscle giant vesicles. Acta Physiol. Scand. 150: 227–233, 1994.
 213. Kubo, K., and J. Foley. Rate‐limiting steps for insulin‐mediated glucose uptake into perfused rat hindlimb. Am. J. Physiol. 250 (Endocrinol. Metab. 13): E100–E102, 1986.
 214. Kusunoki, M., L. H. Storlien, J. MacDessi, N. D. Oakes, C. Kennedy, D. J. Chisholm, and E. W. Kraegen. Muscle glucose uptake during and after exercise is normal in insulin‐resistant rats. Am. J. Physiol. 264 (Endocrinol. Metab. 27): E167–E172, 1993.
 215. Laakso, M., S. V. Edelman, G. Brechtel, and A. D. Baron. Effects of epinephrine on insulin‐mediated glucose uptake in whole body and leg muscle in humans: role of blood flow. Am. J. Physiol. 263 (Endocrinol. Metab. 26): E199–E204, 1992.
 216. Langfort, J., L. Budohoski, H. Kaciuba‐Uscilko, K. Nazar, J. R. A. Challiss, and E. A. Newsholme. Effect of endurance and sprint exercise on the sensitivity of glucose metabolism to insulin in the epitrochlearis muscle of sedentary and trained rats. Eur. J. Appl. Physiol. 62: 145–150, 1991.
 217. Langfort, J., D. Czarnowski, L. Budohoski, J. Gorski, H. Kaciuba‐Uscilko, and K. Nazar. Electrical stimulation partly reverses the muscle insulin resistance caused by tenotomy. FEBS Lett. 315: 183–186, 1993.
 218. Laurie, S. M., C. C. Cain, G. E. Lienhard, and J. D. Castle. The glucose transporter GLUT4 and secretory carrier membrane proteins (SCAMPs) colocalize in rat adipocytes and partially segregate during insulin stimulation. J. Biol. Chem. 268: 19110–19117, 1993.
 219. Law, W., M. McLane, and R. Raymond. Adenosine is required for mycocardial insulin responsiveness in vivo. Diabetes 37: 842–845, 1988.
 220. Lawrence, J. C., Jr., J. F. Hiken, and D. E. James. Stimulation of glucose transport and glucose transporter phosphorylation by okadaic acid in rat adipocytes. J. Biol. Chem. 265: 19768–19776, 1990.
 221. Lee, J., and P. F. Pilch. The insulin receptor: structure, function, and signaling. Am. J. Physiol. 266 (Cell Physiol. 35): C319–C334, 1994.
 222. Lilhoja, S., A. Young, C. Culter, J. Ivy, W. G. Abbott, J. K. Zawadzki, H. Yki‐Järvinen, L. Christin, T. W. Secomb, and C. Bogardus. Skeletal muscle capillary density and fiber type are possible determinants of in vivo insulin resistance in man. J. Clin. Invest. 80: 415–424, 1987.
 223. Lipman, R., J. Schnure, E. Bradley, and F. Lecocq. Impairment of peripheral glucose utilization in normal subjects by prolonged bed rest. J. Lab. Clin. Med. 76: 221–230, 1970.
 224. Lund, S., G. D. Holman, O. Schmitz, and O. Pedersen. Glut 4 content in the plasma membrane of rat skeletal muscle: comparative studies of the subcellular fractionation method and the exofacial photolabelling technique using ATB‐BMPA. FEBS Lett. 330: 312–318, 1993.
 225. Lund, S., H. Vestergaard, P. H. Andersen, O. Schmitz, L. B. H. Gotzsche, and O. Pedersen. GLUT‐4 content in plasma membrane of muscle from patients with non‐insulin‐dependent diabetes mellitus. Am. J. Physiol. 265 (Endocrinol. Metab. 28): E889–E897, 1993.
 226. Maehlum, S., P. Felig, and J. Wahren. Splanchnic glucose and muscle glycogen metabolism after glucose feeding during postexercise recovery. Am. J. Physiol. 235 (Endocrinol. Metab. Gastrointest. Physiol. 4): E255–E260, 1978.
 227. Manchester, J., X. Kong, O. H. Lowry, and J. C. Lawrence, Jr. Ras signalling in the activation of glucose transport by insulin. Proc. Natl. Acad. Sci. U. S. A. 91: 4644–4648, 1994.
 228. Mandarino, L., K. Wright, L. Verity, J. Nichols, and J. Bell. Effects of insulin infusion on human skeletal muscle pyruvate dehydrogenase, phosphofructokinase and glycogen synthase. J. Clin. Invest. 80: 655–663, 1987.
 229. Marette, A., E. Burdett, A. Douen, M. Vranic, and A. Klip. Insulin induces the translocation of GLUT 4 from a unique intracellular organelle to transverse tubules in rat skeletal muscle. Diabetes 41: 1562–1569, 1992.
 230. Marette, A., J. M. Richardson, T. Ramlal, T. W. Balon, M. Vranic, J. E. Pessin, and A. Klip. Abundance, localization, and insulin‐induced translocation of glucose transporters in red and white muscle. Am. J. Physiol. 263 (Cell Physiol. 32): C443–C452, 1992.
 231. Marker, J. C., I. B. Hirsch, L. J. Smith, C. A. Parvin, J. O. Holloszy, and P. E. Cryer. Catecholamines in the prevention of hypoglycemia during exercise in humans. Am. J. Physiol. 260 (Enddocrinol. Metab. 23): E705–E712, 1991.
 232. Marliss, E. B., E. Simantirakis, P. D. G. Miles, C. Purdon, R. Gougeon, C. J. Field, J. B. Halter, and M. Vranic. Glucoregulatory and hormonal responses to repeated bouts of intense exercise in normal male subjects. J. Appl. Physiol. 71: 924–933, 1991.
 233. Marshall, S., W. T. Garvey, and R. R. Traxinger. New insights into the metabolic regulation of insulin action and insulin resistance: role of glucose and amino acids. FASEB J. 5: 3031–3036, 1991.
 234. Martin, I. K., A. Katz, and J. Wahren. Enhanced leg glucose uptake and normal hepatic glucose output during exercise in patients with NIDDM. Diabetes 42 (Suppl. 1): 107A, 1993 (Abstract).
 235. Mayer, S. E., A. C. Mayfield, and J. A. Hass. Heart muscle hexokinase: subcellular distribution and inhibition by glucoses‐phosphate. Mol. Pharmacol. 2: 393–405, 1966.
 236. McConnel, G., M. McCoy, J. Proietto, and M. Hargreaves. Skeletal muscle GLUT4 and glucose uptake during exercise in humans. J. Appl. Physiol. 77: 1565–1568, 1994.
 237. Megeney, L. A., G. C. B. Elder, M. H. Tan, and A. Bonen. Increased glucose transport in nonexercising muscle. Am. J. Physiol. 262 (Endocrinol. Metab. 25): E20–E26, 1992.
 238. Megeney, L. A., P. D. Neufer, L. G. Dohm, M. H. Tan, C. A. Blewett, G. C. B. Elder, and A. Bonen. Effects of muscle activity and fiber composition on glucose transport and GLUT‐4. Am. J. Physiol. 264 (Endocrinol. Metab. 27): E583–E593, 1993.
 239. Megeney, L. A., M. A. Prasad, M. H. Tan, and A. Bonen. Expression of the insulin regulatable transporter GLUT4 in muscle is influenced by neurogenic factors. Am. J. Physiol. 266 (Endocrinol. Metab. 29): E813–E816, 1994.
 240. Mendenhall, L. A., S. C. Swanson, D. L. Habash, and A. R. Coggan. Ten days of exercise training reduces glucose production and utilization during moderate‐intensity exercise. Am. J. Physiol. 266 (Endocrinol. Metab. 29): E136–E143, 1994.
 241. Mikines, K., B. Sonne, P. Farrell, B. Tronier, and H. Galbo. Effect of physical exercise on sensitivity and responsiveness to insulin in humans. Am. J. Physiol. 254 (Endocrinol. Metab. 17): E248–E259, 1988.
 242. Mikines, K., B. Sonne, P. Farrell, B. Tronier, and H. Galbo. Effect of training on the dose‐response relationship for insulin action in men. J. Appl. Physiol. 66: 695–703, 1989.
 243. Mikines, K. J., E. A. Richter, F. Dela, and H. Galbo. Seven days of bed rest decrease insulin action on glucose uptake in leg and whole body. J. Appl. Physiol. 70: 1245–1254, 1991.
 244. Minuk, H. L., M. Vranic, E. B. Marliss, A. K. Hanna, A. M. Albisser, and B. Zinman. Glucoregulatory and metabolic response to exercise in obese noninsulin‐dependent diabetes. Am. J. Physiol. 240 (Endocrinol. Metab. 3): E458–E464, 1981.
 245. Mollard, G. F., G. A. Mignery, M. Baumert, M. S. Perin, T. J. Hanson, P. M. Burger, R. Jahn, and T. C. Suedhof. Rab3 is a small GTP‐binding protein exclusively localized to synaptic vesicles. Proc. Natl. Acad. Sci. U. S. A. 87: 1988–1992, 1990.
 246. Mondon, C. E., C. B. Dolkas, and G. M. Reaven. Site of enhanced insulin sensitivity in exercise‐trained rats. Am. J. Physiol. 239 (Endocrinol. Metab. 8): E169–E177, 1980.
 247. Mueckler, M. Facilitative glucose transporters. Eur. J. Biochem. 219: 713–725, 1994.
 248. Møller, N., P. Butler, M. Antsiverov, and K. G. M. Alberti. Effects of growth hormone on insulin sensitivity and forearm metabolism in normal man. Diabetologia 32: 105–110, 1989.
 249. National Institutes of Health. Consensus development conference on diet and exercise in non‐insulin‐dependent diabetes mellitus. Diabetes Care 10: 639–644, 1987.
 250. Nelson, T. E., R. C. White, and T. E. Watts. The action of the glycogen debranching enzyme system in a muscle protein particle. Biochem. Biophys. Res. Commun. 47: 254–259, 1972.
 251. Nesher, R., I. Karl, and D. Kipnis. Dissociation of effects of insulin and contraction on glucose transport in rat epi‐trochlearis muscle. Am. J. Physiol. 249 (Cell Physiol. 18): C226–C232, 1985.
 252. Neufer, P. D., and L. G. Dohm. Exercise induces a transient increase in transcription of the GLUT‐4 gene in skeletal muscle. Am. J. Physiol. 265 (Cell Physiol. 34): C1597–C1603, 1993.
 253. Newham, D., D. Jones, and P. Clarkson. Repeated high‐force eccentric exercise: effects on muscle pain and damage. J. Appl. Physiol. 63: 1381–1386, 1987.
 254. Newsholme, E. A., and A. R. Leech. Biochemistry for the Medical Sciences. Chichester: John Wiley & Sons, 1983.
 255. Nielsen, B., J. R. S. Hales, S. Strange, N. J. Christensen, J. Warberg, and B. Saltin. Human circulatory and thermoregulatory adaptions with heat acclimation and exercise in a hot, dry environment. J. Physiol. (Lond.) 460: 467–485, 1993.
 256. Nielsen, B., G. Savard, E. A. Richter, M. Hargreaves, and B. Saltin. Muscle blood flow and muscle metabolism during exercise and heat stress. J. Appl. Physiol. 69: 1040–1046, 1990.
 257. Nishimura, H., J. Saltis, A. D. Haberfield, N. B. Garty, A. S. Greenberg, S. W. Cushman, C. Londos, and I. A. Simpson. Phosphorylation state of the GLUT4 isoform of the glucose transporter in subfractions of the rat adipose cell: Effects of insulin, adenosine and isoproterenol. Proc. Natl. Acad. Sci. U. S. A. 88: 11500–11504, 1991.
 258. Nishizuka, Y. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase c. Science 258: 607–614, 1992.
 259. Nuutila, P., V. A. Koivisto, J. Knuuti, U. Ruotsalainen, M. Teräs, M. Haaparanta, J. Bergman, O. Solin, L. Voipio‐Pulkki, U. Wegelius, and H. Yki‐Järvinen. Glucose‐free fatty acid cycle operates in human heart and skeletal muscle in vivo. J. Clin. Invest. 89: 1767–1774, 1992.
 260. O'reilly, K., M. Warhol, R. Fielding, W. Frontera, C. Meredith, and W. Evans. Eccentric exercise‐induced muscle damage impairs muscle glycogen repletion. J. Appl. Physiol. 63: 252–256, 1987.
 261. Oka, Y., T. Asano, Y. Shibasaki, J.‐L. Lin, K. Tsukuda, H. Katagiri, Y. Akanuma, and F. Takaku. C‐terminal truncated glucose transporter is locked into an inward‐facing form without transport activity. Nature 345: 550–553, 1990.
 262. Owen, O. E., A. P. Morgan, H. G. Kemp, J. M. Sullivan, M. G. Herrera, and G. F. Cahill. Brain metabolism during fasting. J. Clin. Invest. 46: 1589–1595, 1967.
 263. Owen, O. E., and G. A. Reichard. Human forearm metabolism during progressive starvation. J. Clin. Invest. 50: 1536–1545, 1971.
 264. Pershadsingh, H., D. Shade, and J. McDonald. Insulin‐dependent alterations of phorbol ester binding to adipocyte subcellular constituents. Evidence for the involvement of protein kinase c in insulin action. Biochim. Biophys. Acta 145: 1384–1389, 1987.
 265. Pette, D., and G. Vrbova. Invited review: neural control of phenotypic expression in mammalian muscle fibers. Muscle Nerve 8: 676–689, 1973.
 266. Pfeffer, S. R. GTP‐binding proteins in intracellular transport. Trends Cell Biol. 2: 41–46, 1992.
 267. Piatti, P. M., L. D. Monti, M. Pacchioni, A. E. Pontiroli, and G. Pozza. Forearm insulin‐ and non‐insulin‐mediated glucose uptake and muscle metabolism in man: role of free fatty acids and blood glucose levels. Metabolism 40: 926–933, 1991.
 268. Piiper, J., D. R. Pendergast, C. Marconi, M. Meyer, N. Heisler, and P. Cerretelli. Blood flow distribution in dog gastrocnemius muscle at rest and during stimulation. J. Appl. Physiol. 58: 2068–2074, 1985.
 269. Piper, R. C., D. E. James, J. W. Slot, C. Puri, and J. C. Lawrence. GLUT4 phosphorylation and inhibition of glucose transport by dibutyryl cAMP. J. Biol. Chem. 268: 16557–16563, 1993.
 270. Piper, R. C., C. Tai, P. Kulesza, S. Pang, D. Warnock, J. Baenzinger, J. W. Slot, H. J. Geuze, C. Puri, and D. E. James. GLUT‐4NH2 terminus contains a phenylalanine‐based targeting motif that regulates intracellular sequestration. J. Cell Biol. 121: 1221–1232, 1993.
 271. Ploug, T., H. Galbo, T. Ohkuwa, J. Tranum‐Jensen, and J. Vinten. Kinetics of glucose transport in rat skeletal muscle membrane vesicles: effects of insulin and contractions. Am. J. Physiol. 262 (Endocrinol. Metab. 25): E700–E711, 1992.
 272. Ploug, T., H. Galbo, and E. A. Richter. Increased muscle glucose uptake during contractions: no need for insulin. Am. J. Physiol. 247 (Endocrinol. Metab. 10): E726–E731, 1984.
 273. Ploug, T., H. Galbo, J. Vinten, M. Jorgensen, and E. A. Richter. Kinetics of glucose transport in rat muscle: effects of insulin and contractions. Am. J. Physiol. 253 (Endocrinol. Metab. 16): E12–E20, 1987.
 274. Ploug, T., B. M. Stallknecht, O. Pedersen, B. B. Kahn, T. Ohkuwa, J. Vinten, and H. Galbo. Effect of endurance training on glucose transport capacity and glucose transporter expression in rat skeletal muscle. Am. J. Physiol. 259 (Endocrinol. Metab. 22): E778–E786, 1990.
 275. Ploug, T., J. Wojtaszewski, S. Kristiansen, P. Hespel, H. Galbo, and E. A. Richter. Glucose transport and transporters in muscle giant vesicles: differential effects of insulin and contractions. Am. J. Physiol. 264 (Endocrinol. Metab. 27): E270–E278, 1993.
 276. Poucher, S. M., C. G. Nowell, and M. G. Collis. The role of adenosine in exercise hyperaemia of the gracilis muscle in anaesthetized cats. J. Physiol. (Lond.) 427: 19–29, 1990.
 277. Quon, M. J. Advances in kinetic analysis of insulin‐stimulated GLUT‐4 translocation in adipose cells. Am. J. Physiol. 266 (Endocrinol. Metab. 29): E144–E150, 1994.
 278. Ralston, E., S. Beushausen, and T. Ploug. Expression of the synaptic vesicle proteins VAMPs/synaptopbrevins 1 and 2 in non‐neural tissues. J. Biol. Chem. 269: 15403–15406, 1994.
 279. Rand, E. B., A. M. Depaoli, N. O. Davidson, G. I. Bell, and C. E. Burant. Sequence, tissue distribution and functional characterization of the rat fructose transporter GLUT5. Am. J. Physiol. 264 (Gastrointest. Ewer Physiol. 27): G1169–G1176, 1993.
 280. Randle, P., A. Kerbey, and J. Espinal. Mechanisms decreasing glucose oxidation in diabetes and starvation: role of lipid fuels and hormones. Diabetes Metab. Rev. 4: 623–638, 1988.
 281. Randle, P. J., R. B. Garland, C. N. Hales, and E. A. News‐holme. The glucose‐fatty acid cycle: its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Eancet i: 785–789, 1963.
 282. Randle, P. J., E. A. Newsholme, and P. B. Garland. Regulation of glucose uptake by muscle. Biochem. J. 93: 652–665, 1964.
 283. Reaven, G. Role of insulin resistance in human disease. Diabetes 37: 1595–15607, 1988.
 284. Ren, J.‐M., B. A. Marshall, E. A. Gulve, J. Gao, D. W. Johnson, J. O. Holloszy, and M. Mueckler. Evidence from transgenic mice that glucose transport is rate‐limiting for glycogen deposition and glycolysis in skeletal muscle. J. Biol. Chem. 268: 16113–16115, 1993.
 285. Ren, J.‐M., C. F. Semenkovich, E. A. Gulve, J. Gao, and J. O. Holloszy. Exercise induces rapid increases in GLUT4 expression, glucose transport capacity, and insulin‐stimulated glycogen storage in muscle. J. Biol. Chem. 269: 14396–14401, 1994.
 286. Rennie, M., and J. Holloszy. Inhibition of glucose uptake and glycogenolysis by availability of oleate in well‐oxygenated perfused skeletal muscle. Biochem. J. 168: 161–170, 1977.
 287. Rennie, M. J., W. W. Winder, and J. O. Holloszy. A sparing effect of increased plasma fatty acids on muscle and liver glycogen content in the exercisning rat. Biochem. J. 156: 647–655, 1976.
 288. Reusch, J. E.‐B., K. E. Sussman, and B. Draznin. Inverse relationship between GLUT‐4 phosphorylation and its intrinsic activity. J. Biol. Chem. 268: 3348–3351, 1993.
 289. Richardson, J. M., T. W. Balon, J. L. Treadway, and J. E. Pessin. Differential regulation of glucose transporter activity and espression in red and white skeletal muscle. J. Biol. Chem. 266: 12690–12694, 1991.
 290. Richter, E. A., P. J. F. Cleland, S. Rattigan, and M. G. Clark. Contraction‐associated translocation of protein kinase C in rat skeletal muscle. EEBS Lett. 217: 232–236, 1987.
 291. Richter, E. A., and H. Galbo. Diabetes, insulin and exercise. Sports Med. 3: 275–288, 1986.
 292. Richter, E. A., and H. Galbo. High glycogen levels enhance glycogen breakdown in isolated contracting skeletal muscle. J. Appl. Physiol. 61: 827–831, 1986.
 293. Richter, E. A., L. P. Garetto, M. N. Goodman, and N. B. Ruderman. Muscle glucose metabolism following exercise in the rat. J. Clin. Invest. 69: 785–793, 1982.
 294. Richter, E. A., L. P. Garetto, M. N. Goodman, and N. B. Ruderman. Enhanced muscle glucose metabolism after exercise: modulation by local factors. Am. J. Physiol. 246 (Endocrinol. Metab. 9): E476–E482, 1984.
 295. Richter, E. A., B. F. Hansen, and S. A. Hansen. Glucose‐induced insulin resistance of skeletal‐muscle glucose transport and uptake. Biochem. J. 252: 733–737, 1988.
 296. Richter, E. A., S. A. Hansen, and B. F. Hansen. Mechanisms limiting glycogen storage in muscle during prolonged insulin stimulation. Am. J. Physiol. 255 (Endocrinol. Metab. 18): E621–E628, 1988.
 297. Richter, E. A., B. Kiens, M. Mizuno, and S. Strange. Insulin action in human thighs after one‐legged immobilization. J. Appl. Physiol. 67: 19–23, 1989.
 298. Richter, E. A., B. Kiens, B. Saltin, N. J. Christensen, and G. Savard. Skeletal muscle glucose uptake during dynamic exercise in humans: role of muscle mass. Am. J. Physiol. 254 (Endocrinol. Metab. 17): E555–E561, 1988.
 299. Richter, E. A., K. J. Mikines, H. Galbo, and B. Kiens. Effect of exercise on insulin action in human skeletal muscle. J. Appl. Physiol. 66: 876–885, 1989.
 300. Richter, E. A., T. Ploug, and H. Galbo. Increased muscle glucose uptake after exercise. Diabetes 34: 1041–1048, 1985.
 301. Richter, E. A., N. B. Ruderman, and H. Galbo. Alpha and beta adrenergic effects on metabolism in contracting, perfused muscle. Acta Physiol. Scand. 116: 215–222, 1982.
 302. Richter, E. A., N. B. Ruderman, H. Gavras, E. R. Belur, and H. Galbo. Muscle glycogenolysis during exercise: dual control by epinephrine and contractions. Am. J. Physiol. 242 (Endocrinol. Metab. 5): E25–E32, 1982.
 303. Rizza, R. A., P. E. Cryer, M. W. Haymond, and J. E. Gerich. Adrenergic mechanisms for the effects of epinephrine on glucose production and clearance in man. J. Clin. Invest. 65: 682–689, 1980.
 304. Rizza, R. A., L. J. Mandarino, and J. E. Gerich. Effects of growth hormone on insulin action in man. Mechanisms of insulin resistance, impaired suppression of glucose production, and impaired stimulation of glucose utilization. Diabetes 31: 663–669, 1982.
 305. Robinson, K. A., D. A. Sens, and M. G. Buse. Pre‐exposure to glucosamine induces insulin resistance of glucose transport and glycogen synthesis in isolated rat skeletal muscles. Diabetes 42: 1333–1346, 1993.
 306. Robinson, L. J., S. Pang, J. Harris, J. Heuser, and D. E. James. Translocation of the glucose transporter (GLUT4) to the cell surface in permeabilized 3T3–L1 adipocytes: effects of ATP, insulin, and GTP‐gammaS and localization of GLUT4 to clathrin lattices. J. Cell Biol. 117: 1181–1196, 1992.
 307. Roca, J., A. G. N. Agusti, A. Alonso, D. C. Poole, C. Viegas, J. A. Barbera, R. Rodriguez‐Roisin, A. Ferrer, and P. D. Wagner. Effects of training on muscle 0 2 transport at VO 2max. J. Appl. Physiol. 73: 1067–1076, 1992.
 308. Rodnick, K., W. Haskell, A. L. Swislocki, J. Foley, and G. Reaven. Improved insulin action in muscle, liver and adipose tissue in physically trained human subjects. Am. J. Physiol. 253 (Endocrinol. Metab. 16): E489–E495, 1987.
 309. Rodnick, K. J., E. J. Henriksen, D. E. James, and J. O. Holloszy. Exercise training, glucose transporters and glucose transport in rat skeletal muscles. Am. J. Physiol. 262 (Cell Physiol. 31): C9–C14, 1992.
 310. Rodnick, K. J., J. W. Slot, D. R. Studelska, D. E. Hanpeter, L. J. Robinson, H. J. Geuze, and D. E. James. Immunocy‐tochemical and biochemical studies of GLUT 4 in rat skeletal muscle. J. Biol. Chem. 267: 6278–6285, 1992.
 311. Ruderman, N. B., A. McCall, and S. Schneider. Exercise and endocrine disorders. Scand. J. Sports Sci. 8: 43–50, 1986.
 312. Sahlin, K., S. Broberg, and A. Katz. Glucose formation in human skeletal muscle. Biochem. J. 258: 911–913, 1989.
 313. Saitoh, Y., K. Itaya, and M. Ui. Adrenergic α‐receptor‐mediated stimulation of the glucose utilization by isolated rat diaphragm. Biochim. Biophys. Acta 343: 492–499, 1974.
 314. Saltin, B., and P. Gollnick. Skeletal muscle adaptability: significance for metabolism and performance. In: Handbook of Physiology, Skeletal Muscle, Skeletal Muscle, edited by L. D. Peachey. Bethesda, MD: Am. Physiol. Soc., 1983, p. 555–631.
 315. Saltin, B., K. Nazar, D. L. Costill, E. Stein, and E. Jansson. The nature of the training response: peripheral and central adaptations to one‐legged exercise. Acta Physiol. Scand. 96: 289–305, 1976.
 316. Satoh, S., H. Nishimura, A. E. Clark, I. J. Kozka, S. J. Vannucci, I. A. Simpson, M. J. Quon, S. W. Cushman, and G. D. Holman. Use of bismannose photolabel to elucidate insulin‐regulated GLUT4 subcellular trafficking kinetics in rat adipose cells. Evidence that exocytosis is a critical site of hormone action. J. Biol. Chem. 268: 17820–17829, 1993.
 317. Savard, G. K., E. A. Richter, S. Strange, B. Kiens, N. J. Christensen, and B. Saltin. Norepinephrine spillover from skeletal muscle during exercise in humans: role of muscle mass. Am. J. Physiol. 257 (Heart Circ. Physiol. 26): H1812–H1818, 1989.
 318. Schantz, P., J. Henriksson, and E. Jansson. Adaptation of human skeletal muscle to endurance training of long duration. Clin. Physiol. 3: 141–151, 1983.
 319. Schneider, S. H. and N. B. Ruderman. Exercise and NIDDM. Diabetes Care 13: 785–789, 1990.
 320. Schultz, T., S. Lewis, D. Westbie, J. Wallin, and J. Gerich. Glucose delivery: a modulator of glucose uptake in contracting skeletal muscle. Am. J. Physiol. 233 (Endocrinol. Metab. Gastrointest. Physiol. 2): E514–E518, 1977.
 321. Schultz, T. A., S. B. Lewis, D. K. Westbis, J. E. Gerich, R. J. Rushakoff, and J. D. Wallin. Glucose delivery—a clarification of its role in regulating glucose uptake in rat skeletal muscle. Life Sci. 20: 733–736, 1977.
 322. Seedorf, U., E. Leberer, B. Kirschbaum, and D. Pette. Neural control of gene expression in skeletal muscle. Biochem. J. 239: 115–120, 1986.
 323. Seider, M., W. Nicholson, and F. Booth. Insulin resistance for glucose metabolism in disused soleus muscle of mice. Am. J. Physiol. 242 (Endocrinol. Metab 5): E12–E18, 1982.
 324. Shamoon, H., V. Soman, and R. Sherwin. The influence of acute physiological increments of Cortisol on fuel metabolism and insulin binding to monocytes in normal humans. J. Clin. Endocrinol. Metab. 50: 495–501, 1980.
 325. Slentz, C. A., E. A. Gulve, K. J. Rodnick, E. J. Henriksen, J. H. Youn, and J. O. Holloszy. Glucose transporters and maximal transport are increased in endurance‐trained rat soleus. J. Appl. Physiol. 73: 486–492, 1992.
 326. Slot, J. W., H. J. Geuze, S. Gigengack, D. E. James, and G. E. Lienhard. Translocation of the glucose transporter GLUT4 in cardiac myocytes of the rat. Proc. Natl. Acad. Sci. U. S. A. 88: 7815–7819, 1991.
 327. Slot, J. W., H. J. Geuze, S. Gigengack, G. E. Lienhard, and D. E. James. Immuno‐localization of the insulin regulatable glucose transporter in brown adipose tissue of the rat. J. Cell Biol. 113: 123–135, 1991.
 328. Slot, J. W., R. Moxley, S. Geuze, and D. E. James. No evidence for expression of the insulin‐regulatable glucose transporter in endothelial cells. Nature 346: 369–371, 1990.
 329. Sonne, B., K. Mikines, and H. Galbo. Glucose turnover in 48‐hour‐fasted running rats. Am. J. Physiol. 252 (Regulatory Integrative Comp. Physiol. 21): R587–R593, 1987.
 330. Sowell, M. O., K. P. Boggs, K. A. Robinson, S. L. Dutton, and M. G. Buse. Effects of insulin and phospholipase C in control and denervated rat skeletal muscle. Am. J. Physiol. 260 (Endocrinol. Metab. 23): E247–E256, 1991.
 331. Standaert, M., R. Farese, D. Cooper, and R. Pollet. Insulin‐induced glycerolipid mediators and the stimulation of glucose transport in BC3H‐1 Myocytes. J. Biol. Chem. 263: 8696–8705, 1988.
 332. Stanley, W., E. Gertz, J. Wisneski, R. Neese, D. Morris, and G. Brooks. Lactate extraction during net lactate release in legs of humans during exercise. J. Appl. Physiol. 60: 1116–1120, 1986.
 333. Stein, T., R. Hoyt, M. O'toole, M. Leskiw, M. Schluter, R. Wolfe, and W. D. Hiller. Protein and energy metabolism during prolonged exercise in trained athletes. Int. J. Sports Med. 10: 311–316, 1989.
 334. Sternlicht, E., R. Barnard, and G. Grimditch. Mechanism of insulin action on glucose transport in rat skeletal muscle. Am. J. Physiol. 254 (Endocrinol. Metab. 17): E633–E638, 1988.
 335. Sternlicht, E., R. Barnard, and G. Grimditch. Exercise and insulin stimulate skeletal muscle glucose transport through different mechanisms. Am. J. Physiol. 256 (Endocrinol. Metab. 19): E227–E230, 1989.
 336. Storlien, L., D. James, K. Burleigh, D. Chisholm, and E. Kraegen. Fat feeding causes widespread in vivo insulin resistance, decreased energy expenditure and obesity in rats. Am. J. Physiol. 251 (Endocrinol. Metab. 14): E576–E583, 1986.
 337. Storlien, L., E. Kraegen, D. Chisholm, G. Ford, D. Bruce, and W. Pascoe. Fish oil prevents insulin resistance induced by high‐fat feeding in rats. Science 237: 885–888, 1987.
 338. Storlien, L. H., A. B. Jenkins, D. J. Chisholm, W. S. Pascoe, S. Khouri, and E. W. Kraegen. Influence of dietary fat composition on development of insulin resistance in rats: relationship to muscle triglyceride and ω‐3 fatty acids in muscle phospholipid. Diabetes 40: 280–289, 1991.
 339. Stuart, C., R. Shangraw, M. Prince, E. Peters, and R. Wolfe. Bedrest‐induced insulin resistance occurs primarily in muscle. Metabolism 37: 802–806, 1988.
 340. Suzuki, K., and T. Kono. Evidence that insulin causes translocation of glucose transport activity to the plasma membrane from an intracellular storage site. Proc. Natl. Acad. Sci. U. S. A. 77: 2542–2545, 1980.
 341. Tan, M., and A. Bonen. Effect of exercise training on insulin binding and glucose metabolism in mouse soleus muscle. Can. J. Physiol. Pharmacol. 65: 2231–2234, 1987.
 342. Tanti, J., N. Rochet, T. Grémeaux, E. van Obberghen, and Y. Le Marchand‐Brustel. Insulin‐stimulated glucose transport in muscle. Biochem. J. 258: 141–146, 1989.
 343. Thorens, B., M. Charron, and H. Lodish. Molecular physiology of glucose transporters. Diabetes Care 13: 209–218, 1990.
 344. Treadway, J., D. James, E. Burcel, and N. Ruderman. Effect of exercise on insulin receptor binding and kinase activity in skeletal muscle. Am. J. Physiol. 256 (Endocrinol. Metab. 19): E138–E144, 1989.
 345. Turcotte, L. P., B. Kiens, and E. A. Richter. Saturation kinetics of palmitate uptake in perfused skeletal muscle. EEBS Lett. 279: 327–329, 1992.
 346. Turcotte, L. P., E. A. Richter, and B. Kiens. Increased plasma FFA uptake and oxidation during prolonged exercise in trained vs. untrained humans. Am. J. Physiol. 262 (Endocrinol. Metab. 25): E791–E799, 1992.
 347. Turinsky, J. Glucose and amino acid uptake by exercising muscles in vivo: effect of insulin, fiber population, and denervation. Endocrinology 121: 528–535, 1987.
 348. Turinsky, J. Dynamics of insulin resistance in denervated slow and fast muscles in vivo. Am. J. Physiol. 252 (Regulatory Integrative Comp. Physiol. 2): R531–R537, 1987.
 349. Valant, P., and D. Erlij. K+‐stimulated sugar uptake in skeletal muscle: role of cytoplasmic Ca++. Am. J. Physiol. 245 (Cell Physiol. 14): C125–C132, 1983.
 350. Vannucci, S. J., H. Nishimura, S. Satoh, S. W. Cushman, G. D. Holman, and I. A. Simpson. Cell surface accessibility of GLUT4 glucose transporters in insulin‐stimulated rat adipose cells. Biochem. J. 288: 325–330, 1992.
 351. Vergauen, L., P. Hespel, and E. A. Richter. Adenosine receptors mediate synergistic stimulation of glucose uptake and transport by insulin and by contractions in rat skeletal muscle. J. Clin. Invest. 93: 974–981, 1994.
 352. Verhey, K. J., and M. J. Birnbaum. A Leu‐Leu sequence is essential for COOH‐terminal targetting signal of GLUT4 glucose transporter in fibroblasts. J. Biol. Chem. 269: 2353–2356, 1994.
 353. Vissing, J., T. Ohkuwa, T. Ploug, and H. Galbo. Effect of prior immobilization on muscular glucose clearance in resting and running rats. Am. J. Physiol. 255 (Endocrinol. Metab. 18): E456–E462, 1988.
 354. Vranic, M., R. Kawamori, S. Pek, N. Kovacevic, and G. A. Wrenshall. The essentiallity of insulin and the role of glucagon in regulating glucose utilization and production during strenuous exercise in dogs. J. Clin. Invest. 57: 245–256, 1976.
 355. Vukovich, M. D., D. L. Costill, M. S. Hickey, S. W. Trappe, K. J. Cole, and W. J. Fink. Effect of fat emulsion infusion and fat feeding on muscle glycogen utilization during cycle exercise. J. Appl. Physiol. 75: 1513–1518, 1993.
 356. Waddell, I. D., A. G. Zomershoe, and A. Burchell. Biochem. J. 286: 173–177, 1992.
 357. Wahren, J., P. Felig, G. Ahlborg, and L. Jorfeldt. Glucose metabolism during leg exercise in man. J. Clin. Invest. 50: 2715–2725, 1971.
 358. Wahren, J., P. Felig, and L. Hagenfeldt. Physical exercise and fuel homeostasis in diabetes mellitus. Diabetologia 14: 213–222, 1978.
 359. Wahren, J., L. Hagenfeldt, and P. Felig. Splanchnic and leg exchange of glucose, amino acids and free fatty acids during exercise in diabetes mellitus. J. Clin. Invest. 55: 1303–1314, 1975.
 360. Wake, S. A., J. A. Sowden, L. H. Storlien, D. E. James, P. W. Clark, J. Shine, D. J. Chisholm, and E. W. Kraegen. Effects of exercise training and dietary manipulation on insulin‐regulatable glucose‐transporter mRNA in rat muscle. Diabetes 40: 275–279, 1991.
 361. Walaas, S., R. Horn, A. Adler, K. Albert, and O. Walaas. Insulin increases membrane protein kinase activity in rat diaphragm. FEBS Lett. 220: 311–318, 1987.
 362. Walker, M., G. Fulcher, C. Catalano, G. Petranyi, H. Orskov, and K. G. M. Alberti. Physiological levels of plasma non‐esterified fatty acids impair forearm glucose uptake in normal man. Clin. Sci. 79: 167–174, 1990.
 363. Wallberg‐Henriksson, H. Glucose transport into skeletal muscle. Influence of contractile activity, insulin, catecholamines and diabetes mellitus. Acta Physiol. Scand. Suppl. 564: 1–80, 1987.
 364. Wallberg‐Henriksson, H., S. Constable, D. Young, and J. Holloszy. Glucose transport into rat skeletal muscle: interaction between exercise and insulin. J. Appl. Physiol. 65: 909–913, 1988.
 365. Wallberg‐Henriksson, H., and J. Holloszy. Contractile activity increases glucose uptake by muscle in severely diabetic rats. J. Appl. Physiol. 57: 1045–1049, 1984.
 366. Wallberg‐Henriksson, H., and J. Holloszy. Activation of glucose transport in diabetic muscle: responses to contraction and insulin. Am. J. Physiol. 249 (Cell Physiol. 18): C233–C237, 1985.
 367. Wang, C. The D‐glucose transporter is tissue‐specific. J. Biol. Chem. 262: 15689–15695, 1987.
 368. Wardzala, L. J., and B. Jeanrenaud. Potential mechanism of insulin action on glucose transport in the isolated rat diaphragm—apparent translocation of intracellular transport units to the plasma membrane. J. Biol. Chem. 256: 7090–7093, 1981.
 369. Wasserman, D., D. Lacy, R. Goldstein, P. Williams, and A. Cherrington. Exercise‐induced fall in insulin and increase in fat metabolism during prolonged muscular work. Diabetes 38: 484–490, 1989.
 370. Wasserman, D., D. Lacy, D. Green, P. Williams, and A. Cherrington. Dynamics of hepatic lactate and glucose balances during prolonged exercise and recovery in the dog. J. Appl. Physiol. 63: 2411–2417, 1987.
 371. Wasserman, D. H., and A. D. Cherrington. Hepatic fuel metabolism during muscular work: role and regulation. Am. J. Physiol. 260 (Endocrinol. Metab. 23): E811–E824, 1991.
 372. Wasserman, D. H., R. J. Geer, D. E. Rice, D. Bracy, P. J. Flakoll, L. L. Brown, J. O. Hill, and N. N. Abumrad. Interaction of exercise and insulin action in humans. Am. J. Physiol. 260 (Endocrinol. Metab. 29): E37–E45, 1991.
 373. Wasserman, D. H., H. Lavina, A. Lickley, and M. Vranic. Role of β‐adrenergic mechanisms during exercise in poorly controlled diabetes. J. Appl. Physiol. 59: 1282–1289, 1985.
 374. Wasserman, D. H., T. Mohr, P. Kelly, D. B. Lacy, and D. Bracy. Impact of insulin deficiency on glucose fluxes and muscle glucose metabolism during exercise. Diabetes 41: 1229–1238, 1992.
 375. Webster, B., S. Vigna, and T. Paquette. Acute exercise, epinephrine and diabetes enhance insulin binding to skeletal muscle. Am. J. Physiol. 250 (Endocrinol. Metab. 13): E186–E197, 1900.
 376. White, M. F., and C. R. Kahn. The insulin signaling system. J. Biol. Chem. 269: 1–4, 1994.
 377. Widrick, J. J., D. L. Costill, G. K. McConnel, D. E. Anderson, D. R. Pearson, and J. J. Zachweieja. Time course of glycogen accumulation after eccentric exercise. J. Appl. Physiol. 72: 1999–2004, 1992.
 378. Wilson, C. M., and S. W. Cushman. Insulin stimulation of glucose transport activity in rat skeletal muscle: increase in cell surface GLUT4 assessed by photolabelling. Biochem. J. 299: 755–759, 1994.
 379. Yale, J., L. Leiter, and E. Marliss. Metabolic responses to intense exercise in lean and obese subjects. J. Clin. Endocrinol. Metab. 68: 438–445, 1989.
 380. Yamatani, K., Z. Q. Shi, A. Giacca, R. Gupta, S. Fisher, H. Lavina, A. Lickley, and M. Vranic. Role of FFA‐glucose cycle in glucoregulation during exercise in total absence of insulin. Am. J. Physiol. 263 (Endocrinol. Metab. 26): E646–E653, 1992.
 381. Yang, Y., I. Hope, M. Ader, and R. Bergman. Insulin transport across capillaries is rate limiting for insulin action in dogs. J. Clin. Invest. 84: 1620–1628, 1989.
 382. Yki‐Järvinen, H., D. Mott, A. Young, K. Stone, and C. Bogardus. Regulation of glycogen synthase and phosphorylase activities by glucose and insulin in human skeletal muscle. J. Clin. Invest. 80: 95–100, 1987.
 383. Yki‐Järvinen, H., A. Young, C. Lamkin, and J. Foley. Kinetics of glucose disposal in whole body and across the forearm in man. J. Clin. Invest. 79: 1713–1719, 1987.
 384. Youn, J. H., E. A. Gulve, and J. O. Holloszy. Calcium stimulates glucose transport in skeletal muscle by a pathway independent of contraction. Am. J. Physiol. 260 (Cell Physiol. 29): C555–C561, 1991.
 385. Young, D., H. Wallberg‐Henriksson, and J. Cranshaw. Effect of catecholamines on glucose uptake and glycogenolysis in rat skeletal muscle. Am. J. Physiol. 248 (Cell Physiol. 17): C406–C409, 1985.
 386. Young, D., H. Wallberg‐Henriksson, M. Sleeper, and J. Holloszy. Reversal of the exercise‐induced increase in muscle permeability to glucose. Am. J. Physiol. 253 (Endocrinol. Metab. 16): E331–E335, 1987.
 387. Young, J., S. Garthwaite, J. Bryan, L. Cartier, and J. Holloszy. Carbohydrate feeding speeds reversal of enhanced glucose uptake in muscle after exercise. Am. J. Physiol. 245 (Regulatory Integrative Comp. Physiol. 14): R684–R688, 1983.
 388. Young, J. C., T. G. Kurowski, A. M. Maurice, R. Nesher, and N. B. Ruderman. Polymyxin B inhibits contraction‐stimulated glucose uptake in rat skeletal muscle. J. Appl. Physiol. 70: 1650–1654, 1991.
 389. Zierath, J. R., D. Galuska, A. Thome, L. Nolte, J. Smedegaard Kristensen, and H. Wallberg‐Henriksson. Elevated oleate levels have no effect on insulin‐stimulated glucose transport in human skeletal muscle. Acta Physiol. Scand. 146 (Suppl. 608): 88, 1992.
 390. Zinker, B. A., D. B. Lacy, D. Bracy, J. Jacobs, and D. H. Wasserman. Regulation of glucose uptake and metabolism by working muscle. Diabetes 42: 956–965, 1993.
 391. Zinker, B. A., D. B. Lacy, D. P. Bracy, and D. H. Wasserman. Role of glucose and insulin loads to the exercising limb in increasing glucose uptake and metabolism. J. Appl. Physiol. 74: 2915–2921, 1993.
 392. Zinman, B., E. Marliss, A. Hanna, H. Minuk, and M. Vranic. Exercise in diabetic man: glucose turnover and free insulin responses after glycemic normalization with intravenous insulin. Can. J. Physiol. Pharmacol. 60: 1236–1240, 1982.
 393. Zorzano, A., T. Balon, L. Garetto, M. Goodman, and N. Ruderman. Muscle alpha‐aminoisobutyric acid transport after exercise: enhanced stimulation by insulin. Am. J. Physiol. 248 (Endocrinol. Metab. 11): E546–E552, 1985.
 394. Zorzano, A., T. Balon, M. Goodman, and N. Ruderman. Glycogen depletion and increased insulin sensitivity and responsiveness in muscle after exercise. Am. J. Physiol. 251 (Endocrinol. Metab. 14): E664–E669, 1986.
 395. Zorzano, A., T. Balon, M. Goodman, and N. Ruderman. Additive effects of prior exercise and insulin on glucose and AIB uptake by rat muscle. Am. J. Physiol. 251 (Endocrinol. Metab. 14): E21–E26, 1986.
 396. Zorzano, A., W. Wilkinson, N. Kotliar, G. Thoidis, and B. Wadzinkski. Insulin‐regulated glucose uptake in rat adipocytes is mediated by two transporter isoforms present in at least two vesicle populations. J. Biol. Chem. 264: 12358–12663, 1989.
 397. Ørskov, L., O. Schmitz, J. O. Jørgensen, J. Arnfred, N. Abildgaard, J. Christiansen, K. G. M. Alberti, and H. Ørskov. Influence of growth hormone on glucose‐induced glucose uptake in normal men as assessed by the hyperglycemic clamp technique. J. Clin. Endocrinol. Metab. 68: 276–283, 1989.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Erik A. Richter. Glucose Utilization. Compr Physiol 2011, Supplement 29: Handbook of Physiology, Exercise: Regulation and Integration of Multiple Systems: 912-951. First published in print 1996. doi: 10.1002/cphy.cp120120