Comprehensive Physiology Wiley Online Library

Vertebrate Hemoglobins

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Homotrophic and Heterotrophic Interactions
1.1 Carbon Dioxide and Protons
1.2 Organic Phosphates
1.3 Sensitivity to Bicarbonate
1.4 Chloride
1.5 Acclimation and Extraerythrocytic Factors Influencing Oxygen Affinity through Heterotrophic Interactions
2 Hemoglobin Structure
2.1 Agnatha
2.2 Hemoglobin Heterogeneity
2.3 Possible Physiological Significance of Hemoglobin Heterogeneity
2.4 Other Possible Roles for Hemoglobin Heterogeneity
2.5 Additional Bases of Apparent Hemoglobin Heterogeneity
2.6 Association of Tetramers
3 Functional Adaptations in Hemoglobins
3.1 Scaling
3.2 Changes in Hemoglobins during Ontogeny
3.3 Adaptation to Temperature
3.4 Adaptation to Hypoxia
3.5 Diving Animals
4 Functional Adaptations: Adaptations Restricted to Specific Vertebrate Groups
4.1 Urea Insensitivity
4.2 Root Effect Hemoglobins
5 Conclusion
Figure 1. Figure 1.

Cooperative binding of oxygen by hemoglobin in dog blood as a function of carbon dioxide tensions. Dashed lines are rectangular hyperbolas with P50 values of 4 and 20 mm Hg for comparison. The ordinate is the percentage of oxygen saturation. The effect of carbon dioxide is due to direct binding and formation of carbaminohemoglobin and to the rise in proton concentration generated when carbon dioxide is hydrated by carbonic anhydrase to form carbonic acid. Data represented by solid lines are from Bohr et al. ; figure is taken from Edsall with permission.

Figure 2. Figure 2.

Cooperative binding of oxygen to human whole blood and cofactor‐free hemoglobin in the presence of carbon dioxide (40 mm Hg) and/or 2,3‐DPG (1.2 moles per mole hemoglobin tetramer) at 37°C. Figure is taken from Kilmartin and Rossi‐Bernardi, Physiological Reviews with permission.

Figure 3. Figure 3.

A: Hypothetical oxygen equilibrium curves for red cells from fetal, nonpregnant (NPF), and pregnant garter snakes (Thamnophis elegans). P50 values at 20°C are from reference . Hill coefficient is taken to be 2.3 for each curve, and, as an approximation, it is assumed to remain constant over this range of oxygen saturations. Figure is from reference . B: Intracellular concentration of nucleoside triphosphate (primarily ATP []) in red cells from pregnant (PF) and nonpregnant (NPF) females, males (M), and fetal T. elegans as a function of time of year. (Confidence intervals represent means ± 1 SD.) Figure has been modified from reference with permission.

Figure 4. Figure 4.

Oxygen equilibrium curves of the two primary trout (Salmo irideus = Oncorhynchus mykiss) hemoglobins, Hb I and Hb IV, at different pH values. A: Hb I at pH 6.8 (•), 7.2 (▴), 7.6 (▪); A and B: Hb IV at pH 8.5 (□), 7.4 (▵), 7.1 (▿), 6.7 (▾), and 6.1 (X). Studies were conducted at 20°C. Plot B clearly shows Hb IV to be a Root effect hemoglobin: it does not become fully saturated with oxygen even at very high oxygen tensions and loses cooperativity at low pH values. This figure is taken from Giardina et al. with permission. Qualitatively very similar results have been reported by Hashimoto et al. for the two primary hemoglobin components of chum salmon (Oncorhynchus keta).

Figure 5. Figure 5.

Wastl and Leiner's 1931 Hill plot of duck blood at various temperatures. Shown is the log (Y/[1–Y]) and percent saturation vs. the log of oxygen tension for blood in the presence of 40 mm Hg carbon dioxide. (Y is the fractional saturation of the blood with oxygen.) The plot clearly shows that the Hill coefficient exceeds 4.0 at saturations above, but not below, about 60%. Figure is taken from Pflügers Archiv with permission of Springer‐Verlag, publishers.

Figure 6. Figure 6.

Comparison of blood and hemoglobin oxygen affinity as a function of body mass. Figure is taken from Riggs with permission. See also Figure .

Figure 7. Figure 7.

Decline in levels of fetal hemoglobins after birth in humans, cattle, sheep, goats, and two monkeys (Macaca nemestrina and Macaca speciosa). Figure is taken from Wood, News in Physiological Science with permission.

Figure 8. Figure 8.

Effect of temperature on cofactor‐free human hemoglobin and hemoglobin from several fishes, including tuna (Thunnus). Remarkable is the relative temperature‐insensitivity of tuna hemoglobin. Figure is taken from Johansen and Lenfant .

Figure 9. Figure 9.

Summary comparison of blood oxygen affinity and body mass for diving and terrestrial mammals. Open circles indicate terrestrial mammals and filled circles indicate diving mammals. Each point represents P50 for a single species except, for points connected by a vertical line. In the latter case, P50 values represent the same species from different studies. Continuous line is a least squares regression of the values from terrestrial mammals only. Figure is taken from Snyder with permission from Elsevier Science Publishers.



Figure 1.

Cooperative binding of oxygen by hemoglobin in dog blood as a function of carbon dioxide tensions. Dashed lines are rectangular hyperbolas with P50 values of 4 and 20 mm Hg for comparison. The ordinate is the percentage of oxygen saturation. The effect of carbon dioxide is due to direct binding and formation of carbaminohemoglobin and to the rise in proton concentration generated when carbon dioxide is hydrated by carbonic anhydrase to form carbonic acid. Data represented by solid lines are from Bohr et al. ; figure is taken from Edsall with permission.



Figure 2.

Cooperative binding of oxygen to human whole blood and cofactor‐free hemoglobin in the presence of carbon dioxide (40 mm Hg) and/or 2,3‐DPG (1.2 moles per mole hemoglobin tetramer) at 37°C. Figure is taken from Kilmartin and Rossi‐Bernardi, Physiological Reviews with permission.



Figure 3.

A: Hypothetical oxygen equilibrium curves for red cells from fetal, nonpregnant (NPF), and pregnant garter snakes (Thamnophis elegans). P50 values at 20°C are from reference . Hill coefficient is taken to be 2.3 for each curve, and, as an approximation, it is assumed to remain constant over this range of oxygen saturations. Figure is from reference . B: Intracellular concentration of nucleoside triphosphate (primarily ATP []) in red cells from pregnant (PF) and nonpregnant (NPF) females, males (M), and fetal T. elegans as a function of time of year. (Confidence intervals represent means ± 1 SD.) Figure has been modified from reference with permission.



Figure 4.

Oxygen equilibrium curves of the two primary trout (Salmo irideus = Oncorhynchus mykiss) hemoglobins, Hb I and Hb IV, at different pH values. A: Hb I at pH 6.8 (•), 7.2 (▴), 7.6 (▪); A and B: Hb IV at pH 8.5 (□), 7.4 (▵), 7.1 (▿), 6.7 (▾), and 6.1 (X). Studies were conducted at 20°C. Plot B clearly shows Hb IV to be a Root effect hemoglobin: it does not become fully saturated with oxygen even at very high oxygen tensions and loses cooperativity at low pH values. This figure is taken from Giardina et al. with permission. Qualitatively very similar results have been reported by Hashimoto et al. for the two primary hemoglobin components of chum salmon (Oncorhynchus keta).



Figure 5.

Wastl and Leiner's 1931 Hill plot of duck blood at various temperatures. Shown is the log (Y/[1–Y]) and percent saturation vs. the log of oxygen tension for blood in the presence of 40 mm Hg carbon dioxide. (Y is the fractional saturation of the blood with oxygen.) The plot clearly shows that the Hill coefficient exceeds 4.0 at saturations above, but not below, about 60%. Figure is taken from Pflügers Archiv with permission of Springer‐Verlag, publishers.



Figure 6.

Comparison of blood and hemoglobin oxygen affinity as a function of body mass. Figure is taken from Riggs with permission. See also Figure .



Figure 7.

Decline in levels of fetal hemoglobins after birth in humans, cattle, sheep, goats, and two monkeys (Macaca nemestrina and Macaca speciosa). Figure is taken from Wood, News in Physiological Science with permission.



Figure 8.

Effect of temperature on cofactor‐free human hemoglobin and hemoglobin from several fishes, including tuna (Thunnus). Remarkable is the relative temperature‐insensitivity of tuna hemoglobin. Figure is taken from Johansen and Lenfant .



Figure 9.

Summary comparison of blood oxygen affinity and body mass for diving and terrestrial mammals. Open circles indicate terrestrial mammals and filled circles indicate diving mammals. Each point represents P50 for a single species except, for points connected by a vertical line. In the latter case, P50 values represent the same species from different studies. Continuous line is a least squares regression of the values from terrestrial mammals only. Figure is taken from Snyder with permission from Elsevier Science Publishers.

References
 1. Abbassi, A., R.M.G. Wells, T. Brittain, and G. Braunitzer. Primary structure of the hemoglobins from Sphenodon (Sphenodon punctatus, Tuatara, Rynchocephalia). Biol. Chem. Hoppe‐Seyler 369: 755–764, 1988.
 2. Adinolfi, M., G. Chieffi, and M. Siniscalco. Haemoglobin pattern of the cyclostome Petromyzon planeri during the course of development. Nature 184: 1325–1326, 1959.
 3. Agar, N. S., J. D. Harley, M. A. Gruca, and J. Roberts. Erythrocyte 2,2–diphosphoglycerate in anaemic sheep. Experientia 33: 275–277, 1977.
 4. Airaksinen, S., and M. Nikinmaa. Effect of haemoglobin concentration on the oxygen affinity of intact lamprey erythrocytes. J. Exp. Biol. 198: 2393–2396, 1995.
 5. Alayash, A. I., G. Godette, J. Bonaventura, and J. Arnold. Glycosylated hemoglobins in sharks: relevance to long‐term blood glucose levels and erythrocyte survival. Comp. Biochem. Physiol. C 99: 247–249, 1991.
 6. Alayash, A. I., and M. T. Wilson. Levels of glycosylated haemoglobin in the Arabian camel (Camelus dromedarius). Comp. Biochem. Physiol. B 86: 342–345, 1987.
 7. Albers, C., K.‐H. Goetz, and G. M. Hughes. Effect of acclimation temperatures on intraerythrocytic acid‐base balance and nucleoside triphosphates in the carp, Cyprinus carpio. Respir. Physiol. 54: 145–149, 1983.
 8. Amiconi, G., E. Antonini, M. Brunori, M. Sorcini, and L. Tentori. The haemoglobin of amphibia: IX. Functional properties of haemoglobin from Ambystoma tigrinum tigrinum and Mexican axolotl. Int. J. Biochem. 1: 582–588, 1970.
 9. Andersen, H. T. Physiological adaptations in diving vertebrates. Physiol. Rev. 46: 212–243, 1966.
 10. Andersen, M. E. Sedimentation equilibrium experiments on the self‐association of hemoglobin from the lamprey Petromyzon marinus. A model for oxygen transport in the lamprey. J. Biol. Chem. 246: 4800–4806, 1971.
 11. Andersen, M. E., J. S. Olson, Q. H. Gibson, and F. G. Carey. Studies on ligand binding to hemoglobins from teleosts and elasmobranchs. J. Biol. Chem. 248: 331–341, 1973.
 12. Antonini, E., J. Wyman, L. Bellelli, N. Rumen, and M. Siniscalco. The oxygen equilibrium of some lamprey hemoglobins. Arch. Biochem. Biophys. 105: 404–408, 1964.
 13. Ar, A., R. Arieli, and A. Shkolnik. Blood‐gas properties and function in the fossorial mole rat under normal and hypoxic‐hypercapnic atmospheric conditions. Respir. Physiol., 30: 201–218, 1977.
 14. Aschauer, H., R. E. Weber, and G. Braunitzer. The primary structure of the hemoglobin of the dogfish shark (Squalus acanthias). Antagonistic effects of ATP and urea on oxygen affinity of an elasmobranch hemoglobin. Biol. Chem. Hoppe‐Seyler 366: 589–599, 1985.
 15. Baldwin, T. O., and A. Riggs. The hemoglobins of the bullfrog, Rana catesbeiana. Partial amino acid sequence of the beta chain of the major adult component. J. Biol. Chem. 249: 6110–6118, 1974.
 16. Bangham, A. D., and H. Lehamnn. ‘Multiple’ haemoglobins in the horse. Nature 181: 267–268, 1958.
 17. Bannai, S., Y. Sugita, and Y. Yoneyama. Studies on hemoglobin from the hagfish, Eptatretus burgeri. J. Biol. Chem. 247: 505–510, 1972.
 18. Barcroft, J., and W.O.R. King. The effect of temperature on the dissociation curve of blood. J. Physiol. (Lond.) 39: 374–384, 1909.
 19. Barnett, C. H. The structure and function of the choroidal gland of teleostean fish. J. Anat. 85: 112–119, 1951.
 20. Bartels, H., P. Hilpert, K. Barbey, K. Betke, K. Riegel, E. M. Lang, and J. Metcalfe. Respiratory functions of blood of the yak, llama, camel, Dybowski deer and African elephant. Am. J. Physiol. 205: 331–336, 1963.
 21. Bartels, H., R. Schmelzle, and S. Ulrich. Comparative studies of the respiratory function of mammalian blood. V. Insectivora: shrew, mole and nonhibernating and hibernating hedgehog. Respir. Physiol. 7: 278–286, 1969.
 22. Bartlett, G. R. Phosphate compounds in vertebrate red blood cells. Am. Zool. 20: 102–114, 1980.
 23. Bartlett, G. R. Phosphates in red cells of a hagfish and a lamprey. Comp. Biochem. Physiol. A 73: 141–145, 1982.
 24. Bartlett, G. R., and T. A. Borgese. Phosphate compounds in red cells of the chicken and duck embryo and hatchling. Comp. Biochem. Physiol. A 55: 207–210, 1976.
 25. Battaglia, F. C., R. E. Behrman, C. W. De Lannoy, W. Hathaway, E. L. Makowski, G. Meschia, A. E. Seeds, and J.J.P. Schruefer. Exposure to high altitude of sheep with different haemoglobins. Q. J. Exp. Physiol. 54: 422–431, 1969.
 26. Battaglia, F. C., H. McGaughey, E. L. Makowski, and G. Meschia. Postnatal changes in oxygen affinity of sheep red cells: a dual role of 2,3‐diphosphoglyceric acid. Am. J. Physiol. 219: 217–221, 1970.
 27. Baudinette, R. V., B. J. Gannon, R. G. Ryall, and P. B. Frappell. Changes in the metabolic rates and blood respiratory characteristics during pouch development of a marsupial, Macropus eugenii. Respir. Physiol. 72: 219–228, 1988.
 28. Bauer, C., U. Engels, and S. Paleus. Oxygen binding to haemoglobins of the primitive vertebrate Myxine glutinosa L. Nature 256: 66–68, 1975.
 29. Bauer, C., M. Forster, G. Gros, A. Mosca, M. Perrella, S. Rollema, and D. Vogel. Analysis of bicarbonate binding to crocodilian hemoglobin. J. Biol. Chem. 256: 8429–8435, 1981.
 30. Bauer, C., and W. Jelkmann. Carbon dioxide governs the oxygen affinity of crocodile blood. Nature 269: 825–827, 1977.
 31. Bauer, C., and H.‐D. Jung. A comparison of the respiratory properties of sheep haemoglobins A and B. J. Comp. Physiol. 102: 167–172, 1975.
 32. Bauer, C., I. Ludwig, and M. Ludwig. Different effects of 2,3‐DPG and adenosine triphosphate on the oxygen affinity of adult and fetal human hemoglobin. Life Sci. 7: 1339–1343, 1968.
 33. Bauer, C., H. S. Rollema, H. W. Till, and G. Braunitzer. Phosphate binding by llama and camel hemoglobin. J. Comp. Physiol. B 136: 67–70, 1980.
 34. Bauer, C., R. Tamm, D. Petschow, R. Bartels, and H. Bartels. Oxygen affinity and allosteric effects of embryonic mouse haemoglobins. Nature 257: 333–334, 1975.
 35. Baumann, R. Influence of hypoxia and hyperoxia on hemoglobin pattern and blood volume of the developing chicken. Exp. Biol. Med. 7: 183–184, 1982.
 36. Baumann, R., C. Bauer, and H. Bartels. Influence of chronic and acute hypoxia on oxygen affinity and red cell 2,3‐diphosphoglycerate of rats and guinea pigs. Respir. Physiol. 11: 135–144, 1971.
 37. Baumann, F. H., and R. Baumann. A comparative study of the respiratory properties of bird blood. Respir. Physiol. 31: 333–343, 1977.
 38. Baumann, R., E. Goldbach, E.‐A. Haller, and P. G. Wright. Organic phosphates increase the solubility of avian haemoglobin D and embryonic chicken haemoglobin. Biochem. J. 217: 767–771, 1984.
 39. Baumann, R., E.‐A. Haller, U. Schoning, and M. Weber. Hypoxic incubation leads to concerted changes of carbonic anhydrase activity and 2,3‐DPG concentration of chick embryo red cells. Dev. Biol. 116: 548–551, 1986.
 40. Baumann, R., M. Koller, and P. Zillner. Po2–dependent hormonal control of avian embryonic red cell carbonic anhydrase II synthesis, organic phosphate pattern, and oxygen affinity. Isr. J. Zool. 40: 339–350, 1994.
 41. Baumann, R., and H. J. Meuer. Blood oxygen transport in the early avian embryo. Physiol. Rev. 72: 941–965, 1992.
 42. Baumann, R., S. Padeken, and E.‐A. Haller. Functional properties of embryonic chicken hemoglobins. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 53: 1439–1448, 1982.
 43. Baumann, R., S. Padeken, E.‐A. Haller, and T. Brilmayer. Effects of hypoxia on oxygen affinity, hemoglobin pattern, and blood volume of early chicken embryos. Am. J. Physiol. 244 (Regulatory, Integrative, Comp. Physiol. 15): R733–R741, 1983.
 44. Behlke, J., and W. Scheler. Der Einfluss vor Liganden auf den Assoziationsgrad des Desoxy‐Hämoglobins der Flussneunaugen (Lampetra fluviatilis L.) FEBS Lett. 7: 177–179, 1970.
 45. Benesch, R., and R. E. Benesch. The effect of organic phosphate from the human erythrocyte on the allosteric properties of hemoglobin. Biochem. Biophys. Res. Commun. 26: 162–167, 1967.
 46. Benesch, R., R. E. Benesch, and C. I. Yu. Reciprocal binding of oxygen and diphosphoglycerate by human hemoglobin. Proc. Natl. Acad. Sci. USA 59: 526–532, 1968.
 47. Benesch, R. E., R. Edalji, R. Benesch, and S. Kwong. Solubilization of hemoglobin S by other hemoglobins. Proc. Natl. Acad. Sci. USA 77: 5130–5134, 1980.
 48. Bennett, A. F. Blood physiology and oxygen transport during activity in two lizards, Varanus gouldi and Sauromalus hispidus. Comp. Biochem. Physiol. A 46: 673–690, 1973.
 49. Berner, N. J., and R. L. Ingermann. Molecular basis of the difference in oxygen affinity between maternal and foetal red blood cells in the viviparous garter snake Thamnophis elegans. J. Exp. Biol. 140: 437–453, 1988.
 50. Bertles, J. F., and T. A. Borgese. Disproportional synthesis of the adult duck's two hemoglobins during acute anemia. J. Clin. Invest. 47: 679–689, 1968.
 51. Binotti, I., S. Giovenco, B. Giardini, E. Antonini, M. Brunori, and J. Wyman. Studies on the functional properties of fish hemoglobins. II. The oxygen equilibrium of the isolated hemoglobin components from trout blood. Arch. Biochem. Biophys. 142: 274–280, 1971.
 52. Birchard, G. F., C. P. Black, G. W. Schuett, and V. Black. Foetal‐maternal blood respiratory properties of an ovoviviparous snake the cottonmouth, Agkistrodon piscivorus. J. Exp. Biol. 108: 247–255, 1984.
 53. Bird, D. J., P. L. Lutz, and I. C. Potter. Oxygen dissociation curves of the blood of larval and adult lampreys (Lampetra fluviatilis). J. Exp. Biol. 65: 449–458, 1976.
 54. Blaxter, J.H.S., and P. Tytler. Physiology and function of the swimbladder. Adv. Comp. Physiol. Biochem. 7: 311–367, 1978.
 55. Block, B. A. Evolutionary novelties: how fish have built a heater out of a muscle. Am. Zool. 31: 726–742, 1991.
 56. Blunt, M. H., J. L. Kitchen, S. M. Mayson, and T.H.J. Huisman. Red cell 2,3‐diphosphoglycerate and oxygen affinity in newborn goats and sheep. Proc. Soc. Exp. Biol. Med. 138: 800–803, 1971.
 57. Board, P. G., N. S. Agar, M. Gruca, and R. Shine. Methaemoglobin and its reduction in nucleated erythrocytes from reptiles and birds. Comp. Biochem. Physiol. B 57: 265–267, 1977.
 58. Bohr, C., K. A. Hasselbach, and A. Krogh. Über einen in biologischen Beziehung wichtigen Einfluss, den die Kohlensäurespannung des Blutes auf dessen Sauerstoffbindung übt. Skand. Arch. Physiol. 16: 401–412, 1904.
 59. Bonaventura, C., R. Cashon, J. M. Colacino, and R. H. Hilderman. Alteration of hemoglobin function by diadenosine 5′,5′″–P1,P4‐tetraphosphate and other alarmones. J. Biol. Chem. 267: 4652–4657, 1992.
 60. Bonaventura, C., B. Sullivan, J. Bonaventura, and S. Bourne. Anion modulation of the negative Bohr effect of hemoglobin from a primitive amphibian. Nature 265: 474–476, 1977.
 61. Bonaventura, J., C. Bonaventura, and B. Sullivan. Urea tolerance as a molecular adaptation of elasmobranch hemoglobins. Science 186: 57–59, 1974.
 62. Bonaventura, J., C. Bonaventura, and B. Sullivan. Hemoglobins and hemocyanins: comparative aspects of structure and function. J. Exp. Zool. 194: 155–174, 1975.
 63. Bonaventura, J., R. G. Gillen, and A. Riggs. The hemoglobin of the crossopterygian fish, Latimeria chalumnae (Smith). Arch. Biochem. Biophys. 163: 728–734, 1974.
 64. Bonilla, G. O., A. Focesi‐Júnior, C. Bonaventura, J. Bonaventura, and R. E. Cashon. Functional properties of the hemoglobin from the South American snake Mastigodryas bifossatus. Comp. Biochem. Physiol. A 109: 1085–1095, 1994.
 65. Borgese, T. A., S. Bourke, B. Frias, D. Johnson, and J. Harrington. Copper induced polymerization of hemoglobin from the ocean pout, Macrozoarces americanus. Biol. Bull. 187: 246–247, 1994.
 66. Borgese, F., R. Motais, and F. Garcia‐Romeu. Regulation of Cl‐dependent K transport by oxy‐deoxyhemoglobin transitions in trout red cells. Biochim. Biophys. Acta 1066: 252–256, 1991.
 67. Borgese, T. A., J. P. Harrington, I. Ganjian, and C. Duran. Hemoglobin properties and polymerization in the marine teleost, Lophius americanus (Goosefish). Comp. Biochem. Physiol. B 91: 663–670, 1988.
 68. Bossa, F., D. Barra, R. Petruzzelli, F. Martini, and M. Brunori. Primary structure of hemoglobin from trout (Salmo irideus). Amino acid sequence of α chain of Hb trout I. Biochim. Biophys. Acta 536: 298–305, 1978.
 69. Boutilier, R. G., G. K. Iwana, and D. J. Randall. The promotion of catecholamine release in rainbow trout, Salmo gairdneri, by acute acidosis: interactions between erythrocyte pH and hemoglobin oxygen carrying capacity. J. Exp. Biol. 123: 145–157, 1986.
 70. Braunitzer, G., and I. Hiebl. Molekulare Aspekte der Höhenatmung von Vögeln. Hämoglobine der Streifengans (Anser indicus), der Andengans (Chloephaga melanoptera) und des Spergergeiers (Gyps rueppellii). Naturwissenschaften 75: 280–287, 1988.
 71. Breepoel, P. M., F. Kreuzer, and M. Hazevoet. Interaction of organic phosphates with bovine hemoglobin. I. Oxylabile and phosphate‐labile proton binding. Pflügers Arch. 389: 219–225, 1981.
 72. Breepoel, P. M., F. Kreuzer, and M. Hazevoet. Interaction of organic phosphates with bovine hemoglobin. II. Oxygen equilibria of newborn and adult hemoglobin. Pflügers Arch. 389: 227–235, 1981.
 73. Bridges, C. R., and S. Morris. Respiratory pigments: interactions between oxygen and carbon dioxide transport. Can. J. Zool. 67: 2971–2985, 1989.
 74. Bridges, C. R., B. Pelster, and P. Scheid. Oxygen binding in blood of Xenopus laevis (amphibia) and evidence against Root effect. Respir. Physiol. 61: 125–136, 1985.
 75. Briehl, R. W. The relation between the oxygen equilibrium and aggregation of subunits in lamprey hemoglobin. J. Biol. Chem. 238: 2361–2366, 1963.
 76. Brittain, T. The effect of temperature on the equilibrium and kinetic properties of a Root effect haemoglobin from the marlin Tetrapturus audax. Comp. Biochem. Physiol. B 85: 241–243, 1986.
 77. Brittain, T. The Root effect. Comp. Biochem. Physiol. B 86: 473–481, 1987.
 78. Brittain, T. An investigation of the functioning of the two major haemoglobins of the Sphenodon using fast reaction kinetic methods. Biochem. J. 251: 771–776, 1988.
 79. Brittain, T., A. J. O'Brien, R.M.G. Wells, and J. Baldwin. A study of the role of subunit aggregation in the expression of co‐operative ligand binding in the haemoglobin of the lamprey Mordacia mordax. Comp. Biochem. Physiol. B 93: 549–554, 1989.
 80. Brittain, T., and R.M.G. Wells. Characterization of the changes in the state of aggregation induced by ligand binding in the hemoglobin system of a primitive vertebrate, the hagfish Eptatretus cirrhatus. Comp. Biochem. Physiol. A 85: 785–790, 1986.
 81. Brittain, T., and R. M. Wells. An investigation of the co‐operative functioning of the haemoglobin of the crocodile, Crocodylus porosus. Comp. Biochem. Physiol. B 98: 641–646, 1991.
 82. Brix, O., A. Bardgard, S. Mathisen, S. El‐Sherbini, S. G. Condo, and B. Giardina. Arctic life adaptation—II. The function of musk ox (Ovibos muschatos) hemoglobin. Comp. Biochem. Physiol. B 94: 135–138, 1989.
 83. Brix, O., A. Bardgard, S. Mathisen, N. Tyler, M. Nuutinen, S. G. Condo, and B. Giardina. Oxygen transport in the blood of arctic mammals: adaptation to local heterothermia. J. Comp. Physiol. B 159: 655–660, 1990.
 84. Brix, O., S. G. Condo, G. Lazzarino, M. E. Clementi, R. Scatena, and B. Giardina. Arctic life adaptation—III. The function of whale (Balaenoptera acutorostrata) hemoglobin. Comp. Biochem. Physiol. B 94: 139–142, 1989.
 85. Brix, O., B. Thomsen, M. Nuutinen, A. Hakala, J. Pudas, and B. Giardina. The chloride shift may facilitate oxygen loading and unloading to/from the hemoglobin from the brown bear (Ursus arctos L.). Comp. Biochem. Physiol. B 95: 865–868, 1990.
 86. Brooks, J. The oxidation of hemoglobin to methemoglobin by oxygen. II. The relation between the rate of oxidation and the partial pressure of oxygen. Proc. R. Soc. Lond. B 118: 560–577, 1935.
 87. Brown, E. R., and W. DeWitt. Hemoglobin changes during metamorphosis in Triturus viridescens. Comp. Biochem. Physiol. 35: 495–497, 1970.
 88. Browning, J. Urea levels in plasma and erythrocytes of the southern fiddler skate, Trygonorhina fasciata guanerius. J. Exp. Zool. 203: 325–330, 1978.
 89. Broyles, R. H., and Frieden, E. Sites of haemoglobin synthesis in amphibian tadpoles. Nature New Biol. 241: 207–209, 1973.
 90. Brunori, M. Molecular adaptation of physiological requirements: the hemoglobin system of trout. Curr. Top. Cell. Regul. 9: 1–39, 1975.
 91. Brunori, M., E. Antonini, J. Wyman, L. Tentori, G. Vivaldi, and S. Carta. The hemoglobin of amphibia. VII. Equilibrium and kinetics of the reaction of frog hemoglobin with oxygen and carbon monoxide. Comp. Biochem. Physiol. 24: 519–526, 1968.
 92. Brunori, M., A. Bellelli, B. Giardina, S. Condo, and M. F. Perutz. Is there a Root effect in Xenopus hemoglobin? FEBS Lett. 221: 161–166, 1987.
 93. Brunori, M., B. Giardina, E. Antonini, P. A. Benedetti, and G. Bianchini. Distribution of the haemoglobin components of trout blood among the erythrocytes: Observations by single‐cell spectroscopy. J. Mol. Biol. 86: 165–169, 1974.
 94. Bruns, G.A.P., and V. M. Ingram. The erythroid cells and hemoglobins of the chick embryo. Phil. Trans. R. Soc. Lond. 266: 225–305, 1973.
 95. Brush, A. H., and D. M. Power. Electrophoretic studies on hemoglobins of Brewer's blackbird Euphagus cyanocephalus. Comp. Biochem. Physiol. 33: 587–599, 1970.
 96. Buettner‐Jnusch, J., and V. Buettner‐Janusch. Haemoglobins of two elephant shrews. Nature 199: 918–919, 1963.
 97. Buettner‐Janusch, J., and V. Buettner‐Janusch. Hemoglobins of primates. In: Evolutionary and Genetic Biology of Primates, edited by J. Buettner‐Janusch. New York: Academic, vol 2, 1964, p. 75–90.
 98. Bullard, R. W. Vertebrates at high altitude. In: Physiological Adaptations‐Desert and Mountain, edited by M. K. Yousef, S. M. Horvath, and R. W. Bullard. New York: Academic, 1972, p. 209–225.
 99. Bunn, H. F. Regulation of hemoglobin function in mammals. Am. Zool. 20: 199–211, 1980.
 100. Bunn, H. F., and J. W. Drysdale. Separation of partially oxidized hemoglobins. Biochim. Biophys. Acta 229: 51–57, 1971.
 101. Bunn, H. F., and B. G. Forget. Hemoglobin: Molecular, Genetic and Clinical Aspects. Philadelphia: Saunders, 1986.
 102. Bunn, H. F., K. H. Gabbay, and P. M. Gallop. The glycosylation of hemoglobin: relevance to diabetes mellitus. Science 200: 21–27, 1978.
 103. Bunn, H. F., and P. J. Higgins. Reaction of monosaccharides with proteins: possible evolutionary significance. Science 213: 222–224, 1981.
 104. Bunn, H. F., and H. Kitchen. Hemoglobin function in the horse. The role of 2,3‐diphosphoglycerate in modifying the oxygen affinity of maternal and fetal blood. Blood 42: 471–479, 1973.
 105. Bunn, H. F., S. Shapiro, M. McManus, L. Garrick, M. J. McDonald, P. M. Gallop, and K. H. Gabbay. Structural heterogeneity of human hemoglobin A due to nonenzymatic glycosylation. J. Biol. Chem. 254: 3892–3898, 1979.
 106. Burggren, W., C.E.W. Hahn, and P. Foex. Properties of blood oxygen transport in the turtle Pseudemys scripta and the tortoise Testudo graeca: effects of temperature, CO2 and pH. Respir. Physiol. 31: 39–50, 1977.
 107. Burggren, W., B. McMahon, and D. Powers. Respiratory functions of blood. In: Environmental and Metabolic Animal Physiology, edited by C. L. Prosser. New York: Wiley‐Liss, 1991, p. 437–508.
 108. Burggren, W., and G. Shelton. Gas exchange and transport during intermittent breathing in chelonian reptiles. J. Exp. Biol. 82: 75–92, 1979.
 109. Byrne, A. P., and A. H. Houston. Use of phenylhydrazine in the detection of responsive changes in hemoglobin isomorph abundances. Can. J. Zool. 66: 758–762, 1988.
 110. Caire, W., and K. Haydari. Absence of electrophoretically distinct fetal hemoglobins in the bats Tadarida brasiliensis and Lasiurus borealis. J. Mamm. 71: 695–697, 1990.
 111. Calvert, S. J., R.A.B. Holland, and R. T. Gemmell. Respiratory properties of the neonatal blood of the common brushtail possum (Trichosurus vulpecula). Physiol. Zool. 67: 407–417, 1994.
 112. Calvert, S. J., R.A.B. Holland, and L. A. Hinds. Blood O2 transport and Hb types in the embryonic tammar wallaby (Marsupialia, Macropus eugenii). Respir. Physiol. 91: 99–109, 1993.
 113. Camardella, L., C. Caruso, R. D'Avino, G. di Prisco, B. Rutigliano, M. Tamburrini, G. Fermi, and M. F. Perutz. Haemoglobin of the antarctic fish Pagothenia bernacchii. Amino acid sequence, oxygen equilibria and crystal structure of its carbonmonoxy derivative. J. Mol. Biol. 224: 449–460, 1992.
 114. Cardellini, P., and M. Sala. Metamorphic variations in the hemoglobins of Bombina variegata (L.). Comp. Biochem. Physiol. B 64: 113–116, 1979.
 115. Cardellini, P., and M. Sala. Hemoglobin transition in the anuran Pelodytes punctatus. Comp. Biochem. Physiol. A 86: 85–89, 1987.
 116. Carey, F. G., and Q. H. Gibson. Reverse temperature dependence of tuna hemoglobin oxygenation. Biochem. Biophys. Res. Commun. 78: 1376–1382, 1977.
 117. Carey, F. G., and J. M. Teal. Heat conservation in tuna fish muscle. Proc. Natl. Acad. Sci. USA 56: 1464–1469, 1966.
 118. Carey, F. G., and J. M. Teal. Mako and porbeagle: warm‐bodied sharks. Comp. Biochem. Physiol. 28: 199–204, 1969.
 119. Carey, F. G., and J. M. Teal. Regulation of body temperature by the bluefin tuna. Comp. Biochem. Physiol. 28: 205–213, 1969.
 120. Carey, F. G., J. M. Teal, J. W. Kanwisher, K. D. Lawson, and J. S. Beckett. Warm‐bodied fish. Am. Zool. 11: 137–145, 1971.
 121. Caruso, C., B. Rutigliano, A. Riccio, A. Kunzmann, and G. di Prisco. The amino acid sequence of the single hemoglobin of the high‐Antarctic fish Bathydraco marri Norman. Comp. Biochem. Physiol. B 102: 941–946, 1992.
 122. Cashon, R., C. Bonaventura, J. Bonaventura, and A. Focesi. The nicotinamide adenine dinucleotides as allosteric effectors of human hemoglobin. J. Biol. Chem. 261: 12700–12705, 1986.
 123. Cech, J. J., R. M. Laurs, and J. B. Graham. Temperature induced changes in blood gas equilibria in the albacore, Thunnus alalunga, a warm‐bodied tuna. J. Exp. Biol. 109: 21–34, 1984.
 124. Cepreganova, B., J. B. Wilson, B. B. Webber, B. Kjovkareska, G. D. Efremov, and T.H.J. Huisman. Heterogeneity of the hemoglobin of the Ohrid trout (Salmo L. typicus). Biochem. Genet. 30: 385–399, 1992.
 125. Chamley, J. H., and R.A.B. Holland. Some respiratory properties of sheep hemoglobins A, B, and C. Respir. Physiol. 7: 287–294, 1969.
 126. Chanutin, A., and R. R. Curnish. Electrophoretic studies of hemoglobin methemoglobin mixtures. Arch. Biochem. Biophys. 113: 122–126, 1966.
 127. Chanutin, A., and R. R. Curnish. Effect of organic and inorganic phosphates on the oxygen equilibrium of human erythrocytes. Arch. Biochem. Biophys. 121: 96–102, 1967.
 128. Chappell, M. A., J. P. Hayes, and L.R.G. Snyder. Hemoglobin polymorphisms in deer mice (Peromyscus maniculatus): physiology of beta‐globin variants and alpha‐globin recombinants. Evolution 42: 681–688, 1988.
 129. Chappell, M. A., and L.R.G. Snyder. Biochemical and physiological correlates of deer mouse α‐chain hemoglobin polymorphisms. Proc. Natl. Acad. Sci. USA 81: 5484–5488, 1984.
 130. Chiodi, H. Comparative study of the blood gas transport in high altitude and sea level Camelidae and goats. Respir. Physiol. 11: 84–93, 1970/71.
 131. Cirotto, C., I. Arangi, and F. Panara. Hemoglobins of developing duck embryos. J. Embryol. Exp. Morphol. 60: 389–404, 1980.
 132. Cirotto, L. A., A. Scotto Di Tella, and G. Geraci. The hemoglobins of the developing chicken embryos. Fractionation and globin composition of the individual component of total erythrocytes and of a single erythrocyte type. Cell Differ. 4: 87–99, 1975.
 133. Claster, S., E. White, V. Woolworth, and A. Quintanilha. Degradation of erythrocyte glycophorin results in increased membrane bound hemoglobin. Arch. Biochem. Biophys. 285: 147–152, 1991.
 134. Clementi, M. E., S. G. Condo, M. Castagnola, and B. Giardina. Hemoglobin function under extreme life conditions. Eur. J. Biochem. 223: 309–317, 1994.
 135. Clementi, M. E., R. Scatena, A. Mordente, S. G. Condo, M. Castagnola, and B. Giardina. Oxygen transport by fetal bovine hemoglobin. J. Mol. Biol. 255: 229–234, 1996.
 136. Cobb, J. A., D. Manning, P. R. Kolatkar, D. J. Cox, and A. F. Riggs. Deoxygenation‐linked association of a tetrameric component of chicken hemoglobin. J. Biol. Chem. 267: 1183–1189, 1992.
 137. Coletta, M., S. G. Condo, R. Scatena, M. E. Clementi, S. Baroni, S. N. Sletten, O. Brix, and B. Giardina. Synergistic modulation by chloride and organic phosphates of haemoglobin from bear (Ursus arctos). J. Mol. Biol. 236: 1401–1406, 1994.
 138. Condo, S. G., A. Bellelli, and M. Brunori. The functional properties of amphibian hemoglobin: the case of Salamander salamander and Hydromantes genei. Comp. Biochem. Physiol. A 93: 319–325, 1989.
 139. Condo, S. G., M. Corda, M. T. Sanna, M. G. Pellegrini, M. P. Ruiz, M. Castagnola, and B. Giardina. Molecular basis of low‐temperature sensitivity in pig hemoglobins. Eur. J. Biochem. 209: 773–776, 1992.
 140. Condo, S. G., S. El‐Sherbini, and B. Giardina. Temperature modulation of bovine hemoglobins. Biochem. Biophys. Res. Commun. 177: 956–962, 1991.
 141. Condo, S. G., S. El‐Sherbini, Y. M. Shehata, M. Corda, M. G. Pellegrini, O. Brix, and B. Giardina. Hemoglobins from the bats (Myotis myotis and Rousettus aegyptiacus): a possible example of molecular adaptation to different physiological requirements. Biol. Chem. Hoppe‐Seyler 370: 861–867, 1989.
 142. Condo, S. G., S. El‐Sherbini, Y. M. Shehata, E. Serpe, M. Nuutinen, G. Lazzarino, and B. Giardina. Regulation of the oxygen affinity of hemoglobin from the reindeer (Rangifer tarandus tarandus L.). Arctic Med. Res. 47: 83–88, 1988.
 143. Condo, S. G., B. Giardina, M. Lunadei, A. Ferracin, and M. Brunori. Functional properties of hemoglobins from Triturus cristatus. Eur. J. Biochem. 120: 323–327, 1981.
 144. Conti, E., E. Casale, P. Ascenzi, M. Coletta, S. G. Cono, A. Merli, B. Giardina, D. Bordo, and M. Bolognesi. Structural study and preliminary crystallographic data for the hemoglobin from reindeer (Rangifer tarandus tarandus). Biochem. Biophys. Res. Commun. 187: 1063–1070, 1992.
 145. Copeland, D. E. The anatomy and fine structure of the eye of teleost. I. The choroid body in Fundulus grandis. Exp. Eye Res. 18: 547–561, 1974.
 146. Cordone, L., A. Cupane, M. Leone, V. Militello, and E. Vitrano. Oxygen binding to partially oxidized hemoglobin. Analysis in terms of an allosteric model. Biophys. Chem. 37: 171–181, 1990.
 147. Dafre, A. L., and E. Reischl. High hemoglobin mixed disulfide content in hemolysates from stressed shark. Comp. Biochem. Physiol. B 96: 215–219, 1990.
 148. Dafre, A. L., and D. F. Wilhelm. Root effect hemoglobins in marine fish. Comp. Biochem. Physiol. A 92: 467–471, 1989.
 149. Dalessio, P. M., L. DiMichele, and D. A. Powers. Adrenergic regulation of erythrocyte oxygen affinity, pH, and nucleotide triphosphate/hemoglobin ratio in the mummichog, Fundulus heteroclitus. Physiol. Zool. 64: 1391–1406, 1991.
 150. Dalessio, P. M., L. DiMichele, and D. A. Powers. Adrenergic effects on the oxygen affinity and pH of cultured erythrocytes and blood of the mummichog, Fundulus heteroclitus. Physiol. Zool. 64: 1407–1425, 1991.
 151. D'Aoust, B. G. The role of lactic acid in gas secretion in the teleost swimbladder. Comp. Biochem. Physiol. 32: 637–668, 1970.
 152. Darden, T. R. Respiratory adaptations of a fossorial mammal, the pocket gopher (Thomomys bottae). J. Comp. Physiol. 78: 121–137, 1972.
 153. Darling, R. C., and F.J.W. Roughton. The effect of methemoglobin on the equilibrium between oxygen and hemoglobin. Am. J. Physiol. 137: 56–68, 1942.
 154. D'Avino, R., C. Caruso, M. Tamburrini, M. Romano, B. Rutigliano, P. Polverino‐de Laureto, L. Camardella, V. Carratore, and G. di Prisco. Molecular characterization of the functionally distinct hemoglobins of the Antarctic fish Trematomus newnesi. J. Biol. Chem. 269: 9675–9681, 1994.
 155. D'Avino, R., and G. di Prisco. Antarctic fish hemoglobin: an outline of the molecular structure and oxygen binding properties‐I. Molecular structure. Comp. Biochem. Physiol. B 90: 579–584, 1988.
 156. Davis, B. J. Developmental changes in the blood oxygen transport system of Kemp's ridley sea turtle, Lepidochelys kempi. Can. J. Zool. 69: 2660–2666, 1991.
 157. Dawson, T. J., and J. V. Evans. Effect of hypoxia on oxygen transport in sheep with different hemoglobin types. Am. J. Physiol. 210: 1021–1025, 1966.
 158. Dawson, T. J., and J. V. Evans. Effect of anaemia on oxygen transport in sheep with different haemoglobin types. Aust. J. Exp. Biol. Med. Sci. 45: 437–444, 1967.
 159. Dessauer, H. C., W. Fox, and J. R. Ramirez. Preliminary attempt to correlate paper‐electrophoretic migration of hemoglobins with phylogeny in amphibia and reptilia. Arch. Biochem. Biophys. 71: 11–16, 1957.
 160. DeWitt, W., and V. M. Ingram. Acetylated peptide chains in bullfrog hemoglobins. Biochem. Biophys. Res. Commun. 27: 236–241, 1967.
 161. Dhindsa, D. S., A. S. Hoversland, and J. Metcalfe. Comparative studies of the respiratory functions of mammalian blood. VII. Armadillo (Dasypus novemcinctus). Respir. Physiol. 13: 198–208, 1971.
 162. Dhindsa, D. S., A. S. Hoversland, and J. W. Templeton. Postnatal changes in oxygen affinity and concentrations of 2,3‐diphosphoglycerate in dog blood. Biol. Neonate 20: 226–235, 1972.
 163. Dhindsa, D. S., J. Metcalfe, A. S. Hoversland, and R. A. Hartman. Comparative studies of the respiratory functions of mammalian blood. X. Killer whale (Orcinus orca Linnaeus) and beluga whale (Delphinapterus leucas). Respir. Physiol. 20: 93–103, 1974.
 164. Dickinson, F. M., and Q. H. Gibson. Studies on carbon monoxide binding by shark haemoglobin. Biochem. J. 197: 436–446, 1981.
 165. di Prisco, G. A study of hemoglobin in Antarctic fishes: purification and characterization of hemoglobins from four species. Comp. Biochem. Physiol. B 90: 631–637, 1988.
 166. di Prisco, G., R. D'Avino, L. Camardella, C. Caruso, M. Romano, and B. Rutigliano. Structure and function of hemoglobin in Antarctic fishes and evolutionary implications. Polar Biol. 10: 269–274, 1990.
 167. di Prisco, G., B. Giardina, R. D'Avino, S. G. Condo, A. Bellelli, and M. Brunori. Antarctic fish hemoglobin: an outline of the molecular structure and oxygen binding properties—II. Oxygen binding studies. Comp. Biochem. Physiol. B 90: 585–591, 1988.
 168. di Prisco, G., and M. Tamburrini. The hemoglobins of marine and freshwater fish: the search for correlations with physiological adaptation. Comp. Biochem. Physiol. B 102: 661–671, 1992.
 169. Dobson, G. P., and J. Baldwin. Regulation of blood oxygen affinity in the Australian blackfish Gadopsis marmoratus. II. Thermal acclimation. J. Exp. Biol. 99: 245–254, 1982.
 170. Dohi, Y., Y. Sugita, and Y. Yoneyama. The self‐association and oxygen equilibrium of hemoglobin from the lamprey, Entosphenus japonicus. J. Biol. Chem. 248: 2354–2363, 1973.
 171. Dorn, A. R., and R. H. Broyles. Erythrocyte differentiation during the metamorphic hemoglobin switch of Rana catesbeiana. Proc. Natl. Acad. Sci. USA 79: 5592–5596, 1982.
 172. Doyle, M. L., S. J. Gill, R. De Cristofargo, M. Castagnola, and E. Di Cera. Temperature‐ and pH‐dependence of the oxygen‐binding reaction of human fetal haemoglobin. Biochem. J. 260: 617–619, 1989.
 173. Ducis, I., A. Kandrach, and E. Racker. Stimulation of 32Pi transport into human erythrocyte ghosts and reconstituted vesicles by Mg2+ and hemoglobin. J. Biol. Chem. 263: 8544–8550, 1988.
 174. Duhm, J., and E. Gerlach. On the mechanisms of the hypoxia‐induced increase of 2,3‐diphosphoglycerate in erythrocytes. Pflügers Arch. 326: 254–269, 1971.
 175. Dunlap, J. S., V. L. Johnson, and D. S. Farner. Multiple hemoglobins in birds. Experientia 12: 352–353, 1956.
 176. Eaton, J. W., T. D. Skelton, and E. Berger. Survival at extreme altitude: protective effect of increased hemoglobin‐oxygen affinity. Science 183: 743–744, 1974.
 177. Edelstein, S. J., B. McEwen, and Q. H. Gibson. Subunit dissociation in fish hemoglobins. J. Biol. Chem. 251: 7632–7637, 1976.
 178. Edsall, J. T. Hemoglobin and the origins of the concept of allosterism. Federation Proc. 39: 226–235, 1980.
 179. Edwards, J. A., and J. T. Justus. Hemoglobins of two urodeles: changes with metamorphosis. Proc. Soc. Exp. Biol. Med. 132: 524–526, 1969.
 180. Eguchi, Y., and H. Takei. Amino acid sequence of the αA‐ and β‐polypeptide chains of the Ryukyu rufous turtle dove (Streptopelia orientalis Stimpsoni) hemoglobin. Biol. Chem. Hoppe‐Seyler. 375: 561–564, 1994.
 181. Elias, R. M., J. Eisenhoffer, and M. G. Johnston. Role of endothelial cells in regulating hemoglobin‐induced changes in lymphatic pumping. Am. J. Physiol. 263 (Heart Circ. Physiol. 34): H1880–H1887, 1992.
 182. Elli, R., A. Giuliani, L. Tentori, E. Chiancone, and E. Antonini. The hemoglobin of amphibia—X. Sedimentation behaviour of frog, triton and axolotl hemoglobins. Comp. Biochem. Physiol. 36: 163–171, 1970.
 183. El‐Moatassim, C., J. Dornand, and J.‐C. Mani. Extracellular ATP and cell signalling. Biochim. Biophys. Acta 1134: 31–45, 1992.
 184. Enoki, Y., H. Tokui, I. Tyuma, and T. Okuda. Oxygen equilibria of partially oxidized hemoglobin. Respir. Physiol. 7: 300–309, 1969.
 185. Evans, J. V., H. Harris, and F. L. Warren. The distribution of haemoglobin and blood potassium types in British breeds of sheep. Proc. R. Soc. Lond. B 148: 249–262, 1958.
 186. Fago, A., R. Davino, and G. di Prisco. The hemoglobins of Notothenia angustata, a temperate fish belonging to a family largely endemic to the Antarctic ocean. Eur. J. Biochem. 210: 963–970, 1992.
 187. Fago, A., M. Romano, M. Tamburrini, M. Coletta, R. D'Avino, and G. di Prisco. A polymerizing Root‐effect hemoglobin with high subunit heterogeneity: Correlation with primary structure. Eur. J. Biochem. 218: 829–835, 1993.
 188. Fago, A., and R. E. Weber. The hemoglobin system of the hagfish Myxine glutinosa: aggregation state and functional properties. Biochim. Biophys. Acta 1249: 109–115, 1995.
 189. Fänge, R. Gas exchange in fish swimbladder. Rev. Physiol. Biochem. Pharmacol. 97: 111–158, 1983.
 190. Farmer, M., H. J. Fyhn, U.E.H. Fyhn, and R. W. Noble. Occurrence of Root effect hemoglobins in Amazonian fishes. Comp. Biochem. Physiol. A 62: 115–124, 1979.
 191. Ferguson, R. A., N. Sehdev, B. Bagatto, and B. L. Tufts. In vitro interactions between oxygen and carbon dioxide transport in the blood of the sea lamprey (Petromyzon marinus). J. Exp. Biol. 173: 25–41, 1992.
 192. Ferigo, E., P. Cardellini, E. Rodino, M. Sala, and B. Salvato. Chemical changes in Xenopus laevis haemoglobin during metamorphosis. Acta Embryol. Exp. 2: 137–154, 1977.
 193. Flavin, M., Y. Blouquit, A. M. Duprat, and J. Rosa. Biochemical studies of the hemoglobin switch during metamorphosis in the salamander Pleurodeles waltli‐II. Comparative studies of larval and adult hemoglobins. Comp. Biochem. Physiol. B 61: 539–544, 1978.
 194. Flavin, M., J. Thillet, and J. Rosa. Oxygen equilibrium of larval and adult hemoglobins of the salamander, Pleurodeles waltii. Comp. Biochem. Physiol. A 75: 81–85, 1983.
 195. Flavin, M., T. H. Ton, P. Deparis, and A. M. Duprat. Hemoglobin switching in the salamander Pleurodeles waltlii. Immunofluorescence detection of larval and adult hemoglobins in single erythrocytes. Wilhelm Roux's Arch. 191: 185–190, 1982.
 196. Flores, G., and E. Frieden. Hemolytic effect of phenylhydrazine during amphibian metamorphosis. Dev. Biol. 27: 406–418, 1972.
 197. Focesi, A., Jr., G. O. Bonilla, C. L. Nagatomo, and M.S.A. Matsuura. Dimer‐tetramer transition in hemoglobin from Liophis miliaris—III. The phenomenon in snake species of different evolutionary levels. Comp. Biochem. Physiol. B 103: 985–989, 1992.
 198. Focesi, A., Jr., S. H. Ogo, and M.S.A. Matsuura. Dimertetramer transition in hemoglobins from Liophis miliaris—II. Evidence with the stripped proteins. Comp. Biochem. Physiol. B 96: 119–122, 1990.
 199. Fonner, D. B., J. R. Hoffert, and P. O. Fromm. The importance of the counter current oxygen multiplier mechanism in maintaining retinal function in the teleost. Comp. Biochem. Physiol. A 46: 559–567, 1973.
 200. Forman, C. W. Electromigration properties of mammalian hemoglobins as taxonomic criteria. Am. Midl. Nat. 64: 177–186, 1960.
 201. Friederichs, E., R. A. Farley, and H. J. Meiselman. Influence of calcium permeabilization and membrane‐attached hemoglobin on erythrocyte deformability. Am. J. Hematol. 41: 170–177, 1992.
 202. Friedman, J. M., B. F. Campbell, and R. W. Noble. A possible new control mechanism suggested by resonance Raman spectra from a deep ocean fish hemoglobin. Biophys. Chem. 37: 43–59, 1990.
 203. Friedman, J. M., S. R. Simon, and T. W. Scott. Structure and function in sea turtle hemoglobins. Copeia 1985: 679–693, 1985.
 204. Fronticelli, C. A possible new mechanism of oxygen affinity modulation in mammalian hemoglobins. Biophys. Chem. 37: 141–146, 1990.
 205. Fronticelli, C., and E. Bucci. Conformational and functional characteristics of bovine haemoglobin. Meth. Enzymol. 231: 150–163, 1994.
 206. Fronticelli, C., E. Bucci, and C. Orth. Solvent regulation of oxygen affinity in haemoglobin. Sensitivity of bovine haemoglobin to chloride ions. J. Biol. Chem. 259: 10841–10844, 1984.
 207. Fronticelli, C., E. Bucci, and A. Razynska. Modulation of oxygen affinity in hemoglobin by solvent components. Interaction of bovine hemoglobin with 2,3‐diphosphoglycerate and monatomic anions. J. Mol. Biol. 202: 343–348, 1988.
 208. Fyhn, U.E.H., W. C. Clark, and R. E. Withler. Hemoglobins in smoltifying chinook salmon, Oncorhynchus tshawytscha, subjected to photoperiod control. Aquaculture 95: 359–372, 1991.
 209. Fyhn, U.E.H., H. J. Fyhn, B. J. Davis, D. A. Powers, W. L. Fink, and R. L. Garlick. Hemoglobin heterogeneity in Amazonian fishes. Comp. Biochem. Physiol. A 62: 39–66, 1979.
 210. Fyhn, U.E.H., and B. Sullivan. Elasmobranch hemoglobins: dimerization and polymerization in various species. Comp. Biochem. Physiol. B 50: 119–129, 1975.
 211. Fyhn, U.E.H., and R. E. Withler. Ontogeny of hemoglobins in chinook salmon, Oncorhynchus tshawytscha. Comp. Biochem. Physiol. B 98: 201–208, 1991.
 212. Gahlenbeck, H., and H. Bartels. Blood gas transport properties in gill and lung forms of the axolotl (Ambystoma mexicanum). Respir. Physiol. 9: 175–182, 1970.
 213. Galderisi, U., L. Fucci, and G. Geraci. Multiple hemoglobins in the electric ray: Torpedo marmorata. Comp. Biochem. Physiol. B 113: 645–651, 1996.
 214. Garlick, R. L., B. J. Davis, M. Farmer, H. J. Fyhn, U.E.H. Fyhn, R. W. Noble, A. Riggs, and R. E. Weber. A fetal‐maternal shift in the oxygen equilibrium of hemoglobin from the viviparous caecilian, Typhlonectes compressicauda. Comp. Biochem. Physiol. A 62: 239–244, 1979.
 215. Garrick, M. D., and L. M. Garrick. Hemoglobins and globin genes. In: Red Blood Cells of Domestic Mammals, edited by N. S. Agar and P. G. Board. Amsterdam: Elsevier, 1983, p. 165–207.
 216. Giardina, B., E. Antonini, and M. Brunori. Hemoglobin in fishes: structural and functional properties of trout hemoglobins. Neth. J. Sea Res. 7: 339–344, 1973.
 217. Giardina, B., F. Arevalo, M. E. Clementi, L. Ferrara, A. Diluccia, E. Lendaro, A. Bellelli, and S. G. Condo. Evolution of ruminant hemoglobins—thermodynamic divergence of ox and buffalo hemoglobins. Eur. J. Biochem. 204: 509–513, 1992.
 218. Giardina, B., O. Brix, A. Colosimo, R. Petruzzelli, L. Cerroni, and S. G. Condo. Interaction of hemoglobin with chloride and 2,3‐bisphosphoglycerate—a comparative approach. Eur. J. Biochem. 194: 61–65, 1990.
 219. Giardina, B., O. Brix, M. Nuutinen, S. El‐Sherbini, A. Bardgard, G. Lazzarino, and S. G. Condo. Arctic adaptation in reindeer. The energy saving of a hemoglobin. FEBS Lett. 247: 135–138, 1989.
 220. Giardina, B., S. G. Condo, S. El‐Sherbini, S. Mathisen, N. Tyler, M. Nuutinen, A. Bardgard, and O. Brix. Arctic life adaptation—I. The function of reindeer hemoglobin. Comp. Biochem. Physiol. B 94: 129–133, 1989.
 221. Giardina, B., S. G. Condo, R. Petruzzelli, A. Bardgard, and O. Brix. Thermodynamics of oxygen binding to arctic hemoglobins. The case of the reindeer. Biophys. Chem. 37: 281–286, 1990.
 222. Giardina, B., M. Corda, M. G. Pellegrini, S. G. Condo, and M. Brunori. Functional properties of the hemoglobin system of two diving birds (Podiceps nigricollis and Phalacrocorax carbo sinensis). Mol. Physiol. 7: 281–292, 1985.
 223. Giardina, B., M. Corda, M. G. Pellegrini, M. T. Sanna, O. Brix, M. E. Clementi, and S. G. Condo. Flight and heat dissipation in birds. A possible molecular mechanism. FEBS Lett. 270: 173–176, 1990.
 224. Giardina, B., M. Ekker, S. G. Condo, R. Scatena, M. E. Clementi, and O. Brix. Arctic adaptation in whale hemoglobin: interplay of carbon dioxide and temperature in the oxygen unloading. Arctic Med. Res. 49: 93–97, 1990.
 225. Giardina, B., A. Galtieri, A. Lania, P. Ascenzi, A. Desideri, L. Cerroni, and S. G. Condo. Reduced sensitivity of O2 transport to allosteric effectors and temperature in loggerhead sea turtle hemoglobin: functional and spectroscopic study. Biochim. Biophys. Acta 1159: 129–133, 1992.
 226. Giardina, B., R. Scatena, M. E. Clementi, L. Cerroni, M. Nuutinen, O. Brix, S. N. Sletten, M. Castagnola, and S. G. Condo. Physiological relevance of the overall ΔH of oxygen binding to fetal human hemoglobin. J. Mol. Biol. 229: 512–516, 1993.
 227. Giles, M. A. Strain differences in hemoglobin polymorphism, oxygen consumption, and blood oxygen equilibria in three hatchery broodstocks of Arctic charr, Salvelinus alpinus. Fish Physiol. Biochem. 9: 291–301, 1991.
 228. Giles, M. A., and D. J. Randall. Oxygenation characteristics of the polymorphic hemoglobins of coho salmon (Oncorhynchus kisutch) at different developmental stages. Comp. Biochem. Physiol. A 65: 265–271, 1980.
 229. Giles, M. A., and D. M. Rystephanuk. Ontogenetic variation in the multiple hemoglobins of Arctic charr, Salvelinus alpinus. Can. J. Fish. Aquat. Sci. 46: 804–809, 1989.
 230. Giles, M. A., and W. E. Vanstone. Ontogenetic variation in the multiple hemoglobins of coho salmon (Oncorhynchus kisutch) and effect of environmental factors on their expression. J. Fish. Res. Board Can. 33: 1144–1149, 1976.
 231. Gill, S. J., R. Skold, L. Fall, T. Shaeffer, R. Spokane, and J. Wyman. Aggregation effects on oxygen binding of sickle cell hemoglobin. Science 201: 362–363, 1978.
 232. Gillen, R. G., and A. Riggs. The hemoglobins of a fresh‐water teleost, Cichlasoma cyanoguttatum (Baird and Girard). II. Subunit structure and oxygen equilibria of the isolated components. Arch. Biochem. Biophys. 154: 348–359, 1973.
 233. Gillen, R. G., and A. Riggs. Structure and function of the isolated hemoglobins of the American eel, Anguilla rostrata. J. Biol. Chem. 248: 1961–1969, 1973.
 234. Giulivi, C., and K.J.A. Davies. A novel antioxidant role for hemoglobin. The comproportionation of ferrylhemoglobin with oxyhemoglobin. J. Biol. Chem. 265: 19453–19460, 1990.
 235. Gordon, J. L. Extracellular ATP: effects, sources and fate. Biochem. J. 233: 309–319, 1986.
 236. Graham, M. S., and G. L. Fletcher. High concentrations of methemoglobin in five species of temperate marine teleosts. J. Exp. Zool. 239: 139–142, 1986.
 237. Greaney, G. S., and D. A. Powers. Allosteric modifiers of fish hemoglobins: in vitro and in vivo studies of the effect of ambient oxygen and pH on erythrocyte ATP concentrations. J. Exp. Zool. 203: 339–350, 1978.
 238. Grigg, G. C. Temperature induced changes in the oxygen equilibrium curve of the blood of the brown bullhead Ictalurus nebulosus. Comp. Biochem. Physiol. 29: 1203–1223, 1969.
 239. Grigg, G. C., and M. Cairncross. Respiratory properties of the blood of Crocodylus porosus. Respir. Physiol. 41: 367–380, 1980.
 240. Grigg, G. C., and M. Gruca. Possible adaptive significance of low red cell organic phosphates in crocodiles. J. Exp. Zool. 209: 161–167, 1979.
 241. Grigg, G. C., and P. Harlow. A fetal–maternal shift of blood oxygen affinity in an Australian viviparous lizard, Sphenomorphus quoyii. J. Comp. Physiol. B 142: 495–499, 1981.
 242. Grigg, G. C., R.M.G. Wells, and L. A. Beard. Allosteric control of oxygen binding by haemoglobin during embryonic development in the crocodile Crocodylus porosus: the role of red cell organic phosphates and carbon dioxide. J. Exp. Biol. 175: 15–32, 1993.
 243. Gruca, M., and G. C. Grigg. Methemoglobin reduction in crocodile blood: are high levels of MetHb typical of healthy reptiles? J. Exp. Zool. 213: 305–308, 1980.
 244. Guimond, R. W., and V. H. Hutchison. Pulmonary, branchial and cutaneous gas exchange in the mud puppy, Necturus maculosus (Rafinesque). Comp. Biochem. Physiol. A 42: 367–392, 1972.
 245. Gustin, P., B. Detry, M. L. Cao, F. Chenut, A. Robert, M. Ansay, A. Frans, and T. Clerbaux. Chloride and inorganic phosphate modulate binding of oxygen to bovine red blood cells. J. Appl. Physiol. 77: 202–208, 1994.
 246. Guttman, S. I. Hemoglobin electrophoresis and relationships within the lizard genus Sceloporus (Sauria: Iguanidae). Comp. Biochem. Physiol. 34: 563–568, 1970.
 247. Guttman, S. I. An electrophoretic study of the hemoglobins of the sand lizards, Callisaurus, Cophosaurus, Holbrookia and Uma. Comp. Biochem. Physiol. 34: 569–574, 1970.
 248. Guttman, S. I. An electrophoretic analysis of the hemoglobins of old and new world lizards. J. Herpetol. 5: 11–16, 1971.
 249. Haidas, S., D. Labie, and J. C. Kaplan. 2,3‐Diphosphoglycerate content and oxygen affinity as a function of red cell age in normal individuals. Blood 38: 463–467, 1971.
 250. Hall, F. G. Hemoglobin and oxygen: affinities in seven species of Sciuridae. Science 148: 1350–1351, 1965.
 251. Hall, F. G., D. B. Dill, and E. S. Guzman Barron. Comparative physiology at high altitude. J. Cell. Comp. Physiol. 8: 301–313, 1936.
 252. Hallam, J. F., R.A.B. Holland, and T. J. Dawson. The blood of carnivorous marsupials: low hemoglobin oxygen affinity. Physiol. Zool. 68: 342–354, 1995.
 253. Harrington, J. P. Structural and functional studies of the king salmon, Oncorhynchus tshawytscha, hemoglobins. Comp. Biochem. Physiol. B 84: 111–116, 1986.
 254. Hashimoto, K., Y. Yamaguchi, and F. Matsuura. Comparative studies on two hemoglobins of salmon—IV. Oxygen dissociation curve. Bull. Jpn. Soc. Sci. Fish. 26: 827–834, 1960.
 255. Heath, D., and D. R. Williams. Man at High Altitude, Edinburgh: Churchill Livingston, 1977.
 256. Herman, J. K., and R. L. Ingermann. Effects of hypoxia and hyperoxia on oxygen‐transfer properties of the blood of a viviparous snake. J. Exp. Biol. 199: 2061–2070, 1996.
 257. Hiebl, I., G. Braunitzer, and D. Schneeganss. The primary structures of the major and minor hemoglobin‐components of adult Andean goose (Chloephaga melanoptera, Anatidae): the mutation Leu → Ser in position 55 of the β‐chains. Biol. Chem. Hoppe‐Seyler 368: 1559–1569, 1987.
 258. Hiebl, I., D. Schneeganss, and G. Braunitzer. The primary structures of the αD‐chains of the bar‐headed goose (Anser indicus), the greylag goose (Anser anser) and the Canada goose (Branta canadensis). Biol. Chem. Hoppe‐Seyler 367: 591–599, 1986.
 259. Hiebl, I., D. Schneeganss, F. Grimm, J. Kösters, and G. Braunitzer. The primary structures of the major and minor hemoglobin component of adult European black vulture (Aegypius monachus, Aegypiinae). Biol. Chem. Hoppe‐Seyler 368: 11–18, 1987.
 260. Hiebl, I., R. E. Weber, D. Schneeganss, J. Kösters, and G. Braunitzer. Structural adaptations in the major and minor hemoglobin components of adult Ruppell's griffon (Gyps rueppelli, Aegypiinae): a new molecular pattern for hypoxic tolerance. Biol. Chem. Hoppe‐Seyler 369: 217–232, 1988.
 261. Hilbert, P., R. G. Fleischmann, D. Kempe, and H. Bartels. The Bohr effect related to blood and erythrocyte pH. Am. J. Physiol. 205: 337–340, 1963.
 262. Hirsowitz, L. A., K. Fell, and J. D. Torrance. Oxygen affinity of avian blood. Respir. Physiol. 31: 51–62, 1977.
 263. Hjorth, J. P. Genetics of Zoarces populations. VII. Fetal and adult hemoglobins and a polymorphism common to both. Hereditas 78: 69–72, 1974.
 264. Hochachka, P. W., and G. N. Somero. Strategies of Biochemical Adaptation. Saunders, Philadelphia, 1973.
 265. Hoffert, J. R., and J. L. Ubels. Electrophysiological and metabolic responses of the isolated teleost retina to changes in P02 and temperature. Comp. Biochem. Physiol. A 62: 309–316, 1979.
 266. Hoffert, J. R., and J. L. Ubels. The intraocular PO2 and electroretinogram of the trout as affected by temperature and ventilatory flow. Comp. Biochem. Physiol. A 62: 563–568, 1979.
 267. Hofmann, O., G. Carrucan, N. Robson, and T. Brittain. The chloride effect in the human embryonic haemoglobins. Biochem. J. 309: 959–962, 1995.
 268. Hofmann, O., R. Mould, and T. Brittain. Allosteric modulation of oxygen binding to the three human embryonic haemoglobins. Biochem. J. 306: 367–370, 1995.
 269. Holk, K., and G. Lykkeboe. Catecholamine‐induced changes in oxygen affinity of carp and trout blood. Resp. Physiol. 100: 55–62, 1995.
 270. Holland, R.A.B. Special adaptations in haemoglobin of a developing marsupial, the Tammar wallaby, Macropus eugenii. Proc. Aust. Physiol. Pharm. Soc. 20: 66–73, 1989.
 271. Holland, R.A.B. Special oxygen carrying properties of embryonic blood. Isr. J. Zool. 40: 401–416, 1994.
 272. Holland, R.A.B., and S. J. Calvert. High cooperativity of hemoglobin‐oxygen binding in embryonic rabbit blood. Adv. Exp. Med. Biol. 345: 159–165, 1994.
 273. Holland, R.A.B., and S. J. Calvert. Oxygen transport by rabbit embryonic blood: high cooperativity of hemoglobin‐oxygen binding. Respir. Physiol. 99: 157–164, 1995.
 274. Holland, R.A.B., S. J. Calvert, R. M. Hope, and C. M. Chesson. Blood O2 transport in newborn and adult of a very small marsupial (Sminthopsis crassicaudata). Respir. Physiol. 98: 69–81, 1994.
 275. Holland, R.A.B., J. F. Hallam, M. B. Thompson, R. Shine, and P. Harlow. Oxygen carriage by blood of gravid and nongravid adults, and in embryos and new‐born, of a viviparous Australian elapid snake, Pseudechis porphyriacus. Physiologist 33: A68, 1990.
 276. Holland, R.A.B., A. F. Rimes, A. Comis, and C. H. Tyndale‐Biscoe. Oxygen carriage and carbonic anhydrase activity in the blood of a marsupial, the Tammar wallaby (Macropus eugenii), during early development. Respir. Physiol. 73: 69–86, 1988.
 277. Honzatko, R. B., and W. A. Hendrickson. Molecular studies for the putative dimer of sea lamprey hemoglobin. Proc. Natl. Acad. Sci. USA 83: 8487–8491, 1986.
 278. Horimoto, K., H. Suzuki, and J. Otsuka. Discrimination between adaptive and neutral amino acid substitutions in vertebrate hemoglobins. J. Mol. Evol. 31: 302–324, 1990.
 279. Houston, A. H. Components of the hematological response of fishes to environmental temperature change. In: Environmental Physiology of Fishes, edited by M.A. Ali. New York: Plenum Press, 1980, p. 241–298.
 280. Houston, A. H., and D. Cyr. Thermoacclimatory variation in the haemoglobin systems of goldfish (Carassius auratus) and rainbow trout (Salmo gairdneri). J. Exp. Biol. 61: 455–461, 1974.
 281. Houston, A. H., and J. H. Gingras‐Bedard. Variable versus constant temperature acclimation regimes: Effects on hemoglobin isomorph profile in goldfish, Carassius auratus. Fish Physiol. Biochem. 13: 445–450, 1994.
 282. Houston, A. H., A. Murad, and J. D. Gray. Induction of anemia in goldfish, carassius auratus L., by immersion in phenylhydrazine hydrochloride. Can. J. Zool. 66: 729–736, 1988.
 283. Huber, F., and G. Braunitzer. The primary structure of electric ray hemoglobin (Torpedo marmorata). Bohr effect and phosphate interaction. Biol. Chem. Hoppe‐Seyler 370: 831–838, 1989.
 284. Huehns, E. R., and A. M. Farooqui. Oxygen dissociation properties of human embryonic red cells. Nature 254: 335–337, 1975.
 285. Huehns, E. R., F. V. Flynn, E. A. Butler, and G. H. Beaven. Two new haemoglobin variants in a very young embryo. Nature 189: 496–497, 1961.
 286. Huisman, T.H.J., and J. Kitchens. Oxygen equilibria studies of the hemoglobins from normal and anemic sheep and goats. Am. J. Physiol. 215: 140–146, 1968.
 287. Huisman, T.H.J., J. M. Schillhorn Van Veen, A. M. Dozy, and C. M. Nechtman. Studies on animal hemoglobins. II. The influence of inorganic phosphate on the physio‐chemical and physiological properties of the hemoglobin of the adult chicken. Biochim. Biophys. Acta 88: 352–366, 1964.
 288. Huisman, T.H.J., G. Van Vleit, and T. Tebens. Sheep haemoglobins. Nature 182: 171–173, 1958.
 289. Hutchison, V. H., H. B. Haines, and G. Engebretson. Aquatic life at high altitude: respiratory adaptations in the Lake Titicaca frog, Telmatobius culeus. Respir. Physiol. 27: 115–129, 1976.
 290. Ikeda‐Saito, M., T. Yonetani, and Q. H. Gibson. Oxygen equilibrium studies on hemoglobin from the bluefin tuna (Thunnus thynnus). J. Mol. Biol. 168: 673–686, 1983.
 291. Ingermann, R. L. Physiological significance of Root effect hemoglobins in trout. Respir. Physiol. 49: 1–10, 1982.
 292. Ingermann, R. L. Maternal‐fetal oxygen transfer in lower vertebrates. Am. Zool. 32: 322–330, 1992.
 293. Ingermann, R. L., N. J. Berner, and F. R. Ragsdale. Changes in red cell ATP concentration and oxygen‐affinity following birth in the neonatal garter snake Thamnophis elegans. J. Exp. Biol. 157: 579–584, 1991.
 294. Ingermann, R. L., N. J. Berner, and F. R. Ragsdale. Effect of pregnancy and temperature on red cell oxygen‐affinity in the viviparous snake Thamnophis elegans. J. Exp. Biol. 156: 399–406, 1991.
 295. Ingermann, R. L., M. K. Stock, J. Metcalfe, and T. B. Shih. Effect of ambient oxygen on organic phosphate concentrations in erythrocytes of the chick embryo. Respir. Physiol. 51: 141–152, 1983.
 296. Ingermann, R. L., and R. C. Terwilliger. Intraerythrocytic organic phosphates of fetal and adult seaperch (Embiotoca lateralis): their role in maternal‐fetal oxygen transport. J. Comp. Physiol. B 144: 253–259, 1981.
 297. Ingermann, R. L., and R. C. Terwilliger. Oxygen affinities of maternal and fetal hemoglobins of the viviparous seaperch, Embiotoca lateralis. J. Comp. Physiol. B 142: 523–531, 1981.
 298. Ingermann, R. L., and R. C. Terwilliger. Presence and possible function of Root effect hemoglobins in fishes lacking functional swimbladders. J. Exp. Zool. 220: 171–177, 1982.
 299. Ingermann, R. L., R. C. Terwilliger, and M. S. Roberts. Foetal and adult blood oxygen affinities of the viviparous seaperch, Embiotoca lateralis. J. Exp. Biol. 108: 453–457, 1984.
 300. Isaacks, R. E., and D. R. Harkness. 2,3–Diphosphoglycerate in erythrocytes of chick embryos. Science 189: 393–394, 1975.
 301. Isaacks, R. E., and D. R. Harkness. Erythrocyte organic phosphates and hemoglobin function in birds, reptiles, and fishes. Am. Zool. 20: 115–129, 1980.
 302. Isaacks, R. E., D. R. Harkness, G. A. Froeman, P. H. Goldman, J. L. Adler, S. A. Sussman, and S. Roth. Studies on avian erythrocyte metabolism. II. Relationship between the major phosphorylated metabolic intermediates and oxygen affinity of whole blood in chick embryos and chicks. Comp. Biochem. Physiol. A 53: 151–156, 1976.
 303. Isaacks, R. E., D. R. Harkness, and P. R. Whitham. Relationship between the major phosphorylated metabolic intermediates and oxygen affinity of whole blood in the loggerhead (Caretta caretta) and the green sea turtle (Chelonia mydas mydas) during development. Dev. Biol. 62: 344–353, 1978.
 304. Isaacks, R. E., S. Nicol, J. Sallis, R. Zeidler, and H. D. Kim. Erythrocyte phosphates and hemoglobin function in monotremes and some marsupials. Am. J. Physiol. 246 (Regulatory Integrative Comp. Physiol. 17): R236–R241, 1984.
 305. Islam, A., B. Persson, Z. H. Zaidi, and H. Jörnvall. Sea snake (Microcephalophis gracilis) hemoglobin: primary structure and relationships to other forms. J. Protein Chem. 9: 533–541, 1990.
 306. Iuchi, I. Chemical and physiological properties of the larval and the adult hemoglobins in rainbow trout, Salmo gairdnerii irideus. Comp. Biochem. Physiol. B 44: 1087–1101, 1973.
 307. Iuchi, I. Cellular and molecular bases of the larval‐adult shift of hemoglobins in fish. Zool. Sci. 2: 11–23, 1985.
 308. Jelkmann, W., and C. Bauer. Oxygen binding properties of caiman blood in the absence and presence of carbon dioxide. Comp. Biochem. Physiol. A 65: 331–336, 1980.
 309. Jelkmann, W., W. Oberthür, T. Kleinschmidt, and G. Braunitzer. Adaptation of hemoglobin function to subterranean life in the mole, Talpa europaea. Respir. Physiol. 46: 7–16, 1981.
 310. Jensen, F. B. Influence of haemoglobin conformation, nitrite and eicosanoids on K+ transport across the carp red blood cell membrane. J. Exp. Biol. 171: 349–371, 1992.
 311. Jensen, F. B., N. A. Andersen, and N. Heisler. Interrelationships between red cell nucleoside triphosphate content, and blood pH, O2‐tension and haemoglobin concentration in the carp, Cyprinus carpio. Fish Physiol. Biochem. 8: 459–464, 1990.
 312. Jensen, F. B., and R. E. Weber. Respiratory properties of tench blood and hemoglobin. Adaptation to hypoxic‐hypercapnic water. Mol. Physiol. 2: 235–250, 1982.
 313. Jessen, T. H., R. E. Weber, G. Fermi, J. Tame, and G. Braunitzer. Adaptation of bird hemoglobins to high altitudes: demonstration of molecular mechanism by protein engineering. Proc. Natl. Acad. Sci. USA 88: 6519–6522, 1991.
 314. Jia, L., C. Bonaventura, J. Bonaventura, and J. S. Stamler. S‐nitrosohaemoglobin: a dynamic activity of blood involved in vascular control. Nature 380: 221–226, 1996.
 315. Johansen, K., A. S. Abe, and R. E. Weber. Respiratory properties of whole blood and hemoglobin from the borrowing reptile, Amphisbaena alta. J. Exp. Zool. 214: 71–77, 1980.
 316. Johansen, K., M. Berger, J.E.P.W. Bicudo, A. Ruschi, and P. J. de Almeida. Respiratory properties of blood and myoglobin in hummingbirds. Physiol. Zool. 60: 269–278, 1987.
 317. Johansen, K., and C. Lenfant. A comparative approach to the adaptability of O2‐Hb affinity. In: Oxygen Affinity of Hemoglobin and Red Cell Acid‐Base Status, edited by M. Rorth and P. Astrup. Copenhagen: Munksgaard, 1972, p. 750–780.
 318. Johansen, K., C. Lenfant, and D. Hanson. Gas exchange in the lamprey, Entosphenus tridentatus. Comp. Biochem. Physiol. A 44: 107–119, 1973.
 319. Johansen, K., G. Lykkeboe, S. Kornerup, and G.M.O. Maloiy. Temperature insensitive O2 binding in blood of the tree frog Chiromantis petersi. J. Comp. Physiol. B 136: 71–76, 1980.
 320. Johansen, K., G. Lykkeboe, R. E. Weber, and G.M.O. Maloiy. Blood respiratory properties in a mammal of low body temperature, the naked mole rat, Heterocephalus glaber. Respir. Physiol. 28: 303–314, 1976.
 321. Jokumsen, A., and R. E. Weber. Haemoglobin‐oxygen binding properties in the blood of Xenopus laevis with special reference to the influences of aestivation and of temperature and salinity acclimation. J. Exp. Biol. 86: 19–37, 1980.
 322. Jurgens, K. D., H. Bartels, and R. Bartels. Blood oxygen transport and organ weights of small bats and small non‐flying mammals. Respir. Physiol. 45: 243–260, 1981.
 323. Kellogg, E. W. III, and I. Fridovich. Liposome oxidation and erythrocyte lysis by enzymically generated superoxide and hydrogen peroxide. J. Biol. Chem. 252: 6721–6728, 1977.
 324. Kennerly, T. E. Microenvironmental conditions of the pocket gopher burrow. Tex. J. Sci. 16: 395–441, 1964.
 325. Kilmartin, J. V., and L. Rossi‐Bernardi. Interaction of hemoglobin with hydrogen ions, carbon dioxide, and organic phosphates. Physiol. Rev. 53: 836–890, 1973.
 326. Kimura, M. The neutral theory of molecular evolution. Sci. Am. 241: 98–121, 1979.
 327. Kimura, M., and T. Ohta. Protein polymorphism as a phase of molecular evolution. Nature 229: 467–469, 1971.
 328. King, J.W.B., J. V. Evans, J. V. Harris, and F. L. Warren. The performance of sheep with differing haemoglobin and potassium blood types. J. Agricult. Sci. 51: 542–546, 1958.
 329. King, L. A. Adult and fetal hemoglobins in the oviparous swell shark, Cephaloscyllium ventriosum. Comp. Biochem. Physiol. B 109: 237–243, 1994.
 330. Kister, J., B. Bohn, M. C. Marden, and C. Poyart. Analysis of oxygen binding by Xenopus laevis hemoglobin: implications for the Root effect. Respir. Physiol. 76: 191–204, 1989.
 331. Kitchen, H., and I. Brett. Embryonic and fetal hemoglobin in animals. Ann. N. Y. Acad. Sci. 241: 653–671, 1974.
 332. Kleihauer, E., and G. Stöffler. Embryonic hemoglobins of different animal species. Mol. Gen. Genet. 101: 59–69, 1968.
 333. Kleinschmidt, T., K. P. Rucknagel, R. E. Weber, B. F. Koop, and G. Braunitzer. Primary structure and functional properties of the hemoglobin from the free‐tailed bat Tadarida brasiliensis (Chiroptera). Biol. Chem. Hoppe‐Seyler 368: 681–690, 1987.
 334. Kleinschmidt, T., and J. G. Sgouros. Hemoglobin sequences. Biol. Chem. Hoppe‐Seyler 368: 579–615, 1987.
 335. Koch, H.J.A. Hemoglobin changes with size in the Atlantic salmon (Salmo salar L.). Aquaculture 28: 231–240, 1982.
 336. Koller, M., S. Dragon, and R. Baumann. Control of red cell function of late chick embryos: role of extracellular ATP/AMP and egg size. Am. J. Physiol. 267 (Regulatory Integrative Comp. Physiol. 36): R542–R548, 1994.
 337. Komiyama, N. H., G. Miyazaki, J. Tame, and K. Nagai. Transplanting a unique allosteric effect from crocodile to human haemoglobin. Nature 373: 244–246, 1995.
 338. Kooyman, G. M. Behaviour and physiology of diving. In: The Biology of Penguins, edited by B. Stonehouse. London: Academic, 1975, p. 115–137.
 339. Lahiri, S. Blood oxygen affinity and alveolar ventilation in relation to body weight in mammals. Am. J. Physiol. 229: 529–536, 1975.
 340. Lanfranchi, G., S. Odorizzi, P. Lavender, and G. Valle. Different globin messenger RNAs are present before and after the metamorphosis in Lampetra zanandreai. Dev. Biol. 145: 367–373, 1991.
 341. Lapennas, G. N., and P. L. Lutz. Oxygen affinity of sea turtle blood. Respir. Physiol. 48: 59–74, 1982.
 342. Lapennas, G. N., and R. B. Reeves. Oxygen affinity and equilibrium curve shape in blood of chicken embryos. Respir. Physiol. 52: 13–26, 1983.
 343. Lapennas, G. N., and R. B. Reeves. Oxygen affinity of blood of adult domestic chicken and red jungle fowl. Respir. Physiol. 52: 27–39, 1983.
 344. Laursen, J. S., N. A. Andersen, and G. Lykkeboe. Temperature acclimation and oxygen binding properties of blood of the European eel, Anguilla anguilla. Comp. Biochem. Physiol. A 81: 79–86, 1985.
 345. Laybourne, R. C. Collision between a vulture and an aircraft at an altitude of 37,000 feet. Wilson Bull. 86: 461–462, 1974.
 346. Lechner, A. J. Respiratory adaptations in burrowing pocket gophers from sea level and high altitude. J. Appl. Physiol. 41: 168–173, 1976.
 347. Leclercq, F., A. G. Schnek, G. Braunitzer, A. Stangl, and B. Schrank. Direct reciprocal allosteric interaction of oxygen and hydrogen carbonate. Sequence of the haemoglobins of the caiman (Caiman crocodylus), the Nile crocodile (Crocodylus niloticus) and the Mississippi crocodile (Alligator mississipiensis). Hoppe‐Seyler's Z. Physiol. Chem. 362: 1151–1158, 1981.
 348. Lenfant, C., and K. Johansen. Respiratory adaptations in selected amphibians. Respir. Physiol. 2: 247–260, 1967.
 349. Lenfant, C., J. D. Torrance, and C. Reynafarje. Shift of the O2‐Hb dissociation curve at altitude: mechanism and effect. J. Appl. Physiol. 30: 625–631, 1971.
 350. Li, S.‐L., S. Tomita, and A. Riggs. The hemoglobins of the Pacific hagfish, Eptatretus stoutii. I. Isolation, characterization, and oxygen equilibria. Biochim. Biophys. Acta 278: 344–354, 1972.
 351. Lorkin, P. A. Fetal and embryonic haemoglobins. J. Med. Genet. 10: 50–64, 1973.
 352. Love, W. E., and N. M. Rumen. Heme‐heme interactions in lamprey hemoglobin—an explanation. Biol. Bull. 125: 353, 1963.
 353. Low, P. S. Structure and function of the cytoplasmic domain of band 3: center of erythrocyte membrane‐peripheral protein interactions. Biochim. Biophys. Acta 864: 145–167, 1986.
 354. Lutz, P. L. On the oxygen affinity of bird blood. Am. Zool. 20: 187–198, 1980.
 355. Lutz, P. L., and G. N. Lapennas. Effects of pH, CO2 and organic phosphates on oxygen affinity of sea turtle hemoglobins. Respir. Physiol. 48: 75–87, 1982.
 356. Lutz, P. L., I. S. Longmuir, and K. Schmidt‐Nielsen. Oxygen affinity of bird blood. Respir. Physiol. 20: 325–330, 1974.
 357. Lykkeboe, G., and K. Johansen. An O2‐Hb ‘paradox’ in frog blood? (n‐values exceeding 4.0). Respir. Physiol. 35: 119–127, 1978.
 358. Lykkeboe, G., K. Johansen, and G.M.O. Maloiy. Functional properties of hemoglobins in the teleost Tilapia grahami. J. Comp. Physiol. B 104: 1–11, 1975.
 359. Macey, D. J., and I. C. Potter. The effect of temperature on the oxygen dissociation curves of whole blood of larval and adult lampreys (Geotria australis). J. Exp. Biol. 97: 253–261, 1982.
 360. Maclean, N., and R. D. Jurd. Electrophoretic analysis of the haemoglobins of Ambystoma mexicanum. Comp. Biochem. Physiol. B 40: 751–755, 1971.
 361. Maclean, N., and R. D. Jurd. The control of haemoglobin synthesis. Biol. Rev. Camb. Philos. Soc. 47: 393–437, 1972.
 362. MacMahon, J. A., and A. Hamer. Effects of temperature and photoperiod on oxygenation and other blood parameters of the sidewinder (Crotalus cerastes): adaptive significance. Comp. Biochem. Physiol. A 51: 59–69, 1975.
 363. Maginniss, L. A., and D. T. Booth. Hemoglobin function in a skin‐breathing aquatic salamander, Desmognathus quadramaculatus. Respir. Physiol. 99: 233–240, 1995.
 364. Maginniss, L. A., A. J. Olszowka, and R. B. Reeves. Oxygen equilibrium curve shape and allohemoglobin interaction in sheep whole blood. Am. J. Physiol. 250 (Regulatory Integrative Comp. Physiol. 21): R298–R305, 1986.
 365. Maginniss, L. A., S. S. Tapper, and L. S. Miller. Effect of chronic cold and submergence of blood oxygen transport in the turtle, Chrysemys picta. Respir. Physiol. 53: 15–29, 1983.
 366. Mairbäurl, H., O. Oelz, and P. Bärtsch. Interactions between Hb, Mg, DPG, ATP, and Cl determine the change in Hb‐O2 affinity at high altitude. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 74: 40–48, 1993.
 367. Mairbäurl, H., W. Schobersberger, O. Oelz, P. Bärtsch, K. U. Eckardt, and C. Bauer. Unchanged in vivo P50 at high altitude despite decreased erythrocyte age and elevated 2,3‐diphosphoglycerate. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 68: 1186–1194, 1990.
 368. Mal, A., A. Nandi, and I. B. Chatterjee. Haemoglobin: a scavenger of superoxide radical. J. Biosci. 16: 43–53, 1991.
 369. Mangum, C. P. Urea and chloride sensitivities of coelacanth hemoglobin. Environ. Biol. Fishes 32: 219–222, 1991.
 370. Mannix, E. T., P. Palange, C. J. Magnes, N. S. Fineberg, and M. O. Farber. In vivo deleterious effects of a right shift of the HbO2 curve during hypoxemia. J. Surg. Res. 55: 9–13, 1993.
 371. Manwell, C. P. Alkaline denaturation of hemoglobin of postlarval and adult Scorpaenichthys marmoratus. Science 126: 1175–1176, 1957.
 372. Manwell, C. P. A “fetal maternal shift” in the ovoviviparous spiny dogfish Squalus suckleyi (Girard). Physiol. Zool. 31: 93–100, 1958.
 373. Manwell, C. P. On the evolution of hemoglobin. Respiratory properties of the hemoglobin of the California hagfish Polistotrema stouti. Biol. Bull. 115: 227–238, 1958.
 374. Manwell, C. Ontogeny of hemoglobin in the skate Raja binoculata. Science 128: 419–420, 1958.
 375. Manwell, C. P. Fetal and adult hemoglobins of the spiny dogfish Squalus suckleyi. Arch. Biochem. Biophys. 101: 504–511, 1963.
 376. Manwell, C. Metamorphosis and gene action—I. Electrophoresis of dehydrogenases, esterases, phosphatases, hemoglobins and other soluble proteins of tadpole and adult bullfrogs. Comp. Biochem. Physiol. 17: 805–823, 1966.
 377. Manwell, C., and C.M.A. Baker. Molecular Biology and the Origin of Species: Heterosis, Protein Polymorphism and Animal Breeding. London: Sidgwick and Jackson, 1970.
 378. Maples, P. B., J. C. Palmer, and R. H. Broyles. Determination of hemoglobin expression patterns in erythroid cells of Rana catesbeiana tadpoles. Comp. Biochem. Physiol. B 91: 755–762, 1988.
 379. Marchis‐Mouren, G., and F. Lipmann. On the mechanism of acetylation of fetal and chicken hemoglobins. Proc. Natl. Acad. Sci. USA 53: 1147–1154, 1965.
 380. Marinsky, C. A., A. H. Houston, and A. Murad. Effect of hypoxia on hemoglobin isomorph abundances in rainbow trout, Salmo gairdneri. Can. J. Zool. 68: 884–888, 1990.
 381. Martin, J. P., J. Bonaventura, H. J. Fyhn, U.E.H. Fyhn, R. L. Garlick, and D. A. Powers. Structural and functional studies of hemoglobin isolated from Amazon stingrays of the genus Potamotrygon. Comp. Biochem. Physiol. A 62: 131–138, 1979.
 382. Maruyama, T., K.W.K. Watt, and A. Riggs. Hemoglobins of the tadpole of the bullfrog Rana catesbeiana. Amino acid sequence of the α chain of a major component. J. Biol. Chem. 255: 3285–3293, 1980.
 383. Masala, B., L. Manca, and C. Callegarini. Symmetric and asymmetric tetramers, due to multiple α‐ and β‐globin chains, account for the hemoglobin polymorphism of the Italian catfish (Ictalurus sp.). Comp. Biochem. Physiol. B 102: 779–783, 1992.
 384. Masters, C. J., and R. S. Holmes. Haemoglobin, Isoenzymes and Tissue Differentiation. Amsterdam: North Holland, 1975.
 385. Matsuura, M.S.A., K. Fushitani, and A. F. Riggs. The amino acid sequences of the α and β chains of hemoglobin from the snake, Liophis miliaris. J. Biol. Chem. 264: 5515–5521, 1989.
 386. Matsuura, M.S.A., S. H. Ogo, and A. Focesi, Jr. Multiplicity and immunological characterization of the haemoglobin components from Liophis miliaris and Helicops modestus. Comp. Biochem. Physiol. B 76: 915–919, 1983.
 387. Matsuura, M.S.A., S. H. Ogo, and A. Focesi, Jr. Dimertetramer transition in haemoglobins from Liophis miliaris—I. Effect of organic phosphates. Comp. Biochem. Physiol. A 86: 683–687, 1987.
 388. Mauk, A. G., H. T. Whelan, G. R. Putz, and F. Taketa. Anemia in domestic cats: effect on hemoglobin components and whole blood oxygenation. Science 185: 447–449, 1974.
 389. McCutcheon, F. H. Hemoglobin function during the life history of the bullfrog. J. Cell. Comp. Physiol. 8: 63–81, 1936.
 390. McCutcheon, F. H. Specific oxygen affinity of hemoglobin in elasmobranchs and turtles. J. Cell. Comp. Physiol. 29: 333–344, 1947.
 391. Melrose, W. D., and R. Hodson. The erythrocytes of the metallic skink Niveoscineus metallicus. Comp. Biochem. Physiol. B 103: 297–298, 1992.
 392. Metcalfe, J., D. S. Dhindsa, and M. J. Novy. General aspects of oxygen transport in maternal and fetal blood. In: Respiratory Gas Exchange and Blood Flow in the Placenta, edited by L. D. Longo and H. Bartels. Bethesda, MD: U.S. Dept. Health, Education and Welfare, 1972, p. 63–77.
 393. Mied, P. A., and D. A. Powers. Hemoglobins of the killifish Fundulus heteroclitus—separation, characterization, and a model for the subunit compositions. J. Biol. Chem. 253: 3521–3528, 1978.
 394. Miksik, I., and Z. Hodny. Glycated hemoglobin in mute swan (Cygnus Color) and rook (Corvus frugilegus). Comp. Biochem. Physiol. B 103: 553–555, 1992.
 395. Milsom, W. K., K. Johansen, and R. W. Millard. Blood respiratory properties in some Antarctic Birds. Condor 75: 472–474, 1973.
 396. Mitchell, H. A. Multiple haemoglobins in bats. Nature 210: 1067–1068, 1966.
 397. Miwa, S., and Y. Inui. Thyroid hormone stimulates the shift of erythrocyte populations during metamorphosis of the flounder. J. Exp. Zool. 259: 222–228, 1991.
 398. Morrow, J. S., R. J. Wittebort, and F.R.N. Gurd. Ligand‐dependent aggregation of chicken hemoglobin AI. Biochem. Biophys. Res. Commun. 60: 1058–1065, 1974.
 399. Moss, B., and V. M. Ingram. Hemoglobin synthesis during amphibian metamorphosis. I. Chemical studies on the hemoglobins from the larval and adult stages of Rana catesbeiana. J. Mol. Biol. 32: 481–492, 1968.
 400. Mumm, D. P., D. H. Atha, and A. Riggs. The hemoglobin of the common sting‐ray, Dasyatis sabina: structural and functional properties. Comp. Biochem. Physiol. B 60: 189–193, 1978.
 401. Nadler, C. F., A. Woolf, and K. E. Harris. The transferrins and hemoglobins of bighorn sheep (Ovis canadensis), Dall sheep (Ovis dalli), and mouflon (Ovis musimon). Comp. Biochem. Physiol. B 40: 567–570, 1971.
 402. Nakashima, M., H. Noda, M. Hasegaea, and A. Ikai. The oxygen affinity of mammalian hemoglobins in the absence of 2,3‐diphosphoglycerate in relation to body weight. Comp. Biochem. Physiol. A 82: 583–589, 1985.
 403. Nicol, S. Respiratory properties of the blood of the little penguin Eudyptula minor. Comp. Biochem. Physiol. A 98: 17–21, 1991.
 404. Nielsen, O. B., and G. Lykkeboe. In vitro effects of pH and hemoglobin‐oxygen saturation on plasma and erythrocyte K + levels in blood from trout. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 72: 1291–1296, 1992.
 405. Nikinmaa, M. Vertebrate Red Blood Cells. Berlin: Springer‐Verlag, 1990.
 406. Nikinmaa, M. Membrane transport and control of hemoglobin‐oxygen affinity in nucleated erythrocytes. Physiol. Rev. 72: 301–321, 1992.
 407. Nikinmaa, M. Haemoglobin function in intact Lampetra fluviatilis erythrocytes. Respir. Physiol. 91: 283–293, 1993.
 408. Nikinmaa, M., S. Airaksinen, and L. V. Virkki. Haemoglobin function in intact lamprey erythrocytes: interactions with membrane function in the regulation of gas transport and acid‐base balance. J. Exp. Biol. 198: 2423–2430, 1995.
 409. Nikinmaa, M., and A. Soivio. Blood oxygen transport of hypoxic Salmo gairdneri. J. Exp. Zool. 219: 173–178, 1982.
 410. Noble, R. W., L. D. Kwiatkowski, A. De Young, B. J. Davis, R. L. Haedrich, L.‐T. Tam, and A. F. Riggs. Functional properties of hemoglobins from deep‐sea fish: correlations with depth distribution and presence of a swimbladder. Biochim. Biophys. Acta 870: 552–563, 1986.
 411. Noble, R. W., L. J. Parkhurst, and Q. H. Gibson. The effect of pH on the reactions of oxygen and carbon dioxide with the hemoglobin of the carp, Cyprinus carpio. J. Biol. Chem. 245: 6628–6633, 1970.
 412. Novy, M. J., and J. T. Parer. Absence of high blood oxygen affinity in the fetal cat. Respir. Physiol. 6: 144–150, 1969.
 413. Oberthür, W., G. Braunitzer, and I. Würdinger. Das Hämoglobin der Streifengans (Anser indicus). Primärstruktur und Physiologie der Atmung, Systematik und Evolution. Hoppe‐Seyler's Z. Physiol. Chem. 363: 581–590, 1982.
 414. Oberthür, W., W. Voelter, and G. Braunitzer. Die Sequenz der Hämoglobine von Streifengans (Anser indicus) und Strauss (Struthio camelus). Inositpentaphosphat als Modulator der Evolutionsgeschwindigkeit: die überraschende Sequenze α63 (E12) valin. Hoppe‐Seyler's Z. Physiol. Chem. 361: 969–975, 1980.
 415. Ogo, S. H., C. F. Bernardes, M. L. Glass, M. A. Torsoni, and A. E. Vercesi. Functional mitochondria in snake Bothrops alternatus erythrocytes and modulation of HbO2 affinity by mitochondrial ATP. J. Comp. Physiol. B 163: 614–619, 1993.
 416. Ogo, S., A. Focesi, Jr., R. Cashon, J. Bonaventura, and C. Bonaventura. Interactions of nicotinamide adenine dinucleotides with varied states and forms of hemoglobin. J. Biol. Chem. 264: 11302–11306, 1989.
 417. Ohkubo, N., S. Watabe, T. Oshiro, F. Takashima, and H. Nakajima. Subunit structure of multiple hemoglobins in carp. J. Comp. Physiol. B 163: 445–451, 1993.
 418. Ohno, S., and M. Morrison. Multiple gene loci for the monomeric hemoglobin of the hagfish (Eptatretus stoutii). Science 154: 1034–1035, 1966.
 419. Olivieri, O., D. Vitoux, F. Galacteros, D. Bachir, Y. Blouquit, Y. Beuzard, and C. Brugnara. Hemoglobin variants and activity of the (K + Cl −) cotransport system in human erythrocytes. Blood 79: 793–797, 1992.
 420. Oyama, S. Jr., C. L. Nagatomo, G. O. Bonilla, M.S.A. Matsuura, and A. Focesi, Jr. Bothrops alternatus hemoglobin components. Oxygen binding properties and globin chain hydrophobic analysis. Comp. Biochem. Physiol. B 105: 271–275, 1993.
 421. Paléus, S., and G. Liljeqvist. The hemoglobins of Myxine glutinosa L.II. Amino acid analyses, end group determinations and further investigations. Comp. Biochem. Physiol. B 42: 611–617, 1972.
 422. Paléus, S., O. Vesterberg, and G. Liljeqvist. The hemoglobins of Myxine glutinosa L.—I. Preparation and crystallization. Comp. Biochem. Physiol. B 39: 551–557, 1971.
 423. Pellegrini, M., B. Giardina, A. Olianas, M. T. Sanna, A. M. Deiana, S. Salvadori, G. di Prisco, M. Tamburrini, and M. Corda. Structure/function relationships in the hemoglobin components from moray (Muraena helena). Eur. J. Biochem. 234: 431–436, 1995.
 424. Pelster, B., and P. Scheid. Counter‐current concentration and gas secretion in the fish swimbladder. Physiol. Zool. 65: 1–16, 1992.
 425. Pelster, B., and P. Scheid. The influence of gas gland metabolism and blood flow on gas deposition into the swimbladder of the European eel Anguilla anguilla. J. Exp. Biol. 173: 205–216, 1992.
 426. Pelster, B., and P. Scheid. Metabolism of the swimbladder epithelium and the single concentrating effect. Comp. Biochem. Physiol. A 105: 383–388, 1993.
 427. Pelster, B., P. Scheid, and R. B. Reeves. Kinetics of the Root effect and of O2 exchange in whole blood of the eel. Respir. Physiol. 90: 341–349, 1992.
 428. Pelster, B., and R. E. Weber. Influence of organic phosphates on the Root effect of multiple fish haemoglobins. J. Exp. Biol. 149: 425–437, 1990.
 429. Pennelly, R. R., R. W. Noble, and A. Riggs. Equilibria and ligand binding kinetics of hemoglobins from the sharks, Prionace glauca and Carcharhinus milberti. Comp. Biochem. Physiol. B 52: 83–87, 1975.
 430. Perez, J. E., and N. Maclean. Ontogenetic changes in haemoglobins in roach, Rutilus rutilus (L.) and rudd, Scardinius erythrophthalmus (L.). J. Fish Biol. 6: 479–482, 1974.
 431. Perez, J. E., and N. Maclean. The haemoglobins of the fish Sarotherodon mossambicus (Peters): functional significance and ontogenetic changes. J. Fish Biol. 9: 447–455, 1976.
 432. Perez, J. E., and M. K. Rylander. Hemoglobin heterogeneity in Venezuelan fishes. Comp. Biochem. Physiol. B 80: 641–646, 1985.
 433. Perutz, M. F. Species adaptation in a protein molecule. Mol. Biol. Evol. 1: 1–28, 1983.
 434. Perutz, M. F. The chloride effect in human hemoglobin: a new kind of allosteric mechanism. Experientia 51: 197–198, 1995.
 435. Perutz, M. F. Taking the pressure off. Nature 380: 205–206, 1995.
 436. Perutz, M. F., C. Bauer, G. Gros, F. Leclercq, C. Vandecasserie, A. G. Schnek, G. Braunitzer, A. E. Friday, and K. A. Joysey. Allosteric regulation of crocodilian haemoglobin. Nature 291: 682–684, 1981.
 437. Perutz, M. F., and M. Brunori. Stereochemistry of cooperative effects in fish and amphibian haemoglobins. Nature 299: 421–426, 1982.
 438. Perutz, M. F., G. Fermi, C. Poyart, J. Pagnier, and J. Kister. A novel allosteric mechanism in haemoglobin. Structure of bovine deoxyhaemoglobin, absence of specific chloride binding sites and origin of the chloride‐linked Bohr effect in bovine and human haemoglobin. J. Mol. Biol. 233, 536–545, 1993.
 439. Perutz, M. F., and H. Lehmann. Molecular pathology of human haemoglobin. Nature 219: 902–909, 1968.
 440. Perutz, M. F., D. T. Shih, and D. Williamson. The chloride effect in human haemoglobin. A new kind of allosteric mechanism. J. Mol. Biol. 239: 555–560, 1994.
 441. Petruzzelli, R., D. Barra, F. Bossa, S. G. Condo, O. Brix, M. Nuutinen, and B. Giardina. The primary structure of hemoglobin from reindeer (Rangifer tarandus tarandus) and its functional implications. Biochim. Biophys. Acta 1076: 221–224, 1991.
 442. Petschow, D., I. Würdinger, R. Baumann, J. Duhm, G. Braunitzer, and C. Bauer. Causes of high blood O2 affinity of animals living at high altitude. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 42: 139–143, 1977.
 443. Pinder, A., and W. Burggren. Respiration during chronic hypoxia and hyperoxia in larval and adult bullfrogs (Rana catesbeiana). II. Changes in respiratory properties of whole blood. J. Exp. Biol. 105: 205–213, 1983.
 444. Pionetti, J.‐M., and P. Bouverot. Effects of acclimation to altitude on oxygen affinity and organic phosphate concentrations in pigeon blood. Life Sci. 20: 1207–1212, 1977.
 445. Poillon, W. N., B. C. Kim, G. P. Rodgers, C. T. Noguchi, and A. N. Schechter. Sparing effect of hemoglobin F and hemoglobin A2 on the polymerization of hemoglobin S at physiologic ligand saturations. Proc. Natl. Acad. Sci. USA 90: 5039–5043, 1993.
 446. Poluhowich, J. J. Adaptive significance of eel multiple hemoglobins. Physiol. Zool. 45: 215–222, 1972.
 447. Potter, I. C., and I. D. Brown. Changes in haemoglobin electropherograms during the life cycle of two closely related lampreys. Comp. Biochem. Physiol. B 51: 517–519, 1975.
 448. Pough, H. F. Environmental adaptations in the blood of lizards. Comp. Biochem. Physiol. 31: 885–901, 1969.
 449. Pough, H. F. Ontogenetic change in molecular and functional properties of blood of garter snakes, Thamnophis sirtalis. J. Exp. Zool. 201: 47–56, 1977.
 450. Pough, H. F. The relationship of blood oxygen affinity to body size in lizards. Comp. Biochem. Physiol. A 57: 435–441, 1977.
 451. Pough, H. F. Blood oxygen transport and delivery in reptiles. Am. Zool. 20: 173–185, 1980.
 452. Powers, D. A. Hemoglobin adaptation for fast and slow water habitats in sympatric catostomid fishes. Science 177: 360–362, 1972.
 453. Powers, D. A. Structure, function, and molecular ecology of fish hemoglobins. Ann. N. Y. Acad. Sci. 241: 472–490, 1974.
 454. Powers, D. A. Molecular ecology of teleost fish hemoglobins: strategies for adapting to changing environments. Am. Zool. 20: 139–162, 1980.
 455. Powers, D. A., and A. B. Edmundson. Multiple hemoglobins of catostomid fish‐II. The amino acid sequence of the major alpha chain from Catostomus clarkii hemoglobins. J. Biol. Chem. 247: 6694–6707, 1972.
 456. Powers, D. A., J. P. Martin, R. L. Garlick, H. J. Fyhn, and U.E.H. Fyhn. The effect of temperature on the oxygen equilibrium of fish hemoglobins in relation to environmental thermal variability. Comp. Biochem. Physiol. A 62: 87–94, 1979.
 457. Poyart, C., H. Wajcman, and J. Kister. Molecular adaptation of hemoglobin function in mammals. Respir. Physiol. 90: 3–17, 1992.
 458. Primmett, D.R.D., D. J. Randall, M. Mazeaud, and R. G. Boutilier. The role of catecholamines in erythrocyte pH regulation and oxygen transport in rainbow trout (Salmo gairdneri) during exercise. J. Exp. Biol. 122: 139–148, 1986.
 459. Purdie, A., R.M.G. Wells, and T. Brittain. Molecular aspects of embryonic mouse haemoglobin ontogeny. Biochem. J. 215: 377–383, 1983.
 460. Quilliam, T. A., J. A. Clarke, and A. J. Salsbury. The ecological significance of certain new haematological findings in the mole and hedgehog. Comp. Biochem. Physiol. A 40: 89–102, 1971.
 461. Qvist, J., R. E. Weber, and W. M. Zapol. Oxygen equilibrium properties of blood and hemoglobin of fetal and adult Weddell seals. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 50: 999–1005, 1981.
 462. Ragsdale, F. R., J. K. Herman, and R. L. Ingermann. Nucleoside triphosphate levels versus oxygen affinity of rattlesnake red cells. Respir. Physiol. 102: 63–69, 1995.
 463. Ragsdale, F. R., K. M. Imel, E. E. Nilsson, and R. L. Ingermann. Pregancy‐associated factors affecting organic phosphate levels and oxygen affinity of garter snake red cells. Gen. Comp. Endocrinol. 91: 181–188, 1993.
 464. Ragsdale, F. R., and R. L. Ingermann. Influence of pregnancy on the oxygen affinity of red cells from the northern Pacific rattlesnake Crotalus viridis oreganus. J. Exp. Biol. 159: 501–505, 1991.
 465. Ragsdale, F. R., and R. L. Ingermann. Biochemical bases for difference in oxygen affinity of maternal and fetal red cells of rattlesnakes. Am. J. Physiol. 264 (Regulatory Integrative Comp. Physiol. 35): R481–R486, 1993.
 466. Rapoport, S., and G. M. Guest. Distribution of acid‐soluble phosphorus in the blood cells of various vertebrates. J. Biol. Chem. 138: 269–282, 1941.
 467. Razynska, A., C. Fronticelli, E. Di Cera, Z. Gryczynski, and E. Bucci. Effect of temperature on oxygen affinity and anion binding of bovine hemoglobin. Biophys. Chem. 38: 111–115, 1990.
 468. Reid, S. D., and S. F. Perry. The effects and physiological consequences of raised levels of cortisol on rainbow trout (Oncorhynchus mykiss) erythrocyte β‐adrenoreceptors. J. Exp. Biol. 158: 217–240, 1991.
 469. Reischl, E. Oxygen equilibria of the hemoglobins from the freshwater catfish Pimelodus maculatus (Lacépéde, 1803). Comp. Biochem. Physiol. A 58: 217–221, 1977.
 470. Reischl, E., and C. O. da. Diefenbach. Heterogeneity and polymerization of hemoglobins of Caiman latirostris (Crocodylia: Reptilia). Comp. Biochem. Physiol. B 54: 543–545, 1976.
 471. Reischl, E., C. O. da C. Diefenbach, and C. V. Tondo. Ontogenetic variation of hemoglobins from South American Chelonia (Reptilia). Comp. Biochem. Physiol. B 62: 539–543, 1979.
 472. Reischl, E., A. L. Dafre. Glutathione mixed disulfides and heterogeneity of chicken hemoglobins. Comp. Biochem. Physiol. B 102: 849–853, 1992.
 473. Reischl, E., M. Höhn, R. Jaenicke, and C. Bauer. Bohr effect, electron spin resonance spectroscopy and subunit dissociation of the hemoglobin components from the turtle Phrynops hilarii. Comp. Biochem. Physiol. B 78: 251–257, 1984.
 474. Rendell, M., P. M. Stephen, R. Paulsen, J. L. Valentine, K. Rasbold, T. Hestorff, S. Eastberg, and D. C. Shint. An interspecies comparison of normal levels of glycosylated hemoglobin and glycosylated albumin. Comp. Biochem. Physiol. B 81: 819–822, 1985.
 475. Reynafarje, C., J. Faura, D. Villavincencio, A. Curaca, B. Reynafarje, L. Oyola, L. Contreras, E. Vallenas, and A. Faura. Oxygen transport of hemoglobin in high‐altitude animals (Camelidae). J. Appl. Physiol. 38: 806–810, 1975.
 476. Richardson, B. J., and E. M. Russell. Changes with ages in the proportion of nucleated red blood cell types and in the type of haemoglobin in kangaroo pouch young. Aust. J. Exp. Biol. Med. Sci. 47: 573–580, 1969.
 477. Riera, M., M. T. Prats, L. Palacios, J. Pesquero, and J. Planas. Seasonal adaptations in oxygen transport in brown trout Salmo trutta fario. Comp. Biochem. Physiol. A 106: 695–700, 1993.
 478. Riggs, A. The metamorphosis of haemoglobin in the bullfrog. J. Gen. Physiol. 35: 23–40, 1951.
 479. Riggs, A. Hemoglobin polymerization in mice. Science 147: 621–623, 1965.
 480. Riggs, A. Properties of fish hemoglobins. In: Fish Physiology, edited by W. S. Hoar and D. J. Randall. New York: Academic, 1970, p. 209–251.
 481. Riggs, A. F. Factors in the evolution of hemoglobin function. Federation Proc. 35: 2115–2118, 1976.
 482. Riggs, A. F. Studies of the hemoglobins of Amazonian fishes: an overview. Comp. Biochem. Physiol. A 62: 257–271, 1979.
 483. Riggs, A. F. The Bohr effect. Annu. Rev. Physiol. 50: 181–204, 1988.
 484. Riggs, A., B. Sullivan, and J. R. Agee. Polymerization of frog and turtle hemoglobins. Proc. Natl. Acad. Sci. USA 51: 1127–1134, 1964.
 485. Rizzotti, M., A. Comparini, and E. Rodino. The hemoglobins of Anguilla anguilla (L.) ontogenetic variations. Comp. Biochem. Physiol. A 58: 173–176, 1977.
 486. Rodewald, K., W. Oberthür, and G. Braunitzer. Homeothermic fish and hemoglobin: primary structure of the hemoglobin from bluefin tuna (Thunnus thynnus, Scromboidei). Biol. Chem. Hoppe‐Seyler 368: 795–805, 1987.
 487. Rodewald, K., A. Stangl, and G. Braunitzer. Primary structure, biochemical and physiological aspects of hemoglobin from South American lungfish (Lepidosiren paradoxus, Dipnoi). Hoppe‐Seyler's Z. Physiol. Chem. 365: 639–649, 1984.
 488. Rollema, H. S., and C. Bauer. The interaction of inositol pentaphosphate with the hemoglobins of highland and lowland geese. J. Biol. Chem. 254: 12038–12043, 1979.
 489. Ronald, A. P., and H. Tsuyuki. The subunit structures and the molecular basis of the multiple hemoglobins of two species of trout, Salmo gairdneri and S. clarki clarki. Comp. Biochem. Physiol. B 39: 195–202, 1971.
 490. Root, R. W. The respiratory function of the blood of marine fishes. Biol. Bull. 61: 427–456, 1931.
 491. Rossi‐Fanelli, A., and E. Antonini. Oxygen equilibrium of hemoglobin from Thunnus thynnus. Nature 186: 895–896, 1960.
 492. Rücknagel, K. P., and G. Braunitzer. The primary structure of the major and minor hemoglobin component of adult western painted turtle (Chrysemys picta bellii). Biol. Chem. Hoppe‐Seyler 369: 123–131, 1988.
 493. Rücknagel, K. P., G. Braunitzer, and H. Wiesner. The primary structures of the α1‐ and β1‐chains of common iguana (Iguana iguana) hemoglobin. Biol. Chem. Hoppe‐Seyler 369: 1143–1150, 1988.
 494. Rumen, N. M., and W. E. Love. The six hemoglobins of the sea lamprey (Petromyzon marinus). Arch. Biochem. Biophys. 103: 24–35, 1963.
 495. Saha, A., and J. Ghosh. Comparative studies on avian hemoglobins. Comp. Biochem. Physiol. 15: 217–235, 1965.
 496. Schalekamp, M., M. Schalekamp, D. van Goor, and R. Slingerland. Re‐evaluation of the presence of multiple haemoglobins during the ontogenesis of the chicken. J. Embryol. Exp. Morphol. 28: 681–713, 1972.
 497. Scheepens, A., R. Mould, O. Hofmann, and T. Brittain. Some effects of post‐translational N‐terminal acetylation of the human embryonic ζ globin protein. Biochem. J. 310: 597–600, 1995.
 498. Schmidt‐Nielsen, K. Animal Physiology: Adaptation and Environment. New York: Cambridge Univ. Press, 1983.
 499. Schmidt‐Nielsen, K., and J. L. Larimer. Oxygen dissociation curves of mammalian blood in relation to body size. Am. J. Physiol. 195: 424–428, 1958.
 500. Schnek, A. G., C. Paul, and J. Leonis. Evolution and adaptation of avian and crocodilian hemoglobins. In: Respiration Pigments in Animals. Relation of Structure‐Function, edited by J. Lamy, J.P. Truchot, and R. Gilles. Heidelberg: Springer‐Verlag, 1985, p. 141–158.
 501. Schnek, A. G., C. Paul, and C. Vandecasserie. Respiratory proteins in birds. In: Chemical Zoology, edited by A.H. Brush, M. Florkin, and B. T. Scheer. London: Academic, London, 1978, vol. 10, p. 359–381.
 502. Scholander, P. F., and W. E. Schevill. Countercurrent vascular heat exchange in the fins of whales. J. Appl. Physiol. 8: 279–282, 1955.
 503. Scholander, P. F., and L. Van Dam. Secretion of gases against high pressures in the swimbladder of deep sea fishes. I. Oxygen dissociation in blood. Biol. Bull. 107: 247–259, 1954.
 504. Scholnick, D. A., and C. P. Mangum. Sensitivity of hemoglobins to intracellular effectors: primitive and derived features. J. Exp. Zool. 259: 32–42, 1991.
 505. Schröder, H. J., and G. G. Powers. Increase of fetal arterial blood temperature by reduction of umbilical blood flow in chronically instrumented fetal sheep. Pflügers Arch. 427: 190–192, 1994.
 506. Schuck, P., and D. Schubert. Band 3‐hemoglobin associations. The band 3 tetramer is the oxyhemoglobin binding site. FEBS Lett. 293: 81–84, 1991.
 507. Shaklai, N., J. Yguerabide, and H. M. Ranney. Classification and localization of hemoglobin binding sites on the red blood cell membrane. Biochemistry 16: 5593–5597, 1977.
 508. Shapiro, R., M. J. McManus, C. Zalut, and H. F. Bunn. Sites of nonenzymatic glycosylation of human hemoglobin A. J. Biol. Chem. 255: 3120–3127, 1980.
 509. Sharp, G. D. An electrophoretic study of hemoglobins of some scombroid fishes and related forms. Comp. Biochem. Physiol. B 44: 381–388, 1973.
 510. Sharp, G. D. A comparison of the O2 dissociation properties of some scombrid hemoglobins. Comp. Biochem. Physiol. A 51: 683–691, 1975.
 511. Shimada, T., Y. Okihama, T. Okazaki, and R. Shukuya. The multiple hemoglobins of the Japanese eel, Anguilla japonica. Molecular basis for hemoglobin multiplicity and the subunit interactions. J. Biol. Chem. 255: 7912–7917, 1980.
 512. Smith, D. J., H. Zhu, P. R. Kolatkar, L. T. Tam, T. O. Baldwin, B. A. Roe, R. H. Broyles, and A. F. Riggs. The hemoglobins of the bullfrog, Rana catesbeiana. The cDNA‐derived amino acid sequences of the α chains of adult hemoglobins B and C: their roles in deoxygenation‐induced aggregation. J. Biol. Chem. 268: 26961–26971, 1993.
 513. Smith, H. W. The retention and physiological role of urea in the elasmobranchii. Biol. Rev. 11: 49–82, 1936.
 514. Snyder, G. K. Respiratory adaptations in diving mammals. Respir. Physiol. 54: 269–294, 1983.
 515. Snyder, G. K., C. P. Black, G. F. Birchard, and R. Lucich. Respiratory properties of blood from embryos of highland versus lowland geese. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 53: 1432–1438, 1982.
 516. Snyder, L.R.G. Deer mouse hemoglobins: is there genetic adaptation to high altitude? BioScience 31: 299–304, 1981.
 517. Snyder, L.R.G. 2,3‐Diphosphoglycerate in high‐ and low‐altitude populations of the deer mouse. Respir. Physiol. 48: 107–123, 1982.
 518. Snyder, L.R.G. Low P50 in deer mice native to high altitude. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 58: 193–199, 1985.
 519. Snyder, L.R.G., S. Born, and A. J. Lechner. Blood oxygen affinity in high‐ and low‐altitude populations of the deer mouse. Respir. Physiol. 48: 89–105, 1982.
 520. Snyder, L.R.G., J. P. Hayes, and M. A. Chappell. Alpha‐chain hemoglobin polymorphisms are correlated with altitude in the deer mouse, Peromyscus maniculatus. Evolution 42: 689–697, 1988.
 521. Sode, F. Oxygen binding characteristics of whole‐blood and hemoglobin from the snake Thamnophis sirtalis. Comp. Biochem. Physiol. B 100: 697–703, 1991.
 522. Sørensen, B., and R. E. Weber. Effects of oxygenation and the stress hormones adrenaline and cortisol on the viscosity of blood from the trout Oncorhynchus mykiss. J. Exp. Biol. 198: 953–959, 1995.
 523. Southard, J. N., C. R. Berry, Jr., and T. M. Farley. Multiple hemoglobins of the cutthroat trout, Salmo clarki. J. Exp. Zool. 239: 7–16, 1986.
 524. Stamler, J. S., D. I. Simon, J. A. Osborne, M. E. Mullins, O. Jaraki, T. Michel, D. J. Singel, and J. Loscalzo. S‐Nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc. Natl. Acad. Sci. USA 89: 444–448, 1992.
 525. Stegink, L. D., P. D. Meyer, and M. C. Brummel. Human fetal hemoglobin F1. Acetylation status. J. Biol. Chem. 246: 3001–3007, 1971.
 526. Stino, F.K.R., and K. W. Washburn. Response of chickens with different hemoglobin genotypes to phenylhydrazine‐induced anemia. 1. Electrophoretic properties of hemoglobin. Poult. Sci. 49: 101–114, 1970.
 527. Stratil, A., and M. Valenta. Ontogenetic changes in the haemoglobins of geese, ducks, chickens and turkeys. Comp. Biochem. Physiol. B 55: 145–149, 1976.
 528. Stray‐Pedersen, S., and A. Nicolaysen. Qualitative and quantitative studies of the capillary structure in the rete mirabile of the eel, Anguilla vulgaris L. Acta Physiol. Scand. 94: 339–357, 1975.
 529. Sukhomlinov, B. F., M. L. Zababurina, and V. A. Vasiléva. Structural, functional, and physicochemical properties of hemoglobins in the trout Salmo irideus and loach Misgurnus fossilis. J. Evol. Biochem. Physiol. 26: 228–232, 1990.
 530. Sullivan, B. Oxygenation properties of snake hemoglobin. Science 157: 1308–1310, 1967.
 531. Sullivan, B. Amphibian hemoglobins. In: Chemical Zoology, Amphibia and Reptilia, edited by M. Florkin and B. T. Scheer. New York: Academic, 1974, vol. 9, p. 77–122.
 532. Sullivan, B. Reptilian hemoglobins. In: Chemical Zoology, Amphibia and Reptilia, edited by M. Florkin and B. T. Scheer. New York: Academic, 1974, vol. 9, p. 377–398.
 533. Sullivan, B., and A. Riggs. Structure, function and evolution of turtle hemoglobins. I. Distribution of heavy hemoglobins. Comp. Biochem. Physiol. 23: 437–447, 1967.
 534. Sullivan, B., and A. Riggs. Structure, function and evolution of turtle hemoglobins. II. Electrophoretic studies. Comp. Biochem. Physiol. 23: 437–458, 1967.
 535. Swan, L. W. Goose of the Himalayas. Nat. Hist. 79: 68–75, 1970.
 536. Takenaka, O., and H. Morimoto. Oxygen equilibrium characteristics of adult and fetal hemoglobin of Japanese monkey (Macaca fuscata). Biochim. Biophys. Acta 446: 457–462, 1976.
 537. Taketa, F. Structure of the Felidae hemoglobins and response to 2,3‐diphosphoglycerate. Comp. Biochem. Physiol. B 45: 813–823, 1973.
 538. Tam, L. T., G. P. Gray, and A. F. Riggs. The hemoglobins of the bullfrog Rana catesbeiana. The structure of the β chain of component C and the role of the α chain in the formation of intermolecular disulfide bonds. J. Biol. Chem. 261: 8290–8294, 1986.
 539. Tam, L. T., D. Manning, D. J. Cox, and A. F. Riggs. The hemoglobins of the bullfrog, Rana catesbeiana. Deoxygenation‐linked association of tetrameric components B and C to form the trimer BC2: sedimentation analysis and oxygen equilibria. J. Biol. Chem. 268: 26972–26977, 1993.
 540. Tam, L. T., and A. F. Riggs. Oxygen binding and aggregation of bullfrog hemoglobin. J. Biol. Chem. 259: 2610–2616, 1984.
 541. Tamburrini, M., A. Brancaccio, R. Ippoliti, and G. di Prisco. The amino acid sequence and oxygen‐binding properties of the single hemoglobin of the cold‐adapted Antarctic teleost Gymnodraceo acuticeps. Arch. Biochem. Biophys. 292: 295–303, 1992.
 542. Tamburrini, M., S. G. Condo, G. di Prisco, and B. Giardina. Adaptation to extreme environments: structure‐function relationships in Emperor penguin haemoglobin. J. Mol. Biol. 237: 615–621, 1994.
 543. Tazawa, H., and M. Mochizuki. Oxygen analyses of chicken embryo blood. Respir. Physiol. 31: 203–215, 1977.
 544. Tetens, V., T. Brittain, D. L. Christie, J. Robb, and R.M.G. Wells. Characterization and function of isolated hemoglobins from the tuatara, Sphenodon punctatus (Reptilia: O. Rhynchocephalia). Comp. Biochem. Physiol. B 79: 119–123, 1984.
 545. Tetens, V., and G. Lykkeboe. Blood respiratory properties of rainbow trout Salmo gairdneri: responses to hypoxia acclimation of anoxic incubation of blood in vitro. J. Comp. Physiol. B: 145: 117–125, 1981.
 546. Tetens, V., and R.M.G. Wells. Oxygen binding properties of blood and hemoglobin solutions in the carpet shark (Cephaloscyllium isabella): roles of ATP and urea. Comp. Biochem. Physiol. A 79: 165–168, 1984.
 547. Tetens, V., R.M.G. Wells, and A. L. Devries. Antarctic fish blood: respiratory properties and the effects of thermal acclimation. J. Exp. Biol. 109: 265–279, 1984.
 548. Tibben, E. A., R.A.B. Holland, and C. H. Tyndale‐Biscoe. Blood oxygen carriage in the marsupial, tammar wallaby (Macropus eugenii), at prenatal and neonatal stages. Respir. Physiol. 84: 93–104, 1991.
 549. Tomita, S. Modulation of the oxygen equilibria of human fetal and adult hemoglobins by 2,3‐diphosphoglyceric acid. J. Biol. Chem. 256: 9495–9500, 1981.
 550. Trader, C. D., and E. Frieden. Dimerization and other chemical changes in amphibian hemoglobins during metamorphosis. J. Biol. Chem. 241: 357–366, 1966.
 551. Tufts, B. L., and R. G. Boutilier. Interactions between ion exchange and metabolism in erythrocytes of the rainbow trout Oncorhynchus mykiss. J. Exp. Biol. 156: 139–151, 1991.
 552. Tun, N., and A. H. Houston. Temperature, oxygen, photoperiod, and the hemoglobin system of the rainbow trout, Salmo gairdneri. Can. J. Zool. 64: 1883–1888, 1986.
 553. Turek, Z., F. Kreuzer, and B.E.M. Ringnalda. Blood gases at several levels of oxygenation in rats with a left‐shifted blood oxygen dissociation curve. Pflügers Arch. 376: 7–13, 1978.
 554. Turek, Z., F. Kreuzer, M. Turek‐Maischeider, and B.E.M. Ringnalda. Blood O2 content, cardiac output, and flow to organs at several levels of oxygenation in rats with a left‐shifted blood oxygen dissociation curve. Pflügers Arch. 376: 201–207, 1978.
 555. Turek, Z., B.E.M. Ringnalda, O. Moran, and F. Kreuzer. Oxygen transport in guinea pigs native to high altitude (Junin, Peru, 4105 m). Pflügers Arch. 384: 109–115, 1980.
 556. Tweeddale, P. M. DPG and the oxygen affinity of maternal and fetal pig blood and hemoglobins. Respir. Physiol. 19: 12–18, 1973.
 557. Tyuma, I., and K. Shimizu. Different response to organic phosphates of human fetal and adult hemoglobins. Arch. Biochem. Biophys. 129: 404–405, 1969.
 558. Vaccaro‐Torracca, A. M., R. Vestri, and S. Salmaso. Higher oxygen affinity of sheep Hb C compared to Hb A and Hb B. Experientia 36: 559–560, 1980.
 559. Vandecasserie, C., C. Paul, A. G. Schnek, and J. Leonis. Oxygen affinity of avian hemoglobins. Comp. Biochem. Physiol. A 44: 711–718, 1973.
 560. Vandecasserie, C., A. G. Schnek, and J. Leonis. Oxygen affinity studies of avian hemoglobins. Chicken and pigeon. Eur. J. Biochem. 24: 284–287, 1971.
 561. Vanstone, W. E., E. Roberts, and H. Tsuyuki. Changes in the multiple hemoglobin patterns of some Pacific salmon, genus Oncorhynchus, during the parr‐smolt transformation. Can. J. Physiol. Pharmacol. 42: 697–703, 1964.
 562. Van Vliet, G., and T.J.H. Huisman. Changes in the haemoglobin types of sheep as a response to anaemia. Biochem. J. 93: 401–409, 1964.
 563. Vollrath, B., B.K.A. Weir, and D. A. Cook. Hemoglobin causes release of inositol triphosphate from vascular smooth muscle. Biochem. Biophys. Res. Commun. 171: 506–511, 1990.
 564. Wade, M., and F. L. Rose. A comparison of the hemoglobins of larval and transformed Ambystoma tigrinum. Copeia 1972: 889–892, 1972.
 565. Wald, G., and A. Riggs. The hemoglobin of the sea lamprey, Petromyzon marinus. J. Gen. Physiol. 35: 45–53, 1951.
 566. Wang, S., W. C. Foote, and T. D. Bunch. Evolutionary implications of haemoglobin polymorphism in domesticated and wild sheep. Sm. Ruminant Res. 4: 315–322, 1991.
 567. Warburton, S. J., D. Hastings, and T. Wang. Responses to chronic hypoxia in embryonic alligators. J. Exp. Zool. 273: 44–50, 1995.
 568. Wastl, H., and G. Leiner. Beobachtungen über die Blutgase bei Vögeln. Pflügers Arch. 227: 367–420, 1931.
 569. Watt, K.W.K., and A. Riggs. Hemoglobins of the tadpole of the bullfrog, Rana catesbeiana. Structure and function of isolated subunits. J. Biol. Chem. 250: 5934–5944, 1975.
 570. Watt, K.W.K., T. Maruyama, and A. Riggs. Hemoglobins of the tadpole of the bullfrog, Rana catesbeiana. Amino acid sequence of the beta chain of the major component. J. Biol. Chem. 255: 3294–3301, 1980.
 571. Weber, R. E. TMAO‐independence of oxygen affinity and its urea and ATP sensitivities in an elasmobranch hemoglobin. J. Exp. Zool. 228: 551–554, 1983.
 572. Weber, R. E. Functional significance and structural basis of multiple hemoglobins with special reference to ectothermic vertebrates. In: Animal Nutrition and Transport Processes. 2. Transport, Respiration and Excretion: Comparative and Environmental Aspects, edited by J. P. Truchot and B. Lahlou. Basel: Karger, 1990, vol. 6, p. 58–75.
 573. Weber, R. E. Hemoglobin‐based O2 transfer in viviparous animals. Isr. J. Zool. 40: 541–550, 1994.
 574. Weber, R. E., J. F. Bol, K. Johansen, and S. C. Wood. Physiochemical properties of the hemoglobin of the coelacanth Latimeria chalumnae. Arch. Biochem. Biophys. 154: 96–105, 1973.
 575. Weber, R. E., and M. Hartvig. Specific fetal hemoglobin underlies the fetal‐maternal shift in blood oxygen affinity in a viviparous teleost. Mol. Physiol. 6: 27–32, 1984.
 576. Weber, R. E., M. E. Heath, and F. N. White. Oxygen binding functions of blood and hemoglobin from the Chinese pangolin, Manis pentadactyla: possible implications of burrowing and low body temperature. Respir. Physiol. 64: 103–112, 1986.
 577. Weber, R. E., I. Hiebl, and G. Braunitzer. High altitude and hemoglobin function in the vultures Gyps rueppelli and Aegypius monachus. Biol. Chem. Hoppe‐Seyler 369: 233–240, 1988.
 578. Weber, R. E., and F. B. Jensen. Functional adaptations in hemoglobins from ectothermic vertebrates. Annu. Rev. Physiol. 50: 161–179, 1988.
 579. Weber, R. E., K. Johansen, G. Lykkeboe, and G.M.O. Maloiy. Oxygen‐binding properties of hemoglobins from estivating and active African lungfish. J. Exp. Zool. 199: 85–96, 1977.
 580. Weber, R. E., T. Kleinschmidt, A. Abbassi, R.M.G. Wells, and G. Braunitzer. Allosteric transition in hemoglobin (αA2βI2) from the rhynchocephalian reptile relict Sphenodon punctatus. Hemoglobin 13: 625–636, 1989.
 581. Weber, R. E., R. Lalthantluanga, and G. Braunitzer. Functional characterization of fetal and adult yak hemoglobins: an oxygen binding cascade and its molecular basis. Arch. Biochem. Biophys. 263: 199–203, 1988.
 582. Weber, R. E., and G. Lykkeboe. Respiratory adaptations in carp blood. Influences of hypoxia, red cell organic phosphates, divalent cations and CO2 on hemoglobin‐oxygen affinity. J. Comp. Physiol. B: 128: 127–137, 1978.
 583. Weber, R. E., G. Lykkeboe, and K. Johansen. Physiological properties of eel haemoglobin: hypoxic acclimation, phosphate effects and multiplicity. J. Exp. Biol. 64: 75–88, 1976.
 584. Weber, R. E., B. Sullivan, J. Bonaventura, and C. Bonaventura. The hemoglobin system of the primitive fish, Amia calva: isolation and functional characterization of individual hemoglobin components. Biochim. Biophys. Acta 434: 18–31, 1976.
 585. Weber, R. E., R.M.G. Wells, and J. E. Rossetti. Allosteric interactions governing oxygen equilibria in the haemoglobin system of the spiny dogfish, Squalus acanthias. J. Exp. Biol. 103: 109–120, 1983.
 586. Weber, R. E., R.M.G. Wells, and J. E. Rossetti. Adaptations to neoteny in the salamander, Necturus maculosus. Blood respiratory properties and interactive effects of pH, temperature and ATP on hemoglobin oxygenation. Comp. Biochem. Physiol. A 80: 495–501, 1985.
 587. Weber, R. E., R.M.G. Wells, and S. Tougaard. Antagonistic effect of urea on oxygenation‐linked binding of ATP in an elasmobranch hemoglobin. Life Sci. 32: 2157–2161, 1983.
 588. Weber, R. E., and F. N. White. Oxygen binding in alligator blood related to temperature, diving and “alkaline tide.” Am. J. Physiol. 251 (Regulatory Integrative Comp. Physiol. 22): R901–R908, 1986.
 589. Weber, R. E., and F. N. White. Chloride‐dependent organic phosphate sensitivity of the oxygenation reaction in crocodilian hemoglobins. J. Exp. Biol. 192: 1–11, 1994.
 590. Weber, R. E., S. C. Wood, and B. J. Davis. Acclimation to hypoxic water in facultative air‐breathing fish: blood oxygen affinity and allosteric effectors. Comp. Biochem. Physiol. A 62: 125–129, 1979.
 591. Weber, R. E., S. C. Wood, and J. P. Lomholt. Temperature acclimation and oxygen‐binding properties of blood and multiple haemoglobins of the rainbow trout. J. Exp. Biol. 65: 333–345, 1976.
 592. Wells, R.M.G. Haemoglobin‐oxygen affinity in developing embryonic erythroid cells of the mouse. J. Comp. Physiol. B 129: 333–338, 1979.
 593. Wells, R.M.G., M. D. Ashby, S. J. Duncan, and J. A. Macdonald. Comparative study of the erythrocytes and haemoglobins in nototheniid fishes from Antarctica. J. Fish Biol. 17: 517–527, 1980.
 594. Wells, R.M.G., and J. Baldwin. Oxygen transport in marine green turtle (Chelonia mydas) hatchlings: blood viscosity and control of hemoglobin oxygen‐affinity. J. Exp. Biol. 188: 103–114, 1994.
 595. Wells, R.M.G., J. Baldwin, and J. M. Ryder. Respiratory function and nucleotide composition of erythrocytes from tropical elasmobranchs. Comp. Biochem. Physiol. A 103: 157–162, 1992.
 596. Wells, R.M.G., and S. O. Brennan. Oxygen equilibrium properties of isolated haemoglobins from the Weddell seal, Leptonychotes weddelli. Comp. Biochem. Physiol. A 63: 365–368, 1979.
 597. Wells, R.M.G., G. C. Grigg, L. A. Beard, and G. Summers. Hypoxic responses in a fish from a stable environment: blood oxygen transport in the Antarctic fish Pagothenia borchgrevinki. J. Exp. Biol. 141: 97–111, 1989.
 598. Wells, R.M.G., and A. Jokumsen. Oxygen binding properties of hemoglobins from Antarctic fishes. Comp. Biochem. Physiol. B 71: 469–473, 1982.
 599. Wells, R.M.G., V. Tetens, and T. Brittain. Absence of cooperative haemoglobin‐oxygen binding in Sphenodon, a reptilian relict from the Triassic. Nature 306: 500–502, 1983.
 600. Wells, R.M.G., B. J. Trevenen, and T. Brittain. Organic phosphate‐hemoglobin interactions appear non‐adaptive in the hypoxic toad, Bufo marinus. Comp. Biochem. Physiol B 92: 587–593, 1989.
 601. Wells, R.M.G., and R. E. Weber. Fixed acid and carbon dioxide Bohr effects as functions of hemoglobin‐oxygen saturation and erythrocyte pH in the blood of the frog, Rana temporaria. Pflügers Arch. 403: 7–12, 1985.
 602. Widmer, H. J., H. A. Hosbach, and R. Weber. Globin gene expression in Xenopus laevis: anemia induces precocious globin transition and appearance of adult erythroblasts during metamorphosis. Dev. Biol. 99: 50–60, 1983.
 603. Wilhelm, D. F., and E. Reischl. Heterogeneity and functional properties of hemoglobins from south Brazilian freshwater fishes. Comp. Biochem. Physiol. B 69: 463–470, 1981.
 604. Wilhelm, D. F., and R. E. Weber. Functional characterization of hemoglobins from south Brazilian freshwater teleosts—I. multiple hemoglobins from the gut/gill breather Callichthys callichthys. Comp. Biochem. Physiol. A 75: 475–482, 1983.
 605. Wilkins, N. P. The sub‐unit composition of the hemoglobins of the Atlantic salmon (Salmo salar L.). Biochim. Biophys. Acta 214: 52–63, 1970.
 606. Wilkins, N. P. Ontogeny and evolution of salmonid hemoglobins. Int. Rev. Cytol. 94: 269–298, 1985.
 607. Wilkins, N. P., and T. D. Iles. Haemoglobin polymorphism and its ontogeny in herring (Clupea harengus) and sprat (Sprattus sprattus). Comp. Biochem. Physiol. 17: 1141–1158, 1966.
 608. Willford, D. C., A. T. Gray, S. C. Hempleman, R. W. Davis, and E. P. Hill. Temperature and the oxygen‐hemoglobin dissociation curve of the harbor seal, Phoca vitulina. Respir. Physiol. 79: 137–144, 1990.
 609. Willford, D. C., and E. P. Hill. Modest effect of temperature on the porcine oxygen dissociation curve. Respir. Physiol. 64: 113–123, 1986.
 610. Wilson, R. R., Jr., and F. C. Knowles. Temperature adaptation of fish hemoglobins reflected in rates of autoxidation. Arch. Biochem. Biophys. 255: 210–213, 1987.
 611. Winslow, R. M., M.‐L. Swenberg, J. Benson, M. Perrella, and L. Benazzi. Gas exchange properties of goat hemoglobins A and C. J. Biol. Chem. 264: 4812–4817, 1989.
 612. Wittenberg, J. B., and B. A. Wittenberg. Active secretion of oxygen into the eye of fish. Nature 194: 106–107, 1962.
 613. Wittenberg, J. B., and B. A. Wittenberg. The choroid rete mirabile of the fish eye. I. Oxygen secretion and structure: comparison with the swimbladder rete mirabile. Biol. Bull. 146: 116–136, 1974.
 614. Wittenberg, J. B., and B. A. Wittenberg. Transport of oxygen in muscle. Annu. Rev. Physiol. 51: 857–878, 1989.
 615. Wittenberg, J. B., and B. A. Wittenberg. Mechanisms of cytoplasmic hemoglobin and myoglobin function. Annu. Rev. Biophys. Biophys. Chem. 19: 217–241, 1990.
 616. Wood, S. C. Effects of metamorphosis on blood respiratory properties and erythrocyte adenosine triphosphate level of the salamander Dicamptodon ensatus (Eschscholtz). Respir. Physiol. 12: 53–65, 1971.
 617. Wood, S. C., R. W. Hoyt, and W. W. Burggren. Control of hemoglobin function in the salamander, Ambystoma tigrinum. Mol. Physiol. 2: 263–272, 1982.
 618. Wood, S. C., and K. Johansen. Adaptation to hypoxia by increased HbO2 affinity and decreased red cell ATP concentration. Nature New Biol. 237: 278–279, 1972.
 619. Wood, S. C., and K. Johansen. Organic phosphate metabolism in nucleated red cells: influence of hypoxia on eel HbO2 affinity. Neth. J. Sea Res. 7: 328–338, 1973.
 620. Wood, S. C., K. Johansen, and R. E. Weber. Haemoglobin of the coelacanth. Nature 239: 283–285, 1972.
 621. Wood, S. C., K. Johansen, and R. E. Weber. Effects of ambient PO2 on hemoglobin‐oxygen affinity and red cell ATP concentrations in a benthic fish, Pleuronectes platessa. Respir. Physiol. 25: 259–267, 1975.
 622. Wood, S. C., and C.J.M. Lenfant. Respiratory mechanics, control, and gas exchange. In: Biology of the Reptilia, edited by C. Gans and W. R. Dawson. New York: Academic, 1976, vol. 5, p. 225–274.
 623. Wood, S. C., and C. Lenfant. Oxygen transport and oxygen delivery. In: Evolution of Respiratory Processes. A Comparative Approach, edited by S. C. Wood and C. Lenfant. New York: Dekker, 1979, p. 193–223.
 624. Wood, S. C., G. Lykkeboe, K. Johansen, R. E. Weber, and G.M.O. Maloiy. Temperature acclimation in the pancake tortoise, Malacochersus tornieri: metabolic rate, blood pH, oxygen affinity and red cell organic phosphates. Comp. Biochem. Physiol. A 59: 155–160, 1978.
 625. Wood, S. C., R. E. Weber, G.M.O. Maloiy, and K. Johansen. Oxygen uptake and blood respiratory properties of the caecilian Boulengerula taitanus. Respir. Physiol. 24: 355–363, 1975.
 626. Wood, W. G. Haemoglobin switching. News Physiol. Sci. 3: 33–35, 1988.
 627. Wyman, J. Linked functions and reciprocal effects in hemoglobin: a second look. Adv. Protein Chem. 19: 223–286, 1964.
 628. Wyman, J., S. J. Gill, L. Noll, B. Giardina, A. Colosimo, and M. Brunori. The balance sheet of a hemoglobin. Thermodynamics of CO binding by hemoglobin trout I. J. Mol. Biol. 109: 195–205, 1977.
 629. Yancey, P. H., and G. N. Somero. Urea‐requiring lactate dehydrogenases of marine elasmobranch fishes. J. Comp. Physiol. B 125: 135–141, 1978.
 630. Yancey, P. H., and G. N. Somero. Counteraction of urea destabilization of protein structure by methylamine osmoregulatory compounds of elasmobranch fishes. Biochem. J. 183: 317–323, 1979.
 631. Yancey, P. H., and G. N. Somero. Methylamine osmoregulatory solutes of elasmobranch fishes counteract urea inhibition of enzymes. J. Exp. Zool. 212: 205–213, 1980.
 632. Zhang, L., A. Levy, and J. M. Rifkind. Autoxidation of hemoglobin enhanced by dissociation into dimers. J. Biol. Chem. 266: 24698–24701, 1991.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Rolf L. Ingermann. Vertebrate Hemoglobins. Compr Physiol 2011, Supplement 30: Handbook of Physiology, Comparative Physiology: 357-408. First published in print 1997. doi: 10.1002/cphy.cp130106