Comprehensive Physiology Wiley Online Library
Home Browse Topics Latest Issue All Issues

Mechanisms of Excretion and Ion Transport in Invertebrates

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Ion Transport and Osmoregulation in Invertebrates: Functional Morphology and Cellular Mechanisms
1.1 Water Expulsion Vesicles and Contractile Vacuoles in Protozoans, Sponges, and Cnidarians
1.2 Nephridia and Coelomoducts: Embryology and Terminology
1.3 Nephridia
1.4 Coelomoduct‐Derived Renal Organs
1.5 Gut‐Derived Renal Organs
1.6 Other Ion‐Transporting Structures
2 Excretion in Invertebrates
2.1 Nitrogenous Wastes
2.2 Alkaloids
2.3 Organic Anions
2.4 Organic Cations
2.5 Magnesium and Sulfate
2.6 Storage and Deposit Excretion
2.7 Catabolism of Insect Neurohormones by Malpighian Tubules
2.8 Roles of Arthropod Excretory Systems and Molluscan Mantle in Acid‐Base Regulation
2.9 Active Transport of Sugars
2.10 Transport of Cardiac Glycosides
2.11 Passive Permeability to Metabolites and Toxins
3 Future Research
Figure 1. Figure 1.

Functional model of protonephridial and metanephridial systems. Direction of fluid flow is indicated by arrows. Two designs for filtration nephridia are shown (A, B). Fluid flows from inner to outer compartment when P1 exceeds P2. Fluid composition is adjusted subsequently by the modifier. C: Metanephridium. Transverse section of a generalized coelomate. Contraction of peritoneal musculature elevates blood vascular pressure, thereby filtering fluid across peritoneal podocytes. Coelomic fluid is subsequently modified by metanephridial duct. D: Protonephridium. Schematic transverse section through a generalized metazoan lacking blood vessels. Activity of terminal cilium (or cilia) creates a pressure difference, which drives fluid across terminal weir. Filtration occurs as fluid crosses extracellular matrix of weir, and fluid is subsequently modified by protonephridial duct.

Redrawn from Ruppert and Smith
Figure 2. Figure 2.

Summary of ionic compositions of blood and secreted fluid, suggested mechanisms of ionic transport, and electrochemical potentials for secretion of Na+, K+, and Cl by the leech canaliculus. In this and all subsequent figures, ATP‐dependent pumps are indicated by circles labeled +ATP; secondary active transport systems (co‐ or countertransport) by open circles, and passive conductive pathways (for example, channels) by arrows through gaps in plasma membrane.

Figure 3. Figure 3.

Schematic showing routes for ingestion of blood meal and excretion of ions and water by an ixodid tick, Dermacentor andersoni.

Redrawn from Kaufman and Phillips
Figure 4. Figure 4.

Schematic summarizing mechanisms of Na+, K+, and Cl secretion by Malpighian tubule cells of the blood‐feeding hemipteran Rhodnius prolixus.

Redrawn from Maddrell and O'Donnell
Figure 5. Figure 5.

Summary of mechanisms of ion movement in Malpighian tubule cells of the mosquito Aedes aegypti.

Figure 6. Figure 6.

Summary of ion and acid‐base transport mechanisms in locust rectum. Redrawn from Thomson and Phillips with additions. Diffusional pathways indicated by dashed arrows. Upper cell shows mechanism of rectal lumen acidification; lower cell summarizes transport mechanisms for Na+, K+, Cl, proline, and other amino acids. Values for Va, Vb, and pHi obtained under conditions described by Thomson and Phillips , with nominally ‐free saline at pH of 7.0 on both sides of isolated rectum. Net electrochemical potentials determined under open‐circuit conditions . Favorable gradients for net ion movement from lumen to hemocoel indicated by negative electrochemical potentials; positive values indicate opposing gradients.

Figure 7. Figure 7.

Schematic of excretory system of desert locust. Composition of fluid added to hindgut by Malpighian tubules shown at top of figure. Changes in pH and osmotic concentration during passage through hindgut and final contents of excreta produced by locusts starved for 1 day also indicated. Active fluid reabsorption (Jv), ion transport mechanisms, and control of these processes by first and second messengers shown in middle of figure. Arrows under CONTROL indicate whether increases (upward arrows) or decreases (downward arrows) in indicated mechanisms are produced by ileal transport peptide (ITP), purified chloride transport–stimulating hormone (CTSH), extracts of corpora cardiaca (CC), or cAMP.

Redrawn from Audsley et al.
Figure 8. Figure 8.

Pathways for water and ion movement in recta and Malpighian tubules of saline–water mosquito larvae.

Redrawn from Bradley
Figure 9. Figure 9.

Schematic longitudinal section through rectal complex of tenebrionid beetle larvae. Proposed routes for ion transport and osmotically coupled water movements are shown. Inset indicates electrical potentials and ion activities in hemolymph, perinephric space, and tubule lumen of Onymacris plana. Details in text.

Figure 10. Figure 10.

Model of NaCl uptake in crustacean gills. ATP‐dependent Na+/K+ or exchange, Na+/H+ exchange, and exchange demonstrated in both vesicle preparations and isolated gills.

Figure 11. Figure 11.

Model proposed to explain functions of carbonic anhydrase (CA) in both respiration and ion regulation in crustacean gills. Both cytoplasmic and membrane‐bound CA is inhibited by acetazolamide (Az) and benzolamide (Bz). Only extracellularly oriented, membrane‐associated CA is inhibited by quaternary ammonium sulfanilamide (QAS) and dextra‐bound inhibitors (DBI).

Redrawn from Henry
Figure 12. Figure 12.

Model of NaCl excretion by metepipodites of brine shrimp Artemia salina. Model is comparable to that proposed for gills of marine teleosts. Although chloride cells exist in both cases, there is no evidence in crustacean branchial epithelial cells for the structural equivalent of the apical crypts which characterize teleost chloride cells.

Figure 13. Figure 13.

Model proposed for tertiary coupling of organic anion (p‐aminohippuric acid, PAH) secretion to ATP‐dependent ion transport. Establishment of a sodium graident by Na+, K+‐ATPase is used to drive secondary uptake of α‐ketoglutarate (aKG2−). Efflux of aKG2− is then coupled to uptake of PAH. Transapical movements of PAH are driven by the electrical gradient between cell and lumen.

Redrawn from Pritchard and Miller
Figure 14. Figure 14.

Model proposed for excretion of organic cations, including the probe molecule tetraethylammonium (TEA). The basolateral carrier is inhibitable by quinine and driven by the inside‐negative cell potential. TEA+ is exchanged for H+ across apical membrane, and the proton is recycled through an Na+/H+ exchanger.

Redrawn from Pritchard and Miller


Figure 1.

Functional model of protonephridial and metanephridial systems. Direction of fluid flow is indicated by arrows. Two designs for filtration nephridia are shown (A, B). Fluid flows from inner to outer compartment when P1 exceeds P2. Fluid composition is adjusted subsequently by the modifier. C: Metanephridium. Transverse section of a generalized coelomate. Contraction of peritoneal musculature elevates blood vascular pressure, thereby filtering fluid across peritoneal podocytes. Coelomic fluid is subsequently modified by metanephridial duct. D: Protonephridium. Schematic transverse section through a generalized metazoan lacking blood vessels. Activity of terminal cilium (or cilia) creates a pressure difference, which drives fluid across terminal weir. Filtration occurs as fluid crosses extracellular matrix of weir, and fluid is subsequently modified by protonephridial duct.

Redrawn from Ruppert and Smith


Figure 2.

Summary of ionic compositions of blood and secreted fluid, suggested mechanisms of ionic transport, and electrochemical potentials for secretion of Na+, K+, and Cl by the leech canaliculus. In this and all subsequent figures, ATP‐dependent pumps are indicated by circles labeled +ATP; secondary active transport systems (co‐ or countertransport) by open circles, and passive conductive pathways (for example, channels) by arrows through gaps in plasma membrane.



Figure 3.

Schematic showing routes for ingestion of blood meal and excretion of ions and water by an ixodid tick, Dermacentor andersoni.

Redrawn from Kaufman and Phillips


Figure 4.

Schematic summarizing mechanisms of Na+, K+, and Cl secretion by Malpighian tubule cells of the blood‐feeding hemipteran Rhodnius prolixus.

Redrawn from Maddrell and O'Donnell


Figure 5.

Summary of mechanisms of ion movement in Malpighian tubule cells of the mosquito Aedes aegypti.



Figure 6.

Summary of ion and acid‐base transport mechanisms in locust rectum. Redrawn from Thomson and Phillips with additions. Diffusional pathways indicated by dashed arrows. Upper cell shows mechanism of rectal lumen acidification; lower cell summarizes transport mechanisms for Na+, K+, Cl, proline, and other amino acids. Values for Va, Vb, and pHi obtained under conditions described by Thomson and Phillips , with nominally ‐free saline at pH of 7.0 on both sides of isolated rectum. Net electrochemical potentials determined under open‐circuit conditions . Favorable gradients for net ion movement from lumen to hemocoel indicated by negative electrochemical potentials; positive values indicate opposing gradients.



Figure 7.

Schematic of excretory system of desert locust. Composition of fluid added to hindgut by Malpighian tubules shown at top of figure. Changes in pH and osmotic concentration during passage through hindgut and final contents of excreta produced by locusts starved for 1 day also indicated. Active fluid reabsorption (Jv), ion transport mechanisms, and control of these processes by first and second messengers shown in middle of figure. Arrows under CONTROL indicate whether increases (upward arrows) or decreases (downward arrows) in indicated mechanisms are produced by ileal transport peptide (ITP), purified chloride transport–stimulating hormone (CTSH), extracts of corpora cardiaca (CC), or cAMP.

Redrawn from Audsley et al.


Figure 8.

Pathways for water and ion movement in recta and Malpighian tubules of saline–water mosquito larvae.

Redrawn from Bradley


Figure 9.

Schematic longitudinal section through rectal complex of tenebrionid beetle larvae. Proposed routes for ion transport and osmotically coupled water movements are shown. Inset indicates electrical potentials and ion activities in hemolymph, perinephric space, and tubule lumen of Onymacris plana. Details in text.



Figure 10.

Model of NaCl uptake in crustacean gills. ATP‐dependent Na+/K+ or exchange, Na+/H+ exchange, and exchange demonstrated in both vesicle preparations and isolated gills.



Figure 11.

Model proposed to explain functions of carbonic anhydrase (CA) in both respiration and ion regulation in crustacean gills. Both cytoplasmic and membrane‐bound CA is inhibited by acetazolamide (Az) and benzolamide (Bz). Only extracellularly oriented, membrane‐associated CA is inhibited by quaternary ammonium sulfanilamide (QAS) and dextra‐bound inhibitors (DBI).

Redrawn from Henry


Figure 12.

Model of NaCl excretion by metepipodites of brine shrimp Artemia salina. Model is comparable to that proposed for gills of marine teleosts. Although chloride cells exist in both cases, there is no evidence in crustacean branchial epithelial cells for the structural equivalent of the apical crypts which characterize teleost chloride cells.



Figure 13.

Model proposed for tertiary coupling of organic anion (p‐aminohippuric acid, PAH) secretion to ATP‐dependent ion transport. Establishment of a sodium graident by Na+, K+‐ATPase is used to drive secondary uptake of α‐ketoglutarate (aKG2−). Efflux of aKG2− is then coupled to uptake of PAH. Transapical movements of PAH are driven by the electrical gradient between cell and lumen.

Redrawn from Pritchard and Miller


Figure 14.

Model proposed for excretion of organic cations, including the probe molecule tetraethylammonium (TEA). The basolateral carrier is inhibitable by quinine and driven by the inside‐negative cell potential. TEA+ is exchanged for H+ across apical membrane, and the proton is recycled through an Na+/H+ exchanger.

Redrawn from Pritchard and Miller
References
 1. Acara, M. and B. Rennick. Renal tubular transport of acetylcholine and atropine: enhancement and inhibition. J. Pharmacol. Exp. Ther. 182: 14–26, 1972.
 2. Ahearn, G. A., Z. Zhuang, J. Duerr and V. Pennington. Role of the invertebrate electrogenic 2Na+/1H+ antiporter in monovalent and divalent cation transport. J. Exp. Biol. 196: 319–335, 1994.
 3. Ahmad, I., and J. A. Hellebust. The role of glycerol and inorganic ions in osmoregulatory responses of the euryhaline flagellate Chlamydomonas Pulsatilla Wollenweber. Plant Physiol. 82: 406–410, 1986.
 4. Aldis, G. K. The unstirred layer during osmotic flow into a tubule. Bull. Math. Biol. 50: 531–545, 1988.
 5. Aldis, G. K. The osmotic permeability of a tubule wall. Bull. Math. Biol. 50: 547–558, 1988.
 6. Allen, R. D., and A. K. Fok. Membrane dynamics of the contractile vacuole complex of Paramecium. J. Protozool. 35: 63–71, 1988.
 7. Andrews, E. B. Osmoregulation and excretion in prosobranch gastropods II: structure in relation to function. J. Molluscan Stud. 47: 248–289, 1981.
 8. Andrivon, C., E. Wyroba, and D. J. Patterson. Récherches préliminaires sur les ATPases de Paramecium aurelia. J. Protozool. 24: 55A, 1977.
 9. Aneshansley, D. J., C. E. Marler, and K. W. Beyenbach. Transepithelial voltage measurements in isolated Malpighian tubules of Aedes aegypti. J. Insect Physiol. 35: 41–52, 1988.
 10. Anstee, J. H., D. M. Bell and H. Fathpour. Fluid and cation secretion by the Malpighian tubules of Locusta. J. Insect Physiol. 25: 373–380, 1979.
 11. Aston, R. J., and A. F. White. Isolation and purification of the diuretic hormone from Rhodnius prolixus. J. Insect Physiol. 20: 1673–1682, 1974.
 12. Audsley, N., C. Mcintosh, and J. E. Phillips. Purification of a new neuropeptide from locust corpus cardiacum which influences ileal transport. Prog. Brain Res. 92: 157–162, 1992.
 13. Avenet, P., and J. M. Lignon. Ionic permeabilities of the gill lamina cuticle of the crayfish, Astacus leptodactylus (E). J. Physiol. (Land.) 363: 377–401, 1985.
 14. Bakker‐Grunwald, T. Ion transport in parasitic protozoa. J. Exp. Biol. 172: 311–322, 1992.
 15. Bakker‐Grunwald, T., F. Keller and D. Trissl. Effects of amiloride on Na+ content and pinocytosis in Entamoeba histolytica. Biochim. Biophys. Acta. 815: 170–174, 1986.
 16. Baldrick, P., D. Hyde, and J. H. Anstee. Microelectrode studies on Malpighian tubule cells of Locusta migratoria: effects of external ions and inhibitors. J. Insect Physiol. 34: 963–975, 1988.
 17. Balshin, M., and J. E. Phillips. Active absorption of amino acids in the rectum of the desert locust (Schistocerca gregaria). Nature 233: 53–55, 1971.
 18. Baumann, E. and H. Penzlin. Inactivation of neurohormone D by Malpighian tubules in an insect, Periplaneta americana. J. Comp. Physiol. [B] 157: 511–517, 1987.
 19. Bergquist, B. L. Modification of contractile vacuole activity by calmodulin inhibitors. Trans. Am. Microsc. Soc. 108: 369–379, 1989.
 20. Bernotat‐Danielowski, S., and W. Knülle. Ultrastructure of the rectal sac, the site of water vapour uptake from the atmosphere in larvae of the oriental rat flea Xenopsylla cheopis. Tissue Cell 18: 437–445, 1986.
 21. Berridge, M. J. The physiology of excretion in the cotton stainer Dysdercus fasciatus, Signoret. IV. Hormonal control of excretion. J. Exp. Biol. 44: 553–566, 1966.
 22. Berridge, M. J. Urine formation by the Malpighian tubules of Calliphora. I. Cations. J. Exp. Biol. 48: 159–174, 1968.
 23. Berridge, M. J. Urine formation by the Malpighian tubules of Calliphora. II. Anions. J. Exp. Biol. 50: 15–28, 1969.
 24. Berridge, M. J., B. D. Lindley, and W. T. Prince. Membrane permeability changes during stimulation of isolated salivary glands of Calliphora by 5‐hydroxytryptamine. J. Physiol. (Lond.) 244: 549–567, 1975.
 25. Bertram, G. Harn‐Sekretion der Malpighischen gefäße von Drosophila hydei unter dem Einfluß von amilorid‐ist ein K+/H+‐Antiport beteiligt? Verh. Dtsch. Zool. Ges. 82: 203–204, 1989.
 26. Bertram, G. Intracellular pH regulation in Malpighian tubules of Drosophila hydei affected by metabolic inhibitors and bafilomycin. Verh. Dtsch. Zool. Ges. 84: 495–496, 1991.
 27. Bertram, G., L. Schleithoff, P. Zimmermann and A. Wessing. Bafilomycin A1 is a potent inhibitor of urine formation by Malpighian tubules of Drosophila hydei: is a vacuolar‐type ATPase involved in ion and fluid secretion? J. Insect Physiol. 37: 201–209, 1991.
 28. Bertsch, A. Foraging in male bumblebees (Bombus lucorum L.) maximizing energy or minimizing water load? Oecologia 62: 325–336, 1984.
 29. Bishop, S. H., and L. B. Barnes. Ammonia forming mechanism: deamination of 5′‐adenylic acid (AMP) by some polychaete annelids. Comp. Biochem. Physiol. [B] 40: 407–422, 1971.
 30. Bishop, S. H., and J. W. Campbell. Arginine and urea biosynthesis in the earthworm Lumbricus terrestris. Comp. Biochem. Physiol. 15: 51–71, 1965.
 31. Bishop, S. H., L. L. Ellis, and J. L. Burcham. Amino acid metabolism in molluscs. In: The Mollusca, edited by P. W. Hochachka. New York: Academic, 1983, vol. 1, p. 243–327.
 32. Bitsch, J. Fonction et ultrastructure des vésicules exertiles de l'abdomen des Machilides. Pedobiologia 14: 142–143, 1974.
 33. Bone, Q. C. Brownlee, G. W., Bryan, G. R. Burt, P. R. Dando, M. I. Liddicoat, A. L. Pulsford, and K. P. Ryan. On the differences between the two “indicator” species of chaetognath, Sagitta setosa and S. elegans. J. Marine Biol. Assoc. U.K. 67: 545–560, 1987.
 34. Boucher‐Rodoni, R. and K. Mangold. Respiration and nitrogen excretion by the squid Loligo forbesi. Marine Biol. 103: 333–338, 1989.
 35. Bowman, E. J., A. Siebers and K. Altendorf. Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. Proc. Natl. Acad. Sci. U.S.A. 85: 7972–7976, 1988.
 36. Bradley, T. J. Functional design of microvilli in the Malpighian tubules of the insect Rhodnius prolixus. J. Cell Sci. 60: 117–135, 1983.
 37. Bradley, T. J. The excretory system: structure and function. In: Comprehensive Insect Physiology, Biochemistry and Pharmacology, edited by G. A. Kerkut and L. I. Gilbert. London: Pergamon, 1985, vol. 4, p. 421–465.
 38. Bradley, T. J. Physiology of osmoregulation in mosquitoes. Annu. Rev. Entomol. 32: 439–462, 1987.
 39. Bradley, T. J. Membrane dynamics in insect Malpighian tubules. Am. J. Physiol. 151 (Regulatory Integrative Comp. Physiol. 28): R967–R972, 1989.
 40. Bradley, T. J., J. K. Nayar, and J. W. Knight. Selection of a strain of Aedes aegypti susceptible to Dirofilaria immitis and lacking intracellular concretions in the Malpigian tubules. J. Insect Physiol. 36: 709–717, 1990.
 41. Bradley, T. J. and P. Satir. Evidence for microfilament‐associated mitochondrial movement. J. Supramol. Struct. 12: 165–175, 1979.
 42. Bradley, T. J. and P. Satir. Insect axopods. J. Cell Sci. 35: 165–175, 1979.
 43. Bradley, T. J. and P. Satir. 5‐Hydroxytryptamine‐stimulated mitochondrial movement and microvillar growth in the Malpighian tubules of the insect Rhodnius prolixus. J. Cell Sci. 49: 139–161, 1981.
 44. Bradley, T. J. and C. Snyder. Fluid secretion and microvillar ultrastructure in mosquito Malpighian tubules. Am. J. Physiol. 257 (Regulatory Integrative Comp. Physiol. 28): R1096–R1102, 1989.
 45. Brauer, E. B. Osmoregulation in the fresh water sponge, Spongilla lacustris. J. Exp. Zool. 192: 193–202, 1975.
 46. Bresler, V. M., E. A. Belyaeva, and M. G. Mozhayeva. A comparative study on the system of active transport of organic acids in Malpighian tubules of insects. J. Insect Physiol. 36: 259–270, 1990.
 47. Brown, B. E. The form and function of metal‐containing “granules” in invertebrate tissues. Biol. Rev. 57: 621–667, 1982.
 48. Buckner, J. S. Hormonal control of uric acid storage in the fat body during last‐larval instar of Manudca sexta. J. Insect Physiol. 28: 987–993, 1982.
 49. Buckner, J. S., J. M. Caldwell, and J. A. Knoper. Subcellular localization of uric acid storage in the fat body of Manduca sexta during the larval‐pupal transformation. J. Insect Physiol. 31: 741–753, 1985.
 50. Buckner, J. S., T. A. Henderson, D. D. Ehresmann and G. Graf. Structure and composition of urate storage granules from the fat body of Manduca sexta. Insect Biochem. 20: 203–214, 1990.
 51. Buckner, J. S., and S. M. Newman. Uric acid storage in the epidermal cells of Manduca sexta: localization and movement during the larval‐pupal transformation. J. Insect Physiol. 36: 219–229, 1990.
 52. Burnett, L. E., and D. W. Towle. Sodium ion uptake by perfused gills of the blue crab Callinectes sapidus: effects of ouabain and amiloride. J. Exp. Biol. 149: 293–305, 1990.
 53. Burton, R. F. Calcium metabolism and acid‐base balance in Helix pomatia. In: Perspectives in Experimental Biology, edited by P. Spencer Davies. Oxford: Pergamon, 1976, p. 7–16.
 54. Burton, R. F. Haemolymph composition in spiders and scorpions. Comp. Biochem. Physiol. A 78: 613–616, 1984.
 55. Burton, R. F. Ionic regulation in Crustacea: the influence of temperature on apparent set points. Comp. Biochem. Physiol. A 84: 135–139, 1986.
 56. Butt, A. G., and H. H. Taylor. Salt and water balance in the spider, Porrhothele antipodiana (Mygalomorpha: Dipluridae): effects of feeding upon hydrated animals. J. Exp. Biol. 125: 85–106, 1986.
 57. Butt, A. G., and H. H. Taylor. The function of spider coxal organs: effects of feeding and salt‐loading on Porrhothele antipodiana (Mygalomorpha: Dipluridae). J. Exp. Biol. 158: 439–461, 1991.
 58. Byers, J. R. Metamorphosis of perirectal Malpighian tubules of the mealworm Tenebrio molitor. I Histology and histochemistry. Can. J. Zool. 49: 823–832, 1971.
 59. Byrne, R. A., T. H. Dietz, and R. F. McMahon. Ammonia dynamics during and after prolonged emersion in the freshwater clam Corbicula fluminea (Müller) (Bivalvia: Corbiculacea). Can. J. Zool. 69: 676–680, 1991.
 60. Cameron, J. N. Unusual aspects of calcium metabolism in aquatic animals. Annu. Rev. Physiol. 52: 77–95, 1990.
 61. Cameron, J. N., and C. U. Batterton. Antennal gland function in the freshwater blue crab Callinectes sapidus: water, electrolyte, acid‐base and ammonia excretion. J. Comp. Physiol. 123: 143–148, 1978.
 62. Cameron, J. N. and N. Heisler. Studies of ammonia in the rainbow trout: physico‐chemical parameters, acid‐base behavior and respiratory clearance. J. Exp. Biol. 105: 107–125, 1983.
 63. Campbell, J. W. Arginine and urea biosynthesis in the land planarian: its significance in biochemical evolution. Nature 208: 1299–1301, 1965.
 64. Campbell, J. W. Excretory nitrogen metabolism. In: Environmental and Metabolic Animal Physiology, edited by C. L. Prosser. New York: Wiley, 1991, p. 277–324.
 65. Campbell, J. W., and B. D. Boyan. On the acid‐base balance of gastropod molluscs. In: Mechanisms of Mineralization in the Invertebrates and Plants, edited by N. Watabe and K. M. Wilbur. Columbia: Univ. of South Carolina Press, 1976, p. 109–133.
 66. Campbell, J. W., and J. E. Vorhaben. The purine nucleotide cycle in Helix hepatopancreas. J. Comp. Physiol. 129: 137–144, 1979.
 67. Campiglia, S. S. and R. Lavallard. Extracellular space and nephridial function in Peripatus acacioi, Marcus and Marcus (Onychophora). Comp. Biochem. Physiol. A 76: 167–171, 1983.
 68. Campiglia, S. S., and S.H.P. Maddrell. Ion absorption by the distal tubules of onychophoran nephridia. J. Exp. Biol. 121: 43–54, 1986.
 69. Cannings, S. C. The influence of salinity on the cuticular permeability of Cenocorixa bifida hungerfordi Lansbury (Hemiptera: Corixidae). Can. J. Zool. 59: 1505–1509, 1981.
 70. Carlson, A. D., and P. D. Evans. Inactivation of octopamine in larval firely light organs by a high‐affinity uptake mechanism. J. Exp. Biol. 122: 369–385, 1986.
 71. Chamberlin, M. E., and J. E. Phillips. Regulation of hemolymph amino acid levels and active secretion of proline by Malpighian tubules of locusts. Can. J. Zool. 60: 2745–2752, 1982.
 72. Chung, J.‐S., and L. L. Keeley. Evidence and bioassay for diuretic factors in the nervous system of larval Heliothis virescens. J. Comp. Physiol. [B] 159: 359–370, 1989.
 73. Clarke, A. Faecal egestion and ammonia excretion in the Antarctic limpet Nacella concinna (Strebel, 1908). J. Exp. Marine Biol. Ecol. 138: 227–246, 1990.
 74. Claybrook, D. L. Nitrogen metabolism. In: The Biology of Crustacea, edited by L. H. Mantel. New York: Academic, 1983, p. 163–213.
 75. Clegg, J. S., A. H. Warner, and F. J. Finamore. Evidence for the function of P1, P4‐diguanosine 5′‐tetraphosphate in the development of Artemia salina. J. Biol. Chem. 242: 1938–1967, 1967.
 76. Coast, G. M. Fluid secretion by single isolated Malpighian tubules of the house cricket, Acheta domesticus, and their response to diuretic hormone. Physiol. Entomol. 13: 381–391, 1988.
 77. Coast, G. M. Stimulation of fluid secretion by single isolated Malpighian tubules of the house cricket, Acheta domesticus. Physiol. Entomol. 14: 21–30, 1989.
 78. Coast, G. M. Synergism between diuretic peptides controlling ion and fluid transport in insect malpighian tubules. Regul. Pept. 57: 283–296, 1995.
 79. Coast, G. M., O. Cusinato, I. Kay, and G. J. Goldsworthy. An evaluation of the role of cyclic AMP as an intracellular second messenger in Malpighian tubules of the house cricket, Acheta domesticus. J. Insect Physiol. 37: 563–573, 1991.
 80. Coast, G. M., G. M. Holman, and R. J. Nachman. The diuretic activity of a series of cephalomyotropic neuropeptides, the achet‐akinins, on isolated Malpighian tubules of the house cricket, Acheta domesticus. J. Insect Physiol. 36: 481–488, 1990.
 81. Coast, G. M., and C. H. Wheeler. The distribution and relative potency of diuretic peptides in the house cricket, Acheta domesticus. Physiol. Entomol. 15: 13–21, 1990.
 82. Cochran, D. G. The enzymatic degradation of adenosine monophosphate by insect muscle. Biochem. Biophys. Acta 52: 218–220, 1961.
 83. Cochran, D. G. Nitrogenous excretion. In: Comprehensive Insect Physiology, Biochemistry and Pharmacology, eds. G. A. Kerkut and L. I. Gilbert. London: Pergamon, 1985, p. 467–506.
 84. Coimbra, J., J. Machado, P. L. Fernandes, H. G. Ferreira, and K. G. Ferreira. Electrophysiology of the mantle of Anodonta cygnea. J. Exp. Biol. 140: 65–88, 1988.
 85. Cooper, P. D., G.G.E. Scudder, and G. A. Quamme. Ion and CO2 regulation in the freshwater water boatman, Cenocorixa blaisdelli (Hung.) (Hemiptera, Corixidae). Physiol. Zool. 60: 465–471, 1987.
 86. Cooper, P. D., G.G.E. Scudder, and G. A. Quamme. Changes in fluid and ion secretion following stimulation in isolated Malpighian tubules of the water boatman, Cenocorixa blaisdelli (Hung.) (Hempitera, Corixidae). J. Insect Physiol. 34: 79–83, 1988.
 87. Cooper, P. D., G.G.E. Scudder, and G. A. Quamme. Segmental differences in secretion by the Malpighian tubules of the fresh water dwelling corixid, Cenocorixa blaisdelli (Hung.) (Corixidae, Hemiptera). J. Insect Physiol. 35: 531–536, 1989.
 88. Copeland, D. E., and A. T. Fitzjarrell. The salt absorbing cells in the gills of the blue crab, Callinectes sapidus Rathbun with notes on modified mitochondria. Z. Zellforsch. 92: 1–22, 1968.
 89. Corbet, S. A. Pressure cycles and the water economy of insects. Review. Phil. Trans. R. Soc. Lond. [B] 318: 377–407, 1988.
 90. Cornell, J. C. Sodium and chloride transport in the isolated intestine of the earthworm, Lumbricus terrestris (L.). J. Exp. Biol. 97: 197–216, 1982.
 91. Dalton, T., and D. M. Windmill. Fluid secretion by isolated Malpighian tubules of the housefly Musca domestica. J. Insect Physiol. 26: 281–286, 1980.
 92. Dalton, T., and D. M. Windmill. The permeability characteristics of the isolated Malpighian tubules of the housefly Musca domestica. Comp. Biochem. Physiol. A 69: 211–217, 1981.
 93. Davey, K. G., and S. P. Kan. Molting in a parasitic nematode, Phocanema decipiens. IV. Ecdysis and its control. Can. J. Zool. 46: 893–898, 1968.
 94. Davies, S. A., G. R. Huesmann, S.H.P. Maddrell, M. J. O'Don‐nell, J.A.T. Dow, and N. J. Tublitz. CAP2b, a cardioacceleratory peptide, is present in Drosophila and stimulates fluid secretion by Malpighian tubules via cyclic GMP. Am. J. Physiol. 269 (Reguatory Integrative Comp. Physiol. 40): R1321–R1326, 1995.
 95. Deaton, L. E. Tissue (Na + K)‐activated adenosinetriphosphatase activities in freshwater and brackish water bivalve molluscs. Marine Biol. Lett. 3: 107–112, 1982.
 96. Deaton, L. E., and M. J. Greenberg. The adaptation of bivalve molluscs to oligohaline and fresh waters: phylogenetic and physiological aspects. Malacol. Rev. 24: 1–18, 1991.
 97. De Jorge, F. B., J. A. Petersen, and A.S.F. Ditadi. Variations in nitrogenous compounds in the urine of Strophocheilus (Pulmonata, Mollusca) with different diets. Experientia 25: 614–615, 1969.
 98. Denton, E. J., J. B. Gilpin‐Brown, and T. I. Shaw. A buoyancy mechanism found in cranchid squid. Proc. Roy. Soc. Lond. [B] 174: 271–279, 1969.
 99. De Vries, D. L. Wolcott, and C. W. Holliday. High ammonia and low pH in the urine of the ghost crab, Ocypode quadrata. Biol. Bull. 186: 342–348, 1994.
 100. Dietz, T. H. Active chloride transport across the skin of the earthworm, Lumbricus terrestris L. Comp. Biochem. Physiol. A 49: 251–258, 1974.
 101. Dietz, T. H., and R. A. Byrne. Potassium and rubidium uptake in freshwater bivalves. J. Exp. Biol. 150: 395–405, 1990.
 102. Dietz, T. H., and A. M. Findley. Ion‐stimulated ATPase activity and NaCl uptake in the gills of freshwater mussels. Can. J. Zool. 58: 917–923, 1980.
 103. Dores, R. M., S. H. Dallmann, and W. S. Herman. The regulation of post‐eclosion and post‐feeding diuresis in the monarch butterfly, Danaus plexippus. J. Insect Physiol. 25: 3895–3902, 1979.
 104. Dow, J.A.T. pH gradients in lepidopteran midgut. J. Exp. Biol. 172: 355–375, 1992.
 105. Dow, J.A.T., S.H.P. Maddrell, S.‐A. Davies, N.J.V. Skaer and K. Kaiser. A novel role for the nitric oxide/cyclic GMP signaling pathway: the control of fluid secretion in Drosophila. Am. J. Physiol. 266 (Regulatory Integrative Comp. Physiol.) 37: R1716–R1719, 1994.
 106. Dow, J.A.T., S.H.P. Maddrell, A. Gortz, N.J.V. Skaer, S. Brogan and K. Kaiser. The Malpighian tubules of Drosophila melanogaster: a novel phenotype for studies of fluid secretion and its control. J. Exp. Biol. 197: 421–428, 1994.
 107. Drews, G. and K. Graszynski. The transepithelial potential difference in the gills of the fiddler crab, Uca tangeri: influence of some inhibitors. J. Comp. Physiol. [B] 157: 345–353, 1987.
 108. Duffey, S. S., M. S. Blum, M. B. Isman, and G.G.E. Scudder. Cardiac glycosides: a physical system for their sequestration by the milkweed bug. J. Insect Physiol. 24: 639–645, 1978.
 109. Duffey, S. S., and G.G.E. Scudder. Cardiac glycosides in Oncopeltus fasciatus (Dallas) (Hemiptera: Lygaeidae). I. The uptake and distribution of natural cardenolides in the body. Can. J. Zool. 52: 283–290, 1974.
 110. Edney, E. B. Water Balance in Land Arthropods New York: Springer‐Verlag, 1977.
 111. Ehresmann, D. D., J. S. Buckner and G. Graf. Uric acid translocation from the fat body of Manduca sexta during the pupal—adult transformation: effects of 20‐hydroxyecdysone. J. Insect Physiol. 36: 173–180, 1990.
 112. Eisenbeis, G. Physiological absorption of liquid water by collembola: absorption by the ventral tube at different salinities. J. Insect Physiol. 28: 11–20, 1982.
 113. Evans, D. H., and J. N. Cameron. Gill ammonia transport. J. Exp. Zool. 239: 17–23, 1986.
 114. Fabczak, H. Dependence of contractile vacuole activity in the ciliate Blepharisma japonicum on changes of calcium concentration and calcium ionophore. Acta Protozoal. 19: 187–193, 1990.
 115. Fabczak, H. and S. Fabczak. Modulators of intracellular sodium concentration affect contractile vacuole activity in the ciliate Blepharisma japonicum. Acta Protozool. 28: 253–263, 1989.
 116. Farquharson, P. A. A study of the Malpighian tubules of the pill millipede, Glomeris marginata (Villers). I. The isolation of the tubules in a Ringer solution. J. Exp. Biol. 60: 13–28, 1974.
 117. Farquharson, P. A. A study of the Malpighian tubules of the pill millipede, Glomeris marginata (Villers). II. The effect of variations in osmotic pressure and sodium and potassium concentrations on fluid production. J. Exp. Biol. 60: 29–39, 1974.
 118. Farquharson, P. A. A study of the Malpighian tubules of the pill millipede, Glomeris marginata (Villers). III. The permeability characteristics of the tubule. J. Exp. Biol. 60: 41–51, 1974.
 119. Fathpour, H., J. H. Anstee and D. Hyde. Effect of Na+, K+, ouabain, amiloride and ethacrynic acid on the transepithelial potential across Malpighian tubules of Locusta. J. Insect Physiol. 29: 773–778, 1983.
 120. Ferguson, J. C. Rate of water admission through the madreporite of a starfish. J. Exp. Biol. 145: 147–156, 1989.
 121. Fogg, K. E., J. H. Anstee and D. Hyde. Effects of corpora cardiaca extract on intracellular second messenger levels in Malpighian tubules of Locusta migratoria L. J. Insect Physiol. 36: 383–389, 1990.
 122. Fogg, K. E., D. Hyde, and J. H. Anstee. Microelectrode studies on Malpighian tubule cells of Locusta: effects of cyclic AMP, IBMX and corpora cardiaca extract. J. Insect Physiol. 35: 387–392, 1989.
 123. Forgac, M. Structure and function of vacuolar class of ATP‐driven proton pumps. Physiol. Rev. 69: 765–796, 1989.
 124. Fournier, B. Neuroparsins induce phosphoinositide breakdown in the migratory locust rectal cells. Comp. Biochem. Physiol. [B] 95: 57–64, 1990.
 125. Fournier, B. and M. Dubar. Relationship between neuroparsin‐induced rectal fluid reabsorption and cyclic nucleotides in the migratory locust. Comp. Biochem. Physiol. A 94: 249–255, 1989.
 126. Fournier, B. and J. Girardie. A new function for the locust neuroparsins: stimulation of water reabsorption. J. Insect Physiol. 34: 309–313, 1988.
 127. Fowler, B. A. and E. Gould. Ultrastructural and biochemical studies of intracellular metal‐binding patterns in kidney tubule cells of the scallop Placopecten magellanicus following prolonged exposure to cadmium or copper. Marine Biol. 97: 207–216, 1988.
 128. Franklin, S. E., B. Teinsongrusmee, and A.P.M. Lockwood. Inhibition of magnesium secretion in the prawn Palaemon serratus by ethacrynic acid and by ligature of the eyestalks. In: Comparative Physiology: Water, Ions and Fluid Mechanics, edited by K. Schmidt‐Nielsen, L. Bolis, and S.H.P. Maddrell. Cambridge: Cambridge Univ. Press, 1978, p. 173–193.
 129. Frisbie, M. P., and W. A. Dunson. The effect of food consumption on sodium and water balance in the predaceous diving beetle, Dytiscus verticalis. J. Comp. Physiol. [B] 158: 91–98, 1988.
 130. Frixione, E., and O. Pérez‐Olvera. Contractile vacuole activity in Paramecium aurelia: dependence upon intracellular sodium. Comp. Biochem. Physiol. A 82: 787–790, 1985.
 131. Fuse, M., K. G. Davey, and R. I. Sommerville. Osmoregulation in the parasitic nematode Pseudoterranova decipiens. J. Exp. Biol. 175: 127–142, 1993.
 132. Fuse, M., K. G. Davey, and R. I. Sommerville. Water compartments and osmoregulation in the parasitic nematode Pseudoterranova decipiens. J. Exp. Biol. 175: 143–152, 1993.
 133. Gaede, K. Vergleichende Untersuchungen zur Wasserdampfsorptionsfähigkeit bei Insekten und Milben unter Besonderer Berücksichtigung der Mesostigmata. Berlin: Freie Universität Berlin, 1989. Dissertation.
 134. Gaede, K. Active uptake of water vapour from subsaturated atmospheres in arthropods: sorption kinetics. Zool. Jb. Physiol. 95: 135–171, 1991.
 135. Gee, J. D. The control of diuresis in the tsetse fly Glossina austeni: a preliminary investigation of the diuretic hormone. J. Exp. Biol. 63: 391–401, 1975.
 136. Gee, J. D., and D. L. Whitehead. Steroids stimulate secretion by insect Malpighian tubules. Nature 269: 238–239, 1977.
 137. George, S. G., and B.J.S. Pirie. Metabolism of zinc in the mussel, Mytilus edulis (L.): a combined ultrastructural and biochemical study. J. Marine Biol. Assoc. U.K. 60: 575–590, 1980.
 138. George, S. G., B.J.S. Pirie, A. R. Cheyne, T. L. Coombs, and P. T. Grant. Detoxication of metals by marine bivalves: an ultra‐structural study of the compartmentation of copper and zinc in the oyster, Ostrea edulis. Marine Biol. 45: 147–156, 1978.
 139. George, S. G., B.J.S. Pirie, and T. L. Coombs. Isolation and elemental analysis of metal‐rich granules from the kidney of the scallop, Pecten maximus (L.) J. Exp. Marine Biol. Ecol. 42: 143–156, 1980.
 140. Ghiretti, F., B. Salvato, S. Carlucci, and R. De Pieri. Manganese in Pinna nobilis. Experientia 28: 232–233, 1972.
 141. Gifford, C. A. Accumulation of uric acid in the land crab Cardisoma guanhumi. Am. Zool. 8: 521–528, 1968.
 142. Gillett, J. D. Diuresis in newly emerged, unfed mosquitoes. I. Fluid loss in normal females and males during the first 29 hours of adult life. Proc. R. Soc. Lond. B Biol. Sci. 216: 201–207, 1982.
 143. Gillett, J. D. Diuresis in newly emerged, unfed mosquitoes. II. The basic pattern in relation to escape from the water, preparation for mature flight, mating and the first blood meal. Proc. R. Soc. Lond. B Biol. Sci. 217: 236–242, 1983.
 144. Gillette, R., M. Saeki, and R.‐C. Huang. Defense mechanisms in notaspid snails: acid humor and evasiveness. J. Exp. Biol. 156: 335–347, 1991.
 145. Goh, S. L., and J. E. Phillips. Dependence of prolonged water absorption by in vitro locust rectum on ion transport. J. Exp. Biol. 72: 25–41, 1978.
 146. Goldbard, G. A., J. R. Sauer, and R. R. Mills. Hormonal control of excretion in the American cockroach. II. Preliminary purification of a diuretic and antidiuretic hormone. Comp. Gen. Pharmacol. 1: 82–86, 1970.
 147. Goodrich, E. S. The study of nephridia and genital ducts since 1895. Q. J. Microsc. Sci. 86: 113–392, 1945.
 148. Graves, S. Y., and T. H. Dietz. Diurnal rhythms of sodium transport in the freshwater mussel. Can. J. Zool. 58: 1626–1630, 1980.
 149. Green, J. W., M. Harsch, L. Barr, and C. L. Prosser. The regulation of water and salt by the fiddler crabs, Uca pugnax and Uca pugilator. Biol. Bull. 116: 76–87, 1959.
 150. Greenaway, P. Calcium regulation in the freshwater crayfish Austropotamobius pallipes (Lereboullet). I. Calcium balance in the intermoult animal. J. Exp. Biol. 57: 471–487, 1972.
 151. Greenaway, P. Nitrogenous excretion in aquatic and terrestrial crustaceans. Mem. Queensland Mus. 31: 215–227, 1991.
 152. Greenaway, P. and S. Morris. Adaptations to a terrestrial existence by the robber crab, Birgus latro L. III Nitrogenous excretion. J. Exp. Biol. 143: 333–346, 1989.
 153. Greenaway, P. and T. Nakamura. Nitrogenous excretion in two terrestrial crabs (Gecarcoidea natalis and Geograpsus grayi). Physiol. Zool. 64: 767–786, 1991.
 154. Greenaway, P., H. H. Taylor and S. Morris. Adaptations to a terrestrial existence by the robber crab Birgus latro VI. The role of the excretory system in fluid balance. J. Exp. Biol. 152: 505–519, 1990.
 155. Grimstone, A. V., A. M. Mullinger, and J. A. Ramsay. Further studies on the rectal complex of the mealworm, Tenebrio nolitor, L. (Coleptera, Tenebrionidae). Proc. R. Soc. Lond. B Biol. Sci. 253: 343–382, 1968.
 156. Grodowitz, M. J., A. B. Broce, and K. J. Kramer. Morphology and biochemical composition of mineralized granules from the Malpighian tubules of Musca autumnalis de Geer larvae (Diptera: Muscidae). Insect Biochem. 17: 335–345, 1987.
 157. Haggag, G. and Y. Fouad. Nitrogenous excretion in arachnids. Nature 207: 1003–1004, 1965.
 158. Hanrahan, J. W., and J. E. Phillips. Electrogenic, K+‐dependent chloride transport in locust hindgut. Phil. Trans. R. Soc. Lond. [B] 299: 585–595, 1982.
 159. Hanrahan, J. W., and J. E. Phillips. KCl transport across an insect epithelium. I. Tracer fluxes and the effects of ion substitutions. J. Membr. Biol. 80: 15–26, 1984.
 160. Hanrahan, J. W., and J. E. Phillips. KCl transport across an insect epithelium. II. Electrical potentials and electrophysiology. J. Membr. Biol. 80: 27–47, 1984.
 161. Harris, R. R. and D. Bayliss. Gill (Na+ + K+)‐ATPases in decapod crustaceans: distribution and characteristics in relation to Na+ regulation. Comp. Biochem. Physiol. A 90: 303–308, 1988.
 162. Harris, R. R., and G. A. Kormanik. Salt and water balance and antennal gland function in three Pacific species of terrestrial crab (Gecarcoidea lalandii, Cardisoma carnifex, Birgus latro). II. The effects of desiccation. J. Exp. Zool. 218: 107–116, 1981.
 163. Harrison, F. M., and A. W. Martin. Excretion in the cephalopod, Octopus dofleini. J. Exp. Biol. 42: 71–98, 1965.
 164. Harrison, J. F. Temperature effects on haemolymph acid‐base status in vivo and in vitro in the two‐striped grasshopper Melanoplus bivittatus. J. Exp. Biol. 140: 421–435, 1988.
 165. Harrison, J. F. Temperature effects on intra‐ and extracellular acid‐base status in the American locust, Schistocerca nitens. J. Comp. Physiol. [B] 158: 763–770, 1989.
 166. Harrison, J. F. Ventilatory frequency and haemolymph acid‐base status during short‐term hypercapnia in the locust, Schistocerca nitens. J. Insect Physiol. 35: 809–814, 1989.
 167. Harrison, J. F., and J. E. Phillips. Recovery from acute haemolymph acidosis in unfed locusts: II. The role of renal acid and nitrogen excretion. J. Exp. Biol. 165: 85–96, 1992.
 168. Harrison, J. F., C.J.H. Wong, and J. E. Phillips. Haemolymph buffering in the locust Schistocerca gregaria. J. Exp. Biol. 154: 573–579, 1990.
 169. Harrison, J. F., C.J.H. Wong, and J. E. Phillips. Recovery from acute haemolyph acidosis in unfed locusts: I. Acid transfer to the alimentary lumen is the dominant mechanism. J. Exp. Biol. 165: 97–102, 1992.
 170. Harvey, W. R., M. Cioffi, and M. G. Wolfersberger. Portasomes as coupling factors in active ion transport and oxidative phosphorylation. Am. Zool. 21: 775–791, 1981.
 171. Hausmann, K., and R. D. Allen. Membranes and microtubules of the excretory apparatus of Paramcium caudatum. Cytobiologie 15: 303–320, 1977.
 172. Hawkins, A.J.S., B. L. Bayne, and K. R. Clarke. Co‐ordinated rhythms of digestion, absorption and excretion in Mytilus edulis (Bivalvia: Mollusca). Marine Biol. 74: 41–48, 1983.
 173. Hawkins, E., and M. J. O'Donnell. Oöplasmic pH and electrical properties of developing locust (Locusta migratoria) eggs. J. Insect Physiol. 38: 493–502, 1992.
 174. Hayes, T. K., T. L. Pannabecker, D. J. Hinckley, G. M. Holman, R. J. Nachman, D. H. Petzel, and K. W. Beyenbach. Leucokinins, a new family of ion transport stimulators and inhibitors in insect Malpighian tubules. Life Sci. 44: 1259–1266, 1989.
 175. Hazelton, S. R., and J. H. Spring. Isolation of diuretic and antidiuretic factors from the CNS of the house cricket. Am. Zool. 26: A32, 1986.
 176. Hegarty, J. L., B. Zhang, M. C. Carroll, E. J. Cragoe, and K. W. Beyenbach. Effects of amiloride on isolated Malpighian tubules of the yellow fever mosquito (Aedes aegypti). J. Insect Physiol. 38: 329–337, 1992.
 177. Hegarty, J. L., B. Zhang, T. L. Pannabecker, D. H. Petzel, M. D. Baustian, and K. W. Beyenbach. Dibutyryl cAMP activates bumetanide‐sensitive electrolyte transport in Malpighian tubules. Am. J. Physiol. 261 (Cell Physiol. 30): C521–C529, 1991.
 178. Hellebust, J. A., T. Mérida and I. Ahmad. Operation of contractile vacuoles in the euryhaline green flagellate Chlamydomonas Pulsatilla (Chlorophyceae) as a function of salinity. Marine Biol. 100: 373–379, 1989.
 179. Henry, R. P. Multiple functions of carbonic anhydrase in the crustacean gill. J. Exp. Zool. 248: 19–24, 1988.
 180. Henry, R. P. Branchial and branchiostegite carbonic anhydrase in decapod crustaceans: the aquatic to terrestrial transition. J. Exp. Zool. 259: 294–303, 1991.
 181. Henry, R. P., and J. N. Cameron. A survey of blood and tissue nitrogen compounds in terrestrial decapods of palau. J. Exp. Zool. 218: 83–88, 1981.
 182. Henry, R. P., and J. N. Cameron. The role of branchial carbonic anhydrase in respiration, ion regulation and acid‐base balance in the aquatic crab, Callinectes sapidus, and the terrestrial crab, Gecarcinus lateralis. J. Exp. Biol. 103: 205–223, 1983.
 183. Henry, R. P., G. A. Kormanik, N. J. Smatresk, and J. N. Cameron. The role of CaCO3 dissolution as a source of HCO3−for the buffering of hypercapnic acidosis in aquatic and terrestrial decapod crustaceans. J. Exp. Biol. 94: 269–274, 1981.
 184. Henry, R. P., and D. G. Saintsing. Carbonic anhydrase activity and ion regulation in three species of osmoregulating bivalve molluscs. Physiol. Zool. 56: 274–280, 1983.
 185. Henry, R. P., and M. G. Wheatly. Interaction of respiration, ion regulation, and acid‐base balance in the everyday life of aquatic crustaceans. Am. Zool. 32: 407–416, 1992.
 186. Herault, J.‐P., and J. P. Proux. Cyclic AMP: the second messenger of an antidiuretic hormone from the glandular lobes of the migratory locust corpora cardiaca. J. Insect Physiol. 33: 487–491, 1987.
 187. Herbst, D. B., and T. J. Bradley. A Malpighian tubule lime gland in an insect inhabiting alkaline salt lakes. J. Exp. Biol. 145: 63–78, 1989.
 188. Herbst, D. B., F. P. Conte, and V. J. Brookes. Osmoregulation in an alkaline salt lake insect, Ephydra (Hydropyrus) hians Say (Diptera: Ephydridae) in relation to water chemistry. J. Insect Physiol. 34: 903–909, 1988.
 189. Hernandorena, A., and S. J. Kaushik. Ammonia excretion of Artemia sp. (Crustacea: Branchiopoda) under axenic conditions. Marine Biol. 63: 23–27, 1981.
 190. Hevert, F. Urine formation in the lamellibranchs: evidence for ultrafiltration and quantitative description. J. Exp. Biol. 111: 1–12, 1984.
 191. Hochachka, P. W. and M. Guppy. Metabolic arrest and the control of biological time Cambridge, MA: Harvard Univ. Press, 1987.
 192. Hoeger, U., T. P. Mommsen, R. O'Dor and D. Webber. Oxygen uptake and nitrogen excretion in two cephalopods, octopus and squid. Comp. Biochem. Physiol. A 87: 63–67, 1987.
 193. Hoffmann, J. A. and J. Koolman. Prothoracic glands in the regulation of ecdysone titres and metabolic fate of injected labelled ecdysone in Locusta migratoria. J. Insect Physiol. 20: 1593–1601, 1974.
 194. Holliday, C. W. Magnesium transport by the urinary bladder of the crab, Cancer magister. J. Exp. Biol. 85: 187–201, 1980.
 195. Holliday, C. W. Branchial Na+/K+‐ATPase and osmoregulation in the isopod, Idotea wosnesenskii. J. Exp. Biol. 136: 259–272, 1988.
 196. Holliday, C. W., D. B. Roye, and R. D. Roér. Salinity‐induced changes in branchial Na+/K+‐ATPase activity and transepithelial potential difference in the brine shrimp Artemia salina. J. Exp. Biol. 151: 279–296, 1990.
 197. Holy, A., I. Rosenberg, I. Votruba, and K. Sláma. Metabolic phosphorylation and excretion of some nucleoside analogues in insects. Biol. Chem. Hoppe Seyler 366: 355–359, 1985.
 198. Hopkin, S. P., and J. A. Nott. Studies on the digestive cycle of the shore crab Carcinus maenas (L.) with special reference to the B cells in the hepatopancreas. J. Marine Biol. Assoc. U.K. 60: 891–907, 1980.
 199. Hopkins, T. L., and P. A. Lofgren. Adenine metabolism and urate storage in the cockroach Leucophaea maderae. J. Insect Physiol. 14: 1803–1814, 1968.
 200. Horn, P. L. Energetics of Chiton pelliserpentis (Quoy & Gaimard, 1835) (Mollusca: Polyplacophora) and the importance of mucus in its energy budget. J. Exp. Marine Biol. Ecol. 101: 119–141, 1986.
 201. Horne, F. R. Nitrogen excretion in Crustacea. I. The herbivorous land crab Cardisoma guanhumi Latreille. Comp. Biochem. Physiol. 26: 687–695, 1968.
 202. Home, F. R. Purine excretion in five scorpions, a uropygid and a centipede. Biol. Bull. 137: 155–160, 1969.
 203. Home, F. R. Ureotelism in the slug, Limax flavus Linné. J. Exp. Zool. 199: 227–232, 1977.
 204. Houlihan, D. F. Water transport by the eversible abdominal vesicles of Petrobius brevistylis. J. Insect Physiol. 22: 1683–1695, 1976.
 205. Hunter, K. C., and L. B. Kirschner. Sodium absorption coupled to ammonia excretion in osmoconforming marine invertebrates. Am. J. Physiol. 251 (Regulatory Integrative Comp. Physiol. 22): R957–R962, 1986.
 206. Icely, J. D., and J. A. Nott. Accumulation of copper within the “hepatopancreatic” caeca of Corophium volutator (Crustacea: Amphipoda). Marine Biol. 57: 193–199, 1980.
 207. Ireland, M. P. Heavy metal sources—uptake and distribution in terrestrial macroinvertebrates. In: Biological Monitoring of Exposure to Chemicals: Metals, edited by H. K. Dillon and M. H. Ho. New York: Wiley, 1991, vol. 21, p. 263–276.
 208. Ireland, M. P., and K. S. Richards. The occurrence and localisation of heavy metals and glycogen in the earthworms Lumbricus rubellus and Dendrobaena rubida from a heavy metal site. Histochemistry 51: 153–166, 1977.
 209. Irvine, B., N. Audsley, R. Lechleitner, J. Meredith, B. Thomson and J. Phillips. Transport properties of locust ileum in vitro: effects of cyclic AMP. J. Exp. Biol. 137: 361–385, 1988.
 210. Isaacson, L. and S. Nicolson. A reappraisal of the oil‐gap technique for the measurement of transtubular potentials in insect epthelia. J. Exp. Biol. 141: 429–440, 1989.
 211. Istin, M., and L. B. Kirschner. On the origin of the bioelectrical potential generated by the freshwater clam mantle. J. Gen. Physiol. 51: 478–496, 1968.
 212. Jarial, M. S., G. G. E. Scudder and S. Teraguchi. Observations on the labium of Corixidae (Hemiptera). Can. J. Zool. 47: 713–715, 1969.
 213. Kafatos, F. C. The labial gland: a salt‐secreting organ of saturniid moths. J. Exp. Biol. 48: 435–453, 1968.
 214. Kahl, O. Untersuchungen zum Wasserhaushalt von Zecken (Acari: Ixodoidea) im Laufe ihrer postembryonalen Entwicklung unter besonderer Berücksichtigung der aktiven Wasserdampfsorption bei gesogenen Stadien. Berlin: Freie Universität Berlin, 1989. Dissertation.
 215. Kahl, O., R. Hoff, and W. Knülle. Gross morphological changes in the salivary glands of Ixodes ricinus (Acari, Ixodidae) between bloodmeals in relation to active uptake of atmospheric water vapour. Exp. Appl. Acarol. 9: 239–258, 1990.
 216. Kahl, O., and W. Knülle. Water vapour uptake from subsaturated atmospheres by engorged immature ixodid ticks. Exp. Appl. Acarol. 4: 73–83, 1988.
 217. Kamemoto, F. I., and R. E. Tullis. Hydromineral regulation in decapod Crustacea. Gen. Comp. Endocrinol. 3: 299–307, 1972.
 218. Kaneshiro, E. S., G. G. Holz, and P. B. Dunham. Osmoregulation in a marine ciliate Miamiensis avidus. II. Regulation of intracellular free amino acids. Biol. Bull. 137: 161–169, 1969.
 219. Kataoka, H., R. G. Troetschler, J. P. Li, S. J. Kramer, R. L. Carney, and D. A. Schooley. Isolation and identification of a diuretic hormone from the tobacco hornworm, Manduca sexta. Proc. Natl. Acad. Sci. U.S.A. 86: 2976–2980, 1989.
 220. Katchalsky, A. Polyelectrolyte gels. Prog. Biophys. Biophysical Chem. 4: 1–59, 1954.
 221. Kaufman, S. E., W. R. Kaufman, and J. E. Phillips. Fluid balance in the argasid tick, Ornithodorus moubata, fed on modified blood meals. J. Exp. Biol. 93: 225–242, 1981.
 222. Kaufman, S. E., W. R. Kaufman, and J. E. Phillips. Mechanism and characteristics of coxal fluid excretion in the argasid tick Ornithodorus moubata. J. Exp. Biol. 98: 343–352, 1982.
 223. Kaufman, W. R., and J. E. Phillips. Ion and water balance in the ixodid tick Dermacentor andersoni. I. Routes of ion and water excretion. J. Exp. Biol. 58: 523–536, 1973.
 224. Kaufman, W. R., and J. E. Phillips. Ion and water balance in the ixodid tick Dermacentor andersoni. II. Mechanism and control of salivary secretion. J. Exp. Biol. 58: 537–547, 1973.
 225. Kaufman, W. R., and J. E. Phillips. Ion and water balance in the ixodid tick Dermacentor andersoni. III. Influence of monovalent ions and osmotic pressure on salivary secretion. J. Exp. Biol. 58: 549–564, 1973.
 226. Kaufman, W. R., and J. R. Sauer. Ion and water balance in feeding ticks: mechanisms of tick excretion. In: Physiology of Ticks, edited by F. D. Obenchain and U. Galun. Oxford: Pergamon, 1982, p. 213–244.
 227. Kays, W. T., H. Silverman, and T. H. Dietz. Water channels and water canals in the gill of the freshwater mussel, Ligumia subrostrata: ultrastructure and histochemistry. J. Exp. Zool. 254: 256–269, 1990.
 228. Kim, S., and J. H. Spring. Excretion in the house cricket Acheta domesticus: relative contribution of distal and mid‐tubule to diuresis. J. Insect. Physiol. 38: 373–381, 1992.
 229. Kirschner, L. B. and S. Wagner. The site and permeability of the filtration locus in the crayfish antennal gland. J. Exp. Biol. 43: 385–395, 1965.
 230. Klein, U. G. Löffelmann, and H. Wieczorek. The midgut as a model system for insect K+‐transporting epithelia: immunocy‐tochemical localization of a vacuolar‐type H+ pump. J. Exp. Biol. 161: 61–75, 1991.
 231. Kleyman, T. R., and E. J. Cragoe. Amiloride and its analogs as tools in the study of ion transport. J. Membr. Biol. 105: 1–21, 1988.
 232. Knepper, M. A., D. W. Good, and M. B. Burg. Mechanism of ammonia secretion by cortical collecting ducts of rabbits. Am. J. Physiol. 247 (Renal Fluid Electrolyte Physiol. 18): F729–F738, 1984.
 233. Knowles, G. The removal of sulphate by the excretory apparatus of the blowfly, Calliphora vomitoria. J. Exp. Biol. 63: 237–248, 1975.
 234. Koechlin, N. Reabsorption and accumulation of α‐aminoiso‐butyric acid in the nephridia of Sabella pavonina savigny (Annedlida Polychaeta). Comp. Biochem. Physiol. A 68: 663–667, 1981.
 235. Koechlin, N. Structure and function of the nephridia in Sabella pavonina savigny (Annelida Polychaeta). Comp. Biochem. Physiol. A 69: 349–355, 1981.
 236. Koechlin, N. Sodium‐dependence of amino acid transport by the nephridia of Sabella pavonina (Annelida, Polychaeta). Comp. Biochem. Physiol. A 83: 297–300, 1986.
 237. Koechlin, N., J. Polonsky and J. Varenne. Accumulation of cholesterol and cholesterol esters in the nephridia of a polychaete annelid (Sabella pavonina savigny). Comp. Biochem. Physiol. A 68: 391–397, 1981.
 238. Komnick, H. Chloride cells and chloride epithelia of aquatic insects. Int. Rev. Cytol. 49: 285–329, 1977.
 239. Komnick, H. and M. Schmitz. Cutane chloridaufnahme aus hypoosmotischer Konsentration durch di Chlorizellen von Corixa punctata. J. Insect Physiol. 23: 165–173, 1977.
 240. Kormanik, G. A., and J. N. Cameron. Ammonia excretion in the seawater blue crab (Callinectes spaidus) occurs by diffusion, and not Na+/NH4+ exchange. J. Comp. Physiol. 141: 457–462, 1981.
 241. Kormanik, G. A., and D. H. Evans. Ammonia excretion in the rock crab, Cancer irroratus: the effect of varying ammonia gradients. Bull. Mr. Desert Isl. Biol. Lab. 24: 16–18, 1984.
 242. Kormanik, G. A., and R. R. Harris. Salt and water balance and antennal gland function in three Pacific species of terrestrial crab (Gecarcoidea lalandii, Cardisoma carnifex, Birgus latro).I. Urine production and salt exchanges in hydrated crabs. J. Exp. Zool. 218: 97–105, 1981.
 243. Kramer, R. and H. Ginsburg. Calcium transport and compartment analysis of free and exchangeable calcium in Plasmodium falciparum—infected red blood cells. J. Protozool. 38: 594–601, 1991.
 244. Krippeit‐Drews, P., G. Drews and K. Graszynski. Effects of ion substitution on the transepithelial potential difference of the gills of the fiddler crab Uca tangeri: evidence for a H+‐pump in the apical membrane. J. Comp. Physiol. [B] 159: 43–49, 1989.
 245. Krogh, A. The active absorption of ions in some freshwater animals. Z. Vergl. Physiol. 25: 335–350, 1938.
 246. Kropp, D. L. Mechanism of Sodium Infux in Tetrahymena pyriformis. Syracuse, NY: Univ. of Syracuse, 1971. Dissertation.
 247. Krueger, R. A., A. B. Broce, and T. L. Hopkins. Dissolution of granules in the Malpighian tubules of Musca autumnalis De Greer, during mineralization of the puparium. J. Insect Physiol. 33: 255–263, 1987.
 248. Krueger, R. A., A. B. Broce, T. L. Hopkins, and K. J. Kramer. Calcium transport from Malpighian tubules to puparial cuticle of Musca autumnalis. J. Comp. Physiol. [B] 158: 413–419, 1988.
 249. Kummel, G. Fine structural indications of an osmoregulatory function of the “gills” in terrestrial isopods (Crustacea, Oniscoidea). Cell Tissue Res. 214: 663–666, 1981.
 250. Küppers, J., A. Plagemann and U. Thurm. Uphill transport of water by electroosmosis. J. Membr. Biol. 91: 107–119, 1986.
 251. Kuterbach, D. A. and B. Walcott. Iron‐containing cells in the honeybee (Apis mellifera). I. Adult morphology and physiology. J. Exp. Biol. 126: 375–387, 1986.
 252. Kuterbach, D. A. and B. Walcott. Iron‐containing cells in the honeybee (Apis mellifera). II. Accumulation during development. J. Exp. Biol. 126: 389–401, 1986.
 253. Kuterbach, D. A., B. Walcott, R. J. Reeder, and R. B. Frankel. Iron containing cells in the honey bee (Apis mellifera). Science 218: 695–697, 1982.
 254. Kuzhivelil, B. T., and U.V.K. Mohamed. The concentration of ammonia in the excreta of sixth instar larvae of Lamida moncusalis Walker (Pyralidae: Lepidoptera) during development. Experientia 43: 879–880, 1987.
 255. Lane, N. J., and H. le B. Skaer. Intercellular junctions in insect tissues. Adv. Insect Physiol. 15: 35–213, 1980.
 256. Lange, A. B., I. Orchard, and F. M. Barrett. Changes in haemolymph serotonin levels associated with feeding in the blood‐sucking bug, Rhodnius prolixus. J. Insect Physiol. 35: 393–399, 1989.
 257. Lazar, K. V., and U.V.K. Mohamed. The excretion of urea by the larvae of Spodoptera mauritia Boisd. (Noctuidae: Lepidoptera) during development. Experientia 35: 1468, 1979.
 258. Lechleitner, R. A., N. Audsley, and J. E. Phillips. Antidiuretic action of cyclic AMP, corpus cardiacum, and ventral ganglia on fluid absorption across locust ileum in vitro. Can. J. Zool. 67: 2655–2661, 1989.
 259. Lechleitner, R. A., N. Audsley, and J. E. Phillips. Composition of fluid transported by locust ileum: influence of natural stimulants and luminal ion ratios. Can. J. Zool. 67: 2662–2668, 1989.
 260. Lechleitner, R. A., and J. E. Phillips. Effect of corpus cardiacum, ventral ganglia, and proline on absorbate composition and fluid transport by locust hindgut. Can. J. Zool. 67: 2669–2675, 1989.
 261. Lembke, H. F., and D. G. Cochran. Uric acid in the Malpighian tubules of some blattellid cockroaches. Comp. Biochem. Physiol. A 91: 587–597, 1988.
 262. Leyssens, A., P. Steels, E. Lohrmann, R. Weltens, and E. van Kerkhove. Intrinsic regulation of K+ transport in Malpighian tubules (Formica): electrophysiological evidence. J. Insect Physiol. 38: 431–446, 1992.
 263. Lignon, J. M. Ionic permeabilities of the isolated gill cuticle of the shore crab Carcinus maenas. J. Exp. Biol. 131: 159–174, 1987.
 264. Little, C. The formation of urine by the prosobranch gastropod mollusc Viviparus viviparus Linn. J. Exp. Biol. 43: 39–54, 1965.
 265. Little, C. The evolution of kidney function in the Neritacea (Gastropoda, Prosobranchia). J. Exp. Biol. 56: 249–261, 1972.
 266. Little, C. Osmoregulation and excretion in prosobranch gastropods. Part 1. Physiology and biochemistry. J. Molluscan Stud. 47: 221–247, 1981.
 267. Little, C. The Colonization of Land. Origins and Adaptations of Terrestrial Animals Cambridge: Cambridge Univ. Press, 1983.
 268. Little, C. The Terrestrial Invasion: An Ecophysiological Approach to the Origin of Land Animals Cambridge: Cambridge Univ. Press, 1990.
 269. Littlewood, H. The water relations of Lithobius forficatus and the role of the coxal organs (Myriapoda: Chilopoda). J. Zool. (Land.) 223: 653–665, 1991.
 270. Lobel, P. B. Role of the kidney in determining the whole soft tissue zinc concentration of individual mussels (Mytilus edulis). Marine Biol. 92: 355–359, 1986.
 271. Loest, R. A. Ammonia volatilization and absorption by terrestrial gastropods: a comparison between shelled and shell‐less species. Physiol. Zool. 52: 461–469, 1979.
 272. Loveridge, J. P. Studies on the water balance of adult locusts. III. The water balance of non‐flying locusts. Zool. Afr. 10: 1–28, 1975.
 273. Lowenstein, J. M. Ammonia production in muscle and other tissues: the purine nucleotide cycle. Physiol. Rev. 52: 384–414, 1972.
 274. Lucu, C. and D. Siebers. Amiloride‐sensitive sodium flux and potentials in perfused Carcinus gill preparations. J. Exp. Biol. 122: 22–35, 1986.
 275. MacDonnell, P. C., and E. K. Tillinghast. Metabolic sources of ammonia in the earthworm, Lumbricus terrestris L. J. Exp. Zool. 185: 145–152.
 276. Machado, J., J. Coimbra, and C. Sa. Shell thickening in Anodonta cygnea by TBTO treatments. Comp. Biochem. Physiol. [C] 92: 77–80, 1989.
 277. Machado, J., K. G. Ferreira, H. G. Ferreira, and P. L. Fernandes. The acid‐base balance of the outer mantle epithelium of Anodonta cygnea. J. Exp. Biol. 150: 159–169, 1990.
 278. Machin, J. Passive exchange during water vapor absorption in mealworms (Tenebrio molitor): a new approach to studying the phenomenon. J. Exp. Biol. 65: 603–615, 1976.
 279. Machin, J. Atmospheric water absorption in arthropods. Adv. Insect Physiol. 14: 1–48, 1979.
 280. Machin, J. Compartmental osmotic pressures in the rectal complex of Tenebrio larvae: evidence for a single tubular pumping site. J. Exp. Biol. 82: 123–137, 1979.
 281. Machin, J., and M. J. O'Donnell. Rectal complex ion activities and electrochemical gradients in larvae of the desert beetle, Onymacris: comparisons with Tenebrio. J. Insect Physiol. 37: 829–838, 1991.
 282. Maddaiah, V. T. A model for hormone specific activation of adenyl cyclase. Federation Proc. 24: 1368–1376, 1969.
 283. Maddrell, S.H.P. Excretion in the blood‐sucking bug, Rhodnius prolixus stal. II. The normal course of diuresis and the effect of temperature. J. Exp. Biol. 41: 163–176, 1964.
 284. Maddrell, S.H.P. Secretion by the Malpighian tubules of Rhodnius. The movements of ions and water. J. Exp. Biol. 51: 71–97, 1969.
 285. Maddrell, S.H.P. The mechanisms of insect excretory systems. Adv. Insect Physiol. 8: 199–331, 1971.
 286. Maddrell, S.H.P. Physiological discontinuity in an epithelium with an apparently uniform structure. J. Exp. Biol. 75: 133–145, 1978.
 287. Maddrell, S.H.P. The fastest fluid‐secreting cell known: the upper Malpighian tubule cell of Rhodnius. BioEssays 13: 357–362, 1991.
 288. Maddrell, S.H.P., and B.O.C. Gardiner. The passive permeability of insect Malpighian tubules to organic solutes. J. Exp. Biol. 60: 641–652, 1974.
 289. Maddrell, S.H.P., and B.O.C. Gardiner. Induction of transport of organic anions in Malpighian tubules of Rhodnius. J. Exp. Biol. 63: 755–761, 1975.
 290. Maddrell, S.H.P., and B.O.C. Gardiner. Diuretic hormone in adult Rhodnius prolixus: total store and speed of release. Physiol. Entomol. 1: 265–269, 1976.
 291. Maddrell, S.H.P., and B.O.C. Gardiner. Excretion of alkaloids by Malpighian tubules of insects. J. Exp. Biol. 64: 267–281, 1976.
 292. Maddrell, S.H.P., B.O.C. Gardiner, D.E.M. Pilcher, and S. E. Reynolds. Active transport by insect Malpighian tubules of acidic dyes and of acylamides. J. Exp. Biol. 61: 357–377, 1974.
 293. Maddrell, S.H.P., and J. D. Gee. Potassium‐induced release of the diuretic hormones of Rhodnius prolixus and Glossina austeni: Ca dependence, time course and localization of neurohaemal areas. J. Exp. Biol. 61: 155–171, 1974.
 294. Maddrell, S.H.P., W. S. Herman, R. W. Farndale, and J. A. Riegel. Synergism of hormones controlling epithelial fluid transport in an insect. J. Exp. Biol. 174: 65–80, 1992.
 295. Maddrell, S.H.P., W. S. Herman, R. L. Mooney, and J. A. Overton. 5‐Hydroxytryptamine: a second diuretic hormone in Rhodnius prolixus. J. Exp. Biol. 156: 557–566, 1991.
 296. Maddrell, S.H.P., and M. J. O'Donnell. Insect Malpighian tubules: V‐ATPase action in ion and fluid transport. J. Exp. Biol. 172: 417–429, 1992.
 297. Maddrell, S.H.P., and M. J. O'Donnell. Gramicidin switches transport in insect epithelia from potassium to sodium. J. Exp. Biol. 177: 287–292, 1993.
 298. Maddrell, S.H.P., M. J. O'Donnell and R. Caffrey. The regulation of haemolymph potassium activity during initiation and maintenance of diuresis in fed Rhodnius prolixus. J. Exp. Biol. 132: 63–76, 1993.
 299. Maddrell, S.H.P., and J. A. Overton. Stimulation of sodium transport and fluid secretion by ouabain in an insect Malpighian tubule. J. Exp. Biol. 137: 265–276, 1988.
 300. Maddrell, S.H.P., and J. E. Phillips. Active transport of sulphate ions by the Malpighian tubules of larvae of the mosquito Aedes campestris. J. Exp. Biol. 62: 367–378, 1975.
 301. Maddrell, S.H.P., and J. E. Phillips. Induction of sulphate transport and hormonal control of fluid secretion by Malpighian tubules of larvae of the mosquito Aedes taeniorhynchus. J. Exp. Biol. 72: 181–202, 1978.
 302. Maddrell, S.H.P., D.E.M. Pilcher, and B.O.C. Gardiner. Pharmacology of the Malpighian tubules of Rhodnius and Carausius: the structure–activity relationship of tryptamine analogues and the role of cyclic AMP. J. Exp. Biol. 54: 779–804, 1971.
 303. Maddrell, S.H.P., G. Whittembury, R. L. Mooney, J. B. Harrison, J. A. Overton and B. Rodriguez. The fate of calcium in the diet of Rhodnius prolixus: storage in concretion bodies in the Malpighian tubules. J. Exp. Biol. 157: 483–502, 1991.
 304. Maloney, P. C., and T. H. Wilson. The evolution of ion pumps. BioScience 35: 43–48, 1985.
 305. Mangum, C. and D. Towle. Physiological adaptation to unstable environments. Am. Sci. 65: 67–77, 1977.
 306. Mangum, C. P., R. P. Henry, and D. M. Simpson. The effect of ouabain on blood NaCl in the osmoregulating clam Rangia cuneata. J. Exp. Zool. 207: 329–325, 1979.
 307. Mantel, L. H., and L. L. Farmer. Osmotic and ionic regulations. In: The Biology of Crustacea New York: Academic, 1983, vol. 5. p. 53–161.
 308. Manton, S. M., and N. G. Heatley. Studies on the Onychophora II. The feeding, digestion, excretion and food storage of Peripatopsis. Phil. Trans. R. Soc. Lond. [B] 227: 411–464, 1937.
 309. Marshall, A. T., and R. W. Wood. Ionic and osmotic regulation by larvae of the sheep blowfly Lucilia cuprina. J. Insect Physiol. 36: 635–639, 1990.
 310. Marshall, A. T. and A. Wright. Ultrastructure changes associated with osmoregulation in the hindgut cells of a saltwater insect, Ephydrella sp. (Ephydridae: Diptera). Tissue Cell 6: 301–318, 1974.
 311. Martin, A. W. Excretion. In: The Mollusca, edited by A. S. M. Saleuddin and K. M. Wilber. New York: Academic, 1983, vol. 5, p. 353–405.
 312. Martin, A. W., D. M. Stewart, and F. M. Harrison. Urine formation in a pulmonate land snail, Achatina fulica. J. Exp. Biol. 42: 99–123, 1965.
 313. Martin, R. J., and R.G.H. Downer. N‐acetylation of p‐octopamine by Malpighian tubules and other tissues of the American cockroach, Periplaneta americana L., in vitro. Can. J. Zool. 67: 1495–1499, 1989.
 314. Mason, A. Z., and J. A. Nott. The role of intracellular biomin‐eralised granules in the regulation and detoxification of metals in gastropods with special reference to the marine prosobranch Littorina littorea. Aquatic Toxicol. 1: 239–256, 1981.
 315. Mauro, N. A., and G. W. Moore. Effects of environmental pH on ammonia excretion, blood pH, and oxygen uptake in fresh water crustaceans. Comp. Biochem. Physiol. [C] 87: 1–3, 1987.
 316. McCorkel‐Shirley, S. Effects of photoperiod on sodium flux in Corbicula fluminea (Mollusca: Bivalvia). Comp. Biochem. Physiol. A 71: 325–327, 1982.
 317. McElwain, D.L.S. A theoretical investigation of fluid transport in the Malpighian tubules of an insect, Rhodnius prolixus Stal. Proc. R. Soc. Lond. [B] 222: 363–372, 1984.
 318. Meredith, J., L. Moore, and G.G.E. Scudder. Excretion of ouabain by Malpighian tubules of Oncopeltus fasciatus. Am. J. Physiol. 246 (Regulatory Integrative Comp. Physiol. 17): R705–R715, 1984.
 319. Meredith, J., and J. E. Phillips. Sodium‐independent proline transport in the locust rectum. J. Exp. Biol. 137: 341–360, 1988.
 320. Meredith, J., M. Ring, A. Macins, J. Marschall, N. N. Cheng, D. Theilmann, H. W. Brock, and J. E. Phillips. Locust ion transport peptide (ITP): primary structure, cDNA and expression in a baculovirus system. J. Exp. Biol. 199: 1053–1061, 1996.
 321. Miles, P. W. A modification of Wigglesworth's model for the excretion of uric acid in insects, in the light of modern hypotheses of ion transport. J. Theor. Biol. 12: 130–132, 1966.
 322. Miller, D. S., and C. W. Holliday. Organic cation secretion by Cancer borealis urinary bladder. Am. J. Physiol. 252 (Regulatory Integrative Comp. Physiol. 23): R153–R159, 1987.
 323. Miller, D. S., P. M. Smith, and J. B. Pritchard. Organic anion and cation transport in crab urinary bladder. Am. J. Physiol. 257 (Regulatory Integrative Comp. Physiol. 28): R501–R505, 1989.
 324. Mommsen, T. P., C. J. French, B. Emmett, and P. W. Hochachka. The fate of arginine and proline carbon in squid tissues. Pacific Sci. 36: 343–348, 1982.
 325. Mommsen, T. P., P. W. Hochachka, and C. J. French. Metabolism of arginine, proline, and ornithine in tissues of the squid, Illex illecebrosus. Can. J. Zool. 61; 1835–1846, 1983.
 326. Mordue, W. Evidence for the existence of diuretic and antidiuretic hormones in locusts. J. Endocrinol. 46: 119–120, 1970.
 327. Mordue, W. Hormones and excretion in locusts. Gen. Endocrinol. (Suppl.) 3: 289–298, 1972.
 328. Mordue, W., and J. V. Stone. Structure and metabolism of adipokinetic hormone. Abstracts VIIIth ISCE, Amsterdam 1978, p. 164.
 329. Moreau, R., L. Gourdoux and J. Girardie. Neuroparsin: a new energetic neurohormone in the African locust. Arch. Insect Biochem. Physiol. 8: 135–145, 1988.
 330. Morgan, P. J. and W. Mordue. Electrochemical gradients across Locusta Malpighian tubules. J. Comp. Physiol. 151: 175–183, 1983.
 331. Morgan, P. J. and W. Mordue. Cyclic AMP and locust diuretic hormone action: hormone‐induced changes in cAMP levels offers a novel method for detecting biological activity of uncharacterized peptide. Insect Biochem. 15: 247–257, 1985.
 332. Morgan, P. J. and W. Mordue. The role of calcium in diuretic hormone action on locust Malpighian tubules. Mol. Cell. Endocrinol. 40: 221–231, 1985.
 333. Morgan, P. J., K. J. Siegert and W. Mordue. Preliminary characterisation of locust diuretic peptide (DP‐1) and another corpus cardiacum peptide (LCCP). Insect Biochem. 17: 383–388, 1987.
 334. Morris, S. and P. Greenaway. Adaptions to a terrestrial existence by the robber crab Birgus latro. V. The activity of carbonic anydrase in gills and lungs. J. Comp. Physiol. [B] 160: 217–221, 1990.
 335. Morris, S., H. H. Taylor and P. Greenaway. Adaptions to a terrestrial existence by the robber crab Birgus latro. VII. The brancial chamber and its role in urine reprocessing. J. Exp. Biol. 161: 315–331, 1991.
 336. Mullins, D. E., and D. G. Cochran. Nitrogen excretion in cockroaches: uric acid is not a major product. Science 177: 699–701, 1972.
 337. Mullins, D. E., and D. G. Cochran. Nitrogenous excretory materials from the American cockroach. J. Insect Physiol. 19: 1007–1018, 1973.
 338. Mullins, D. E., and D. G. Cochran. Nitrogen metabolism in the American cockroach: an examination of whole body and fat body regulation of cations in response to nitrogen balance. J. Exp. Biol. 61: 557–570, 1974.
 339. Mullins, D. E., and D. G. Cochran. Nitrogen metabolism in the American cockroach. II. An examination of negative nitrogen balance with respect to mobilization of uric acid and stores. Comp. Biochem. Physiol. A 50: 501–510, 1975.
 340. Natochin, Y. V., and R. G. Parnova. Osmolality and electrolyte concentration of hemolymph and the problem of ion and volume regulation of cells in higher insects. Comp. Biochem. Physiol. A 88: 563–570, 1987.
 341. Needham, G. R., and J. R. Coons. Ultrastructural changes in type I alveoli of the salivary glands from hydrating and desiccating lone star ticks. In: Acarology VI, edited by D. A. Griffiths and C. E. Bowman. Chichester: Ellis Horwood, 1984, p. 366–373.
 342. Nicholls, S. P. Fluid secretion by the Malpighian tubules of the dragonfly Libellula quadrimaculata. J. Exp. Biol. 116: 53–67, 1985.
 343. Nicolson, S. Excretory function in Tenebrio molitor: fast tubular secretion in a vapour‐absorbing insect. J. Insect Physiol. 38: 139–146, 1992.
 344. Nicolson, S. W. Diuresis in the cabbage white butterfly Pieris brassicae: fluid secretion by the Malpighian tubules. J. Insect Physiol. 22: 1347–1356, 1976.
 345. Nicolson, S. W. The hormonal control of diuresis in the cabbage white butterfly Pieris brassicae. J. Exp. Biol. 65: 565–575, 1976.
 346. Nicolson, S. W. Diuresis and its hormonal control in butterflies. J. Insect Physiol. 26: 841–846, 1980.
 347. Nicolson, S. W. Osmoregulation in a nectar‐feeding insect, the carpenter bee Xylocopa capitata: water excess and ion conservation. Physiol. Entomol. 15: 433–440, 1990.
 348. Nicolson, S. W. Diuresis or clearance: is there a physiological role for the “diuretic hormone” of the desert beetle Onymacris? J. Insect Physiol. 37: 447–452, 1991.
 349. Nicolson, S. W., and G. N. Louw. Simultaneous measurement of evaporative water loss, oxygen consumption, and thoracic temperature during flight in a carpenter bee. J. Exp. Zool. 222: 287–296, 1982.
 350. Nijhout, H. F. Excretory role of the midgut in larvae of the tobacco hornworm, Manduca sexta (L.). J. Exp. Biol. 62: 221–230, 1975.
 351. Nijhout, H. F., and G. M. Carrow. Diuresis after a blood meal in female Anopheles freeborni. J. Insect Physiol. 24: 293, 1978.
 352. Noble‐Nesbitt, J. Reversible arrest of uptake of water from subsaturated atmospheres by the firebrat, Thermobia domestica (Packard). J. Exp. Biol. 62: 657–669, 1975.
 353. Noble‐Nesbitt, J. Insects and their water requirements. Interdisc. Sci. Rev. 15: 264–282, 1990.
 354. Noirot, C., and C. Noirot‐Timothee. infrastructure du protedeum chez le Lepismodes inquilinus Newman (= Thermobia domestica Packard). II. Le sac anal. J. Ultrastruct. Res. 37: 335–350, 1971.
 355. O'Donnell, M. J. Site of water vapor absorption in the desert cockroach, Arenivaga investigata. Proc. Natl. Acad. Sci. U.S.A. 74: 1757–1760, 1977.
 356. O'Donnell, M. J. Fluid movements during water vapor absorption by the desert burrowing cockroach, Arenivaga investigata. J. Insect Physiol. 27: 877–887, 1981.
 357. O'Donnell, M. J. Frontal bodies: novel structures involved in water vapor absorption in the desert burrowing cockroach, Arenivaga investigata. Tissue Cell 13: 541–555, 1981.
 358. O'Donnell, M. J. Hydrophilic cuticle—the basis for water vapor absorption by the desert burrowing cockroach, Arenivaga investigata. J. Exp. Biol. 99: 43–60, 1982.
 359. O'Donnell, M. J. Water vapor absorption by the desert burrowing cockroach: evidence against a solute‐dependent mechanism. J. Exp. Biol. 96: 251–262, 1982.
 360. O'Donnell, M. J. Water vapor absorption by arthropods: different sites, different mechanisms. In: Terrestrial versus Aquatic Life: Contrasts in Design and Function, edited by P. Dejours, L. Bolis, C. R. Taylor, and E. Weibel. New York: Liviana, 1986, p. 500–507.
 361. O'Donnell, M. J., G. K. Aldis, and S.H.P. Maddrell. Measurements of osmotic permeability in the Malpighian tubules of an insect, Rhodnius prolixus Stäl. Proc. R. Soc. Lond. B Biol. Sci. 216: 267–277, 1982.
 362. O'Donnell, M. J., J.A.T. Dow, G.R. Huesmann, N.J. Tublitz, and S.H.P. Maddrell. Separate control of anion and cation transport in Malpighian tubules of Drosophila melanogaster. J. Exp. Biol. 199: 1163–1175, 1996.
 363. O'Donnell, M.J. and J. Machin. Water vapor absorption by terrestrial organisms. Adv. Comp. Environ. Physiol. 2: 47–90, 1988.
 364. O'Donnell, M.J. and J. Machin. Ion activities and electrochemical gradients in the mealworm rectal complex. J. Exp. Biol. 155: 375–402, 1991.
 365. O'Donnell, M. J., and S.H.P. Maddrell. Paracellular and trans‐cellular routes for water and solute movements across insect epithelia. J. Exp. Biol. 106: 231–253, 1983.
 366. O'Donnell, M. J., and S.H.P. Maddrell. Secretion by the Malpighian tubules of Rhodnius prolixus stal: electrical events. J. Exp. Biol. 110: 275–290, 1984.
 367. O'Donnell, M. J., and S.H.P. Maddrell. Fluid reabsorption and ion transport by the lower Malpighian tubules of adult female Drosopbila. J. Exp. Biol. 198: 1647–1653, 1995.
 368. O'Donnell, M. J., S.H.P. Maddrell, and B.O.C. Gardiner. Transport of uric acid by the Malpighian tubules of Rhodnius prolixus and other insects. J. Exp. Biol. 103: 169–184, 1983.
 369. O'Donnell, M. J., S.H.P. Maddrell, and B.O.C. Gardiner. Passage of solutes through walls of Malpighian tubules of Rhodnius by paracellular and transcellular routes. Am. J. Physiol. 246 (Regulatory Integrative Comp. Physiol. 17): R759–R769, 1984.
 370. O'Donnell, M. J., S.H.P. Maddrell, H. le B. Skaer, and J. B. Harrison. Elaborations of the basal surface of the cells of the Malpighian tubules of an insect. Tissue Cell 17: 865–881, 1985.
 371. O'Donnell, M. J. and A. Mandelzys. Cell volume maintenance and volume regulatory decrease in Malpighian tubule cells of an insect, Rhodnius prolixus. Comp. Biochem. Physiol. [B] 90: 843–849, 1988.
 372. O'Donnell, M. J., and J. C. Wright. Nitrogen excretion in terrestrial crustaceans. In: Nitrogen Metabolism and Excretion, edited by P. J. Walsh and P. Wright. Boca Raton, FL: CRC, 1995, p. 105–118.
 373. Oglesby, L. C. Salt and water balance. In: Physiology of Annelids, edited by P. J. Mill. London: Academic, 1978, p. 555–658.
 374. Onken, H. and K. Graszynski. Active Cl− absorption by the Chinese crab (Eriocheir sinensis) gill epithelium measured by transepithelial potential difference. J. Comp. Physiol. [B] 159: 21–38, 1989.
 375. Onken, H. and M. Putzenlechner. A V‐ATPase drives active, electrogenic and Na+‐independent Cl− absorption across the gills of Eriocheir sinensis. J. Exp. Biol. 198: 767–774, 1995.
 376. Onken, H., K. Graszynski and W. Zeiske. Na+‐independent, electrogenic Cl− uptake across the posterior gills of the Chinese crab (Eriocheir sinensis): voltage‐clamp and microelectrode studies. J. Comp. Physiol. [B] 161: 293–301, 1991.
 377. Orchard, I. Octopamine in insects: neurotransmitter, neurohormone, and neuromodulator. Can. J. Zool. 60: 659–669, 1982.
 378. Orchard, I. Serotonergic neurohaemal tissue in Rhodnius prolixus: synthesis, release and uptake of serotonin. J. Insect Physiol. 35: 943–947, 1989.
 379. Orchard, I., A. B. Lange, and F. M. Barrett. Serotonergic supply to the epidermis of Rhodnius prolixus: evidence for serotonin as the plasticising factor. J. Insect Physiol. 34: 873–879, 1988.
 380. Otto, J., and S. K. Pierce. An interaction of extra‐ and intracellular osmoregulatory mechanisms in the bivalve mollusc Rangia cuneata. Marine Biol. 61: 193–198, 1981.
 381. Pannabecker, T. L., D. J. Aneshansley, and K. W. Beyenbach. Unique electrophysiological effects of dinitrophenol in Malpighian tubules. Am. J. Physiol. 263 (Regulatory Integrative Comp. Physiol. 34): R609–614, 1992.
 382. Pannabecker, T. L., T. K. Hayes, and K. W. Beyenbach. Regulation of epithelial shunt conductance by the peptide leucokinin. J. Memb. Biol. 132: 63–76, 1993.
 383. Patterson, D. J. Contractile vacuoles and associated structures: their organization and function. Biol. Rev. 55: 1–46, 1980.
 384. Peach, J. L., and J. E. Phillips. Metabolic support of chloride‐dependent short‐circuit current across the locust (Schistocerca gregaria) ileum. J. Insect Physiol. 37: 255–260, 1991.
 385. Peacock, A. J. Effects of anions, acetazolamide, and copper on diuresis in the tsetse fly, Glossina morsitans. J. Insect Physiol. 32: 157–160, 1986.
 386. Pequeux, A. and R. Gilles. Na+/NH4+ co‐transport in isolated perfused gills of the Chinese crab Eriocheir sinensis acclimated to fresh water. Experientia 34: 1593–1594, 1978.
 387. Pequeux, A., and J. M. Lignon. Na+ and Cl− permeabilities of the gill cuticle of the hyperregulating crab, Eriocheir sinensis. Effects of amiloride. Arch. Int. Physiol. Biochem. 97: C38, 1989.
 388. Peterson, D. R., and R. F. Loizzi. infrastructure of the crayfish kidney coelomosac, labyrinth, nephridial canal. J. Morphol. 142: 241–263, 1974.
 389. Petzel, D. H., M. M. Berg, and K. W. Beyenbach. Hormone‐controlled cAMP‐mediated fluid secretion in yellow‐fever mosquito. Am. J. Physiol. 253 (Regulatory Integrative Comp. Physiol. 24): R701–R711, 1987.
 390. Petzel, D. H., H. H. Hagedorn, and K. W. Beyenbach. Preliminary isolation of mosquito natriuretic factor. Am. J. Physiol. 249 (Regulatory Integrative Comp. Physiol. 20): R379–R386, 1985.
 391. Petzel, D. H., H. H. Hagedorn, and K. W. Beyenbach. Peptide nature of two mosquito natriuetic factors. Am. J. Physiol. 250 (Regulatory Integrative Comp. Physiol. 21): R328–R332, 1986.
 392. Petzel, D. H., A. K. Parrish, C. L. Ogg, N. A. Witters, R. W. Howard, and D. W. Stanley‐Samuelson. Arachidonic acid and prostaglandin E2 in Malpighian tubules of female yellow fever mosquitoes. Insect Biochem. Mol. Biol. 23: 431–447, 1993.
 393. Petzel, D. H., and D. W. Stanley‐Samuelson. Inhibition of eicosanoid biosynthesis modulates basal fluid secretion in the Malpighian tubules of the yellow fever mosquito (Aedes aegypti). J. Insect Physiol. 38: 1–8, 1992.
 394. Phillips, J. E. Rectal absorption in the desert locust, Schistocerca gregaria Forskal. I. Water. J. Exp. Biol. 41: 15–38, 1964.
 395. Phillips, J. E. Rectal absorption in the desert locust, Schistocerca gregaria Forskal. II. Sodium, potassium and chloride. J. Exp. Biol. 41: 39–67, 1964.
 396. Phillips, J. E. Rectal absorption in the desert locust, Schistocerca gregaria Forskal. III. The nature of the excretory process. J. Exp. Biol. 41: 68–80, 1964.
 397. Phillips, J. E., and A. D. Dockrill. Molecular sieving of hydrophilic molecules by the rectal intima of the desert locust (Schistocerca gregaria). J. Exp. Biol. 48: 521–532, 1968.
 398. Phillips, J. E., J. Hanrahan, M. Chamberlin and B. Thomson. Mechanisms and control of reabsorption in insect hindgut. Adv. Insect Physiol. 19: 329–422, 1986.
 399. Phillips, J. E., and S.H.P. Maddrell. Active transport of magnesium by the Malpighian tubules of the larvae of the mosquito, Aedes compestris. J. Exp. Biol. 61: 761–771, 1974.
 400. Pierce, S. K. Water balance in the genus Modiolus (Mollusca: Bivalvia: Mytilidae): osmotic concentrations in changing salinities. Comp. Biochem. Physiol. 36: 521–533, 1970.
 401. Pilcher, D.E.M. Hormonal control of the Malpighian tubules of the stick insect, Carausius morosus. J. Exp. Biol. 52: 653–665, 1970.
 402. Plawner, L., T. L. Pannabecker, S. Laufer, M. D. Baustian, and K. W. Beyenbach. Control of diuresis in the yellow fever mosquito Aedes aegypti: evidence for similar mechanisms in the male and female. J. Insect Physiol. 37: 119–128, 1991.
 403. Pothier, F., J. Forget, R. Sulivan and P. Couillard. ATP and contractile vacuole in Amoeba proteus: mechanism of action of exogenous ATP and related nucleotides. J. Exp. Zool. 243: 379–397, 1987.
 404. Potts, W.T.W. Excretion in the molluscs. Biol. Rev. 42: 1–41, 1967.
 405. Potts, W.T.W. Excretion in gastropods. Fortsch. Zool. 23: 76–88, 1975.
 406. Prento, P. Metals and phosphate in the chloragosomes of Lumbricus terrestris and their possible significance. Cell Tissue Res. 196: 123–134, 1979.
 407. Pressley, T. A., J. S. Graves, and A. R. Krall. Amiloride‐sensitive ammonium and sodium ion transport in the blue crab. Am. J. Physiol. 241 (Regulatory Integrative Comp. Physiol. 12): R370–R378, 1981.
 408. Pritchard, J. B., and D. S. Miller. Comparative insights into the mechanisms of renal organic anion and cation secretion. Am. J. Physiol. 261 (Regulatory Integrative Comp. Physiol. 32): R1329–R1340, 1991.
 409. Prosser, C. L. Comparative Animal Physiology (4th ed.), New York: Wiley‐Liss, 1991.
 410. Proux, B., J. Proux, and J. E. Phillips. Antidiuretic action of corpus cardiacum (CTSH) on long‐term fluid absorption across locust recta in vitro. J. Exp. Biol. 113: 409–421, 1984.
 411. Proux, J., G. Rougon and A. Cupo. Enhancement of excretion across locust Malpighian tubules by a diuretic vasopressin‐like hormone. Gen. Comp. Endocrinol. 47: 449–457, 1982.
 412. Proux, J. P., C. A. Miller, J. P. Li, R. L. Carney, A. Girardie, M. Delaage, and D. A. Schooley. Identification of an arginine vasopressin‐like diuretic hormone from Locusta migratoria. Biochem. Biophys. Res. Commun. 149: 180–186, 1987.
 413. Prusch, R. D. Secretion of NH4CL by the hindgut of Sarcophaga bullata larvae. Comp. Biochem. Physiol. A 41: 215–223, 1972.
 414. Prusch, R. D. Unidirectional ion movements in the hindgut of larval Sarcophaga bullata. J. Exp. Biol. 64: 89–100, 1976.
 415. Prusch, R. D. Protozoan osmotic and ionic regulation. In: Transport of Ions and Water in Animals, edited by B. L. Gupta, R. B. Moreton, J. L. Oschmon, and B. J. Wall. New York: Academic, 1977, p. 363–377.
 416. Prusch, R. D. Solute secretion by the tube foot epithelium in the starfish Asterias formesi. J. Exp. Biol. 63: 35–43, 1977.
 417. Prusch, R. D. Active calcium extrusion by Amoeba proteus. J. Exp. Zool. 212: 475–477, 1980.
 418. Prusch, R. D. Endocytotic sucrose uptake in Amoeba proteus induced with the calcium ionophore A23187. Science 209: 691–602, 1980.
 419. Prusch, R. D. Evolution of invertebrate homeostasis: osmotic and ionic regulation. Comp. Biochem. Physiol. A 76: 753–761, 1983.
 420. Prusch, R. D. Calcium and initial surface binding phase of pinocytosis in Amoeba proteus. Am. J. Physiol. 251 (Cell Physiol. 20): C153–C158, 1986.
 421. Prusch, R. D., and P. B. Dunham. Ionic distribution in Amoeba proteus. J. Exp. Biol. 56: 551–563, 1972.
 422. Prusch, R. D. and J. Hannafin. Calcium distribution in Amoeba proteus. J. Gen. Physiol. 74: 511–521, 1979.
 423. Prusch, R. D. and J. Hannafin. Sucrose uptake by pinocytosis in Amoeba proteus and the influence of external calcium. J. Gen. Physiol. 74: 523–535, 1979.
 424. Prusch, R. D. and T. Otter. Annelid transepithelial ion transport. Comp. Biochem. Physiol. A 57: 87–92, 1977.
 425. Prusch, R. D., and P. A. Vedovatti. Calcium movements associated with peptide induced phagocytosis in Amoeba proteus. J. Comp. Physiol. [B] 159: 287–292, 1989.
 426. Prusch, R. D. and F. Whoriskey. Maintenance of fluid volume in the starfish water vascular system. Nature 262: 577–578, 1976.
 427. Rafaeli, A., and S. W. Applebaum. Canavanine potentiates the response of insect Malpighian tubules to diuretic hormone and cyclic AMP. Nature 283: 872–873, 1980.
 428. Rafaeli, A. and W. Mordue. The responses of the Malpighian tubules of Locusta to hormones and other stimulants. Gen. Comp. Endocrinol. 46: 130–135, 1982.
 429. Rafaeli‐Bernstein, A. and W. Mordue. The transport of the cardiac glycoside ouabain by the Malpighian tubules of Zonocerus variegatus. Physiol. Entomol. 3: 59–63, 1978.
 430. Rafaeli‐Bernstein, A. and W. Mordue. The effects of phlorizin, phloretin and ouabain on the reabsorption of glucose by the Malpighian tubules of Locust migratoria migratorioides. J. Insect Physiol. 25: 241–247, 1979.
 431. Raffin, J. P., and M. T. Thebault. Mise en evidence et caractérisation partielle d'une activité AMP déaminisique chez la crevette Palaemon serratus. IX. Reunion des carcinologistes de Langue française, 3–7 juin 1985, Roscoff. Cah. Biol. Mar.
 432. Ramsay, J. A. The site of formation of hypotonic urine in the nephridium of Lumbricus. J. Exp. Biol. 26: 65–75, 1949.
 433. Ramsay, J. A. Osmotic regulation in mosquito larvae. J. Exp. Biol. 27: 145–157, 1950.
 434. Ramsay, J. A. Active transport of water by the Malpighian tubules of the stick insect, Dixippus morosus (Orthoptera, Phasmidae). J. Exp. Biol. 31: 104–113, 1954.
 435. Ramsay, J. A. The excretion of sodium, potassium and water by the Malpighian tubules of the stick insect, Dixippus morosus (Orthoptera, Phasmidae). J. Exp. Biol. 32: 200–216, 1955.
 436. Ramsay, J. A. The excretory system of the stick insect, Dixippus morosus (Orthoptera, Phasmidae). J. Exp. Biol. 32: 183–199, 1955.
 437. Ramsay, J. A. Excretion by the Malpighian tubules of the stick insect, Dixippus morosus (Orthoptera, Phasmidae): calcium, magnesium, chloride, phosphate and hydrogen ions. J. Exp. Biol. 33: 697–709, 1956.
 438. Ramsay, J. A. Excretion by the Malpighian tubules of the stick insect Dixippus morosus (Orthoptera, Phasmidae): amino acids, sugars and urea. J. Exp. Biol. 35: 871–891, 1958.
 439. Ramsay, J. A. The rectal complex of the mealworm Tenebrio molitor, L. (Coleoptera, Tenebrionidae). Phil. Trans R. Soc. Lond. [B] 248: 279–314, 1964.
 440. Ramsay, J. A. The rectal complex in the larvae of Lepidoptera. Phil. Trans. R. Soc. Lond. [B] 274: 203–226, 1976.
 441. Raven, J. A. The energetics of freshwater algae; energy requirements for biosynthesis and volume regulation. New Phytol. 92: 1–20, 1982.
 442. Reeves, R. B. An imidazole alphastat hypothesis for vertebrate acid‐base regulation: tissue carbon dioxide content and body temperature in bullfrogs. Respir. Physiol. 14: 219–236, 1972.
 443. Reeves, R. B. The interaction of body temperature and acid‐base balance in ectothermic vertebrates. Annu. Rev. Physiol. 39: 559–586, 1977.
 444. Reagan, J. D. Molecular cloning of a putative Na+–K+–2Cl− cotransporter from the Malpighian tubules of the tobacco hornworm, Manduca sexta. Insect Biochem. Mol. Biol. 25: 875–880, 1995.
 445. Regnault, M. Nitrogen excretion in marine and fresh‐water Crustacea. Biol. Rev. 62: 1–24, 1987.
 446. Reid, R.G.B., and D. G. Brand. Giant kidneys and metal‐sequestering nephroliths in the bivalve Pinna bicolor, with comparative notes on Atrina vexillum (Pinnidae). J. Exp. Marine Biol. Ecol. 126: 95–117, 1989.
 447. Reynolds, S. E. and K. Bellward. Water balance in Manduca sexta caterpillars: water recycling from the rectum. J. Exp. Biol. 141: 33–45, 1989.
 448. Riddick, D. H. Contractile vacuole in the amoeba Pelomyxa carolinensis. Am. J. Physiol. 215: 736–740, 1968.
 449. Riegel, J. A. A new model of transepithelial fluid movement with detailed application to fluid movement in the crayfish antennal gland. Comp. Biochem. Physiol. 36: 403–410, 1970.
 450. Riegel, J. A. Comparative Physiology of Renal Excretion New York: Hafner, 1972.
 451. Riegel, J. A., and M. A. Cook. Recent studies of excretion in Crustacea. Fortsch. Zool. 23: 48–75, 1975.
 452. Riegel, J. A., A.P.M. Lockwood, J.R.W. Norfolk, N. C. Bulleid, and P. A. Taylor. Urinary bladder volume and the reabsorption of water from the urine of crabs. J. Exp. Biol. 60: 167–181, 1974.
 453. Rosenberg, J. Coxal organs of Lithobius forficatus (Myriapoda, Chilopoda). Fine structural investigation with special reference to the transporting epithelium. Cell Tissue Res. 230: 421–430, 1983.
 454. Rosenberg, J. and G. Seifert. The coxal glands of Geophilomorpha (Chilopoda): organs of osmoregulation. Cell Tissue Res. 102: 247–251, 1977.
 455. Rudolph, D. Occurrence, properties and biological implications of the active uptake of water vapour from the atmosphere in Psocoptera. J. Insect Physiol. 28: 111–121, 1982.
 456. Rudolph, D. Site, process and mechanism of active uptake of water‐vapour from the atmosphere in Psocoptera. J. Insect Physiol. 28: 111–121, 1982.
 457. Rudolph, D. The water‐vapour uptake system of the phthiraptera. J. Insect Physiol. 29: 15–25, 1983.
 458. Rudolph, D., and W. Knülle. Site and mechanism of water vapour uptake from the atmosphere in ixodid ticks. Nature 249: 84–85, 1974.
 459. Rudolph, D., and W. Knülle. Uptake of water vapour from the air: process, site and mechanism in ticks. In: Comparative Physiology—Water, Ions and Fluid Mechanics, edited by K. Schmidt‐Nielsen, L. Bolis, and S.H.P. Maddrell. London: Cambridge Univ. Press, 1978, p. 97–113.
 460. Rudolph, D., and W. Knülle. Novel uptake systems for atmospheric water vapour among insects. J. Exp. Zool. 222: 321–333, 1982.
 461. Ruppert, E. E., and P. R. Smith. The functional organization of filtration nephridia. Biol. Rev. 63: 231–258, 1988.
 462. Ryerse, J. S. Developmental changes in Malpighian tubule fluid transport. J. Insect Physiol. 24: 315–319, 1978.
 463. Ryerse, J. S. Ecdysterone switches off fluid secretion at pupation in insect Malpighian tubules. Nature 271: 745–746, 1978.
 464. Ryerse, J. S. Developmental changes in Malpighian tubule cell structure. Tissue Cell 11: 533–551, 1979.
 465. Saintsing, D. G., and D. W. Towle. Na+ + K+‐ATPase in the osmoregulating clam Rangia cuneata. J. Exp. Zool. 206: 435–442, 1978.
 466. Sanders, N. K., and J. J. Childress. Ion replacement as a buoyancy mechanism in a pelagic deep‐sea crustacean. J. Exp. Biol. 138: 333–343, 1988.
 467. Sawyer, D. B., and K. W. Beyenbach. Dibutyryl‐cAMP increases basolateral sodium conductance of mosquito Malpighian tubules. Am. J. Physiol. 248 (Regulatory Integrative Comp. Physiol. 19): R339–R345, 1985.
 468. Schierwater, B., B. Piekos, and L. W. Buss. Hydroid stolonal contractions mediated by contractile vacuoles. J. Exp. Biol. 162: 1–21, 1992.
 469. Schipp, R., S. von Boletzky and G. Doell. Ultrastructural and cytochemical investigations on the renal appendages and their concrements in dibranchiate cephalopods (Mollusca, Cephaolopoda). Z. Morphol. 81: 279–304, 1975.
 470. Schmidt‐Nielsen, B., and C. R. Schrauger. Amoeba proteus: studying the contractile vacuole by micropunture. Science 139: 606–607, 1963.
 471. Schooley, D. A., C. A. Miller, and J. P. Proux. Isolation of two arginine vasopressin‐like factors from ganglia of Locusta migratoria. Arch. Insect Biochem. Physiol. 5: 157–166, 1987.
 472. Schwantes, P. A. Ultrastructure of the anal organ of Musca domestica larvae (Insecta, Diptera) in relation to ion transport. Zoomorphology 109: 55–69, 1989.
 473. Schwantes, P. A. and G. Seibold. Ion‐adsorption by specialized epithelial regions in Musca domestica larvae. J. Insect Physiol. 35: 847–854, 1989.
 474. Schwantes, U. Changes in uric acid metabolism during larval development of Musca domestica. Zool. Jb. Physiol. 93: 289–301, 1989.
 475. Schwantes, U. Uric acid during pupal and adult development of Musca domestica L. (Diptera). Zool. Jb. Physiol. 94: 1–18, 1990.
 476. Schwantes, U., and P. A. Schwantes. Influences of different external ion‐concentrations on osmolality, internal potassium and sodium levels and uric acid concentration in Musca domestica larvae. Comp. Biochem. Physiol. A 96: 273–279, 1990.
 477. Schwartz, L. M., and S. E. Reynolds. Fluid transport in Calliphora Malpighian tubules: a diuretic hormone from the thoracic ganglion and abdominal nerve. J. Insect Physiol. 25: 847–854, 1979.
 478. Schwarz, H.‐J. and K. Graszynski. Ion transport in crab gills: a new method using isolated half platelets of Eriocheir gills in an Ussing‐type chamber. Comp. Biochem. Physiol. A 92: 601–604, 1989.
 479. Schweikl, H., U. Klein, M. Schindlbeck and H. Wieczorek. A vacuolar‐type ATPase, partially purified from potassium transporting plasma membranes of tobacco hornworm midgut. J. Biol. Chem. 264: 11, 136–11, 142, 1989.
 480. Shetlar, R. E., and D. W. Towle. Electrogenic sodium‐proton exchange in membrane vesicles from crab (Carcinus maenas) gill. Am. J. Physiol. 257 (Regulatory Integrative Comp. Physiol. 28): R924–R931, 1989.
 481. Shick, J. M., J. Widdows and E. Gnaiger. Calorimetric studies of behavior, metabolism and energetics of sessile intertidal animals. Am. Zool. 28: 161–181, 1988.
 482. Siebers, D., G. Petrausch, and K. Böttcher. Is there a chloride ATPase in the gills of the shore crab Carcinus maenas? J. Comp. Physiol. [B] 160: 223–231, 1990.
 483. Siebers, D., H. Wille, C. Lucu, and L. Dalla Venezia. Conductive sodium entry in gill cells of the shore crab, Carcinus maenas. Marine Biol. 101: 61–68, 1989.
 484. Sigal, M. D., J. Machin, and G. R. Needham. Hyperosmotic oral fluid secretion during active water vapour absorption and during desiccation‐induced storage‐excretion by the unfed female tick Amblyomma americanum. J. Exp. Biol. 157: 585–591, 1991.
 485. Silverman, H., W. T. Kays, and T. H. Dietz. Maternal calcium contribution to glochidial shells in freshwater mussels (Eulamellibranchia: Unionidae). J. Exp. Zool. 242: 137–146, 1987.
 486. Silverman, H., J. M. Myers, and T. H. Dietz. Invertebrate calcium concretions. Novel biomineralization systems. In: Surface Reactive Peptides and Polymers, edited by C. Sikes and A. P. Wheeler. Washington, D.C.: American Chemical Society, ACS Symposium Series No. 444, 1191, p. 125–138.
 487. Silverman, H., W. L. Steffens, and T. H. Dietz. Calcium concretions in the gills of a freshwater mussel serve as a calcium reservoir during periods of hypoxia. J. Exp. Zool. 227: 177–189, 1983.
 488. Silverman, H., W. L. Steffens, and T. H. Dietz. Calcium from extracellular concretions in the gills of freshwater unionid mussels is mobilized during reproduction. J. Exp. Zool. 236: 137–147, 1985.
 489. Simkiss, K. Intracellular and extracellular routes in biomineralisation. Symp. Soc. Exp. Biol. 30: 423–444, 1976.
 490. Simkiss, K. Biomineralisation and detoxification. Calcif. Tissue Res. 24: 199–200, 1977.
 491. Simkiss, K. Metal ions in cells. Endeavour 3: 2–6, 1979.
 492. Simkiss, K. Detoxification, calcification and the intracellular storage of ions. In: The Mechanisms of Biomineralization in Animals and Plants, edited by M. Omari and N. Watabe. Tokai: Tokai Univ. Press, 1980, p. 13–18.
 493. Simkiss, K. Calcium, pyrophosphate and cellular pollution. Trends Biochem. Sci. 6: R3–R5, 1981.
 494. Skaer, H. le B., and S.H.P. Maddrell. How are invertebrate epithelia made tight? J. Cell Sci. 88: 139–141, 1987.
 495. Skaer, H. le B., S.H.P. Maddrell, and J. B. Harrison. The permeability properties of septate junctions in Malpighian tubules of Rhodnius. J. Cell Sci. 88: 251–265, 1987.
 496. Smedley, S. R. and T. Eisner. Sodium uptake by puddling in a moth. Science 270: 1816–1818, 1995.
 497. Sminia, T., N. D. de With, J. L. Box, M. E. van Nieuwmegen, M. E. Witter and J. Wondergem. Structure and function of the calcium cells of the freshwater pulmonate snail Lymnaea stagnalis. Netherlands. J. Zool. 27: 195–208, 1977.
 498. Smith, P. G. The ionic relations of Artemia salina (L.). I. Measurements of electrical potential difference and resistance. J. Exp. Biol. 51: 727–738, 1969.
 499. Smith, P. G. The ionic relations of Artemia salina (L.). II. Fluxes of sodium, chloride and water. J. Exp. Biol. 51: 739–757, 1969.
 500. Smith, P. M., D. S. Miller, and J. B. Pritchard. Sodium‐coupled organic anion transport by Cancer borealis urinary bladder. Am. J. Physiol. 259 (Regulatory Integrative Comp. Physiol. 30): R147–R156, 1990.
 501. Smith, P. R., and E. E. Ruppert. Filtration and reabsorption of macromolecules by protonephridial excretory organs. J. Cell Biol. 103: 59A, 1986.
 502. Sohal, R. S., P. D. Peters, and T. A. Hall. Origin, structure, composition and age dependence of mineralised dense bodies (concretions) in the midgut epithelium of the adult housefly Musca domestica. Tissue Cell 9: 87–102, 1977.
 503. Sparkes, S. and P. Greenaway. The haemolymph as a storage site for cuticular ions during premoult in the freshwater/land crab Holthuisana transversa. J. Exp. Biol. 113: 43–54, 1984.
 504. Speeg, K. V., and J. W. Campbell. Formation and volatilization of ammonia gas by terrestrial snails. Am. J. Physiol. 214: 1392–1402, 1968.
 505. Spring, J. H. Endocrine regulation of diuresis in insects. J. Insect Physiol. 36: 13–22, 1990.
 506. Spring, J. H., and S. R. Hazelton. Excretion in the house cricket (Acheta domesticus): stimulation of diuresis by tissue homogenates. J. Exp. Biol. 129: 63–81, 1987.
 507. Spring, J. H., A. M. Morgan, and S. R. Hazelton. A novel target for antidiuretic hormone in insects. Science 241: 1096–1098, 1988.
 508. Staddon, B. W. The excretion and storage of ammonia by aquatic larvae of Sialis lutaria (Neuroptera). J. Exp. Biol. 32: 84–94, 1955.
 509. Staddon, B. W. Nitrogen excretion in nymphs of Aeshna cyanea (Mull.) (Odonata, Anisoptera). J. Exp. Biol. 36: 566–574, 1959.
 510. Stagg, A. P., J. F. Harrison, and J. E. Phillips. Acid‐base variables in Malpighian tubule secretion and response to acidosis. J. Exp. Biol. 159: 433–447, 1991.
 511. Steele, R. W., and A. N. Starratt. In vitro inactivation of the insect neuropeptide proctolin in haemolymph from Periplaneta americana. Insect Biochem. 15: 511–519, 1985.
 512. Strange, K., and J. E. Phillips. Mechanisms of CO2 transport in rectal salt gland of Aedes. I. Ionic requirements of CO2 secretion. Am. J. Physiol. 246 (Regulatory Integrative Comp. Physiol. 17): R727–R734, 1984.
 513. Strange, K., J. E. Phillips, and G. A. Quamme. Active HCO3− secretion in the rectal salt gland of a mosquito larva inhabiting NaHCO3‐CO3 lakes. J. Exp. Biol. 101: 171–186, 1982.
 514. Strange, K., J. E. Phillips, and G. A. Quamme. Mechanisms of CO2 transport in rectal salt gland of Aedes. II. Site of Cl−‐HCO3− exchange. Am. J. Physiol. 246 (Regulatory Integrative Comp. Physiol. 17): R735–R740, 1984.
 515. Stratakis, E. Ommochrome synthesis and kynurenic acid excretion in relation to metamorphosis and allatectomy in the stick insect, Carausius morosus. J. Insect Physiol. 25: 925–929, 1979.
 516. Strauss, O. and K. Graszynski. Isolation of plasma membrane vesicles from the gill epithelium of the crayfish, Orconectes limosus Rafinesque, and properties of the Na+/H+ exchanger. Comp. Biochem. Physiol. Comp. Physiol. 102: 519–526, 1992.
 517. Surholt, B., H. Greive, C. Hommel and A. Bertsch. Fuel uptake, storage and use in male bumble bees Bombus terrestris L. J. Comp. Physiol. [B] 158: 263–269, 1988.
 518. Suzuki, Y., K. Ohnishi, T. Hirabayashi and T. Watanabe. Tetrahymena calmodulin. Characterization of an anti‐tetrahymena calmodulin and the immunofluorescent localization in Tetrahymena. Exp. Cell Res. 137: 1–14, 1982.
 519. Szibbo, C. M., and G.G.E. Scudder. Secretory activity of the segmented Malpighian tubules of Cenocorixa bifida (Hung.) (Hemiptera, Corixidae). J. Insect Physiol. 25: 931–937, 1979.
 520. Tamarelle, M. and J. Girardie. Immunohistochemical investigation of locust neuroparsin‐like substances in several insects, in some other invertebrates, and vertebrates. Histochemistry 91: 431–435, 1989.
 521. Tanabe, K. Glucose transport in malaria‐infected erythrocytes. Parasitol. Today 6: 225–229, 1990.
 522. Tanabe, K. Ion metabolism in malaria‐infected erythrocytes. Blood Cells 16: 437–449, 1990.
 523. Tanaka, T. Gels. Sci. Am. 244: 124–138, 1981.
 524. Taylor, H. H., P. Greenaway and S. Morris. Adaptations to a terrestrial existence by the robber crab Birgus latro. VIII. Osmotic and ionic regulation on freshwater and saline drinking regimens. J. Exp. Biol. 179: 93–113, 1993.
 525. Taylor, P. M., and E. B. Andrews. Tissue adenosinetriphosphatase activities of the gill and excretory system in mesogastropod molluscs in relation to osmoregulatory capacity. Comp. Biochem. Physiol. A 86: 693–696, 1987.
 526. Taylor, P. M., and R. R. Harris. Osmoregulation in Corophium curvispinum (Crustacea: Amphipoda), a recent coloniser of freshwater. I. Sodium ion regulation. J. Comp. Physiol. [B] 156: 323–329, 1986.
 527. Taylor, P. M., and R. R. Harris. Osmoregulation in Corophium curvispinum (Crustacea: Amphipoda), a recent coloniser of freshwater. II. Water balance and the functional anatomy of the antennary organ. J. Comp. Physiol. [B] 156: 331–337, 1986.
 528. Thomson, R. B., and J. E. Phillips. Electrogenic proton secretion in the hindgut of the desert locust, Schistocerca gregaria. J. Membr. Biol. 125: 133–154, 1992.
 529. Thomson, R. B., J. D. Speight, and J. E. Phillips. Rectal acid secretion in the desert locust, Schistocerca gregaria. J. Insect Physiol. 34: 829–837, 1988.
 530. Thomson, R. B., J. M. Thomson, and J. E. Phillips. NH4+ transport in acid‐secreting insect epithelium. Am. J. Physiol. 254 (Regulatory Integrative Comp. Physiol. 25): R348–R356, 1988.
 531. Tillinghast, E. K. Excretory pathways of ammonia and urea in the earthworm Lumbricus terrestris L. J. Exp. Zool. 166: 295–300, 1971.
 532. Towle, D. W. Role of Na+ + K+‐ATPase in ionic regulation by marine and estuarine animals. Marine Biol. Lett. 2: 107–122, 1981.
 533. Towle, D. W. Membrane‐bound ATPases in arthropod ion‐transporting tissues. Am. Zool. 24: 177–185, 1984.
 534. Towle, D. W. Sodium transport systems in gills. In: Comparative Aspects of Sodium Cotransport Systems, edited by R. K. H. Kinne. Farmington: S. Karger, 1990, vol. 7, p. 241–263.
 535. Towle, D. W. and T. Holleland. Ammonium ion substitutes for K+ in ATP‐dependent Na+ transport by basolateral membrane vesicles. Am. J. Physiol. 252 (Regulatory Integrative Comp. Physiol. 23): R479–R489, 1987.
 536. Towle, D. W., G. E. Palmer, and J. L. Harris III. Role of gill Na+ + K+‐dependent ATPase in acclimation of blue crabs (Callinectes sapidus) to low salinity. J. Exp. Zool. 196: 315–322, 1976.
 537. Treherne, J. E. Neuronal adaptations to osmotic stress. In: Transport Processes, lono‐ and Osmoregulation, edited by R. Gilles and M. Gilles‐Ballien. Berlin: Springer‐Verlag, 1985, p. 376–388.
 538. Treherne, J. E., P. B. Buchan, and R. R. Bennett. Sodium activity of insect blood: physiological significance and relevance to the physiological saline. J. Exp. Biol. 62: 721–732, 1975.
 539. Tschoerner, P. and E. Zebe. Ammonia formation in the medicinal leech, Hirudo medicinalis—in vivo and in vitro investigations. Comp. Biochem. Physiol. A 94: 187–194, 1989.
 540. Tucker, L. E. The influence of diet, age and state of hydration on Na+, K+ and urate balance in the fat body of the cockroach Periplaneta americana. J. Exp. Biol. 71: 67–79, 1977.
 541. Tucker, L. E. Regulation of ions in the haemolymph of the cockroach Periplaneta americana during dehydration and rehydration. J. Exp. Biol. 71: 95–110, 1977.
 542. Van Kerkhove, E., R. Weltens, N. Roinel, and N. de Decker. Haemolymph composition in Formica (Hymenoptera) and urine formation by the short isolated Malpighian tubules: electrochemical gradients for ion transport. J. Insect Physiol. 35: 991–1003, 1989.
 543. Van Waarde, A. Operation of the purine nucleotide cycle in animal tissues. Biol. Rev. 63: 259–298, 1988.
 544. Wall, B. J. Local osmotic gradients in the rectal pads of an insect. Federation Proc. 30: 42–48, 1971.
 545. Weber, M.‐M., B. Dannenmaier and W. Clauss. Ion transport across leech inegument. I. Electrogenic Na+ transport and current fluctuation analysis of the apical Na+ channel. J. Comp. Physiol. [B] 163: 153–159, 1993.
 546. Wenning, A. Struktur und funktion des exkretionssystems von Lithobius forficatus L. (Myriapoda, Chilopoda). Zool. Jb. Physiol. 82: 419–433, 1978.
 547. Wenning, A. Salt and water regulation in Macrobdella decora (Hirudinea: Gnathobdelliformes) under osmotic stress. J. Exp. Biol. 131: 337–349, 1987.
 548. Wenning, A. Properties of a set of internal receptors in the medicinal leech: the nephridial nerve cells monitor extracellular chloride concentration. J. Exp. Biol. 143: 115–132, 1989.
 549. Wenning, A., M. A. Cahill, U. Hoeger, and R. L. Calabrese. Sensory and neurosecretory innervation of leech nephridia is accomplished by a single neurone containing FMRFamide. J. Exp. Biol. 182: 81–96, 1993.
 550. Wenning, A., U. Greisinger, and J. P. Proux. Insect‐like characteristics of the Malpighian tubules of a non‐insect: fluid secretion in the centipede Lithobius forficatus (Myriapoda: Chilopoda). J. Exp. Biol. 158: 165–180, 1991.
 551. Wessing, A., K. Zierold and F. Hevert. Two types of concretions in Drosophila Malpighian tubules as revealed by x‐ray microanalysis: a study on urine formation. J. Insect Physiol. 38: 543–554, 1992.
 552. Wessing, A., K. Zierold and D. Schafer. Intracellular storage of sodium and magnesium in Drosophila Malpighian tubules. X‐ray microanalysis of native cryosections. Eur. J. Cell Biol. 47: 1–6, 1988.
 553. Wheatly, M. G. The role of the antennal gland in ion and acid‐base regulation during hyposaline exposure of the Dungeness crab Cancer magister (Dara). J. Comp. Physiol. [B] 155: 445–454, 1985.
 554. Wheatly, M. G., and R. P. Henry. Extracellular and intracellular acid‐base regulation in crustaceans. J. Exp. Zool. 263: 127–142, 1992.
 555. Wheatly, M. G. and T. Toop. Physiological responses of the crayfish Pacifastacus leniusculus to environmental hyperoxia. II. Role of the antennal gland in acid‐base and ion regulation. J. Exp. Biol. 143: 53–70, 1989.
 556. Wheelock, G. D., D. H. Petzel, J. D. Gillett, K. W. Beyenbach, and H. H. Hagedorn. Evidence for hormonal control of diuresis after a blood meal in the mosquito Aedes aegypti. Arch. Insect Biochem. Physiol. 7: 75–89, 1988.
 557. White, K. N. and G. Walker. The barnacle excretory organ. J. Marine Biol. Assoc. U.K. 61: 529–547, 1981.
 558. Whittembury, G., A. C. Biondi, A. Paz‐Aliaga, H. Linares, V. Parthe and N. Linares. Transcellular and paracellular flow of water during secretion in the upper segment of the Malpighian tubule of Rhodnius prolixus: solvent drag of molecules of graded size. J. Exp. Biol. 123: 71–92, 1986.
 559. Wieczorek, H., M. Putzenlechner, W. Zeiske and U. Klein. A vacuolar‐type proton pump energizes K+/H+ antiport in an animal plasma membrane. J. Biol. Chem. 266: 15340–15347, 1991.
 560. Wieczorek, H., S. Weerth, M. Schindlbeck and U. Klein. A vacuolar‐type proton pump in a vesicle fraction enriched with potassium transporting plasma membranes from tobacco horn‐worm midgut. J. Biol. Chem. 264: 11, 143–11148, 1989.
 561. Wieser, W. A glutaminase in the body wall of terrestrial isopods. Nature 239: 288–290, 1972.
 562. Wieser, W. The flow of copper through a terrestrial food web. In: Copper in the Environment, edited by J. O. Nriagu. New York: Wiley, 1979, pt. 1, p. 326–355.
 563. Wieser, W., G. Schweizer and R. Hartenstein. Patterns in the release of gaseous ammonia by terrestrial isopods. Oecologia 3: 390–400, 1969.
 564. Wigglesworth, V. B. The physiology of excretion in a bloodsucking insect, Rhodnius prolixus. J. Exp. Biol. 8: 411–451, 1931.
 565. Wigglesworth, V. B. The Principles of Insect Physiology (6th ed.). London: Methuen, 1965.
 566. Wigglesworth, V. B. Histochemical studies of uric acid in some insects. 1. Storage in the fat body of Periplaneta americana and the action of the symbiotic bacteria. Tissue Cell 19: 83–91, 1987.
 567. Wigglesworth, V. B. Histochemical studies of uric acid in some insects. 2. Uric acid and polyphenols in the fat body. Tissue Cell 19: 93–100, 1987.
 568. Wigglesworth, V. B. Histochemical studies of uric acid in some insects. 3. Excretion of uric acid by the Malpighian tubules in Calliphora vicina and Rhodnius prolixus. Tissue Cell 19: 275–286, 1987.
 569. Williams, J. C. Jr. Simple, transepithelial osmosis as a mechanism of water transport in insect malpighian tubules. Am. Zool. 26: A32, 1986.
 570. Williams, J. C., Jr., and K. W. Beyenbach. Differential effects of secretagogues on Na and K Secretion in the Malpighian tubules of Aedes aegypti (L.). J. Comp. Physiol. 149: 511–517, 1983.
 571. Wilson, R. A., and L. A. Webster. Protonephridia. Biol. Rev. 49: 127–160, 1974.
 572. Withers, P. C. Comparative Animal Physiology Philadelphia: Saunders, 1992.
 573. Wolcott, T. G., and D. L. Wolcott. Extrarenal modification of urine for ion conservation in ghost crabs, Ocypode quadrata (Fabricius). J. Exp. Marine Biol. Ecol. 91: 93–107, 1985.
 574. Wolff, N. A., R. M. Philpot, D. S. Miller, and J. B. Pritchard. Functional expression of renal organic anion transport in Xenopus laevis oocytes. Mol. Cell. Biochem. 114: 35–41, 1992.
 575. Wolmarans, C. T., L. J. Mienie and E. Erasmus. The organic acid content of the haemolymph and excretion products of five freshwater snail species. Comp. Biochem. Physiol. A 86: 777–784, 1987.
 576. Wood, C. M., and R. G. Boutilier. Osmoregulation, ionic exchange, blood chemistry, and nitrogenous waste excretion in the land crab Cardisoma carnifex: a field and laboratory study. Biol. Bull. 169: 267–290, 1985.
 577. Wood, C. M., R. G. Boutilier, and D. J. Randall. The physiology of dehydration stress in the land crab, Cardisoma carnifex: respiration, ionoregulation, acid‐base balance and nitrogenous waste excretion. J. Exp. Biol. 126: 271–296, 1986.
 578. Wright, D. A. Calcium balance in premoult and post‐moult Gammarus pulex (Amphipoda). Freshwater Biol. 10: 571–579, 1980.
 579. Wright, J. C., S. Caveney, M. J. O'Donnell and J. Reichert. Increases in tissue amino acid levels in response to ammonia stress in the terrestrial isopod Porcellio scaber Latr. J. Exp. Zool. 274: 265–274, 1996.
 580. Wright, J. C. and J. Machin. Energy‐dependent water vapor absorption (WVA) in the pleoventral cavity of terrestrial isopods (Crustacea, lsopoda, Oniscidea): evidence for pressure cycling as a supplement to the colligative uptake mechanism. Physiol. Zool. 66: 193–215, 1993.
 581. Wright, J. C., and M. J. O'Donnell. Osmolality and electrolyte composition of pleon fluid in Porcellio scaber (Crustacea, lsopoda, Oniscidea): implications for water vapour absorption. J. Exp. Biol. 164: 189–203, 1992.
 582. Wright, J. C., and M. J. O'Donnell. Total ammonia concentration and pH of haemolymph, pleon fluid and maxillary urine in Porcellio scaber Lattreille (lsopoda, Oniscidea): relationships to ambient humidity and water vapour uptakes. J. Exp. Biol. 176: 223–246, 1993.
 583. Wright, J. C., M. J. O'Donnell and J. Reichert. Effects of ammonia loading on Porcellio scaber Latr.: glutamine and glutamate synthesis, ammonia excretion and toxicity. J. Exp. Biol. 188: 143–157, 1994.
 584. Wright, K. A. Structure of the bacillary band of Trichuris myocastris. J. Parasitol. 54: 1106–1110, 1968.
 585. Yancey, P. H., M. E. Clark, S. C. Hand, R. D. Bowlus, and G. N. Somero. Living with water stress: evolution of osmolyte systems. Science 217: 1214–1222, 1982.
 586. Yokota, S. D., and V. H. Shoemaker. Xanthine excretion in a desert scorpion, Paruroctonus mesaensis. J. Comp. Physiol. 142: 423–428, 1981.
 587. Zebe, E., U. Salge, C. Wiemann and H. Wilps. The energy metabolism of the leech Hirudo medicinalis in anoxia and muscular work. J. Exp. Zool. 218: 157–163, 1981.
 588. Zerbst‐Boroffka, I. Homeostatic function of integument and nephridia in annelids. In: Osmoregulation in Estuarine and Marine Animals, edited by A. Pequeux, R. Gilles, and L. Bolis. New York: Springer‐Verlag, 1984, p. 4–15.
 589. Zerbst‐Boroffka, I. and A. Wenning. Mechanisms of regulatory salt and water excretion in the leech, Hirudo medicinalis L. Zool. Beitr. N. F. 30: 359–379, 1986.
 590. Zerbst‐Boroffka, I., A. Wenning and B. Bazin. Primary urine formation during diuresis in the leech, Hirudo medicinalis L. J. Comp. Physiol. 146: 75–79, 1982.
 591. Zilberstein, D., and D. M. Dwyer. Proton motive force‐driven active transport of d‐glucose and l‐proline in the protozoan parasite Leishmania donovani. Proc. Natl. Acad. Sci. U.S.A. 82: 1716–1720, 1985.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

M. J. O'Donnell. Mechanisms of Excretion and Ion Transport in Invertebrates. Compr Physiol 2011, Supplement 30: Handbook of Physiology, Comparative Physiology: 1207-1289. First published in print 1997. doi: 10.1002/cphy.cp130217