Comprehensive Physiology Wiley Online Library

Anhydrobiosis: Cellular Adaptation to Extreme Dehydration

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Induction of Anhydrobiosis
2 Biochemical Adaptations in Anhydrobiotes
2.1 Accumulation of Sugars by Anhydrobiotes
2.2 Sugars and the Wafer Replacement Hypothesis
2.3 Other Organic Compounds in Anhydrobiotic Plants
3 Sugars Stabilize Dry Proteins
3.1 Stabilization of Dried Proteins
3.2 Evidence for Direct Interaction between Sugars and Dry Proteins
3.3 Freezing Proteins
3.4 Preferential Interaction Mechanism and Cryoprotection of Proteins
4 Are Freezing and Dehydration Equivalent Stress Vectors?
5 Physical Properties of Phospholipids and Consequences of Dehydration
5.1 The Hydration Force
5.2 Effects of Water on the Physical Properties of Phospholipids
5.3 Physiological Consequences of Dehydration
6 Stabilization of Dry Liposomes
6.1 Retention of Trapped Solutes
6.2 Is the Bulk Concentration of Trehalose Important for Preservation?
6.3 Effects of Other Sugars
6.4 Mechanism of Stabilization of Dry Bilayers
6.5 Sugars and Lipid Phase Transitions
6.6 A Corollary to the Phase Transition Model
6.7 Effects of Trehalose on Phase Transitions in Dry DPPC
7 Mechanism of Interactions Between Sugars and Phospholipids
7.1 Evidence for Direct Interaction
7.2 When During the Drying Process Does Direct Interaction Occur?
8 Vitrification: An Alternative to the Water Replacement Hypothesis?
9 Extension of the Phase Transition Hypothesis to Native Membranes
10 Extension of the Phase Transition Hypothesis to Intact Cells
10.1 Effects on Phase Transitions in Intact Cells
10.2 The Phenomenon of Imbibitional Damage
10.3 Escape from Imbibitional Damage
10.4 Effects of Temperature on Leakage
10.5 What Is the Mechanism of Leakage?
10.6 Evidence for Gel‐to‐Liquid Crystalline Phase Transitions During Imbibition
10.7 Imbibition, Lipid Phase Transitions, and Germination
10.8 A Hydration‐Dependent Phase Diagram for Dry Cells
10.9 General Applicability of FTIR for Studies on Anhydrobiotes
10.10 Depression of Tm in Dry Pollen
10.11 Lipid Phase Transitions and Imbibitional Leakage in Dry Yeast
11 Toward a Mechanism for Stabilizing Dry Cells
11.1 Potential Routes for the Introduction of Trehalose into Cells
11.2 Studies on Genetics of Trehalose Synthesis
11.3 Survival of Drying by Mutants
11.4 A Transport System for Trehalose in Yeasts
11.5 Conditions for Expression of the Trehalose Transporter
11.6 Prospectus for Stabilizing Dry Cells
12 Are Additional Adaptations Required in Anhydrobiosis?
12.1 Studies on Nematodes
12.2 Studies on Pollen
12.3 Mechanism of Destabilization of Membranes by Fatty Acids
12.4 Generation of Free Fatty Acids in Dry Bilayers: Oxidation
12.5 Enzymatic Deesterification of Fatty Acids: Lipases
12.6 Is PLA2 Active in Dry Bilayers?
12.7 Inhibition of PLA2
13 Summary of Adaptations to Dehydration: Is Trehalose Sufficient?
Figure 1. Figure 1.

Chemical structures of some molecules accumulated at high concentrations by anhydrobiotic organisms.

Figure 2. Figure 2.

Comparison of abilities of various sugars to stabilize phosphofructokinase during freeze‐drying.

Data from
Figure 3. Figure 3.

Infrared spectra of trehalose in the fingerprint region for sugars. Trehalose freeze‐dried alone (A), freeze‐dried in the presence of lysozyme (B) or bovine serum albumin (C), or hydrated (D).

Data from
Figure 4. Figure 4.

Amide band region for hydrated lysozyme (dotted line), lysozyme freeze‐dried alone (dashed line), and lysozyme freeze‐dried in the presence of trehalose (solid line).

Data from
Figure 5. Figure 5.

A. Effects of trehalose on wave number for the amide II band of freeze‐dried lysozyme. B.Comparison of the recovery of phosphofructokinase activity after freeze‐thawing (triangles) or freeze‐drying and rehydration (circles).

Data from
Figure 6. Figure 6.

Left: Second derivative infrared spectra in the amide I region of a hydrated (upper) and a dry (lower) protein, basic fibroblast growth factor (bFGF). Right: Second derivative spectrum of bFGF freeze‐dried in the presence of 200 mg/ml sucrose.

Data from
Figure 7. Figure 7.

Leakage of carboxyfluorescein from vesicles of dimyristoylphosphatidylcholine as they are heated through phase transition.

Data from
Figure 8. Figure 8.

Retention of trapped solutes by liposomes that had previously been freeze‐dried in the presence of the indicated amounts of trehalose.

Data from
Figure 9. Figure 9.

Comparison of the abilities of various sugars to prevent leakage of trapped solutes from liposomes during drying.

Data from
Figure 10. Figure 10.

Residual water content in liposomes freeze‐dried in the presence of trehalose. Also shown are data for retention of trapped solutes by the same liposomes.

Data from
Figure 11. Figure 11.

Effects of various sugars on fusion between liposomes during drying.

Data from
Figure 12. Figure 12.

Effects of trehalose on calorimetric transitions in liposomes. Also shown are data for retention of trapped solutes by the same liposomes.

Data from
Figure 13. Figure 13.

Model for mechanism of stabilization of dry liposomes by trehalose.

Figure 14. Figure 14.

Effects of incubating frozen liposomes above and below on retention of trapped solutes. After incubation at indicated temperatures, liposomes were freeze‐dried and rehydrated and retention was measured.

Figure 15. Figure 15.

Retention of trapped solutes by liposomes freeze‐dried with trehalose alone, dextran alone, or mixtures of trehalose and dextran. Amount of trehalose is indicated on abscissa, with amount of dextran written on each curve.

Figure 16. Figure 16.

Typical infrared spectra in CH2 stretching region, illustrating change in frequency with temperature. Spectra are for intact bacteria (Escherichia coli). Similar spectra have been obtained with pure phospholipids, isolated membranes, and a wide variety of intact cells .

Figure 17. Figure 17.

Wave number of CH2 stretch in intact Escherichia coli under indicated conditions.

Figure 18. Figure 18.

Relationship between temperature of imbibition and survival of rehydration in pollen grains and vibrational frequency of membrane phospholipids. Open circles, wave numbers for samples containing 0.36 g H2O/g dry weight; closed circles, wave numbers for samples containing 0.06 g H2O/g dry weight; triangles, germination following rehydration at indicated temperatures. In samples containing 0.36 g/g, viability approached 100% when pollen grains were placed in H2O at 4°C.

Data from
Figure 19. Figure 19.

Phase diagram for membrane phospholipids in pollen, showing effects of hydration on Tm (open circles) and similar data for germination (closed squares). Data were extracted from plots similar to those shown in Figure. .

Data from
Figure 20. Figure 20.

Biosynthetic pathway for trehalose.

Figure 21. Figure 21.

Effects of phospholipase A2 on stability of dry liposomes.



Figure 1.

Chemical structures of some molecules accumulated at high concentrations by anhydrobiotic organisms.



Figure 2.

Comparison of abilities of various sugars to stabilize phosphofructokinase during freeze‐drying.

Data from


Figure 3.

Infrared spectra of trehalose in the fingerprint region for sugars. Trehalose freeze‐dried alone (A), freeze‐dried in the presence of lysozyme (B) or bovine serum albumin (C), or hydrated (D).

Data from


Figure 4.

Amide band region for hydrated lysozyme (dotted line), lysozyme freeze‐dried alone (dashed line), and lysozyme freeze‐dried in the presence of trehalose (solid line).

Data from


Figure 5.

A. Effects of trehalose on wave number for the amide II band of freeze‐dried lysozyme. B.Comparison of the recovery of phosphofructokinase activity after freeze‐thawing (triangles) or freeze‐drying and rehydration (circles).

Data from


Figure 6.

Left: Second derivative infrared spectra in the amide I region of a hydrated (upper) and a dry (lower) protein, basic fibroblast growth factor (bFGF). Right: Second derivative spectrum of bFGF freeze‐dried in the presence of 200 mg/ml sucrose.

Data from


Figure 7.

Leakage of carboxyfluorescein from vesicles of dimyristoylphosphatidylcholine as they are heated through phase transition.

Data from


Figure 8.

Retention of trapped solutes by liposomes that had previously been freeze‐dried in the presence of the indicated amounts of trehalose.

Data from


Figure 9.

Comparison of the abilities of various sugars to prevent leakage of trapped solutes from liposomes during drying.

Data from


Figure 10.

Residual water content in liposomes freeze‐dried in the presence of trehalose. Also shown are data for retention of trapped solutes by the same liposomes.

Data from


Figure 11.

Effects of various sugars on fusion between liposomes during drying.

Data from


Figure 12.

Effects of trehalose on calorimetric transitions in liposomes. Also shown are data for retention of trapped solutes by the same liposomes.

Data from


Figure 13.

Model for mechanism of stabilization of dry liposomes by trehalose.



Figure 14.

Effects of incubating frozen liposomes above and below on retention of trapped solutes. After incubation at indicated temperatures, liposomes were freeze‐dried and rehydrated and retention was measured.



Figure 15.

Retention of trapped solutes by liposomes freeze‐dried with trehalose alone, dextran alone, or mixtures of trehalose and dextran. Amount of trehalose is indicated on abscissa, with amount of dextran written on each curve.



Figure 16.

Typical infrared spectra in CH2 stretching region, illustrating change in frequency with temperature. Spectra are for intact bacteria (Escherichia coli). Similar spectra have been obtained with pure phospholipids, isolated membranes, and a wide variety of intact cells .



Figure 17.

Wave number of CH2 stretch in intact Escherichia coli under indicated conditions.



Figure 18.

Relationship between temperature of imbibition and survival of rehydration in pollen grains and vibrational frequency of membrane phospholipids. Open circles, wave numbers for samples containing 0.36 g H2O/g dry weight; closed circles, wave numbers for samples containing 0.06 g H2O/g dry weight; triangles, germination following rehydration at indicated temperatures. In samples containing 0.36 g/g, viability approached 100% when pollen grains were placed in H2O at 4°C.

Data from


Figure 19.

Phase diagram for membrane phospholipids in pollen, showing effects of hydration on Tm (open circles) and similar data for germination (closed squares). Data were extracted from plots similar to those shown in Figure. .

Data from


Figure 20.

Biosynthetic pathway for trehalose.



Figure 21.

Effects of phospholipase A2 on stability of dry liposomes.

References
 1. Anandarajah, K., and B. D. Mckersie. Enhanced vigor of dry somatic embryos of Medicago sativa L. with increased sucrose. Plant Sci. 71: 261–266, 1990.
 2. Anandarajah, K., and B. D. Mckersie. Manipulating the desiccation tolerance and vigor of dry somatic embryos of Medicago sativa L. with sucrose, heat shock and abscisic acid. Plant Cell Rep. 9: 451–455, 1990.
 3. Anchordoguy, T. J., J. F. Carpenter, C. A. Cecchini, J. H. Crowe, and L. M. Crowe. Effects of protein perturbants on phospholipid bilayers. Arch. Biochem. Biophys. 283: 356–361, 1990.
 4. Anchordoguy, T. J., J. F. Carpenter, J. H. Crowe, and L. M. Crowe. Temperature dependent perturbation of phospholipid bilayers by dimethylsulfoxide. Biochim. Biophys. Acta 1104: 117–122, 1992.
 5. Anchordoguy, T. J., C. A. Cecchini, J. H. Crowe, and L. M. Crowe. Insights into the cryoprotective mechanism of dimethylsulfoxide for phospholipid bilayers. Cryobiology 28: 467–473, 1990.
 6. Arakawa, T., R. Bhat, and S. N. Timasheff. Why preferential hydration does not always stabilize the native structure on globular proteins. Biochemistry 29: 1924–1931, 1990.
 7. Arakawa, T., J. F. Carpenter, Y. A. Kita, and J. H. Crowe. The basis for toxicity of certain cryoprotectants: a hypothesis. Cryobiology 27: 410–415, 1989.
 8. Arakawa, T., Y. Kita, and J. F. Carpenter. Protein solvent interactions in pharmaceutical formulations. Pharm. Res. 8: 285–291, 1991.
 9. Arakawa, T., S. J. Prestrelski, W. C. Kenney, and J. F. Carpenter. Factors affecting short‐term and long‐term stabilities of proteins. Adv. Drug Delivery Rev. 1021–1028, 1993.
 10. Arakawa, T., and S. N. Timasheff. Preferential interactions of proteins with salts in concentrated solutions. Biochemistry 21: 6545–6552, 1982.
 11. Arakawa, T., and S. N. Timasheff. Protein stabilization and destabilization by guanidinium salts. Biochemistry 23: 5924–5929, 1984.
 12. Araujo, P. S., A. C. Panek, J. H. Crowe, L. M. Crowe, and A. D. Panek. Trehalose‐transporting membrane vesicles from yeasts. Biochem. Int. 24: 731–737, 1991.
 13. Bartels, D., K. Schneider, G. Terstappen, D. Piatkowski and F. Salamni. Molecular cloning of abscisic acid modulated genes which are induced during desiccation of the resurrection plant Craterostigma plantagineum. Planta 181: 27–34, 1990.
 14. Beker, M. J., J. E. Blumbergs, E. J. Ventina, and A. I. Rapoport. Characteristics of cellular membranes at rehydration of dehydrated yeast Saccharomyces cerevisiae. Eur. J. Appl. Microbiol. Biotechnol. 19: 347–352, 1984.
 15. Beker, M. J., and A. I. Rapoport. Conservation of yeasts by dehydration. Adv. Biochem. Eng. Biotech. 35: 128–171, 1987.
 16. Bell, J. D. and R. Biltonen. Activation of phospholipase A2 on lipid bilayers. J. Biol. Chem. 264: 12225–12230, 1989.
 17. Bell, J. D. and R. Biltonen. Molecular details of the activation of soluble phospholipase A2 on lipid bilayers. Comparison of computer simulations with experimental results. J. Biol. Chem. 264: 12194–12200, 1989.
 18. Bell, J. D., and R. L. Biltonen. Activation of phospholipase A2 on lipid bilayers. Methods Enzymol. 197: 249–258, 1991.
 19. Bhandal, I. S., R. M. Hauptmann, and J. M. Widholm. Trehalose as cryoprotectant for the freeze preservation of carrot and tobacco cells. Plant Physiol. 78: 430–432, 1985.
 20. Bianchi, G., A. Gamba, C. Murelli, F. Salamni and D. Bartels. Novel carbohydrate metabolism in the resurrection plant Craterostigma plantagineum. Plant J. 1: 355–359, 1991.
 21. Bianco, I. D., G. D. Fidelio and B. Maggio. Modulation of phospholipase A2 activity by neutral and anionic glycosphingolipids in monolayers. Biochem. J. 258: 95–99, 1989.
 22. Biltonen, R. L., T. R. Heimburg, B. K. Lathrop, and J. D. Bell. Molecular aspects of phospholipase A2 activation. Adv. Exp. Med. Biol. 279: 85–103, 1990.
 23. Biltonen, R. L., B. K. Lathrop, and J. D. Bell. Thermodynamics of phospholipase A2—ligand interactions. Methods Enzymol. 197: 234–248, 1991.
 24. Blank, M. L. and F. Snyder. Chromatographic analysis of phospholipase reaction products. Methods Enzymol. 197: 158–165, 1991.
 25. Blok, M. C., E.C.M. van der Neut‐Kok, L.L. M. Van Deenen, and J. De Gier. The effect of chain length and lipid phase transitions on the selective permeability properties of liposomes. Biochim. Biophys. Acta 406: 187–196, 1975.
 26. Bohn, E., V. Gerke, H. Kresse, B.‐M. Loffler and H. Kunze. Annexin II inhibits calcium‐dependent phospholipase A1 and lysophospholipase but not triacyl glycerol lipase activities of rat liver hepatic lipase. FEBS Lett. 296: 237–240, 1992.
 27. Borelli, M. I., M. C. Semino, and R. E. Hernandez. Cryopreservation of islets of Langerhans: the use of trehalose as a cryoprotective agent. Med. Sci. Res. 15: 299–300, 1987.
 28. Bramlage, W. J., A. C. Leopold, and D. J. Parrish. Chilling stress to soybeans during imbibition. Plant Physiol. 61: 525–529, 1978.
 29. Brana, A. F., C. Mendez, L. A. Diaz, M. B. Manzanal and C. Hardisson. Glycogen and trehalose accumulation during colony development in Streptomyces antibioticus. J. Gen. Microbiol. 132: 1319–1326, 1986.
 30. Bruni, F., and A. C. Leopold. Glass transition in soybean seed. Relevance to anhydrous biology. Plant Physiol. 96: 660–663, 1991.
 31. Burke, M. J. The glassy state and survival of anhydrous biological systems. In: Membranes, Metabolism, and Dry Organisms, edited by A. C. Leopold. Ithaca, NY: Cornell Univ. Press, 1986, p. 358–363.
 32. Caffrey, M., V. Fonseca, and A. C. Leopold. Lipid–sugar interactions. Plant Physiol. 86: 754–758, 1988.
 33. Cameron, D. G., A. Martin, and H. H. Mantsch. Membrane isolation alters the gel to liquid crystal transition of Acholeplasma laidlawii B. Science 219: 180–182, 1983.
 34. Carpenter, J. F., and J. H. Crowe. Modes of stabilization of a protein by organic solutes during desiccation. Cryobiology 25: 459–470, 1988.
 35. Carpenter, J. F., and J. H. Crowe. The mechanisms of cryoprotection of proteins by solutes. Cryobiology 25: 244–255, 1988.
 36. Carpenter, J. F., and J. H. Crowe. An infrared spectroscopic study of the interactions of carbohydrates with dried proteins. Biochemistry 8: 3916–3922, 1989.
 37. Carpenter, J. F., L. M. Crowe, and J. H. Crowe. Stabilization of phosphofructokinase with sugars during freeze‐drying: characterization of enhanced protection in the presence of divalent cations. Biochim. Biophys. Acta 923: 109–115, 1987.
 38. Carpenter, J. F., S. C. Hand, L. M. Crowe, and J. H. Crowe. Cryoprotection of phosphofructokinase with organic solutes: characterization of enhanced protection in the presence of divalent cations. Arch. Biochem. Biophys. 250: 505–512, 1986.
 39. Carpenter, J. F., B. Martin, L. M. Crowe, and J. H. Crowe. Stabilization of phosphofructokinase during air‐drying with sugars and sugar/transition metal mixtures. Cryobiology 24: 455–464, 1987.
 40. Number not used.
 41. Carpenter, J. F., S. J. Prestrelski and T. Arakawa. Separation of freezing‐ and drying‐induced denaturation of lyophilized proteins using stress‐specific stabilization: 1) Enzyme activity and calorimetric studies. Arch. Biochem. Biophys. 303: 456–464, 1995.
 42. Chandrasekhar, I., and B. P. Gaber. Stabilization of the bio‐membrane by small molecules: interaction of trehalose with the phospholipid bilayer. J. Biomol. Struct. Dyn. 5: 1163–1171, 1988.
 43. Chapman, D., R. M. Williams, and B. D. Ladbrooke. Physical studies of phospholipids. VI. Thermotropic and lyotropic mesomorphism of some 1,2‐diacyl‐phosphatidylcholines (lecithins). Biochim. Biophys. Acta 1: 445–475, 1967.
 44. Clegg, J. S. Properties and metabolism of the aqueous cytoplasm and its boundaries. Am. J. Physiol. 246 (Regulatory Integrative Comp. Physiol. 17): R133–R151, 1984.
 45. Clegg, J. S. The physical properties of Artemia cysts at low water contents: the water replacement hypothesis. In: Membranes, Metabolism, and Dry Organisms, edited by A. C. Leopold. Ithaca, NY: Cornell Univ. Press, 1984, p. 169–187.
 46. Clegg, J. S., and W. Drost‐Hansen. On the biochemistry and cell physiology of water. In: Biochemistry and Molecular Biology of Pishes, edited by P. Hochachka and E. Mommsen. Amsterdam: Elsevier, 1991, vol. 1, p. 1–23.
 47. Coolbear, P., A. Francis and D. Grierson. The effect of low temperature pre‐sowing treatment on the germination performance and membrane integrity of artificially aged tomato seeds. J. Exp. Bot. 35: 1609–1617, 1984.
 48. Cotterill, L. A., J. D. Gower, B. J. Fuller, and C. J. Green. Evidence that calcium mediates free radical damage through activation of phospholipase A2 during cold storage of the rabbit kidney. Adv. Exp. Med. Biol. 264: 397–400, 1990.
 49. Coutinho, C., E. Bernardes, D. Felix, and A. D. Panek. Trehalose as cryoprotectant for preservation of yeast strains. J. Biotech. 7: 23–32, 1988.
 50. Crowe, J. H. Evaporative water loss by tardigrades under controlled relative humidities. Biol. Bull. 142: 407–416, 1972.
 51. Crowe, J. H., J. F. Carpenter, L. M. Crowe, and T. J. Anchordoguy. Are freezing and dehydration similar stress vectors? A comparison of modes of interaction of stabilizing solutes with biomolecules. Cryobiology 27: 219–231, 1990.
 52. Crowe, J. H., and L. M. Crowe. Factors affecting the stability of dry liposomes. Biochim. Biophys. Acta 939: 327–334, 1988.
 53. Crowe, J. H., and L. M. Crowe. Lyotropic effects of water on phospholipids. In: Water Science Reviews, edited by F. Franks. Cambridge: Cambridge Univ. Press, 1990, vol. 5, p. 1–23.
 54. Crowe, J. H., and L. M. Crowe. Preservation of liposomes by freeze drying. In: Liposome Technology, edited by G. Gregoriadis. Boca Raton, FL: CRC Press, p. 229–252, 1993.
 55. Crowe, J. H., L. M. Crowe, J. F. Carpenter, and C. Aurell Wistrom. Stabilization of dry phospholipid bilayers and proteins by sugars. Biochem. J. 242: 1–10, 1987.
 56. Crowe, J. H., L. M. Crowe, J. F. Carpenter, A. S. Rudolph, C. Aurell Wistrom, B. J. Spargo, and T. J. Anchordoguy. Interactions of sugars with membranes. Biochim. Biophys. Acta 947: 367–384, 1988.
 57. Crowe, J. H., L. M. Crowe and D. Chapman. Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science 223: 701–703, 1984.
 58. Crowe, J. H., L. M. Crowe, and F. A. Hoekstra. Phase transitions and permeability changes in dry membranes during rehydration. J. Bioenerg. Biomembr. 21: 77–91, 1989.
 59. Crowe, J. H., L. M. Crowe, and S. A. Jackson. Preservation of structural and functional activity in lyophilized sarcoplasmic reticulum. Arch. Biochem. Biophys. 220: 477–484, 1983.
 60. Crowe, J. H., F. A. Hoekstra, and L. M. Crowe. Membrane phase transitions are responsible for imbibitional damage in dry pollen. Proc. Natl. Acad. Sci. U.S.A. 86: 520–523, 1989.
 61. Crowe, J. H., F. A. Hoekstra, and L. M. Crowe. Anhydrobiosis. Annu. Rev. Physiol. 54: 579–599, 1992.
 62. Crowe, J. H., F. A. Hoekstra, L. M. Crowe, T. J. Anchordoguy and E. Drobnis. Lipid phase transitions measured in intact cells with Fourier transform infrared spectroscopy. Cryobiology 26: 76–84, 1989.
 63. Crowe, J. H., and K. A. C. Madin. Anhydrobiosis in nematodes: evaporative water loss and survival. J. Exp. Zool. 193: 323–334, 1975.
 64. Crowe, J. H., B. D. Mckersie, and L. M. Crowe. Effects of free fatty acids and transition temperature on the stability of dry liposomes. Biochim. Biophys. Acta 979: 7–10, 1989.
 65. Crowe, J. H., A. D. Panek, L. M. Crowe, A. C. Panek, and P. S. Araujo. Trehalose transport in yeast cells. Biochem. Int. 24: 721–730, 1991.
 66. Crowe, J. H., B. J. Spargo, and L. M. Crowe. Preservation of dry liposomes does not require retention of residual water. Proc. Natl. Acad. Sci. U.S.A. 84: 1537–1540, 1987.
 67. Crowe, L. M., and J. H. Crowe. Trehalose and dry dipalmitoylphosphatidylcholine revisited. Biochim. Biophys. Acta 946: 193–201, 1988.
 68. Crowe, L. M., J. H. Crowe and D. Chapman. Interaction of carbohydrates with dry dipalmitoylphosphatidylcholine. Arch. Biochem. Biophys. 236: 289–296, 1985.
 69. Crowe, L. M., J. H. Crowe, A. Rudolph, C. Womersley and L. Appel. Preservation of freeze‐dried liposomes by trehalose. Arch. Biochem. Biophys. 242: 240–247, 1985.
 70. Crowe, L. M., C. Womersley, J. H. Crowe, D. Reid, L. Appel and A. Rudolph. Prevention of fusion and leakage in freeze‐dried liposomes by carbohydrates. Biochim. Biophys. Acta 861: 131–140, 1986.
 71. Darbyshire, B. The function of the carbohydrate units of three fungal enzymes in their resistance to dehydration. Plant Physiol. 54: 717–721, 1974.
 72. De Haas, G. H., R. Dijkman, S. Ransac and R. Verger. Competitive inhibition of lipolytic enzymes. Biochim. Biophys. Acta 1046: 249–257, 1990.
 73. De Haas, G. H., R. Dijkman, M. G. Van Oort and R. Verger. Competitive inhibition of lipolytic enzymes. III. Some acylamino analogues of phospholipids are potent competitive inhibitors of porcine pancreatic phospholipase A2. Biochim. Biophys. Acta 1043: 75–82, 1990.
 74. De Haas, G. H., M. G. Van Oort, R. Dijkman and R. Verger. Competitive inhibition of lipolytic enzymes. IV. Structural details of acylamino phospholipid analogues important for the potent inhibitory effects on pancreatic phospholipase A2. Biochem. Soc. Trans. 17: 274–276, 1989.
 75. Dennis, E. A. (Ed). Phospholipases. Methods Enzymol. 197: 1–640, 1991.
 76. De Virgilio, C., U. Simmen, T. Hottiger, T. Boiler and A. Wiemken. Heat shock induces enzymes of trehalose metabolism, trehalose accumulation, and thermotolerance in Schizosaccharomyces pombe, even in the presence of cycloheximide. FEBS Lett. 273: 107–110, 1990.
 77. Diccianni, M. B., M. Lilly‐Stauderman, L. R. McLean, A. Balasubramaniam, and J. A. Harmony. Inhibition of phospholipase A2 by heparin. Biochemistry 30: 9090–9097, 1991.
 78. Diccianni, M. B., M. J. Mistry, K. Hug, and J. A. Harmony. Heparin prevents the binding of phospholipase A2 to phospholipid micelles: importance of the amino‐terminus. Biochim. Biophys. Acta 1046: 242–248, 1990.
 79. Di Nola, L., and A. M. Mayer. Effect of temperature of imbibition on phospholipid metabolism in pea embryonic axes. Phytochemistry 24: 2549–2554, 1985.
 80. Dijkman, R., N. Dekker, and G. H. De Haas. Competitive inhibition of lipolytic enzymes. II. Preparation of “monoacylamino” phospholipids. Biochim. Biophys. Acta 1043: 67–74, 1990.
 81. Fishbein, W. N., and J. W. Winkert. Parameters of freezing damage to enzymes. In: Proteins at Low Temperature, edited by O. Fennema, Washington, DC: Am. Chem. Soc., 1979, p. 55–82.
 82. Fortes‐Dias, C. L., B.C.B. Fonseca, E. Kochva, and C. R. Diniz. Purification and properties of an antivenom factor from the plasma of the South American rattlesnake (Crotalus durissus terrificus). Toxicon 29: 997–1008, 1991.
 83. Franks, F., R.H.M. Hatley, and S. F. Mathias. Materials science and production of shelf‐stable biologicals. BioPharm 4: 38–42, 1991.
 84. Gadd, G. M., K. Chalmers, and R. H. Reed. The role of trehalose in dehydration resistance of Saccharomyces cerevisiae. FEMS Microbiol. Lett. 48: 249–254, 1987.
 85. Ghomashchi, F., B. Z. Yu, E. D. Mihelich, M. K. Jain, and M. H. Gelb. Kinetic characterization of phospholipase A2 modified by manoalogue. Biochemistry 30: 9559–9569, 1991.
 86. Goodrich, R. P., J. H. Crowe, L. M. Crowe, and J. D. Baldeschwieler. Alteration in membrane surfaces induced by attachment of carbohydrates. Biochemistry 30: 2313–2318, 1991.
 87. Green, J. L., and C. A. Angell. Phase relations and vitrification in saccharide‐water solutions and the trehalose anomaly. J. Phys. Chem. 93: 2880–2882, 1989.
 88. Greiner, J. V., S. K. Medcalf, P. Meneses and T. Glonek. Trehalose maintenance of the metabolic health of the crystalline lens during severe temperature stress. Invest. Opthalmol. Vis. Sci. (Suppl.): 278–285, 1986.
 89. Hanafusa, N. Denaturation of enzyme protein by freeze‐thawing and freeze‐drying. In: Freezing and Drying of Microorganisms, edited by N. Tokio. Baltimore, MD: Univ. Park, 1969, p. 117–129.
 90. Hand, S. C. Metabolic dormancy in aquatic invertebrates. Adv. Comp. Environ. Physiol. 8: 1–50, 1991.
 91. Harrigan, P. R., T. D. Madden, and P. R. Cullis. Protection of liposomes during dehydration or freezing. Chem. Phys. Lipids 52: 139–149, 1990.
 92. Hashizume, T., H. Yamaguchi, T. Sato and T. Fujii. Suppressive effect of biscoclaurine alkaloids on agonist‐induced activation of phospholipase A2 in rabbit platelets. Biochem. Pharmacol. 41: 419–423, 1991.
 93. Hazel, J. R., E. E. Williams, R. Livermore and N. Mozingo. Thermal adaptation in biological membranes: functional significance of changes in phospholipid molecular species composition. Lipids 26: 277–282, 1991.
 94. Hellman, K., D. S. Miller, and R. A. Cammack. The effect of freeze‐drying on the quaternary structure of l‐aspariginase from Erwinia carotovora. Biochim. Biophys. Acta 649: 133–142, 1983.
 95. Hendricks, S. B., and R. B. Taylorson. Variation in germination and amino acid leakage of seeds with temperature related to membrane phase change. Plant Physiol. 58: 7–11, 1976.
 96. Hendricks, S. B., and R. B. Taylorson. Dependence of thermal responses of seeds on membrane transitions. Proc. Natl. Acad. Sci. U.S.A. 76: 778–781, 1979.
 97. Hincha, D. K. Low concentrations of trehalose protect isolated thylakoids against mechanical freeze‐thaw damage. Biochim. Biophys. Acta 987: 231–234, 1989.
 98. Hino, A., K. Mihara, K. Nakashima and H. Takano. Trehalose levels and survival ratio of freeze‐tolerant versus freeze‐sensitive yeasts. Appl. Environ. Microbiol. 56: 1386–1391, 1990.
 99. Hoekstra, F. A. Imbibitional chilling injury in pollen. Involvement of the respiratory chain. Plant Physiol. 74: 815–825, 1984.
 100. Hoekstra, F., A. L. M. Crowe, and J. H. Crowe. Differential desiccation sensitivity of corn and Pennisetum pollen linked to their sucrose contents. Plant Cell Environ. 12: 83–92, 1989.
 101. Hoekstra, F. A., J. H. Crowe, and L. M. Crowe. Effect of sucrose on phase behavior of membranes in intact pollen of Typha latifolia L., as measured with Fourier transform infrared spectroscopy. Plant Physiol. 97: 1073–1079, 1991.
 102. Hoekstra, F. A., J. H. Crowe, and L. M. Crowe. Germination and ion leakage are linked with phase transitions of membrane lipids during imbibition of Typha latifolia pollen. Physiol. Plant. 84: 29–34, 1992.
 103. Hoekstra, F. A., J. H. Crowe, L. M. Crowe, T. Van Roekel and E. Vermeer. Do phospholipids and sucrose determine membrane phase transitions in dehydrating pollen species? Plant Cell Environ. 15: 601–606, 1992.
 104. Hoekstra, F. A., and B. D. Mckersie. Differential longevity of pollen linked to lipid composition. Physiol. Plant. 79: A106, 1990.
 105. Hoekstra, F. A., and E. W. van der Wal. Initial moisture content and temperature of imbibition determine extent of imbibitional injury in pollen. J. Plant Physiol. 133: 257–262, 1988.
 106. Hoekstra, F. A., and T. van Roekel. Desiccation resistance of Papaver dubium L. pollen during its development in the anther. Possible roles of phospholipid composition and sucrose content. Plant Physiol. 88: 4–6, 1988.
 107. Hoekstra, F. A., T. Van Roekel, and N. Ten‐Pas. Pollen maturation and desiccation tolerance. In; (Ed.). Sexual Reproduction in Higher Plants, edited by M. Cresti, P. Gori, and E. Pacini. Berlin: Springer Verlag, 1988, p. 291–296.
 108. Hostetler, K. Y., M. F. Gardner, and K. A. Aldern. Assay of phospholipases C and D in presence of other lipid hydrolases. Methods Enzymol. 197: 125–134, 1991.
 109. Hottiger, T., T. Boiler and A. Wiemken. Rapid changes of heat and desiccation tolerance correlated with changes of trehalose content in Saccharomyces cerevisiae cells subjected to temperature shifts. FEBS Lett. 220: 113–115, 1987.
 110. Hottiger, T., T. Boiler and A. Wiemken. Correlation of trehalose content and heat resistance in yeast mutants altered in the RAS/adenylate cyclase pathway: is trehalose a thermoprotectant? FEBS Lett. 2: 431–434, 1989.
 111. Jain, M. K., and M. H. Gelb. Interfacial catalysis by phospholipase A2: dissociation constants for calcium, substrate, products, and competitive inhibitors. Methods Enzymol. 197: 112–125, 1991.
 112. Jain, M. K., B. Z. Yu, J. Rogers, G. N. Ranadive, and O. G. Berg. Interfacial catalysis by phospholipase A2: dissociation constants for calcium, substrate, products, and competitive inhibitors. Biochemistry 30: 7306–17, 1991.
 113. Keilin, D. The problem of anabiosis or latent life: history and current concept. Proc. R. Soc. Lond. B 150: 149–191, 1959.
 114. Koornneef, M., C. J. Hanhart, H.W.M. Hilhorst, and C. M. Karssen. In vivo inhibition of seed development and reserve protein accumulation in recombinants of abscisic acid biosynthesis and responsiveness mutants in Arabidopsis thaliana. Plant Physiol. 90: 463–469, 1989.
 115. Koster, K. L. Glass formation and desiccation tolerance in seeds. Plant Physiol. 96: 302–304, 1991.
 116. Koster, K. L., and A. C. Leopold. Sugars and desiccation tolerance in seeds. Plant Physiol. 88: 829–832, 1988.
 117. Labrude, P., V. Loppinet and C. Vigneron. Molecules protectrices de Phemoglobine au cours de la lyophilisation. Ann. Pharm. Fr. 34: 143–149, 1976.
 118. Lee, C.W.B., S. K. Das Gupta, J. Mattai, G. G. Shipley, O. H. Abdel‐Mageed, A. Makriyannis, and R. G. Griffin. Characterization of the lambda phase in trehalose‐stabilized dry membranes by solid‐state NMR and X‐ray diffraction. Biochemistry 28: 5000–5009, 1989.
 119. Lee, C.W.B., J. S. Waugh, and R. G. Griffin. Solid‐state NMR study of trehalose/1,2‐dipalmitoyl‐sn‐phosphatidylcholine interactions. Biochemistry 25: 3737–3742, 1986.
 120. Lee, J. C., K. Gekko, and S. N. Timasheff. Measurements of preferential solvent interactions by densimetric techniques. Methods Enzymol. 81: 26–49, 1979.
 121. Leopold, A. C. (Ed). Membranes, Metabolism, and Dry Organisms Ithaca, NY: Cornell Univ. Press, 1986.
 122. Levine, H. and L. Slade. A food polymer science approach to structure‐property relationships in aqueous food systems: non‐equilibrium behavior of carbohydrate‐water systems. Adv. Exp. Med. Biol. 302: 29–101, 1991.
 123. Levine, H. and L. Slade. In: Physical Chemistry of Foods, edited by H. Schwartzberg and R. W. Hatel. New York: Dekker, 1992, p. 83–221.
 124. Levitt, J. Responses of plants to environmental stresses. New York: Academic Press. 497 pp., 1980.
 125. Lynch, D. V., M. Caffrey, J. L. Hogan, and P. L. Steponkus. Calorimetric and x‐ray diffraction studies of rye glucocerebroside mesomorphism. Biophys. J. 61: 1289–1300, 1992.
 126. Mackenzie, K. F., K. K. Singh, and A. D. Brown. Water stress plating hypersensitivity of yeasts: protective role of trehalose in Saccharomyces cerevisiae. J. Gen. Microbiol. 134: 1661–1666, 1988.
 127. Madden, T. D., M. B. Bally, M. J. Hope, P. R. Cullis, H. P. Schieren, and A. S. Janoff. Protection of large unilamellar vesicles by trehalose during dehydration: retention of vesicle contents. Biochim. Biophys. Acta 817: 67–74, 1985.
 128. Madin, K.A.C., and J. H. Crowe. Anhydrobiosis in nematodes: carbohydrate and lipid metabolism during dehydration. J. Exp. Zool. 193: 335–342, 1975.
 129. Martin, M. C., L. A. Diaz, M. B. Manzanal and C. Hardisson. Role of trehalose in the spores of Streptomyces. FEMS Microbiol. Lett. 35: 49–54, 1986.
 130. Mckersie, B. D., F. A. Hoekstra, and L. C. Krieg. Differences in the susceptibility of plant membrane lipids to peroxidation. Biochim. Biophys. Acta 1030: 119–125, 1990.
 131. Morgan, N. G. Cell Signaling Oxford: Open Univ. Press, 1989.
 132. Mouradian, R., C. Womersley, L. M. Crowe, and J. H. Crowe. Preservation of functional integrity during long term storage of a biological membrane. Biochim. Biophys. Acta 778: 615–617, 1984.
 133. Mukherjee, A. B. (Ed). Biochemistry, Molecular Biology, and Physiology of Phospholipase A2 and Its Regulatory Factors New York: Plenum, 1990.
 134. Murphy, J. B., and T. L. Noland. Temperature effects on seed imbibition and leakage mediated by viscosity and membranes. Plant Physiol. 69: 428–431, 1982.
 135. Nicolaus, B., A. Gambacorta, A. L. Basso, R. Riccio, M. De Rosa, and W. D. Grant. Trehalose in Archaebacteria. System. Appl. Microbiol. 10: 215–217, 1988.
 136. Panek, A. D. Trehalose metabolism and its role in Saccharomyces cerevisiae. J. Biotech. 3: 121–130, 1985.
 137. Panek, A. D., and E. J. Bernardes. Trehalose: its role in germination of Saccharomyces cerevisiae. Curr. Genet. 7: 393–397, 1983.
 138. Pauls, K. P., and J. E. Thompson. In vitro simulation of senescence‐related membrane damage by ozone‐induced lipid peroxidation. Nature 283: 504–506, 1980.
 139. Pikal, M. J., K. M. Dellerman, M. L. Roy, and R. M. Riggin. The effects of formulation variables on the stability of freeze‐dried human growth hormone. Pharm. Res. 8: 427–436, 1991.
 140. Prakash, V., C. Loucheux Scheuffield, M. J. Gorbunoff, and S. N. Timasheff. Interactions of proteins with solvent components in 8 M urea. Arch. Biochem. Biophys. 210: 455–464, 1981.
 141. Prestrelski, S. J., T. Arakawa, and J. F. Carpenter. Separation of freezing‐ and drying‐induced denaturation of lyophilized proteins using stress‐specific stabilization: 2) structural studies using infrared spectroscopy. Arch. Biochem. Biophys. 303: 465–473, 1993.
 142. Prestrelski, S. J., N. Tedeschi, T. Arakawa, and J. F. Carpenter. Dehydration‐induced conformational transitions in proteins. Biophys. J. 65: 661–671.
 143. Quinn, P. J. A lipid‐phase separation model of low‐temperature damage to biological membranes. Cryobiology 22: 128–146, 1985.
 144. Quinn, P. J. Effect of sugars on the phase behaviour of phospholipid model membranes. Biochem. Soc. Trans. 17: 953–957, 1989.
 145. Quinn, P. J., R. D. Koynova, L. J. Lis, and B. G. Tenchov. Lamellar gel‐lamellar liquid crystal phase transition of dipalmitoylphosphatidylcholine multilayers freeze‐dried from aqueous trehalose solutions. A real‐time X‐ray diffraction study. Biochim. Biophys. Acta 942: 315–323, 1988.
 146. Ransac, S., C. Riviere, J. M. Soulie, C. Gancet, R. Verger, and G. H. De Haas. Competitive inhibition of lipolytic enzymes. I. A kinetic model applicable to water‐insoluble competitive inhibitors. Biochim. Biophys. Acta 1043: 57–66, 1990.
 147. Rapoport, A. I., and M. E. Beker. Effect of sucrose and lactose on resistance of the yeast Saccharomyces cerevisiae to dehydration. Mikrobiologiia 52: 556–559, 1989.
 148. Reshkin, S. J., G. Cassano, C. Womersley, and G. A. Ahearn. Preservation of glucose transport and enzyme activity in fish intestinal brush border and basolateral membrane vesicles. J. Exp. Biol. 140: 123–136, 1990.
 149. Reynolds, L. J., E. D. Mihelich, and E. A. Dennis. Inhibition of venom phospholipases A2 by manoalide and manoalogue. Stoichiometry of incorporation. J. Biol. Chem. 266: 16512–16517, 1991.
 150. Rudolph, A. Si. The freeze‐dried preservation of liposome encapsulated hemoglobin: a potential blood substitute. Cryobiology 25: 1–8, 1988.
 151. Rudolph, A. S., and R. O. Cliff. Dry storage of liposome‐encapsulated hemoglobin: a blood substitute. Cryobiology 27: 585–590, 1990.
 152. Rudolph, B. R., I. Chandrasekhar, B. P. Gaber and M. Nagumo. Molecular modelling of saccharide‐lipid interactions. Chem. Phys. Lipids 53: 243–261, 1990.
 153. Sau, R., A. Cuevas, V. Valpuesta, and M. S. Reid. Arbutin and sucrose in the leaves of the resurrection plant Myrothamnus flabellifolia. Phytochemistry 30: 2555–2556, 1991.
 154. Schellman, J. A. The thermodynamic stability of proteins. Annu. Rev. Biophys. Biophys. Chem. 16: 115–137, 1987.
 155. Senaratna, T., B. D. Mckersie, and S. R. Bowley. Artificial seeds of alfalfa Medicago sativa L.: induction of desiccation tolerance in somatic embryos. In Vitro Cell Dev. Biol. 26: 85–90, 1990.
 156. Shikama, K. and I. Yamazaki. Denaturation of catalase by freezing and thawing. Nature 190: 83–84, 1961.
 157. Simon, E. W. Phospholipids and plant membrane permeability. New Phytol. 73: 377–420, 1974.
 158. Soliman, F. S., and L. van den Berg. Factors affecting freezing damage to lactic dehydrogenase. Cryobiology 8: 73–78, 1971.
 159. Song, L. Y., J. M. Baldwin, R. O'Reilly, and J. A. Lucy. Relationships between the surface exposure of acidic phospholipids and cell fusion in erythrocytes subjected to electrical breakdown. Biochim. Biophys. Acta 1104: 1–8, 1992.
 160. Strauss, G. and H. Hauser. Stabilization of lipid bilayer vesicles by sucrose during freezing. Proc. Natl. Acad. Sci. U.S.A. 83: 2422–2426, 1986.
 161. Strauss, G., P. Schurtenberger and H. Hauser. The interaction of saccharides with lipid bilayer vesicles: stabilization during freeze‐thawing and freeze‐drying. Biochim. Biophys. Acta 858: 169–180, 1986.
 162. Tanaka, R., T. Takeda and R. Miyajima. Cryoprotective effect of saccharides on denaturation of catalase during freeze‐drying. Chem. Pharm. Biol. 39: 1091–1094, 1991.
 163. Timasheff, S. N. Preferential interactions in protein–water–cosolvent systems. In: Biophysics of Water, edited by F. Franks and S. Methias. New York: Wiley, 1982, p. 70–72.
 164. Timasheff, S. N., J. C. Lee, E. P. Pittz and N. Tweedy. The interactions of tubulin and other proteins with structure stabilizing solvents. J. Coll. Interface Sci. 55: 658–663, 1976.
 165. Tsvetkov, T. D., L. I. Tsonev, N. M. Tsvetkova, R. D. Koynova, and B. G. Tenchov. Effect of trehalose on the phase properties of hydrated and lyophilized dipalmitoylphosphatidylcholine multilayers. Cryobiology 26: 162–169, 1989.
 166. van Bilsen, D.G.J.L., and F. A. Hoekstra. Decreased membrane integrity in aging Typha latifolia L. pollen: accumulation of lysolipids and free fatty acids. Plant Physiol. 101: 675–682, 1993.
 167. van Bilsen, D.G.J.L., F. A. Hoekstra, L. M. Crowe, and J. H. Crowe. Lateral phase separation in membranes of aging dry pollen causes imbibitional leakage. Plant Physiol. 104: 1193–1199, 1994.
 168. Van Steveninck, J., and A. M. Ledeboer. Phase transitions in the yeast cell membrane. The influence of temperature on the reconstitution of active dry yeast. Biochim. Biophys. Acta 352: 64–70, 1974.
 169. Westh, P. and H. Ramlov. Trehalose accumulation in the tardigrade Adorybiotus coronifer during anhydrobiosis. J. Exp. Zool. 258: 303–311, 1991.
 170. Williams, R. J., and A. C. Leopold. The glassy state in corn embryos. Plant Physiol. 89: 977–981, 1989.
 171. Womersley, C. Biochemical and physiological aspects of anhydrobiosis. Comp. Biochem. Physiol. [B] 70: 669–678, 1981.
 172. Womersley, C. Natural dehydration regimes as a prerequisite for the successful induction of anhydrobiosis in the nematode Rotylenchus reniformis. J. Exp. Biol. 143: 359–372, 1989.
 173. Womersley, C. A reconsideration of diversity of adaptation in nematode anhydrobiotes in relation to their environments. In: Vistas on Nematology, edited by J. A. Veeck and D. W. Dickson. New York: Academic Press, p. 165–173, 1990.
 174. Wright, J. C. Structural correlates of permeability and tun formation in tardigrade cuticle: an image analysis study. J. Ulstruct. Mol. Struct. Res. 101: 23–30, 1988.
 175. Wright, J. C. Desiccation tolerance and water retentive mechanisms in tardigrades. J. Exp. Biol. 142: 267–292, 1989.
 176. Wright, J. C. The tardigrade cuticle. II. Evidence for a dehydration‐dependent permeability barrier in the intracuticle. Tissue Cell 21: 263–279, 1989.
 177. Yu, L., R. A. Deems, J. Hajdu, and E. A. Dennis. The interaction of phospholipase A2 with phospholipid analogues and inhibitors. J. Biol. Chem. 265: 2657–2664, 1990.
 178. Yu, L., and E. A. Dennis. Critical role of a hydrogen bond in the interaction of phospholipase A2 with transition‐state and substrate analogues. Proc. Natl. Acad. Sci. U.S.A. 88: 9325–9329, 1991.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

John H. Crowe, Lois M. Crowe, John E. Carpenter, Steven Petrelski, Folkert A. Hoekstra, Pedro De Araujo, Anita D. Panek. Anhydrobiosis: Cellular Adaptation to Extreme Dehydration. Compr Physiol 2011, Supplement 30: Handbook of Physiology, Comparative Physiology: 1445-1477. First published in print 1997. doi: 10.1002/cphy.cp130220