Comprehensive Physiology Wiley Online Library

Optical Methods in Cell Physiology

Full Article on Wiley Online Library


The sections in this article are:

1 Physiological Questions
2 Approaches
2.1 Fixed Cells
2.2 Living Cells
3 Optical Signal Detection and Analysis
3.1 Overview
3.2 Fluorescent Microscope Imaging Methods
3.3 Defectors
3.4 Image Visualization and Analysis
4 Note Added in Proof
 1. Adams, S. R., A. T. Harootunian, Y. J. Buechler, S. S. Taylor, and R. Y. Tsien. Fluorescence ratio imaging of cyclic‐AMP in single cells. Nature 349: 694–697, 1991.
 2. Adams, S. R., J.P.Y. Kao, G. Grynkiewicz, A. Minta, and R. Y. Tsien. Biologically useful chelators that release Ca2+ upon illumination. J. Am. Chem. Soc. 110: 3212–3220, 1988.
 3. Agard, D. A., Y. Hiraoka, P. Shaw, and J. W. Sedat. Fluorescence microscopy in 3 dimensions. Methods Cell Biol. 30: 353–377, 1989.
 4. Agard, D. A., and J. W. Sedat. 3‐dimensional architecture of a polytene nucleus. Nature 302: 676–681, 1983.
 5. Aikens, R. Properties of low‐light‐level and slow‐scan detectors. In: Fluorescent and Luminescent Probes for Biological Activity, edited by W. T. Mason. San Diego: Academic Press, 1993, p. 277–286.
 6. Allbritton, N. L., E. Oancea, M. A. Kuhn, and T. Meyer. Source of nuclear calcium signals. Proc. Natl. Acad. Sci. U.S.A. 91: 12458–12462, 1994.
 7. Amsterdam, A., S. Lin, and N. Hopkins. The aequorea‐Victoria green fluorescent protein can be used as a reporter in live zebrafish embryos. Dev. Biol. 171: 123–129, 1995.
 8. Art, J. Photon detectors for confocal microscopy. In: Handbook of Biological and Confocal Microscopy, edited by J. B. Pawley. New York/London: Plenum Press, 1990, p. 127–139.
 9. Ashkin, A., K. Schutze, J. M. Dziedzic, D. Euteneuer, and M. Schliwa. Force generation of organelle transport measured in vivo by an infrared‐laser trap. Nature 348: 346–348, 1990.
 10. Axelrod, D. Fluorescence polarization microscopy. Methods Cell. Biol. 29: 333–352, 1989.
 11. Axelrod, D., D. E. Koppel, J. Schelessinger, E. Elson, and W. W. Webb. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys. J. 16: 1055–1069, 1976.
 12. Bailey, B., D. L. Farkas, D. L. Taylor, and F. Lanni. Enhancement of axial resolution in fluorescence microscopy by standing‐wave excitation. Nature 366: 44–48, 1993.
 13. Becker, P. L., and F. S. Fay. Photobleaching of fura‐2 and its effect on determination of calcium concentrations. Am. J. Physiol. 253 (Cell Physiol. 22): C613–C618, 1987.
 14. Betzig, E., and R. J. Chichester. Single molecules observed by near‐field scanning optical microscopy. Science 262: 1422–1425, 1993.
 15. Betzig, E., and J. K. Trautman. Near‐field optics—microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science 257: 189–195, 1992.
 16. Blinks, J. R., W. G. Wier, P. Hess, and F. G. Prendergast. Measurement of Ca2+ concentrations in living cells. Prog. Biophys. Mol. Biol. 40: 1–114, 1982.
 17. Boyde, A. Stereoscopic images in confocal (tandem scanning) microscopy. Science 230: 1270–1272, 1985.
 18. Brakenhoff, G. J., H.T.M. Vandervoort, E. A. Vanspronsen, W.A.M. Linnemans, and N. Nanninga. 3‐dimensional chromatin distribution in neuro‐blastoma nuclei shown by confocal scanning laser microscopy. Nature 317: 748–749, 1985.
 19. Carrington, W. A., and K. E. Fogarty. 3‐D molecular distribution in living cells by deconvolution of optical sections using light microscopy. Proceedings of the 13th Annual Northeast Bioengineering Conference, Philadelphia, March, 1987.
 20. Carrington, W. A., R. M. Lynch, E.D.W. Moore, G. Isenberg, K. E. Fogarty, and F. S. Fay. Superresolution 3‐climensional images of fluorescence in cells with minimal light exposure. Science 268: 1483–1487, 1995.
 21. Carter, K. C., D. Bowman, W. Carrington, K. Fogarty, J. A. McNeil, F. S. Fay, and J. B. Lawrence. A three‐dimensional view of precursor messenger RNA metabolism within the nucleus. Science 259: 1330–1335, 1993.
 22. Castleman, K. R. Digital Image Processing. New Jersey: Prentice‐Hall, Inc., 1979.
 23. Chalfie, M., Y. Tu, G. Euskirchen, W. W. Ward, and D. C. Prasher. Green fluorescent protein as a marker for gene‐expression. Science 263: 802–805, 1994.
 24. Cheng, H., W. J. Lederer, and M. B. Cannell. Calcium sparks—elementary events underlying excitation‐contraction coupling in heart muscle. Science 262: 740–744, 1993.
 25. Coggins, J. M., F. S. Fay, and K. E. Fogarty. Development and application of a three‐dimensional artificial visual system. In: Computer Methods and Programs in Biomedicine, Elsevier Science Publishers, 22: 69–77, 1986.
 26. Coggins, J. M., K. E. Fogarty, and F. S. Fay. Interfacing image processing and computer graphics systems using an artificial visual system. Proceedings of IEEE Conferences on Graphics and Vision Interface, 1986 p. 44–52.
 27. Connor, J. A. Intracellular calcium mobilization by inositol 1,4,5‐trisphosphate—intracellular movements and corapartmentalization. Cell Calcium 14: 185–200, 1993.
 28. Cornellbell, A. H., S. M. Finkbeiner, M. S. Cooper, and S. J. Smith. Glutamate induces calcium waves in cultured astrocytes—long‐range glial signaling. Science 247: 470–473, 1990.
 29. Debiasio, R. L., L. L. Wang, G. W. Fisher, and D. L. Taylor. The dynamic distribution of fluorescent analogs of actin and myosin in protrusions at the leading‐edge of migrating Swiss 3T3 fibroblasts. J. Cell. Biol. 107: 2631–2645, 1988.
 30. Denk, W., J. H. Strickler, and W. W. Webb. 2‐photon laser scanning fluorescence microscopy. Science 248: 73–76, 1990.
 31. Drummond, R. M., R. Sreekumar, J. W. Walker, R. E. Carraway, M. Ikebe, and F. S. Fay. A caged peptide inhibitor of calmodulin prevents Ca2+‐dependent enhancement of Ca2+ current in smooth muscle cells (abstract). Biophys. J. 70: A386, 1996.
 32. Ellis‐Davies, G.C.R., and J. H. Kaplan. Nitrophenyl‐EGTA, a photolabile chelator that selectively binds Ca2+ with high‐affinity and releases it rapidly upon photolysis. Proc. Nat. Acad. Sci. U.S.A. 91: 187–191, 1994.
 33. Elson, E. L., and H. Qian. Interpretation of fluorescence correlation spectroscopy and photobleaching recovery in terms of molecular interactions. Methods Cell Biol. 30: 307–332, 1989.
 34. Fay, F. S., W. Carrington, and K. E. Fogarty. 3‐dirnensional molecular distribution in single cells analyzed using tie digital imaging microscope. J. Microscopy‐Oxford 153: 133–149, 1989.
 35. Fay, F. S., K. E. Fogarty, and J. M Coggins. Analysis of molecular distribution in single cells using a digital imaging microscope. In: Optical Methods in Cell Physiology, edited by P. De Weer and B. Salzberg. John Wiley & Sons, 1986, 51–62.
 36. Fay, F. S., S. H. Gilbert, and R. A. Brundage. Calcium signaling during chemotaxis. Calcium Waves, Gradients Oscillations. Ciba Foundation Symposium 188: 121–135, 1995.
 37. Finer, J. T., R. M. Simmons, and J. A. Spudich. Single myosin molecule mechanics—piconewton forces and nanometer steps. Nature 368: 113–119, 1994.
 38. Gasberg, P. K., A. Horowitz, R. A. Tuft, W. A. Carrington, F. S. Fay, and K. E. Fogarty. Analysis of the true 3‐dimensional point spread function and its effects on quantitative fluorescence microscopy [Abstract]. Biophys. J. 66: A274, 1994.
 39. Gerisch, G., R. Albrecht, C. Heizer, S. Hodgkinson, and M. Maniak. Chemoattractant‐controlled accumulation of coronin at the leading edge of dictyostelium cells monitored using green fluorescent protein‐coronin fusion protein. Curr. Biol. 5: 1280–1285, 1995.
 40. Gerisch, G., A. A. Noegel, and M. Schleicher. Genetic alteration of proteins in actin‐based motility systems. Annu. Rev. Physiol. 53: 607–628, 1991.
 41. Giuliano, K. A., P. L. Post, K. M. Hahn, and D. L. Taylor. Fluorescent protein biosensors—measurement of molecular‐dynamics in living cells. Annu. Rev. Biophys. Biomol. Struct. 24: 405–434, 1995.
 42. Goldman, Y. E., M. G. Hibberd, J. A. McCray, and D. R. Trentham. Relaxation of muscle‐fibers by photolysis of caged ATP. Nature 300: 701–705, 1982.
 43. Gough, A. H., and D. L. Taylor. Fluorescence anisotropy imaging microscopy maps calmodulin‐binding during cellular contraction and locomotion. J. Cell Biol. 121: 1095–1107, 1993.
 44. Grynkiewicz, G., M. Poenie, and R. Y. Tsien. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260: 3440–3450, 1985.
 45. Gurney, A. M., and H. A. Lester. Light‐flash physiology with synthetic photosensitive compounds. Physiol. Rev. 67: 583–617, 1987.
 46. Hahn, K., R. Debiasio, D. L. Taylor. Patterns of elevated free calcium and calmodulin activation in living cells. Nature 359: 736–738, 1992.
 47. Hastings, J. W., C. J. Potrikus, S. C. Gupta, M. Kurfurst, and J. C. Makemson. Biochemistry and physiology of bioluminescent bacteria. Adv. Microb. Physiol. 26: 235–291, 1985.
 48. Heim, R., D. C. Prasher, and R. Y. Tsien. Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc. Natl. Acad. Sci. U.S.A. 91: 12501–12504, 1994.
 49. Heim, R., and R. Y. Tsien. Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr. Biol. 6: 178–192, 1996.
 50. Hiraoka, Y., J. W. Sedat, and D. A. Agard. The use of a charge‐coupled device for quantitative optical microscopy of biological structures. Science 238: 36–41, 1987.
 51. Hiraoka, Y., J. W. Sedat, and D. A. Agard. Determination of three‐dimensional properties of an optical microscope system. Partial confocal behavior in epifluorescence microscopy. Biophys. J. 57: 325–333, 1990.
 52. Hwang, J., L. K. Tamm, C. Bohm, T. S. Ramalingam, E. Betzig, and M. Edidin. Nanoscale complexity of phospholipid monolayers investigated by near‐field scanning optical microscopy. Science 270: 610–614, 1995.
 53. Isenberg, G., E. F. Etter, M.‐F. Wendt‐Gallitelli, A. Schiefer, W. A. Carrington, R. A. Tuft, and F. S. Fay. Intrasarcomere [Ca2+] gradients in ventricular myocytes revealed by high speed digital imaging microscopy. Proc. Natl. Acad. Sci. U.S.A. (in press). 93: 5413–5418, 1996.
 54. Johnson, C. V., R. H. Singer, and J. B. Lawrence. Fluorescent detection of nuclear‐RNA and DNA‐implications for genome organization. Methods Cell Biol. 35: 73–99, 1991.
 55. Kahana, J. A., B. J. Schnapp, and P. A. Silver. Kinetics of spindle pole body separation in budding yeast. Proc. Natl. Acad. Sci. U.S.A. 92: 9707–9711, 1995.
 56. Kaplan, H., B. Forbush, III., and J. F. Hoffman. Rapid photolytic release of adenosine 5'‐triphosphate from a protected analogue: utilization by the Na: K pump of human red blood cell ghosts. Biochem. J. 17: 1929–1935, 1978.
 57. Lakowicz, J. R. Principles of Fluorescence Spectroscopy. New York: Plenum Press, 1983.
 58. Lakowicz, J. R., H. Szmacinski, K. Nowaczyk, and M. L. Johnson. Fluorescence lifetime imaging of calcium using Quin‐2. Cell Calcium 3: 131–147, 1992.
 59. Lester, H. A., and J. M. Nerbonne. Physiological and pharmacological manipulations with light‐flashes. Annu. Rev. Biophys. Bioeng. 11: 151–175, 1982.
 60. Lewis, A., and K. Lieberman. Near‐field optical imaging with a non‐evanescently excited high‐brightness light source of subwavelength dimensions. Nature 354: 214–216, 1991.
 61. Lifshitz, L. M. Tracking cells and subcellular features. In Advances in Image Analysis, edited by Y. Mahdavieh and R. C. Gonzalez. Bellingram, WA: SPIE Press, 1992, p. 218–243.
 62. Lifshitz, L., J. Collins, E. Moore, and J. Gauch. Computer vision and graphics in fluorescence microscopy. IEEE Proceedings of the Biomedical Imaging Workshop, Los Alamitos, CA: IEEE Computer Society Press, 1994, p. 166–175.
 63. Lifshitz, L. M., K. Fogarty, J. M. Gauch, and E. Moore. Computer vision and graphics in fluorescence microscopy. In: Visualization in Biomedical Computing, edited by R. A. Robb. SPIE Proceedings, vol. 1808, Bellingham, WA: SPIE Press, 1992, p. 521–534.
 64. Lifshitz, L. M., and S. M. Pizer. A multiresolution hierarchical approach to image segmentation based on intensity extreme. In: Computer Vision: Advances and Applications, edited by R. Kasturi and R. Jain. Los Alamitos, CA: IEEE Computer Society Press, 1991, p. 606–617.
 65. Loew, L. M., W. Carrington, R. A. Tuft, and F. S. Fay. Physiological cytosolic Ca2+ transients evoke concurrent mitochondrial depolarizations. Proc. Natl. Acad. Sci. U.S.A. 91: 12579–12583, 1994.
 66. Loew, L. M., R. A. Tuft, W. Carrington, and F. S. Fay. Imaging in 5 dimensions—time‐dependent membrane potentials in individual mitochondria. Biophys. J. 65: 2396–2407, 1993.
 67. Lynch, R. M., W. Carrington, K. E. Fogarty, and F. S. Fay. Metabolic modulation of hexokinase association with mitochondria in living cells. Am. J. Physiol. (Cell. Physiol. 39), 270: C488–C499, 1996.
 68. Mason, W. T., Editor. Fluorescent and Luminescent Probes for Biological Activity. San Diego: Academic Press, 1993.
 69. Mathies, R. A., and L. Stryer. Single‐molecule fluorescence detection: a feasibility study using phycoerythrin. In: Applications of Fluorescence in the Biomedical Sciences, edited by D. L. Taylor, A. S. Waggoner, R. F. Murphy, F. Lanni, and R. R. Birge. New York: Liss, 1986, p. 129–140.
 70. Matsumato, B., Editor. Methods in Cell Biology 38: Cell biological applications of confocal microscopy. San Diego: Academic Press, 1993.
 71. McCray, J. A., and D. R. Trentham. Properties and uses of photoreactive caged compounds. Annu. Rev. Biophys. Chem. 18: 239–270, 1989.
 72. McNeil, P. L. Incorporation of macromolecules into living cells. Methods in Cell Biol. 29: 153–173, 1989.
 73. Minsky, M., Microscopy apparatus, U.S. Patent 3013467, 1957.
 74. Mitchison, T. J. Microtubule dynamics and kinetochore function in mitosis. Annu. Rev. Cell Biol. 4: 527–549, 1988.
 75. Molloy, J. E., J. E. Burns, J. Kendrick‐Jones, R. T. Tregear, and D.C.S. White. Movement and force produced by a single myosin head. Nature. 378: 209–212, 1995.
 76. Monck, J. R., A. F. Oberhauser, T. J. Keating, and J. M. Fernandez. Thin‐section ratiometric Ca2+ images obtained by optical sectioning of fura‐2 loaded mast‐cells. J. Cell Biol. 116: 745–759, 1992.
 77. Moore, E.D.W., P. L. Becker, K. E. Fogarty, D. A. Williams, and F. S. Fay. Ca2+ imaging in single living cells—theoretical and practical issues. Cell Calcium 11: 2–3, 1990.
 78. Moore, E.D.W., K. D. Philipson, W. A. Carrington, K. E. Fogarty, L. M. Lifshitz and F. S. Fay. Coupling of the Na+/Ca2+ Exchanger, Na+/K+ Pump and Sarcoplasmic Reticulum in Smooth Muscle. Nature 365: 657–660, 1993.
 79. Neubig, R. R. Membrane organization in G‐protein mechanisms. FASEB J. 8: 939–946, 1994.
 80. Nuccitelli, R., Editor. Methods in Cell Biology. A practical guide to the study of calcium in living cells. San Diego: Academic Press, 1994.
 81. Olson, K. R., J. R. McIntosh, and J. B. Olmsted. Analysis of map‐4 function in living cells using green fluorescent protein (GFP) chimeras. J. Cell Biol. 130: 639–650, 1995.
 82. Pawley, J. B., Editor. Handbook of Biological Confocal Microscopy. New York/London: Plenum Press, 1990.
 83. Post, P. L., R. L. Debiasio, and D. L. Taylor. A fluorescent protein biosensor of myosin‐II regulatory light chain phosphorylation reports a gradient of phosphorylated myosin‐II in migrating cells. Mol. Biol. Cell 6: 1755–1768, 1995.
 84. Post, P. L., K. M. Trybus, and D. L. Taylor. A genetically engineered protein‐based optical biosensor of myosin II regulatory light chain phosphorylation. J. Biol. Chem. 269: 12880–12887, 1994.
 85. Prasher, D. C., V. K. Eckenrode, W. W. Ward, F. G. Prendergast, and M. J. Cormier. Primary structure of the aequorea‐victoria green‐fluorescent protein. Gene 111: 229–233, 1992.
 86. Ried, T., A. Baldini, T. C. Rand, and D. C. Ward. Simultaneous visualization of 7 different DNA probes by in situ hybridization using combinatorial fluorescence and digital imaging microscopy. Proc. Natl. Acad. Sci. U.S.A. 89: 1388–1392, 1992.
 87. Rizzuto, R., M. Brini, P. Pizzo, M. Murgia, and T. Pozzan. Chimeric green fluorescent protein as a tool for visualizing subcellular organelles in living cells. Curr. Biol. 5: 635–642, 1995.
 88. Rizzuto, R., M. Brini, and T. Pozzan. Targeting recombinant aequorin to specific intracellular organelles. Methods Cell Biol. 40: 339–358, 1994.
 89. Rizzuto, R., A.W.M. Simpson, M. Brini, and T. Pozzan. Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinant aequorin. Nature 360: 768, 1992.
 90. Sawin, K. E., J. A. Theriot, and T. J. Mitchison. Photoactivation of fluorescence as a probe for cytoskeletal dynamic in mitosis and cell motility. In: Fluorescent and Luminescent Probes for Biological Activity, edited by W. T. Mason. San Diego: Academic Press, 1993, p. 405–419.
 91. Scanlon, M., D. A. Williams, and F. S. Fay. A Ca2+ insensitive form of fura‐2 associated with polymorphonuclear leukocytes. J. Biol. Chem. 262: 6308–6312, 1987.
 92. Spring, K. R. Detectors for fluorescence microscopy. Scanning Microscopy 5: 63–69, 1991.
 93. Storch, J., C. Lechene, and A. M. Kleinfeld. Direct determination of free fatty‐acid transport across the adipocyte plasma membrane using quantitative fluorescence microscopy. J. Biol. Chem. 21: 13473–13476, 1991.
 94. Svoboda, K., and S. M. Block. Biological applications of optical forces. Annu Rev. Biophys. Biomol Structure 23: 247–285, 1994.
 95. Svoboda, K., C. F. Schmidt, B. J. Schnapp, and S. M. Block. Direct observation of kinesin stepping by optical trapping interferometry. Nature 365: 721–727, 1993.
 96. Symons, M. H., and T. J. Mitchison. Control of actin polymerization in live and permeabilized fibroblasts. J. Cell Biol. 114: 503–513, 1991.
 97. Taylor, D. L., and Y. Wang, Editors. Methods in Cell Biology 29 and 30: Fluorescence microscopy of living cells in culture. San Diego: Academic Press, 1989.
 98. Theriot, J. A., T. J. Mitchison, L. G. Tilney, and D. A. Portnoy. The rate of actin‐based motility of intracellular listeria‐monocytogenes equals the rate of actin polymerization. Nature 357: 257–260, 1992.
 99. Trautman, J. K., J. J. Macklin, L. E. Brus, and E. Berzig. Near‐field spectroscopy of single molecules at room temperature. Nature 369: 40–42, 1994.
 100. Tse, F. W., A. Tse, and B. Hille. Cyclic Ca2+ changes in intracellular stores of gonadotropes during gonadotropin‐releasing hormone‐stimulated Ca2+ oscillations. Proc. Natl. Acad. Sci. USA. 91: 9750–9754, 1994.
 101. Tsien, R. Y. Fluorescent probes of cell signaling. Annu Rev. Neurosci. 12: 227–253, 1989.
 102. Tsien, R. Y., and A. Waggoner. Fluorophores for confocal microscopy: photophysics and photochemistry. In: Handbook of Biological Confocal Microscopy, edited by J. E. Pawley. New York/London: Plenum Press, 1990, p. 169–178.
 103. Valdivia, H. H., J. H. Kaplan, G.C.R. Ellis‐Davies, W. J. Lederer. Rapid adaptation of cardiac ryanodine receptors—modulation by Mg2+ and phosphorylation. Science 267: 1997–2000, 1995.
 104. Walker, J. W., A. V. Somlyo, Y. E. Goldman, A. P. Somlyo, and D. R. Trentham. Kinetics of smooth and skeletal muscle activation by laser‐pulse photolysis of caged inositol 1,4,5‐trisphosphate. Nature 327: 249–252, 1987.
 105. Wang, J., L. G. Cao, Y. L. Wang, and T. Pederson. Localization of premessenger‐RNA at discrete nuclear sites. Proc. Natl. Acad. Sci. USA. 88: 7391–7395, 1991.
 106. Wang, X. F., A. Periasamy, B. Herman, and D. M. Coleman. Fluorescence lifetime imaging microscopy (flim)‐instrumentation and applications. Crit. Rev. Anal. Chem. 23: 369–395, 1992.
 107. Williams, D. A., and F. S. Fay. Editors. Imaging of cell calcium. Cell Calcium 11: 55–250, 1990.
 108. Williams, D. A., and F. S. Fay. Calcium transients and resting levels in isolated smooth muscle cells as monitored with Quin‐2. Am. J. Physiol. (Cell Physiol. 19) 250: C799–C791, 1986.
 109. Williams, D. A., and F. S. Fay. Intracellular calibration of the fluorescent calcium indicator fura‐2. Cell Calcium 11: 75–83, 1990.
 110. Williams, D. A., K. E. Fogarty, R. Y. Tsien, and F. S. Fay. Calcium gradients in single smooth muscle cells revealed by the digital imaging microscope. Nature, 318: 558–561, 1985.
 111. Wilson, T., and C.J.R. Sheppard. Theory and Practice of Scanning Optical Microscopy. London: Academic Press, 1984.
 112. Wolf, D. E. Designing building, and using a fluorescence recovery after photobleaching instrument. Methods Cell Biol. 30: 271–306, 1989.
 113. Yin, H., M. D. Wang, K. Svoboda, R. Landick, S. M. Block, and J. Gelles. Transcription against an applied force. Science 270: 1653–1657, 1995.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Fredric S. Fay. Optical Methods in Cell Physiology. Compr Physiol 2011, Supplement 31: Handbook of Physiology, Cell Physiology: 3-22. First published in print 1997. doi: 10.1002/cphy.cp140101