Comprehensive Physiology Wiley Online Library

The ER–Golgi Membrane System: Compartmental Organization and Protein Traffic

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Organization of the ER‐Golgi Membrane System
1.1 Endoplasmic Reticulum
1.2 Golgi Apparatus
1.3 ER‐Golgi Intermediate Compartment
2 Anterograde (Exocytotic) Protein Traffic From ER to Golgi
2.1 Acquisition of Transport Competence in the ER
2.2 COPI‐ and COPII‐Coated Transport Vesicles
2.3 Vesicle Docking and Fusion
2.4 GTPases
2.5 Role of the ERGIC in ER‐to‐Golgi Transport
3 Protein Retention and Retrieval
3.1 Membrane Flow, Selective Transport, and Protein Retention
3.2 Soluble ER proteins
3.3 ER and ERGIC Membrane Proteins
3.4 Golgi Membrane Proteins
4 Retrograde Protein Traffic
4.1 Insights from Brefeldin A
4.2 Recycling from the cis‐Golgi
4.3 Role of the ERGIC and Possible Role of ERGIC‐53
5 Regulation of Membrane Traffic in the Early Secretory Pathway and Maintenance of Organelle Structure
6 Conclusions and Prospects
Figure 1. Figure 1.

Structural and functional compartmentalization of the early secretory pathway of mammalian cells. ER, endoplasmic reticulum; TE, transitional element of the rough ER. Note: Unlike as is depicted in this scheme, the ER‐Golgi intermediate compartment consists of a multitude of tubulovesicular membrane clusters, some of which are not localized near the Golgi apparatus.

Figure 2. Figure 2.

Alternative Golgi models. A. In the minimal compartment model the Golgi apparatus is believed to consist of three compartments. Secretory proteins traverse the Golgi apparatus from cis to trans in two vesicular steps (arrows). B. In the five‐compartment model the central Golgi stack is further subdivided into three additional compartments named cis, medial, and trans. Transit through the Golgi requires four vesicular steps (arrows). C. In the maturation model the cis‐Golgi network (CGN) cisterna gradually matures to the trans‐Golgi network (TGN) (indicated by dotted arrow) and hence anterograde protein transport through the Golgi would not require the formation of vesicles. Compartmentalization of Golgi enzymes would be maintained by their recycling to earlier cisternae (arrows) either by vesicular or tubular transport.

Figure 3. Figure 3.

Appearance of the ER‐Golgi intermediate compartment (ERGIC) in ultrathin cryosections in enterocytes of a human small intestinal biopsy sample

Courtesy of J.A.M Fransen). The ERGIC was labeled with a mouse mAb against ERGIC‐53 followed by incubations with rabbit‐anti‐mouse and 5 nm colloidal gold‐protein A. The ERGIC consists of tubulovesicular membrane clusters (circled). G, Golgi apparatus, N, nucleus
Figure 4. Figure 4.

Models for budding and targeting of transport vesicles in the early secretory pathway illustrating similarities between COPI‐mediated transport (A) and COPII‐mediated transport (B). Precisely which pathways depend on the two different coat complexes is currently debated. A speculative view is that COPI‐mediated transport (mainly established in a mammalian in vitro system) operates in anterograde direction between ERGIC and cis‐Golgi as well as in retrograde direction from cis‐Golgi and ERGIC back to the ER. COPII vesicles (mainly established for yeast) may mediate anterograde transport between ER and ERGIC. The v‐SNAREs and t‐SNAREs of the COPI dependent pathway(s) have not been identified. V‐SNARE/t‐SNARE interactions may be multimeric.

Figure 5. Figure 5.

Transport inhibitors for anterograde and retrograde transport in the early secretory pathway of mammalian cells in vivo as deduced from morphological and subcellular fractionation experiments . dog, deoxy‐glucose.



Figure 1.

Structural and functional compartmentalization of the early secretory pathway of mammalian cells. ER, endoplasmic reticulum; TE, transitional element of the rough ER. Note: Unlike as is depicted in this scheme, the ER‐Golgi intermediate compartment consists of a multitude of tubulovesicular membrane clusters, some of which are not localized near the Golgi apparatus.



Figure 2.

Alternative Golgi models. A. In the minimal compartment model the Golgi apparatus is believed to consist of three compartments. Secretory proteins traverse the Golgi apparatus from cis to trans in two vesicular steps (arrows). B. In the five‐compartment model the central Golgi stack is further subdivided into three additional compartments named cis, medial, and trans. Transit through the Golgi requires four vesicular steps (arrows). C. In the maturation model the cis‐Golgi network (CGN) cisterna gradually matures to the trans‐Golgi network (TGN) (indicated by dotted arrow) and hence anterograde protein transport through the Golgi would not require the formation of vesicles. Compartmentalization of Golgi enzymes would be maintained by their recycling to earlier cisternae (arrows) either by vesicular or tubular transport.



Figure 3.

Appearance of the ER‐Golgi intermediate compartment (ERGIC) in ultrathin cryosections in enterocytes of a human small intestinal biopsy sample

Courtesy of J.A.M Fransen). The ERGIC was labeled with a mouse mAb against ERGIC‐53 followed by incubations with rabbit‐anti‐mouse and 5 nm colloidal gold‐protein A. The ERGIC consists of tubulovesicular membrane clusters (circled). G, Golgi apparatus, N, nucleus


Figure 4.

Models for budding and targeting of transport vesicles in the early secretory pathway illustrating similarities between COPI‐mediated transport (A) and COPII‐mediated transport (B). Precisely which pathways depend on the two different coat complexes is currently debated. A speculative view is that COPI‐mediated transport (mainly established in a mammalian in vitro system) operates in anterograde direction between ERGIC and cis‐Golgi as well as in retrograde direction from cis‐Golgi and ERGIC back to the ER. COPII vesicles (mainly established for yeast) may mediate anterograde transport between ER and ERGIC. The v‐SNAREs and t‐SNAREs of the COPI dependent pathway(s) have not been identified. V‐SNARE/t‐SNARE interactions may be multimeric.



Figure 5.

Transport inhibitors for anterograde and retrograde transport in the early secretory pathway of mammalian cells in vivo as deduced from morphological and subcellular fractionation experiments . dog, deoxy‐glucose.

References
 1. Acharya, U., J. M. McCaffery, R. Jacobs, and V. Malhotra. Reconstitution of vesiculated Golgi membranes into stacks of cisternae: requirement of NSF in stack formation. J. Cell Biol. 129: 577–590, 1995.
 2. Acharya, U., R. Jacobs, J.‐M. Peters, N. Watson, M. G. Farquhar, and V. Malhotra. The formation of Golgi stacks from vesiculated Golgi membranes requires two distinct fusion events. Cell 82: 895–904, 1995.
 3. Achler, C., D. Filmer, C. Merte, and D. Drenckhahn. Role of microtubules in polarized delivery of apical membrane proteins to the brush border of the intestinal epithelium. J. Cell Biol. 109: 179–189, 1989.
 4. Alberini, C. M., P. Bet, C. Milstein, and R. Sitia. Secretion of immunoglobulin M assembly intermediates in the presence of reducing agents. Nature 347: 485–487, 1990.
 5. Alcade J., G. Egea, and I. V. Sandoval. gp74 a membrane glycoprotein of the cis‐Golgi network that cycles through the endoplasmic reticulum and intermediate compartment. J. Cell Biol. 124: 649–665, 1994.
 6. Alexandrov, K., H. Horiuchi, O. Steele‐Mortimer, MC. Seabra, and M. Zerial. Rab escort protein‐1 is a multifunctional protein that accompanies newly prenylated rab proteins to their target membranes. ‐EMBO J. 13: 5262–5273, 1994.
 7. Amara, J. F., S. H. Cheng, and A. E. Smith. Intracellular protein trafficking defects in human disease. Trends Cell Biol. 2: 145–149, 1992.
 8. Anderson, R.G.W., and R. K. Pathak. Vesicles and cisternae in the trans Golgi apparatus of human fibroblasts are acidic compartments. Cell 40: 635–643, 1985.
 9. Anfinson, C. B. Principles that govern the folding of protein chains. Science 181: 223–230, 1973.
 10. Anthony, C., C. Cibert, G. Géraud, A. Santa‐Maria, B. Maro, V. Mayau, and B. Goud. The small GTP‐binding protein rab6p is distributed from medial Golgi to the trans‐Golgi network as determined by a confocal microscopy approach. J. Cell Sci. 103: 785–796, 1992.
 11. Aoki, D., N. Lee, N. Yamaguchi, C. Dubois, and M. N. Fukuda. Golgi retention of a trans‐Golgi membrane protein, galactosyl‐transferase, requires cysteine and histidine residues within the transmembrane‐anchoring domain. Proc. Natl. Acad. Sci. U.S.A. 89: 4319–4323, 1992.
 12. Arar, C., C. Carpentier, J.‐P. le Caer, M. Monsigny, A. Legrand, and A.‐C. Roche. ERGIC‐53, a membrane protein of the endoplasmic reticulum‐Golgi intermediate compartment, is identical to MR60, an intracellular mannose‐specific lectin of myelomonocytic cells. J. Biol. Chem. 270: 3551–3553, 1995.
 13. Arber, S., K.‐H. Krause, and P. Caroni. S‐cyclophilin is retained intracellularly via a unique COOH‐terminal sequence and colocalizes with the calcium storage protein calreticulin. J. Cell Biol. 116: 113–125, 1992.
 14. Aridor, M., S. I. Bannykh, T. Rowe, and W. E. Balch. Sequential coupling between Copll and Copl vesicle coats in endoplasmic reticulum to Golgi transport. J. Cell Biol. 131: 875–893, 1995.
 15. Armstrong, J., and S. Patel. The Golgi sorting domain of corona virus E1 protein. J. Cell Sci. 98: 567–575, 1991.
 16. Bacon, R. A., A. Salminen, H. Ruohola, P. Novick, and S. Ferro‐Novick. The GTP‐binding protein Ypt1 is required for transport in vitro: The Golgi apparatus is defective in ypt1 mutants. J. Cell Biol. 109: 1015–1022, 1989.
 17. Baker, D., L. Hicke, M. Rexach, M. Schleyer, and R. Schekman. Reconstitution of Sec gene product‐dependent intercompartmental protein transport. Cell 54: 335–344, 1988.
 18. Baker, D., L. Wuestenhube, R. Schekman, D. Botstein, and N. Segev. GTP‐binding Ypt1 protein and Ca2+ function independently in a cell‐free protein transport reaction. Proc. Natl. Acad. Sci. U.S.A. 87: 355–359, 1990.
 19. Balch, W. E., W. G. Dunphy, W. A. Braell, and J. E. Rothman. Reconstitution of the transport of protein between successive compartments of the Golgi measured by the coupled incorporation of N‐acetylglucosamine. Cell 39: 405–416, 1984.
 20. Balch, W. E., R. A. Kahn, and R. Schwaninger. ADP‐ribosylation factor is required for vesicular trafficking between the endoplasmic reticulum and the cis‐Golgi compartment. J. Biol. Chem. 267: 13053–13061, 1992.
 21. Balch, W. E., J. M. McCaffery, H. Plutner, and M. G. Farquhar. Vesicular stomatitis virus glycoprotein is sorted and concentrated during export from the endoplasmic reticulum. Cell 76: 841–852, 1994.
 22. Balch, W. E. and M. G. Farquhar. Beyond bulk flow. Trends Cell Biol. 5: 16–19, 1995.
 23. Banfield, D. K., M. J. Lewis, C. Rabouille, G. Warren, and H. R. Pelham. Localization of Sed5, a putative vesicle targeting molecule, to the cis‐Golgi network involves both its transmembrane and cytoplasmic domains. J. Cell Biol. 127: 357–371, 1994.
 24. Banfield, D. K., M. J. Lewis, and H.R.B. Pelham. A SNARE‐like protein required for traffic through the Golgi complex. Nature 375: 806–809, 1995.
 25. Bannykh, S., M. Aridor, H. Plutner, T. Rowe, and W. E. Balch. Regulated export of cargo from the endoplasmic reticulum of mammalian cells. Cold Spring Harbor; Symp. Quantitat. Biol. 60: 127–137, 1995.
 26. Barlowe, C., and R. Schekman. Sec12 encodes a guanine‐nucleotide‐exchange factor essential for transport vesicle budding from the ER. Nature 365: 347–349, 1993.
 27. Barlowe, C., C. d'Enfert, and R. Schekman. Purification and characterization of Sar1p, a small GTP‐binding protein required for transport vesicle formation from the endoplasmic reticulum. J. Biol. Chem. 268: 873–879, 1993.
 28. Barlowe, C., L. Orci, T. Yeung, M. Hosobuchi, S. Hamamoto, N. Salama, M. F. Rexach, M. Ravazzola, M. Amherdt, and R. Schekman. COPII: A membrane coat formed by sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell 77: 895–907, 1994.
 29. Barr, F. A., A. Leyte, and W. B. Huttner. Trimeric G proteins and vesicle formation. Trends Cell Biol. 2: 91–94, 1992.
 30. Bauerfeind, R., and W. B. Huttner. Biogenesis of constitutive secretory vesicles, secretory granules and synaptic vesicles. Curr. Opin. Cell Biol. 5: 628–635, 1993.
 31. Beck, K. A., J. A. Buchanan, V. Malhotra, and W. J. Nelson. Golgi spectrin: identification of an erythroid beta‐spectrin homolog associated with the Golgi complex. J. Cell Biol. 127: 707–723, 1994.
 32. Becker, B., B. Bölinger, and M. Melkonian. Anterograde transport of algal scales through the Golgi complex is not mediated by vesicles. Trends Cell Biol. 5: 305–307, 1995.
 33. Beckers, C.J.M., D. S. Keller, and W. E. Balch. Semi‐intact cells permeable to macromolecules: use in reconstitution of protein transport from the endoplasmic reticulum to the Golgi complex. Cell 50: 523–534, 1987.
 34. Beckers, C.J.M., and W. E. Balch. Calcium and GTP: essential components in vesicular trafficking between the endoplasmic reticulum and Golgi apparatus. J. Cell Biol. 108: 1245–1256, 1989.
 35. Beckers, C.J.M., H. Plutner, H. W. Davidson, and W. E. Balch. Sequential intermediates in the transport of protein between the endoplasmic reticulum and the Golgi. J. Biol. Chem. 265: 18298–18310, 1990.
 36. Bednarek, S. Y., M. Ravazzola, M. Hosobuchi, M. Amherdt, A. Perrelet, R. Schekman, and L. Orci. COPI‐ and COPII‐coated vesicles bud directly from the endoplasmic reticulum in yeast. Cell 83: 1183–1196, 1995.
 37. Bennet, M. K., and R. H. Scheller. A molecular description of synaptic vesicle membrane trafficking. Annu. Rev. Biochem. 63: 63–100, 1994.
 38. Bergeron, J.J.M., G. J. Kotwal, G. Levine, P. Bilan, R. Rachubinski, M. Hamilton, G. C. Shore, and H. P. Gosh. Intracellular transport of the transmembrane glycoprotein G of vesicular stomatitis virus through the Golgi apparatus as visualized by electron microscopy radioautography. J. Cell Biol. 94: 36–41, 1982.
 39. Bergeron, J.J.M., M. B. Brenner, D. Y. Thomas, and D. B. Williams. Calnexin: a membrane‐bound chaperone of the endoplasmic reticulum. Trends Biol. Sci. 19: 124–128, 1994.
 40. Bergmann, J. E., K. T. Tokuyasu, and S. J. Singer. Passage of an integral membrane protein, the vesicular stomatitis virus glycoprotein, through the Golgi apparatus en route to the plasma membrane. Proc. Natl Acad. Sci. U.S.A. 78: 1746–1750, 1981.
 41. Bergmann, J. E., and P. J. Fusco. The G protein of vesicular stomatitis virus has free access into and egress from the smooth endoplasmic reticulum of UT‐1 cells. J. Cell Biol. 110: 625–635, 1990.
 42. Berridge, M. J. Inositol trisphosphate and calcium signalling. Nature 361: 315–325, 1993.
 43. Bigay, J., P. Deterre, C. Pfister, and M. Chabre. Fluoride complexes of aluminum and beryllium act on G proteins as reversibly bound analogues of the gamma phosphate of GTP. EMBO J. 6: 2907–2913, 1987.
 44. Blond‐Elguindi, S., S. E. Cwirla, W. J. Dower, R. J. Lipshutz, S. R. Sprang, J. F. Sambrook, and M.‐J. Gething. Affinity panning of a library of peptides displayed on bacteriophages reveals the binding specificity of BiP. Cell 75: 717–728, 1993.
 45. Bloom, G. S., and T. A. Brashear. A novel 58‐kDa protein associated with the Golgi apparatus and microtubules. J. Biol. Chem. 264: 16083–16092, 1989.
 46. Bole, D. G., Dowin, R., Doriaux, M., and J. D. Jamieson. Immunocytochemical localization of BiP to the rough endoplasmic reticulum: Evidence for protein sorting by selective retention. J. Histochem. Cytochem. 12: 1817–1823, 1989.
 47. Bomsel, M. and K. Mostov. Role of heterotrimeric G proteins in membrane traffic. Mol. Biol. Cell. 3: 1317–1328, 1992.
 48. Bonatti, S., G. Migliaccio, and K. Simons. Palmitylation of viral membrane glycoproteins takes place after exit from the endoplasmic reticulum. J. Biol. Chem. 264: 12590–12595, 1989.
 49. Booth, C., and G.L.E. Koch. Perturbation of cellular calcium induces secretion of luminal ER proteins. Cell 59: 729–737, 1989.
 50. Bos, K., C. Wraight, and K. K. Stanley. TGN38 is maintained in the trans‐Golgi network by a tyrosine‐containing motif in the cytoplasmic domain. EMBO J. 12: 2219–2228, 1993.
 51. Bose, S., and R. B. Freedman. Peptidyl prolyl cis‐trans‐isomerase activity associated with the lumen of the endoplasmic reticulum. Biochem. J. 300: 865–870, 1994.
 52. Bose, S., M. Mücke, and R. B. Freedman. The characterization of a cyclophilin‐type peptidyl prolyl cis‐trans‐isomerase from the endoplasmic reticulum lumen. Biochem. J. 300: 871–875, 1994.
 53. Bosshart, H., J. Humphrey, E. Deignan, J. Davidson, J. Drazba, L. Yuan, V. Oorschot, P. J. Peters, and J. S. Bonifacino. The cytoplasmic domain mediates localization of furin to the trans‐Golgi network en route to the endosomal/lysosomal system. J. Cell Biol. 126: 1157–1172, 1994.
 54. Bourne, H. R., D. A. Sanders, and F. McCormick. The GTPase superfamiliy: conserved structure and molecular mechanism. Nature 349: 117–127, 1991.
 55. Braakman, I, J. Helenius, and A. Helenius. Role of ATP and disulphide bonds during protein folding in the endoplasmic reticulum. Nature 356: 260–262, 1992.
 56. Braakman, I, J. Helenius, and A. Helenius. Manipulating disulfide bond formation and protein folding in the endoplasmic reticulum. EMBO J. 11: 1717–1722, 1992.
 57. Breitfeld, P. P., W. McKinnon, and K. E. Mostov. Effect of nocodazole on vesicular traffic to the apical and basolateral surfaces of polarized MDCK cells. J. Cell Biol. 111: 2365–2373, 1990.
 58. Bretscher, M. S., and S. Munro. Cholesterol and the Golgi apparatus. Science 261: 1280–1281, 1993.
 59. Brown, M. S., and J. L. Goldstein. Protein prenylation. Mad bet for rab. Nature 366: 14–15, 1993.
 60. Brown, H. A., S. Gutowski, C. R. Moomaw, C. Slaughter, and P. C. Sternweis. ADP‐ribosylation factor, a small GTP‐dependent regulatory protein, stimulates phospholipase D activity. Cell 75: 1137–1144, 1993.
 61. Burke, J., J. M. Pettitt, H. Schachter, M. Sarkar, and P. A. Gleeson. The transmembrane and flanking sequences of beta 1,2‐N‐acetylglucosaminyltransferase I specify medial Golgi localization. J. Biol. Chem. 267: 24433–24440, 1992.
 62. Burke, J., J. M. Pettitt, D. Humphris, and P. A. Gleeson. Medial‐Golgi retention of N‐acetylglucosyminyltransferase I. Contribution from all domains of the enzyme. J. Biol. Chem. 269: 12049–12059, 1994.
 63. Burkhardt, J. K. In search of membrane receptors for microtubule‐based motors—Is kinectin a kinesin receptor? Trends Cell Biol. 6: 127–130, 1996.
 64. Burns, K., and M. Michalak. Interactions of calreticulin with proteins of the endoplasmic and sarcoplasmic reticulum membranes. FEBS Lett. 318: 181–185, 1993.
 65. Cannon, K. S., D. N. Hebert, and A. Helenius. Glycan‐dependent and independent association of vesicular stomatitis virus G protein with calnexin. J. Biol. Chem. 271: 1428–14284, 1996.
 66. Chaudhuri, M. M., P. N. Tonin, W. H. Lewis, and P. R. Srinivasan. The gene for a novel protein, a member of the protein disulphide isomerase/form I phosphoinositide‐specific phospholipase c family, is amplified in hydroxyurea‐resistant cells. Biochem. J 281: 645–650, 1992.
 67. Chavrier, P., R. G. Parton, H.‐P. Hauri, K. Simons, and M. Zerial. Localization of low molecular weight GTP binding proteins to exocytic and endocytic compartments. Cell 62: 317–329, 1990.
 68. Chege, N. W., and S. R. Pfeffer. Compartmentation of the Golgi complex: brefeldin A distinguishes trans‐Golgi cisternae from the trans‐Golgi network. J. Cell Biol. 111: 893–899, 1990.
 69. Chen, Y.‐G., and D. Shields. ADP‐ribosylation factor‐1 stimulates formation of nascent secretory vesicles from the trans‐Golgi Network of endocrine cells. J. Biol. Chem. 271: 5297–5300, 1996.
 70. Cheng, S. H., R. J. Gregory, J. Marshall, S. Paul, D. W. Souza, G. A. White, C. R. O'Riordan, and A. E. Smith. Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell 63: 827–834, 1990.
 71. Clairmont, C. A., A. DeMaio, and C. B. Hirschberg. Translocation of ATP into the lumen of rough endoplasmic reticulum‐derived vesicles and its binding to luminal proteins including BiP (GRP 78) and GRP 94. J. Biol. Chem. 267: 3983–3990, 1992.
 72. Clary, D. O., I. C. Griff, and J. E. Rothman. SNAPs, a family of NSF attachment proteins involved in intracellular membrane fusion in animals and yeast. Cell 61: 709–721, 1990.
 73. Cole, N. B., C. L. Smith, N. Sciaky, M. Terasaki, M. Edidin, J. Lippincott‐Schwartz. Diffusional mobility of Golgi proteins in membranes of living cells. Science 273: 797–801, 1996.
 74. Colombo, M. I., Inglese, J., C. D'Souza‐Schorey, W. Beron, and P. D. Stahl. Heterotrimeric G proteins interact with the small GTPase ARF. Possibilities for the regulation of vesicular traffic. J. Biol. Chem. 270: 24564–24571, 1995.
 75. Colley, K. J., E. V. Lee, and J. C. Paulson. The signal anchor and stem regions of the beta‐galactoside alpha2,6‐sialytransferase may each act to localize the enzyme to the Golgi apparatus. J. Biol. Chem. 267: 7784–7793, 1992.
 76. Conckcroft, S., G.M.H. Thomas, A. Fensome, B. Geny, E. Cunningham, I. Gout, I. Hiles, N. F. Totty, O. Truong, and J. J. Hsuan. Phospholipase D: A downstream effector of ARF in granulocytes. Science 263: 523–526, 1994.
 77. Conolly, C. N., C. E. Futter, A. Gibson, C. R. Hopkins, and D. F. Cutler. Targeting into and out of the Golgi complex studied by transfecting cells with cDNAs encoding horseradish peroxidase. J. Cell. Biol. 127: 641–652, 1994.
 78. Cooper, A., and H. Bussey. Yeast Kex1p is a Golgi‐associated membrane protein: deletions in a cytoplasmic targeting domain result in mislocalization to the vacuolar membrane. J. Cell Biol. 119: 1459–1468, 1992.
 79. Cooper, M. S., A. H. Cornell‐Bell, A. Chernjavsky, J. W. Dani, and S. J. Smith. Tubulovesicular processes emerge from the trans‐Golgi cisternae, extend along microtubules, and interlink adjacent trans‐Golgi elements into a reticulum. Cell 61: 135–145, 1990.
 80. Corthesy‐Theulaz, I., A. Pauloin, and S. R. Pfeffer. Cytoplasmic dynein participates in the centrosomal localization of the Golgi complex. J. Cell Biol. 118: 1333–1345, 1992.
 81. Cosson, P., and F. Letourneur. Coatomer interaction with dilysine endoplasmic reticulum retention motifs. Science 263: 1629–1631, 1994.
 82. Cosson, P., C. Demolliere, S. Hennecke, R. Duden, and F. Letourneur. Delta‐ and zeta‐COP, two coatomer subunits homologous to clathrin‐associated proteins, are involved in ER retrieval. EMBO J. 15: 1792–1798, 1996.
 83. Cox, J. S., C. E. Shamu, and P. Walter. Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell 73: 1197–1206, 1993.
 84. Craig, E. A., J. S. Weissman, and A. L. Horwich. Heat shock proteins and molecular chaperones: mediators of protein conformation and turnover in the cell. Cell 78: 365–372, 1994.
 85. Crimaudo, C., M. Hortsch, H. Gausepohl, and D. I. Meyer. Human ribophorins I and II: the primary structure and membrane topology of two highly conserved rough endoplasmic reticulum‐specific glycoproteins. EMBO J. 6: 75–82, 1987.
 86. Dabora, S. L., and M. P. Sheetz. The microtubule‐dependent formation of a tubulovesicular network with characteristics of the ER from cultured cell extracts. Cell 54: 27–35, 1988.
 87. Dahdal, R. Y., and K. J. Colley. Specific sequences in the signal anchor of the beta‐galactoside alpha‐2,6‐sialyltransferase are not essential for Golgi localization. J. Biol. Chem. 268: 26310–26319, 1993.
 88. Dascher, C., and W. E. Balch. Dominant inhibitory mutants of Arf1 block endoplasmic reticulum to Golgi transport and trigger disassembly of the Golgi apparatus. J. Biol. Chem. 269: 1437–1448, 1994.
 89. De Camilli, P., S. D. Emr, P. S. McPherson, and P. Novick. Phosphoinositides as regulators in membrane traffic. Science 271: 1533–1539, 1996.
 90. De Lemos‐Chiarandini, C., N. E. Ivessa, V. H. Black, Y. S. Tsao, I. Gumper, and G. Kreibich. A Golgi‐related structure remains after the brefeldin A‐induced fusion of an ER‐Golgi hybrid compartment. Eur. J. Cell Biol. 58: 187–201, 1992.
 91. Denker, S. P., J. M. McCaffery, G. E. Palade, P. A. Insel, and M. G. Farquhar. Differential distribution of alpha and beta/gamma subunits of heterotrimeric G proteins on Golgi membranes of the exocrine pancreas. J. Cell Biol. 133: 1027–1040, 1996.
 92. Denning, G. M., M. P. Anderson, J. F. Amara, J. Marshall, A. E. Smith, and M. J. Welsh. Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature‐sensitive. Nature 358: 761–764, 1992.
 93. Denning, G. M., L. S. Ostegaard, and M. J. Welsh. Abnormal localization of cystic fibrosis transmembrane conductance regulator in primary cultures of cystic fibrosis airway. J. Cell Biol. 118: 551–559 1992.
 94. Deschuyteneer, M., A. E. Eckhardt, J. Roth, and R. L. Hill. The subcellular localization of apomucin and non‐reducing terminal N‐acetylgalactosamine in porcine submaxillary glands. J. Biol. Chem. 263: 2452, 1986.
 95. DeTomaso, A. W., G. Blanco, and R. W. Mercer. The alpha and beta subunits of the Na,K‐ATPase can assemble at the plasma membrane into functional enzyme. J. Cell Biol. 127: 55–69, 1994.
 96. Doms, R. W., G. Russ, and J. W. Yewdell. Brefeldin A redistributes resident and itinerant Golgi proteins to the endoplasmic reticulum. J. Cell Biol. 109: 61–72, 1989.
 97. Donaldson, J. G., and R. D. Klausner. ARF: a key regulatory switch in membrane traffic and organelle structure. Curr. Opin. Cell Biol. 6: 527–532, 1994.
 98. Donaldson, J. G., J. Lippincott‐Schwartz, and R. D. Klausner. Guanine nucleotides modulate the effects of brefeldin A in semipermeable cells: regulation of the association of a 110‐kD peripheral membrane protein with the Golgi apparatus. J. Cell Biol. 112: 579–588, 1991.
 99. Donaldson, J. G., R. A. Kahn, J. Lippincott‐Schwartz, and R. D. Klausner. Binding of ARF and beta‐COP to Golgi membranes: possible regulation by a trimeric G protein. Science 254: 1197–1199, 1991.
 100. Donaldson, J. G., D. Finazzi, and R. D. Klausner. Brefeldin A inhibits Golgi‐membrane‐catalized exchange of guanine nucleotide onto ARF protein. Nature 360: 350–352, 1992.
 101. Donaldson, J. G., D. Cassel, R. A. Kahn, and R. D. Klausner. ADP‐ribosylation factor, a small GTP‐binding protein, is required for binding of the coatomer protein beta‐COP to Golgi membranes. Proc. Natl. Acad. Sci. U.S.A. 89: 6408–6412, 1992.
 102. Duden, R., G. Griffiths, R. Frank, P. Argos, and T. E. Kreis. Beta‐COP, a 110 kD protein associated with non‐clathrin‐coated vesicles and the Golgi complex, shows homology to beta‐adaptin. Cell 64: 649–665, 1991.
 103. Duden, R., M. Hosobuchi, S. Hamamoto, W. Winey, B. Byers, and R. Schekman. Yeast beta‐ and beta′‐coat proteins (COP). Two coatomer subunits essential for endoplasmic reticulum‐to‐Golgi protein traffic. J. Biol. Chem. 269: 24486–24495, 1994.
 104. Dunphy, W. G., and J. E. Rothman. Compartmentation of asparagine‐linked oligosaccharide processing in the Golgi apparatus. J. Cell Biol. 97: 270–275, 1983.
 105. Dunphy, W. G., and J. E. Rothman. Compartmental organization of the Golgi stack. Cell 42: 13–21, 1985.
 106. Dunphy, W. G., R. Brands, and J. E. Rothman. Attachment of terminal N‐acetylglucosamine to asparagine‐linked oligosaccharides occurs in central cisternae of the Golgi stack. Cell 40: 463–472, 1985.
 107. Eilers, U., J. Klumperman, and H.‐P. Hauri. Nocodazole, a microtubule‐active drug, selectively interferes with apical protein delivery in cultured intestinal epithelial cells (Caco‐2). J. Cell Biol. 108: 13–22, 1989.
 108. Elazar, Z., L. Orci, J. Ostermann, M. Amherdt, G. Tanigawa, and J. E. Rothman. ADP‐ribosylation factor and coatomer couple fusion to vesicle budding. Cell Biol. 124: 415–424, 1994.
 109. Elazar, Z., T. Mayer, and J. E. Rothman. Removal of rab GTP‐binding proteins from Golgi membranes by GDP dissociation inhibitor inhibits inter‐cisternal transport in the Golgi stack. J. Biol. Chem. 269: 794–797, 1994.
 110. Ellinger, A., and M. Pavelka. Subdomains of the rough endoplasmic reticulum in colon goblet cells of the rat: lectin‐cytochemical characterization. J. Histochem. Cytochem. 40: 919–930, 1992.
 111. Farquhar, M. G. Progress in unraveling pathways of Golgi traffic. Annu Rev. Cell Biol. 1: 447–488, 1985.
 112. Ferro‐Novick, S., and P. Novick. The role of GTP‐binding proteins in transport along the exocytic pathway. Annu. Rev. Cell Biol. 9: 575–599, 1993.
 113. Ferro‐Novick, S., and R. Jahn. Vesicle fusion from yeast to man. Nature 370: 191–193, 1994.
 114. Fiedler, K., and K. Simons. A putative novel class of animal lectins in the secretory pathway homologous to leguminous lectins. Cell 77: 625–626, 1994.
 115. Fiedler, K., R. G. Parton, R. Kellner, T. Etzold, and K. Simons. VIP36, a novel component of glycolipid rafts and exocytic carrier vesicles in epithelial cells. EMBO J. 13: 1729–1740, 1994.
 116. Finazzi, D., D. Cassel, J. G. Donaldson, and R. D. Klausner. Aluminum fluoride acts on the reversibility of ARF‐1 dependent coat protein binding to Golgi membranes J. Biol. Chem. 269: 13325–13330, 1994.
 117. Flynn, G. C., J. Pohl, M. T. Flocco, and J. E. Rothman. Peptide‐binding specificity of the molecular chaperone BiP. Nature 353: 726–731, 1991.
 118. Fournier, T., N. Mejdoubi, C. Lapoumeroulie, J. Hamelin, J. Elion, G. Durand, and D. Porquet. Translational regulation of rat alpha1‐acid glycoprotein gene by phenobarbital. J. Biol. Chem. 269: 27175–27178, 1994.
 119. Fra, A. M., C. Fagioli, D. Finazzi, R. Sitia, and C. M. Alberini. Quality control of ER synthesized proteins: an exposed thiol group as a three‐way switch mediating assembly, retention and degradation. EMBO J. 12: 4755–4761, 1993.
 120. Franco, M., S. Paris, M. Chabre. The small G‐protein ARF1GDP binds to the Gtbeta/gamma subunit of transducin, but not to GtalphaGDP‐Gtbeta/gamma. FEBS Lett. 362: 286–290, 1995.
 121. Fransen, J.A.M., H.‐P. Hauri, L. A. Ginsel, and H. Y. Naim. Naturally occurring mutations in intestinal sucrase‐isomaltase provide evidence for the existence of an intracellular sorting signal in the isomaltase subunit. J. Cell Biol. 115: 45–57, 1991.
 122. Freedman, R. B., Protein folding in the cell. In: Protein Folding, edited by T. E. Creighton. New York: W. H. Freeman and Company, p. 455–539, 1992.
 123. Freedman, R. B., T. R. Hirst, and M. F. Tuite. Protein disulphide isomerase: building bridges in protein folding. Trends Biochem. Sci. 19: 331–336, 1994.
 124. Fries, E., and J. E. Rothman. Transport of vesicular stomatitis virus glycoprotein in a cell‐free extract. Proc. Natl. Acad. Sci. U.S.A. 77: 3870–3874, 1980.
 125. Füllekrug, J., B. Sönnichsen, U. Wünsch, K. Arseven, P. Nguyen Van, H.‐D. Söling, and G. Mieskes. CaBP1, a calcium binding protein of the thioredoxin familiy, is a resident KDEL protein of the ER and not of the intermediate compartment. J. Cell Sci. 107: 2719–2727, 1994.
 126. Futerman, A. H., B. Stieger, A. L. Hubbard, and R. E. Pagano. Sphingomyelin synthesis in rat liver occurs predominantly at the cis and medial cisternae of the Golgi apparatus. J. Biol. Chem. 265: 8650–8657, 1990.
 127. Galat, A. Peptidylproline cis‐trans‐isomerases: immunophilins. Eur. J. Biochem. 216: 689–707, 1993.
 128. Galteau, M.‐M., B. Antoine, and H. Reggio. Epoxide hydrolase is a marker for the smooth endoplasmic reticulum in rat liver. EMBO J. 4: 2793–2800, 1985.
 129. Gaut, J. R., and L. M. Hendershot. The modification and assembly of proteins in the endoplasmic reticulum. Curr. Opin. Cell Biol. 5: 589–595, 1993.
 130. Gaynor, E. C., S. te Heesen, T. R. Graham, M. Aebi, and S. D. Emr. Signal‐mediated retrieval of a membrane protein from the Golgi to the ER in yeast. J. Cell Biol. 127: 653–665, 1994.
 131. Gerich, B., L. Orci, H. Tschochner, F. Lottspeich, M. Ravazzola, M. Amherdt, F. Wieland, and C. Harter. Non‐clathrin‐coat protein α is a conserved subunit of coatomer and in Saccharomyces cerevisiae is essential for growth. Proc. Natl. Acad. Sci. U.S.A.: 3229–3233, 1995.
 132. Gething, M.‐J., and J. Sambrook. Protein folding in the cell. Nature 355: 33–45, 1992.
 133. Geuze, H. J., and D. J. Morré. Trans‐Golgi reticulum. J. Electron Microsc. Tech. 17: 24–34, 1991.
 134. Gilbert, H. F. Molecular and cellular aspects of thiol‐disulfied exchange. Adv. Enzymol. 63: 69–172, 1990.
 135. Gilbert, T., A. LeBivic, A. Quaroni, and E. Rodriguez‐Boulan. Microtubular organization and its involvement in the biogenetic pathways of plasma membrane proteins in Caco‐2 intestinal epithelial cells. J. Cell. Biol. 113: 275–288, 1991.
 136. Glickman, J. N., and S. Kornfeld. Mannose 6‐phosphate‐independent targeting of lysosomal enzymes in I‐cell disease B lymphoblasts. J. Cell Biol. 123: 99–108, 1993.
 137. Goldberg, D. E., and S. Kornfeld. Evidence for extensive subcellular organization and asparagine‐linked oligosaccharide processing and lysosomal enzyme phosphorylation. J. Biol. Chem. 258: 3159–3165, 1983.
 138. Goldstein, J. L., and M. S. Brown. Regulation of the mevalonate pathway. Nature 343: 425–430, 1990.
 139. Goud, B., A. Zahraoui, A. Tavitian, and J. Saraste. Small GTP‐binding protein associated with the Golgi cisternae. Nature 345: 553–556, 1990.
 140. Graham, K. S., A. Let, and R. N. Sifers. Accumulation of the insoluble PiZ variant of human alpha‐1‐antitrypsin within the hepatic endoplasmic reticulum does not elevate the steady‐state level of BiP. J. Biol. Chem. 265: 20463–20468, 1990.
 141. Green, J., G. Griffiths, P. Quinn, and G. Warren. Passage of viral membrane proteins through the Golgi complex. J. Mol. Biol. 152: 663–698, 1981.
 142. Griffiths, G., and K. Simons. The trans Golgi network: sorting at the exit site of the Golgi complex. Science 234: 438–443, 1986.
 143. Griffiths, G., S. D. Fuller, R. Back, M. Hollinshead, S. Pfeiffer, and K. Simons. The dynamic nature of the Golgi complex. J. Cell Biol. 108: 277–297, 1989.
 144. Griffiths, G., and J. Gruenberg. The arguments for pre‐existing early and late endosomes. Trends Cell Biol. 1: 5–9, 1991.
 145. Griffiths, G., M. Ericsson, J. Krjinse‐Locker, T. Nilsson, B. Gould, H.‐D. Söling, B. L. Tang, S. H. Wong, and W. Hong. Localization of the Lys, Asp, Glu, Leu tetrapeptide receptor to the Golgi complex and the intermediate compartment in mammalian cells. J. Cell Biol. 127: 1557–1574, 1994.
 146. Griffiths, G., R. W. Doms, T. Mayhew, and J. Lucocq. The bulk flow hypothesis: not quite the end. Trends Cell Biol. 5: 9–13, 1995.
 147. Griffiths, G., R. Pepperkok, J. Krijnse Locker, and T. E. Kreis. Immunocytochemical localization of beta‐COP to the ER‐Golgi boundary and the TGN. J. Cell Sci. 108: 2839–2856, 1995.
 148. Gruenberg, J., and K. E. Howell. Membrane traffic in endocytosis: Insights from cell‐free assays. Annu. Rev. Cell Biol. 5: 453–481, 1989.
 149. Günther, R., M. Srinivasan, S. Haugejorden, M. Green, I. M. Ehbrecht, and H. Küntzel. Functional replacement of Sccharomyces cerevisiae Trg1/Pdi1 protein by members of the mammalian protein disulfide isomerase. J. Biol. Chem. 268: 7728–7732, 1993.
 150. Guo, Q., E. Vasile, and M. Krieger. Disruptions in Golgi structure and membrane traffic in a conditional lethal mammalian cell mutant are corrected by epsilon‐COP. J. Cell Biol. 125: 1213–1224, 1994.
 151. Hamm‐Alvarez, S. F., P. Y. Kim, and M. P. Scheetz. Regulation of vesicle transport in CV‐1 cells and extracts. J. Cell Sci. 106: 955–966, 1993.
 152. Hammond, C., and A. Helenius. Quality control in the secretory pathway: retention of a misfolded viral membrane glycoprotein involves recycling between the ER, intermediate compartment, and Golgi apparatus. J. Cell Biol. 126: 41–52, 1994.
 153. Hammond, C. and A. Helenius. A chaperone with a sweet tooth. Curr. Biol. 3: 884–886, 1994.
 154. Hammond, C., and A. Helenius. Folding of VSV G protein: Sequential interaction with BiP and calnexin. Science 266: 456–458, 1994.
 155. Hammond, C., I. Braakman, and A. Helenius. Role of N‐linked oligosaccharide recognition, glucose trimming, and calnexin in glycoprotein folding and quality control. Proc. Natl. Acad. Sci. U.S.A. 91: 913–917, 1994.
 156. Hammond, C. and Helenius, A. Quality control in the secretory pathway. Curr. Opin. Cell Biol. 7: 523–529, 1995.
 157. Hara‐Kuge, S., O. Kuge, L. Orci, M. Amherdt, M. Ravazzola, F. T. Wieland, and J. E. Rothman. En bloc incorporation of coatomer subunits during the assembly of COP‐coated vesicles. J. Cell. Biol. 124: 883–892, 1994.
 158. Hardwick, K. G., and H.R.B. Pelham. SED5 encodes a 39‐kD integral membrane protein required for vesicular transport between the ER and the Golgi complex. J. Cell Biol. 119: 513–521, 1992.
 159. Hardwick, K. G., J. C. Broothroyd, A. D. Rudner, and H.R.B. Pelham. Genes that allow yeast cells to grow in the absence of the HDEL receptor. EMBO J. 11: 4187–4195, 1992.
 160. Harrison‐Lavoie, K. J., V. A. Lewis, G. M. Hynes, K. S. Collison, N. Nutland, and K. R. Willison. A 102 kDA subunit of a Golgi‐associated particle has homology to beta‐subunits of trimeric G proteins. EMBO J. 12: 2847–2853, 1993.
 161. Harter, C., E. Draken, F. Lottspeich, and F. T. Wieland. Yeast coatomer contains a subunit homologous to mammalian beta′‐COP. FEBS Lett. 332: 71–73, 1993.
 162. Hartl, F.‐U., R. Hlodan, and T. Langer. Molecular chaperones in protein folding: the art of avoiding sticky situations. Trends Biochem. Sci. 19: 20–25, 1994.
 163. Haubruck, H. R. Prange, C. Vorgias, and D. Gallwitz. The ras‐related mouse ypt1 protein can functionally replace the YPT1 gene product in yeast. EMBO J. 8: 1427–1432, 1989.
 164. Haugejorden, S. M., M. Srinivasan, and M. Green. Analysis of the retention signals of two resident luminal endoplasmic reticulum proteins by in vitro mutagenesis. J. Biol. Chem. 266: 6015–6018, 1991.
 165. Hauri, H.‐P., J. Roth, E. Sterchi, and M. Lentze. Transport to cell surface of intestinal sucrase‐isomaltase is blocked in the Golgi apparatus in a patient with congenital sucrase‐isomaltase deficiency. Proc. Natl. Acad. Sci. U.S.A. 82: 4423–4427, 1985.
 166. Hauri, H.‐P., E. E. Sterchi, D. Bienz, J. A. M. Fransen, and A. Marxer. Expression and intracellular transport of microvillus membrane hydrolases in human intestinal epithelial cells. J. Cell Biol. 101: 838–851, 1985.
 167. Hauri, H.‐P., and A. Schweizer. The endoplasmic reticulum—Golgi intermediate compartment. Curr. Opin. Cell Biol. 4: 600–608, 1992.
 168. Hebert, D. N., B. Foellmer, and A. Helenius. Glucose trimming and reglucosylation determine glycoprotein association with calnexin. Cell 81: 425–433, 1995.
 169. Hebert, D. H., J. F. Simons, J. R. Peterson, and A. Helenius. Calnexin, calreticulin, and Bip/Kar2p in protein folding. Cold Spring Harbor Symposium on Quantitative Biology 60: 405–415, 1995.
 170. Hebert, D. N., F. Foellmer, and A. Helenius. Calnexin and calreticulin promote folding, delay oligomerization and suppress degradation of influenza hemagglutinin in microsomes. EMBO J. 15: 2961–2968, 1996.
 171. Helenius, A., T. Marquardt, and I. Braakman. The endoplasmic reticulum as a protein‐folding compartment. Trends Cell. Biol. 2: 227–231, 1992.
 172. Helms, J. B., and J. E. Rothman. Inhibition by brefeldin A of a Golgi membrane enzyme that catalizes exchange of guanine nucleotide bound to ARF. Nature 360: 352–354, 1992.
 173. Helms, J. B., D. J. Palmer, and J. E. Rothman. Two distinct populations of ARF bound to Golgi membranes. J. Cell Biol. 121: 751–760, 1993.
 174. Hendricks, L. C., C. A. Gabel, K. Suh, and M. G. Farquhar. A 58‐kDa resident protein of the cis‐Golgi cisterna is not terminally glycosylated. J. Biol. Chem. 266: 17559–17565, 1991.
 175. Hendricks, L. C., S. L. McClanahan, M. McCaffery, G. E. Palade, and M. G. Farquhar. Golgi proteins persist in the tubulovesicular remnants found in brefeldin A‐treated pancreatic acinar cells. Eur. J. Cell Biol. 58: 202–213, 1992.
 176. Hendricks, L. C., M. McCaffery, G. E. Palade, and M. G. Farquhar. Disruption of endoplasmic reticulum to Golgi transport leads to the accumulation of large aggregates containing beta‐COP in pancreatic acinar cells. Mol. Biol. Cell. 4: 413–424, 1993.
 177. Hicke, L. and R. Schekman. Yeast sec23p acts in the cytoplasm to promote protein transport from the endoplasmic reticulum to the Golgi complex in vivo and in vitro. EMBO J. 8: 1677–1684, 1989.
 178. Hicke, L., T. Yoshihisa, and R. Schekman. Sec 23p and a novel 105 kD protein function as a multimeric complex to promote vesicle budding and protein transport from the ER. Mol. Cell Biol. 3: 667–676, 1992.
 179. Hidalgo, J., R. Garcia‐Navarro, F. Garcia‐Navarro, J. Perez‐Vilar, and A. Velasco. Presence of Golgi remnant membranes in the cytoplasm of brefeldin A‐treated cells. Eur. J. Cell Biol. 58: 214–227, 1992.
 180. Ho, W. C., V. J. Allen, G. van Meer, E. G. Berger, and T. E. Kreis. Reclustering of scattered Golgi elements occurs along microtubules. Eur. J. Cell Biol. 48: 250–263, 1989.
 181. Hobman, T. C., L. Woodward, and M. G. Farquhar. The rubella virus E1 glycoprotein is arrested in a novel post‐ER, pre‐Golgi compartment. J. Cell Biol. 118: 795–811, 1992.
 182. Hong, W. and B. L. Tang. Protein trafficking along the exocytic pathway. BioEssays 15: 231–238, 1993.
 183. Hortsch, M., G. Griffiths, and D. I. Meyer. Restriction of docking protein to the rough endoplasmic reticulum: Immunocytochemical localization in rat liver. Eur. J. Cell Biol. 38: 271–279, 1985.
 184. Hosobuchi, M., Kreis, T., and R. Schekman. Sec21 is a gene required for ER to Golgi transport that encodes a subunit of the yeast coatomer. Nature 360: 603–605, 1992.
 185. Hsu, V.W.L., L. C. Yuan, J. G. Nuchtern, J. Lippincott‐Schwartz, G. J. Hammerling, and R. D. Klausner. A recycling pathway between the endoplasmic reticulum and the Golgi apparatus for retention of unassembled MHC class I molecules. Nature 352: 441–444, 1991.
 186. Hsu, V. W., N. Shah, and R. D. Klausner. A brefeldin A‐like phenotype is induced by overexpression of a human ERD‐2 like protein, ELP1. Cell 69: 625–635, 1992.
 187. Hunziker, W., P. Male, and I. Mellman. Differential microtubule requirements for transctosis in MDCK cells. EMBO J. 9: 3515–3525, 1990.
 188. Huovila, A.‐P.J, A. M. Eder, and S. D. Fuller. Hepatitis B surface antigen assembles in a post‐ER, pre‐Golgi compartment. J. Cell Biol. 118: 1305–1320, 1992.
 189. Humphrey, J. S., P. J. Peters, L. C. Yuan, and J. S. Bonifacino. Localization of TGN38 to the trans‐Golgi network: Involvement of a cytoplasmic tyrosine‐containing sequence. J. Cell Biol. 120: 1123–1135, 1993.
 190. Hurtley, S. M, and A. Helenius. Protein oligomerization in the endoplasmic reticulum. Annu. Rev. Cell Biol. 5: 277–307, 1989.
 191. Huttner, W. B. and S. A. Tooze. Biosynthetic protein transport in the secretory pathway. Curr. Opin. Cell Biol. 1: 648–654, 1989.
 192. Hwang, C., A. J. Sinskey, and H. F. Lodish. Oxidized redox state of glutathione in the endoplasmic reticulum. Science 257: 1496–1502, 1992.
 193. Inoue, S., and R. D. Simoni. 3‐hydroxy‐3‐methylglutarylcoenzyme A reductase and T cell receptor alpha‐subunit are differentially degraded in the endoplasmic reticulum. J. Biol. Chem. 267: 9080–9086, 1992.
 194. Itin, C., R. Schindler, and H.‐P. Hauri. Targeting of protein ERGIC‐53 to the ER/ERGIC/cis‐Golgi recycling pathway. J. Cell Biol. 131: 57–67, 1995.
 195. Itin, C., F. Kappeler, A. D. Linstedt, and H.‐P. Hauri. A novel endocytosis signal related to the KKXX ER‐retrieval signal. EMBO J. 10: 2250–2256, 1995.
 196. Itin, C., M. Foguet, F. Kappeler, J. Klumperman, and H.‐P. Hauri. Recycling of ERGIC‐53 in the secretory pathway. Biochem. Soc. Trans. 23: 541–543, 1995.
 197. Itin, C., A.‐C. Roche, M. Monsigny, and H.‐P. Hauri. ERGIC‐53 is a functional mannose‐selective and calcium‐dependent human homologue of leguminous lectins. Mol. Biol. Cell. 7: 483–493, 1996.
 198. Jackson, M. R., T. Nilsson, and P. A. Peterson. Identification of a consensus motif for retention of transmembrane proteins in the endoplasmic reticulum. EMBO J. 9: 3153–3162, 1990.
 199. Jackson, M. R., T. Nilsson, and P. A. Peterson. Retrieval of transmembrane proteins to the endoplasmic reticulum. J. Cell Biol. 121: 317–333, 1993.
 200. Jackson, M. R., M. F. Cohen‐Doyle, P. A. Peterson, and D. B. Williams. Regulation of MHC class I transport by the molecular chaperone, calnexin (p88, IP90). Science 263: 384–387, 1994.
 201. Jaenike, R. Role of accessory proteins in protein folding. Curr. Opin. Struct. Biol. 3: 104–112, 1993.
 202. Jascur, T., K. Matter, and H.‐P. Hauri. Oligomerization and intracellular protein transport: Dimerization of intestinal dipeptidylpeptidase IV occurs in the Golgi apparatus. Biochemistry 30: 1908–1915, 1991.
 203. Jeckel, D., A. Karrenbauer, R. Birk, R. R. Schmidt, and F. Wieland. Sphingomyelin is synthesized in the cis‐Golgi. FEBS Lett. 261: 155–157, 1990.
 204. Jedd, G., C. Richardson, R. Litt, and N. Segev. The Ypt1 GTPase is essential for the first two steps of the yeast secretory pathway. J. Cell Biol. 131: 583–590, 1995.
 205. Jensen, T. J., M. A. Loo, S. Pind, D. B. Williams, A. L. Goldberg, and J. R. Riordan. Multiple proteolytic systems, including the proteasome, contribute to CFTR processing. Cell 83: 129–135, 1995.
 206. Jones, S. M., J. R. Crosby, J. Salamero, and K. E. Howell. A cytosolic complex of p62 and rab6 associates with TGN38/41 and is involved in budding of exocytic vesicles from the trans‐Golgi network. J. Cell Biol. 122: 775–788, 1993.
 207. Kahn, R. A. Fluoride is not an activator of the smaller (20–25 kDa) GTP‐binding proteins. J. Biol. Chem. 266: 15595–15597, 1991.
 208. Kahn, R. A., J. K. Yucel, and V. Malhotra. Arf signalling: a potential role for phospholipase D in membrane traffic. Cell 75: 1045–1048, 1993.
 209. Kaji, E. H., and H. F. Lodish. In vitro unfolding of retinolbinding protein by dithiotreitol. Endoplasmic reticulum‐associated factors. J. Biol. Chem. 268: 22195–22202, 1993.
 210. Kao, C.‐Y., and R. K. Draper. Retention of secretory proteins in an intermediate compartment and disappearance of the Golgi complex in and END4 mutant of Chinese hamster ovary cells. J. Cell Biol. 117: 701–715, 1992.
 211. Kappeler, F., C. Itin, R. Schindler, and H.‐P. Hauri. A dual role for COOH‐terminal lysine residues in pre‐Golgi retention and endocytosis of ERGIC‐53. J. Biol. Chem. 269: 6279–6281, 1994.
 212. Karrenbauer, A., D. Jeckel, W. Just, R. Birk, R. R. Schmidt, J. E. Rothman, and F. T. Wieland. The rate of bulk flow from the Golgi to the plasma membrane. Cell 63: 259–267, 1990.
 213. Kearse, K. P., D. B. Williams, and A. Singer. Persistence of glucose residues on core oligosaccharides prevents association of TCR‐alpha and TCR‐beta proteins with calnexin and results specifically in accelerated degradation of nascent TCR‐alpha proteins within the endoplasmic reticulum. EMBO J. 13: 3678–3686, 1994.
 214. Kelly, R. B. Microtubules membrane traffic, and cell organization. Cell 61: 5–7, 1990.
 215. Kim, S‐h., S‐j. Shin, and J‐s. Park. Identification of the ATP transporter of rat liver rough endoplasmic reticulum via photo‐affinity labeling and partial purification. Biochemistry 35: 5418–5425, 1996.
 216. Kivirikko, K. I., R. Myllyla, and T. Pihlajaniemi. Protein hydroxylation: prolyl 4‐hydroxylase, an enzyme with four cosubstrates and a multifunctional subunit. FASEB J. 3: 1609–1617, 1989.
 217. Klausner, R. D. and R. Sitia. Protein degradation in the endoplasmic reticulum. Cell 62: 611–614, 1990.
 218. Klausner, R. D., Lippincott‐Schwartz, J. S. Bonifacino Architectural editing: Regulating the surface expression of the multi‐component T‐cell antigen receptor. Curr. Top. Membr. Transport 36: 31–51, 1990.
 219. Klausner, R. D., J. G. Donaldson, and J. Lippincott‐Schwartz. Brefeldin A: insights into the control of membrane traffic and organelle structure. J. Cell Biol. 116: 1071–1080, 1992.
 220. Kleene, R., and E. G. Berger. The molecular and cell biology of glycosyltransferases. Biochim. Biophys Acta 1154: 283–325, 1993.
 221. Kleijmeer, M, A. Kelly, H. J. Geuze, J. W. Slot, A. Townsend, and J. Trowsdale. Location of MHC‐encoded transporters in the endoplasmic reticulum and cis‐Golgi. Nature 357: 342–344, 1992.
 222. Kochevar, D. T., and R. G. W. Anderson. Purified crystalloid endoplasmic reticulum from UT‐1 cells contains multiple proteins in addition to 3‐hydroxy‐3‐methylglutaryl coenzyme A reductase. J. Biol. Chem. 262: 10321–10326, 1987.
 223. Kornfeld, R. and S. Kornfeld. Assembly of asparagine‐linked oligosaccharides. Annu. Rev. Biochem. 54: 631–664, 1985.
 224. Kornfeld, S., and I. Mellman. The biogenesis of lysosomes. Annu. Rev. Cell Biol. 5: 483–525, 1991.
 225. Kreis, T. E., and R. Pepperkok. Coat proteins in intracellular membrane transport. Curr. Opin. Cell Biol. 6: 533–537, 1994.
 226. Kreis, T. E., M. Lowe, and R. Pepperkok. COPs regulating membrane traffic. Annu. Rev. Cell Biol. 11: 677–706, 1995.
 227. Krjinse‐Locker, J., M. Ericsson, P.J.M. Rottier, and G. Griffiths. Characterization of the budding compartment of mouse hepatitis virus: evidence that transport from the RER to the Golgi complex requires only one vesicular transport step. J. Cell Biol. 124: 55–70, 1994.
 228. Krjinse‐Locker, J., J. Klumperman, V. Oorschot, M. C. Horzinek, H. J. Geuze, and P.J.M. Rottier. The cytoplasmic tail of mouse hepatitis virus M protein is essential but not sufficient for its retention in the Golgi complex. J. Biol. Chem. 269: 28263–28269, 1994.
 229. Ktistakis, N. T., M. E. Linder, and M. G. Roth. Action of brefeldin A blocked by activation of a pertussis‐toxin‐sensitive G protein. Nature 356: 344–346, 1992.
 230. Ktistakis, N. T., H. A. Brown, G. Waters, P. Sternweis, and M. G. Roth. Evidence that phospholipase D mediates ADP ribosylation factor‐dependent formation of Golgi coated vesicles. J. Cell Biol. 134: 295–306, 1996.
 231. Kuge, O., S. Hara‐Kuge, L. Orci, M. Ravazzola, M. Amherdt, G. Tanigawa, F. T. Wieland, and J. E. Rothman. Zeta‐COP, a subunit of coatomer is required for COP‐coated vesicle assembly. J. Cell Biol. 123: 1727–1734, 1991.
 232. Kuge, O., C. Dascher, L. Orci, T. Rowe, M. Amherdt, H. Plutner, M. Ravazzola, G. Tanigawa, J. E. Rothman, and W. E. Balch. Sar1 promotes vesicle budding from the endoplasmic reticulum but not Golgi compartments. J. Cell Biol. 125: 51–65, 1994.
 233. Kutay, U., E. Hartmann, and T. A. Rapoport. A class of membrane proteins with a C‐terminal anchor. Trends Cell Biol. 3: 72–75, 1993.
 234. Kuznetsov, G., L. B. Chen, and S. K. Nigam. Several endoplasmic reticulum stress proteins, including ERp72, interact with thyroglobulin during its maturation. J. Biol. Chem. 269: 22990–22995, 1994.
 235. Ladinsky, M. S., and K. E. Howell. The trans‐Golgi network can be dissected structurally and functionally from the cisternae of the Golgi complex by brefeldin A. Eur. J. Cell Biol. 59: 92–105, 1992.
 236. Ladinsky, M. S, J. R. Kremer, P. S. Furcinitti, J. R. McIntosh, and K. E. Howell. HVEM Tomography of the trans‐Golgi network: Structural insights and identification of a lace‐like vesicle coat. J. Cell Biol. 127: 29–38, 1994.
 237. Lafont, F., J. K. Burkhardt, and K. Simons. Involvement of microtubule motors in basolateral and apical transport in kidney cells. Nature 372: 801–803, 1994.
 238. Lahtinen, U., Dahllöf, B., and J. Saraste. Characterization of a 58 kDa cis‐Golgi protein in pancreatic exocrine cells. J. Cell Sci. 103: 321–333, 1992.
 239. Lahtinen, U., U. Hellman, C. Wernstedt, J. Saraste, and R. F. Pettersson. Molecular cloning and expression of a 58‐kDa cis‐Golgi and intermediate compartment protein. J. Biol. Chem. 271: 4031–4037, 1996.
 240. Latterich, M., K.‐U. Fröhlich, and R. Schekman. Membrane fusion and the cell cycle: Cdc48p participates in the fusion of ER membranes. Cell 82: 885–893, 1995.
 241. Le, A., K. S. Graham, and R. N. Sifers. Intracellular degradation of the transport‐impaired human PiZ alpha 1‐antitrypsin variant. Biochemical mapping of the degradative event among compartments of the secretory pathway. J. Biol. Chem. 265: 14001–14007, 1990.
 242. Le, A., J. L. Steiner, G. A. Ferell, J. C. Shaker, and R. N. Sifers. Association between calnexin and secretion‐incompetent variant of human alpha1‐antitrypsin. J. Biol. Chem. 269: 7514–7519, 1994.
 243. Lecureux, L. W., and B. M. Wattenberg. The regulated degradation of a 3‐hydroxy‐3‐methylglutaryl‐coenzyme A reductase reporter construct occurs in the endoplasmic reticulum. J. Cell Sci. 107: 2635–2642, 1994.
 244. Leskes, A., P. Siekevitz, and G. E. Palade. Differentiation of endoplasmic reticulum in hepatocytes. I. Glucose‐6‐phosphatase distribution in situ. J. Cell Biol. 49: 264–287, 1971.
 245. Lee, C., and L. B. Chen. Dynamic behavior of endoplasmic reticulum in living cells. Cell 54: 37–86, 1988.
 246. Letourneur, F., E. C. Gaynor, S. Hennecke, C. Démollière, R. Duden, S. D. Emr, H. Riezman, and P. Cosson. Coatomer is essential for retrieval of dilysine‐tagged proteins to the ER. Cell 79: 1199–1207, 1994.
 247. Lewis, M. J., and H.R.B. Pelham. A human homologue of the yeast HDEL receptor. Nature 348: 162–163, 1990.
 248. Lewis, M. J., D. J. Sweet, and H.R.B. Pelham. The ERD2 gene determines the specificity of the luminal ER protein retention system. Cell 61: 1359–1363, 1990.
 249. Lewis, M. J., and H.R.B. Pelham. Ligand‐induced redistribution of a human KDEL receptor from the Golgi complex to the endoplasmic reticulum. Cell 68: 353–363, 1992.
 250. Lewis, M. J. and H.R.B. Pelham. SNARE‐mediated retrograde traffic from the Golgi complex in the endoplasmic reticulum. Cell 85: 205–215, 1996.
 251. Leyte, A., F. A. Barr, R. H. Kehlenbach, and W. B. Huttner. Multiple trimeric G‐proteins on the trans‐Golgi network exert stimulatory and inhibitory effects on secretory vesicles. EMBO J. 11: 4795–4804, 1992.
 252. Lian, J. P., and S. Ferro‐Novick. Bos1p, and integral membrane protein of the endoplasmic reticulum to Golgi transport vesicles, is required for their fusion competence. Cell 73: 735–745, 1993.
 253. Lindsey, J. D., and M. H. Ellisman. The neuronal endomembrane system. I. Direct links between rough endoplasmic reticulum and cis‐element of the Golgi apparatus. J. Neurosci. 5: 3111–3123, 1985.
 254. Lindsey, J. D., and M. H. Ellisman. The neuronal endomembrane system. II. The multiple forms of the Golgi apparatus cis element. J. Neurosci. 5: 3124–3134, 1985.
 255. Linstedt, A. D., and Hauri, H.‐P. Giantin, a novel conserved Golgi membrane protein containing a cytoplasmic domain of at least 350 kD. Mol. Biol. Cell 4: 679–693, 1993.
 256. Linstedt, A. D., and H.‐P. Hauri. Cell‐cycle dependent phosphorylation of giantin, a cytoskeletal‐like Golgi membrane protein. Mol. Biol. Cell 5: 240a, 1994.
 257. Linstedt, A. D., M. Foguet, M. Renz, H. P. Seelig, B. S. Glick, and H.‐P. Hauri. A C‐terminally‐anchored protein is inserted into the endoplasmic reticulum and then transported to the Golgi apparatus. Proc. Natl. Acad. Sci. U.S.A., 1995.
 258. Lippincott‐Schwartz, J. Bidirectional membrane traffic between the endoplasmic reticulum and Golgi apparatus. Trends Cell Biol. 3: 81–88, 1993.
 259. Lippincott‐Schwartz, J., L. C. Yuan, J. S. Bonifacino, and R. D. Klausner. Rapid redistribution of Golgi proteins into the ER in cells treated with brefeldin A: evidence for membrane cycling from Golgi to ER. Cell 56: 801–813, 1989.
 260. Lippincott‐Schwartz, J., J. G. Donaldson, A. Schweizer, E. G. Berger, H.‐P. Hauri, L. C. Yuan, and R. D. Klausner. Microtubule‐dependent retrograde transport of proteins into the ER in the presence of brefeldin A suggests an ER recycling pathway. Cell 60: 821–836, 1990.
 261. Lippincott‐Schwartz, J., L. Yuan, C. Tipper, M. Amherdt, L. Orci, and R. D. Klausner. Brefeldin A's effects on endosomes, lysosomes, and the TGN suggests a general mechanism for regulating organelle structure and membrane traffic. Cell 67: 601–616, 1991.
 262. Lippincott‐Schwartz, J., N. B. Cole, A. Marotta, P. A. Conrad, and G. S. Bloom. Kinesin is the motor for microtubulemediated Golgi‐to‐ER membrane traffic. J. Cell Biol. 128: 293–306, 1995.
 263. Liscovitch, M., and L. C. Cantley. Signal transduction and membrane traffic: The PITP/phosphoinositide connection. Cell 81: 659–662, 1995.
 264. Lodish, H. F. Transport of secretory and membrane proteins from the rough enoplasmic reticulum to the Golgi. J. Biol. Chem. 263: 2107–2110, 1988.
 265. Lodish, H. F., N. Kong, M. Snider, and G.J.A.M. Strous. Hepatoma secretory proteins migrate from rough endoplasmic reticulum to Golgi at characteristic rates. Nature 304: 80–83, 1983.
 266. Lodish, H. F., and N. Kong. Perturbation of cellular calcium blocks exit of secretory proteins from the rough endoplasmic reticulum. J. Biol. Chem. 265: 10893–10899, 1990.
 267. Lodish, H. F., and N. Kong. Cyclosporin A inhibts an initial step in folding of transferrin within the endoplasmic reticulum. J. Biol. Chem. 266: 14835–14838, 1991.
 268. Lodish, H. F., N. Kong, and L. Wikström. Calcium is required for folding of newly made subunits of asialoglycoprotein receptor within the endoplasmic reticulum. J. Biol. Chem. 267: 12753–12760, 1992.
 269. Lodish, H. F., and N. Kong. The secretory pathway is normal in dithiotreitol‐treated cells, but disulfide‐bonded proteins are reduced and reversibly retained in the endoplasmic reticulum. J. Biol. Chem. 268: 20598–20605, 1993.
 270. Lotti, L. V., M.‐R. Torrisi, M. C. Pascale, and S. Bonatti. Immunocytochemical analysis of the transfer of vesicular stomatitis virus G glycoprotein from the intermediate compartment to the Golgi complex. J. Cell Biol. 118: 43–50, 1992.
 271. Louvard, D., Reggio, H., and G. Warren. Antibodies to the Golgi complex and the rough endoplasmic reticulum. J. Cell Biol. 92: 92–107, 1982.
 272. Lupashin, V. V., S. Hamamoto, R. W. Schekman. Biochemical requirements for targeting and fusion of ER‐derived transport vesicles with purified yeast Golgi membranes. J. Cell Biol. 132: 277–289, 1996.
 273. Luzio, J. P., and G. Banting. Eukaryotic membrane traffic: retrieval and retention mechanisms to achieve organelle residence. TIBS 18: 395–398, 1993.
 274. Luzio, J.‐P., B. Brake, G. Banting, K. E. Howell, P. Braghetta, and K. K. Stanley. Identification, sequencing, and expression of an integral membrane protein of the trans Golgi network, TGN 38. Biochem. J. 270: 97–102, 1990.
 275. Lyles, M. M., and H. F. Gilbert. Catalysis of the oxidative folding of ribonuclease A by protein disulfide isomerase: Dependence of the rate on the composition of the redox buffer. Biochemistry 30: 613–619, 1991.
 276. Lyles, M. M., and H. F. Gilbert. Catalysis of the oxidative folding of ribonuclease A by protein disulfide: isomerase: Presteady‐state kinetics and utilization of the oxidizing equivalents of the isomerase. Biochemistry 30: 619–625, 1991.
 277. Macer, D. R. J., and G. L. E. Koch. Identification of a set of calcium‐binding proteins in reticuloplasm, the luminal content of the endoplasmic reticulum. J. Cell Sci. 92: 61–70, 1988.
 278. Machamer, C. E. Targeting and retention of Golgi membrane porteins. Curr. Opin. Cell Biol. 5: 606–612, 1993.
 279. Machamer, C. E., M. G. Grim, A. Esquela, S. W. Chung, M. Rolls, K. Ryan, and R. K. Swift. Retention of a cis‐Golgi protein requires polar residues on one face of a predicted alpha‐helix in the transmembrane domain. Mol. Biol. Cell 5: 695–704, 1993.
 280. Majoul, I. V., P.I.H. Bastiaens, and H.‐D. Söling. Transport of an external Lys‐Asp‐Glu‐Leu (KDEL) protein from the plasma membrane to the endoplasmic reticulum: studies with cholera toxin in Vero cells. J. Cell Biol. 133: 777–789, 1996.
 281. Malhotra, V., T. Serafini, L. Orci, J. C. Sheperd, and J. E. Rothman. Purification of a novel class of coated vesicles mediating biosynthetic protein transport through the Golgi stack. Cell 58: 329–336, 1989.
 282. Mandon, E., E. S. Kempner, M. Ishihara, and C. Hirschberg. A monomeric protein in the Golgi membrane catalyzes both N‐deacylation and N‐sulfation of heparan sulfate. J. Biol. Chem. 269: 11729–11733, 1994.
 283. Marcantonio, E. E., Amar‐Costesec, and G. Kreibich. Segregation of the polypeptide translocation apparatus to regions of the endoplasmic reticulum containing ribophorins and ribosomes. II Rat liver microsomal subfractions contain equimolar amounts of ribophorins and ribosomes. J. Cell Biol. 99: 2254–2259, 1984.
 284. Marks, D. L., J. M. Larkin, and M. A. McNiven. Association of kinesin with the Golgi apparatus in rat hepatocytes. J. Cell Sci. 107: 2417–2426, 1994.
 285. Marquart, T., D. H. Hebert, and A. Helenius. Post‐translational folding of influenza hemagglutinin in isolated endoplasmic reticulum‐derived microsomes. J. Biol. Chem. 268: 19618–19625, 1993.
 286. Martinez, O., A. Schmidt, J. Salamero, B. Hoflack, M. Roa, and B. Goud. The small GTP‐binding protein rab6 functions in intra‐Golgi transport. J. Cell Biol. 127: 1575–1588, 1994.
 287. Masibay, A. S., P. V. Balaji, E. E. Boeggeman, P. K. Qasba. Mutational analysis of the Golgi retention signal of bovine beta‐1,4 galactosyltransferase. J. Biol. Chem. 268: 9908–9916, 1993.
 288. Matter, K., K. Bucher, and H.‐P. Hauri. Microtubule perturabtion retards both the direct and the indirect apical pathway but does not affect sorting of plasma membrane proteins in intestinal epithelial cells. EMBO J. 9: 3163–3170, 1990.
 289. Matter, K., and H.‐P. Hauri. Intracellular transport and conformational maturation of intestinal brush border hydrolases. Biochemistry 30: 1916–1923, 1991.
 290. Mazzarella, R. A., M. Srinivasan, S. M. Haugejordan, and M. Green. ERp72, an abundant luminal endoplasmic reticulum protein contains three copies of the active site sequences of protein disulfide isomerase. J. Biol. Chem. 265: 1094–1101, 1990.
 291. Meier, P., R. Gasser, H.‐P. Hauri, B. Stieger, and U. A. Meyer. Biosynthesis of rat liver cytochrome P‐450 in mitochondria associated rough endoplasmic reticulum and in rough microsomes in vivo. J. Biol. Chem. 259: 10194–10200, 1984.
 292. Melancon, P., B. S. Glick, V. Malhotra, P. J. Weidman, T. Serafini, M. Gleason, L. Orci, and J. E. Rothman. Involvement of GTP‐binding “G” proteins in transport through the Golgi stack. Cell 51: 1053–1062, 1987.
 293. Melnick, J., S. Aviel, and Y. Argon. The endoplasmic reticulum protein GRP94, in addition to BiP, associates with unassembled immunoglobulin chains. J. Biol. Chem. 267: 21303–21306, 1992.
 294. Mellman, I., and K. Simons. The Golgi complex: In vitro veritas? Cell 68: 829–840, 1992.
 295. Mellman, I. Enigma variations: Protein mediators of membrane fusion. Cell 82: 869–872, 1995.
 296. Menzel, R., E. Kärgel, F. Vogel, C. Böttcher, and W.‐H. Schunk. Topogenesis of a microsomal cytochrome P450 and induction of endoplasmic reticulum membrane proliferation in Saccharomyces cervisiae. Arch. Biochem. Biophys. 330: 97–109, 1996.
 297. Michalak, M., R. E. Milner, K. Burns, and M. Opas. Calreticulin. Biochem. J. 285: 681–692, 1992.
 298. Miesenböck, G., and J. E. Rothman. The capacity to retrieve escaped ER proteins extends to the trans‐most cisterna of the Golgi stack. J. Cell Biol. 129: 309–319, 1995.
 299. Misteli, T., and G. Warren. COP‐coated vesicles are involved in the mitotic fragmentation of Golgi stacks in a cell‐free system. J. Cell Biol. 125: 269–282, 1994.
 300. Misteli, T. and Warren, G. A role for tubular networks and a COPI‐independent pathway in the mitotic fragmentation of Golgi stacks in a cell‐free system. J. Cell Biol. 130: 1027–1039, 1995.
 301. Misumi, I., K. Miki, A. Takatsuki, G. Tamura, and Y. Ikehara. Novel blockade by brefeldin A of intracellular transport of secretory proteins in cultured rat hepatocytes. J. Biol. Chem. 261: 11398–11403, 1986.
 302. Mitoma, J., and A. Ito. The carboxy‐terminal 10 amino acid residues of cytochrome b5 are necessary for its targeting to the endoplasmic reticulum. EMBO J. 11: 4197–4203, 1992.
 303. Mizuno, M., and S. J. Singer. A soluble secretory protein is first concentrated in the endoplasmic reticulum before transfer to the Golgi apparatus. Proc. Natl. Acad. Sci. U.S.A. 90: 5732–5736, 1993.
 304. Molloy, S. S., L. Thomas, J. K. Van Slyke, P. E. Stenberg, and G. Thomas. Intracellular trafficking and activation of the furin proprotein convertase: localization to the TGN and recycling from the cell surface. EMBO J. 13: 18–33, 1994.
 305. Moran, P., and I. W. Caras. Proteins containing an uncleaved signal glycophosphatidylinositol membrane anchor attachment are retained in a post‐ER compartment. J. Cell Biol. 119: 763–772, 1992.
 306. Mori, K., W. Ma, M.‐J. Gething, and J. Sambrook. A transmembrane protein with a cdc + /CDC28‐related kinase activity is required for signaling from the ER to the nucleus. Cell 74: 743–756, 1993.
 307. Morré, D. J., J. Kartenbeck, and W. W. Franke. Membrane flow and interconversions among endomembranes. Biochim. Biophys. Acta 559: 71–152, 1979.
 308. Mundy, D. I., and G. Warren. Mitosis and inhibition of intracellular transport stimulate palmitoylation of a 62‐kD protein. J. Cell Biol. 116: 135–146, 1992.
 309. Munro, S. Sequences within and adjacent to the transmembrane segment of alpha‐2,6‐sialyltransferases specify Golgi retention. EMBO J. 10: 3577–3588, 1991.
 310. Munro, S. An investigation of the role of transmembrane domains in Golgi protein retention. EMBO J. 14: 4695–4704, 1995.
 311. Murphy, R. F. Maturation models for endosome and lysosome biogenesis. Trends Cell Biol. 1: 77–82, 1991.
 312. Musil, L. S., and D. A. Goodenough. Multisubunit assembly of an integral plasma membrane channel protein, gap junction connexin 43, occurs after exit from the ER. Cell 74: 1065–1077, 1993.
 313. Nagahama, M., L. Orci, M. Ravazzola, M. Amherdt, L. Lacomis, P. Tempst, J. Rothman, and T. Söllner. A v‐SNARE implicated in intra‐Golgi transport. J. Cell Biol. 133: 507–516, 1996.
 314. Naim, Y., J. Roth, E. E. Sterchi, M. Lentze, P. Milla, J. Schmitz, and H.‐P. Hauri. Sucrase‐isomaltase deficiency in humans: Different mutations disrupt intracellular transport, processing and function of an intestinal brush border enzyme. J. Clin. Invest. 82: 667–6679, 1988.
 315. Nakano, A., D. Brada, and R. Schekman. A membrane glycoprotein, Sec12p, required for transport from the endoplasmic reticulum to the Golgi apparatus in yeast. J. Cell Biol. 107: 851–863, 1988.
 316. Nakano, A., and M. Maramatsu. A novel GTP‐binding protein, Sar1, is involved in transport from the endoplasmic reticulum to the Golgi apparatus. J. Cell Biol. 109: 2677–2691, 1989.
 317. Narula, N., and J. L. Stow. Distinct coated vesicles labeled for p200 bud from trans‐Golgi network membranes. Proc. Natl. Acad. Sci U.S.A. 92: 2874–2878, 1995.
 318. Nauseef, W. M., S. J. McCormick, and R. A. Clark. Calreticulin functions as a molecular chaperone in the biosynthesis of myeloperoxidase. J. Biol. Chem. 270: 4741–4747, 1995.
 319. Newman, A. P., J. Shim, and S. Ferro‐Novick. BET1, BOS1 and SEC22 are members of a group of interacting genes required for transport from the ER to the Golgi complex. Mol. Cell Biol. 10: 3405–3414, 1990.
 320. Newman, A. P., M. E. Groesch, and S. Ferro‐Novick. Bos1p, a membrane protein required for ER to Golgi transport in yeast, co‐purifies with the carrier vesicles and with Bet1p and the ER membranes. EMBO J. 11: 3609–3617, 1992.
 321. Newman, A. P., J. Graf, P. Mancini, G. Rossi, J. P. Lian, and S. Ferro‐Novick. Sec22 and SLY2 are identical. Mol. Cell Biol. 12: 3663–3664, 1992.
 322. Nguyen Van, P., F. Peter, and H.‐D. Söling. Four intracisternal calcium‐binding glycoproteins from rat liver microsomes with high affinity for calcium. No indication for calsequestrin‐like proteins in inositol 1,4,5‐trisphosphate‐sensitive calcium sequestering rat liver vesicles. J. Biol. Chem. 264: 17494–17501, 1989.
 323. Nguyen Van, P., K. Rupp, A. Lampen, and H.‐D. Söling. CaBP2 is a rat homolog of ERp72 with proteindisulfide isomerase activity. Eur. J. Biochem. 213: 789–795, 1993.
 324. Nigam, S. K., A. L. Goldberg, S. Ho, M. F. Rohde, K. T. Bush, and M. Yu. Sherman. A set of endoplasmic reticulum proteins possessing properties of molecular chaperones includes Ca2+‐binding proteins and members of the thioredoxin superfamily. J. Biol. Chem. 269: 1744–1749, 1994.
 325. Nilsson, T., J. M. Lucocq, D. Mackay, and G. Warren. The membrane spanning domain of beta‐1,4 galactosyltransferase specifies trans‐Golgi localization. EMBO J. 10: 3567–3575, 1991.
 326. Nilsson, T., M. Pypaert, M. H. Hoe, P. Slusarevicz, E. G. Berger, and G. Warren. Overlapping distribution of two glycosyltransferases in the Golgi apparatus of HeLa cells. J. Cell Biol. 120: 5–13, 1993.
 327. Nilsson, T., Slusarewicz, M. H. Hoe, and G. Warren. Kin recognition. A model for the retention of Golgi enzymes. FEBS Lett. 330: 1–4, 1993.
 328. Nilsson, T., and G. Warren. Retention and retrieval in the endoplasmic reticulum and the Golgi apparatus. Curr. Opin. Cell Biol. 6: 517–521, 1994.
 329. Nilsson, T., M. H. Hoe, P. Slusarewicz, C. Rabouille, R. Watson, F. Hunte, G. Watzele, E. G. Berger, and G. Warren. Kin recognition between medial Golgi enzymes in HeLa cells. EMBO J. 13: 562–574, 1994.
 330. Noiva, R., and W. J. Lennarz. Protein disulfide isomerase. A multifunctional protein resident in the lumen of the endoplasmic reticulum. J. Biol. Chem. 267: 3553–3556, 1992.
 331. Nothwehr, S. F., and T. H. Stevens. Sorting of membrane proteins in the yeast secretory pathway. J. Biol. Chem. 269: 10185–10188, 1994.
 332. Nothwehr, S. F. C. J. Roberts, and T. H. Stevens. Membrane protein retention in the yeast Golgi aplparatus: Dipeptidyl aminopeptidase A is retained by a cytoplasmic signal containing aromatic residues. J. Cell Biol. 121: 1197–1209, 1993.
 333. Novick, P., C. Field, and R. Schekman. Identification of 23 complementation groups required for post‐translational events in the yeast secretory pathway. Cell 21: 205–215, 1980.
 334. Novick, P., S. Ferro, and R. Schekman. Orders of events in the yeast secretory pathway. Cell 25: 461–469, 1981.
 335. Novick, P., and P. Brennwald. Friends and family: the role of Rab GTPases in vesicular traffic. Cell 75: 597–601, 1993.
 336. Nuoffer, C., and W. E. Balch. GTPase: multifunctional molecular switches regulating vesicular traffic. Annu. Rev. Biochem. 63: 949–90, 1994.
 337. Nuoffer, C., H. W. Davidson, J. Matteson, J. Meinkoth, and W. E. Balch. A GDP‐bound form of Rab1 inhibits protein export from the endoplasmic reticulum and transport between Golgi compartments. J. Cell Biol. 125: 225–237, 1994.
 338. Ohashi, M., and W. B. Huttner. An elevation of cytosolic protein phosphorylation modulates trimeric G‐protein regulation of secretory vesicle formation from the trans‐Golgi network. J. Biol. Chem. 269: 24897–24905, 1994.
 339. Oka, T., and A. Nakano. Inhibition of GTP hydrolysis by Sar1p causes accumulation of vesicles that are a functional intermediate of the ER‐to‐Golgi transport in yeast. J. Cell Biol. 124: 425–434, 1994.
 340. Okey, A. B., Enzyme induction in the cytochrome P‐450 system. In: Pharmacogenetics of Drug Metabolism, edited by W. Kalow. New York: Pergamon Press Inc., p. 549–608, 1992.
 341. Oprins, A., R. Duden, T. E. Kreis, H. J. Geuze, and J. W. Slot. Beta‐COP localizes mainly to the cis‐Golgi side in exocrine pancreas. J. Cell Biol. 121: 49–59, 1993.
 342. Ora, A. and A. Helenius. Calnexin fails to associate with substrate proteins in glucosidase‐deficient cell lines. J. Biol. Chem. 270: 2660–26062, 1996.
 343. Orci, L., B. S. Glick, and J. E. Rothman. A new type of coated vesicular carrier that appears not to contain clathrin: its possible role in protein transport within the Golgi stack. Cell 46: 171–184, 1986.
 344. Orci, L., V. Malhotra, M. Amherdt, T. Serafini, and J. E. Rothman. Dissection of a single round of vesicular transport: sequential intermediates for intercisternal movement in the Golgi stack. Cell 56: 357–368, 1989.
 345. Orci, L., M. Ravazzola, P. Meda, C. Holcomb, H.‐P. Moore, L. Hicke, and R. Schekman. Mammalian sec 23p homologue is restricted to the endoplasmic reticulum transitional cytoplasm. Proc. Natl. Acad. Sci. U.S.A. 88: 8611–8615, 1991.
 346. Orci, L., T. Tagaya, M. Amherdt, A. Perrelet, J. G. Donaldson, J. Lippincott‐Schwartz, R. D. Klausner, and J. E. Rothman. Brefeldin A, a drug that blocks secretion, prevents the assembly of non‐clathrin coated buds on Golgi cisternae. Cell 64: 1183–1195, 1991.
 347. Orci, L., D. J. Palmer, M. Ravazzola, A. Perrelet, M. Amherdt, and J. E. Rothman. Budding from Golgi membranes requires coatomer complex of non‐clathrin coated proteins. Nature 362: 648–652, 1993.
 348. Orci, L., D. J. Palmer, M. Amherdt, and J. E. Rothman. Coated vesicles assembly in the Golgi requires only coatomer and ARF proteins from the cytosol. Nature 364: 732–734, 1993.
 349. Orci, L., A. Perrelet, M. Ravazzola, F. T. Wieland, R. Schekman, and J. E. Rothman. “BFA bodies”: A subcompartment of the endoplasmic reticulum. Proc. Natl. Acad. Sci. U.S.A. 90: 11089–11093, 1993.
 350. Orci, L., A. Perrelet, M. Ravazzola, M. Amherdt, J. E. Rothman, and R. Schekman. Coatomer‐rich endoplasmic reticulum. Proc. Natl. Acad. Sci. U.S.A. 91: 11924–11928, 1994.
 351. Ostermann, J., L. Orci, K. Tani, M. Amherdt, M. Ravazzola, Z. Elazar, and J. E. Rothman. Stepwise assembly of functionally active transport vesicles. Cell 75: 1015–1025, 1993.
 352. Ou, W.‐J., P. H. Cameron, D. Y. Thomas, and J.J.B. Bergeron. Association of folding intermediates of glycoproteins with calnexin during protein maturation. Nature 364: 771–776, 1993.
 353. Ouwendijk, J., C.E.C. Moolenaar, W. J. Peters, C. P. Hollenberg, L. A. Ginsel, J.A.M. Fransen, and H. Y. Naim. Congenital sucrase‐isomaltase deficiency. Identification of a glutamine to proline substitution that leads to a transport block of sucraseisomaltase in a pre‐Golgi compartment. J. Clin. Invest. 97: 633–641, 1996.
 354. Ozawa, M., and T. Maramatsu. Reticulocalbin, a novel endoplasmic reticulum resident Ca2+‐binding protein with multiple EF‐hand motifs and a carboxyl‐terminal HDEL sequence. J. Biol. Chem. 268: 699–705, 1993.
 355. Padmanaban, G., C. S. Nirodi. Regulation of phenobarbitone‐inducible cytochrome P‐450 gene expression. In: Frontiers in Biotransformation, Vol. 9, edited by K. Ruckpaul and H. Rein. Berlin: Akademie Verlag, p. 60–84, 1994.
 356. Pahl, H. L., and P. A. Baeuerle. A novel signal transduction pathway from the endoplasmic reticulum to the nucleus is mediated by transcription factor NF‐kappaB. EMBO J. 14: 2580–2588, 1996.
 357. Palade, G. Intracellular aspects of the process of protein secretion. Science 189: 347–358, 1975.
 358. Palmer, D. J., J. B. Helms, C. J. M. Beckers, L. Orci, and J. E. Rothman. Binding of coatomer to Golgi membranes requires ADP‐ribosylation factor. J. Biol. Chem. 268: 12083–12089, 1993.
 359. Pascale, M. C., N. Malagolini, F. Serafini‐Cessi, G. Migliaccio, A. Leone, and S. Bonatti. Biosynthesis and oligosaccharide structure of human CD8 glycoprotein expressed in a rat epithelial cell line. J. Biol. Chem. 267: 9940–9947, 1992.
 360. Pathak, R. K., K. L. Luskey, and R.G.W. Anderson. Biogenesis of the crystalloid endoplasmic reticulum in UT‐1 cells: Evidence that newly formed endoplasmic reticulum emerges from the nuclear envelope. J. Cell Biol. 102: 2158–2168, 1986.
 361. Pedrazzini, E., A. Villa, and N. Borgese. A mutant cytochrome b5 with a lengthened membrane anchor escapes from the endoplasmic reticulum and reaches the plasma membrane. Proc. Natl. Acad. Sci U.S.A. 93: 4207–42012, 1996.
 362. Pelham, H.R.B. Evidence that luminal ER proteins are sorted from secreted proteins in post‐ER compartment. EMBO J. 7: 913–918, 1988.
 363. Pelham, H.R.B. Control of protein exit from the endoplasmic reticulum. Annu. Rev. Cell Biol. 5: 1–23, 1989.
 364. Pelham, H.R.B. The retention signal for soluble proteins of the endoplasmic reticulum. Trends. Biochem. Sci. 15: 483–486, 1990.
 365. Pelham, H.R.B. Recycling of proteins between the endoplasmic reticulum and Golgi complex. Curr. Opin. Cell Biol. 3: 585–591, 1991.
 366. Pelham, H.R.B., and S. Munro. Sorting of membrane proteins in the secretory pathway. Cell 75: 603–605, 1993.
 367. Pelham, H.R.B. Sorting and retrieval between the endoplasmic retculum and Golgi apparatus. Curr. Opin. Cell Biol. 7: 530–535, 1995.
 368. Pepperkok, R., J. Scheel, H. Horstmann, H.‐P. Hauri, G. Griffiths, and T. E. Kreis. Beta‐COP is essential for biosynthetic membrane transport from the endoplasmic reticulum to the Golgi complex in vivo. Cell 74: 71–82, 1993.
 369. Peter, F., P. Nguyen Van, and H.‐D. Söling. Different sorting of Lys‐Asp‐Glu‐Leu proteins in rat liver. J. Biol. Chem. 267: 10631–10637, 1992.
 370. Peter, F., H. Plutner, H. Zhu, T. E. Kreis, and W. E. Balch. Beta‐COP is essential for transport of protein from the endoplasmic reticulum to the Golgi in vitro. J. Cell Biol. 122: 1155–1167, 1993.
 371. Peter, F., C. Nuoffer, S. N. Pind, and W. E. Balch. Guanine nucleotide dissociation inhibitor is essential for Rab1 function in budding from the endoplasmic reticulum and transport through the Golgi stack. J. Cell Biol. 126: 1393–1406, 1994.
 372. Pevsner, J., and R. H. Scheller. Mechanism of vesicle docking and fusion: insights from the nervous system. Curr. Opin. Cell Biol. 6: 555–560, 1994.
 373. Pfeffer, S. R., and J. E. Rothman. Biosynthetic protein transport and sorting by the endoplasmic reticulum and Golgi. Annu. Rev. Biochem. 56: 829–852, 1987.
 374. Pfeffer, S. R. Rab GTPases: master regulators of membrane trafficking. Curr. Opin. Cell Biol. 6: 522–526, 1994.
 375. Pfeffer, S. R. Transport vesicle docking: SNAREs and associates. Annu. Rev. Cell Biol. 12: 441–461, 1996.
 376. Pierre, P., J. Scheel, J. E. Richard, and T. E. Kreis. CLIP‐170 links endocytic vesicles to microtubules. Cell 70: 887–900, 1992.
 377. Pierre, P., R. Pepperkok, and T. E. Kreis. Molecular characterization of two functional domains of CLIP‐170 in vivo. J. Cell Sci. 107: 1909–1920, 1994.
 378. Piller, V., F. Piller, and M. Fukuda. Biosynthesis of truncated O‐glycans in the T cell line Jurkat. Localization of O‐glycan initiation. J. Biol. Chem. 265: 9264–9271, 1990.
 379. Pimplikar, S. W., and K. Simons. Regulation of apical transport in epithelial cells by a Gs class of heterotrimeric G protein. Nature 362: 456–458, 1993.
 380. Pimplikar, S. W., and K. Simons. Activators of protein kinase A stimulate apical but not basolateral transport in epithelial Madine‐Darby canine kidney cells. J. Biol. Chem. 269: 19054–19059, 1994.
 381. Pind, S. N., C. Nuoffer, J. M. Mc Caffery, H. Plutner, H. W. Davidson, M. G. Farquhar, and W. E. Balch. Rab 1 and Ca2+ are required for the fusion of carrier vesicles mediating enoplasmic reticulum to Golgi transport. J. Cell Biol. 125: 239–252, 1994.
 382. Plutner, H., A. D. Cox, S. Pind, R. Khosravi‐Far, J. R. Bourne, R. Schwaninger, C. J. Der, and W. E. Balch. Rab1b regulates vesicular transport between the endoplasmic reticulum and successive Golgi compartments. J. Cell Biol. 115: 31–43, 1991.
 383. Plutner, H., H. W. Davidson, J. Saraste, and W. E. Balch. Morphological analysis of protein transport from the ER to Golgi membranes in digitonin‐permeabilized cells: role of the 58 containing compartment. J. Cell Biol. 119: 1097–1116, 1992.
 384. Podos, S. D., P. Reddy, J. Ashkenas, and M. Krieger. LDLC encodes a brefeldin A‐sensitive peripheral Golgi protein required for normal Golgi function. J. Cell Biol. 127: 679–691, 1994.
 385. Ponnambalam, S., C. Rabouille, J. P. Luzio, T. Nilsson, and G. Warren. The TGN38 glycoprotein contains two non‐overlapping signals that mediate localization to the trans‐Golgi network. J. Cell Biol. 125: 253–268, 1994.
 386. Ponnambalan, S., M. Girotti, M.‐L. Yaspo, C. E. Owen, A.C.F. Perry, T. Suganuma, T. Nilsson, M. Fried, G. Banting, and G. Warren. Primate homologues of rat TGN38: primary structure, expression and functional implications. J. Cell Sci. 109: 675–685, 1996.
 387. Porter, K. R., A. Claude, and E. Fullam. A study of tissue culture cells by electron microscopy. J. Exp. Med. 81: 233–245, 1945.
 388. Price, E. R., M. Jin, D. Lim, S. Pati, C. T. Walsh, and F. D. McKeon. Cyclophilin B trafficking through the secretory pathway is altered by binding of cyclosporin A. Proc. Natl. Acad. Sci. U.S.A. 91: 3931–3935, 1994.
 389. Pryer, N. K., L. J. Wuestenhube, and R. Schekman. Vesiclemediated protein sorting. Annu. Rev. Biochem. 61: 471–516, 1992.
 390. Pryer, N. K., Salama, N. R., R. Schekman, and C. A. Kaiser. Cytosolic Sec13p complex is required for vesicle formation from the endoplasmic reticulum in vitro. J. Cell Biol. 120: 865–875, 1993.
 391. Rabinovich, E., S. Bar‐Nun, R. Amitay, I. Shachar, B. Gur, M. Taya, and J. Haimovich. Different assembly species of IgM are directed to distinct degradation sites along the secretory pathway. J. Biol. Chem. 268: 24145–24148, 1993.
 392. Rabouille, C., T. Misteli, R. Watson, and G. Warren. Reassembly of Golgi stacks from mitotic Golgi fragments in a cell‐free system. J. Cell Biol. 129: 605–618, 1995.
 393. Rabouille, C., N. Hui, R. Kiekbusch, E. G. Berger, G. Graham, and T. Nilsson. Mapping of the distribution of Golgi enzymes involved in the construction of complex oligosaccharides. J. Cell Sci. 108: 1617–1627, 1995.
 394. Rabouille, C., T. P. Levine, J.‐M. Peters, and G. Warren. An NSF‐like ATPase, p97, and NSF mediate cisternal regrowth from mitotic Golgi fragments. Cell 82: 905–914, 1995.
 395. Radice, P., V. Pensotti, C. Jones, H. Perry, M. A. Perotti, and A. Tunnacliffe. The human archain gene, ARCN1, has high conserved homologs in rice and Drosophila. Genomics 26: 101–106, 1995.
 396. Rajagopalan, S., Y. Xu, and M. B. Brenner. Retention of unassembled components of integral membrane proteins by calnexin. Science 263: 387–390, 1994.
 397. Rambourg, A., and Y. Clermont. Three‐dimensional electron microscopy: structure of the Golgi apparatus. Eur. J. Cell Biol. 51: 189–200, 1990.
 398. Raposo, G., H. M. van Santen, R. Leijendekker, H. J. Geuze and H. L. Ploegh. Misfolded major histocompatibility complex class I molecules accumulate in an expanded ER‐Golgi intermediate compartment. J. Cell Biol. 131: 1403–1419, 1995.
 399. Reaves, B., and G. Banting. Perturbation of the morphology of the trans‐Golgi network following brefeldin A treatment: redistribution of a TGN‐specific integral membrane protein, TGN 38. J. Cell Biol. 116: 85–94, 1992.
 400. Regazzi, R., A. Kikuchi, Y. Takai, and C. B. Wolheim. The small GTP‐binding proteins in the cytosol of insulin‐secreting cells are complexed to GDP dissociation inhibitor proteins. J. Biol Chem. 267: 17512–17519, 1992.
 401. Rexach, M. F., and R. W. Schekman. Distinct biochemical requirements for the budding, targeting, and fusion of ER‐derived transport vesicles. J. Cell Biol. 114: 219–229, 1991.
 402. Rexach, M. F., M. Latterich, and R. W. Schekman. Characteristics of endoplasmic reticulum‐derived transport vesicles. J. Cell Biol. 126: 1133–1148, 1994.
 403. Richard, J. E., and T. E. Kreis. CLIPs for organelle‐microtubule interactions. Trends Cell Biol. 6: 178–183, 1996.
 404. Rios, R. M., A.‐M. Tassin, C. Celati, C. Anthony, M.‐C. Boissier, J.‐C. Homberg, and M. Bornens. A peripheral protein associated with the cis‐Golgi network redistributes in the intermediate compartment upon brefeldin A treatment. J. Cell Biol. 125: 997–1013, 1994.
 405. Rolls, M. M., M. T. Marquart, M. Kielian, and C. Machamer. Cholesterol‐independent targeting of Golgi membrane proteins. Mol. Biol. Cell 5: 241a, 1994.
 406. Rose, J. K., and R. W. Doms. Regulation of protein export from the endoplasmic reticulum. Annu. Rev. Cell Biol. 4: 257–288, 1988.
 407. Roth, J., and E. G. Berger. Immunocytochemical localization of galactosyltransferase in HeLa cells: codistribution with thiamine pyrophosphatase in trans‐Golgi cisternae. J. Cell Biol. 93: 223–229, 1982.
 408. Roth, J., Taatjes, D. J., J. M. Lucocq, J. Weinstein, and J. C. Paulson. Demonstration of an extensive trans‐tubular network continuous with the Golgi apparatus stack that may function in glycosylation. Cell 43: 287–295, 1985.
 409. Roth, J., D. J. Taatjes, J. Weinstein, J. C. Paulson, P. Greenwell, and W. M. Watkins. Differential subcompartmentation of terminal glycosylation in the Golgi apparatus of intestinal absorptive and goblet cells. J. Biol. Chem. 261: 14307–14312, 1986.
 410. Roth, J. Subcellular organization of glycosylation in mammalian cells. Biochem. Biophys. Acta. 906: 405–436, 1987.
 411. Roth, J., Y. Wang, A. Eckhardt, and R. L. Hill. Subcellular localization of the UDP‐N‐acetyl‐D‐galactosamine: polypeptide N‐acetylgalactosaminyltransferase‐mediated O‐glycosylation reaction in the submaxillary gland. Proc. Natl. Acad. Sci. U.S.A. 91: 8935–8939, 1994.
 412. Rothman, J. E. The Golgi apparatus: two organelles in tandem. Science 213: 1212–1219, 1981.
 413. Rothman, J. E. Polypeptide chain binding proteins: Catalysts of protein folding and related processes in cells. Cell 59: 591–601, 1989.
 414. Rothman, J. E. Mechanisms of intracellular protein transport. Nature 372: 55–63, 1994.
 415. Rothman, J. E., and L. Orci. Movement of proteins through the Golgi stack: a molecular dissection of vesicular transport. FASEB J. 4: 1460–1468, 1990.
 416. Rothman, J. E., and L. Orci. Molecular dissection of the secretory pathway. Nature 355: 409–415, 1992.
 417. Rothman, J. E., and G. Warren. Implications of the SNARE hypothesis for intracellular membrane topology and dynamics. Curr. Biol. 4: 220–233, 1994.
 418. Rupp, K., U. Birnbach, J. Lundström, P. Nguyen Van, and H.‐D. Söling. Effects of CaBP2, the rat analog of ERp72, and of CaBP1 on the refolding of denatured reduced proteins. Comparison with protein disulfide isomerase. J. Biol. Chem. 229: 2501–2507, 1994.
 419. Rusakov, D. A., P. Podini, A. Villa, and J. Meldolesi. Tridimensional organization of Purkinje neuron cisternal stacks, a specialized endoplasmic reticulum subcompartment rich in inositol 1,4,5‐trisphosphate receptors. J. Neurocytol. 22: 273–282, 1993.
 420. Russo, R. N., N. L. Shaper, D. J. Taatjes, and J. H. Shaper. Betal,4‐galactosyltransferase: A short NH2‐terminal fragment that includes the cytoplasmic and transmembrane domain is sufficient for Golgi retention. J. Biol. Chem. 267: 9241–9247, 1992.
 421. Salama, N. R., T. Yeung, and R. W. Schekman. The Sec13p complex and reconstitution of vesicle budding from the ER with purified cytoplasmic proteins. EMBO J. 12: 4073–4082, 1993.
 422. Salama, N. R. and R. W. Schekman. The role of coat proteins in the biosynthesis of secretory proteins. Curr. Opin. Cell Biol. 7: 536–543, 1995.
 423. Salminen, A., and P. Novick. A ras‐like protein is required for a post‐Golgi event in yeast secretion. Cell 49: 527–538, 1987.
 424. Sambrook, J. F. The involvement of calcium in transport of secretory proteins from the endoplasmic reticulum. Cell 61: 197–199, 1990.
 425. Sanders, S. L., K. M. Whitefield, J. P. Vogel, M. D. Rose, and R. W. Schekman. Sec 61p and Bip directly facilitate polypeptide translocation into the ER. Cell 69: 353–365, 1992.
 426. Saraste, J., and E. Kuismanen. Pre‐ and post‐Golgi vacuoles operate in the transport of Semliki Forest virus membrane glycoproteins to the cell surface. Cell 38: 535–549, 1984.
 427. Saraste, J., G. E. Palade, and M. G. Farquhar. Antibodies to rat pancreas Golgi subfractions: Identification of a 58‐kD cis‐Golgi protein. J. Cell Biol. 105: 2021–2029, 1987.
 428. Saraste, J., and E. Kuismanen. Pathways of protein sorting and membrane traffic between the rough endoplasmic reticulum and the Golgi complex. Sem. Cell Biol. 3: 343–355, 1992.
 429. Saraste, J., and K. Svensson. Distribution of the intermediate elements operating in ER to Golgi transport. J. Cell Sci. 100: 415–430, 1991.
 430. Saraste, J., V. Lahtinen, and B. Gould. Localization of the small GTP‐binding protein rab1p to the early compartments of the secretory pathway. J. Cell Sci. 108: 1541–1552, 1995.
 431. Satoh, T., C. A. Ross, A. Villa, S. Supattapone, T. Pozzan, S. H. Snyder, and J. Meldolesi. The inositol 1,4,5‐trisphosphate receptor in cerebellar Purkinje cells: Quantitative immunogold labeling reveals concentration in an ER subcompartment. J. Cell Biol. 111: 615–624, 1990.
 432. Schäfer, W., A. Stroh, S. Berghöfer, J. Seiler, M. Vey, M.‐L. Kruse, H. F. Kern, H.‐D. Klenk and W. Garten. Two independent targeting signal in the cytoplasmic domain determine trans‐Golgi network localization and endosomal trafficking of the proprotein convertase furin. EMBO J. 14: 2424–2435, 1995.
 433. Schekman, R. Translocation gets a push. Cell 78: 911–913, 1994.
 434. Schekman, R., and L. Orci. Coat proteins and vesicle budding. Science 271: 1526–1533, 1996.
 435. Scherer, P. E., G. Z. Lederkremer, S. Williams, F. Fogliano, G. Baldini, and H. F. Ladish. Cab45, a novel Ca2+‐binding protein localized to the Golgi lumen. J. Cell Biol. 133: 257–268, 1996.
 436. Schimmöller, F., B. Singer‐Krüger, S. Schröder, U. Krüger, C. Barlowe, and H. Riezman. The absence of Emp24p, a component of ER‐derived COPII‐vesicles, causes a defect in transport of selected proteins to the Golgi. EMBO J. 7: 1329–1333, 1995.
 437. Schindler, R., C. Itin, M. Zerial, F. Lottspeich, and H.‐P. Hauri. ERGIC‐53, a membrane protein of the ER‐Golgi intermediate compartment carries an ER retention motif. Eur. J. Cell Biol. 61: 1–9, 1993.
 438. Schröder, S., F. Schimmöller, B. Singer‐Krüger, and H. Riezman. The Golgi localization of yeast Emp47p depends on its di‐lysine motif but is not affected by the ret1–1 mutation in alpha‐COP. J. Cell Biol. 131: 895–912, 1995.
 439. Schutze, M.‐P., P. A. Peterson, and M. R. Jackson. An N‐terminal double‐arginine motif maintains type II membrane proteins in the endoplasmic reticulum. EMBO J. 13: 1696–1705, 1994.
 440. Schwaninger, R., H. Plutner, G. M. Bokoch, and W. E. Balch. Multiple GTP‐binding proteins regulate vesicular transport from the ER to Golgi membranes. J. Cell Biol. 119: 1077–1096, 1992.
 441. Schweizer, A., J.A.M. Fransen, T. Bächi, L. Ginsel, and H.‐P. Hauri. Identification, by a monoclonal antibody, of a 53‐kD protein associated with a tubulovesicular compartment at the cis‐side of the Golgi apparatus. J. Cell Biol. 107: 1643–1653, 1988.
 442. Schweizer, A., J. A. Fransen, K. Matter, T. E. Kreis, L. Ginsel, and H.‐P. Hauri. Identification of an intermediate compartment involved in protein transport from endoplasmic reticulum to Golgi apparatus. Eur. J. Cell Biol. 53: 185–196, 1990.
 443. Schweizer, A., K. Matter, C. M. Ketcham, and H.‐P. Hauri. The isolated ER‐Golgi intermediate compartment exhibits properties that are different from ER and cis‐Golgi. J. Cell Biol. 113: 45–54, 1991.
 444. Schweizer, A., M. Ericsson, T. Bächi, G. Griffiths, and H.‐P. Hauri. Characterization of a novel 63 kDa membrane protein: implications for the organization of the ER‐to‐Golg pathway. J. Cell Sci. 104: 671–683, 1993.
 445. Schweizer, A. J. Roher, P. Jenö, A. DeMaio, T. G. Buchman, and H.‐P. Hauri. A reversibly palmitoylated resident protein (p63) of an ER‐Golgi intermediate compartment is related to a circulatory shock resucitation protein. J. Cell Sci. 104: 685–694, 1993.
 446. Schweizer, A., H. Clausen, G. van Meer, and H.‐P. Hauri. Localization of O‐glycan initiation, sphingomyelin synthesis, and glucosylceramide synthesis in Vero cells with respect to the endoplasmic reticulum—Golgi intermediate compartment. J. Biol. Chem. 269: 4035–4041, 1994.
 447. Schweizer, A., J. Rohrer, H.‐P. Hauri, and S. Kornfeld. Retention of p63 in an ER‐Golgi intermediate compartment depends on the presence of all three of its domains and on its ability to form oligomers. J. Cell Biol. 126: 25–39, 1994.
 448. Schweizer, A., J. Rohrer, J. W. Slot, H. J. Geuze, and S. Kornfeld. Reassessment of the subcellular localization of p63. J. Cell Sci. 108: 2477–2485, 1995.
 449. Seeger, M., and G. S. Payne. Selective and immediate effects of clathrin heavy chain mutations on Golgi membrane protein retention in Saccharomyces cerevisiae. J. Cell Biol. 118: 531–540, 1992.
 450. Seelig, H. P., P. Schranz, H. Schröter, C. Wiemann, G. Griffiths, and M. Renz. Molecular genetic analyses of a 376‐kD Golgi complex membrane protein (Giantin). Mol. Cell Biol. 14: 2564–2576, 1994.
 451. Segev, N., J. Mulholland, and D. Botstein. The yeast GTP‐binding protein YPT1 and a mammalian counterpart are associated with the secretion machinery. Cell 52: 915–924, 1988.
 452. Segev, N. Mediation of the attachment or fusion step in vesicular transport by the GTP‐binding Ypt1 protein. Science 252: 1553–1556, 1991.
 453. Seksek, O., J. Biwersi, and A. S. Verkan. Direct measurement of trans‐Golgi pH in living cells and regulation by second messengers. J. Biol. Chem. 270: 4967–4970, 1995.
 454. Semenza, J. C., K. G. Hardwick, N. Dean, and H.R.B. Pelham. ERD2, a yeast gene required for receptor‐mediated retrieval of luminal ER proteins from the secretory pathway. Cell 61: 1349–1357, 1990.
 455. Serafini, T., G. Stenbeck, A. Brecht, F. Lottspeich, L. Orci, J. Rothman, and F. T. Wieland. A coat subunit of Golgi‐derived non‐clathrin coated vesicles with homology to the clathrin coated vesicle coat protein beta‐adaptin. Nature 349: 215–220, 1991.
 456. Serafini, T., L. Orci, M. Amherdt, M. Brunner, R. A. Kahn, and J. E. Rothman. ADP‐ribosylation factor is a subunit of the coat of Golgi‐derived COP‐vesicles: a novel role for a GTP‐binding protein. Cell 67: 239–253, 1991.
 457. Sesso, A., F. Paulo de Faria, E.S.M. Iwamura, and H. Correa. A three‐dimensional reconstruction study of the rough ER‐Golgi interface in serial thin sections of the pancreatic acinar cell of the rat. J. Cell Sci. 107: 517–528, 1994.
 458. Shamu, C. E., and P. Walter. Oligomerization and phosphorylation of the Ire1p kinase during intracellular signaling from the endoplasmic reticulum to the nucleus. EMBO J. 12: 3028–3039, 1996.
 459. Shaywitz, D. A., L. Orci, M. Ravazzola, A. Swaroop, and C. A. Kaiser. Human SEC13Rp functions in yeast and is located on transport vesicles budding from the endoplasmic reticulum. J. Cell Biol. 128: 769–777, 1995.
 460. Shiao, Y.‐J., and J. E. Vance. Sphingomyelin transport to the cell surface occurs independently of protein secretion in rat hepatocytes. J. Biol. Chem. 268: 26085–26092, 1993.
 461. Shim, J., A. P. Newman, and S. Ferro‐Novick. The BOS1 gene encodes an essential 27‐kD putative membrane protein that is required for vesicular transport from the ER to the Golgi complex in yeast. J. Cell Biol. 112: 55–64, 1991.
 462. Shin, J. S., R. L. Dunbrack, S. Lee, and J. L. Strominger. Signals for retention of transmembrane proteins in the endoplasmic reticulum studied with CD4 truncation mutants. Proc. Natl. Acad. Sci. U.S.A. 88: 1918–1922, 1991.
 463. Simons, K., and H. Virta. Perforated MDCK cells support intracellular transport. EMBO J. 6: 2241–2247, 1987.
 464. Singer, I. I., S. Scott, D. M. Kazias, and J. W. Huff. Lovastatin, an inhibitor of cholesterol synthesis, induces hydroxymethylglutaryl‐coenzyme A reductase directly on membranes of expanded smooth endoplasmic reticulum. Proc. Natl. Acad. Sci. U.S.A. 85: 5264–5268, 1988.
 465. Singer, S. J. It's important to concentrate. Trends Cell Biol. 5: 14–15, 1995.
 466. Sitia, R., and J. Meldolesi. Endoplasmic reticulum: A dynamic patchwork of specialized subregions. Mol. Biol. Cell 3: 1067–1072, 1992.
 467. Slot, J. W., and H. J. Geuze. Immunoelectron microscopic exploration of the Golgi complex. J. Histochem. Cytochem. 31: 1049–1056, 1983.
 468. Slusarewicz, P., T. Nilsson, N. Hui, R. Watson, and G. Warren. Isolation of a matrix that binds medial Golgi enzymes. J. Cell Biol. 124: 405–413, 1994.
 469. Sodeik, B., R. W. Doms, M. Ericsson, G. Hiller, C. E. Machamer, W. van't Hof, G. van Meer, B. Moss, and G. Griffiths. Assembly of vaccinia virus: Role of the intermediate compartment between the endoplasmic reticulum and the Golgi stacks. J. Cell Biol. 121: 521–541, 1993.
 470. Sogaard, M., K. Tani, R. R. Ye, S. Geromanos, P. Tempst, T. Kirchhausen, J. E. Rothman, and T. Söllner. A rab protein is required for the assembly of SNARE complexes in the docking of transport vesicles. Cell 78: 937–948, 1994.
 471. Soldati, T., A. D. Shapiro, A.B.D. Svejstrup, and S. R. Pfeffer. Membrane targeting of the small GTPase Rab9 is accompanied by nucleotide exchange. Nature 369: 76–78, 1994.
 472. Söllner, T., S. W. Whiteheart, M. Brunner, H. Erdjument‐Bromage, S. Geromanos, P. Tempst, and J. E. Rothman. SNAP receptors implicated in vesicle targeting and fusion. Nature 362: 318–324, 1993.
 473. Söllner, T., M. K. Bennett, S. W. Whiteheart, R. H. Scheller, and J. E. Rothman. A protein assembly‐disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation and fusion. Cell 75: 409–418, 1993.
 474. Sönnichsen, B., J. Füllekrug, P. Nguyen Van, W. Diekmann, D. G. Robinson, and G. Mieskes. Retention and retrieval: both mechanisms cooperate to maintain calreticulin in the endoplasmic reticulum. J. Cell Sci. 107: 2705–2717, 1994.
 475. Spiro, R. G., Q. Zhu, V. Bhoyroo, and H.‐D. Söling. Definition of the lectin‐like properties of the molecular chaperone, calreticulin, and demonstration of its copurification with endomannosidase from rat liver Golgi. J. Biol. Chem. 271: 11588–11594, 1996.
 476. Stafford, F. J., and J. S. Bonifacino. A permeabilized cell system identifies the endoplasmic reticulum as a site of protein degradation. J. Cell Biol. 115: 1225–1236, 1991.
 477. Stammes, M. A., M. W. Craighead, M. H. Hoe, N. Lampen, S. Geromanos, P. Tempst, and J. Rothman. An integral membrane component of coatomer‐coated transport vesicles defines a familiy of proteins involved in budding. Proc. Natl. Acad. Sci. U.S.A. 92: 8011–8015, 1995.
 478. Stanley, K. K., and K. E. Howell. TGN38/41: a molecule on the move. Trends Cell Biol. 3: 252–255, 1993.
 479. Stearns, T., R. A. Kahn, D. Botstein, and M. A. Hoyt. ADP ribosylation factor is an essential protein in Saccharomyces cerevisiae and is encoded by two genes. Mol. Cell. Biol. 10: 6690–6699, 1990.
 480. Stearns, T., M. C. Willingham, D. Botstein, and R. A. Kahn. ADP ribosylation factor is functionally and physically associated with the Golgi complex. Proc. Natl. Acad. Sci. U.S.A. 87: 1238–1242, 1990.
 481. Steinmann, B., P. Bruckner, and A. Superti‐Furga. Cyclosporin A slows collagen triple‐helix formation in vivo: indirect evidence for a physiologic role of peptidyl‐prolyl cis‐trans‐isomerase. J. Biol. Chem. 266: 1299–1303, 1991.
 482. Stenbeck, G., R. Schreiner, D. Herrmann, S. Auerbach, F. Lottspeich, J. E. Rothman, and F. T. Wieland. Gamma‐COP, a coat subunit of non‐clathrin‐coated vesicles with homology to sec21p. FEBS Lett. 314: 195–198, 1992.
 483. Stenbeck, G., C. Harter, A. Brecht, D. Hermann, F. Lottspeich, L. Orci, and F. T. Wieland. Beta'‐COP, a novel subunit of coatomer. EMBO J. 12: 2841–2845, 1993.
 484. Stieger, B., K. Matter, B. Baur, M. Höchli, and H.‐P. Hauri. Dissection of the asynchronous transport of intestinal microvillar hydrolases to the cell surface. J. Cell Biol. 106: 1853–1861, 1988.
 485. Stinchcombe, J. C., H. Nomoto, D. F. Cutler, and C. R. Hopkins. Anterograde and retrograde traffic between the endoplasmic reticulum and the Golgi complex. J. Cell Biol. 131: 1387–1401, 1995.
 486. Stow, J. L., J. B. de Almeida, N. Narula, E. J. Holzman, L. Ercolani, and D. A. Ausiello. A heterotrimeric G protein, G‐alpha‐i‐3, on Golgi membranes regulates the secretion of a heparan sulfate proteoglycan in LLC‐PK1 epithelial cells. J. Cell Biol. 114: 1113–1124, 1991.
 487. Strous, G. J., P. van Kerkhof, O. R. Willemsen, H. J. Geuze, and E. G. Berger. Transport and topology of galactosyltransferase in endomembranes of HeLa cells. J. Cell Biol. 97: 723–727, 1983.
 488. Subramanian, V. N., F. Peter, R. Philip, S. H. Wong, and W. Hong. GS28, a 28‐kilodalton Golgi SNARE that participates in ER‐Golgi transport. Science 272: 1161–1163, 1996.
 489. Suzuki, C. K., J. S. Bonifacino, A. Y. Lin, M. M. Davis, and R. D. Klausner. Regulating the retention of T‐cell receptor alpha chain variants within the endoplasmic reticulum: Ca‐dependent association with BiP. J. Cell Biol. 114: 189–205, 1991.
 490. Sweet, D. J., and H.R.B. Pelham. The Saccharomyces cerevisiae SEC20 gene is sorted by the HDEL retrieval system. EMBO J. 11: 423–432, 1992.
 491. Swift, A. M., and C. E. Machamer. A Golgi retention signal in a membrane spanning domain of Coronavirus E1 protein. J. Cell Biol. 115: 19–30, 1991.
 492. Sztul, E. S., P. Melancon, and K. E. Howell. Targeting and fusion in vesicular transport. Trends Cell Biol. 2: 381–386, 1992.
 493. Takei, K., A. Mignery, E. Mugnaini, T. C. Südhof, and P. De Camilli. Inositol 1,4,5‐trisphosphate receptor causes formation of ER cisternal stacks in transfected fibroblasts and cerebellar Purkinje cells. Neuron 12: 327–342, 1994.
 494. Takemoto, H., T. Yoshimori, A. Yamamoto, Y. Miyata, I. Yahara, K. Inoue, and Y. Tashiro. Heavy chain binding protein (BiP/GRP78) and endoplasmin are exported from the endoplasmic reticulum in rat exocrine pancreatic cells, similar to protein disulfide‐isomerase. Arch. Biochem. Biophys. 296: 129–136, 1992.
 495. Takizawa, P. A., and V. Malhotra. Coatomers and SNAREs in promoting membrane traffic. Cell 75: 593–596, 1993.
 496. Takizawa, P. A., J. K. Yucel, B. Veit, D. J. Faulkner, T. Deerinck, G. Soto, M. Ellisman, and V. Malhotra. Complete vesiculation of Golgi membranes and inhibition of protein transport by a novel sea sponge metabolite, ilimaquinone. Cell 73: 1079–1090, 1993.
 497. Tang, B. L., S. H. Wong, S. H. Low, and W. Hong. The transmembrane domain of N‐acetylglucosaminyltransferase I contains a Golgi retention signal. J. Biol. Chem. 267: 10122–10126, 1992.
 498. Tang, B. L., H. Wong, X. L. Qi, S. H. Low, and W. Hong. Molecular cloning, characterization, subcellular localization and dynamics of p23, the mammalian KDEL receptor. J. Cell Biol. 120: 325–338, 1993.
 499. Tang, B. L., S. H. Low, H.‐P. Hauri, and W. Hong. Segregation of ERGIC‐53 and the mammalian KDEL receptor upon exit from the 15°C compartment. Eur. J. Cell Biol 68: 398–410, 1995.
 500. Tanigawa, G., L. Orci, M. Amherdt, M. Ravazzola, J. B. Helms, and J. E. Rothman. Hydrolysis of bound GTP by ARF proteins triggers uncoating of Golgi‐derived COP‐coated vesicles. J. Cell Biol. 123: 1365–1371, 1993.
 501. Tatu, U, I. Braakman, and A. Helenius. Membrane glycoprotein folding, oligomerization and intracellular transport: effects of dithiotreitol in living cells. EMBO J. 12: 2151–2157, 1993.
 502. Tatu, U., C. Hammond, and A. Helenius. Folding and oligomerization of influenza hemagglutinin in the ER and the intermediate compartment. EMBO J. 14: 1340–1348, 1995.
 503. Taylor, T. C., M. Kanstein, P. Weidman, and P. Melancon. Cytosolic ARFs are required for vesicle formation but not for cell‐free intra‐Golgi transport: Evidence for coated vesicle‐independent transport. Mol. Biol. Cell 5: 237–252, 1994.
 504. Teal, S. B., V. W. Hsu, P. J. Peters, R. D. Klausner, and J. G. Donaldson. An activating mutation in ARF1 stabilizes coatomer binding to Golgi membranes. J. Biol. Chem. 269: 3135–3138, 1994.
 505. Teasdale, R. D., G. D'Agostaro, and P. A. Gleeson. The signal for Golgi retention of bovine beta1,4‐galactosyltransferase is in the trans‐membrane domain. J. Biol. Chem. 267: 4084–4096, 1992.
 506. Terasaki, M., L. B. Chen, and K. Fujiwara. Microtubules and the endoplasmic reticulum are highly interdependent structures. J. Cell Biol. 103: 1557–1568, 1986.
 507. Terasaki, M., and L. A. Jaffe. Organization of the sea urchin egg endoplasmic reticulum and its reorganization at fertilization. J. Cell Biol. 114: 929–940, 1991.
 508. Thomas, P. J., P. Shenbagamurthi, J. Sondek, J. M. Hullihen, and P. L. Pedersen. The cystic fibrosis transmembrane conductance regulator. Effects of the most common cystic fibrosis‐causing mutation on the secondary structure and stability of a synthetic peptide. Biol. Chem. 267: 5727–5730, 1992.
 509. Tisdale, E. J., J. R. Bourne, R. Khosravi‐Far, C. J. Der, and W. E. Balch. GTP‐binding mutants of rab1 and rab2 are potent inhibitors of vesicular transport from the endoplasmic reticulum to the Golgi complex. J. Cell Biol. 119: 749–761, 1992.
 510. Tooze, S. A., J. Tooze, and G. Warren. Site of addition of N‐acetyl‐galactosamine to the E1 glycoprotein of a mouse hepatitis virus‐A59. J. Cell Biol. 106: 1475–1487, 1988.
 511. Tooze, J., H. F. Kern, S. D. Fuller, and K. E. Howell. Condensation‐sorting events in the rough endoplasmic reticulum of exocrine pancreatic cells. J. Cell. Biol. 109: 35–50, 1989.
 512. Townsley, F. M., D. W. Wilson, and H.R.B. Pelham. Mutational analysis of the human KDEL receptor: distinct structural requirements for Golgi retention, ligand binding and retrograde transport. EMBO J. 12: 2821–2829, 1993.
 513. Townsley, F., and H.R.B. Pelham. The KKXX signal mediates retrieval of membrane proteins from the Golgi to the ER in yeast. Eur. J. Cell Biol. 64: 211–216, 1994.
 514. Townsley, F. M., G. Frigerio, and H.R.B. Pelham. Retrieval of HDEL proteins is required for growth of yeast cells. J. Cell Biol. 127: 21–28, 1994.
 515. Trombetta, S. E., and A. J. Parodi. Purification to apparent homogeneity and partial characterization of rat liver UDP‐glucose: glycoprotein glucosyltransferase. J. Biol. Chem. 267: 9236–9240, 1992.
 516. Turner, J. R., and A. M. Tartakoff. The response of the Golgi complex to microtubule alterations: the roles of metabolic energy and membrane traffic in the Golgi complex organization. J. Cell Biol. 109: 2081–2088, 1989.
 517. Ulmer, J. B., and G. E. Palade. Effects of brefeldin A on the Golgi complex, endoplasmic reticulum and viral envelope glycoproteins in murine erythroleukemia cells. Eur. J. Cell Biol. 54: 38–54, 1991.
 518. Ullrich, O., H. Horiuchi, C. Bucci, and M. Zerial. Membrane association of Rab5 mediated by GDP‐dissociation inhibitor and accompanied by GDP/GTP exchange. Nature 368: 157–160, 1994.
 519. Urade, R., M. Nasu, T. Moriyama, K. Wada, and K. Kito. Protein degradation by the phosphoinositide‐specific phospholipase C‐alpha familiy from rat liver endoplasmic reticulum. J. Biol. Chem. 267: 15152–15159, 1992.
 520. Urade, R., Y. Takenaka, and M. Kito. Protein degradation by ERp72 from rat and mouse liver endoplasmic reticulum. J. Biol. Chem. 268: 22004–22009, 1993.
 521. Valetti, C., C. E. Grossi, C. Milstein, and R. Sitia. Russel bodies: A general response of secretory cells to synthesis of a mutant immunolgobulin which can neither exit from, nor be degraded in, the endoplasmic reticulum. J. Cell Biol. 115: 983–994, 1991.
 522. Van Der Voorn, L., and H. L. Ploegh. The WD‐40 repeat. FEBS Lett. 307: 131–134, 1992.
 523. Valtersson, C., A. H. Dutton, and S. J. Singer. Transfer of secretory proteins from the endoplasmic reticulum to the Golgi apparatus: Discrimination between homologous and heterologous transfer in intact heterokaryons. Proc. Natl. Acad. Sci. U.S.A. 87: 8175–8179, 1990.
 524. Van Leyen, K., and F. Wieland. Complete Golgi passage of glycoptripeptides generated in the endoplasmic reticulum. FEBS Lett. 352: 211–215, 1994.
 525. Veit, M, and M.F.G. Schmidt. Timing of palmitoylation of influenza hemagglutinin. FEBS Lett. 336: 243–247, 1993.
 526. Veit, B., J. K. Yucel, and V. Malhotra. Microtubule independent vesiculation of Golgi membranes and reassembly of vesicles into Golgi stacks. J. Cell Biol. 122: 1197–1206, 1993.
 527. Velasco, A. L., Hendricks, K. W. Moremen, D. R. Tulsiani, O. Touster, and M. G. Farquhar. Cell type‐dependent variations in the subcellular distribution of alpha‐mannosidase I and II. J. Cell Biol. 122: 39–51, 1993.
 528. Vergères, G., T.S.B. Yen, J. Aggeler, J. Lausier, and L. Waskell. A model system for studying membrane biogenesis. Overexpression of cytochrome b5 in yeast results in marked proliferation of the intracellular membrane. J. Cell Sci. 106: 249–259, 1993.
 529. Vertel, B. M., A. Velasco, S. LaFrance, L. Walters, and K. Kaczman‐Daniel. Precursors of chondroitin sulfate proteoglycan are segregated within a subcompartment of the chondrocyte endoplasmic reticulum. J. Cell. Chem. 109: 1827–1836, 1989.
 530. Villa, A., P. Podini, D. O. Clegg, T. Pozzan, and J. Meldolesi. Intracellular Ca2+ stores in chicken Purkinje neurons: Differential distribution of the low affinity‐high capacity Ca2+ binding protein, calsequestrin, of Ca2+‐ATPase and of the ER lumenal protein, BiP. J. Cell Biol. 113: 779–791, 1991.
 531. Volpe, P., K.‐H. Krause, S. Hashimoto, F. Zorzato, T. Pozzan, J. Meldolesi, and D. P. Lew. “Calciosome,” a cytoplasmic organelle: The inositol 1,4,5‐trisphosphate‐sensitive Ca2+ store of nonmuscle cells? Proc. Natl. Acad. Sci. U.S.A. 85: 1091–1095, 1988.
 532. Volpe, P., A. Villan, P. Podini, A. Martini, A. Nori, M. C. Panzeri, and J. Meldolesi. The endoplasmic reticulum—sarcoplasmic reticulum connection: Distribution of endoplasmic reticulum markers in the sarcoplasmic reticulum of skeletal muscle fibers. Proc. Natl. Acad. Sci. U.S.A. 89: 6142–6146, 1992.
 533. Vuori, K., T. Pihlajaniemi, M. Marttila, and K. I. Kivirikko. Characterization of the human prolyl 4‐hydroxylase tetramer and its multifunctional protein disulfide isomerase subunit synthesized in a bacculovirus expression system. Proc. Natl. Acad. Sci. U.S.A. 89: 7467–7470, 1992.
 534. Wada, I., D. Rindress, P. H. Cameron, W.‐J. Ou, J. J. Doherty, D. Louvard, A. W. Bell, D. Dignard, D. Y. Thomas, and J. J. M. Bergeron. SSR‐alpha and associated calnexin are major calcium binding proteins of the endoplasmic reticulum. J. Biol. Chem. 266: 19599–19610, 1991.
 535. Walker, R. A., and M. P. Sheetz. Cytoplasmic microtubule‐associated motors. Annu. Rev. Biochem. 62: 429–451, 1993.
 536. Wang, C.‐C., and C.‐L. Tsou. Protein disulfide isomerase is both an enzyme and a chaperone. FASEB J. 7: 1515–1517, 1993.
 537. Ward, C. L., S. Omura, and R. R. Kopito. Degradation of CFTR by the ubiquitin‐proteasome pathway. Cell 83: 121–127, 1995.
 538. Ware F., E. A. Vassilakos, P. A. Peterson, M. R. Jackson, M. A. Lehrman, D. B. Williams. The molecular chaperone calnexin binds Glc1MangGlcNAc2 oligosaccharide as an initial step in recognizing unfolded glycoproteins. J. Biol. Chem. 270: 4697–4704, 1995.
 539. Warren, G. Signals and salvage sequences. Nature 227: 17–18, 1987.
 540. Waters, M. G., T. Serafini, and J. E. Rothman. Coatomer: a cytosolic protein complex containing subunits of non‐clathrin‐coated Golgi transport vesicles. Nature 349: 248–251, 1991.
 541. Waters, M. G., C.J.M. Beckers, and J. E. Rothman. Purification of coat protomers. Methods Enzymol. 219: 331–337, 1992.
 542. Waxman, D. J., and L. Azaroff. Phenobarbital induction of cytochrome P‐450 expression. Biochem J. 281: 577–592, 1992.
 543. Weidman, P. J., and W. M. Winter. The G protein‐activating peptide, mastoparan, and the synthetic NH2‐terminal ARF peptide, ARFp13, inhibit in vitro Golgi transport by irreversibly damaging membranes. J. Cell Biol. 127: 1815–1827, 1994.
 544. Weis, K., G. Griffiths, and A. I. Lamond. The endoplasmic reticulum calcium‐binding protein of 55 kDa is a novel EF‐hand protein retained in the endoplasmic reticulum by a carboxyl‐terminal His‐Asp‐Glu‐Leu motif. J. Biol. Chem. 269: 19142–19150, 1994.
 545. Weisz, O. A., A. M. Swift, and C. E. Machamer. Oligomerization of a membrane protein correlates with its retention in the Golgi complex. J. Cell Biol. 122: 1185–1196, 1993.
 546. Welsh, M. J., and A. S. Smith. Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell 73: 1251–1254, 1993.
 547. Wetterau, J. R., K. A. Combs, L. R. McLean, S. N. Spinner and, L. P. Aggerbeck. Protein disulfide isomerase appears necessary to maintain the catalytically active structure of microsomal triglyceride transfer protein. Biochemistry 30: 9728–9735, 1991.
 548. Whiteheart, S. W., I. C. Griff, M. Brunner, D. O. Clary, T. Mayer, S. A. Buhrow, and J. E. Rothman. SNAP family of NSF attachment proteins includes a brain‐specific isoform. Nature 362: 353–355, 1993.
 549. Whiteheart, S. W., K. Rossnagel, S. A. Buhrow, M. Brunner, R. Jaenicke, and J. E. Rothman. N‐ethylmaleimide‐sensitive fusion protein: A trimeric ATPase whose hydrolysis of ATP is required for membrane fusion. J. Cell Biol. 126: 945–954, 1994.
 550. Wieland, F. T., M. L. Gleason, T. A. Serafini, and J. E. Rothman. The rate of bulk flow from the endoplasmic reticulum to the cell surface. Cell 50: 289–300, 1987.
 551. Wikström, L., and H. F. Lodish. Nonlysosomal, pre‐Golgi degradation of unassembled asialoglycoprotein receptor subunits. A TLCK‐ and TPCK‐sensitive cleavage within the ER. J. Cell Biol. 113: 997–1007, 1991.
 552. Wikström, L., and H. F. Lodish. Unfolded H2b asialoglycoprotein receptor subunit polypeptides are selectively degraded within the endoplasmic reticulum. J. Biol. Chem. 268: 14412–14416, 1993.
 553. Wilcox, C. A., K. Redding, R. Wright, and R. S. Fuller. Mutation of a tyrosine localization signal in the cytosolic tail of yeast Kex2 protease disrupts Golgi retention and results in default transport to the vacuole. Mol. Biol. Cell. 3: 1353–1371, 1992.
 554. Wileman, T., L. P. Kane, G. R. Carson, and C. Terhorst. Depletion of cellular calcium accelerates protein degradation in the endoplasmic reticulum. J. Biol. Chem. 266: 4500–4507, 1991.
 555. Wileman, T., L. P. Kane, and C. Terhorst. Degradation of T‐cell receptor chains in the endoplasmic reticulum is inhibited by inhibitors of cystein proteinases. Cell Regul. 2: 753–765, 1991.
 556. Wilsbach, K., and G. S. Payne. Dynamic retention of TGN membrane proteins in Saccharomyces cerevisiae. Trends Cell Biol. 3: 426–432, 1993.
 557. Wilsbach, K. and G. S. Payne. Vsplp, a member of the dynamin GTPase familiy, is necessary for Golgi membrane protein retention in Saccharomyces cervisiae. EMBO J. 12: 3049–3059, 1993.
 558. Wilson, B. S., G. E. Palade, and M. G. Farquhar. Endoplasmic reticulum—through‐Golgi transport assay based on O‐glycosylation of native glycophorin in permeabilized erythro‐leukemia cells: Role for Gi3. Proc. Natl. Acad. Sci. U.S.A. 90: 1681–1685, 1993.
 559. Wilson, B. S., C. Nuoffer, J. L. Meinkoth, M. McCaffery, J. R. Feramisco, W. E. Balch, and M. G. Farquhar. A rab1 mutant affecting guanine nucleotide exchange promotes disassembly of the Golgi apparatus. J. Cell Biol. 125: 557–571, 1994.
 560. Wilson, D. W., C. A. Wilcox, G. C. Flynn, E. Chen, W. Y. Kuang, M. R. Block, A. Ullrich, and J. E. Rothman. A fusion protein required for vesicle‐mediated transport in both mammalian cells and yeast. Nature 339: 355–359, 1989.
 561. Wilson, D. W., M. J. Lewis, and H.R.B. Pelham. pH‐dependent binding of KDEL to its receptor in vitro. J. Biol. Chem. 268: 7465–7468, 1993.
 562. Wong, S. H., S. H. Low, and W. Hong. The 17 residue transmembrane domain of beta‐galactoside alpha2,6‐sialyltransferase is sufficient for Golgi retention. J. Cell Biol. 117: 245–258, 1992.
 563. Wong, S. H., and W. Hong. The SXYQRL sequence in the cytoplasmic domain of TGN38 plays a major role in trans‐Golgi network localization. J. Biol. Chem. 268: 22853–22862, 1993.
 564. Wood, S. A., J. E. Park, and W. J. Brown. Brefeldin A causes a microtubule‐mediated fusion of trans‐Golgi network and early endosomes. Cell 67: 591–600, 1991.
 565. Yamaguchi, N., and M. N. Fukuda. Golgi retention mechanism of beta‐1,4‐galactosyltransferase. Membrane‐spanning domain‐dependent homodimerization and association with alpha‐and beta‐tubulins. J. Biol. Chem. 270: 12170–12176, 1995.
 566. Yang, Y., S. Janich, J. A. Cohn, and J. M. Wilson. The common variant of cystic fibrosis transmembrane conductance regulator is recognized by hsp70 and degraded in a pre‐Golgi nonlysosomal compartment. Proc. Natl. Acad. Sci. U.S.A. 90: 9480–9484, 1993.
 567. Yoshihisa, T., C. Barlowe, and R. Schekman. Requirement for a GTPase‐activating protein in vesicle budding from the endoplasmic reticulum. Science 259: 1466–1468, 1993.
 568. Young, J., L. P. Kane, M. Exley, and T. Wileman. Regulation and selective protein degradation in the endoplasmic reticulum by redox potential. J. Biol. Chem. 268: 19810–19818, 1993.
 569. Zerial, M., and H. Stenmark. Rab GTPases in vesicular transport. Curr. Opin. Cell Biol. 5: 613–620, 1993.
 570. Zhang, C.‐j., A. G. Rosenwald, M. C. Willingham, S. Skuntz, J. Clark, and R. A. Kahn. Expression of a dominant allele of human ARF1 inhibits membrane traffic in vivo. J. Cell Biol. 124: 289–300, 1994.
 571. Zuber, C., J. Roth, T. Misteli, A. Nakano, and K. Moremen. DS28–6, a temperature‐sensitive mutant of Chinese hamster ovary cells, expresses key phenotypic changes associated with brefeldin A treatment. Proc. Natl. Acad. Sci. U.S.A. 88: 9818–9822, 1991.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Hans‐Peter Hauri, Anja Schweizer. The ER–Golgi Membrane System: Compartmental Organization and Protein Traffic. Compr Physiol 2011, Supplement 31: Handbook of Physiology, Cell Physiology: 605-647. First published in print 1997. doi: 10.1002/cphy.cp140115