Comprehensive Physiology Wiley Online Library

Insights into Biomedicine from Animal Adaptations

Full Article on Wiley Online Library



Abstract

Evolution represents a natural experimental process for testing animal design features. Driven by environmental pressures, animals have evolved adaptations which can give valuable insights into human biomedical conditions. The giraffe by virtue of its extremely long neck has a mean arterial pressure much higher than other mammals. However, the giraffe does not develop vascular damage or heart failure despite its high mean arterial pressure. The giraffe's cardiovascular physiology challenges a number of current concepts concerning the genesis of hypertensive vascular damage in the human. All animals senesce, and, in general, the manifestations of this senescence are similar to the aging features observed in humans. The characteristics of aging in natural animals strongly suggest that the so‐called chronic degenerative diseases of humans are not really diseases but actually manifestations of the aging phenotype. Glucose regulation in birds and the naked mole rat has features which mimic the characteristics of the diabetic state, yet these animals do not develop the complications occurring in humans with diabetes. Disruptions in the functioning of the circadian molecular clock are thought to underlie certain neuropsychiatric disorders. The honeybee and the zebrafish have emerged as natural animal models for studying the regulation of molecular clocks and the mechanisms underlying plasticity of circadian rhythms. These examples underscore the valuable insights that natural animals can furnish with respect to biomedical disorders. Yet, this information data base remains a largely untapped resource. © 2011 American Physiological Society. Compr Physiol 1:2063‐2081, 2011.

References
 1. Absil P, Pinxten R, Balthazart J, Eens M. Effect of age and testosterone on autumnal neurogenesis in male European starlings (Sturnus vulgaris). Behav Brain Res 143: 15‐30, 2003.
 2. Adar E, Nottlebohm F, Barnea A. The relationship between nature of social change, age, and position of new neurons and their survival in adult Zebra finch brain. J Neurosci 28: 5394‐5400, 2008.
 3. Aguirre AA, Brojer C, Morner T. Descriptive epidemiology of roe deer mortality in Sweden. J Wildl Dis 35: 753‐762, 1999.
 4. Amdam GV, Aase ALTO, Seehuus SC, Fondrk MK, Norberg K, Hartfelder K. Social reversal of immunosenescence in honey bee workers. Exp Gerontol 40: 939‐947, 2005.
 5. Amdam GV, Page RE Jr. Intergenerational transfers may have decoupled physiological and chronological age in a eusocial insect. Ageing Res Rev 4: 398‐408, 2005.
 6. Andersen JB, Rourke BC, Caiozzo VJ, Bennett AF, Hicks JW. Postprandial cardiac hypertrophy in pythons. Nature 434: 37‐38, 2005.
 7. Baggio LL, Drucker DJ. Biology of incretins: GLP‐1 and GIP. Gastroenterology 132: 2131‐2157, 2007.
 8. Balligand J‐L, Feron O, Dessy C. eNOS activation by physical forces: From short‐term regulation of contraction to chronic remodeling of cardiovascular tissues. Physiol Rev 89: 481‐534, 2009.
 9. Barnea A. Interactions between environmental changes and brain plasticity in birds. Gen Comp Endocrinol 163: 128‐134, 2009.
 10. Barnea A, Mishal A, Nottlebohm F. Social and spatial changes induce multiple survival regimes for new neurons in two regions of the adult brain : An anatomical representation of time? Behav Brain Res 167: 63‐74, 2006.
 11. Behrends A, Scheiner R, Baker N, Amdam GV. Cognitive aging is linked to social role in honey bees (Apis mellifera). Exp Gerontol 42: 1146‐1153, 2007.
 12. Beintema JJ, Campagne RN. Molecular evolution of rodent insulins. Mol Biol Evol 4: 10‐18, 1987.
 13. Bell‐Pedersen D, Cassone VM, Earnest DJ, Golden SS, Hardin PE, Thomas TL, Zoran MJ. Circadian rhythms from multiple oscillators: Lessons from diverse organisms. Nat Rev Genet 6: 544‐556, 2005.
 14. Berk BC, Fujiwara K, Lehoux S. ECM remodeling in hypertensive heart disease. J Clin Invest 117: 568‐575, 2007.
 15. Beuchat CA, Chong CR. Hyperglycemia in hummingbirds and its consequences for hemoglobin glycation. Comp Biochem Physiol A 120: 409‐416, 1998.
 16. Bjornsson HT, Fallin MD, Feinberg AP. An integrated epigenetic and genetic approach to common human disease. Trends Genet 20: 350‐358, 2004.
 17. Blaustein MP, Zhang J, Chen L, Hamilton BP. How does salt retention raise blood pressure? Am J Physiol Regul Integr Comp Physiol 290: R514‐R523, 2006.
 18. Bloch G. The social clock of the honeybee. J Biol Rhythms 25: 307‐317, 2010.
 19. Boluyt MO, O'Neill L, Meredith AL, Bing OHL, Brooks WW, Conrad CH, Crow MT, Lakatta EG. Alterations in cardiac gene expression during the transition from stable hypertrophy to heart failure. Circ Res 75: 23‐32, 1994.
 20. Bonasio R, Zhang G, Ye C, Mutti NS, Fang X, Qin N, Donahue G, Yang P, Li Q, Li C, Zhang P, Huang Z, Berger SL, Reinberg D, Wang J, Liebig J. Genomic comparison of the ants Camponotus floridanus and Harpegnathos saltator. Science 329: 1068‐1071, 2010.
 21. Braun EJ, Sweazea KL. Glucose regulation in birds. Comp Biochem Physiol B 151: 1‐9, 2008.
 22. Brondum E, Hasenkam JM, Secher NH, Bertelsen MF, Grondahl C, Petersen KK, Buhl R, Aalkjaer C, Baandrup U, Nygaard H, Smerup M, Stegmann F, Sloth E, Ostergaard KH, Nissen P, Runge M, Pitsillides K, Wang T. Jugular venous pooling during lowering of the head affects blood pressure of the anesthetized giraffe. Am J Physiol Regul Integr Comp Physiol 297: R1058‐R1065, 2009.
 23. Buffenstein R. Negligible senescence in the longest living rodent, the naked mole‐rat: Insights from a successfully aging species. J Comp Physiol B Biochem Syst Environ Physiol 178: 439‐445, 2008.
 24. Buffenstein R, Kang J, Biney A. Glucose tolerance and insulin sensitivity in an extremely long‐living rodent, the naked mole‐rat. FASEB J 21 (6): abstract 1423, 2007.
 25. Buffenstein R, Pinto M. Endocrine function in naturally long‐living small mammals. Mol Cell Endocrinol 299: 101‐111, 2009.
 26. Carnes BA, Staats DO, Sonntag WE. Does senescence give rise to disease? Mech Ageing Dev 129: 693‐699, 2008.
 27. Carroll SB. Evo‐devo and an expanding evolutionary synthesis: A genetic theory of morphological evolution. Cell 134: 25‐36, 2008.
 28. Chan SJ, Steiner DF. Insulin through the ages: Phylogeny of a growth promoting and metabolic regulatory hormone. Am Zool 40; 213‐222, 2000.
 29. Coghlan C, Hoffman J. Leonardo da Vinci's flights of the mind must continue: Cardiac architecture and the fundamental relation of form and function revisited. Eur J Cardio‐Thorac Surg 295: S4‐S17, 2006.
 30. DeGuise S, Lagace A, Beland P. Tumors in St. Lawrence beluga whales (Delphinapterus leucas). Vet Pathol 31: 444‐449, 1994.
 31. Dellovade TL, Rissman EF, Thompson N, Harada N, Ottinger MA. Co‐localization of aromatase enzyme and estrogen receptor immunoreactivity in the preoptic area during reproductive aging. Brain Res 674: 181‐187, 1995.
 32. Dibner C, Schibler U, Albrecht U. The mammalian circadian timing system: Organization and coordination of central and peripheral clocks. Annu Rev Physiol 72: 517‐549, 2010.
 33. Dolinoy DC, Jirtle RL. Environmental epigenomics in human health and disease. Environ Mol Mutagen 49: 4‐8, 2008.
 34. Dolinoy DC, Weidman JR, Jirtle RL. Epigenetic gene regulation; linking early developmental environment to adult disease. Reprod Toxicol 23: 297‐307, 2007.
 35. Donahue SW, Galley SA, Vaughan MR, Patterson‐Buckendahl P, Demers LM, Vance JL, McGee ME. Parathyroid hormone may maintain bone formation in hibernating black bears (Ursus americanus) to prevent disuse osteoporosis. J Exp Biol 209: 1630‐1638, 2006.
 36. Dorn GW II. The fuzzy logic of physiological cardiac hypertrophy. Hypertension 49: 962‐970, 2007.
 37. Farrell AP. Coronary arteriosclerosis in salmon: Growing old or growing fast? Comp Biochem Physiol A 132: 723‐735, 2002.
 38. Farrell AP, Steffensen JF. Coronary ligation reduces maximum sustained swimming speed in Chinook salmon, Oncorhynchus tshawytscha. Comp Biochem Physiol 87A: 35‐37, 1987.
 39. Feinberg AP. Epigenetics at the epicenter of modern medicine. JAMA 299: 1345‐1350, 2008.
 40. Flatt T, Schmidt PS. Integrating evolutionary and molecular genetics of aging. Biochim Biophys Acta 1790: 951‐962, 2009.
 41. Ford LE. Heart size. Circ Res 39: 297‐303, 1976.
 42. Ghalambor CK, Mckay JK, Carroll SP, Reznick DN. Adaptive versus non‐adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct Ecol 21: 394‐407, 2007.
 43. Ginsberg BH, Kahn RC, Roth J. The insulin receptor of the turkey erythrocyte: Similarity to mammalian insulin receptors. Endocrinology 100: 82‐90, 1977.
 44. Goetz RH, Keen EW. Some aspects of the cardiovascular system in the giraffe. Angiology 8: 542‐564, 1957.
 45. Gotz ME, Malz CR, Dirr A, Blum D, Gsell W, Schmidt S, Burger R, Pohli S, Riederer P. Brain aging phenomena in migrating sockeye salmon Oncorhynchus nerka nerka. J Neural Transm 112: 1177‐1199, 2005.
 46. Gould SJ. The Panda's Thumb. New York, NY: W.W. Norton and Company, 1980.
 47. Gravina S, Vijg J. Epigenetic factors in aging and longevity. Pflug Arch‐Eur J Physiol 459: 247‐258, 2010.
 48. Hargens AR, Gershuni DH, Danzig LA, Millard RW, Pettersson K. Tissue adaptations to gravitational stress; newborn versus adult giraffes. Physiologist 31: S110‐S113, 1988.
 49. Hargens AR, Millard RW, Pettersson K, Johansen K. Gravitational haemodynamics and oedema prevention in the giraffe. Nature 329: 59‐60, 1987.
 50. Hershey JD, Robbins CT, Nelson OL, Lin DC. Minimal seasonal alterations in the skeletal muscle of captive brown bears. Physiol Biochem Zool 81: 138‐147, 2008.
 51. Holmes DJ, Austad SN. The evolution of avian senescence patterns: Implications for understanding primary aging processes. Am Zool 35: 307‐317, 1995a.
 52. Holmes DJ, Austad SN. Birds as animal models for the comparative biology of aging: A prospectus. J Gerontol 50: B59‐B66, 1995b.
 53. Holmes DJ, Fluckiger R, Austad SN. Comparative biology of aging in birds: An update. Exp Gerontol 36: 869‐883, 2001.
 54. Huang ZY, Robinson GE, Borst DW. Physiological correlates of division of labor among similarly aged honey bees. J Comp Physiol A 174: 731‐739, 1994.
 55. Hughes KA, Reynolds RM. Evolutionary and mechanistic theories of aging. Annu Rev Entomol 50: 421‐445, 2005.
 56. Kirkwood TBL. Evolution of ageing. Mech Ageing Dev 123: 737‐745, 2002.
 57. Klein G. Toward a genetics of cancer resistance. Proc Natl Acad Sci U S A 106: 859‐863, 2009.
 58. Ko CH, Takahashi JS. Molecular components of the mammalian circadian clock. Hum Mol Genet 15: R271‐R277, 2006.
 59. Kovac J, Husse J, Oster H. A time to fast, a time to feast: The crosstalk between metabolism and the circadian clock. Mol Cells 28: 75‐80, 2009.
 60. Kucharski R, Maleszka J, Foret S, Maleszka R. Nutritional control of reproductive status in honeybees via DNA methylation. Science 319: 1827‐1830, 2008.
 61. Kuro‐o M, Matsumura Y, Alzawa H, Kawaguchi H, Suga T, Utsugi T, Ohyama Y, Kurabayashi M, Kaname T, Kume E, Iwasaki H, Iida A, Shiraki‐Iida T, Nishikawa S, Nagai R, Nabeshima Y. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390: 45‐51, 1997.
 62. Kurosu H, Yamamoto M, Clark JD, Pastor JV, Nandi A, Gurnani P, McGuiness OP, Chikuda H, Yamaguchi M, Kawaguchi H, Shimomura I, Takayama Y, Herz J, Kahn CR, Rosenblatt KP, Kuro‐o M. Suppression of aging in mice by the hormone Klotho. Science 309: 1829‐1833, 2005.
 63. Lehoux S, Esposito B, Merval R, Tedgui A. Differential regulation of vascular focal adhesion kinase by steady stretch and pulsatility. Circulation 111: 643‐649, 2005.
 64. Lehoux S, Tedgui A. Cellular mechanics and gene expression in blood vessels. J Biomech 36: 631‐643, 2003.
 65. Lifton RP, Gharavi AG, Geller DS. Molecular mechanisms of human hypertension. Cell 104: 545‐556, 2001.
 66. Lohuis TD, Harlow HJ, Beck TDI, Iaizzo PA. Hibernating bears conserve muscle strength and maintain fatigue resistance. Physiol Biochem Zool 80: 257‐269, 2007.
 67. Maldonado TA, Jones RE, Norris DO. Distribution of B‐amyloid and amyloid precursor protein in the brain of spawning (senescent) salmon: A natural brain‐aging model. Brain Res 858: 237‐251, 2000.
 68. Maldonado TA, Jones RE, Norris DO. Timing of neurodegeneration and beta‐amyloid (AB) peptide deposition in the brain of aging Kokanee salmon. J Neurobiol 53: 21‐35, 2002.
 69. Maluf NSR. Kidney of giraffes. Anat Rec 267: 94‐111, 2002.
 70. Martineau D, Lemberger K, Dallaire A, Labelle P, Lipscomb TP, Michel P, Mikaelian I. Cancer in wildlife, a case study; beluga from the St. Lawrence Estuary, Quebec, Canada. Environ Health Perspect 110: 285‐292, 2002.
 71. McGee‐Lawrence ME, Carey HV, Donahue SW. Mammalian hibernation as a model of disuse osteoporosis: The effects of physical inactivity on bone metabolism, structure, and strength. Am J Physiol Regul Integr Comp Physiol 295: R1999‐R2014, 2008.
 72. Melvin RG, Andrews MT. Torpor induction in mammals: Recent discoveries fueling new ideas. Trends Endocrinol Metab 20: 490‐498, 2009.
 73. Menaker M. Circadian organization in the real world. Proc Natl Acad Sci U S A 103: 3015‐3016, 2006.
 74. Menzel R, Leboulle G, Eisenhardt D. Small brains, bright minds. Cell 124: 237‐239, 2006.
 75. Mitchell G, Maloney SK, Mitchell D, Keegan DJ. The origin of mean arterial and jugular venous blood pressures in giraffes. J Exp Biol 209: 2515‐2524, 2006.
 76. Mitchell G, Skinner JD. An allometric analysis of giraffe cardiovascular system. Comp Biochem Physiol A 154: 523‐529, 2009.
 77. Morbey YE, Brassil CE, Hendry AP. Rapid senescence in Pacific salmon. Am Nat 166: 556‐568, 2005.
 78. Nagy JD, Victor EM, Cropper JH. Why don't all whales have cancer? A novel hypothesis resolving Peto's paradox. Integr Comp Biol 47: 317‐328, 2007.
 79. O'Donnell JA, Garbett R, Morzenti A. Normal fasting plasma glucose levels in some birds of prey. J Wildl Dis 14: 479‐481, 1978.
 80. Ottinger MA. Neuroendocrine aging in birds: Comparing lifespan differences and conserved mechanisms. Ageing Res Rev 6: 46‐53, 2007.
 81. Ottinger MA, Lavoie E. Neuroendocrine and immune characteristics of aging in avian species. Cytogenic Genome Res 117: 352‐357, 2007.
 82. Page RE Jr, Peng CY‐S. Aging and development in social insects with emphasis on the honey bee, Apis mellifera L. Exp Gerontol 36: 695‐711, 2001.
 83. Park JB, Schiffrin EL. Small artery remodeling is the most prevalent (earliest?) form of target organ damage in mild essential hypertension. J Hypertens 19: 921‐930, 2001.
 84. Partridge L, Gems D. Beyond the evolutionary theory of ageing, from functional genomics to evo‐gero. Trends Ecol Evol 21: 334‐340, 2006.
 85. Paton JFR, Dickinson CJ, Mitchell G. Harvey Cushing and the regulation of blood pressure in giraffe, rat and man: Introducing “Cushing's mechanism”. Exp Physiol 94: 11‐17, 2009.
 86. Perrino C, Prasad SVN, Mao L, Noma T, Yan Z, Kim H‐S, Smithies O, Rockman HA. Intermittent pressure overload triggers hypertrophy‐independent cardiac dysfunction and vascular rarefaction. J Clin Invest 116: 1547‐1560, 2006.
 87. Pollak M. Insulin and insulin‐like growth factor signaling in neoplasia. Nature 8: 915‐928, 2008.
 88. Promsilow DEL. Senescence in natural populations of mammals: A comparative study. Evolution 45: 1869‐1887, 1991.
 89. Rendell M, Stephen PM, Paulsen R, Valentine JL, Rasbold K, Hestorff S, Shint DC. An interspecies comparison of normal levels of glycosylated hemoglobin and glycosylated albumin. Comp Biochem Physiol 81B: 819‐822, 1985.
 90. Reppert SM, Weaver DR. Coordination of circadian timing in mammals. Nature 418: 935‐941, 2002.
 91. Reszka E, Wasowicz W, Gromadzinska J. Genetic polymorphism of xenobiotic metabolizing enzymes, diet and cancer susceptibility. Br J Nutr 96: 609‐619, 2006.
 92. Reznick D, Ghalambor C, Nunney L. The evolution of senescence in fish. Mech Ageing Dev 123: 773‐789, 2002.
 93. Richards MP, McMurtry JP. The avian proglucagon system. Gen Comp Endocrinol 163: 39‐46, 2009.
 94. Robertson OH, Krupp MA, Thomas SF, Favour CB, Hane S, Wexler BC. Hyperadrenocorticism in spawning migratory and nonmigratory Rainbow trout (Salmo gairdnerii); a comparison with Pacific salmon (Genus Oncorhynchus). Gen Comp Endocrinol 1: 473‐484, 1961.
 95. Robertson OH, Wexler BC. Histological changes in the organs and tissues of migrating and spawning Pacific salmon (Genus Oncorhynchus). Endocrinology 66: 222‐239, 1960.
 96. Rossi MA. Pathologic fibrosis and connective tissue matrix in left ventricular hypertrophy due to chronic arterial hypertension in humans. J Hypertens 16: 1031‐1041, 1998.
 97. Rubin EB, Shemesh Y, Cohen M, Elgavish S, Robertson HM, Bloch G. Molecular and phylogenetic analyses reveal mammalian‐like clockwork in the honey bee (Apis mellifera) and shed new light on the molecular evolution of the circadian clock. Genome Res 16: 1352‐1365, 2006.
 98. Scheiner R Amdam GV. Impaired tactile learning is related to social role in honeybees. J Exp Biol 212: 994‐1002, 2009.
 99. Scheiner R, Page Jr RE, Erber J. Responsiveness to sucrose affects tactile and olfactory learning in preforaging honey bees of two genetic strains. Behav Brain Res 120: 67‐73, 2001.
 100. Schiffrin EL, Deng LY. Relationship between small‐artery structure and systolic, diastolic and pulse pressure in essential hypertension. J Hypertens 17: 381‐387, 1999.
 101. Secor SM, Hicks JH, Bennett AF. Ventilator and cardiovascular responses of a python (Python molurus) to exercise and digestion. J Exp Biol 203: 2447‐2454, 2000.
 102. Seehuus S‐C, Krekling T, Amdam GV. Cellular senescence in honey bee brain is largely independent of chronological age. Exp Gerontol 41: 1117‐1125, 2006.
 103. Seymour RS, Blaylock AJ. The principle of Laplace and scaling of ventricular wall stress and blood pressure in mammals and birds. Physiol Biochem Zool 73: 389‐405, 2000.
 104. Shemesh Y, Cohen M, Bloch G. Natural plasticity in circadian rhythms is mediated by reorganization in the molecular clockwork in honeybees. FASEB J 21: 2304‐2311, 2007.
 105. Shemesh Y, Eban‐Rothschild A, Cohen H, Bloch G. Molecular dynamics and social regulation of context‐dependent plasticity in the circadian clockwork of the honey bee. J Neurosci 30: 12517‐12525, 2010.
 106. Sihm I, Schroeder AP, Aalkjaer C, Holm M, Morn B, Mulvany M, Thygesen K, Lederballe O. The relation between peripheral vascular structure, left ventricular hypertrophy, and ambulatory blood pressure in essential hypertension. Am J Hypertens 8: 987‐996, 1995.
 107. Singer MA. Comparative Physiology, Natural Animal Models and Clinical Medicine. London: Imperial College Press, 2007.
 108. Smallegange C, Hale TM, Bushfield TL, Adams MA. Persistent lowering of pressure by transplanting kidneys from adult spontaneously hypertensive rats treated with brief antihypertensive therapy. Hypertension 44: 89‐94, 2004.
 109. Smallegange C, Kline RL, Adams MA. Transplantation of enalapril‐treated kidneys confers persistent lowering of arterial pressure in SHR. Hypertension 42: 932‐936, 2003.
 110. Sommers SC, Melamed J. Renal pathology of essential hypertension. Am J Hypertens 3: 583‐587, 1990.
 111. Turesky RJ. The role of genetic polymorphisms in metabolism of carcinogenic heterocyclic aromatic amines. Curr Drug Metab 5: 169‐180, 2004.
 112. Wang N, Hurley P, Pytte C, Kirn JR. Vocal control neuron incorporation decreases with age in the adult Zebra finch. J Neurosci 22: 10854‐10870, 2002.
 113. Waterland RA. Is epigenetics an important link between early life events and adult disease? Horm Res 71 (suppl 1): 13‐16, 2009.
 114. Waterland RA, Michels KB. Epigenetic epidemiology of the developmental origins hypothesis. Annu Rev Nutr 27: 363‐388, 2007.
 115. Whitfield CW, Cziko A‐M, Robinson GE. Gene expression profiles in the brain predict behavior in individual honey bees. Science 302: 296‐299, 2003.
 116. Williams GC. Pleiotropy, natural selection, and the evolution of senescence. Evolution 11: 398‐411, 1957.
 117. Wolschin F, Munch D, Amdam GV. Structural and proteomic analyses reveal regional brain differences during honeybee aging. J Exp Biol 212: 4027‐4032, 2010.
 118. Wulff K, Gatti S, Wettstein JG, Foster RG. Sleep and circadian rhythm disruption in psychiatric and neurodegenerative disease. Nat Rev/Neurosci 11: 1‐11, 2010.
 119. Youngson NA, Whitelaw E. Transgenerational epigenetic effects. Annu Rev Genomics Hum Genet 9: 233‐257, 2008.
 120. Zhang QG. Hypertension and counter‐hypertension mechanisms in giraffes. Cardiovasc Haematol Disord Drug Targets 6: 63‐67, 2006.
 121. Zhdanova IV, Yu L, Lopez‐Patino M, Shang E, Kishi S, Guelin E. Aging of the circadian system in zebrafish and the effects of melatonin on sleep and cognitive performance. Brain Res Bull 75: 433‐441, 2008.

Related Articles:

Aging: Current Concepts
Memory: Neural Organization and Behavior
Dopamine and Renal Function and Blood Pressure Regulation
Hypertension: Physiology and Pathophysiology

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Michael A. Singer. Insights into Biomedicine from Animal Adaptations. Compr Physiol 2011, 1: 2063-2081. doi: 10.1002/cphy.c100080