Comprehensive Physiology Wiley Online Library

Exercise Training and Peripheral Arterial Disease

Full Article on Wiley Online Library



Abstract

Peripheral arterial disease (PAD) is a common vascular disease that reduces blood flow capacity to the legs of patients. PAD leads to exercise intolerance that can progress in severity to greatly limit mobility, and in advanced cases leads to frank ischemia with pain at rest. It is estimated that 12 to 15 million people in the United States are diagnosed with PAD, with a much larger population that is undiagnosed. The presence of PAD predicts a 50% to 1500% increase in morbidity and mortality, depending on severity. Treatment of patients with PAD is limited to modification of cardiovascular disease risk factors, pharmacological intervention, surgery, and exercise therapy. Extended exercise programs that involve walking approximately five times per week, at a significant intensity that requires frequent rest periods, are most significant. Preclinical studies and virtually all clinical trials demonstrate the benefits of exercise therapy, including improved walking tolerance, modified inflammatory/hemostatic markers, enhanced vasoresponsiveness, adaptations within the limb (angiogenesis, arteriogenesis, and mitochondrial synthesis) that enhance oxygen delivery and metabolic responses, potentially delayed progression of the disease, enhanced quality of life indices, and extended longevity. A synthesis is provided as to how these adaptations can develop in the context of our current state of knowledge and events known to be orchestrated by exercise. The benefits are so compelling that exercise prescription should be an essential option presented to patients with PAD in the absence of contraindications. Obviously, selecting for a lifestyle pattern that includes enhanced physical activity prior to the advance of PAD limitations is the most desirable and beneficial. © 2012 American Physiological Society. Compr Physiol 2:2933‐3017, 2012.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1.

Prevalence of peripheral arterial disease, and the subset of patients with intermittent claudication, increases markedly with age. Reproduced from Norgren et al. () with permission.

Figure 2. Figure 2.

The risk factors for peripheral arterial disease are numerous, as illustrated by these hazard ratios. Figure adapted from Norgren et al. (), with permission, and added concept from Booth et al. ().

Figure 3. Figure 3.

The increase in mortality with peripheral arterial disease is related to its severity. Reproduced from Norgren et al. (), with permission.

Figure 4. Figure 4.

The increased mortality of peripheral arterial disease is predicted by the decline in the ankle‐brachial artery pressure ratio. Reproduced from Resnick et al. (), with permission.

Figure 5. Figure 5.

Typical increase in exercise tolerance, measured during a defined treadmill protocol and during free‐pace walking, that was observed in patients with peripheral arterial disease who participated in an exercise program. Data taken, with permission, from Carter et al. ().

Figure 6. Figure 6.

The predominance of angiogenic factors that are induced in response to repeated exercise (upper panel) and the combination of angiogenic, inflammatory, and angiostatic factors that are prevalent during muscle ischemia (lower panel). Refer to the text for additional details.

Figure 7. Figure 7.

Activating stimuli and cellular interactions within the skeletal muscle microenvironment. Arrows denote paracrine signaling cross talk that ensures coordination of the processes of angiogenesis, satellite cell activation, and myocyte metabolic adaptation in response to physical/mechanical or biochemical stimuli.

Figure 8. Figure 8.

An overview of signaling pathways that coordination exercise‐induced angiogenesis and mitochondrial biogenesis. Information obtained from references ().

Figure 9. Figure 9.

Summary of some key events in the remodeling of a collateral artery in response to upstream occlusion. The approximate time course is shown moving from upper left (with events occurring within hours or days of occlusion) to the bottom right (completion of remodeling after >1 month). Increased shear stress and vessel stretch following upstream occlusion leads to endothelial cell activation, adhesion molecule expression, and monocyte infiltration, followed by reorganization of the extracellular matrix. Phenotypic shift, migration, and proliferation of vascular smooth muscle cells leads to neointima formation and an increase in the number of smooth muscle cell layers. The process is complete when vascular smooth muscle cells have returned to a contractile phenotype and the vessel structure has regained a relatively normal appearance. (Not all cell types are shown at each time point, and the number of smooth muscle cell layers is limited for clarity).

Figure 10. Figure 10.

Diagram of forces acting on peripheral collateral vasculature and the resulting changes in collateral‐dependent blood flow in response to upstream arterial occlusion. Top: simplified representation of the peripheral vasculature. Collateral vessels are present under normal conditions (left). However, there is no pressure gradient across the collaterals. Moreover, collateral resistance is high due to the narrow vessel diameter. Thus, collateral blood flow is low under normal conditions. Following an acute occlusion (center), a pressure gradient is created across the collaterals, driving flow through the vessels. Vasodilation produces a further limited increase in collateral blood flow. Since the vessel diameter remains relatively small and the pressure gradient for flow is large, shear stress levels in the collaterals are high. High shear stress initiates structural remodeling, which is evident following chronic occlusion (right). Smooth muscle cell proliferation occurs, resulting in increased vascular wall thickness. Since the ends of the vessel are fixed, vascular growth also produces an increase in tortuosity of the collaterals. Eventually, the diameter of the vessel increases to a point where shear stress is reduced to nonstimulatory levels, and remodeling ceases. Middle: the events described above, seen at the level of the individual collateral artery. A limited number of smooth muscle layers is shown for clarity. Bottom: functional consequences of arterial occlusion and collateral remodeling in skeletal muscle of the distal limb. Vasodilation of collaterals following acute occlusion may provide sufficient flow for tissue needs under resting conditions depending on the location of the occlusion (center), but is insufficient for active skeletal muscle demands. Thus, distal skeletal muscle is at risk of ischemia and may become hypoxic. (The area of collateral remodeling in the proximal limb is itself well perfused and nonhypoxic). Reduced tissue pO2 leads to opening of capillaries within the muscle. After structural remodeling of the collateral vasculature (right), blood flow capacity to the distal limb is improved and may suffice to support the demands of active skeletal muscle. In conjunction with arteriogenesis in the proximal limb, capillary proliferation (angiogenesis) occurs in distal tissue, in response to hypoxia and other factors.

Figure 11. Figure 11.

Relationships between vessel size and blood flow (right axis) and resistance (left axis) for a typical femoral artery of 5 mm diameter. Note the precipitous decline in blood flow, and increase in vascular resistance, as vessel caliber decreases, since these are a fourth‐power function of vessel radius. Thus, blood flow capacity is only approximately 6% of normal, if the size of the vessel declines to one‐half. The insert is an expanded region of interest.

Figure 12. Figure 12.

Calculated pressure to the distal calf muscles as a function of the reduction in caliber of the upstream vessel when blood flow to the distal limb is sufficient for resting tissue needs of 40 mL/min (circles) or during walking at a slow pace where blood flow needs increase to 160 mL/min (squares). Note that a reduction in upstream vessel caliber to one‐half initial leads to a reduction in distal pressure to less than 90% normal, a value that defines the presence of peripheral arterial disease. At the same time, this individual would experience a marked reduction in distal perfusion pressure to less than 50% of normal during walking. Note that it would take the development of approximately 3500‐500 μ or 5‐2.5‐mm‐diameter collateral vessels to recover distal perfusion pressure to above 90% during the mild walking rate.

Figure 13. Figure 13.

Magnetic resonance angiograph illustrating that collateral vessels can develop to circumvent a short‐segment occlusion (right superficial femoral artery) and long‐segment occlusion (left femoral artery) of patients with peripheral arterial disease. Reproduced from Esterhammer et al., with permission, from reference ().

Figure 14. Figure 14.

Influence of exercise training on the vasoresponsiveness of a collateral vessel as a function of shear stress. An initial modest dilatation to low shear stress in control animals (open circles) reverted to a dominant vasoconstriction at high shear stress. This response was eliminated in the presence of indomethacin, NG‐nitro‐L‐arginine methyl ester (L‐NAME), and in combination, as illustrated (filled circles), to a modest vasodilatation at very high shear stress. In contrast, collateral vessels from trained animals exhibited a marked vasodilation in the presence of indomethacin, L‐NAME, and in combination, as illustrated (filled squares). This implies that exercise training induces a cyclooxygenase‐ and nitric oxide species‐independent stimulus for vasodilatation. Data taken from Colleran et al.(), with permission.

Figure 15. Figure 15.

Example of hypertension during exercise in a group of patients with peripheral arterial disease who exhibit claudication. Note that the elevation in blood pressure in the claudicant group is greater than that of aged‐matched control group well prior to the cessation of walking. Figure reproduced from Bakke et al.(), with permission.



Figure 1.

Prevalence of peripheral arterial disease, and the subset of patients with intermittent claudication, increases markedly with age. Reproduced from Norgren et al. () with permission.



Figure 2.

The risk factors for peripheral arterial disease are numerous, as illustrated by these hazard ratios. Figure adapted from Norgren et al. (), with permission, and added concept from Booth et al. ().



Figure 3.

The increase in mortality with peripheral arterial disease is related to its severity. Reproduced from Norgren et al. (), with permission.



Figure 4.

The increased mortality of peripheral arterial disease is predicted by the decline in the ankle‐brachial artery pressure ratio. Reproduced from Resnick et al. (), with permission.



Figure 5.

Typical increase in exercise tolerance, measured during a defined treadmill protocol and during free‐pace walking, that was observed in patients with peripheral arterial disease who participated in an exercise program. Data taken, with permission, from Carter et al. ().



Figure 6.

The predominance of angiogenic factors that are induced in response to repeated exercise (upper panel) and the combination of angiogenic, inflammatory, and angiostatic factors that are prevalent during muscle ischemia (lower panel). Refer to the text for additional details.



Figure 7.

Activating stimuli and cellular interactions within the skeletal muscle microenvironment. Arrows denote paracrine signaling cross talk that ensures coordination of the processes of angiogenesis, satellite cell activation, and myocyte metabolic adaptation in response to physical/mechanical or biochemical stimuli.



Figure 8.

An overview of signaling pathways that coordination exercise‐induced angiogenesis and mitochondrial biogenesis. Information obtained from references ().



Figure 9.

Summary of some key events in the remodeling of a collateral artery in response to upstream occlusion. The approximate time course is shown moving from upper left (with events occurring within hours or days of occlusion) to the bottom right (completion of remodeling after >1 month). Increased shear stress and vessel stretch following upstream occlusion leads to endothelial cell activation, adhesion molecule expression, and monocyte infiltration, followed by reorganization of the extracellular matrix. Phenotypic shift, migration, and proliferation of vascular smooth muscle cells leads to neointima formation and an increase in the number of smooth muscle cell layers. The process is complete when vascular smooth muscle cells have returned to a contractile phenotype and the vessel structure has regained a relatively normal appearance. (Not all cell types are shown at each time point, and the number of smooth muscle cell layers is limited for clarity).



Figure 10.

Diagram of forces acting on peripheral collateral vasculature and the resulting changes in collateral‐dependent blood flow in response to upstream arterial occlusion. Top: simplified representation of the peripheral vasculature. Collateral vessels are present under normal conditions (left). However, there is no pressure gradient across the collaterals. Moreover, collateral resistance is high due to the narrow vessel diameter. Thus, collateral blood flow is low under normal conditions. Following an acute occlusion (center), a pressure gradient is created across the collaterals, driving flow through the vessels. Vasodilation produces a further limited increase in collateral blood flow. Since the vessel diameter remains relatively small and the pressure gradient for flow is large, shear stress levels in the collaterals are high. High shear stress initiates structural remodeling, which is evident following chronic occlusion (right). Smooth muscle cell proliferation occurs, resulting in increased vascular wall thickness. Since the ends of the vessel are fixed, vascular growth also produces an increase in tortuosity of the collaterals. Eventually, the diameter of the vessel increases to a point where shear stress is reduced to nonstimulatory levels, and remodeling ceases. Middle: the events described above, seen at the level of the individual collateral artery. A limited number of smooth muscle layers is shown for clarity. Bottom: functional consequences of arterial occlusion and collateral remodeling in skeletal muscle of the distal limb. Vasodilation of collaterals following acute occlusion may provide sufficient flow for tissue needs under resting conditions depending on the location of the occlusion (center), but is insufficient for active skeletal muscle demands. Thus, distal skeletal muscle is at risk of ischemia and may become hypoxic. (The area of collateral remodeling in the proximal limb is itself well perfused and nonhypoxic). Reduced tissue pO2 leads to opening of capillaries within the muscle. After structural remodeling of the collateral vasculature (right), blood flow capacity to the distal limb is improved and may suffice to support the demands of active skeletal muscle. In conjunction with arteriogenesis in the proximal limb, capillary proliferation (angiogenesis) occurs in distal tissue, in response to hypoxia and other factors.



Figure 11.

Relationships between vessel size and blood flow (right axis) and resistance (left axis) for a typical femoral artery of 5 mm diameter. Note the precipitous decline in blood flow, and increase in vascular resistance, as vessel caliber decreases, since these are a fourth‐power function of vessel radius. Thus, blood flow capacity is only approximately 6% of normal, if the size of the vessel declines to one‐half. The insert is an expanded region of interest.



Figure 12.

Calculated pressure to the distal calf muscles as a function of the reduction in caliber of the upstream vessel when blood flow to the distal limb is sufficient for resting tissue needs of 40 mL/min (circles) or during walking at a slow pace where blood flow needs increase to 160 mL/min (squares). Note that a reduction in upstream vessel caliber to one‐half initial leads to a reduction in distal pressure to less than 90% normal, a value that defines the presence of peripheral arterial disease. At the same time, this individual would experience a marked reduction in distal perfusion pressure to less than 50% of normal during walking. Note that it would take the development of approximately 3500‐500 μ or 5‐2.5‐mm‐diameter collateral vessels to recover distal perfusion pressure to above 90% during the mild walking rate.



Figure 13.

Magnetic resonance angiograph illustrating that collateral vessels can develop to circumvent a short‐segment occlusion (right superficial femoral artery) and long‐segment occlusion (left femoral artery) of patients with peripheral arterial disease. Reproduced from Esterhammer et al., with permission, from reference ().



Figure 14.

Influence of exercise training on the vasoresponsiveness of a collateral vessel as a function of shear stress. An initial modest dilatation to low shear stress in control animals (open circles) reverted to a dominant vasoconstriction at high shear stress. This response was eliminated in the presence of indomethacin, NG‐nitro‐L‐arginine methyl ester (L‐NAME), and in combination, as illustrated (filled circles), to a modest vasodilatation at very high shear stress. In contrast, collateral vessels from trained animals exhibited a marked vasodilation in the presence of indomethacin, L‐NAME, and in combination, as illustrated (filled squares). This implies that exercise training induces a cyclooxygenase‐ and nitric oxide species‐independent stimulus for vasodilatation. Data taken from Colleran et al.(), with permission.



Figure 15.

Example of hypertension during exercise in a group of patients with peripheral arterial disease who exhibit claudication. Note that the elevation in blood pressure in the claudicant group is greater than that of aged‐matched control group well prior to the cessation of walking. Figure reproduced from Bakke et al.(), with permission.

 1. Abaci A, Oguzhan A, Kahraman S, Eryol NK, Unal S, Arinc H, Ergin A. Effect of diabetes mellitus on formation of coronary collateral vessels. Circulation 99: 2239‐2242, 1999.
 2. Abou‐Khalil R, Le Grand F., Pallafacchina G, Valable S, Authier FJ, Rudnicki MA, Gherardi RK, Germain S, Chretien F, Sotiropoulos A, Lafuste P, Montarras D, Chazaud B. Autocrine and paracrine angiopoietin 1/Tie‐2 signaling promotes muscle satellite cell self‐renewal. Cell Stem Cell 5: 298‐309, 2009.
 3. Abounader R, Laterra J. Scatter factor/hepatocyte growth factor in brain tumor growth and angiogenesis. Neuro Oncol 7: 436‐451, 2005.
 4. Abumiya T, Sasaguri T, Taba Y, Miwa Y, Miyagi M. Shear stress induces expression of vascular endothelial growth factor receptor Flk‐1/KDR through the CT‐rich Sp1 binding site. Arterioscler Thromb Vasc Biol 22: 907‐913, 2002.
 5. Ackah E, Yu J, Zoellner S, Iwakiri Y, Skurk C, Shibata R, Ouchi N, Easton RM, Galasso G, Birnbaum MJ, Walsh K, Sessa WC. Akt1/protein kinase B alpha is critical for ischemic and VEGF‐mediated angiogenesis. J Clin Invest 115: 2119‐2127, 2005.
 6. Adair TH. Growth regulation of the vascular system: An emerging role for adenosine. Am J Physiol 289: R283‐R296, 2005.
 7. Adams RH, Eichmann A. Axon guidance molecules in vascular patterning. Cold Spring Harb Perspect Biol 2: a001875, 2010.
 8. Adolfsson J, Ljungqvist A, Tornling G, Unge G. Capillary increase in the skeletal muscle of trained young and adult rats. J Physiol 310: 529‐532, 1981.
 9. Afaq A, Montgomery PS, Scott KJ, Blevins SM, Whitsett TL, Gardner AW. The effect of current cigarette smoking on calf muscle hemoglobin oxygen saturation in patients with intermittent claudication. Vasc Med 12: 167‐173, 2007.
 10. Agency for Healthcare Research and Quality. Treatment strategies for patients with peripheral areterial disease (PAD). Effective Health Care Program www.effectivehealthcare.ahrq.gov/index.cfm/search‐for‐guides‐reviews‐and‐reports/?productid=948&pageaction=displayproduct: 1‐35, 2012.
 11. Ahimastos AA, Pappas EP, Buttner PG, Walker PJ, Kingwell BA, Golledge J. A meta‐analysis of the outcome of endovascular and noninvasive therapies in the treatment of intermittent claudication. J Vasc Surg 54: 1511‐1521, 2011.
 12. Akimoto T, Pohnert S, Li P, Zhang M, Gumbs C, Rosenberg P, Williams RS, Yan Z. Exercise stimuluates PGC‐1alpha transcription in skeletal muscle through activation of the p38 MAPK pathway. J Biol Chem 280: 19587‐19593, 2005.
 13. Akiri G, Nahari D, Finkelstein Y, Le SY, Elroy‐Stein O, Levi BZ. Regulation of vascular endothelial growth factor (VEGF) expression is mediated by internal initiation of translation and alternative initiation of transcription. Oncogene 17: 227‐236, 1998.
 14. Al H, Zen A., Oikawa A, Bazan‐Peregrino M, Meloni M, Emanueli C, Madeddu P. Inhibition of delta‐like‐4‐mediated signaling impairs reparative angiogenesis after ischemia. Circ Res 107: 283‐293, 2010.
 15. Alam M, Smirk FH. Observations in man upon a blood pressure raising reflex arising from the voluntary muscles. J Physiol 146: 372‐383, 1937.
 16. Allen JD, Stabler T, Kenjale A, Ham KL, Robbins JL, Duscha BD, Dobrosielski DA, Annex BH. Plasma nitrite flux predicts exercise performance in peripheral arterial disease after 3 months of exercise trainng. Free Radic Biol Med 49: 1138‐1144, 2010.
 17. Alpert JS, Larsen OA, Lassen NA. Exercise and intermittent claudication. Blood flow in the calf muscle during walking studied by the xenon‐133 clearance method. Circulation 39: 353‐359, 1969.
 18. Alroy J, Goyal V, Skutelsky E. Lectin histochemistry of mammalian endothelium. Histochemistry 86: 603‐607, 1987.
 19. Amaral SL, Linderman RJ, Morse MM, Greene AS. Angiogenesis induced by elecrical stimulation is mediated by angiotensis II and VEGF. Microcirculation 8: 57‐67, 2001.
 20. Ameln H, Gustafsson T, Sundberg CJ, Okamoto K, Jansson E, Poellinger L, Makino Y. Physiological activation of hypoxia inducible factor‐1 in human skeletal muscle. FASEB J 19: 1009‐1011, 2005.
 21. Andersen P, Henriksson J. Capillary supply of the quadriceps femoris muscle of man: Adaptive response to exercise. J Physiol 270: 677‐690, 1977.
 22. Andersen P, Saltin B. Maximal perfusion of skeletal muscle in man. J Physiol 366: 233‐249, 1985.
 23. Andreozzi GM, Leone A, Laudani R, Deinite G, Martini R. Acute impairment of the endothelial function by maximal treadmill exercise in patients with intermittent claudication, and its improvement after supervised physical training. Int Angiol 26: 12‐17, 2007.
 24. Andreozzi GM, Martini R, Cordova R, D'Eri A, Salmistraro G, Mussap M, Plebani M. Circulating levels of cytokines (IL‐6 and IL‐1beta) in patients with intermittent claudication, at rest, after maximal exercise treadmill test and during restore phase. Could they be progression markers of the disease? International Angiology 26: 245‐252, 2007.
 25. Angersbach D, Jukna JJ, Nicholson CD, Ochlich P, Wilke R. The effect of short‐term and long‐term femoral artery ligation on rat calf muscle oxygen tension, blood flow, metabolism and function. Int J Microcirc Clin Exp 7: 15‐30, 1988.
 26. Annex BH, Torgan CE, Lin P, Taylor DA, Thompson MA, Peters KG, Kraus WE. Induction and maintenance of increased VEGF protein by chronic motor nerve stimulation in skeletal muscle. Am J Physiol 274: H860‐H867, 1998.
 27. Aoi W, Naito Y, Mizushima K, Takanami Y, Kawai Y, Ishikawa H, Yoshikawa T. The microRNA miR‐696 regulates PGC‐1alpha in mouse skeletal muscle in response to physical activity. Am J Physiol 298: E799‐E806, 2010.
 28. Aoki K, Sato K, Kondo S, Pyon CB, Yamamoto M. Increased response of blood pressure to rest and handgrip in subjects with essential hypertension. Jpn Circ J 47: 802‐809, 1983.
 29. Aoki M, Morishita R, Taniyama Y, Kida I, Moriguchi A, Matsumoto K, Nakamura T, Kaneda Y, Higaki J, Ogihara T. Angiogenesis induced by hepatocyte growth factor in non‐infarcted myocardium and infarcted myocardium: Up‐regulation of essential transcription factor for angiogenesis, ets. Gene Ther 7: 417‐427, 2000.
 30. Arany Z. PGC‐1 coactivators and skeletal muscle adaptations in health and disease. Curr Opin Genet Dev 18: 426‐434, 2008.
 31. Arany Z, Foo SY, Ma Y, Raus JL, Bommi‐Reddy A, Gimun G, Cooper M, Laznik D, Chinsomboon J, Rangwala SM, Baek KH, Rosenzweig A, Spiegelman BM. HIF‐independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC‐1alpha. Nature 451: 1008‐1012, 2008.
 32. Ardanaz N, Pagano PJ. Hydrogen peroxide as a paracrine vascular mediator: Regulation and signaling leading to dysfunction. Exp Biol Med 231: 237‐251, 2006.
 33. Armstrong RB, Laughlin MH. Rat muscle blood flows during high speed locomotion. J Appl Physiol 59: 1322‐1328, 1985.
 34. Arras M, Ito WD, Scholz D, Winkler B, Schaper J, Schaper W. Monocyte activation in angiogenesis and collateral growth in the rabbit hindlimb. J Clin Invest 101: 40‐50, 1998.
 35. Asahara T, Bauters C, Zheng LP, Takeshita S, Bunting S, Ferrara N, Symes JF, Isner JM. Synergistic effect of vascular endothelial growth factor and basic fibroblast growth factor on angiogenesis in vivo. Circulation 92: II365‐II371, 1995.
 36. Ashton N. Neovascularization in ocular disease. Trans Ophthalmol Soc UK 81: 145‐161, 1961.
 37. Ashworth NL, Chad KE, Harrison EL, Reeder BA, Marshall SC. Home versus center based physical activity programs in older adults. Cochrane Database Syst Rev 25: CD004017, 2005.
 38. Askew CD, Green S, Walker PJ, Kerr GK, Green AA, Williams AD, Febbraio MA. Skeletal muscle phenotype is associated with exercise intolerance in patients with peripheral arterial disease. J Vasc Surg 41: 802‐807, 2005.
 39. Astrand PO, Rodahl K. Textbook of Work Physiology. New York: McGraw‐Hill Book Company, 1970.
 40. Augustin HG, Koh GY, Thurston G, Alitalo K. Control of vascular morphogenesis and homeostasis through the angiopoietin‐Tie system. Nat Rev Mol Cell Biol 10: 165‐177, 2009.
 41. Ausprunk DH, Folkman J. Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvasc Res 14: 53‐65, 1977.
 42. Azuma N, Duzgun SA, Ikeda M, Kito H, Akasaka N, Sasajima T, Sumpio BE. Endothelial cell response to different mechanical forces. J Vasc Surg 32: 789‐794, 2000.
 43. Baar K, Wende AR, Jones TE, Marison M, Nolte LA, Chen M, Kelly DP, Holloszy JO. Adaptations of skeletal muscle to exercise: Rapid increase in the transcriptional coactivator PGC‐1. FASEB J 16: 1879‐1886, 2002.
 44. Baccelli G, Reggiani P, Mattioli A, Corbellini E, Garducci S, Catalano M. The exercise pressor reflex and changes in radial arterial pressure and heart rate during walking in patients with arteriosclerosis obliterans. Angiology 50: 31‐374, 1999.
 45. Badr I, Brown MD, Egginton S, Hudlicka O, Milkiewicz M, Verhaeg J. Differences in local environment determine the site of physiological angiogenesis in rat skeletal muscle. Exp Physiol 88: 565‐568, 2003.
 46. Baffour R, Berman J, Garb JL, Rhee SW, Kaufman J, Friedmann P. Enhanced angiogenesis and growth of collaterals by in vivo administration of recombinant basic fibroblast growth factor in a rabbit model of acute lower limb ischemia: Dose‐response effect of basic fibroblast growth factor. J Vasc Surg 16: 181‐191, 1992.
 47. Bakke EF, Hisdal J, Jorgensen JJ, Kroese A, Stranden E. Blood pressure in patients with intermittent claudication increases continuously during walking. Eur J Vasc Endovasc Surg 33: 20‐25, 2007.
 48. Bakke EF, Hisdal J, Kroese AJ, Jorgensen JJ, Stranden E. Blood pressure response to isometric exercise in patients with peripheral atherosclerotic disease. Clin Physiol Funct Imaging 27: 109‐115, 2007.
 49. Baldwin KM, Klinkerfuss GH, Terjung RL, Mole PA, Holloszy JO. Respiratory capacity of white, red, and intermediate muscle: Adaptive response to exercise. Am J Physiol 222: 373‐378, 1972.
 50. Ballard HJ. The influence of lactic acid on adenosine release from skeletal muscle in anaesthetized dogs. J Physiol 433: 95‐108, 1991.
 51. Ballard HJ. The role of intracellular pH in the control of adenosine output from red skeletal muscle. Biol Signals 4: 168‐173, 1995.
 52. Banai S, Jaklitsch MT, Shou M, Lazarous DF, Scheinowitz M, Biro S, Epstein SE, Unger EF. Angiogenic‐induced enhancement of collateral blood flow to ischemic myocardium by vascular endothelial growth factor in dogs. Circulation 89: 2183‐2189, 1994.
 53. Banai S, Shweiki D, Pinson A, Chandra M, Lazarovici G, Keshet E. Upregulation of vascular endothelial growth factor expression induced by myocardial ischaemia: Implications for coronary angiogenesis. Cardiovasc Res 28: 1176‐1179, 1994.
 54. Barleon B, Sozzani S, Zhou D, Weich HA, Mantovani A, Marme D. Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt‐1. Blood 87: 3336‐3343, 1996.
 55. Bartholomew JR, Olin JW. Pathophysiology of peripheral arterial disease and risk factors for its development. Cleveland Clin J Med 73: S8‐S14, 2006.
 56. Bastide A, Karaa Z, Bornes S, Hieblot C, Lacazette E, Prats H, Touriol C. An upstream open reading frame within an IRES controls expression of a specific VEGF‐A isoform. Nucleic Acids Res 36: 2434‐2445, 2008.
 57. Bates DO, MacMillan PP, Manjaly JG, Qiu Y, Hudson SJ, Bevan HS, Hunter AJ, Soothill PW, Read M, Donaldson LF, Harper SJ. The endogenous anti‐angiogenic family of splice variants of VEGF, VEGFxxxb, are down‐regulated in pre‐eclamptic placentae at term. Clin Sci (Lond) 110: 575‐585, 2006.
 58. Bauer TA, Brass EP, Barstow TJ, Hiatt WR. Skeletal muscle StO2 kinetics are slowed during low work rate calf exercise in peripheral arterial disease. Eur J Appl Physiol 100: 143‐151, 2007.
 59. Baum O, Silva‐Azevedo L, Willerding G, Wockel A, Planitzer G, Gossrau R, Pries AR, Zakrzewicz A. Endothelial NOS is main mediator for shear stress‐dependent angiogenesis in skeletal muscle after prazosin administration. Am J Physiol 287: H2300‐H2308, 2004.
 60. Baumgartner I, Pieczek Manor O, Blair R, Kearney M, Walsh K, Isner JM. Constitutive expression of phVEGF165 after intramuscular gene transfer promotes collateral vessel development in patients with critical limb ischemia. Circulation 97: 1114‐1123, 1998.
 61. Bauters C, Asahara T, Zheng LP, Takeshita S, Bunting S, Ferrara N, Symes JF, Isner JM. Site‐specific therapeutic angiogenesis after systemic administration of vascular endothelial growth factor. J Vasc Surg 21: 314‐324, 1995.
 62. Bayless KJ, Davis GE. The Cdc42 and Rac1 GTPases are required for capillary lumen formation in three‐dimensional extracellular matrices. J Cell Sci 115: 1123‐1136, 2002.
 63. Beavers KM, Brinkley TE, Nicklas BJ. Effect of exercise training on chronic inflammation. Clin Chim Acta 411: 785‐793, 2010.
 64. Becker LC, Pitt B. Collateral blood flow in conscious dogs with chronic coronary artery occlusion. Am J Physiol 221: 1507‐1510, 1971.
 65. Behnke BJ, Kindig CA, Musch TI, Koga S, Poole DC. Dynamics of microvascluar oxygen pressuer across the rest‐exercise transition in rat skeletal muscle. Respir Physiol 126: 53‐63, 2001.
 66. Behnke BJ, McDonough P, Padilla DJ, Musch TI, Poole DC. Oxygen exchange profile in rat muscles of ontrol of microvasc. J Physiol 549: 597‐605, 2003.
 67. Belch JJF, McLaren M, Kahn F, Hickman P, Muir A, Stonebridge P. The inflammatory process in intermittent claudication. Eur Heart J 4: B31‐B34, 2002.
 68. Bellamy LM, Johnston AP, De Lisio M, Parise G. Skeletal muscle‐endothelial cell cross talk through angiotensin II. Am J Physiol 299: C1402‐C1408, 2010.
 69. Bendermacher BL, Willigendael EM, Teijink JA, Prins MH. Supervised exercise therapy versus non‐supervised exercise therapy for intermittent claudication. Cochrane Database Syst Rev 19: CD005263, 2006.
 70. Benedict KF, Coffin GS, Barrett EJ, Skalak TC. Hemodynamic systems analysis of capillary network remodeling during the progression of type 2 diabetes. Microcirculation 18: 63‐73, 2011.
 71. Benedito R, Roca C, Sörensen I, Adams S, Gossler A, Fruttiger M, Adams RH. The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell 137: 1124‐1135, 2009.
 72. Benoit H, Jordan M, Wagner H, Wagner PD. Effect of NO, vasodilator prostaglandins, and adenosine on skeletal muscle angiogenic growth factor gene expression. J Appl Physiol 86: 1513‐1518, 1999.
 73. Benzi CP, Tanaka H, Sugawara J. Effects of leg blood flow restriction during walking on cardiovascular function. Med Sci Sports Exer 42: 726‐732, 2010.
 74. Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, Tanzawa K, Thorpe P, Itohara S, Werb Z, Hanahan D. Matrix metalloproteinase‐9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2: 737‐744, 2000.
 75. Bergmann CE, Hoefer IE, Meder B, Roth H, van Royen N, Breit SM, Jost MM, Aharinejad S, Hartmann S, Buschmann IR. Arteriogenesis depends on circulating monocytes and macrophage accumulation and is severely depressed in op/op mice. J Leukoc Biol 80: 59‐65, 2006.
 76. Berra E, Benizri E, Ginouves A, Volmat V, Roux D, Pouyssegur J. HIF prolyl‐hydroxylase 2 is the key oxygen sensor setting low steady‐state levels of HIF‐1alpha in normoxia. EMBO J 22: 4082‐4090, 2003.
 77. Betsholtz C, Lindblom P, Gerhardt H. Role of pericytes in vascular morphogenesis. EXS 115‐125, 2005.
 78. Bey L, Akunuri N, Zhao P, Hoffman EP, Hamilton DG, Hamilton MT. Patterns of global gene expression in rat skeletal muscle during unloading and low‐intensity ambulatory activity. Physiol Genomics 13: 157‐167, 2003.
 79. Bigard AX, Brunet A, Guezennec CY, Monod H. Effects of chronic hypoxia and endurance training on muscle capillarity in rats. Pflugers Arch 419: 225‐229, 1991.
 80. Birot OJ., Koulmann N, Peinnequin A, Bigard XA. Exercise‐induced expression of vascular endothelial growth factor mRNA in rat skeletal muscle is dependent on fibre type. J Physiol 552: 213‐221, 2003.
 81. Bjurstedt H, Eiken O. Graded restriction of blood flow in exercising leg muscles: A human model. Adv Exp Med Biol 381: 147‐156, 1995.
 82. Blann AD, Belgore FM, McCollum CN, Silverman S, Lip PL, Lip GY. Vascular endothelial growth factor and its receptor, Flt‐1, in the plasma of patients with coronary or peripheral atherosclerosis, or Type II diabetes. Clin Sci (Lond) 102: 187‐194, 2002.
 83. Bloor CM, White FC, Sanders TM. Effects of exercise on collateral development in myocardial ischemia in pigs. J Appl Physiol 56: 656‐665, 1984.
 84. Boger RH, Bode‐Boger SM, Thiele W, Creutzig A, Alexander K, Frolich JC. Restoring vascular nitric oxide formation by L‐arginine improves the symptoms of intermittent claudication in patients with peripheral arterial occlusive disease. J Am Coll Cardiol 32: 1336‐1344, 1998.
 85. Boodhwani M, Nakai Y, Mieno S, Voisine P, Bianchi C, Araujo EG, Feng J, Michael K, Li J, Sellke FW. Hypercholesterolemia impairs the myocardial angiogenic response in a swine model of chronic ischemia: Role of endostatin and oxidative stress. Ann Thorac Surg 81: 634‐641, 2006.
 86. Booth FW, Roberts CK, Laye MJ. Lack of exercise is a major cause of chronic disease. Compr Physiol 2: 1143‐1211, 2012.
 87. Bornes S, Prado‐Lourenco L, Bastide A, Zanibellato C, Iacovoni JS, Lacazette E, Prats AC, Touriol C, Prats H. Translational induction of VEGF internal ribosome entry site elements during the early response to ischemic stress. Circ Res 100: 305‐308, 2007.
 88. Brandsma JW, Robeer BG, van den Heuvel S, Smit B, Wittens CH, Oostendorp RA. The effect of exercises on walking distance of patients with intermittent claudication: A study of randomized clinical trials. Phys Ther 78: 278‐286, 1998.
 89. Bratt A, Birot O, Sinha I, Veitonmaki N, Aase K, Ernkvist M, Holmgren L. Angiomotin regulates endothelial cell‐cell junctions and cell motility. J Biol Chem 280: 34859‐34869, 2005.
 90. Breek JC, Hamming JF, DeVries J, Aquarius AE, Van Berge Henegouwen DP. Quality of life in patients with intermittent claudication using the World Health Organisation (WHO) questionnaire. Eur J Vasc Endovasc Surg 21: 118‐122, 2001.
 91. Breen EC, Johnson EC, Wagner H, Tseng HM, Sung LA, Wagner PD. Angiogenic growth factor mRNA responses in muscle to a single bout of exercise. J Appl Physiol 81: 355‐361, 1996.
 92. Brendle DC, Joseph LJ, Corretti MC, Gardner AW, Katzel LI. Effects of exercise rehabilitation on endothelial reqctivity in older patients with peripheral arterial disease. Am J Cardiol 87: 324‐329, 2001.
 93. Brevetti G, De Caterina M, Martone VD, Ungaro B, Corrado F, Silvestro A, de Cristofaro T, Scopacasa F. Exercise increases soluble adhesion molecules ICAM‐1 and VCAM‐1 in patients with intermittent claudication. Clin Hemorheo Microcirc 24: 193‐199, 2001.
 94. Brevetti G, Giugliano G, Brevetti L, Hiatt WR. Inflammation in peripheral artery disease. Circulation 122: 1862‐1875, 2010.
 95. Brevetti G, Schiano V, Chiariello M. Endothelial dysfunction: A key to the pathophysiology and natural history of peripheral arterial disease? Atherosclerosis 197: 1‐11, 2008.
 96. Brevetti G, Silvestro A, Schiano V, Chiariello M. Endothelial dysfunction and cardiovascular risk prediction in peripheral arterial disease. Additive value of flow‐mediated dilation to ankle‐brachial pressure index. Circulation 108: 2093‐2098, 2003.
 97. Brevetti LS, Chang DS, Tang GL, Sarkar R, Messina LM. Overexpression of endothelial nitric oxide synthase increases skeletal muscle blood flow and oxygenation in severe rat hind limb ischemia. Journal of Vascular Surgery 38: 820‐826, 2003.
 98. Brevetti LS, Paek R, Brady SE, Hoffman JI, Sarkar R, Messina LM. Exercise‐induced hyperemia unmasks regional blood flow deficit in experimental hindlimb ischemia. J Surg Res 98: 21‐26, 2001.
 99. Brixius K, Schoenberger S, Ladage D, Knigge H, Falkowski G, Hellmich M, Graf C, Latsch J, Montie GL, Prede GL, Bloch W. Long‐term endurance exercise decreases antiangiogenic endostatin signalling in overweight men aged 50‐60 years. Br J Sports Med 42: 126‐129, 2008.
 100. Brodal P, Ingjer F, Hermansen L. Capillary supply of skeletal muscle fibers in untrained and endurance‐trained men. Am J Physiol 232: H705‐H712, 1977.
 101. Brooks SV, Vasilaki A, Larkin LM, McArdle A. Repeated bouts of aerobic exercise lead to reductions in skeletal muscle free radical generation and nuclear factor kB activation. J Physiol 586: 3979‐3990, 2008.
 102. Brosig M, Ferralli J, Gelman L, Chiquet M, Chiquet‐Ehrismann R. Interfering with the connection between the nucleus and the cytoskeleton affects nuclear rotation, mechanotransduction and myogenesis. Int J Biochem Cell Biol 42: 1717‐1728, 2010.
 103. Brown MD, Kelsall CJ, Milkiewicz M, Anderson S, Hudlicka O. A new model of peripheral arterial disease: Sustained impairment of nutritive microcirculation and its recovery by chronic electrical stimulation. Microcirc 12: 373‐381, 2005.
 104. Brown MD, Kent J, KELSALL CJ, Milkiewicz M, Hudlicka O. Remodeling in the microcirculation of rat skeletal muscle during chronic ischemia. Microcirc 10: 179‐191, 2003.
 105. Brown MD, Walter H, Hansen‐Smith FM, Hudlicka O, Egginton S. Lack of involvement of basic fibroblast growth factor (FGF‐2) in capillary growth in skeletal muscle exposed to long‐term contractile activity. Angiogenesis 2: 81‐91, 1998.
 106. Bruns RR, Palade GE. Studies on blood capillaries. I. General organization of blood capillaries in muscle. J Cell Biol 37: 244‐276, 1968.
 107. Bryan BA, Walshe TE, Mitchell DC, Havumaki JS, Saint‐Geniez M, Maharaj AS, Maldonado AE, D'Amore PA. Coordinated vascular endothelial growth factor expression and signaling during skeletal myogenic differentiation. Mol Biol Cell 19: 994‐1006, 2008.
 108. Bulmer AC, Coombes JS. Optimising exercise training in peripheral arterial disease. Sports Med 34: 983‐1003, 2004.
 109. Burri PH, Hlushchuk R, Djonov V. Intussusceptive angiogenesis: Its emergence, its characteristics, and its significance. Dev Dyn 231: 474‐488, 2004.
 110. Burt JJ, Jackson R. The effects of physical exercise on the coronary collateral circulation of dogs. J Sports Med Phys Fitness 5: 203‐206, 1965.
 111. Burton HW, Barclay JK. Metabolic factors from exercising muscle and the proliferation of endothelial cells. Med Sci Sports Exerc 18: 390‐395, 1986.
 112. Buschmann I, Heil M, Jost M, Schaper W. Influence of inflammatory cytokines on arteriogenesis. Microcirculation 10: 371‐379, 2003.
 113. Buschmann I, Schaper W. Arteriogenesis versus angiogenesis: Two mechanisms of vessel growth. News Physiol Sci 14: 121‐125, 1999.
 114. Buschmann IR, Hoefer IE, van Royen N, Katzer E, Braun‐Dulleaus R, Heil M, Kostin S, Bode C, Schaper W. GM‐CSF: A strong arteriogenic factor acting by amplification of monocyte function. Atherosclerosis 159: 343‐356, 2001.
 115. Busti C, Falcinelli E, Momi S, Gresele P. Matrix metalloproteinases and peripheral arterial disease. Intern Emerg Med 5: 13‐25, 2010.
 116. Bylund AC, Hammarsten J, Holm J, Schersten T. Enzyme activities in skeletal muscles from patients with peripheral arterial insufficiency. Europ J Clin Invest 6: 425‐429, 1976.
 117. Caduff JH, Fischer LC, Burri PH. Scanning electron microscope study of the developing microvasculature in the postnatal rat lung. Anat Rec 216: 154‐164, 1986.
 118. Cai W, Schaper W. Mechanisms of arteriogenesis. Acta Biochim Biophys Sin 40: 681‐692, 2008.
 119. Cai WJ, Kocsis E, Luo X, Schaper W, Schaper J. Expression of endothelial nitric oxide synthase in the vascular wall during arteriogenesis. Mol Cell Biochem 264: 193‐200, 2004.
 120. Cai WJ, Li MB, Wu X, Wu S, Zhu W, Chen D, Luo M, Eitenmuller I, Kampmann A, Schaper J, Schaper W. Activation of the integrins alpha 5beta 1 and alpha v beta 3 and focal adhesion kinase (FAK) during arteriogenesis. Mol Cell Biochem 322: 161‐169, 2009.
 121. Calvo JA, Daniels TG, Wang X, Paul A, Spiegelman BM, Stevenson SC, Rangwala SM. Muscle‐specific expression of PPARgamma coactivator‐1alpha improves exercise performance and increases peak oxygen uptake. J Appl Physiol 104: 1304‐1312, 2008.
 122. Canepari M, Pellegrino MA, D'Antona G, Bottinelli R. Single muscle fiber progerties in aging and disuse. Scand J Med Sci Sports 20: 10‐19, 2010.
 123. Cannon DT, White AC, Andriano MF, Kolkhorst FW, Rossiter HB. Skeletal muscle fatigue precedes the slow component of oxygen uptake kinetics during exercise in humans. J Physiol 589: 727‐739, 2011.
 124. Cao R, Brakenhielm E, Pawliuk R, Wariaro D, Post MJ, Wahlberg E, Leboulch P, Cao Y. Angiogenic synergism, vascular stability and improvement of hind‐limb ischemia by a combination of PDGF‐BB and FGF‐2. Nat Med 9: 604‐613, 2003.
 125. Cao Y. Monotherapy versus combination therapy of angiogenic and arteriogenic factors for the treatment of ischemic disorders. Curr Mol Med 9: 967‐972, 2009.
 126. Caporali A, Meloni M, Vollenkle C, Bonci D, Sala‐Newby GB, Addis R, Spinetti G, Losa S, Masson R, Baker AH, Agami R, le Sage C, Condorelli G, Madeddu P, Martelli F, Emanueli C. Deregulation of microRNA‐503 contributes to diabetes mellitus‐induced impairment of endothelial function and reparative angiogenesis after limb ischemia. Circulation 123: 282‐291, 2011.
 127. Carman TL, Fernandez BBJ. Contemporary management of peripheral arterial disease: II. Improving walking distance and quality of life. Cleveland Clin J Med 73: S38‐S44, 2006.
 128. Carmeliet P. Angiogenesis in health and disease. Nat Med 9: 653‐660, 2003.
 129. Carmeliet P, Moons L, Luttun A, Vincenti V, Compernolle V, De Mol M, Wu Y, Bono F, Devy L, Beck H, Scholz D, Acker T, DiPalma T, Dewerchin M, Noel A, Stalmans I, Barra A, Blacher S, Vandendriessche T, Ponten A, Eriksson U, Plate KH, Foidart JM, Schaper W, Charnock‐Jones DS, Hicklin DJ, Herbert JM, Collen D, Persico MG. Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med 7: 575‐583, 2001.
 130. Carmeliet P, Ng YS, Nuyens D, Theilmeier G, Brusselmans K, Cornelissen I, Ehler E, Kakkar VV, Stalmans I, Mattot V, Perriard JC, Dewerchin M, Flameng W, Nagy A, Lupu F, Moons L, Collen D, D'Amore PA, Shima DT. Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Nat Med 5: 495‐502, 1999.
 131. Carrow RE, Brown RE, Van Huss WD. Fiber sizes and capillary to fiber ratios in skeletal muscle of exercised rats. Anat Rec 159: 33‐39, 1967.
 132. Carter SA, Hamel ER, Paterson JM, Snow CJ, Mymin D. Walking ability and ankle systolic pressures: Observations in patients with intermittent claudication in a short‐term walking exercise program. J Vasc Sur 10: 642‐649, 1989.
 133. Casillas JM, Gremeaux V, Damak S, Felki A, Perennou FD. Exercise training for patients with cardiovascular disease. Ann Readapt Med Phys 50: 403‐418, 2007.
 134. Cave AC, Brewer AC, Narayanapanicker A, Ray R, Grieve DJ, Walker S, Shah AM. NADPH oxidases in cardiovascular health and disease. Antioxid Redox Signal 8: 691‐728, 2006.
 135. Celik T, Berdan ME, Iyisoy A, Kursaklioglu H, Turhan H, Kilic S, Gulec M, Ozturk S, Isik E. Impaired coronary collateral vessel development in patients with proliferative diabetic retinopathy. Clin Cardiol 28: 384‐388, 2005.
 136. Celis R, Pipinos II, Scott‐Pandorf MM, Myers SA, Stergiou N, Johanning JM. Peripheral arterial disease affects kinematics during walking. J Vasc Surg 49: 127‐132, 2009.
 137. Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, Capla JM, Galiano RD, Levine JP, Gurtner GC. Progenitor cell trafficking is regulated by hypoxic gradients through HIF‐1 induction of SDF‐1. Nat Med 10: 858‐864, 2004.
 138. Chae JK, Kim I, Lim ST, Chung MJ, Kim WH, Kim HG, Ko JK, Koh GY. Coadministration of angiopoietin‐1 and vascular endothelial growth factor enhances collateral vascularization. Arterioscler Thromb Vasc Biol 20: 2573‐2578, 2000.
 139. Chalothorn D, Clayton JA, Zhang H, Pomp D, Faber JE. Collateral density, remodeling, and VEGF‐A expression differ widely between mouse strains. Physiol Genomics 30: 179‐191, 2007.
 140. Chalothorn D, Faber JE. Strain‐dependent variation in collateral circulatory function in mouse hindlimb. Physiol Genomics 42: 469‐479, 2010.
 141. Chambers AF, Matrisian LM. Changing views of the role of matrix metalloproteinases in metastasis. J Natl Cancer Inst 89: 1260‐1270, 1997.
 142. Chan JY, Wang LL, Wu KL, Chan SH. Reduced functional expression and molecular synthesis of inducible nitric oxide synthase in rostral ventrolateral medulla of spontaneously hypertensive rats. Circulation 104: 1676‐1681, 2001.
 143. Chansky M, Levy MN. Collateral circulation to myocardial regions supplied by anterior descending and right coronary arteries in the dog. Circ Res 11: 414‐417, 1962.
 144. Chen Z, Rubin J, Tzima E. Role of PECAM‐1 in arteriogenesis and specification of preexisting collaterals. Circ Res 107: 1355‐1363, 2010.
 145. Cheng B, Essackjee HC, Ballard HJ. Evidence for control of adenosine metabolism in rat oxidative skeletal muscle by changes in pH. J Physiol 522 (Pt 3): 467‐477, 2000.
 146. Cheng XW, Kuzuya M, Kim W, Song H, Hu L, Inoue A, Nakamura K, Di Q, Sasaki T, Tsuzuki M, Shi GP, Okumura K, Murohara T. Exercise training stimulates ischemia‐induced neovascularization via phosphatidylinositol 3‐kinase/Akt‐dependent hypoxia‐induced factor‐1 alpha reactivation in mice of advanced age. Circulation 122: 707‐716, 2010.
 147. Cheng XW, Kuzuya M, Nakamura K, Maeda K, Tsuzuki M, Kim W, Sasaki T, Liu Z, Inoue N, Kondo T, Jin H, Numaguchi Y, Okumura K, Yokota M, Iguchi A, Murohara T. Mechanisms underlying the impairment of ischemia‐induced neovascularization in matrix metalloproteinase 2‐deficient mice. Circ Res 100: 904‐913, 2007.
 148. Cherr GS, Wang J, Zimmerman PM, Dosluoglu HH. Depression is associated with worse patency and recurrent leg symptoms after lower extremity revascularization. J Vasc Surg 45: 744‐750, 2007.
 149. Cherwek DH, Hopkins MB, Thompson MJ, Annex BH, Taylor DA. Fiber type‐specific differential expression of angiogenic factors in response to chronic hindlimb ischemia. Am J Physiol 279: H932‐H938, 2000.
 150. Chien S. Mechanotransduction and endothelial cell homeostasis: The wisdom of the cell. Am J Physiol 292: H1209‐H1224, 2007.
 151. Chinsomboon J, Raus J, Gupta RK, Thom R, Shoag J, Rowe GC, Sawada N, Raghuram S, Arany Z. The transcriptional coactivator PGC‐1 alpha mediates exercise‐induced angiogenesis. Proc Natl Acad Sci U S A 106: 21401‐21406, 2009.
 152. Chittenden TW, Sherman JA, Xiong F, Hall AE, Lanahan AA, Taylor JM, Duan H, Pearlman JD, Moore JH, Schwartz SM, Simons M. Transcriptional profiling in coronary artery disease. Indications for novel markers of coronary collateralizatioin. Circulation 114: 1811‐1820, 2006.
 153. Chleboun JO, Martins RN, Mitchell CA, Chirila TV. bFGF enhances the development of the collateral circulation after acute arterial occlusion. Biochem Biophys Res Commun 185: 510‐516, 1992.
 154. Chong PF, Golledge J, Greenhalgh RM, Davies AH. Exercise therapy or angioplasty? A summation analysis. Eur J Vasc Endovasc Surg 20: 4‐12, 2000.
 155. Chou E, Suzuma I, Way KJ, Opland D, Clermont AC, Naruse K, Suzuma K, Bowling NL, Vlahos CJ, Aiello LP, King GL. Decreased cardiac expression of vascular endothelial growth factor and its receptors in insulin‐resistant and diabetic states: A possible explanation for impaired collateral formation in cardiac tissue. Circulation 105: 373‐379, 2002.
 156. Christov C, Chretien F, Abou‐Khalil R, Bassez G, Vallet G, Authier FJ, Bassaglia Y, Shinin V, Tajbakhsh S, Chazaud B, Gherardi RK. Muscle satellite cells and endothelial cells: Close neighbors and privileged partners. Mol Biol Cell 18: 1397‐1409, 2007.
 157. Chung AW, Hsiang YN, Matzke LA, McManus BM, van B,C., Okon EB. Reduced expression of vascular endothelial growth factor paralleled with the increased angiostatin expression resulting from the upregulated activities of matrix metalloproteinase‐2 and ‐9 in human type 2 diabetic arterial vasculature. Circ Res 99: 140‐148, 2006.
 158. Claesson‐Welsh L, Welsh M, Ito N, Anand‐Apte B, Soker S, Zetter B, O'Reilly M, Folkman J. Angiostatin induces endothelial cell apoptosis and activation of focal adhesion kinase independently of the integrin‐binding motif RGD. Proc Natl Acad Sci U S A 95: 5579‐5583, 1998.
 159. Clark ER, Clark EL. Microscopic observations on the growth of blood capillaries in the living mammal. Am J Anat 64_: 251‐301, 1939.
 160. Clark IM, Swingler TE, Sampieri CL, Edwards DR. The regulation of matrix metalloproteinases and their inhibitors. Int J Biochem Cell Biol 40: 1362‐1378, 2008.
 161. Clauss M, Weich H, Breier G, Knies U, Rockl W, Waltenberger J, Risau W. The vascular endothelial growth factor receptor Flt‐1 mediates biological activities. Implications for a functional role of placenta growth factor in monocyte activation and chemotaxis. J Biol Chem 271: 17629‐17634, 1996.
 162. Clayton JA, Chalothorn D, Faber JE. Vascular endothelial growth factor‐A specifies formation of native collaterals and regulates collateral growth in ischemia. Circ Res 103: 1027‐1036, 2008.
 163. Clyne CA, Mears H, Weller RO, O'Donnell TF. Calf muscle adaptation to peripheral arterial disease. Cardiovasc Res 19: 507‐512, 1985.
 164. Clyne CAC, Weller RO, Bradley WG, Silber DI, O'Donnell TF, Callow AD. Ultrastructural and capillary adaptation of gastrocnemius muscle to occlusive peripheral vascular disease. Surgery 92: 434‐440, 1982.
 165. Coats P, Hillier C. Differential responses in human subcutaneous and skeletal muscle vascular beds to critical limb ischaemia. Eur J Vasc Endovasc Surg 19: 387‐395, 2000.
 166. Coffman JD. Peripheral collateral blood flow and vascular reactivity in the dog. J Clin Invest 45: 923‐931, 1966.
 167. Cohen M, Sherman W, Rentrop KP, Gorlin R. Determinants of collateral filling observed during sudden controlled coronary artery occlusion in human subjects. J Am Coll Cardiol 13: 297‐303, 1989.
 168. Cohen MV, Yipintsoi T, Malhotra A, Penpargkul S, Scheuer J. Effect of exercise on collateral development in dogs with normal coronary arteries. J Appl Physiol 45: 797‐805, 1978.
 169. Cohen MV, Yipintsoi T, Scheuer J. Coronary collateral stimulation by exercise in dogs with stenotic coronary arteries. J Appl Physiol 52: 664‐671, 1982.
 170. Colleran PN, Li Z, Yang HT, Laughlin MH, Terjung RL. Vasoresponsiveness of collateral vessels in the rat hindlimb: Influence of training. J Physiol 588: 1293‐1307, 2010.
 171. Compernolle V, Brusselmans K, Acker T, Hoet P, Tjwa M, Beck H, Plaisance S, Dor Y, Keshet E, Lupu F, Nemery B, Dewerchin M, Van Veldhoven P, Plate K, Moons L, Collen D, Carmeliet P. Loss of HIF‐2alpha and inhibition of VEGF impair fetal lung maturation, whereas treatment with VEGF prevents fatal respiratory distress in premature mice. Nat Med 8: 702‐710, 2002.
 172. Conley KE, Jubrias SA, Amara CE, Marcinek DJ. Mitochondrial dysfunction: Impact on exercise performance and cellular aging. Exerc Sport Sci Rev 35: 43‐49, 2007.
 173. Conrad MC, Anderson JL, Garrett JB. Chronic collateral growth after femoral artery occlusion in the dog. J Appl Physiol 31: 550‐555, 1971.
 174. Copp SW, Hiral DM, Ferguson SK, Musch TI, Poole DC. Role of neuronal nitric oxide synthase in modulating microvascular and contractile function in rat skeletal muscle. Microcirc 18: 501‐511, 2011.
 175. Corada M, Nyqvist D, Orsenigo F, Caprini A, Giampietro C, Taketo MM, Iruela‐Arispe ML, Adams RH, Dejana E. The Wnt/beta‐catenin pathway modulates vascular remodeling and specification by upregulating Dll4/Notch signaling. Dev Cell 18: 938‐949, 2010.
 176. Couffinhal T, Silver M, Kearney M, Sullivan A, Witzenbichler B, Magner M, Annex B, Peters K, Isner JM. Impaired collateral vessel development associated with reduced expression of vascular endothelial growth factor in ApoE‐/‐ mice. Circulation 99: 3188‐3198, 1999.
 177. Couffinhal T, Silver M, Zheng LP, Kearney M, Witzenbichler B, Isner JM. Mouse model of angiogenesis. Am J Pathol 152: 1667‐1679, 1998.
 178. Creasy TS, McMillan PJ, Fletcher EW, Collin J, Morris PJ. Is percutaneous transluminal angioplasty better than exercies for claudication? Preliminary results from a prospective randomised trial. Eur J Vasc Surg 4: 135‐140, 1990.
 179. Cretu A, Roth JM, Caunt M, Akalu A, Policarpio D, Formenti S, Gagne P, Liebes L, Brooks PC. Disruption of endothelial cell interactions with the novel HU177 cryptic collagen epitope inhibits angiogenesis. Clin Cancer Res 13: 3068‐3078, 2007.
 180. Criqui MH. Peripheral arterial disease ‐ epidemiological aspects. Vasc Med 6: 3‐7, 2001.
 181. Criqui MH, Fronek A, Barrett‐Connor E, Klauber MR, Gabriel S, Goodman D. The prevalence of pheripheral arterial disease in a defined population. Circulation 71: 510‐515, 1985.
 182. Criqui MH, Langer RD, Fronek A, Feigelson HS, Kaluber MR, McCann TJ, Browner D. Mortality over a periof of 10 years in pateints with peripheral arterial disease. N Engl J Med 326: 381‐386, 1992.
 183. Crowther RG, Spinks WL, Leicht AS, Sangla K, Quigley F, Golledge J. Effects of a long‐term exercise program on lower limb mobility, physiological responses, walking performance, and physical activity levels in patients with peripheral arterial disease. J Vasc Surg 47: 303‐309, 2008.
 184. Dahllof AG, Holm J, Schersten T, Sivertsson R. Peripheral arterial insufficiency, effect of physical training on walking tolerance, calf blood flow, and blood flow resistance. Scand J Rehab Med 8: 19‐26, 1976.
 185. Dai X, Faber JE. Endothelial nitric oxide synthase deficiency causes collateral vessel rarefaction and impairs activation of a cell cycle gene network during arteriogenesis. Circ Res 106: 1870‐1881, 2010.
 186. Dapp C, Schmutz S, Hoppeler H, Fluck M. Transcriptional reprogramming and ultrastructure during atrophy and recovery of mouse soleus muscle. Physiol Genomics 20: 97‐107, 2004.
 187. Darland DC, Massingham LJ, Smith SR, Piek E, Saint‐Geniez M, D'Amore PA. Pericyte production of cell‐associated VEGF is differentiation‐dependent and is associated with endothelial survival. Dev Biol 264: 275‐288, 2003.
 188. Dashwood M, Tsui J. Further evidence for a role of endothelin‐1 (ET‐1) in critical limb ischaemia. J Cell Comm Signaling 5: 45‐49, 2011.
 189. Davies PF. Flow‐mediated endothelial mechanotransduction. Physiol Rev 75: 519‐560, 1995.
 190. Davis GE, Bayless KJ, Mavila A. Molecular basis of endothelial cell morphogenesis in three‐dimensional extracellular matrices. Anat Rec 268: 252‐275, 2002.
 191. Dawson DL, Cutler BS, Meissner MH, Strandness DE, Jr. Cilostazol has beneficial effects in treatment of intermittent claudication: Results from a multicenter, randomized, prospective, double‐blind trial. Circulation 98: 678‐686, 1998.
 192. Dawson JM, Hudlicka O. The effects of long term administration of prazosin on the microcirculation in skeletal muscles. Cardiovasc Res 23: 913‐920, 1989.
 193. de Groot D, Pasterkamp G, Hoefer IE. Cardiovascular risk factors and collateral artery formation. Eur J Clin Invest 39: 1036‐1047, 2009.
 194. De Falco S, Gigante B, Persico MG. Structure and function of placental growth factor. Trends Cardiovasc Med 12: 241‐246, 2002.
 195. De Muinck ED, Simons M. Re‐evaluating therapeutic neovascularization. J Mol Cell Cardiol 36: 25‐32, 2004
 196. De Vivo, Palmer‐Kazen U, Kalin B, Wahlberg E. Risk factors for poor collateral development in claudication. Vasc Endovascular Surg 39: 519‐524, 2005.
 197. De VC, Escobedo JA, Ueno H, Houck K, Ferrara N, Williams LT. The fms‐like tyrosine kinase, a receptor for vascular endothelial growth factor. Science 255: 989‐991, 1992.
 198. Deindl E, Buschmann I, Hoefer IE, Podzuweit T, Boengler K, Vogel S, van R,N, Fernandez B, Schaper W. Role of ischemia and of hypoxia‐inducible genes in arteriogenesis after femoral artery occlusion in the rabbit. Circ Res 89: 779‐786, 2001.
 199. Dejana E, Orsenigo F, Lampugnani MG. The role of adherens junctions and VE‐cadherin in the control of vascular permeability. J Cell Sci 121: 2115‐2122, 2008.
 200. Dejana E, Tournier‐Lasserve E, Weinstein BM. The control of vascular integrity by endothelial cell junctions: Molecular basis and pathological implications. Dev Cell 16: 209‐221, 2009.
 201. Delaney EP, Greaney JL, Edwards DG, Rose WC, Fadel PH, Farquhar WB. Exaggerated sympathetic and pressor responses to handgrip exercise in older hypertensive humans: Role of the muscle metabolreflex. Am J Physiol 299: H1318‐H1327, 2010.
 202. Delis KT, Lennox AF, Nicolaides AN, Wolfe JH. Sympathetic autoregulation is peripheral vascular disease. Br J Surg 88: 523‐528, 2001.
 203. Demicheva E, Hecker M, Korff T. Stretch‐induced activation of the transcription factor activator protein‐1 controls monocyte chemoattractant protein‐1 expression during arteriogenesis. Circ Res 103: 477‐484, 2008.
 204. Denis C, Chatard JC, Dormois D, Linossier MT, Geyssant A, Lacour JR. Effects of endurance training on capillary supply of human skeletal muscle on two age groups (20 and 60 years). J Physiol (Paris) 81: 379‐383, 1986.
 205. Deschenes MR, Ogilvie RW. Exercise stimulates neovascularization in occluded muscle without affecting bFGF content. Med Sci Sports Exerc 31: 1599‐1604, 1999.
 206. Deshpande N, Ferrucci L, Metter J, Faulkner KA, Strotmeyer E, Satterfield S, Schwartz A, Simonsick E. Association of lower limb cutaneous sensitivity with gain speed in the elderly. Am J Phys Med Rehabil 87: 921‐928, 2008.
 207. Deussen A, Bading B, Kelm M, Schrader J. Formation and salvage of adenosine by macrovascular endothelial cells. Am J Physiol 264: H692‐H700, 1993.
 208. Deussen A, Moser G, Schrader J. Contribution of coronary endothelial cells to cardiac adenosine production. Pflugers Arch 406: 608‐614, 1986.
 209. Deveci D, Marshall JM, Egginton S. Chronic hypoxia induces prolonged angiogenesis in skeletal muscles of rat. Exp Physiol 87: 287‐291, 2002.
 210. Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM. Activation of nitric oxide synthase in endothelial cells by Akt‐dependent phosphorylation. Nature 399: 601‐605, 1999.
 211. Dinn RF, Yang HT, Terjung RL. The influence of pentoxifylline and torbafylline on muscle blood flow in animals with peripheral arterial insufficiency. J Clin Pharmacol 30: 704‐710, 1990.
 212. Dokun AO, Keum S, Hazarika S, Li Y, Lamonte GM, Wheeler F, Marchuk DA, Annex BH. A quantitative trait locus (LSq‐1) on mouse chromosome 7 is linked to the absence of tissue loss after surgical hindlimb ischemia. Circulation 117: 1207‐1215, 2008.
 213. Dormandy JA, Rutherford RB. Management of periperal arterial disease (PAD): TASC Working Group. J Vasc Surg 31: S1‐S34, 2000.
 214. Doyle JL, Haas TL. Differential role of beta‐catenin in VEGF and histamine‐induced MMP‐2 production in microvascular endothelial cells. J Cell Biochem 107: 272‐283, 2009.
 215. Droge W. Free radicals in the physiological control of cell function. Physiol Rev 82: 47‐95, 2002.
 216. Duan J, Murohara T, Ikeda H, Katoh A, Shintani S, Sasaki K, Kawata H, Yamamoto N, Imaizumi T. Hypercholesterolemia inhibits angiogenesis in response to hindlimb ischemia: Nitric oxide‐dependent mechanism. Circulation 102: 370‐376, 2000.
 217. Dudley GA, Abraham WM, Terjung RL. Influence of exercise intensity and duration on biochemical adaptations in skeletal muscle. J Appl Physiol 53: 844‐850, 1982.
 218. Dudley GA, Tullson PC, Terjung RL. Influence of mitochondrial content on the sensitivity of respiratory control. J Biol Chem 262: 9109‐9114, 1987.
 219. Duh E, Aiello LP. Vascular endothelial growth factor and diabetes: The agonist versus antagonist paradox. Diabetes 48: 1899‐1906, 1999.
 220. Duscha BD, Annex BH, Johnson JL, Huffman K, Houmard J, Kraus WE. Exercise dose response in muscle. Int J Sports Med 33: 218‐223, 2012.
 221. Duscha BD, Robbins JL, Jones WS, Kraus WE, Lye RJ, Sanders JM, Allen JD, Regensteiner JG, Hiatt WR, Annex BH. Angiogenesis in skeletal muscle precede improvements in peak oxygen uptake in peripheral artery disease patients. Arterioscler Thromb Vasc Biol 31: 2742‐2748, 2011.
 222. Dusseau JW, Hutchins PM. Hypoxia‐induced angiogenesis in chick chorioallantoic membranes: A role for adenosine. Respir Physiol 71: 33‐44, 1988.
 223. Ebrahimian TG, Heymes C, You D, Blanc‐Brude O, Mees B, Waeckel L, Duriez M, Vilar J, Brandes RP, Levy BI, Shah AM, Silvestre JS. NADPH oxidase‐derived overproduction of reactive oxygen species impairs postischemic neovascularization in mice with type 1 diabetes. Am J Pathol 169: 719‐728, 2006.
 224. Eckstein RW. Effect of exercise and coronary artery narrowing on coronary collateral circulation. Circ Res 5: 230‐235, 1957.
 225. Edwards AT, Biann AD, Suarez‐Mendez VJ, Lardi AM, McCollum CN. Systemic responses in patients with intermittent claudication after treadmill exercise. Br J Surg 81: 1738‐1741, 1994.
 226. Egginton S, Gaffney E. Tissue capillary supply–it's quality not quantity that counts! Exp Physiol 95: 971‐979, 2010.
 227. Egginton S, Gerritsen M. Lumen formation ‐ in vivo versus in vitro observations. Microcirc 10: 45‐61, 2003.
 228. Egginton S, Hudlicka O. Early changes in performance, blood flow and capillary fine structure in rat fast muscles induced by electrical stimulation. J Physiol 515: 265‐275, 1999.
 229. Egginton S, Hudlicka O, Brown MD, Graciotti L, Granata AL. In vivo pericyte‐endothelial cell interaction during angiogenesis in adult cardiac and skeletal muscle. Microvasc Res 51: 213‐228, 1996.
 230. Egginton S, Hudlicka O, Brown MD, Walter H, Weiss JB, Bate A. Capillary growth in relation to blood flow and performance in overloaded rat skeletal muscle. J Appl Physiol 85: 2025‐2032, 1998.
 231. Egginton S, Zhou AL, Brown MD, Hudlicka O. The role of pericytes in controlling angiogenesis in vivo. Adv Exp Med Biol 476: 81‐99, 2000.
 232. Egginton S, Zhou AL, Brown MD, Hudlicka O. Unorthodox angiogenesis in skeletal muscle. Cardiovasc Res 49: 634‐646, 2001.
 233. Eitenmuller I, Volger O, Kluge A, Troidl K, BarancikM Cai WJ, Heil M, Pipp F, Fischer S, Horrevoets AJ, Schmitz‐Rixen T, Schaper W. The range of adaptation by collateral vessels after femoral artery occlusion. Circ Res 99: 656‐662, 2006.
 234. Ekroth R, Dahllof AG, Gundevall B, Holm J, Schersten T. Physical training of patients with intermittent claudication: Indications, methods, and results. Surgery 84: 640‐643, 1978.
 235. Elander A, Idstrom JP, Schersten T, Bylund‐Fellenius AC. Metabolic adaptation to reduced muscle blood flow. I. Enzyme and metabolite alterations. Am J Physiol 249: E63‐E69, 1985.
 236. Elias AP, Dias S. Microenvironment changes (in pH) affect VEGF alternative splicing. Cancer Microenviron 1: 131‐139, 2008.
 237. Ellis CG, Mathieucostello O, Potter RF, Macdonald IC, Groom AC. Effect of sarcomere‐length on total capillary length in skeletal‐muscle ‐ in vivo evidence for longitudinal stretching of capillaries. Microvasc Res 40: 63‐72, 1990.
 238. Ellsworth ML, Ellis CG, Goldman D, Stephenson AH, Dietrich HH, Sprague RS. Erythrocytes: Oxygen sensors and modulators of vascular tone. Physiol (Bethesda) 24: 107‐116, 2009.
 239. Eltzschig HK, Abdulla P, Hoffman E, Hamilton KE, Daniels D, Schonfeld C, Loffler M, Reyes G, Duszenko M, Karhausen J, Robinson A, Westerman KA, Coe IR, Colgan SP. HIF‐1‐dependent repression of equilibrative nucleoside transporter (ENT) in hypoxia. J Exp Med 202: 1493‐1505, 2005.
 240. Eltzschig HK, Faigle M, Knapp S, Karhausen J, Ibla J, Rosenberger P, Odegard KC, Laussen PC, Thompson LF, Colgan SP. Endothelial catabolism of extracellular adenosine during hypoxia: The role of surface adenosine deaminase and CD26. Blood 108: 1602‐1610, 2006.
 241. Elvert G, Kappel A, Heidenreich R, Englmeier U, Lanz S, Acker T, Rauter M, Plate K, Sieweke M, Breier G, Flamme I. Cooperative interaction of hypoxia‐inducible factor‐2alpha (HIF‐2alpha) and Ets‐1 in the transcriptional activation of vascular endothelial growth factor receptor‐2 (Flk‐1). J Biol Chem 278: 7520‐7530, 2003.
 242. Ema M, Taya S, Yokotani N, Sogawa K, Matsuda Y, Fujii‐Kuriyama Y. A novel bHLH‐PAS factor with close sequence similarity to hypoxia‐inducible factor 1alpha regulates the VEGF expression and is potentially involved in lung and vascular development. Proc Natl Acad Sci U S A 94: 4273‐4278, 1997.
 243. Emanueli C, Caporali A, Krankel N, Cristofaro B, Van L,S., Madeddu P. Type‐2 diabetic Lepr(db/db) mice show a defective microvascular phenotype under basal conditions and an impaired response to angiogenesis gene therapy in the setting of limb ischemia. Front Biosci 12: 2003‐2012, 2007.
 244. Engerman RL, Pfaffenbach D, Davis MD. Cell turnover of capillaries. Lab Invest 17: 738‐743, 1967.
 245. Erney TP, Mathien GM, Terjung RL. Muscle adaptations in trained rats with peripheral arterial insufficiency. Am J Physiol 260: H445‐H452, 1991.
 246. Ernkvist M, Birot O, Sinha I, Veitonmaki N, Nystrom S, Aase K, Holmgren L. Differential roles of p80‐ and p130‐angiomotin in the switch between migration and stabilization of endothelial cells. Biochim Biophys Acta 1783: 429‐437, 2008.
 247. Ernkvist M, Luna Persson N, Audebert S, Lecine P, Sinha I, Liu M, Schlueter M, Horowitz A, Aase K, Weide T, Borg JP, Majumdar A, Holmgren L. The Amot/Patj/Syx signaling complex spatially controls RhoA GTPase activity in migrating endothelial cells. Blood 113: 244‐253, 2009.
 248. Essen B, Jansson E, Henriksson J, Taylor AW, Saltin B. Metabolic characteristics of fibre types in human skeletal muscle. Acta Physiol Scand 95: 153‐165, 1975.
 249. Esterhammer R, Schocke MF, Gorny O, Posch L, Messner H, Jaschke W, Fraedrich G, Greiner A. Phosphocreatine kinetics in the calf muscle of patients with bilateral symptomatic peripheral arterial disease during exhaustive incremental exercise. Mol Imaging Biol 10: 30‐39, 2008.
 250. Etienne‐Manneville S, Hall A. Rho GTPases in cell biology. Nature 420: 629‐635, 2002.
 251. Evans MJ, Scarpulla RC. Interaction of nuclear factors with multiple sites in the somatic cytochrome c promoter. Characterization of upstream NRF‐1, ATF, and intron Sp1 recognition sequences. J Biol Chem 264: 14361‐14368, 1989.
 252. Fabre JE, Rivard A, Magner M, Silver M, Isner JM. Tissue inhibition of angiotensin‐converting enzyme activity stimulates angiogenesis in vivo. Circulation 99: 3043‐3049, 1999.
 253. Favier J, Germain S, Emmerich J, Corvol P, Gasc JM. Critical overexpression of thrombospondin 1 in chronic leg ischaemia. J Pathol 207: 358‐366, 2005.
 254. Felbor U, Dreier L, Bryant RA, Ploegh HL, Olsen BR, Mothes W. Secreted cathepsin L generates endostatin from collagen XVIII. EMBO J 19: 1187‐1194, 2000.
 255. Feoktistov I, Ryzhov S, Zhong H, Goldstein AE, Matafonov A, Zeng D, Biaggioni I. Hypoxia modulates adenosine receptors in human endothelial and smooth muscle cells toward an A2B angiogenic phenotype. Hypertension 44: 649‐654, 2004.
 256. Ferguson AV, Latchford KJ, Samson WK. The paraventricular nucleus of the hypothalamus ‐ a potential target for integrative treatment of autonomic dysfuction. Expert Opin Ther Targets 12: 7117‐7727, 2008.
 257. Feringa HH, Bax JJ, van Waning VH, Boersma E, Elhendy A, Schouten O, Tangelder MJ, van Sambeek MH, van den Meiracker AH, Poldermans D. The long‐term prognostic value of the resting and postexercise ankle‐brachial index. Arch Internal Med 166: 529‐535, 2006.
 258. Findley CM, Mitchell RG, Duscha BD, Annex BH, Kontos CD. Plasma levels of soluble Tie2 and vascular endothelial growth factor distinguish critical limb ischemia from intermittent claudication in patients with peripheral arterial disease. J Am Coll Cardiol 52: 387‐393, 2008.
 259. Fischer S, Knoll R, Renz D, Karliczek GF, Schaper W. Role of adenosine in the hypoxic induction of vascular endothelial growth factor in porcine brain derived microvascular endothelial cells. Endothelium 5: 155‐165, 1997.
 260. Fisher JP, Young CN, Fadel PJ. Central sympathetic overactivity: Maladies and mechanisms. Auton Neurosci 148: 8‐15, 2009.
 261. Fisher KE, Sacharidou A, Stratman AN, Mayo AM, Fisher SB, Mahan RD, Davis MJ, Davis GE. MT1‐MMP‐ and Cdc42‐dependent signaling co‐regulate cell invasion and tunnel formation in 3D collagen matrices. J Cell Sci 122: 4558‐4569, 2009.
 262. Flamme I, Frohlich T, von R,M., Kappel A, Damert A, Risau W. HRF, a putative basic helix‐loop‐helix‐PAS‐domain transcription factor is closely related to hypoxia‐inducible factor‐1 alpha and developmentally expressed in blood vessels. Mech Dev 63: 51‐60, 1997.
 263. Fleming I, Busse R. Molecular mechanisms involved in the regulation of the endothelial nitric oxide synthase. Am J Physiol 284: R1‐R12, 2003.
 264. Flu HC, Tamsma JT, Lindeman JH, Hamming JF, Lardenoye JH. A systematic review of implementation of established recommended secondary prevention measures in patients with PAOD. Eur J Vasc Endovasc Surg 39: 7‐86, 2010.
 265. Folkman J. Angiogenesis and apoptosis. Sem Cancer Biol 13: 159‐167, 2003.
 266. Fowkes FGR, Murray GD, Butcher I, Heald CL, Lee RJ, Chambless LE, Folsom AR, Hirsch AT, Dramaix M, deBacker G, Wautrecht JC, Kornitzer M, Newman AB, Cushman M, Sutton‐Tyrrell K, Lee AJ, Price JF, d'Agostino RB, Murabito J, Norman PE, Jamrozik K, Curb JD, Masaki KH, Rodriguez BL, Dekker JM, Bouter LM, Heine RJ, Nijpels G, Stehauwer CDA, Ferucci L, McDermott MM, Stoffers HE, Hooi JD, Knottnerus JA, Ogren M, Hedblad B, Witteman JC, Breteler MMB, Hunink MGM, Hofman A, Criqui MH, Langer RD, Fronek A, Hiatt WR, Hmman R, Resnick HE, Guralnik J. Ankle brachial index combined with Framingham risk score to predict cardiovascular events and mortality. A meta‐analysis. JAMA 300: 197‐208, 2008.
 267. Frans FA, Bipat S, Reekers JA, Legemate DA, Koelemay MJW. Systematic review of exercises training or percutaneous transluminal angioplasty for intermittent claudication. Brit J Surg 99: 16‐28, 2012.
 268. Frey RS, Ushio‐Fukai M, Malik AB. NADPH oxidase‐dependent signaling in endothelial cells: Role in physiology and pathophysiology. Antioxid Redox Signal 11: 791‐810, 2009.
 269. Frisbee C. Obesity, insulin resistance, and microvessel density. Microcirc 14: 289‐298, 2007.
 270. Fujii T, Yonemitsu Y, Onimaru M, Tanii M, Nakano T, Egashira K, Takehara T, Inoue M, Hasegawa M, Kuwano H, Sueishi K. Nonendothelial mesenchymal cell‐derived MCP‐1 is required for FGF‐2‐mediated therapeutic neovascularization: Critical role of the inflammatory/arteriogenic pathway. Arterioscler Thromb Vasc Biol 26: 2483‐2489, 2006.
 271. Fujino H, Kohzuki H, Takeda I, Kiyooka T, Miyasaka T, Mohri S, Shimizu J, Kajiya F. Regression of capillary network in atrophied soleus muscle induced by hindlimb unweighting. J Appl Physiol 98: 1407‐1413, 2005.
 272. Fujita M, Nakae I, Kihara Y, Hasegawa K, Nohara R, Ueda K, Tamaki S, Otsuka K, Sasayama S. Determinants of collateral development in patients with acute myocardial infarction. Clin Cardiol 22: 595‐599, 1999.
 273. Fukino K, Sata M, Seko Y, Hirata Y, Nagai R. Genetic background influences therapeutic effectiveness of VEGF. Biochem Biophys Res Commun 310: 143‐147, 2003.
 274. Fukumura D, Duda DG, Munn LL, Jain RK. Tumor microvasculature and microenvironment: Novel insights through intravital imaging in pre‐clinical models. Microcirc 17: 206‐225, 2010.
 275. Fulton D, Gratton JP, McCabe TJ, Fontana J, Fujio Y, Walsh K, Franke TF, Papapetropoulos A, Sessa WC. Regulation of endothelium‐derived nitric oxide production by the protein kinase Akt. Nature 399: 597‐601, 1999.
 276. Gagne PJ, Tihonov N, Li X, Glaser J, Qiao J, Silberstein M, Yee H, Gagne E, Brooks P. Temporal exposure of cryptic collagen epitopes within ischemic muscle during hindlimb reperfusion. Am J Pathol 167: 1349‐1359, 2005.
 277. Galea MN, Bray SR. Determinants of walking exercise among individuals with intermittent claudication: Does pain play a role? J Cardiopul Rehab Prevent 27: 107‐113, 2007.
 278. Galea MN, Bray SR, Ginis KA. Barriers and facilitators for walking in individuals with intermittent claudication. J Aging Physical Activity 16: 69‐83, 2008.
 279. Gao L, Wang W, Li YL, Schultz HD, Liu D, Cornish KG, Zucker IH. Superoxide mediates sympathoexcitation in heart failure: Roles of angiotensin II and NAD(P)H oxidase. Circ Res 95: 937‐944, 2004.
 280. Gao L, Wang W, Liu D, Zucker IH. Exercise training normalizes sympathetic outflow by central antioxidant mechanisms in rabbits with pacing‐induced chronic heart failure. Circulation 115: 3095‐3102, 2007.
 281. Gardner AW, Clancy RJ. The relationship between ankle‐brachial index and leisure‐time physical activity in patients with intermittent claudication. Angiology 57: 539‐545, 2006.
 282. Gardner AW, Katzel LI, Sorkin JD, Bradham DD, Hochberg MC, Flinn WR, Goldberg AP. Exercise rehabilitation improves functional outcomes and peripheral circulation in patients with intermittent claudication: A randomized controlled trial. J Am Geriatrics Soc 49: 755‐762, 2001.
 283. Gardner AW, Katzel LI, Sorkin JD, Goldberg AP. Effects of long‐term exercise rehabilitation on claudication distances in patients with peripheral arterial disease: A randomized controlled trial.[see comment]. J Cardiopul Rehab 22: 192‐198, 2002.
 284. Gardner AW, Katzel LI, Sorkin JD, Lillewich LA, Ryan A, Flinn WR, Goldberg AP. Improved functional outcomes following exercise rehabilitation in patients with intermittent claudication. J Gerontol A Biol Sci Med Sci 55: M70‐M577, 2000.
 285. Gardner AW, Montgomery PS. The effect of metabolic syndrome components on exercise performance in patients with intermittent claudication. J Vasc Surg 47: 1251‐1258, 2008.
 286. Gardner AW, Montgomery PS, Parker DE. Physical activity is a predictor of all‐cause mortality in patients with intermittent claudication. J Vasc Surg 47: 117‐122, 2008.
 287. Gardner AW, Montgomery PS, Ritti‐Dias RM, Forrester L. The effect of claudication pain on temporal and spatial gait measures during self‐paced ambulation. Vasc Med 15: 21‐26, 2010.
 288. Gardner AW, Montgomery PS, Scott KJ, Afaq A, Blevins SM. Patterns of ambulatory activity in subjects with and without intermittent claudication. J Vasc Surg 46: 1208‐1214, 2007.
 289. Gardner AW, Parker DE, Webb N, Montgomery PS, Scott KJ, Blevins SM. Calf muscle hemoglobin oxygen saturation characteristics and exercise performance in patients with intermittent claudication. J Vasc Surg 48: 644‐649, 2008.
 290. Gardner AW, Poehlman ET. Exercise rehabilitation programs for the treatment of claudication pain. A meta‐analysis. JAMA 274: 975‐980, 1995.
 291. Gardner AW, Skinner JS, Cantwell BW, Smith LK. Progressive vs single‐stage treadmill tests for evaluation of claudication. Med Sci Sports Exer 23: 402‐408, 1991.
 292. Gavin TP, Drew JL, Kubik CJ, Pofahl WE, Hickner RC. Acute resistance exercise increases skeletal muscle angiogenic growth factor expression. Acta Physiol 191: 139‐146, 2007.
 293. Gavin TP, Robinson CB, Yeager RC, England JA, Nifong LW, Hickner RC. Angiogenic growth factor response to acute systemic exercise in human skeletal muscle. J Appl Physiol 96: 19‐24, 2004.
 294. Gavin TP, Ruster RS, Carrithers JA, Zwetsloot KA, Kraus RM, Evans CA, Knapp DJ, Drew JL, McCartney JS, Garry JP, Hickner RC. No difference in the skeletal muscle angiogenic response to aerobic exercise training between young and aged men. J Physiol 585: 231‐239, 2007.
 295. Gavin TP, Spector DA, Wagner H, Breen EC, Wagner PD. Nitric oxide synthase inhibition attenuates the skeletal muscle VEGF mRNA response to exercise. J Appl Physiol 88: 1192‐1198, 2000.
 296. Gavin TP, Wagner PD. Effect of short‐term exercise training on angiogenic growth factor gene responses in rats. J Appl Physiol 90: 1219‐1226, 2001.
 297. Gee E, Milkiewicz M, Haas TL. p38 MAPK activity is stimulated by vascular endothelial growth factor receptor 2 activation and is essential for shear stress‐induced angiogenesis_. J Cell Physiol 222: 120‐126, 2010.
 298. Gelin J, Jivegard L, Taft C, Karlsson J, Sullivan M, Dahllof AG, Sandstrom R, Arfvidsson B, Lundholm K. Treatment efficacy of intermittent claudication by surgical intervention, supervised physical exercise training compared to no treatment in unselected randomised patients I: One year results of functional and physiological improvements. Eur J Vasc Endovasc Surg 22: 107‐113, 2001.
 299. Geng T, Li P, Okutsu M, Yin X, Kwek J, Zhang M, Yan Z. PGC‐1alpha plays a functional role in exercise‐induced mitochondrial biogenesis and angiogenesis but not fiber‐type transformation in mouse skeletal muscle. Am J Physiol 298: C572‐C579, 2010.
 300. Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, Jeltsch M, Mitchell C, Alitalo K, Shima D, Betsholtz C. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161: 1163‐1177, 2003.
 301. Gerhardt H, Ruhrberg C, Abramsson A, Fujisawa H, Shima D, Betsholtz C. Neuropilin‐1 is required for endothelial tip cell guidance in the developing central nervous system. Dev Dyn 231: 503‐509, 2004.
 302. Gigante B, Morlino G, Gentile MT, Persico MG, De F,S. Plgf‐/‐eNos‐/‐ mice show defective angiogenesis associated with increased oxidative stress in response to tissue ischemia. FASEB J 20: 970‐972, 2006.
 303. Gigante B, Tarsitano M, Cimini V, De F,S., Persico MG. Placenta growth factor is not required for exercise‐induced angiogenesis. Angiogenesis 7: 277‐284, 2004.
 304. Girolami B, Bernardi E, Prins MH, Ten Cate JW, Hettiarachchi R, Prandoni P, Girolami A, Buller HR. Treatment of intermittent claudication with physical training, smoking cessation, pentoxifylline, or nafronyl: A meta‐analysis. Arch Int Med 159: 337‐345, 1999.
 305. Goerges AL, Nugent MA. Regulation of vascular endothelial growth factor binding and activity by extracellular pH. J Biol Chem 278: 19518‐19525, 2003.
 306. Goerges AL, Nugent MA. pH regulates vascular endothelial growth factor binding to fibronectin: A mechanism for control of extracellular matrix storage and release. J Biol Chem 279: 2307‐2315, 2004.
 307. Gokce N, Keaney JF, Hunter LM, Watkins MT, Nedeljkovic ZS, Menzoian JO, Vita JA. Predictive value of noninvasively determined endothelial dysfunction for long‐term cardiovascular events in patients with peripheral vascular disease. J Am Coll Cardiol 41: 1769‐1775, 2003.
 308. Goldstein RE, Michaelis LL, Morrow AG, Epstein SE. Coronary collateral function in patients without occlusive coronary artery disease. Circulation 51: 118‐125, 1975.
 309. Golomb BA, Dang TT, Criqui MH. Peripheral arterial disease. Morbidity and mortality implications. Circulation 114: 688‐699, 2006.
 310. Goodwin AM, Sullivan KM, D'Amore PA. Cultured endothelial cells display endogenous activation of the canonical Wnt signaling pathway and express multiple ligands, receptors, and secreted modulators of Wnt signaling. Dev Dyn 235: 3110‐3120, 2006.
 311. Gorospe JR, Nishikawa BK, Hoffman EP. Recruitment of mast cells to muscle after mild damage. J Neurol Sci 135: 10‐17, 1996.
 312. Goto M, Terada S, Kato M, Katoh M, Yokozeki T, Tabata I, Shimokawa T. cDNA cloning and mRNA analysis of PGC‐1 in epitrochlearis muscle in swimming‐exercised rats. Biochem Biophys Res Commun 274: 350‐354, 2000.
 313. Goukassian DA, Qin G, Dolan C, Murayama T, Silver M, Curry C, Eaton E, Luedemann C, Ma H, Asahara T, Zak V, Mehta S, Burg A, Thorne T, Kishore R, Losordo DW. Tumor necrosis factor‐alpha receptor p75 is required in ischemia‐induced neovascularization. Circulation 115: 752‐762, 2007.
 314. Gowdak LH, Poliakova L, Wang X, Kovesdi I, Fishbein KW, Zacheo A, Palumbo R, Straino S, Emanueli C, Marrocco‐Trischitta M, Lakatta EG, Anversa P, Spencer RG, Talan M, Capogrossi MC. Adenovirus‐mediated VEGF(121) gene transfer stimulates angiogenesis in normoperfused skeletal muscle and preserves tissue perfusion after induction of ischemia. Circulation 102: 565‐571, 2000.
 315. Green S, Askew CD, Walker PJ. Effect of type 2 diabetes mellitus on exercise intolerance and the physiological responses to exercise in peripheral arterial disease. Diabetologia 50: 859‐866, 2007.
 316. Greenhalgh RM, Belch JJ, Brown LC, Gaines PA, Gao L, Reise JA, Thompson SG, Participants aMT. The adjuvant benefit of angioplasty in patients with mild to moderate intermittent claudication (MIMIC) managed by supervised exercise, smoking cessation advice and best medical therapy: Results from two randomised trials for stenotic femoropopliteal and aortoiliac arterial disease. Eur J Vasc Endovas Surg 36: 680‐688, 2008.
 317. Greiner A, Esterhammer R, Messner H, Biebl M, Muhlthaler H, Fraedrich G, Jaschke WR, Schocke MF. High‐energy phosphate metabolism during incremental calf exercise in patients with unilaterally symptomatic peripheral arterial disease measured by phosphor 31 magnetic resonance spectroscopy. J Vasc Surg 43: 978‐986, 2006.
 318. Groom AC, Ellis CG, Potter RF. Microvascular geometry in relation to modeling oxygen transport in contracted skeletal muscle. Am Rev Respir Dis 129: S6‐S9, 1984.
 319. Grounds MD. Age‐associated changes in the response of skeletal muscle cells to exercise and regeneration. Ann NY Acad Sci 854: 78‐91, 1998.
 320. Grundmann S, Hoefer I, Ulusans S, Bode C, Oesterle S, Tijssen JG, Piek JJ, Buschmann I, van Royen N. Granulocyte‐macrophage colony‐stimulating factor stimulates arteriogenesis in a pig model of peripheral artery disease using clinically applicable infusion pumps. J Vasc Surg 43: 1263‐1269, 2006.
 321. Gu JW, Brady AL, Anand V, Moore MC, Kelly WC, Adair TH. Adenosine upregulates VEGF expression in cultured myocardial vascular smooth muscle cells. Am J Physiol 277: H595‐H602, 1999.
 322. Gu JW, Gadonski G, Wang J, Makey I, Adair TH. Exercise increases endostatin in circulation of healthy volunteers. BMC Physiol 4: 2, 2004.
 323. Gu JW, Shparago M, Tan W, Bailey AP. Tissue endostatin correlates inversely with capillary network in rat heart and skeletal muscles. Angiogenesis 9: 93‐99, 2006.
 324. Gu W, Weihrauch D, Tanaka K, Tessmer JP, Pagel PS, Kersten JR, Chilian WM, Warltier DC. Reactive oxygen species are critical mediators of coronary collateral development in a canine model. Am J Physiol 285: H1582‐H1589, 2003.
 325. Gudmundsson G, Matthiasson SE, Arason H, Johannsson H, Runarsson F, Bjarnason H, Helgadottir K, Thorisdottir S, Ingadottir G, Lindpaintner K, Sainz J, Gudnason V, Frigge ML, Kong A, Gulcher JR, Stefansson K. Localization of a gene for peripheral arterial occlusive disease to chromosome 1p31. Am J Hum Genet 70: 586‐592, 2002.
 326. Guidon M, McGee H. Exercise‐based interventions and health‐related quality of life in intermittentclaudication: A 20‐year (1989‐2008) review. Eur J Cardiovasc Prev Rehabil 17: 140‐154, 2010.
 327. Guo N, Krutzsch HC, Inman JK, Roberts DD. Thrombospondin 1 and type I repeat peptides of thrombospondin 1 specifically induce apoptosis of endothelial cells. Cancer Res 57: 1735‐1742, 1997.
 328. Gustafsson T, Knutsson A, Puntschart A, Kaijser L, Nordqvist AC, Sundberg CJ, Jansson E. Increased expression of vascular endothelial growth factor in human skeletal muscle in response to short‐term one‐legged exercise training. Pflugers Arch 444: 752‐759, 2002.
 329. Gustafsson T, Ameln H, Fischer H, Sundberg CJ, Timmons JA, Jansson E. VEGF‐A splice variants and related receptor expression in human skeletal muscle following submaximal exercise. J Appl Physiol 98: 2137‐2146, 2005.
 330. Gustafsson T, Kraus WE. Exercise‐induced angiogenesis‐related growth and transcription factors in skeletal muscle, and their modification in muscle pathology. Front Biosci 6: D75‐D89, 2001.
 331. Gustafsson T, Puntschart A, Kaijser L, Jansson E, Sundberg CJ. Exercise‐induced expression of angiogenesis‐related transcription and growth factors in human skeletal muscle. Am J Physiol 276: H679‐H685, 1999.
 332. Gustafsson T, Rundqvist H, Norrbom J, Rullman E, Jansson E, Sundberg CJ. The influence of physical training on the angiopoietin and VEGF‐A systems in human skeletal muscle. J Appl Physiol 103: 1012‐1020, 2007.
 333. Haas TL. Endothelial cell regulation of matrix metalloproteinases. Can J Physiol Pharmacol 83: 1‐7, 2005.
 334. Haas TL, Milkiewicz M, Davis SJ, Zhou AL, Egginton S, Brown MD, Madri JA, Hudlicka O. Matrix metalloproteinase activity is required for activity‐induced angiogenesis in rat skeletal muscle. Am J Physiol 279: H1540‐H1547, 2000.
 335. Hall JA, Dixon GH, Barnard RJ, Pritikin N. Effect of diet and exercise on peripheral vascular disease. Phys Sports Med 10: 90‐101, 1982.
 336. Hamburg NM, Balady GJ. Exercise rehabilitation in peripheral artery disease. Functional impact and mechanisms of benefits. Circulation 123: 87‐97, 2011.
 337. Hammarsten J, Bylund‐Fellenius AC, Holm J, Schersten T, Krotkiewski M. Capillary supply and muscle fibre types in patients with intermittent claudication: Relationships between morphology and metabolism. Eur J Clin Invest 10: 301‐305, 1980.
 338. Handschin C, Spiegelman BM. Peroxisome proliferator‐activated receptor γ coactivator 1 coactivators, energy homeostasis, and metabolism. Endocr Rev 27: 728‐735, 2006.
 339. Handschin C, Spiegelman BM. The role of exercise and PGC1alpha in inflammation and chronic disease. Nature 454: 463‐469, 2008.
 340. Hang J, Kong L, Gu JW, Adair TH. VEGF gene expression is upregulated in electrically stimulated rat skeletal muscle. Am J Physiol 269: H1827‐H1831, 1995.
 341. Hansen‐Smith FM, Hudlicka O, Egginton S. In vivo angiogenesis in adult rat skeletal muscle: Early changes in capillary network architecture and ultrastructure. Cell Tissue Res 286: 123‐136, 1996.
 342. Hansen‐Smith FM, Watson L, Lu DY, Goldstein I. Griffonia simplicifolia I: Fluorescent tracer for microcirculatory vessels in nonperfused thin muscles and sectioned muscle. Microvasc Res 36: 199‐215, 1988.
 343. Hariawala MD, Horowitz JR, Esakof D, Sheriff DD, Walter DH, Keyt B, Isner JM, Symes JF. VEGF improves myocardial blood flow but produces EDRF‐mediated hypotension in porcine hearts. J Surg Res 63: 77‐82, 1996.
 344. Harken AH, Simson MB, Haselgrove., Wetstein L, Harden WR, Barlow CH. Early ischemia after complete coronary ligation in the rabbit, dog, pig, and monkey. Am J Physiol 241: H202‐H210, 1981.
 345. Harrington LS, Sainson RC, Williams CK, Taylor JM, Shi W, Li JL, Harris AL. Regulation of multiple angiogenic pathways by Dll4 and Notch in human umbilical vein endothelial cells. Microvasc Res 75: 144‐154, 2008.
 346. Hashimoto A, Miyakoda G, Hirose Y, Mori T. Activation of endothelial nitric oxide synthase by cilostazol via a cAMP/protein kinase A‐ and phosphatidylinositol 3‐kinase/Akt‐dependent mechanism. Atherosclerosis 189: 350‐357, 2006.
 347. Hashiya N, Jo N, Aoki M, Matsumoto K, Nakamura T, Sato Y, Ogata N, Ogihara T, Kaneda Y, Morishita R. In vivo evidence of angiogenesis induced by transcription factor ets‐1 ‐ Ets‐1 is located upstream of angiogenesis cascade. Circulation 109: 3035‐3041, 2004.
 348. Haugen S, Casserly IP, Regensteiner JG, Hiatt WR. Risk assessment in the patient with established periperal arterial disease. Vasc Med 12: 343‐350, 2007.
 349. Hawke TJ, Garry DJ. Myogenic satellite cells: Physiology to molecular biology. J Appl Physiol 91: 534‐551, 2001.
 350. Hayashi S, Morishita R, Nakamura S, Yamamoto K, Moriguchi A, Nagano T, Taiji M, Noguchi H, Matsumoto K, Nakamura T, Higaki J, Ogihara T. Potential role of hepatocyte growth factor, a novel angiogenic growth factor, in peripheral arterial disease: Downregulation of HGF in response to hypoxia in vascular cells. Circulation 100: II301‐II308, 1999.
 351. Hazarika S, Dokun AO, Li Y, Popel AS, Kontos CD, Annex BH. Impaired angiogenesis after hindlimb ischemia in type 2 diabetes mellitus: Differential regulation of vascular endothelial growth factor receptor 1 and soluble vascular endothelial growth factor receptor 1. Circ Res 101: 948‐956, 2007.
 352. Heil M, Eitenmueller I, Schmitz‐Rixen T, Schaper W. Arteriogenesis versus angiogenesis: Similarities and differences. J Cell Mol Med 10: 45‐55, 2006.
 353. Heil M, Schaper W. Influence of mechanical, cellular, and molecular factors on collateral artery growth (arteriogenesis). Circ Res 95: 449‐458, 2004.
 354. Heil M, Schaper W. Insights into pathways of arteriogenesis. Curr Pharm Biotechnol 8: 35‐42, 2007.
 355. Heil M, Ziegelhoeffer T, Pipp F, Kostin S, Martin S, Clauss M, Schaper W. Blood monocyte concentration is critical for enhancement of collateral artery growth. Am J Physiol 283: 2411‐2419, 2002.
 356. Heil M, Ziegelhoeffer T, Wagner S, Fernandez B, Helisch A, Martin S, Tribulova S, Kuziel WA, Bachmann G, Schaper W. Collateral artery growth (arteriogenesis) after experimental arterial occlusion is impaired in mice lacking CC‐chemokine receptor‐2. Circ Res 94: 671‐677, 2004.
 357. Helisch A, Schaper S. Arteriogenesis: The development and growth of collateral arteries. Microcirculation 10: 83‐97, 2003.
 358. Helisch A, Wagner S, Khan N, Drinane M, Wolfram S, Heil M, Ziegelhoeffer T, Brandt U, Pearlman JD, Swartz HM, Schaper W. Impact of mouse strain differences in innate hindlimb collateral vasculature. Arterioscler Thromb Vasc Biol 26: 520‐526, 2006.
 359. Heljasvaara R, Nyberg P, Luostarinen J, Parikka M, Heikkila P, Rehn M, Sorsa T, Salo T, Pihlajaniemi T. Generation of biologically active endostatin fragments from human collagen XVIII by distinct matrix metalloproteases. Exp Cell Res 307: 292‐304, 2005.
 360. Hellberg C, Ostman A, Heldin CH. PDGF and vessel maturation. Recent Results Cancer Res 180: 103‐114, 2010.
 361. Hellsten Y, Frandsen U. Adenosine formation in contracting primary rat skeletal muscle cells and endothelial cells in culture. J Physiol 504: 695‐704, 1997.
 362. Hellsten Y, Maclean D, Radegran G, Saltin B, Bangsbo J. Adenosine concentrations in the interstitium of resting and contracting human skeletal muscle. Circulation 98: 6‐8, 1998.
 363. Hellsten Y, Rufener N, Nielsen JJ, Hoier B, Krustrup P, Bangsbo J. Passive leg movement enhances interstitial VEGF protein, endothelial cell proliferation, and eNOS mRNA content in human skeletal muscle. Am J Physiol 294: R975‐R982, 2008.
 364. Hellsten Y, Skadhauge L, Bangsbo J. Effect of ribose supplementation on resynthesis of adenine nucleotides after intense intermittent training in humans. Am J Physiol 286: R182‐R188, 2004.
 365. Hellstrom M, Gerhardt H, Kalen M, Li X, Eriksson U, Wolburg H, Betsholtz C. Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J Cell Biol 153: 543‐553, 2001.
 366. Hellstrom M, Phng LK, Hofmann JJ, Wallgard E, Coultas L, Lindblom P, Alva J, Nilsson AK, Karlsson L, Gaiano N, Yoon K, Rossant J, Iruela‐Arispe ML, Kalen M, Gerhardt H, Betsholtz C. Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445: 776‐780, 2007.
 367. Hendricks DL, Pevec WC, Shestak KC, Rosenthal MC, Webster MW, Steed DL. A model of persistent partial hindlimb ischemia in the rabbit. J Surg Res 49: 453‐457, 1990.
 368. Hengy B, Watanabe N, Williams AG, Downey HF. Does peripheral collateralization also cause collateralization in the canine heart? Clin Exp Pharmacol Physiol 16: 429‐432, 1989.
 369. Henry TD, Annex BH, McKendall GR, Azrin MA, Lopez JJ, Giordano FJ, Shah PK, Willerson JT, Benza RL, Berman DS, Gibson CM, Bajamonde A, Rundle AC, Fine J, McCluskey ER. The VIVA trial: Vascular endothelial growth factor in ischemia for vascular angiogenesis. Circulation 107: 1359‐1365, 2003.
 370. Henry TD, Rocha‐Singh K, Isner JM, Kereiakes DJ, Giordano FJ, Simons M, Losordo DW, Hendel RC, Bonow RO, Eppler SM, Zioncheck TF, Holmgren EB, McCluskey ER. Intracoronary administration of recombinant human vascular endothelial growth factor to patients with coronary artery disease. Am Heart J 142: 872‐880, 2001.
 371. Hepple RT, Hogan MC, Stary C, Bebout DE, Mathieu‐Costello O, Wagner PD. Structural basis of muscle O2 diffusing capacity: Evidence from muscle function in situ. J Appl Physiol 88: 560‐566, 2000.
 372. Hepple RT, Mackinnon SL, Thomas SG, Goodman JM, Plyley MJ. Quantitating the capillary supply and the response to resistance training in older men. Pflugers Arch 433: 238‐244, 1997.
 373. Hermansen L, Wachtlova M. Capillary density of skeletal muscle in well‐trained and untrained men. J Appl Physiol 30: 860‐863, 1971.
 374. Hershey JC, Baskin EP, Glass JD, Hartman HA, Gilberto DB, Rogers IT, Cook JJ. Revascularization in the rabbit hindlimb: Dissociation between capillary sprouting and arteriogenesis. Cardiovasc Res 49: 618‐625, 2001.
 375. Hiatt WR. Medical treatment of peripheral arterial disease and claudication. N Eng J Med 344: 1608‐1621, 2001.
 376. Hiatt WR, Nawaz D, Brass EP. Carnitine metabolism during exercise in patients with peripheral vascular disease. J Appl Physiol 62: 2383‐2387, 1987.
 377. Hiatt WR, Nawaz D, Regensteiner JG, Hossack KF. The evaluation of exercise performance in patients with peripheral vascular disease. J Cardiopul Rehabil 12: 525‐532, 1988.
 378. Hiatt WR, Regensteiner JG, Hargarten ME, Wolfel EE, Brass EP. Benefit of exercise conditioning for patients with peripheral arterial disease. Circulation 81: 602‐609, 1990.
 379. Hiatt WR, Regensteiner JG, Wolfel EE, Carry MR, Brass EP. Effect of exercise training on skeletal muscle histology and metabolism in peripheral arterial disease. J Appl Physiol 81: 780‐788, 1996.
 380. Hiatt WR, Wolfel EE, Meier RH, Regensteiner JG. Superiority of treadmill walking exercise versus strength training for patients with peripheral arterial disease. Implications for the mechanism of the training response. Circulation 90: 1866‐1874, 1994.
 381. Hickey NC, Hudlicka O, Gosling P, Shearman CP, Simms MH. Intermittent claudication incites systemic neutrophil activation and increased vascular permeability. Br J Surg 80: 181‐184, 1993.
 382. Hickey NC, Hudlicka O, Simms MH. Claudication induces systemic capillary endothelial swelling. Eur J Vasc Surg 6: 36‐40, 1992.
 383. Hijmering ML, Stoes ESG, Olijhoek J, Hutten BA, Blankestijn PJ, Rabelink TJ. Sympathetic activation markedly reduces endothelium‐dependent, flow‐mediated vasodilation. J Am Coll Cardiol 39: 683‐688, 2002.
 384. Hikida R, Gollnick PD, Dudley GA, Convertino V, Buchanan P. Structural and metabolic characteristics of human skeletal muscle following 30 days of simulated microgravity. Aviat Space Environ Med 60: 664‐670, 1989.
 385. Hiral DM, Copp SW, Ferreira LF, Musch TI, Poole DC. Nitric oxide bioavailability modulates the dynamics of microvascular oxygen exchange during recovery from contractions. Acta Physiol 200: 159‐169, 2010.
 386. Hirayama Y, Sumpio BE. Role of ligand‐specific integrins in endothelial cell alignment and elongation induced by cyclic strain. Endothelium 14: 275‐283, 2007.
 387. Hirsch AT, Criqui MH, Treat‐Jacobson D, Regensteiner JG, Creager MA, Olin JW, Krook SH, Hunninghake DB, Comerota AJ, Walsh ME, McDermott MM, Hiatt WR. Peripheral arterial disease detection, awareness, and treatment in primary care. JAMA 286: 1317‐1324, 2001.
 388. Hirsch AT, Haskal ZJ, Hertzer NR, Bakal CW, Creager MA, Halperin J, Hiratzka LF, Murphy WR, Olin JW, Puschett JB, Rosenfield KA, Sacks D, Stanley JC, Taylor L, White CJ, White J, White RA, Antman EM, Smith SC, Adams CD, Anderson JL, Faxon DP, Fuster V, Gibbons RJ, Halperin J, Hiratzka LF, Hunt SA, Jacobs AK, Nishimura R, Ornato JP, Page RL, Riegel B. ACC/AHA 2005 guidelines for the management of patients with peripheral arterial disease: Executive summary. J Am Coll Cardiol 47: 1239‐1312, 2006.
 389. Hirschi KK, D'Amore PA. Pericytes in the microvasculature. Cardiovasc Res 32: 687‐698, 1996.
 390. Hiscock N, Fischer CP, Pilegaard H, Pedersen BK. Vascular endothelial growth factor mRNA expression and arteriovenous balance in response to prolonged, submaximal exercise in humans. Am J Physiol 285: H1759‐H1763, 2003.
 391. Hlubek F, Spaderna S, Jung A, Kirchner T, Brabletz T. beta‐catenin activates a coordinated expression of the proinvasive factors laminin‐5 gamma 2 chain and MT1‐MMP in colorectal carcinomas. Int J Cancer 108: 321‐326, 2004.
 392. Ho TK, Rajkumar V, Black CM, Abraham DJ, Baker DM. Increased angiogenic response but deficient arteriolization and abnormal microvessel ultrastructure in critical leg ischaemia. Br J Surg 93: 1368‐1376, 2006.
 393. Hobbs SD, Marshall T, Fegan C, Adam DJ, Bradbury AW. The constitutive procoagulant and hypofibrinolytic state in patients with intermittent claudication due to infrainguinal disease significantly improves with percutaneous transluminal balloon angioplasty. J Vasc Surg 43: 40‐46, 2006.
 394. Hoefer IE, Grundmann S, van Royen N, Voskuil M, Schirmer SH, Ulusans S, Bode C, Buschmann IR, Piek JJ. Leukocyte subpopulations and arteriogenesis: Specific role of monocytes, lymphocytes and granulocytes. Atherosclerosis 181: 285‐293, 2005.
 395. Hoefer IE, van R,N, Buschmann IR, Piek JJ, Schaper W. Time course of arteriogenesis following femoral artery occlusion in the rabbit. Cardiovasc Res 49: 609‐617, 2001.
 396. Hoefer IE, van Royen N, Rectenwald JE, Deindl E, Hua J, Jost M, Grundmann S, Voskuil M, Ozaki CK, Piek JJ, Buschmann IR. Arteriogenesis proceeds via ICAM‐1/Mac‐1‐ mediated mechanisms. Circ Res 94: 1179‐1185, 2004.
 397. Hoffner L, Nielsen JJ, Langberg H, Hellsten Y. Exercise but not prostanoids enhance levels of vascular endothelial growth factor and other proliferative agents in humans skeletal muscle interstitium. J Physiol 550: 217‐225, 2003.
 398. Hoier B, Nordsborg N, Andersen S, Jensen L, Nybo L, Bangsbo J, Hellsten Y. Pro‐ and anti‐angiogenic factors in human skeletal muscle in response to acute exercise and training. J Physiol 590: 595‐606, 2012.
 399. Hoier B, Olsen K, Nyberg M, Bangsbo J, Hellsten Y. Contraction‐induced secretion of VEGF from skeletal muscle cells is mediated by adenosine. Am J Physiol 299: H857‐H862, 2010.
 400. Holderfield MT, Hughes CCW. Crosstalk between vascular endothelial growth factor, notch, and transforming growth factor‐beta in vascular morphogenesis. Circ Res 102: 637‐652, 2008.
 401. Holloszy JO. Biochemical adaptations in muscle. Effects of exercise on itochondrial oxygen uptake and respiratory exzyme activity in skeletal muscle. J Biol Chem 242: 2278‐2282, 1967.
 402. Holloszy JO. Regulation by exercise of skeletal muscle content of mitochondria nad GLUT4. J Physiol Pharmacol 59: 5‐18, 2008.
 403. Holloszy JO. Regulatioin of mitochondrial biogenesis and GLUT4 expression by exercise. Compr Physiol 1: 921‐940, 2011.
 404. Holloszy JO, Coyle EF. Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl Physiol 56: 831‐838, 1984.
 405. Holm J, Bjorntorp P, Schersten T. Metabolic activity in human skeletal muscle. Effect of peripheral arterial insufficiency. Eur J Clin Invest 2: 321‐325, 1972.
 406. Holm J, Dahllof AG, Bjorntorp P, Schersten T. Enzyme studies in muscles of patients with intermittent claudication. Effect of training. Scand J Clin Lab Invest 128: 201‐205, 1973.
 407. Holm J, Dahllof AG, Schersten T. Metabolic activity of skeletal muscle in patients with peripheral arterial insufficiency. Scand J Clin Invest 35: 81‐86, 1975.
 408. Holmqvist K, Cross MJ, Rolny C, Hagerkvist R, Rahimi N, Matsumoto T, Claesson‐Welsh L, Welsh M. The adaptor protein shb binds to tyrosine 1175 in vascular endothelial growth factor (VEGF) receptor‐2 and regulates VEGF‐dependent cellular migration. J Biol Chem 279: 22267‐22275, 2004.
 409. Holt KG, Hamill J, Andres RO. Predicting the minimal energy costs of human walking. Med Sci Sports Exer 23: 491‐498, 1991.
 410. Holthofer H, Virtanen I, Kariniemi AL, Hormia M, Linder E, Miettinen A. Ulex europaeus I lectin as a marker for vascular endothelium in human tissues. Lab Invest 47: 60‐66, 1982.
 411. Honig CR, Connett RJ, Gayeski TE. O2 transport and its interaactioin with metabolism: A systems view of aerobic capacity. Med Sci Sports Exer 24: 47‐53, 1992.
 412. Hood DA. Contractile activity‐induced mitochondrial biogenesis in skeletal muscle. J Appl Physiol 90: 1137‐1157, 2001.
 413. Hood DA. Mechanisms of exercise‐induced mitochondrial biogenesis in skeletal muscle. Appl Physiol Nutr Metab 34: 465‐472, 2009.
 414. Hori A, Shibata R, Morisaki K, Murohara T, Komori K. Cilostazol stimulates revascularisation in response to ischaemia via an eNOS‐dependent mechanism. Eur j Vasc Endovasc Surg 43: 62‐65, 2012.
 415. Hou XY, Green S, Askew CD, Barker G, Green A, Walker PJ. Skeletal muscle mitochondrial ATP production rate and walking performance in peripheral arterial disease. Clin Physiol Funct Imaging 22: 226‐232, 2002.
 416. Houck KA, Leung DW, Rowland AM, Winer J, Ferrara N. Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms. J Biol Chem 267: 26031‐26037, 1992.
 417. Hu CJ, Wang LY, Chodosh LA, Keith B, Simon MC. Differential roles of hypoxia‐inducible factor 1alpha (HIF‐1alpha) and HIF‐2alpha in hypoxic gene regulation. Mol Cell Biol 23: 9361‐9374, 2003.
 418. Hua Z, Lv Q, Ye W, Wong CK, Cai G, Gu D, Ji Y, Zhao C, Wang J, Yang BB, Zhang Y. MiRNA‐directed regulation of VEGF and other angiogenic factors under hypoxia. PLoS ONE 1: e116, 2006.
 419. Huber KH, Rexroth W, Werle E, Koeth T, Weicker H, Hild R. Sympathetic neuronal activity in diabetic and non‐diabetic subjects with peripheral arterial occlusive disease. Klinische Wochenschrift 69: 233‐238, 1991.
 420. Hudlicka O. Growth of capillaries in skeletal and cardiac muscle. Circ Res 50: 451‐461, 1982.
 421. Hudlicka O. What makes blood vessels grow? J Physiol 444: 1‐24, 1991.
 422. Hudlicka O, Brown MD, Egginton S, Dawson JM. Effect of long‐term electrical stimulation on vascular supply and fatigue in chronically ischemic muscles. J Appl Physiol 77: 1317‐1324, 1994.
 423. Hudlicka O, Brown MD, May S, Zakrzewicz A, Pries AR. Changes in capillary shear stress in skeletal muscles exposed to long‐term activity: Role of nitric oxide. Microcirc 13: 249‐259, 2006.
 424. Hudlicka O, Brown MD, Egginton S. Angiogenesis in skeletal and cardiac muscle. Physiol Rev 72: 369‐417, 1992.
 425. Hudlicka O, Brown MD, Silgram H. Inhibition of capillary growth in chronically stimulated rat muscles by N(G)‐nitro‐1‐arginine, nitric oxide synthase inhibitor. Microvasc Res 59: 45‐51, 2000.
 426. Hudlicka O, Dodd L, Renkin EM, Gray SD. Early changes in fiber profile and capillary density in long‐term stimulated muscles. Am J Physiol 243: H528‐H535, 1982.
 427. Hudlicka O, Garnham A, Shiner R, Egginton S. Attenuation of changes in capillary fine structure and leukocyte adhesion improves muscle performance following chronic ischaemia in rats. J Physiol 586: 4961‐4975, 2008.
 428. Hudlicka O, West D, Kumar S, el K,F., Wright AJ. Can growth of capillaries in the heart and skeletal muscle be explained by the presence of an angiogenic factor? Br J Exp Pathol 70: 237‐246, 1989.
 429. Huisinga JM, Pipinos II, Johanning JM, Stergiou N. The effect of pharmacological treatment on gait biomechanics in peripheral arterial disease patients. J Neuroeng Rehabil 7: 7‐25, 2010.
 430. Huisinga JM, Pipinos II, Stergiou N, Johanning JM. Treatment with pharmacologial agents in peripheral arterial disease patients does not result in biomechanical gait changes. J Appl Biomech 26: 341‐348, 2010.
 431. Hurst D, Taylor EB, Cline TD, Greenwood LJ, Compton CL, Lamb JD, Winder WW. AMP‐activated protein kinase kinase activity and phosphorylation of AMP‐activated protein kinase in contracting muscle of sedentary and endurance‐trained rats. Am J Physiol 289: E710‐E715, 2005.
 432. Hutchins GM, Miner MM, Bulkley BH. Tortuosity as an index of the age and diameter increase of coronary collateral vessels in patients after acute myocardial infarction. Am J Cardiol 41: 210‐215, 1978.
 433. Ianuzzo D, Patel P, Chen V, O'brien P, Williams C. Thyroidal trophic influence on skeletal muscle myosin. Nature 270: 74‐76, 1977.
 434. Ichikawa Y, Ishikawa T, Momiyama N, Kamiyama M, Sakurada H, Matsuyama R, Hasegawa S, Chishima T, Hamaguchi Y, Fujii S, Saito S, Kubota K, Hasegawa S, Ike H, Oki S, Shimada H. Matrilysin (MMP‐7) degrades VE‐cadherin and accelerates accumulation of beta‐catenin in the nucleus of human umbilical vein endothelial cells. Oncol Rep 15: 311‐315, 2006.
 435. Ichioka S, Shibata M, Kosaki K, Sato Y, Harii K, Kamiya A. In vivo measurement of morphometric and hemodynamic changes in the microcirculation during angiogenesis under chronic [alpha]1‐adrenergic blocker treatment. Microvasc Res 55: 165‐174, 1998.
 436. Iglarz M, Silvestre JS, Duriez M, Henrion D, Levy BI. Chronic blockade of endothelin receptors improves ischemia‐induced angiogenesis in rat hindlimbs through activation of vascular endothelial growth factor‐no pathway. Arterioscler Thromb Vasc Biol 21: 1598‐1603, 2001.
 437. Ikeda S, Kawamoto H, Kasaoka K, Hitomi Y, Kizaki T, Sankai Y, Ohno H, Haga S, Takemasa T. Muscle tpe‐specific responsse of PGC‐1alpha and oxidative exzymes during voluntary wheel running in mouse skeletal muscle. Acta Physiol 188: 217‐223, 2006.
 438. Ikeda U, Ikeda M, Kano S, Kanbe T, Shimada K. Effect of cilostazol, a cAMP phosphodiesterase inhibitor, on nitric oxide production by vascular smooth muscle cells. Eur J Pharmacol 314: 197‐202, 1996.
 439. Inagaki T, Sonobe T, Poole DC, Kano Y. Arteriolar vasomotor control and contractile performance during fatiguing tetanic contractions in rat skeletal muscle: Role of sympathetic system. Adv Exp Med Biol 662: 309‐315, 2010.
 440. Ingber DE. Cellular mechanotransduction: Putting all the pieces together again. FASEB J 20: 811‐827, 2006.
 441. Ingjer F. Maximal aerobic power related to the capillary supply of the quadriceps femoris muscle in man. Acta Physiol Scand 104: 238‐240, 1978.
 442. Ingjer F. Effects of endurance training on muscle fibre ATP‐ase activity, capillary supply and mitochondrial content in man. J Physiol 294: 419‐432, 1979.
 443. Irrcher I, Adhihetty PJ, Sheehan T, Joseph AM, Hood DA. PPARgama coactivator‐1alpha expression during thyroid hormone‐ and contractile activity‐induced mitochondrial adaptations. Am J Physiol 284: C1669‐C1677, 2003.
 444. Iruela‐Arispe ML, Davis GE. Cellular and molecular mechanisms of vascular lumen formation. Dev Cell 16: 222‐231, 2009.
 445. Iruela‐Arispe ML, Lombardo M, Krutzsch HC, Lawler J, Roberts DD. Inhibition of angiogenesis by thrombospondin‐1 is mediated by 2 independent regions within the type 1 repeats. Circulation 100: 1423‐1431, 1999.
 446. Isbell DC, Berr SS, Toledano AY, Epstein FH, Meyer CH, Rogers WJ, Harthun NL, Hagspiel KD, Weltman A, Kramer CM. Delayed calf muscle phosphocreatine recovery after exercise identifies peripheral arterial disease. J Am Coll Cardiol 47: 2289‐2295, 2006.
 447. Isbell DC, Epstein FH, Zhong X, DiMaria JM, Berr SS, Meyer CH, Rogers WJ, Harthun NL, Hagspiel KD, Weltman A, Kramer CM. Calf muscle perfusion at peak exercise in peripheral arterial disease: Measurement by first‐pass contrast‐enhanced magnetic resonance imaging. J Mag Res Imaging 25: 1013‐1020, 2007.
 448. Isenberg JS, Hyodo F, Matsumoto K, Romeo MJ, Abu‐Asab M, Tsokos M, Kuppusamy P, Wink DA, Krishna MC, Roberts DD. Thrombospondin‐1 limits ischemic tissue survival by inhibiting nitric oxide‐mediated vascular smooth muscle relaxation. Blood 109: 1945‐1952, 2007.
 449. Isenberg JS, Jia Y, Fukuyama J, Switzer CH, Wink DA, Roberts DD. Thrombospondin‐1 inhibits nitric oxide signaling via CD36 by inhibiting myristic acid uptake. J Biol Chem 282: 15404‐15415, 2007.
 450. Isenberg JS, Romeo MJ, Abu‐Asab M, Tsokos M, Oldenborg A, Pappan L, Wink DA, Frazier WA, Roberts DD. Increasing survival of ischemic tissue by targeting CD47. Circ Res 100: 712‐720, 2007.
 451. Ishikawa H. Fine structure of skeletal muscle. Cell Muscle Motil 4: 1‐84, 1983.
 452. Isner JM, Pieczek A, Schainfeld R, Blair R, Haley L, Asahara T, Rosenfield K, Razvi S, Walsh K, Symes JF. Clinical evidence of angiogenesis after arterial gene transfer of phVEGF165 in patient with ischaemic limb. Lancet 348: 370‐374, 1996.
 453. Ispanovic E, Haas TL. JNK and PI3K differentially regulate MMP‐2 and MT1‐MMP mRNA and protein in response to actin cytoskeleton reorganization in endothelial cells. Am J Physiol 291: C579‐C588, 2006.
 454. Ispanovic E, Serio D, Haas TL. Cdc42 and RhoA have opposing roles in regulating membrane type 1‐matrix metalloproteinase localization and matrix metalloproteinase‐2 activation. Am J Physiol 295: C600‐C610, 2008.
 455. Ito WD, Arras M, Scholz D, Winkler B, Htun P, Schaper W. Angiogenesis but not collateral growth is associated with ischemia after femoral artery occlusion. Am J Physiol 273: H1255‐H1265, 1997.
 456. Ito WD, Arras M, Winkler B, Scholz D, Schaper J, Schaper W. Monocyte chemotactic protein‐1 increases collateral and peripheral conductance after femoral artery occlusion. Circ Res 80: 829‐837, 1997.
 457. Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH, Gassmann M, Gearhart JD, Lawler AM, Yu AY, Semenza GL. Cellular and developmental control of O2 homeostasis by hypoxia‐inducible factor 1 alpha. Genes and Development Genes Dev 12: 149‐162, 1998.
 458. Jager S, Handschin C, St.Pierre J, Spiegelman BM. AMP‐activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC‐1α. PNAS 104: 12017‐12022, 2007.
 459. Jarajapu YP, Coats P, McGrath JC, MacDonald A, Hillier C. Increased alpha(1)‐ and alpha(2)‐adrenoceptor‐mediated contractile responses of human skeletal muscle resistance arteries in chronic limb ischemia. Cardiovasc Res 49: 218‐225, 2001.
 460. Jasperse JL, Woodman CR, Price EM, Hasser EM, Laughlin MH. Hindlimb unweighting decreases ecNOS gene expression and endothelium‐dependent dilation in rat soleus feed arteries. J Appl Physiol 87: 1476‐1482, 1999.
 461. Jennische E, Ekberg S, Matejka GL. Expression of hepatocyte growth factor in growing and regenerating rat skeletal muscle. Am J Physiol 265: C122‐C128, 1993.
 462. Jensen L, Schjerling P, Hellsten Y. Regulation of VEGF and bFGF mRNA expression and other proliferative compounds in skeletal muscle cells. Angiogenesis 7: 255‐267, 2004.
 463. Jin ZG, Ueba H, Tanimoto T, Lungu AO, Frame MD, Berk BC. Ligand‐independent activation of vascular endothelial growth factor receptor 2 by fluid shear stress regulates activation of endothelial nitric oxide synthase. Circ Res 93: 354‐363, 2003.
 464. Jin ZG, Wong C, Wu J, Berk BC. Flow shear stress stimulates Gab1 tyrosine phosphorylation to mediate protein kinase B and endothelial nitric‐oxide synthase activation in endothelial cells. J Biol Chem 280: 12305‐12309, 2005.
 465. Johnston AP, Baker J, Bellamy LM, McKay BR, De Lisio M, Parise G. Regulation of muscle satellite cell activation and chemotaxis by angiotensin II. PLoS ONE 5: e15212, 2010.
 466. Jomayvaz FR, Shulman GI. Regulation of mitochondrial biogenesis. Essays Biochem 47: 69‐84, 2010.
 467. Jones EA, Yuan L, Breant C, Watts RJ, Eichmann A. Separating genetic and hemodynamic defects in neuropilin 1 knockout embryos. Development 135: 2479‐2488, 2008.
 468. Jones WS, Duscha BD, Robbins JL, Duggan NN, Regensteiner JG, Kraus WE, Hiatt WR, Dokun AO, Annex BH. Alteration in angiogenic and anti‐angiogenic forms of vascular endothelial growth factor‐A in skeletal muscle of patients with intermittent claudication following exercise training. Vasc Med 17: 94‐100, 2012.
 469. Joras M, Poredos P. The association of acute exercise‐induced ischaemia with systemic vasodilator function in patients with peripheral arterial disease. Vasc Med 13: 255‐262, 2008.
 470. Jude EB, Eleftheriadou I, Tentolouris N. Peripheral arterial disease in diabetes–a review. Diabet Med 27: 4‐14, 2010.
 471. Kaelin WG, Jr., Ratcliffe PJ. Oxygen sensing by metazoans: The central role of the HIF hydroxylase pathway. Mol Cell 30: 393‐402, 2008.
 472. Kalebic T, Garbisa S, Glaser B, Liotta LA. Basement‐membrane collagen ‐ degradation by migrating endothelial‐cells. Science 221: 281‐283, 1983.
 473. Kalka C, Tehrani H, Laudenberg B, Vale PR, Isner JM, Asahara T, Symes JF. VEGF gene transfer mobilizes endothelial progenitor cells in patients with inoperable coronary disease. Ann Thorac Surg 70: 829‐834, 2000.
 474. Kar S, Gao L, Zucker IH. Exercise training normalizes ACE and ACE2 in the brain of rabbits with pacing‐induced heart failure. J Appl Physiol 108: 923‐932, 2010.
 475. Kasapis C, Thompson PD. The effects of physical activity on serum c‐reactive protein and inflammatory markers. J Am Coll Cardiol 45: 1563‐1569, 2005.
 476. Kaufman MP, Hayes SG. The exercise pressor reflex. Clin Auton Res 12: 429‐439, 2002.
 477. Kaufman MP, Waldrop TG, Rybicki KJ, Ordway GA, Mitchell JH. Effects of static and rhythmic twitch contractions on the discharge of group II an IV muscle afferents. Cardiovasc Res 18: 663‐668, 1984.
 478. Kaur S, Martin‐Manso G, Pendrak ML, Garfield SH, Isenberg JS, Roberts DD. Thrombospondin‐1 inhibits VEGF receptor‐2 signaling by disrupting its association with CD47. J Biol Chem 285: 38923‐38932, 2010.
 479. Kazatani Y, Hamada M, Shigematsu Y, Hiwanda K, Kokubu T. Beneficial effect of a long‐term antihypertensive therapy on blood pressuer response to isometric handgrip exercise in patients with essential hypertension. Am J Ther 2: 165‐169, 1995.
 480. Kelsall CJ, Brown MD, Hudlicka O. Alterations of small arterioles in rat skeletal muscle as a result of chronic ischaemia. J Vasc Res 38: 212‐218, 2001.
 481. Keo H, Grob E, Guggisberg F, Widmer J, Baumgartner I, Schmid JP, Kalka C, Saner H. Long‐term effects of supervised exercise training on walking capacity and quality of life in patients with intermittent claudication. Vasa 37: 250‐256, 2008.
 482. Khan MH, Sinoway LI. Muscle reflex control of sympathetic nerve activity in heart failure: The role of exercise conditioning. Heart Fail Rev 5: 87‐100, 2000.
 483. Khawaja FJ, Kullo IJ. Novel markers of peripheral arterial disease. Vasc Med 14: 381‐392, 2009.
 484. Kim HW, Lin A, Guldberg RE, Ushio‐Fukai M, Fukai T. Essential role of extracellular SOD in reparative neovascularization induced by hindlimb ischemia. Circ Res 101: 409‐419, 2007.
 485. Kimura H, Miyashita H, Suzuki Y, Kobayashi M, Watanabe K, Sonoda H, Ohta H, Fujiware T, Shimosegawa T, Sato Y. Distinctive localization and opposed roles of vasohibin‐1 and vasohibin‐2 in the regulation of angiogenesis. Blood 113: 4810‐4118, 2009.
 486. Kindig CA, Poole DC. Effects of skeletal muscle sarcomere length on in vivo capillary distensibility. Microvasc Res 57: 144‐152, 1999.
 487. Kindig CA, Richardson TE, Poole DC. Skeletal muscle capillary hemodynamics from rest to contractions: Implications for oxygen transfer. J Appl Physiol 92: 2513‐2520, 2002.
 488. Kirk G, Kickman P, McLaren M, Stonebridge PA, Belch JJ. Interleukin‐8 (IL‐8) may contribute to the activation of neutrophils in patients with peripheral occlusive disease (PAOD). Eur J Vasc Endovasc Surg 18: 434‐438, 1999.
 489. Kishi T, Hirooka Y, Ito K, Sakai K, Shhimokawa H, Takeshita A. Cardiovascular effects of overexpresion of endothelial nitric oxide synthase in the rostral ventrolateral medulla in stroke‐prone syponteaneously hypertensive rats. Hypertension 39: 264‐268, 2002.
 490. Kishlyansky M, Vojnovic J, Roudier E, Gineste C, Decary S, Forn P, Bergeron R, Desplanches D, Birot O. Striated muscle angio‐adaptation requires changes in Vasohibin‐1 expression pattern. Biochem Biophys Res Commun 399: 359‐364, 2010.
 491. Kivela R, Silvennoinen M, Lehti M, Jalava S, Vihko V, Kainulainen H. Exercise‐induced expression of angiogenic growth factors in skeletal muscle and in capillaries of healthy and diabetic mice. Cardiovasc Diabetol 7: 13, 2008.
 492. Kivelä R, Silvennoinen M, Touvra AM, Lehti TM, Kainulainen H, Vihko V. Effects of experimental type 1 diabetes and exercise training on angiogenic gene expression and capillarization in skeletal muscle. FASEB J 20: 1570‐1572, 2006.
 493. Kleiber AC, Zheng H, Schultz D, Peuler JD, Patel KP. Exercise training normalizes enhanced glutamate‐mediated sympathetic activation from the PVN in heart failure. Am J Physiol 294: R1863‐R1872, 2008.
 494. Koba S, Hayes SG, Sinoway LI. Transient receptor potential A1 channel contributes to activation of the muscle reflex. Am J Physiol 300: H201‐H213, 2011.
 495. Koba S, Xing J, Sinoway LI, Li J. Sympathetic nerve responses to muscle contraction and stretch in ischemic heart failure. Am J Physiol 294: H311‐H321, 2008.
 496. Koba S, Xing J, Sinoway LI, Li J. Bradykinin receptor blockade reduces symmpathetic nerve response to muscle contraction in rats with ischemic heart failure. Am J Physiol 298: H1438‐H144, 2010.
 497. Koerner JE, Terjung RL. Effect of physical training on coronary collateral circulation of the rat. J Appl Physiol 52: 376‐387, 1982.
 498. Koh W, Mahan RD, Davis GE. Cdc42‐ and Rac1‐mediated endothelial lumen formation requires Pak2, Pak4 and Par3, and PKC‐dependent signaling. J Cell Sci 121: 989‐1001, 2008.
 499. Korhonen P, Aarnio P. Borderline pheripheral arterial disease. Int J Angiol 17: 175‐177, 2008.
 500. Kou B, Zhang J, Singer DR. Effects of cyclic strain on endothelial cell apoptosis and tubulogenesis are dependent on ROS production via NAD(P)H subunit p22phox. Microvasc Res 77: 125‐133, 2009.
 501. Koutakis P, Johanning JM, Haynatzki GR, Myers SA, Stergiou N, Longo GM, Pipinos II. Abnormal joint powers before and after the onset of claudication symptoms. J Vasc Surg 52: 340‐347, 2010.
 502. Koutakis P, Pipinos II, Myers SA, Stergiou N, Lynch TG, Johanning JM. Jiont torques and powers are reduced during ambulation for both limbs in patients with unilateral claudication. J Vasc Med 51: 80‐88, 2010.
 503. Kraus RM, Stallings HW, Yeager RC, Gavin TP. Circulating plasma VEGF response to exercise in sedentary and endurance‐trained men. J Appl Physiol 96: 1445‐1450, 2004.
 504. Krogh A. The number and distribution of capillaries in muscles with calculations of the oxygen pressure head necessary for supplying the tissue. J Physiol 52: 409‐415, 1919.
 505. Kruidenier LM, Nicolai SP, Rouwet EV, Peters RJ, Prins MH, Teijink JA. Additional supervised exercise therapy after a percutaneous vascular intervention for peripheral arterial disease: A randomized clinical trial. J Vasc Interv Radiol 22: 961‐968, 2011.
 506. Ku DD, Zaleski JK, Liu S, Brock TA. Vascular endothelial growth factor induces EDRF‐dependent relaxation in coronary arteries. Am J Physiol 265: H586‐H592, 1993.
 507. Kumar D, Branch BG, Pattillo CB, Hood J, Thoma S, Simpson S, Illum S, Arora N, Chidlow JH, Langston W, Teng X, Lefer DJ, Patel RP, Kevil CG. Chronic sodium nitrite therapy augments ischemia‐induced angiogenesis and arteriogenesis. Proc Natl Acad Sci U S A 105: 7540‐7545, 2008.
 508. Kupatt C, Hinkel R, Pfosser A, El‐Aouni C, Wuchrer A, Fritz A, Globisch F, Thormann M, Horstkotte J, Lebherz C, Thein E, Banfi A, Boekstegers P. Cotransfection of vascular endothelial growth factor‐A and platelet‐derived growth factor‐B via recombinant adeno‐associated virus resolves chronic ischemic malperfusion role of vessel maturation. J Am Coll Cardiol 56: 414‐422, 2010.
 509. Laitinen L. Griffonia simplicifolia lectins bind specifically to endothelial cells and some epithelial cells in mouse tissues. Histochem J 19: 225‐234, 1987.
 510. Lamalice L, Houle F, Jourdan G, Huot J. Phosphorylation of tyrosine 1214 on VEGFR2 is required for VEGF‐induced activation of Cdc42 upstream of SAPK2/p38. Oncogene 23: 434‐445, 2004.
 511. LaMonte MJ, Blair SN, Church TS. Physical activity and diabetes prevention. J Appl Physiol 99: 1205‐1213, 2005.
 512. Lando D, Peet DJ, Gorman JJ, Whelan DA, Whitelaw ML, Bruick RK. FIH‐1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia‐inducible factor. Genes and Development Genes Dev 16: 1466‐1471, 2002.
 513. Lanza IR, Nair SK. Regulation of skeletal muscle mitochondrial function: Genes to proteins. Acta Physiol 199: 529‐547, 2010.
 514. Larsen OA, Lassen NA. Effect of daily muscular exercise in patients with intermittent claudication. Lancet 2: 1093‐1096, 1966.
 515. Laufs U, Urhausen A, Werner N, Scharhag J, Heitz A, Kissner G, Bohm M, Kindermann W, Nickenig G. Running exercise of different duration and intensity: Effect on endothelial progenitor cells in healthy subjects. Eur J Cardiovasc Prev Rehabil 12: 407‐414, 2005.
 516. Laufs U, Werner N, Link A, Endres M, Wassmann S, Jurgens K, Miche E, Bohm M, Nickenig G. Physical training increases endothelial progenitor cells, inhibits neointima formation, and enhances angiogenesis. Circulation 109: 220‐226, 2004.
 517. Laughlin MH, Armstrong RB. Muscular blood flow distribution patterns as a function of running speed in rats. Am J Physiol 243: H296‐H306, 1982.
 518. Laughlin MH, Davis MJ, Secher NH, van Lieshout JJ, Arce‐Esquivel AA, Simmons GH, Bender SB, Padilla J, Bache RJ, Merkus D, Duncker DJ. Peripheral circulation. Compr Physiol 2: 321‐447, 2012.
 519. Lazarous DF, Shou M, Scheinowitz M, Hodge E, Thirumurti V, Kitsiou AN, Stiber JA, Lobo AD, Hunsberger S, Guetta E, Epstein SE, Unger EF. Comparative effects of basic fibroblast growth factor and vasecular endothelial growth factor on coronary collateral development and the arterial response to injury. Circ Res 94: 1074‐1082, 1996.
 520. Leal AK, Williams MA, Garry MG, Mitchell JH, Smith SA. Evidence for functional alterations in the skeletal muscle mechanoreflex and metaboreflex in hypertensive rats. Am J Physiol 295: H1429‐H1438, 2008.
 521. Lee JS, Kim JM, Kim KL, Jang HS, Shin IS, Jeon ES, Suh W, Byun J, Kim DK. Combined administration of naked DNA vectors encoding VEGF and bFGF enhances tissue perfusion and arteriogenesis in ischemic hindlimb. Biochem Biophys Res Commun 360: 752‐758, 2007.
 522. Lee S, Chen TT, Barber CL, Jordan MC, Murdock J, Desai S, Ferrara N, Nagy A, Roos KP, Iruela‐Arispe ML. Autocrine VEGF signaling is required for vascular homeostasis 1. Cell 130: 691‐703, 2007.
 523. Lee S, Jilani SM, Nikolova GV, Carpizo D, Iruela‐Arispe ML. Processing of VEGF‐A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. J Cell Biol 169: 681‐691, 2005.
 524. Lee TM, Su SF, Tsai CH, Lee YT, Wang SS. Differential effects of cilostazol and pentoxifylline on vascular endothelial growth factor in patients with intermittent claudication. Clin Sci (Lond) 101: 305‐311, 2001.
 525. Lefaucheur JP, Gjata B, Sebille A. Factors inducing mast cell accumulation in skeletal muscle. Neuropathol Appl Neurobiol 22: 248‐255, 1996.
 526. Leick L, Hellsten Y, Fentz J, Lyngby SS, Wojtaszewski JFP, HIdalgo J, Pilegaard H. PGC‐1α mediates exercise‐induced skeletal muscle VEGF expression in mice. Am J Physiol 297: E92‐E103, 2009.
 527. Leon AS, Bloor CM. Effects of exercise and its cessation on the heart and its blood supply. J ApplPhysiol 24: 485‐490, 1968.
 528. Leong‐Poi H, Kuliszewski MA, Lekas M, Sibbald M, Teichert‐Kuliszewska K, Klibanov AL, Stewart DJ, Lindner JR. Therapeutic arteriogenesis by ultrasound‐mediated VEGF165 plasmid gene delivery to chronically ischemic skeletal muscle. Circ Res 101: 295‐303, 2007.
 529. Leung W, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246: 1306‐1309, 1989.
 530. Levy AP, Levy NS, Loscalzo J, Calderone A, Takahashi N, Yeo KT, Koren G, Colucci WS, Goldberg MA. Regulation of vascular endothelial growth factor in cardiac myocytes. Circ Res 76: 758‐766, 1995.
 531. Li J, Sinoway AN, Gao Z, Maile MD, Pu M, Sinoway LI. Muscle mechoreflex and metaboreflex responses after myocardial infarction in rats. Circulation 110: 3049‐3054, 2004.
 532. Li JM, Shah AM. Endothelial cell superoxide generation: Regulation and relevance for cardiovascular pathophysiology. Am J Physiol 287: R1014‐R1030, 2004.
 533. Li L, Okada H, Takemura G, Esaki M, Kobayashi H, Kanamori H, Kawamura I, Maruyama R, Fujiwara T, Fujiwara H, Tabata Y, Minatoguchi S. Sustained release of erythropoietin using biodegradable gelatin hydrogel microspheres persistently improves lower leg ischemia. J Am Coll Cardiol 53: 2378‐2388, 2009.
 534. Li P, Akimoto T, Zhang M, Williams RS, Yan Z. Resident stem cells are not required for exercise‐induced fiber‐type switching and angiogenesis but are necessary for activity‐dependent muscle growth. Am J Physiol 290: C1461‐C1468, 2006.
 535. Li W, Shen W, Gill R, Corbly A, Jones B, Belagaje R, Zhang Y, Tang S, Chen Y, Zhai Y, Wang G, Wagle A, Hui K, Westmore M, Hanson J, Chen YF, Simons M, Singh J. High‐resolution quantitative computed tomography demonstrating selective enhancement of medium‐size collaterals by placental growth factor‐1 in the mouse ischemic hindlimb. Circulation 113: 2445‐2453, 2006.
 536. Lin J, Handschin C, Spiegelman BM. Metabolic control through the PGC‐1 family of transcription coactivators. Cell Metab 1: 361‐370, 2005.
 537. Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, Boss O, Michael LF, Pulgserver P, Isotani E, Olson EN, Lowell BB, Bassel‐Duby R, Spiegelman BM. Transcriptional co‐activator PGC‐1 alpha drives the formation of slow‐twitch muscle fibers. Nature 418: 797‐801, 2002.
 538. Lin JW, Sheu WH, Lee WJ, Chen YT, Liu TJ, Ting CT, Lee WL. Circulating hepatocyte growth factor level but not basic fibroblast growth factor level is elevated in angiography‐proven symptomatic peripheral artery disease. Angiology 58: 420‐428, 2007.
 539. Lira VA, Benton CR, Yan Z, Bonen A. PGC‐1alpha regulation by exercise training and its influences on muscle function and insulin sensitivity. Am J Physiol 299: E145‐E161, 2010.
 540. Lira VA, Brown DL, Lira AK, Kavazis AN, Soltow QA, Zeanah EH, Criswell DS. Nitric oxide and AMPK cooperatively regulate PGC‐1 in skeletal muscle cells. J Physiol 588: 3551‐3566, 2010.
 541. Liu H, Rigamonti D, Badr A, Zhang J. Ccm1 regulates microvascular morphogenesis during angiogenesis. J Vasc Res 48: 130‐140, 2011.
 542. Liu J, Gao Z, Li J. Femoral artery occlusion increases expression of ASIC3 in dorsal root ganglion neurons. Am J Physiol 299: H1357‐H1364, 2010.
 543. Liu J, Li D, Lu J, Xing J, Li J. Contribution of nerve growth factor to upregulation of P2×3 expression in DRG neurons of rats with femoral artery occlusion. Am J Physiol 301: H1070‐H1079, 2011.
 544. Lloyd PG, Prior BM, Li H, Yang HT, Terjung RL. VEGF receptor antagonism blocks arteriogenesis, but only partially inhibits angiogenesis, in skeletal muscle of exercise‐trained rats. Am J Physiol 288: H759‐H768, 2005.
 545. Lloyd PG, Prior BM, Yang HT, Terjung RL. Angiogenic growth factor expression in rat skeletal muscle in response to exercise training. Am J Physiol 284: H1668‐H1678, 2003.
 546. Lloyd PG, Yang HT, Terjung RL. Arteriogenesis and angiogenesis in rat ischemic hindlimb: Role of nitric oxide. Am J Physiol 281: H2528‐H2538, 2001.
 547. Lobov IB, Brooks PC, Lang RA. Angiopoietin‐2 displays VEGF‐dependent modulation of capillary structure and endothelial cell survival in vivo. Proc Natl Acad Sci U S A 99: 11205‐11210, 2002.
 548. Lobov IB, Renard RA, Papadopoulos N, Gale NW, Thurston G, Yancopoulos GD, Wiegand SJ. Delta‐like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proc Natl Acad Sci U S A 104: 3219‐3224, 2007.
 549. Loffler M, Morote‐Garcia JC, Eltzschig SA, Coe IR, Eltzschig HK. Physiological roles of vascular nucleoside transporters. Arterioscler Thromb Vasc Biol 27: 1004‐1013, 2007.
 550. Lopez A, Armstrong ML, Harrison DG, Piegors DJ, Heistad DD. Responsiveness of iliac collateral vessels to constrictor stimuli in atherosclerotic primates. Circ Res 63: 1020‐1028, 1988.
 551. Lowry CV, Kimmey JS, Felder S, Chi MY, Kaiser KK, Passonneau PN, Kirk KA, Lowry OH. Enzyme paterns in single human muscle fibers. J Biol Chem 253: 8260‐8277, 1978.
 552. Lu H, Huang D, Saederup N, Charo IF, Ransohoff RM, Zhou L. Macrophages recruited via CCR2 produce insulin‐like growth factor‐1 to repair acute skeletal muscle injury. FASEB J 25: 358‐369, 2011.
 553. Lumb G, Hardy LB. Collaterals and coronary artery narrowing. I. The effect of coronary artery narrowing on collateral channels in swine. Lab Invest 13: 1530‐1540, 1964.
 554. Lumb G, Singletary HP, Hardy LB. Collateral circulation following experimental gradual narrowing of the coronary arteries. Angiology 13: 463‐465, 1962.
 555. Lundby C, Gassmann M, Pilegaard H. Regular endurance training reduces the exercise induced HIF‐1alpha and HIF‐2alpha mRNA expression in human skeletal muscle in normoxic conditions. Eur J Appl Physiol 96: 363‐369, 2006.
 556. Lundby C, Hellsten Y, Jensen MB, Munch AS, Pilegaard H. Erythropoietin receptor in human skeletal muscle and the effects of acute and long‐term injections with recombinant human erythropoietin on the skeletal muscle. J Appl Physiol 104: 1154‐1160, 2008.
 557. Lundgren F, Dahllof AG, Lundholm K, Schersten T, Volkmann R. Intermittent claudication–surgical reconstruction or physical training? A prospective randomized trial of treatment efficiency. Annal Surg 209: 346‐355, 1989.
 558. Lundgren F, Dahllof AG, Schersten T, Bylund‐Fellenius AC. Muscle enzyme adaptation in patients with peripheral arterial insufficiency: Spontaneous adaptation, effect of different treatments and consequences on walking performance. Clin Sci 77: 485‐493, 1989.
 559. Luo F, Wariaro D, Lundberg G, Blegen H, Wahlberg E. Vascular growth factor expression in a rat model of severe limb ischemia. J Surg Res 108: 258‐267, 2002.
 560. Luo Y, Xu Z, Wan T, He Y, Jones D, Zhang H, Min W. Endothelial‐specific transgenesis of TNFR2 promotes adaptive arteriogenesis and Aangiogenesis. Arterioscler Thromb Vasc Biol 30: 1307‐1314, 2010.
 561. Luttun A, Tjwa M, Moons L, Wu Y, Angelillo‐Scherrer A, Liao F, Nagy JA, Hooper A, Priller J, De Klerck B, Compernolle V, Daci E, Bohlen P, Dewerchin M, Herbert JM, Fava R, Matthys P, Carmeliet G, Collen D, Dvorak HF, Hicklin DJ, Carmeliet P. Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti‐Flt1. Nat Med 8: 831‐840, 2002.
 562. Lynge J, Juel C, Hellsten Y. Extracellular formation and uptake of adenosine during skeletal muscle contraction in the rat: Role of adenosine transporters. J Physiol 537: 597‐605, 2001.
 563. Mac GF, Popel AS. Systems biology of vascular endothelial growth factors. Microcirc 15: 715‐738, 2008.
 564. MacDougall JD, Tuxen D, Sale DG, Moroz JR, Sutton JR. Arterial blood pressure response to heavy resistance exercise. J Appl Physiol 58: 785‐790, 1985.
 565. Mackie BG, Terjung RL. Blood flow to different skeletal muscle fiber types during contraction. Am J Physiol 245: H265‐H275, 1983.
 566. Mackie BG, Terjung RL. Influence of training on blood flow to different skeletal muscle fiber types. J Appl Physiol 55: 1072‐1078, 1983.
 567. MacLean DA, Sinoway LI, Leuenberger U. Systemic hypoxia elevates skeletal muscle interstitial adenosine levels in humans. Circulation 98: 1990‐1992, 1998.
 568. Maglione D, Guerriero V, Viglietto G, li‐Bovi P, Persico MG. Isolation of a human placenta cDNA coding for a protein related to the vascular permeability factor. Proc Nat Acad Sci U S A 88: 9267‐9271, 1991.
 569. Mai JV, Edgerton VR, Barnard RJ. Capillarity of red, white and intermediate muscle fibers in trained and untrained guinea pigs. Experientia 26: 1222‐1223, 1970.
 570. Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C, Compton D, McClain J, Aldrich TH, Papadopoulos N, Daly TJ, Davis S, Sato TN, Yancopoulos GD. Angiopoietin‐2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277: 55‐60, 1997.
 571. Makanya AN, Hlushchuk R, Djonov VG. Intussusceptive angiogenesis and its role in vascular morphogenesis, patterning, and remodeling. Angiogenesis 12: 113‐123, 2009.
 572. Makin AJ, Chung NA, Silverman SH, Lip GY. Vascular endothelial growth factor and tissue factor in patients with established peripheral artery disease: A link between angiogenesis and thrombogenesis? Clin Sci (Lond) 104: 397‐404, 2003.
 573. Makitie J. Skeletal muscle capillaries in intermittent claudication. Arch Pathol Lab Med 101: 500‐503, 1977.
 574. Malek MH, Olfert IM. Global deletion of thrombospondin‐1 increases cardiac and skeletal muscle capillarity and exercise capacity in mice. Exp Physiol 94: 749‐760, 2009.
 575. Mall G, Schikora I, Mattfeldt T, Bodle R. Dipyridamole‐induced neoformation of capillaries in the rat heart. Quantitative stereological study on papillary muscles. Lab Invest 57: 86‐93, 1987.
 576. Mangiafico RA, Malatino LS, Spada RS, Santonocito M, Messina R, Dell'Srte S, Attina T. Treadmill exercise‐induced release of endothelin‐1 in patients with peripheral arterial occlusive disease at Fontaine stage IIb. Int Angiol 19: 14‐17, 2000.
 577. Manthey J, Gaehtgens P, Hirche H, Hombach V, Steinhagen C. Collateral flow in canine skeletal muscle. Pflugers Arch 352: 303‐313, 1974.
 578. Marcus BH, Williams DM, Dubbert PM, Sallis JF, King AC, Yancey AK, Franklin BA, Buchner D, Daniels SR, Claytor RP. Physical activity intervention studies. Circulation 114: 2739‐2752, 2006.
 579. Mason SD, Howlett RA, Kim MJ, Olfert IM, Hogan MC, McNulty W, Hickey RP, Wagner PD, Kahn CR, Giordano FJ, Johnson RS. Loss of skeletal muscle HIF‐1alpha results in altered exercise endurance. PLoS Biol 2: e288, 2004.
 580. Mason SD, Rundqvist H, Papandreou I, Duh R, McNulty WJ, Howlett RA, Olfert IM, Sundberg CJ, Denko NC, Poellinger L, Johnson RS. HIF‐1alpha in endurance training: Suppression of oxidative metabolism. Am J Physiol 293: R2059‐R2069, 2007.
 581. Massague J. How cells read TGF‐beta signals. Nat Rev Mol Cell Biol 1: 169‐178, 2000.
 582. Masuda K, Abdelmohsen K, Gorospe M. RNA‐binding proteins implicated in the hypoxic response. J Cell Mol Med 13: 2759‐2769, 2009.
 583. Matas R. Testing the efficiency of the collateral circulation as a preliminary to the occlusion of the great surgical arteries. AnnSurg 53: 1‐43, 1911.
 584. Mathien GM, Terjung RL. Influence of training following bilateral stenosis of the femoral artery in rats. Am J Physiol 250: H1050‐H1059, 1986.
 585. Mathien GM, Terjung RL. Muscle blood flow in trained rats with peripheral arterial insufficiency. Am J Physiol 258: H759‐H765, 1990.
 586. Mathieu‐Costello O, Hepple RT. Muscle structural capacity for oxygen flux from capillary to fiber mitochondria. Exerc Sport Sci Rev 30: 80‐84, 2002.
 587. Mathieu‐Costello O, Potter RF, Ellis CG, Groom AC. Capillary configuration and fiber shortening in muscles of the rat hindlimb: Correlation between corrosion casts and stereological measurements. Microvasc Res 36: 40‐55, 1988.
 588. Matolo NM, Cohen SE, Wolfman EF. Use of an arteriovenous fistula for treatment of the severely ischemic extremity: Experimental evaluation. Ann Surg 184: 622‐625, 1976.
 589. Matsumoto T, Bohman S, Dixelius J, Berge T, Dimberg A, Magnusson P, Wang L, Wikner C, Qi JH, Wernstedt C, Wu J, Bruheim S, Mugishima H, Mukhopadhyay D, Spurkland A, Claesson‐Welsh L. VEGF receptor‐2 Y951 signaling and a role for the adapter molecule TSAd in tumor angiogenesis. EMBO J 24: 2342‐2353, 2005.
 590. Matsunaga T, Warltier DC, Weihrauch DW, Moniz M, Tessmer J, Chilian WM. Ischemia‐induced coronary collateral growth is dependent on vascular endothelial growth factor and nitric oxide. Circulation 102: 3098‐3103, 2000.
 591. Mattfeldt T, Mall G. Dipyridamole‐induced capillary endothelial cell proliferation in the rat heart–a morphometric investigation. Cardiovasc Res 17: 229‐237, 1983.
 592. Maxwell MP, Hearse DJ, Yellon DM. Species variation in the coronary collateral circulation during regional myocardial ischaemia: A critical determinant of the rate of evolution and extent of myocardial infarction. Cardiovasc Res 21: 737‐746, 1987.
 593. Mazari FAK, Gulati S, Rahman MNA, Lee HDL, Mehta TA, McCollum PT, Chetter IC. Early outcomes from a randomized, controlled trial of supervised exercise, angioplasty, and combined therapy in intermittent claudication. Ann Vasc Surg 24: 69‐79, 2010.
 594. McCord JL, Tsuchimochi H, Yamauchi K, Leal AK, Kaufman MP. Tempol attenuates the exercise presor reflex independently of neutralizing reactive oxygen species in femoral arterial ligated rats. J Appl Physiol 111: 971‐979, 2011.
 595. McCue S, Dajnowiec D, Xu F, Zhang M, Jackson MR, Langille BL. Shear stress regulates forward and reverse planar cell polarity of vascular endothelium in vivo and in vitro. Circ Res 98: 939‐946, 2006.
 596. McDermott MM. The magnitude of the problem of peripheral arterial disease: Epidemiology and clinical significance. Cleveland Clin J Med 73: S2‐S7, 2006.
 597. McDermott MM, Ades P, Guralnik JM, Dyer A, Ferrucci L, Liu K, Nelson M, Lloyd‐Jones D, Van Horn L, Garside D, Kibbe M, Domanchuk K, Stein JH, Liao Y, Tao H, Green D, Pearce WH, Schneider JR, McPherson D, Laing ST, McCarthy WJ, Shroff A, Criqui MH. Treadmill exercise and resistance training in patients with peripheral arterial disease with and without intermittent claudication: A randomized controlled trial. JAMA 301: 165‐174, 2009.
 598. McDermott MM, Ferrucci L, Guralnik JM, Dyer AR, Liu K, Pearce WH, Clark E, Liao Y, Criqui MH. The ankle‐brachial index is associated with the magnitude of impaired walking endurance among men and women with peripheral arterial disease. Vasc Med 15: 251‐257, 2010.
 599. McDermott MM, Greenland P, Green D, Guralnik JM, Criqui MH, Liu K, Chan C, Pearce WH, Taylor L, Ridker PM, Schneider JR, Martin GJ, Rifai N, Quann M, Fornage M. D‐Dimer, inflammatory markers, and lower extremity functioning in patients with and without peripheral arterial disease. Circulation 107: 3191‐3198, 2003.
 600. McDermott MM, Greenland P, Liu K, Guralnik JM, Celic L, Criqui MH, Chan C, Martin GJ, Schneider J, Pearce WH, Taylor LM, Clark E. The ankle brachial index is associated with leg function and physical activity: The Walking and Leg Circulation Study. Ann Intern Med 136: 873‐883, 2002.
 601. McDermott MM, Liu K, Criqui MH, Ruth K, Goff D, Saad MF, Wu C, Homma S, Sharrett AR. Ankle‐brachial index and subclinical cardiac and carotid disease: The multi‐ethnic study of artherosclerosis. Am J Epidemiol 162: 33‐41, 2005.
 602. McDermott MM, Liu K, Ferrucci L, Tian L, Guralnik JM, Green D, Tan J, Liao Y, Pearce WH, Schneider JR, McCue K, Ridker PM, Rifai N, Criqui MH. Circulating blood markers and functional impairment in peripheral arterial disease. J Am Geriatric Soc 56: 1504‐1510, 2008.
 603. McDermott MM, Lloyd‐Jones DM. The role of biomarkers and genetics in peripheral arterial disease. J Am Coll Cardiol 54: 1228‐1237, 2009.
 604. McDohnough P, Behnke BJ, Pazdilla DJ, Musch TI, Poole DC. Control of microvascular oxygen pressuers in rat muscles comprised of different fibre types. J Physiol 563: 903‐913, 2005.
 605. McGee SL, Hargreaves M. AMPK‐mediated regulation of transcription in skeletal muscle. Clin Sci 118: 507‐518, 2010.
 606. McGuigan MR, Bronks R, Newton RU, Sharman MJ, Graham JC, Cody DV, Kraemer WJ. Muscle fiber characteristics in patients with peripheral arterial disease. Med Sci Sports Exerc 33: 2016‐2021, 2001.
 607. McKenna M, Wolfson SK, Kuller L. The ratio of ankle and arem arterial pressure as an independent predictor of mortality. Atherosclerosis 87: 119‐128, 1991.
 608. Mees B, Wagner S, Ninci E, Tribulova S, Martin S, van Haperen R, Kostin S, Heil M, de Crom R, Schaper W. Endothelial nitric oxide synthase activity is essential for vasodilation during blood flow recovery but not for arteriogenesis. Arterioscler Thromb Vasc Biol 27: 1926‐1933, 2007.
 609. Meininger CJ, Granger HJ. Mechanisms leading to adenosine‐stimulated proliferation of microvascular endothelial cells. Am J Physiol 258: H198‐H206, 1990.
 610. Melidonis A, Tournis S, Kouvaras G, Baltaretsou E, Hadanis S, Hajissavas I, Tsatsoulis A, Foussas S. Comparison of coronary collateral circulation in diabetic and nondiabetic patients suffering from coronary artery disease. Clin Cardiol 22: 465‐471, 1999.
 611. Meyer RA. A linear model of muscle respiration explains monoexponential phosphorcreative changes. Am J Physiol 254: C548‐C553, 1988.
 612. Meyer RA, Foley JM. Cellular processes integrating the metabolic response to exercise. Compr Physiol (Suppl 29): 841‐869, 2011.
 613. Meyer RD, Latz C, Rahimi N. Recruitment and activation of phospholipase Cgamma1 by vascular endothelial growth factor receptor‐2 are required for tubulogenesis and differentiation of endothelial cells. J Biol Chem 278: 16347‐16355, 2003.
 614. Michelini LC, Stern JE. Exercise‐induced neuronal plasticity in central autonomic networks: Role in cardiovascular control. Exp Physiol 94: 947‐960, 2009.
 615. Michell BJ, Griffiths JE, Mitchelhill KI, Rodriguez‐Crespo I, Tiganis T, Bozinovski S, de M,P.R., Kemp BE, Pearson RB. The Akt kinase signals directly to endothelial nitric oxide synthase. Curr Biol 9: 845‐848, 1999.
 616. Middlekauff HR, Chiu J, Hamilton MA, Fonarow GC, Maclellan WR, Hage A, Moriguchi JD, Patel J. Muscle mechanoreceptor sensitivity in heart failure. Am J Physiol 287: H1937‐H1943, 2004.
 617. Middlekauff HR, Nitzsche EU, Hoh CK, Hamilton MA, Fonarow GC, Hage A, Moriguchi JD. Exaggerated muscle mechanoreflex control of reflex renal vasoconstriction in heart failure. J Appl Physiol 90: 1714‐1719, 2001.
 618. Milani RV, Lavie CJ. The role of exercise training in peripheral arterial disease. Vasc Med 12: 351‐358, 2007.
 619. Milanini‐Mongiat J, Pouyssegur J, Pages G. Identification of two Sp1 phosphorylation sites for p42/p44 mitogen‐activated protein kinases: Their implication in vascular endothelial growth factor gene transcription. J Biol Chem 277: 20631‐20639, 2002.
 620. Milkiewicz M, Brown MD, Egginton S, Hudlicka O. Association between shear stress, angiogenesis, and VEGF in skeletal muscles in vivo. Microcirc 8: 229‐241, 2001.
 621. Milkiewicz M, Doyle JL, Fudalewski T, Ispanovic E, Aghasi M, Haas TL. HIF‐1{alpha} and HIF‐2{alpha} play a central role in stretch‐induced but not shear stress‐induced angiogenesis in rat skeletal muscle. J Physiol 583: 753‐766, 2007.
 622. Milkiewicz M, Haas TL. Effect of mechanical stretch on HIF‐1{alpha} and MMP‐2 expression in capillaries isolated from overloaded skeletal muscles: Laser capture microdissection study. Am J Physiol 289: H1315‐H1320, 2005.
 623. Milkiewicz M, Hudlicka O, Brown MD, Silgram H. Nitric oxide, VEGF, and VEGFR‐2: Interactions in activity‐induced angiogenesis in rat skeletal muscle. Am J Physiol 289: H336‐H343, 2005.
 624. Milkiewicz M, Hudlicka O, Shiner R, Egginton S, Brown M. Vascular endothelial growth factor mRNA and protein do not change in parallel during non‐inflammatory skeletal muscle ischaemia in rat. J Physiol 577: 671‐678, 2006.
 625. Milkiewicz M, Hudlicka O, Verhaeg J, Egginton S, Brown MD. Differential expression of Flk‐1 and Flt‐1 in rat skeletal muscle in response to chronic ischaemia: Favourable effect of muscle activity. Clin Sci 105: 473‐482, 2003.
 626. Milkiewicz M, Kelland C, Colgan S, Haas TL. Nitric oxide and p38 MAP Kinase mediate shear stress‐dependent inhibition of MMP‐2 production in microvascular endothelial cells. J Cell Physiol 208: 229‐237, 2006.
 627. Milkiewicz M, Mohammedzadeh F, Ispanovic E, Gee E, Haas TL. Static strain stimulates expression of matrix metalloproteinase‐2 and VEGF in microvascular endothelium via JNK and ERK dependent pathways. J Cell Biochem 100: 750‐761, 2007.
 628. Milkiewicz M, Pugh CW, Egginton S. Inhibition of endogenous HIF inactivation induces angiogenesis in ischaemic skeletal muscles of mice. J Physiol 560: 21‐26, 2004.
 629. Milkiewicz M, Roudier E, Doyle JL, Trifonova A, Birot O, Haas TL. Identification of a mechanism underlying regulation of the anti‐angiogenic forkhead transcription factor FoxO1 in cultured endothelial cells and ischemic muscle. Am J Pathol 178: 935‐944, 2011.
 630. Milkiewicz M, Uchida C, Gee E, Fudalewski T, Haas TL. Shear stress‐induced Ets‐1 modulates protease inhibitor expression in microvascular endothelial cells. J Cell Physiol 217: 502‐510, 2008.
 631. Minchenko A, Bauer T, Salceda S, Caro J. Hypoxic stimulation of vascular endothelial growth factor expression in vitro and in vivo. Lab Invest 71: 374‐379, 1994.
 632. Minchenko A, Salceda S, Bauer T, Caro J. Hypoxia regulatory elements of the human vascular endothelial growth factor gene. Cell Mol Biol Res 40: 35‐39, 1994.
 633. Mizuno M, Murphy MN, Mitchell JH, Smith SA. Skeletal muscle reflex‐mediated changes in sympathetic nerve activity are abnormal in spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 300: H968‐H977, 2011. .
 634. Mochizuki Y, Nakamura T, Kanetake H, Kanda S. Angiopoietin 2 stimulates migration and tube‐like structure formation of murine brain capillary endothelial cells through c‐Fes and c‐Fyn. J Cell Sci 115: 175‐183, 2002.
 635. Mole PA, Chung Y, Tran TK, Sailasuta N, Hurd R, Jue T. Myoglobin desaturation with exercise intensity in human gastrocnemius muscle. Am J Physiol 277: R173‐R180, 1999.
 636. Monaghan‐Benson E, Burridge K. The regulation of vascular endothelial growth factor‐induced microvascular permeability requires Rac and reactive oxygen species. J Biol Chem 284: 25602‐25611, 2009.
 637. Mora S, Cook N, Buring JE, Ridker PM, Lee IM. Physical activity and reduced risk of cardiovascular events. Circulation 116: 2110‐2118, 2007.
 638. Morishita R, Nakamura S, Hayashi S, Taniyama Y, Moriguchi A, Nagano T, Taiji M, Noguchi H, Takeshita S, Matsumoto K, Nakamura T, Higaki J, Ogihara T. Therapeutic angiogenesis induced by human recombinant hepatocyte growth factor in rabbit hind limb ischemia model as cytokine supplement therapy. Hypertension 33: 1379‐1384, 1999.
 639. Morrow NG, Kraus WE, Moore JW, Williams RS, Swain JL. Increased expression of fibroblast growth factors in a rabbit skeletal muscle model of exercise conditioning. J Clin Invest 85: 1816‐1820, 1990.
 640. Mostoufi‐Moab S, Widmaier EJ, Cornett JA, Gray KS, Sinoway LI. Forearm training reduces the exercise pressor reflex during ischemic rhythmic handgrip. J Appl Physiol 84: 277‐283, 1998.
 641. Mueller H. Physical (in)activity‐dependent alterations at the rostral ventrolateral medulla: Influence on sympathetic nervous system regulation. Am J Physiol 298: R1468‐R1474, 2010.
 642. Muhs BE, Gagne P, Plitas G, Shaw JP, Shamamian P. Experimental hindlimb ischemia leads to neutrophil‐mediated increases in gastrocnemius MMP‐2 and ‐9 activity: A potential mechanism for ischemia induced MMP activation. J Surg Res 117: 249‐254, 2004.
 643. Muhs BE, Plitas G, Delgado Y, Ianus I, Shaw JP, Adelman MA, Lamparello P, Shamamian P, Gagne P. Temporal expression and activation of matrix metalloproteinases‐2, ‐9, and membrane type 1‐matrix metalloproteinase following acute hindlimb ischemia. J Surg Res 111: 8‐15, 2003.
 644. Muller‐Delp JM. Aging‐induced adaptations of microvascular reactivity. Microcirc 13: 301‐314, 2006.
 645. Murohara T, Asahara T, Silver M, Bauters C, Masuda H, Kalka C, Kearney M, Chen D, Symes JF, Fishman MC, Huang PL, Isner JM. Nitric oxide synthase modulates angiogenesis in response to tissue ischemia. J Clin Invest 101: 2567‐2578, 1998.
 646. Murphy TP, Cutlip DE, Regensteiner JG, Mohler ER, Cohen DJ, Reynolds MR, Massaro JM, Lewis BA, Cerezo J, Oldenburg NC, Thum CC, Goldberg S, Jaff MR, Steffes MW, Comerota AJ, Ehrman JK, Treat‐Jacobson D, Walsh ME, Collins T, Badenhop DT, Bronas UG, Hirsch AT. Supervised exercise versus primary stenting for claudication resulting from aortoiliac peripheral artery disease: Six‐month outcomes from the claudication: Exercise Versus Endoluminal Revascularization (CLEVER) Study. Circulation 125: 130‐139, 2012.
 647. Myers SA, Stergiou N, Pipinos II, Johanning JM. Gait variability patterns are altered in healthy young individuals during the acute reperfusion phase of ischemia‐reperfusion. J Surg Res 164: 6‐12, 2010.
 648. Myrhage R, Hudlicka O. Capillary growth in chronically stimulated adult skeletal muscle as studied by intravital microscopy and histological methods in rabbits and rats. Microvasc Res 16: 73‐90, 1978.
 649. Nagase H, Woessner JF. Matrix metalloproteinases. J Biol Chem 274: 21491‐21494, 1999.
 650. Nakano M, Satoh K, Fulkumoto Y, Ito Y, Kagaya Y, Ishii N, Sugamura K, Shimokawa H. Important role of erythropoietin receptor in promoting vascular endothelial growth factor expression and angiogenesis in peripheral ischemia in mice. Arterioscler Thromb Vasc Biol 27: E101‐E101, 2007.
 651. Namiki A, Brogi E, Kearney M, Kim EA, Wu T, Couffinhal T, Varticovski L, Isner JM. Hypoxia induces vascular endothelial growth factor in cultured human endothelial cells. J Biol Chem 270: 31189‐31195, 1995.
 652. Nawaz S, Walker RD, Wilkinson CH, Saxton JM, Pockley AG, Wood RF. The inflammatory response to upper and lower limb exercise and the effects of exercise training in patients with claudication. J Vasc Surg 33: 392‐399, 2001.
 653. Nemeth ZH, Lutz CS, Csoka B, Deitch EA, Leibovich SJ, Gause WC, Tone M, Pacher P, Vizi ES, Hasko G. Adenosine augments IL‐10 production by macrophages through an A2B receptor‐mediated posttranscriptional mechanism. J Immunol 175: 8260‐8270, 2005.
 654. Nestico PF, Hakki AH, Meissner MD, Bemis CE, Kimbiris D, Mintz GS, Segal BL, Iskandrian AS. Effect of collateral vessels on prognosis in patients with one vessel coronary artery disease. J Am Coll Cardiol 6: 1257‐1263, 1985.
 655. Neumann FJ, Waas W, Diehm C, Weiss T, Haupt HM, Zimmermann R, Tillmanns H, Kubler W. Activation and decreased deformability of neutrophils after intermittent claudication. Circulation 82: 922‐929, 1990.
 656. Newman AB, Siscovick DS, Manolio TA, Polak J, Fried LP, Borhani NO, Wolfson SK. Ankle‐arm index as a marker of atherosclerosis in the cardiovascular health study. Circulation 88: 837‐845, 1993.
 657. Nicklas BJ, You T, Pahor M. Behavioural treatments for chronic systemic inflammation: Effects of dietary weight loss and exercise training. Can Med Assoc J 172: 1199‐1209, 2005.
 658. Nicolai SP, Viechtbauer W, Kriudenier LM, Candel MJ, Prins MH, Teijink JA. Reliability of treadmill testing in peripheral arterial disease: A meta‐regression analysis. J Vasc Surg 50: 322‐329, 2009.
 659. Nishimura K, Li W, Hoshino Y, Kadohama T, Asada H, Ohgi S, Sumpio BE. Role of AKT in cyclic strain‐induced endothelial cell proliferation and survival. Am J Physiol 290: C812‐C821, 2006.
 660. Noguera‐Troise I, Daly C, Papadopoulos NJ, Coetzee S, Boland P, Gale NW, Lin HC, Yancopoulos GD, Thurston G. Blockade of Dll4 inhibits tumour growth by promoting non‐productive angiogenesis. Nature 444: 1032‐1037, 2006.
 661. Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA, Fowkes FGR. Inter‐society consensus for the management of peripheral arterial disease (TASC II). J Vasc Surg 45: S5A‐S67A, 2007.
 662. Norrbom J, Sällstedt EK, Fischer H, Sundberg CJ, Rundqvist H, Gustafsson T. Alternative splice variant PGC‐1α‐b is strongly induced by exercise in human skeletal muscle. Am J Physiol 301: E1092‐E1098, 2011.
 663. Norrbom J, Sundberg CJ, Ameln H, Kraus WE, Jansson E, Gustafsson T. PGC‐1alpha mRNA expression is influenced by metabolic perturbation in exercising human skeletal muscle. J Appl Physiol 96: 189‐194, 2004.
 664. Novak A, Dedhar S. Signaling through beta‐catenin and Lef/Tcf. Cell Mol Life Sci 56: 523‐537, 1999.
 665. Nugent MA, Iozzo RV. Fibroblast growth factor‐2. Int J Biochem Cell Biol 32: 115‐120, 2000.
 666. Nylaende M, Abdelnoor M, Stranden E, Morken BW, Whyman MR, Fowkes FGR, Kerracher EMG, Gillespie IN, Lee AJ, Housley E, Ruckley C. The Oslo balloon angioplasty versus conservative treatment study (OBACY)–the 2‐years results of a single centre, prospective, randomised study in patients with intermittent claudication. Eur J Vasc Endovas Surg 33: 3‐12, 2007.
 667. Nylaende M, Kroese A, Stranden E, Morken B, Sandbaek G, Lindahl AK, Arnesen H, Seljeflot I. Markers of vascular inflammation re associated with the extent of atherosclerosis assessed as angiographic score and treadmill walking distances in patients with peripheral arterial occlusive disease. Vasc Med 11: 21‐28, 2006.
 668. Nylaende M, Kroese AJ, Morken B, Stranden E, Sandbaek G, Lindahl AK, Armesen H, Seljeflot I. Beneficial effect of 1‐year optimal medical treatment with and without aditional PTA on inflammatory markers of atherosclerosis in patients with PAD. Results from the Oslo Balloon Angioplasty versus Conservative Treatment (OBACT) study. Vasc Med 12: 275‐283, 2007.
 669. O'Leary DS. Altered reflex cardiovascular control during exercise in heart failure: Animal studies. Exp Physiol 91: 73‐77, 2006.
 670. O'Reilly MS. Angiostatin: An endogenous inhibitor of angiogenesis and of tumor growth. EXS 79: 273‐294, 1997.
 671. O'Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR, Folkman J. Endostatin: An endogenous inhibitor of angiogenesis and tumor growth. Cell 88: 277‐285, 1997.
 672. O'Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, Lane WS, Cao Y, Sage EH, Folkman J. Angiostatin: A novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79: 315‐328, 1994.
 673. Ochoa O, Sun D, Reyes‐Reyna SM, Waite LL, Michalek JE, McManus LM, Shireman PK. Delayed angiogenesis and VEGF production in CCR2‐/‐ mice during impaired skeletal muscle regeneration. Am J Physiol 293: R651‐R661, 2007.
 674. Odorisio T, Schietroma C, Zaccaria ML, Cianfarani F, Tiveron C, Tatangelo L, Failla CM, Zambruno G. Mice overexpressing placenta growth factor exhibit increased vascularization and vessel permeability. J Cell Sci 115: 2559‐2567, 2002.
 675. Oh IY, Yoon CH, Hur J, Kim JH, Kim TY, Lee CS, Park KW, Chae IH, Oh BH, Park YB, Kim HS. Involvement of E‐selectin in recruitment of endothelial progenitor cells and angiogenesis in ischemic muscle. Blood 110: 3891‐3899, 2007.
 676. Olesen J, Killerich K, Pilegaard H. PGC‐1alpha‐mediated adaptations in skeletal muscle. Pflugers Arch 460: 153‐162, 2010.
 677. Olfert IM, Breen EC, Gavin TP, Wagner PD. Temporal thrombospondin‐1 mRNA response in skeletal muscle exposed to acute and chronic exercise. Growth Factors 24: 253‐259, 2006.
 678. Olfert IM, Breen EC, Mathieu‐Costello O, Wagner PD. Skeletal muscle capillarity and angiogenic mRNA levels after exercise training in normoxia and chronic hypoxia. J Appl Physiol 91: 1176‐1184, 2001.
 679. Olfert IM, Howlett RA, Wagner RD, Breen EC. Myocyte vascular endothelial growth factor is required for exercise‐induced skeletal muscle angiogenesis. Am J Physiol 299: R1059‐R1067, 2010.
 680. Olfert IM, Breen EC, Mathieu‐Costello O, Wagner PD. Chronic hypoxia attenuates resting and exercise‐induced VEGF, flt‐1, and flk‐1 mRNA levels in skeletal muscle. J Appl Physiol 90: 1532‐1538, 2001.
 681. Olfert IM, Birot O. Importance of anti‐angiogenic factors in the regulation of skeletal muscle angiogenesis. Microcirc 18: 316‐330, 2011.
 682. Olfert IM, Howlett RA, Tang K, Dalton ND, Gu Y, Peterson KL, Wagner PD, Breen EC. Muscle‐specific VEGF deficiency greatly reduces exercise endurance in mice. J Physiol 587: 1755‐1767, 2009.
 683. Olsson AK, Dimberg A, Kreuger J, Claesson‐Welsh L. VEGF receptor signalling ‐ in control of vascular function. Nat Rev Mol Cell Biol 7: 359‐371, 2006.
 684. Onimaru M, Yonemitsu Y, Suzuki H, Fujii T, Sueishi K. An autocrine linkage between matrix metalloproteinase‐14 and Tie‐2 via ectodomain shedding modulates angiopoietin‐1‐dependent function in endothelial cells. Arterioscler Thromb Vasc Biol 30: 818‐826, 2010.
 685. Oosthuyse B, Moons L, Storkebaum E, Beck H, Nuyens D, Brusselmans K, Van Dorpe J, Hellings P, Gorselink M, Heymans S, Theilmeier G, Dewerchin M, Laudenbach V, Vermylen P, Raat H, Acker T, Vleminckx V, Van D, Bosch L, Cashman N, Fujisawa H, Drost MR, Sciot R, Bruyninckx F, Hicklin DJ, Ince C, Gressens P, Lupu F, Plate KH, Robberecht W, Herbert JM, Collen D, Carmeliet P. Deletion of the hypoxia‐response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nat Genet 28: 131‐138, 2001.
 686. Orlidge A, D'Amore PA. Inhibition of capillary endothelial cell growth by pericytes and smooth muscle cells. J Cell Biol 105: 1455‐1462, 1987.
 687. Oshima Y, Oshima S, Nambu H, Kachi S, Takahashi K, Umeda N, Shen J, Dong A, Apte RS, Duh E, Hackett SF, Okoye G, Ishibashi K, Handa J, Melia M, Wiegand S, Yancopoulos G, Zack DJ, Campochiaro PA. Different effects of angiopoietin‐2 in different vascular beds: New vessels are most sensitive. FASEB J 19: 963‐965, 2005.
 688. Ota H, Eto M, Kano MR, Ogawa S, Iijima K, Akishita M, Ouchi Y. Cilostazol inhibits oxidative stress‐induced premature senescence via upregulation of Sirt1 in human endothelial cells. Arterioscler Thromb Vasc Biol 28: 1634‐1639, 2008.
 689. Owens CD, Ho KJ, Conte MS. Lower extremity vein graft failure: A translational approach. Vasc Med 13: 63‐74, 2008.
 690. Padilla DJ, McDonough P, Behnke BJ, Kano Y, Hageman KS, Musch TI, Poole DC. Effects of Type II diabetes on capillary hemodynamics in skeletal muscle. Am J Physiol 291: H2439‐H2444, 2006.
 691. Pages G, Milanini J, Richard DE, Berra E, Gothie E, Vinals F, Pouyssegur J. Signaling angiogenesis via p42/p44 MAP kinase cascade. Ann NY Acad Sci U S A 902: 187‐200, 2000.
 692. Pages G, Pouyssegur J. Transcriptional regulation of the vascular endothelial growth factor gene–a concert of activating factors. Cardiovasc Res 65: 564‐573, 2005.
 693. Palatini P, Mos L, Munari L, Valle F, Del Torre M, Rossi A, Varotto L, Macor F, Martina S, Pessina AC. Blood pressure changes during heavy‐resistance exercise. J Hypertens 7: S72‐S73, 1989.
 694. Palumbo R, Gaetano C, Antonini A, Pompilio G, Bracco E, Ronnstrand L, Heldin CH, Capogrossi MC. Different effects of high and low shear stress on platelet‐derived growth factor isoform release by endothelial cells: Consequences for smooth muscle cell migration. Arterioscler Thromb Vasc Biol 22: 405‐411, 2002.
 695. Paoni NF, Peale F, Wang F, Errett‐Baroncini C, Steinmetz H, Toy K, Bai W, Williams PM, Bunting S, Gerritsen ME, Powell‐Braxton L. Time course of skeletal muscle repair and gene expression following acute hind limb ischemia in mice. Physiol Genomics 11: 263‐272, 2002.
 696. Papapetropoulos A, Garcia‐Cardena G, Madri JA, Sessa WC. Nitric oxide production contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells. J Clin Invest 100: 3131‐3139, 1997.
 697. Parenti A, Morbidelli L, Cui XL, Douglas JG, Hood JD, Granger HJ, Ledda F, Ziche M. Nitric oxide is an upstream signal of vascular endothelial growth factor‐induced extracellular signal‐regulated kinase1/2 activation in postcapillary endothelium. J Biol Chem 273: 4220‐4226, 1998.
 698. Park B, Hoffman A, Yang Y, Yan J, Tie G, Bagshahi H, Nowicki PT, Messina LM. Endothelial nitric oxide synthase affects both early and late collateral arterial adaptation and blood flow recovery after induction of hind limb ischemia in mice. J Vasc Surg 51: 165‐173, 2010.
 699. Parmenter BJ, Raymond J, Fiatarone Singh MA. The effect of exercise on haemodynamics in intermittent claudication: A systemic review of randomized controlled trials. Sports Med 40: 433‐447, 2010.
 700. Paskins‐Hurlburt AJ, Hollenberg NK. “Tissue need” and limb collateral arterial growth. Skeletal contractile power and perfusion during collateral development in the rat. Circ Res 70: 546‐553, 1992.
 701. Pasyk S, Schaper W, Schaper J, Pasyk K, Miskiewicz G, Steinseifer B. DNA synthesis in coronary collaterals after coronary artery occlusion in conscious dog. Am J Physiol 242: H1031‐H1037, 1982.
 702. Patan S, Alvarez MJ, Schittny JC, Burri PH. Intussusceptive microvascular growth: A common alternative to capillary sprouting. Arch Histol Cytol 55 (Suppl): 65‐75, 1992.
 703. Patel KP. Role of paraventricular nucleus in mediating sympathetic outflow in heart failure. Heart Fail Rev 5: 73‐86, 2000.
 704. Payvandi L, Dyer A, McPherson D, Ades P, Stein JH, Liu K, Ferrucci L, Criqui MH, Guralnik JM, Lloyd‐Jones D, Kibbe MR, Liang ST, Kane B, Pearce WH, Verta M, McCarthy WJ, Schneider JR, Shroff A, McDermott MM. Physical activity during daily life and brachial artery flow‐mediated dilation in peripheral arterial disease. Vasc Med 14: 193‐201, 2009.
 705. Pedersen BK. Health benefits related to exercise in patients with chronic low‐grade systemic inflammation. Am J Lifestyle Med 1: 289‐298, 2007.
 706. Pedersen BK. The diseaseome of physical inactivity–and the role of myokines in muscle–fat cross talk. J Physiol 587: 5559‐5568, 2009.
 707. Peng J, Zhang L, Drysdale L, Fong GH. The transcription factor EPAS‐1/hypoxia‐inducible factor 2alpha plays an important role in vascular remodeling. Proc Natl Acad Sci U S A 97: 8386‐8391, 2000.
 708. Pepper MS. Manipulating angiogenesis. Arterioscler Thromb Vasc Biol 17: 605‐619, 1997.
 709. Pepper MS. Role of the matrix metalloproteinase and plasminogen activator‐plasmin systems in angiogenesis. Arterioscler Thromb Vasc Biol 21: 1104‐1117, 2001.
 710. Perkins JM, Collin J, Creasy TS, Fletcher EW, Morris PJ. Exercise training versus angioplasty for stable claudication. Long and medium term results of a prospective, randomised trial. Eur J Vasc Endovasc Surg 11: 409‐413, 1996.
 711. Perkins JMT, Collin J, Creasy TS, Fletcher EW, Morris PJ. Exercise training versus angioplaty for stable claudication. Long and medium term results of a prospective, randomised trial. Eur J Vasc Endovas Surg 42: S41‐S45, 2011.
 712. Perrone‐Filardi P, Cuocolo A, Brevetti G, Silvestro A, Storto G, Dellegrottaglie S, Corrado L, Cafiero M, Camerino R, Polimeno M, Zarrilli A, Caiazzo G, Maglione A, Petretta A, Chiariello M. Relation of brachial artery flow‐mediated vasodilation to significant coronary artery disease in patients with peripheral arterial disease. Am J Cardiol 96: 1337‐1341, 2005.
 713. Peters BP, Goldstein IJ. The use of fluorescein‐conjugated Bandeiraea simplicifolia B4‐isolectin as a histochemical reagent for the detection of alpha‐D‐galactopyranosyl groups. Their occurrence in basement membranes. Exp Cell Res 120: 321‐334, 1979.
 714. Petersen AM, Pedersen BK. The anti‐inflammatory effect of exercise. J Appl Physiol 98: 1154‐1162, 2005.
 715. Pette D. Historical perspectives: Plasticity of mammalian skeletal muscle. J Appl Physiol 90: 1119‐1124, 2001.
 716. Piepoli M, Clark AL, Volterrani M, Adamopoulos S, Sleight P, Coats AJ. Contribution of muscle afferents to the hemodynamic, autonomic, and ventilatory responses to exercise in patients with chronic heart failure. Circulation 93: 940‐952, 1996.
 717. Pilegaard H, Saltin B, Neufer PD. Exercise induces transient transcriptional activation of the PGC‐1alpha gene in human skeletal muscle. J Physiol 546: 851‐858, 2003.
 718. Pipinos II, Judge AR, Selsby JT, Zhu Z, Swanson SA, Nella AA, Dodd SL. The myopathy of peripheral arterial occlusive disease: Part 1. Functional and histomorphological changes and evidence for mitochondrial dysfunction. Vasc Endovasc Surg 41: 481‐489, 2008.
 719. Pipinos II, Judge AR, Selsby JT, Zhu Z, Swanson SA, Nella AA, Dodd SL. The myopathy of peripheral occlusive disease: Part 2. Oxidative stress, neuropathy, and shift in muscle fiber type. Vasc Endovasc Surg 42: 101‐112, 2008.
 720. Pipinos II, Judge AR, Zhu Z, Selsby JT, Swanson SA, Johanning JM, Bascter BT, Lynch TG, Dodd SL. Mitochondrial defects and oxidative damage in patients with peripheral arterial disease. Free Rad Biol Med 41: 262‐269, 2006.
 721. Pipinos II, Sharow VG, Shepard AD, Anagnostopoulos PV, Katsamouris A, Takor A, Filis KA, Sabbah HN. Abnormal mitochondrial respiration in skeletal muscle in patients with peripheral arterial disease. J Vasc Sur 38: 827‐832, 2003.
 722. Pipp F, Boehm S, Cai WJ, Adili F, Ziegler B, Karanovic G, Ritter R, Balzer J, Scheler C, Schaper W, Schmitz‐Rixen T. Elevated fluid shear stress enhances postocclusive collateral artery growth and gene expression in the pig hind limb. Arterioscler Thromb Vasc Biol 24: 1664‐1668, 2004.
 723. Pipp F, Heil M, Issbrucker K, Ziegelhoeffer T, Martin S, van den Heuvel J, Weich H, Fernandez B, Golomb G, Carmeliet P, Schaper W, Clauss M. VEGFR‐1‐selective VEGF homologue PlGF is arteriogenic: Evidence for a monocyte‐mediated mechanism. Circ Res 92: 378‐385, 2003.
 724. Planas A, Clara A, Pou JM, Vidal‐Barraquer F, Gasol A, deMoner A, Contreras C, Marrugat J. Relationship of obesity distribution and preipheral arterial occlusive disease in elderly men. Int J Obes Relat Metab Disord 25: 1068‐1070, 2001.
 725. Plate KH, Breier G, Weich HA, Risau W. Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 359: 845‐848, 1992.
 726. Pogozelski AR, Geng T, Li P, Yin X, Lira VA, Zhang M, Chi JT, Yan Z. p38gamma mitogen‐activated protein kinase is a key regulator in skeletal muscle metabolic adaptation in mice. PLoS ONE 4: e7934, 2009.
 727. Pozzi A, LeVine WF, Gardner HA. Low plasma levels of matrix metalloproteinase 9 permit increased tumor angiogenesis. Oncogene 21: 272‐281, 2002.
 728. Price JF, Leng GC, Fowkes FG. Should claudicants receive angioplasty or exercise training? Cardiovasc Surg 5: 463‐470, 1997.
 729. Prinzmetal M, Simkin B. Studies on the coronary circulation; the collateral circulation of the normal human heart by coronary perfusion with radioactive erythrocytes and glass spheres. AmHeart J 33: 420‐442, 1947.
 730. Prior BM, Lloyd PG, Ren J, Li H, Yang HT, Laughlin MH, Terjung RL. Time course of changes in collateral blood flow and isolated vessel size and gene expression after femoral artery occlusion in rats. Am J Physiol 287: H2434‐H2447, 2004.
 731. Prior BM, Lloyd PG, Ren J, Li Z, Yang HT, Laughlin MH, Terjung RL. Arteriogenesis: Role of nitric oxide. Endothelium 10: 207‐216, 2003.
 732. Prior BM, Ren J, Terjung RL, Yang HT. Significant, but limited collateral blood flow increases occur with prolonged training in rats with femoral artery occlusion. J Physiol Pharmacol 62: 197‐205, 2011.
 733. Prior BM, Yang HT, Terjung RL. What makes vessels grow with exercise training? J Appl Physiol 97: 1119‐1128, 2004.
 734. Pu LQ, Jackson S, Lachapelle KJ, Arekat Z, Graham AM, Lisbona R, Brassard R, Carpenter S, Symes JF. A persistent hindlimb ischemia model in the rabbit. J Invest Surg 7: 49‐60, 1994.
 735. Pu LQ, Sniderman AD, Brassard R, Lachapelle KJ, Graham AM, Lisbona R, Symes JF. Enhanced revascularization of the ischemic limb by angiogenic therapy. Circulation 88: 208‐215, 1993.
 736. Pulgserver P, Wu Z, Park CW, Graves R, Wright M, Spiegeelman BM. A cold‐inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92: 829‐839, 1998.
 737. Quinn TP, Peters KG, De Vries C, Ferrara N, Williams LT. Fetal liver kinase 1 is a receptor for vascular endothelial growth factor and is selectively expressed in vascular endothelium. Proc Natl Acad Sci U S A 90: 7533‐7537, 1993.
 738. Radack K, Wyderski RJ. Conservative management of intermittent claudication. Ann Intern Med 113: 135‐146, 1990.
 739. Rajagopalan S, Mohler ER, Lederman RJ, Mendelsohn FO, Saucedo JF, Goldman CK, Blebea J, Macko J, Kessler PD, Rasmussen HS, Annex BH. Regional angiogenesis with vascular endothelial growth factor in peripheral arterial disease: A phase II randomized, double‐blind, controlled study of adenoviral delivery of vascular endothelial growth factor 121 in patients with disabling intermittent claudication. Circulation 108: 1933‐1938, 2003.
 740. Rakue H, Nakajima H, Katoh T, Usui M, Amemiya T, Miyagi M, Hara T, Tamura K, Sasame A, Naito Y, Nagai Y, Ibukiyama C. Low‐dose basic fibroblast growth factor and vascular endothelial growth factor for angiogenesis in canine acute hindlimb insufficiency. Jpn Circ J 62: 933‐939, 1998.
 741. Ramanathan M, Giladi A, Leibovich SJ. Regulation of vascular endothelial growth factor gene expression in murine macrophages by nitric oxide and hypoxia. Exp Biol Med (Maywood) 228: 697‐705, 2003.
 742. Ray CA. Sympathetic adaptations to one‐legged training. J Appl Physiol 86: 1583‐1587, 1999.
 743. Regensteiner JG. Exercise in the treatment of claudication: Assessment and treatment of functional impairment. Vasc Med 2: 238‐242, 1997.
 744. Regensteiner JG. Exercise rehabilitation for the patient with intermittent claudication: A highly effective yet underutilized treatment. Cur Drug Targets Cardiovasc Haematol Disord 4: 233‐239, 2004.
 745. Regensteiner JG, Hiatt WR. Current medical therapies for patients with peripheral arterial disease: A critical review. Am J Med 112: 49‐57, 2002.
 746. Rehn M, Veikkola T, Kukk‐Valdre E, Nakamura H, Ilmonen M, Lombardo C, Pihlajaniemi T, Alitalo K, Vuori K. Interaction of endostatin with integrins implicated in angiogenesis. Proc Natl Acad Sci U S A 98: 1024‐1029, 2001.
 747. Reiser PJ, Kline WO, Vaghy PL. Induction of neuronal type nitric oxide synthase in skeletal muscle by chronic electrical stimulation in vivo. J Appl Physiol 82: 1250‐1255, 1997.
 748. Remijnse‐Tamerius HC, Duprez D, De Buyzere M, Oeseburg B, Clement DL. Why is training effective in the treatment of patients with intermittent claudication? Int Angiol 18: 103‐112, 1999.
 749. Resnick HE, Lindsay RS, McDermott MM, Devereax RB, Jones KL, Fabsitz RR, Howard BV. Relationship of high and low ankle brachial index to all‐causse and cardiovascular disease mortality. The Strong Heart Study. Circulation 109: 733‐739, 2004.
 750. Rey S, Semenza GL. Hypoxia‐inducible factor‐1‐dependent mechanisms of vascular ization and vascular remodelling. Cardiovasc Res 86: 236‐242, 2010.
 751. Rhoads RP, Johnson RM, Rathbone CR, Liu X, Temm‐Grove C, Sheehan SM, Hoying JB, Allen RE. Satellite cell‐mediated angiogenesis in vitro coincides with a functional hypoxia‐inducible factor pathway. Am J Physiol 296: C1321‐C1328, 2009.
 752. Rice TW, Lumsden AB. Optimal medical management of peripheral arterial disease. Vasc Endovasc Surg 40: 312‐327, 2006.
 753. Richardson RS, Duteil S, Wary C, Wray DW, Hoff J, Carlier PG. Human skeletal msucle intracellular oxygenation: The impact of ambient oxygen availability. J Physiol 571: 415‐424, 2006.
 754. Richardson RS, Noyszewski EA, Kendrick KF, Leigh JS, Wagner PD. Myoglobin O2 desaturation during exercise. Evidence of limited O2 transport. J Clin Invest 96: 1916‐1926, 1995.
 755. Richardson RS, Wagner H, Mudaliar SR, Henry R, Noyszewski EA, Wagner PD. Human VEGF gene expression in skeletal muscle: Effect of acute normoxic and hypoxic exercise. Am J Physiol 277: H2247‐H2252, 1999.
 756. Richardson RS, Wagner H, Mudaliar SRD, Saucedo E, Henry R, Wagner PD. Exercise adaptation attenuates VEGF gene expression in human skeletal muscle. Am J Physiol 279: H772‐H778, 2000.
 757. Richter EA. Glucose utilization. Compr Physiol (Suppl 29): 912‐951, 2011.
 758. Ridgway J, Zhang G, Wu Y, Stawicki S, Liang WC, Chanthery Y, Kowalski J, Watts RJ, Callahan C, Kasman I, Singh M, Chien M, Tan C, Hongo JA, de Sauvage F, Plowman G, Yan M. Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature 444: 1083‐1087, 2006.
 759. Rissanen TT, Vajanto I, Hiltunen MO, Rutanen J, Kettunen MI, Niemi M, Leppanen P, Turunen MP, Markkanen JE, Arve K, Alhava E, Kauppinen RA, Yla‐Herttuala S. Expression of vascular endothelial growth factor and vascular endothelial growth factor receptor‐2 (KDR/Flk‐1) in ischemic skeletal muscle and its regeneration. Am J Pathol 160: 1393‐1403, 2002.
 760. Rivard A, Fabre JE, Silver M, Chen D, Murohara T, Kearney M, Magner M, Asahara T, Isner JM. Age‐dependent impairment of angiogenesis. Circulation 99: 111‐120, 1999.
 761. Rivard A, Silver M, Chen D, Kearney M, Magner M, Annex B, Peters K, Isner JM. Rescue of diabetes‐related impairment of angiogenesis by intramuscular gene therapy with adeno‐VEGF. Am J Path 154: 355‐363, 1999.
 762. Rivilis I, Milkiewicz M, Boyd P, Goldstein J, Brown MD, Egginton S, Hansen FM, Hudlicka O, Haas TL. Differential involvement of MMP‐2 and VEGF during muscle stretch‐ versus shear stress‐induced angiogenesis. Am J Physiol 283: H1430‐H1438, 2002.
 763. Robbins JL, Jones WS, Duscha BD, Allen JD, Kraus WE, Regensteiner JG, Hiatt WR, Annex BH. Relationship between leg muscle capillary density and peak hyperemic blood flow with endurance capacity in peripheral artery disease. J Appl Physiol 111: 81‐86, 2011.
 764. Robeer GG, Brandsma JW, van dan Heuvel SP, Smit B, Oostendorp RA, Wittens CH. Exercise therapy for intermittent claudication: A review of the quality of randomised clinical trials and evaluation of predictive factors. Eur J Vasc Endovasc Surg 15: 36‐43, 1998.
 765. Roberts CK, Barnard RJ, Jasman A, Balon TW. Acute exercise increases nitric oxide synthase activity in skeletal muscle. Am J Physiol 277: E390‐E394, 1999.
 766. Roberts KC, Nixon C, Unthank JL, Lash JM. Femoral artery ligation stimulates capillary growth and limits training‐induced increases in oxidative capacity in rats. Microcirc 4: 253‐260, 1997.
 767. Robinson DM, Ogilvie RW, Tullson PC, Terjung RL. Increased peak oxygen consumption of trained muscle requires increased electron flux capacity. J Appl Physiol 77: 1941‐1952, 1994.
 768. Robinson WP, Nguyen LL, Bafford R, Belkin M. Results of second‐time angioplasty and stenting for femoropopliteal occlusive disease and factors affecting outcomes. J Vasc Surg 53: 651‐657, 2011.
 769. Roca J, Agusti AG, Alonso A, Poole DC, Viegas C, Barbera JA, Rodriguez‐Roisin R, Ferrer A, Wagner PD. Effects of training on muscle O2 transport at VO2max. J Appl Physiol 73: 1067‐1076, 1992.
 770. Roca J, Gavin TP, Jordan M, Siafakas N, Wagner H, Benoit H, Breen E, Wagner PD. Angiogenic growth factor mRNA responses to passive and contraction‐induced hyperperfusion in skeletal muscle. J Appl Physiol 85: 1142‐1149, 1998.
 771. Rocic P, Kolz C, Reed R, Potter B, Chilian WM. Optimal reactive oxygen species concentration and p38 MAP kinase are required for coronary collateral growth. Am J Physiol 292: H2729‐H2736, 2007.
 772. Rockl KS, Witczak CA, Goodyear LJ. Signaling mechanisms in skeletal muscle: Acute responses and chronic adaptations to exercise. IUBMB Life 60: 145‐153, 2008.
 773. Romanul FC. Distribution of capillaries in relation to oxidative metabolism of skeletal muscle fibers. Nature 201: 307‐308, 1964.
 774. Rose AJ, Hargreaves M. Exercise increases Ca2+‐calmodulin‐dependent protein kinase II activity in human skeletal muscle. J Physiol 553: 303‐309, 2003.
 775. Rosengart TK, Budenbender KT, Duenas M, Mack CA, Zhang QX, Isom OW. Therapeutic angiogenesis: A comparative study of the angiogenic potential of acidic fibroblast growth factor and heparin. J Vasc Surg 26: 302‐312, 1997.
 776. Rosenthal SL. Effects of collateral flow on muscle gas exchange after femoral artery occlusion. Am J Physiol 223: 461‐465, 1972.
 777. Rosenthal SL, Guyton AC. Hemodynamics of collateral vasodilatation following femoral artery occlusion in anesthetized dogs. Circ Res 23: 239‐248, 1968.
 778. Roudier E, Chapados N, Decary S, Gineste C, Le Bel C, Lavoie J, Marc, Bergeron R, Birot O. Angiomotin p80/p130 ratio: A new indicator of exercise‐induced angiogenic activity in skeletal muscles from obese and non‐obese rats? J Physiol 587: 4105‐4119, 2009.
 779. Roudier E, Gineste C, Wazna A, Dehghan K, Desplanches D, Birot O. Angio‐adaptation in unloaded skeletal muscle: New insights into an early and muscle type‐specific dynamic process. J Physiol 588: 4579‐4591, 2010.
 780. Rowell LB. Human Circulation Regulation During Physical Stress. New York: Oxford University Press, 1986.
 781. Rowell LB, Saltin B, Kiens B, Christensen NJ. Is peak quadriceps blood flow in humans even higher during exercise with hypoxemia? Am J Physiol 251: H1038‐H1044, 1986.
 782. Rowlands TE, Donnelly R. Medical therapy for intermittent claudication. Eur J Vasc Endovasc Surg 34: 314‐321, 2007.
 783. Roy S, Khanna S, Sen CK. Redox regulation of the VEGF signaling path and tissue vascularization: Hydrogen peroxide, the common link between physical exercise and cutaneous wound healing. Free Radic Biol Med 44: 180‐192, 2008.
 784. Ruhrberg C, Gerhardt H, Golding M, Watson R, Ioannidou S, Fujisawa H, Betsholtz C, Shima DT. Spatially restricted patterning cues provided by heparin‐binding VEGF‐A control blood vessel branching morphogenesis. Genes Dev 16: 2684‐2698, 2002.
 785. Ruiters MS, van Golde JM, Schaper NC, Stehouwer CD, Huijberts MS. Diabetes imparis arteriogenesis in the periphare circulation: Review of molecular mechanisms. Clin Sci 119: 225‐238, 2010.
 786. Rullman E, Norrbom J, Stromberg A, Wagsater D, Rundqvist H, Haas T, Gustafsson T. Endurance exercise activates matrix metalloproteinases in human skeletal muscle. J Appl Physiol 106: 804‐812, 2009.
 787. Rullman E, Rundqvist H, Wagsater D, Fischer H, Eriksson P, Sundberg CJ, Jansson E, Gustafsson T. A single bout of exercise activates matrix metalloproteinase in human skeletal muscle. J Appl Physiol 102: 2346‐2351, 2007.
 788. Rundqvist H, Rullman E, Sundberg CJ, Fischer H, Eisleitner K, Stahlberg M, Sundblad P, Jansson E, Gustafsson T. Activation of the erythropoietin receptor in human skeletal muscle. Eur J Endocrinol 161: 427‐434, 2009.
 789. Russell AP, Fellchenfeldt J, Schreiber S, Praz M, Crettenand A, Gobelet C, Meier CA, Bell DR, Kralli A, Giacobino JP, Deriaz O. Endurance training in humans leads to fiber type specific increases in levels of perixisome proliferator‐activated receptor‐gamma coactivator‐1 and perioxisome proliferator‐activate receptor‐alha in skeletal muscle. Diabetes 52: 2874‐2881, 2003.
 790. Ryan AS, Katzel LI, Gardner AW. Determinants of peak V(O2) in peripheral arterial occlusive disease patients. J Gerontol A Biol Sci Med Sci 55: B302‐B306, 2000.
 791. Ryan NA, Zwetsloot KA, Westerkamp LM, Hickner RC, Pofahl WE, Gavin TP. Lower skeletal muscle capillarization and VEGF expression in aged vs. young men. J Appl Physiol 100: 178‐185, 2006.
 792. Ryzhov S, McCaleb JL, Goldstein AE, Biaggioni I, Feoktistov I. Role of adenosine receptors in the regulation of angiogenic factors and neovascularization in hypoxia. J Pharmacol Exp Ther 320: 565‐572, 2007.
 793. Safdar A, Abadi A, Akhtar M, Hettinga BP, Tarnopolsky MA. miRNA in the regulation of skeletal muscle adaptation to acute endurance exercise in C57Bl/6J male mice. PLoS ONE 4: e5610, 2009.
 794. Safdar A, Little JP, Stokl AJ, Hettinga BP, Akhtar M, Tarnopolsky MA. Exercise increases mitochondrial PGC‐1alpha content and promotes nuclear‐mitochondrial cross‐talk to coordinate mitochondrial biogenesis. J Biol Chem 286: 10605‐10617, 2011.
 795. Sager HB, Middendorff R, Rauche K, Weil J, Lieb W, Schunkert H, Ito WD. Temporal patterns of blood flow and nitric oxide synthase expression affect macrophage accumulation and proliferation during collateral growth. JAngiogenesRes 2: 18, 2010.
 796. Sainson RC, Johnston DA, Chu HC, Holderfield MT, Nakatsu MN, Crampton SP, Davis J, Conn E, Hughes CC. TNF primes endothelial cells for angiogenic sprouting by inducing a tip cell phenotype. Blood 111: 4997‐5007, 2008.
 797. Saltin B, Gollnick PD. Skeletal msucle adaptability: Significance for metabolism and performance. Compr Physiol (Suppl 27): 555‐631, 2011.
 798. Sanders M, White FC, Peterson TM, Bloor CM. Effects of endurance exercise on coronary collateral blood flow in miniature swine. Am J Physiol 234: H614‐H619, 1978.
 799. Sanderson B, Askew C, Stewart I, Walker P, Gibbs H, Green S. Short‐term effects of cycle and treadmill training on exercise tolerance in peripheral arterial disease. J Vasc Surg 44: 119‐127, 2006.
 800. Sandri M, Adams V, Gielen S, Linke A, Lenk K, Krankel N, Lenz D, Erbs S, Scheinert D, Mohr FW, Schuler G, Hambrecht R. Effects of exercise and ischemia on mobilization and functional activation of blood‐derived progenitor cells in patients with ischemic syndromes: Results of 3 randomized studies. Circulation 111: 3391‐3399, 2005.
 801. Sanne H, Sivertsson R. The effect of exercise on the development of collateral circulation after experimental occlusion of the femoral artery in the cat. Acta Physiol Scand 73: 257‐263, 1968.
 802. Sapienza P, Edwards JD, Mingoli A, McGregor PE, Cavallari N, Agrawal DK. Ischemia‐induced peripheral arterial vasospasm role of alpha1‐ and alpha2‐adrenoceptors. J Surg Res 62: 192‐196, 1996.
 803. Sasso FC, Torella D, Carbonara O, Ellison GM, Torella M, Scardone M, Marra C, Nasti R, Marfella R, Cozzolino D, Indolfi C, Cotrufo M, Torella R, Salvatore T. Increased vascular endothelial growth factor expression but impaired vascular endothelial growth factor receptor signaling in the myocardium of type 2 diabetic patients with chronic coronary heart disease. J Am Coll Cardiol 46: 827‐834, 2005.
 804. Sato Y, Kanno S, Oda N, Abe M, Ito M, Shitara K, Shibuya M. Properties of two VEGF receptors, Flt‐1 and KDR, in signal transduction. Ann NY Acad Sci U S A 902: 201‐205, 2000.
 805. Sausen MT, Delaney EP, Stillabower ME, Farquhar WB. Exhanced metabolreflex sensitivity in hypertensive humans. Eur J Appl Physiol 105: 351‐356, 2008.
 806. Scarpulla RC. Nuclear control of respiratory chain expression by nuclear respiratory factors and PGC‐1‐related coactivator. Ann NY Acad Sci U S A 1147: 321‐334, 2008.
 807. Scarpulla RC. Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol Rev 88: 611‐638, 2008.
 808. Schaper J, Borgers M, Schaper W. Ultrastructure of ischemia‐induced changes in the precapillary anastomotic network of the heart. Am J Cardiol 29: 851‐859, 1972.
 809. Schaper W. New paradigms for collateral vessel growth. Basic Res Cardiol 88: 193‐198, 1993.
 810. Schaper W. Collateral circulation: Past and present. Basic Res Cardiol 104: 5‐21, 2009.
 811. Schaper W, De Brabander M, Lewi P. DNA synthesis and mitoses in coronary collateral vessesls of the dog. Circ Res 28: 671‐679, 1971.
 812. Schaper W, Schaper J. Arteriogenesis. Boston: Kluwer Academic Publishers, 2004,
 813. Schaper W, Scholz D. Factors regulating arteriogenesis. Arterioscl Throm Vasc Biol 23: 1143‐1151, 2003.
 814. Schaper W, Flameng W, Winkler B, Wusten B, Turschmann W, Neugebauer G, Carl M, Pasyk S. Quantification of collateral resistance in acute and chronic experimental coronary occlusion in the dog. Circ Res 39: 371‐377, 1976.
 815. Schaper W, Eitenmueller I, Volger O, Troidl K, Schmitz‐Rixen T. Factors influencing arteriogenesis. J Mol Cell Cardiol 38: 1064‐1064, 2005.
 816. Scheel KW, Ingram LA, Wilson JL. Effects of exercise on the coronary and collateral vasculature of beagles with and without coronary occlusion. Circ Res 48: 523‐530, 1981.
 817. Schierling W, Troidl K, Mueller C, Troidl C, Wustrack H, Bachmann G, Kasprzak PM, Schaper W, Schmitz‐Rixen T. Increased intravascular flow rate triggers cerebral arteriogenesis. J Cereb Blood Flow Metab 29: 726‐737, 2009.
 818. Schierling W, Troidl K, Troidl C, Schmitz‐Rixen T, Schaper W, Eitenmuller IK. The role of angiogenic growth factors in arteriogenesis. J Vasc Res 46: 365‐374, 2009.
 819. Schirmer SH, Fledderus JO, Bot PT, Moerland PD, Hoefer IE, Baan J, Henriques JP, van dS,RJ, Vis M, Horrevoets AJ, Piek JJ, van Royen N. Interferon‐beta signaling is enhanced in patients with insufficient coronary collateral artery development and inhibits arteriogenesis in mice. Circ Res 102: 1286‐1294, 2008.
 820. Schirmer SH, van N,FC, Piek JJ, van Royen R. Stimulation of collateral artery growth: Travelling further down the road to clinical application. Heart 95: 191‐197, 2009.
 821. Schlager O, Giurgea A, Schuhfried O, Seidinger D, Hammer A, Gröger M, Fialka‐Moser V, Gschwandtner M, Koppensteiner R, Steiner S. Exercise training increases endothelial progenitor cells and decreases asymmetric dimethylarginine in peripheral arterial disease: A randomized controlled trial. Atherosclerosis 217: 240‐248, 2011.
 822. Scholz D, Cai WJ, Schaper W. Arteriogenesis, a new concept of vascular adaptation in occlusive disease. Angiogenesis 4: 247‐257, 2001.
 823. Scholz D, Elsaesser H, Sauer A, Friedrich C, Luttun A, Carmeliet P, Schaper W. Bone marrow transplantation abolishes inhibition of arteriogenesis in placenta growth factor (PlGF)‐/‐ mice. J Mol Cell Cardiol 35: 177‐184, 2003.
 824. Scholz D, Ito W, Fleming I, Deindl E, Sauer A, Wiesnet M, Busse R, Schaper J, Schaper W. Ultrastructure and molecular histology of rabbit hind‐limb collateral artery growth (arteriogenesis). Virchows Arch 436: 257‐270, 2000.
 825. Scholz D, Ziegelhoeffer T, Helisch A, Wagner S, Friedrich C, Podzuweit T, Schaper W. Contribution of arteriogenesis and angiogenesis to postocclusive hindlimb perfusion in mice. J Mol Cell Cardiol 34: 775‐787, 2002.
 826. Schrage WG, Woodman CR, Laughlin MH. Hindlimb unweighting alters endothelium‐dependent vasodilation and ecNOS expression in soleus arterioles. J Appl Physiol 89: 1483‐1490, 2000.
 827. Seebach J, Dieterich P, Luo F, Schillers H, Vestweber D, Oberleithner H, Galla HJ, Schnittler HJ. Endothelial barrier function under laminar fluid shear stress. Lab Invest 80: 1819‐1831, 2000.
 828. Sellke FW, Wang SY, Stamler A, Lopez JJ, Li J, Li J, Simons M. Enhanced microvascular relaxations to VEGF and bFGF in chronically ischemic porcine myocardium. Am J Physiol 271: H713‐H720, 1996.
 829. Selvin E, Hirsch AT. Contemporary risk factor control and walking dysfunction in individuals with peripheral arterial disease: NHANES 1999‐2004. Atherosclerosis 201: 425‐433, 2008.
 830. Semenza GL. HIF‐1 and mechanisms of hypoxia sensing. Curr Opin Cell Biol 13: 167‐171, 2001.
 831. Semenza GL. Vasculogenesis, angiogenesis, and arteriogenesis: Mechanisms of blood vessel formation and remodeling. J Cell Biochem 102: 840‐847, 2007.
 832. Semenza GL. Vascular responses to hypoxia and ischemia. Arterioscler Thromb Vasc Biol 30: 648‐652, 2010.
 833. Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol 12: 5447‐5454, 1992.
 834. Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219: 983‐985, 1983.
 835. Sethi A, Arora RR. Medical management and cardiovascular risk reduction in peripheral arterial disease. Exp Clin Cardiol 13: 113‐119, 2008.
 836. Sewell WH. Coronary cinearteriography for recognition of ‘demand' for collateral arteries. JAMA 186: 224‐228, 1963.
 837. Shammas NW. Epidemiology, classification, and modifiable risk factors of peripheral arterial disease. Vasc Health Risk Manag 3: 229‐234, 2007.
 838. Shaw JH, Xiang L, Shah A, Yin W, Lloyd PG. Placenta growth factor expression is regulated by hydrogen peroxide in vascular smooth muscle cells. Am J Physiol 300: C349‐C355, 2011.
 839. Shay‐Salit A, Shushy M, Wolfovitz E, Yahav H, Breviario F, Dejana E, Resnick N. VEGF receptor 2 and the adherens junction as a mechanical transducer in vascular endothelial cells. Proc Natl Acad Sci U S A 99: 9462‐9467, 2002.
 840. Shen M, Gao J, Li J, Su J. Effect of stimulation frequency on angiogenesis and gene expression in ischemic skeletal muscle of rabbit. Can J Physiol Pharmacol 87: 396‐401, 2009.
 841. Shen M, Gao J, Li J, Su J. Effect of ischaemic exercise training of a normal limb on angiogenesis of a pathological ischaemic limb in rabbits. Clin Sci (Lond) 117: 201‐208, 2009.
 842. Sheridan KM, Ferguson MJ, Distasi MR, Witzmann FA, Dalsing MC, Miller SJ, Unthank JL. Impact of genetic background and aging on mesenteric collateral growth capacity in Fischer 344, Brown Norway, and Fischer 344 x Brown Norway hybrid rats. Am J Physiol 293: H3498‐H3505, 2007.
 843. Sherman JA, Hall A, Malenka DJ, De M,ED, Simons M. Humoral and cellular factors responsible for coronary collateral formation. Am J Cardiol 98: 1194‐1197, 2006.
 844. Shibuya M, Claesson‐Welsh L. Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp Cell Res 312: 549‐560, 2006.
 845. Shimada T, Takeshita Y, Murohara T, Sasaki K, Egami K, Shintani S, Katsuda Y, Ikeda H, Nabeshima Y, Imaizumi T. Angiogenesis and vasculogenesis are impaired in the precocious‐aging klotho mouse. Circulation 110: 1148‐1155, 2004.
 846. Shireman PK. The chemokine system in arteriogenesis and hind limb ischemia. J Vasc Surg 45 (Suppl A): A48‐A56, 2007.
 847. Shoag J, Arany Z. Regulation of hyposia‐inducible genes by PGC‐1alpha. ATVB 30: 662‐666, 2010.
 848. Shoemaker JK, Kunselman AR, Siler DH, Sinoway LI. Maintained exercise pressor response in heart failure. J Appl Physiol 85: 1793‐1799, 1998.
 849. Short RHD. Alveolar epithelium in relation to growth of the lung. Phil Trans R Soc Lond B 235: 35‐86, 1950.
 850. Shweiki D, Itin A, Soffer D, Keshet E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia‐initiated angiogenesis. Nature 359: 843‐845, 1992.
 851. Shyy JY, Chien S. Role of integrins in endothelial mechanosensing of shear stress. Circ Res 91: 769‐775, 2002.
 852. Shyy YJ, Hsieh HJ, Usami S, Chien S. Fluid shear stress induces a biphasic response of human monocyte chemotactic protein 1 gene expression in vascular endothelium. Proc Natl Acad Sci U S A 91: 4678‐4682, 1994.
 853. Silber DH, Sutliff G, Yang QX, Smith MB, Sinoway LI, Leuenberger UA. Altered mechanism of sympathetic activation during rhythmic forarm exercise in heart failure. J Appl Physiol 84: 1551‐1559, 1998.
 854. Sillau AH, Aquin L, Bui MV, Banchero N. Chronic hypoxia does not affect guinea pig skeletal muscle capillarity. Pflugers Arch 386: 39‐45, 1980.
 855. Silvestre JS, Mallat Z, Duriez M, Tamarat R, Bureau MF, Scherman D, Duverger N, Branellec D, Tedgui A, Levy BI. Antiangiogenic effect of interleukin‐10 in ischemia‐induced angiogenesis in mice hindlimb. Circ Res 87: 448‐452, 2000.
 856. Silvestro A, Scopacasa F, Oliva G, de Cristofaro T, Iuliano L, Brevetti G. Vitamin C prevents endothelial dysfunction induced by acute exercise in patients with intermittent claudication. Atherosclerosis 165: 277‐283, 2002.
 857. Simpson RJ, Guy K. Coupling aging immunity with a sedentary lifestyle: Has the damage already beeen done? Gerontology 56: 449‐458, 2010.
 858. Sinoway LI, Li J. A perspective on the muscle reflex: Implication for congestive heart failure. J Appl Physiol 99: 5‐22, 2005.
 859. Skinner JS, Strandness DE. Exercise and intermittent claudication.II. Effect of physical training. Circulation 36: 23‐29, 1967.
 860. Skuli N, Liu L, Runge A, Wang T, Yuan L, Patel S, Iruela‐Arispe L, Simon MC, Keith B. Endothelial deletion of hypoxia‐inducible factor‐2alpha (HIF‐2alpha) alters vascular function and tumor angiogenesis. Blood 114: 469‐477, 2009.
 861. Slordahl SA, Wang E, Hoff J, Kemi OJ, Amundsen BH, Helgerud J. Effective training for patients with intermittent claudication. Scand Cardiovasc J 39: 244‐249, 2005.
 862. Smith GD, Shipley MJ, Rose G. Intermittent claudication, heart disease risk factors, and mortality. The Whitehall Study. Circulation 82: 1925‐1931, 1990.
 863. Smith SA, Mammen PPA, Mitchell JH, Garry MG. Role of the exercise pressor reflex in rats with dilated cardiomyopathy. Circulation 108: 1126‐1132, 2003.
 864. Smith SA, Mitchell JH, Garry MG. Electrically induced static exercise elicits a pressor response in the decerebrate rat. J Physiol 537: 961‐979, 2001.
 865. Smith SA, Mitchell JH, Garry MG. The mammalian exercise pressor reflex in health and disease. Exp Physiol 91: 89‐102, 2006.
 866. Smith SA, Mitchell JH, Naseem RH, Garry MG. Mechanoreflex mediates the exaggerated exercise pressor reflex in heart failure. Circulation 112: 2293‐2300, 2005.
 867. Smith SA, Williams MA, Leal AK, Mitchell JH, Garry MG. Exercise pressor reflex function is altered in spontaneously hypertensive rats. J Physiol 577: 1009‐1020, 2006.
 868. Smith SA, Williams MA, Mitchell JH, Mammen PPA, Garry MG. The capsaicin‐sensitive afferent neuron in skeletal muscle is abnormal in heart failure. Circulation 111: 2056‐2065, 2005.
 869. Smith T, Dhunnoo G, Mohan I, Charlton‐Menys V. A pilot study showing an association between platelet hyperactivity and the severity of peripheral arterial disease. Platelets 18: 245‐248, 2007.
 870. Snyder GK, Byers RL, Kayar SR. Effects of hypoxia on tissue capillarity in geese. Respir Physiol 58: 151‐160, 1984.
 871. Snyder GK, Farrelly C, Coelho JR. Adaptations in skeletal muscle capillarity following changes in oxygen supply and changes in oxygen demands. Eur J Appl Physiol 65: 158‐163, 1992.
 872. Snyder GK, Wilcox EE, Burnham EW. Effects of hypoxia on muscle capillarity in rats. Respir Physiol 62: 135‐140, 1985.
 873. Sodha NR, Clements RT, Boodhwani M, Xu SH, Laham RJ, Bianchi C, Sellke FW. Endostatin and angiostatin are increased in diabetic patients with coronary artery disease and associated with impaired coronary collateral formation. Am J Physiol 296: H428‐H434, 2009.
 874. Soker S, Takashima S, Miao HQ, Neufeld G, Klagsbrun M. Neuropilin‐1 is expressed by endothelial and tumor cells as an isoform‐specific receptor for vascular endothelial growth factor 2. Cell 92: 735‐745, 1998.
 875. Somlyo AV, Phelps C, Dipierro C, Eto M, Read P, Barrett M, Gibson JJ, Burnitz MC, Myers C, Somlyo AP. Rho kinase and matrix metalloproteinase inhibitors cooperate to inhibit angiogenesis and growth of human prostate cancer xenotransplants. FASEB J 17: 223‐234, 2003.
 876. Sonveaux P, Martinive P, DeWever J, Batova Z, Daneau G, Pelat M, Ghisdal P, Gregoire V, Dessy C, Balligand JL, Feron O. Caveolin‐1 expression is critical for vascular endothelial growth factor‐induced ischemic hindlimb collateralization and nitric oxide‐mediated angiogenesis. Circ Res 95: 154‐161, 2004.
 877. Sorlie D, Myhre K. Effects of physical training in intermittent claudication. Scand J Clin Lab Invest 38: 217‐222, 1978.
 878. Spindler V, Schlegel N, Waschke J. Role of GTPases in control of microvascular permeability. Cardiovasc Res 87: 243‐253, 2010.
 879. Spronk S, Bosch JL, den Hoed PT, Veen HF, Pattynama PM, Hunink MG. Cost‐effectiveness of endovascular revascularization compared to supervised hospital‐based exercise training in patients with intermittent claudication: A randomized controlled trial. J Vasc Surg 48: 1472‐1480, 2008.
 880. Spronk S, Bosch JL, den Hoed PT, Veen HF, Pattynama PM, Hunink MG. Intermittent claudication: Clinical effectiveness of endovascular revascularization versus supervised hospital‐based exercise training–randomized controlled trial. Radiology 250: 586‐595, 2009.
 881. Spronk S, White JV, Bosch JL, Hunink MG. Impact of claudication and its treatment on quality of life. Semin Vasc Surg 20: 3‐9, 2007.
 882. Stabile E, Kinnaird T, La S,A, Hanson SK, Watkins C, Campia U, Shou M, Zbinden S, Fuchs S, Kornfeld H, Epstein SE, Burnett MS. CD8+ T lymphocytes regulate the arteriogenic response to ischemia by infiltrating the site of collateral vessel development and recruiting CD4+ mononuclear cells through the expression of interleukin‐16. Circulation 113: 118‐124, 2006.
 883. Stalmans I, Ng YS, Rohan R, Fruttiger M, Bouche A, Yuce A, Fujisawa H, Hermans B, Shani M, Jansen S, Hicklin D, Anderson DJ, Gardiner T, Hammes HP, Moons L, Dewerchin M, Collen D, Carmeliet P, D'Amore PA. Arteriolar and venular patterning in retinas of mice selectively expressing VEGF isoforms. J Clin Invest 109: 327‐336, 2002.
 884. Stavri GT, Zachary IC, Baskerville PA, Martin JF, Erusalimsky JD. Basic fibroblast growth facor upregulates the expression of vascular endothelial growth factor in vascular smooth muscle cells: Synergistic interaction with hypoxia. Circulation 92: 11‐14, 1995.
 885. Sterns DA, Ettinger SM, Gray KS, Whisler SK, Mosher TJ, Smith MB, Sinoway LI. Skeletal muscle metaboreceptor exercise responses are attenuated in heart failure. Circulation 84: 2034‐2039, 1991.
 886. Stewart AH, Lamont PM. Exercise training for claudication. The Surgeon 5: 291‐299, 2007.
 887. Stewart GN. Studies on the circulation in man : XVI. A study of the development of the collateral circulation in the right hand after ligation of the innominate artery for subclavian aneurysm. J Exp Med 22: 694‐700, 1915.
 888. Stewart AHR, Smith FC, Baird RN, Lamont PM. Local versus systemic mechanisms underlying supervised exercise training for intermittent claudication. Vasc Endovasc Surg 42: 314‐320, 2008.
 889. Stewart KJ, Hiatt WR, Regensteiner JG, Hirsch AT. Exercise training for claudication. N Engl J Med 347: 1941‐1951, 2002.
 890. Strick DM, Waycaster RL, Montani JP, Gay WJ, Adair TH. Morphometric measurements of chorioallantoic membrane vascularity: Effects of hypoxia and hyperoxia. Am J Physiol 260: H1385‐H1389, 1991.
 891. Styp‐Rekowska B, Hlushchuk R, Pries AR, Djonov V. Intussusceptive angiogenesis: Pillars against the blood flow. Acta Physiol 202: 213‐223, 2011.
 892. Suchting S, Freitas C, le Noble F, Benedito R, Bréant C, Duarte A, Eichmann A. The Notch ligand Delta‐like 4 negatively regulates endothelial tip cell formation and vessel branching. Proc Natl Acad Sci U S A 104: 3225‐3230, 2007.
 893. Suhr F, Brixius K, de Marées M, Bölck B, Kleinoder H, Achtzehn S, Bloch W, Mester J. Effects of short‐term vibration and hypoxia during high‐intensity cycling exercise on circulating levels of angiogenic regulators in humans. J Appl Physiol 103: 474‐483, 2007.
 894. Sullivan CJ, Doetschman T, Hoying JB. Targeted disruption of the Fgf2 gene does not affect vascular growth in the mouse ischemic hindlimb. J Appl Physiol 93: 2009‐2017, 2002.
 895. Sun D, Huang A, Koller A, Kaley G. Short‐term daily exercise activity enhances endothelial NO synthesis in skeletal muscle arterioles. J Appl Physiol 76: 2241‐2247, 1994.
 896. Sundberg CJ. Exercise and training during graded leg ischaemia in healthy man with special reference to effects on skeletal muscle. Acta Physiol Scand Suppl 615: 1‐50, 1994.
 897. Suzuki J, Gao M, Batra S, Koyama T. Effects of treadmill training on the arteriolar and venular portions of capillary in soleus muscle of young and middle‐aged rats. Acta Physiol Scand Suppl 159: 113‐121, 1997.
 898. Symes JF, Losordo DW, Vale PR, Lathi KG, Esakof DD, Mayskiy M, Isner JM. Gene therapy with vascular endothelial growth factor for inoperable coronary artery disease. Ann Thorac Surg 68: 830‐836, 1999.
 899. Tadaishi M, Miura S, Kai Y, Kawasaki E, Koshinaka K, Kawanaka K, Nagata J, Oishih Y, Ezaki O. Effect of exercise intensity and AICAR on isoform‐specific expressions of murine skeletal msucle PGC‐1alpha mRNA: A role of beta2‐adrenergic receptor activation. Am J Physiol Endocrinol Metab 300: E341‐E349, 2010,
 900. Taft C, Karlsson J, Gelin J, Jivegard L, Sandstrom R, Arfvidsson B, Dahllof AG, Lundholm K, Sullivan M. Treatment efficacy of intermittent claudication by invasive therapy, supervised physical exercise training compared to no treatment in unselected randomised patients II: One‐year results of health‐related quality of life. Eur J Vasc Endovasc Surg 22: 114‐123, 2001.
 901. Takahashi A, Kureishi Y, Yang J, Luo Z, Guo K, Mukhopadhyay D, Ivashchenko Y, Branellec D, Walsh K. Myogenic Akt signaling regulates blood vessel recruitment during myofiber growth. Mol Cell Biol 22: 4803‐4814, 2002.
 902. Takahashi T, Yamaguchi S, Chida K, Shibuya M. A single autophosphorylation site on KDR/Flk‐1 is essential for VEGF‐A‐dependent activation of PLC‐{{gamma}} and DNA synthesis in vascular endothelial cells. EMBO J 20: 2768‐2778, 2001.
 903. Takashima S, Kitakaze M, Asakura M, Asanuma H, Sanada S, Tashiro F, Niwa H, Miyazaki J, J., Hirota S, Kitamura Y, Kitsukawa T, Fujisawa H, Klagsbrun M, Hori M. Targeting of both mouse neuropilin‐1 and neuropilin‐2 genes severely impairs developmental yolk sac and embryonic angiogenesis. Proc Natl Acad Sci U S A 99: 3657‐3662, 2002.
 904. Takeshita S, Weir L, Chen D, Zheng LP, Riessen R, Bauters C, Symes JF, Ferrara N, Isner JM. Therapeutic angiogenesis following arterial gene transfer of vascular endothelial growth factor in a rabbit model of hindlimb ischemia. Biochem Biophys Res Commun 227: 628‐635, 1996.
 905. Takeshita S, Zheng LP, Brogi E, Kearney M, Pu LQ, Bunting S, Ferrara N, Symes JF, Isner JM. Therapeutic angiogenesis. A single intraarterial bolus of vascular endothelial growth factor augments revascularization in a rabbit ischemic hind limb model. J Clin Invest 93: 662‐670, 1994.
 906. Tamarat R, Silvestre JS, Huijberts M, Benessiano J, Ebrahimian TG, Duriez M, Wautier MP, Wautier JL, Levy BI. Blockade of advanced glycation end‐product formation restores ischemia‐induced angiogenesis in diabetic mice. Proc Natl Acad Sci U S A 100: 8555‐8560, 2003.
 907. Tang G, Charo DN, Wang R, Charo IF, Messina L. CCR2‐/‐ knockout mice revascularize normally in response to severe hindlimb ischemia. J Vasc Surg 40: 786‐795, 2004.
 908. Tang GL, Chang DS, Sarkar R, Wang R, Messina LM. The effect of gradual or acute arterial occlusion on skeletal muscle blood flow, arteriogenesis, and inflammation in rat hindlimb ischemia. J Vasc Surg 41: 312‐320, 2005.
 909. Tang K, Breen EC, Gerber HP, Ferrara NM, Wagner PD. Capillary regression in vascular endothelial growth factor‐deficient skeletal muscle. Physiol Genomics 18: 63‐69, 2004.
 910. Tang K, Breen EC, Wagner H, Brutsaert TD, Gassmann M, Wagner PD. HIF and VEGF relationships in response to hypoxia and sciatic nerve stimulation in rat gastrocnemius. Respir Physiol Neurobiol 144: 71‐80, 2004.
 911. Tang N, Wang L, Esko J, Giordano FJ, Huang Y, Gerber HP, Ferrara N, Johnson RS. Loss of HIF‐1alpha in endothelial cells disrupts a hypoxia‐driven VEGF autocrine loop necessary for tumorigenesis. Cancer Cell 6: 485‐495, 2004.
 912. Taniyama Y, Morishita R, Aoki M, Nakagami H, Yamamoto K, Yamazaki K, Matsumoto K, Nakamura T, Kaneda Y, Ogihara T. Therapeutic angiogenesis induced by human hepatocyte growth factor gene in rat and rabbit hindlimb ischemia models: Preclinical study for treatment of peripheral arterial disease. Gene Ther 8: 181‐189, 2001.
 913. Taniyama Y, Morishita R, Hiraoka K, Aoki M, Nakagami H, Yamasaki K, Matsumoto K, Nakamura T, Kaneda Y, Ogihara T. Therapeutic angiogenesis induced by human hepatocyte growth factor gene in rat diabetic hind limb ischemia model: Molecular mechanisms of delayed angiogenesis in diabetes. Circulation 104: 2344‐2350, 2001.
 914. Taylor JC, Li Z, Yang HT, Laughlin MH, Terjung RL. Alpha‐adrenergic inhibition increases collateral circuit conductance in rats following acute occlusion of the femoral artery. J Physiol 586: 1649‐1667, 2008.
 915. Taylor JC, Yang HT, Laughlin MH, Terjung RL. Alpha‐adrenergic and neuropeptide Y Y1 receptor control of collateral circuit conductance: Influence of exercise training.[see comment]. J Physiol 586: 5984‐5998, 2008.
 916. Taylor KL, Henderson AM, Hughes CC. Notch activation during endothelial cell network formation in vitro targets the basic HLH transcription factor HESR‐1 and downregulates VEGFR‐2/KDR expression. Microvasc Res 64: 372‐383, 2002.
 917. Tchaikovski V, Fellbrich G, Waltenberger J. The molecular basis of VEGFR‐1 signal transduction pathways in primary human monocytes. Arterioscler Thromb Vasc Biol 28: 322‐328, 2008.
 918. Tchaikovski V, Olieslagers S, Bohmer FD, Waltenberger J. Diabetes mellitus activates signal transduction pathways resulting in vascular endothelial growth factor resistance of human monocytes. Circulation 120: 150‐159, 2009.
 919. Teichert‐Kuliszewska K, Maisonpierre PC, Jones N, Campbell AI, Master Z, Bendeck MP, Alitalo K, Dumont DJ, Yancopoulos GD, Stewart DJ. Biological action of angiopoietin‐2 in a fibrin matrix model of angiogenesis is associated with activation of Tie2. Cardiovasc Res 49: 659‐670, 2001.
 920. Terada S, Goto M, Kato M, Kawanaka K, Shimokawa T, Tabata I. Effects of low‐intensity prolonged exercise on PGC‐1 mRNA expression in rat epitrochlearis muscle. Biochem Biophys Res Commun 296: 350‐354, 2002.
 921. Teravainen H, Makitie J. Striated muscle ultrastructure in intermittent claudication. Arch Pathol Lab Med 101: 230‐235, 1977.
 922. Terjung RL, Zarzeczny R, Yang HT. Muscle blood flow and mitochondrial function: Influence of aging. Int J Sport Nutr Exer Metabol 12: 368‐378, 2002.
 923. Testa U, Pannitteri G, Condorelli GL. Vascular endothelial growth factors in cardiovascular medicine. J Cardiovasc Med 9: 1190‐1221, 2008.
 924. Thomason DB, Booth FW. Atrophy of the soleus muscle by hindlimb unweighting. J Appl Physiol 68: 1‐12, 1990.
 925. Thompson LV. Skeletal muscle adapttions with age, inactivity, and therapeutic exercise. J Orthop Sports Phys Ther 32: 44‐57, 2002.
 926. Thyboll J, Kortesmaa J, Cao R, Soininen R, Wang L, Iivanainen A, Sorokin L, Risling M, Cao Y, Tryggvason K. Deletion of the laminin alpha4 chain leads to impaired microvessel maturation. Mol Cell Biol 22: 1194‐1202, 2002.
 927. Tian H, McKnight SL, Russell DW. Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev 11: 72‐82, 1997.
 928. Tischer E, Mitchell R, Hartman T, Silva M, Gospodarowicz D, Fiddes JC, Abraham JA. The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing. J Biol Chem 266: 11947‐11954, 1991.
 929. Tisi PV, Hulse M, Chulakadabba A, Gosling P, Shearman CP. Exercise training for intermittent claudication: Does it adversely affect biochemical markers of the exercise‐induced inflammatory response? Eur J Vasc Endovasc Surg 14: 344‐350, 1997.
 930. Tisi PV, Shearman CP. The evidence for exercise‐induced inflammation in intermittent claudication: Should we encourage patients to stop walking? Eur J Vasc Endovasc Surg 15: 7‐17, 1998.
 931. Tojo T, Ushio‐Fukai M, Yamaoka‐Tojo M, Ikeda S, Patrushev N, Alexander RW. Role of gp91phox (Nox2)‐containing NAD(P)H oxidase in angiogenesis in response to hindlimb ischemia. Circulation 111: 2347‐2355, 2005.
 932. Tornling G, Unge G, Skoog L, Ljungqvist A, Carlsson S, Adolfsson J. Proliferative activity of myocardial capillary wall cells in dipyridamole‐treated rats. Cardiovasc Res 12: 692‐695, 1978.
 933. Troidl K, Tribulova S, Cai WJ, Ruding I, Apfelbeck H, Schierling W, Troidl C, Schmitz‐Rixen T, Schaper W. Effects of endogenous nitric oxide and of DETA NONOate in arteriogenesis. J Cardiovasc Pharmacol 55: 153‐160, 2010.
 934. Troyanovsky B, Levchenko T, Mansson G, Matvijenko O, Holmgren L. Angiomotin: An angiostatin binding protein that regulates endothelial cell migration and tube formation. J Cell Biol 152: 1247‐1254, 2001.
 935. Tsang GM, Green MA, Crow AJ, Smith FC, Beck S, Hudlicka O, Shearman CP. Chronic muscle stimulation improves ischaemic muscle performance in patients with peripheral vascular disease. Eur J Vasc Surg 8: 419‐422, 1994.
 936. Tsuchimochi H, McCord JL, Hayes sG, Koba S, Kaufman MP. Chronic femoral artery occlusion augments exercise pressor reflex in decerbrated rats. Am J Physiol 299: H106‐H113, 2010.
 937. Tsuchimochi H, McCord JL, Kaufman MP. Peripheral μ‐opioid receptors attenuate the augmented exercise pressor reflex in rats with chronic femoral artery occlusion. Am J Physiol 299: H557‐H565, 2010.
 938. Tsuchimochi H, McCord JL, Leal AK, Kaufman MP. Dorsal root tetrodotoxin‐resistant sodium channels do not contribute to the augmented exercise pressor reflex in rats with chronic femoral artery occlusion. Am J Physiol 300: H652‐H663, 2011.
 939. Tsuchimochi H, Yamauchi K, McCord JL, Kaufman MP. Blockade of acid sensing ion channels attenuates the augmented exercise pressor reflex in rats with chronic femoral artery occlusion. J Physiol 589: 6173‐6189, 2011.
 940. Tuner SL, Easton C, Wilson J, Byrne DS, Rogers P, Kilduff LP, Kingsmore DB, Pitsiladis YP. Cardioulmonary responses to treadmill and cycle ergometry exercise in patients with peripheral arterial disease. J Vasc Surg 47: 123‐130, 2008.
 941. Tuomisto TT, Rissanen TT, Vajanto I, Korkeela A, Rutanen J, Yla‐Herttuala S. HIF‐VEGF‐VEGFR‐2, TNF‐alpha and IGF pathways are upregulated in critical human skeletal muscle ischemia as studied with DNA array. Atherosclerosis 174: 111‐120, 2004.
 942. Turhan H, Yasar AS, Erbay AR, Yetkin E, Sasmaz H, Sabah I. Impaired coronary collateral vessel development in patients with metabolic syndrome. Coron Artery Dis 16: 281‐285, 2005.
 943. Turton EP, Coughlin PA, Kester RC, Scott DJ. Exercise training reduces the acute inflammatory response associated with claudication. Eur J Vasc Endovasc Surg 23: 309‐316, 2002.
 944. Tuttle JL, Hahn TL, Sanders BM, Witzmann FA, Miller SJ, Dalsing MC, Unthank JL. Impaired collateral development in mature rats. Am J Physiol 283: H146‐H155, 2002.
 945. Uguccioni G, Hood DA. The importance of PGC‐1α in contractile activity‐induced mitochondrial adaptations. Am J Physiol 300: E361‐E371, 2011.
 946. Unthank JL, Nixon JC, Burkhart HM, Fath SW, Dalsing MC. Early collateral and microvascular adaptations to intestinal artery occlusion in rat. Am J Physiol 271: H914‐H923, 1996.
 947. Unthank JL, Nixon JC, Daising MC. Nitric oxide maintains dilation of immature and mature collaterals in rat hindlimb. J Vasc Surg 33: 471‐479, 1996.
 948. Unthank JL, Nixon JC, Dalsin MC. Acute compensation to abrupt occlusion of rat femoral artery is prevented by NO synthase inhibitors. Am J Physiol 267: H2523‐H2530, 1994.
 949. Unthank JL, Fath SW, Burkhart HM, Miller SC, Dalsing MC. Wall Remodeling during luminal expansion of mesenteric arterial collaterals in the rat. Circ Res 79: 1015‐1023, 1996
 950. Unthank JL, Nixon JC, Dalsing MC. Inhibition of NO sythase prevents acute collateral artery dilation in the rat hindlimb. J Surg Res 61: 463‐468, 1996.
 951. Urbich C, Reissner A, Chavakis E, Dernbach E, Haendeler J, Fleming I, Zeiher AM, Kaszkin M, Dimmeler S. Dephosphorylation of endothelial nitric oxide synthase contributes to the anti‐angiogenic effects of endostatin. FASEB J 16: 706‐708, 2002.
 952. Ushio‐Fukai M, Alexander RW. Reactive oxygen species as mediators of angiogenesis signaling: Role of NAD(P)H oxidase. Mol Cell Biochem 264: 85‐97, 2004.
 953. Ushio‐Fukai M, Urao N. Novel role of NADPH oxidase in angiogenesis and stem/progenitor cell function. Antioxid Redox Signal 11: 2517‐2533, 2009.
 954. Vajanto I, Rissanen TT, Rutanen J, Hiltunen MO, Tuomisto TT, Arve K, Narvanen O, Manninen H, Rasanen H, Hippelainen M, Alhava E, Yla‐Herttuala S. Evaluation of angiogenesis and side effects in ischemic rabbit hindlimbs after intramuscular injection of adenoviral vectors encoding VEGF and LacZ. J Gene Med 4: 371‐380, 2002.
 955. Vamjatalo A, Poole DC, DiMenna FJ, Bailey SJ, Jones AM. Muscle fiber recruitment and the slow component of O2 uptake: Constant work rate vs. all‐out sprint exercise. Am J Physiol 300: R700‐R707, 2011.
 956. Van Belle E, Rivard A, Chen D, Silver M, Bunting S, Ferrara N, Symes JF, Bauters C, Isner JM. Hypercholesterolemia attenuates angiogenesis but does not preclude augmentation by angiogenic cytokines. Circulation 96: 2667‐2674, 1997.
 957. Van Belle E, Witzenbichler B, Chen D, Silver M, Chang L, Schwall R, Isner JM. Potentiated angiogenic effect of scatter factor/hepatocyte growth factor via induction of vascular endothelial growth factor: The case for paracrine amplification of angiogenesis. Circulation 97: 381‐390, 1998.
 958. van der Zee R, Murohara T, Luo Z, Zollmann F, Passeri J, Lekutat C, Isner JM. Vascular endothelial growth factor/vascular permeability factor augments nitric oxide release from quiescent rabbit and human vascular endothelium. Circulation 95: 1030‐1037, 1997.
 959. van Golde JM, Ruiter MS, Schaper NC, Voo S, Waltenberger J, Backes WH, Post MJ, Huijberts MS. Impaired collateral recruitment and outward remodeling in experimental diabetes. Diabetes 57: 2818‐2823, 2008.
 960. van Groningen JP, Wenink AC, Testers LH. Myocardial capillaries: Increase in number by splitting of existing vessels. Anat Embryol (Berl) 184: 65‐70, 1991.
 961. van Oostrom MC, van Oostrom O, Quax PH, Verhaar MC, Hoefer IE. Insights into mechanisms behing arteriogeneisis: What does the future hold? J Leukoc Biol 84: 1379‐1391, 2008.
 962. van Weel V, de Vries M, Voshol PJ, Verloop RE, Eilers PH, van Hinsbergh VW, van Bockel JH, Quax PH. Hypercholesterolemia reduces collateral artery growth more dominantly than hyperglycemia or insulin resistance in mice. Arterioscler Thromb Vasc Biol 26: 1383‐1390, 2006.
 963. van Weel V, Seghers L, de Vries MR, Kuiper EJ, Schlingemann RO, Bajema IM, Lindeman JH, Delis‐van Diemen PM, van Hinsbergh VW, van Bockel JH, Quax PH. Expression of vascular endothelial growth factor, stromal cell‐derived factor‐1, and CXCR4 in human limb muscle with acute and chronic ischemia. Arterioscler Thromb Vasc Biol 27: 1426‐1432, 2007.
 964. van Weel V, Toes RE, Seghers L, Deckers MM, de Vries MR, Eilers PH, Sipkens J, Schepers A, Eefting D, van Hinsbergh VW, van Bockel JH, Quax PH. Natural killer cells and CD4+ T‐cells modulate collateral artery development. Arterioscler Thromb Vasc Biol 27: 2310‐2318, 2007.
 965. van Weel V, van Tongeren RB, van Hinsbergh VW, van Bockel JH, Quax PH. Vascular growth in ischemic limbs: A review of mechanisms and possible therapeutic stimulation. Ann Vasc Surg 22: 582‐597, 2008.
 966. Vigano A, Ripamonti M, De Palma S, Capitanio D, Vasso M, Wait R, Lundby C, Cerretelli P, Gelfi C. Proteins modulation in human skeletal muscle in the early phase of adaptation to hypobaric hypoxia. Proteomics 8: 4668‐4679, 2008.
 967. Vikkula M, Boon LM, Carraway KL, III, Calvert JT, Diamonti AJ, Goumnerov B, Pasyk KA, Marchuk DA, Warman ML, Cantley LC, Mulliken JB, Olsen BR. Vascular dysmorphogenesis caused by an activating mutation in the receptor tyrosine kinase TIE2. Cell 87: 1181‐1190, 1996.
 968. Vineberg AM, Chari RS, Pifarre R, Mercier C. The effect of persantin on intercoronary collateral circulation and survival during gradual experimental coronary occlusion. A preliminary report. Can Med Assoc J 87: 336‐345, 1962.
 969. Virbasius JV, Scarpulla RC. Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors: A potential regulatory link between nuclear and mitochondrial gene expression in orgnaelle biogenesis. Proc Natl Acad Sci U S A 91: 1309‐1313, 1994.
 970. Voskuil M, Hoefer IE, van Royen N, Hua J, de Graaf S, Bode C, Buschmann IR, Piek JJ. Abnormal monocyte recruitment and collateral artery formation in monocyte chemoattractant protein‐1 deficient mice. Vasc Med 9: 287‐292, 2004.
 971. Wagner PD. Skeletal muscle angiogenesis. A possible role for hypoxia. Adv Exp Med Biol 502: 21‐38, 2001.
 972. Wahl ML, Kenan DJ, Gonzalez‐Gronow M, Pizzo SV. Angiostatin's molecular mechanism: Aspects of specificity and regulation elucidated. J Cell Biochem 96: 242‐261, 2005.
 973. Wajih N, Sane DC. Angiostatin selectively inhibits signaling by hepatocyte growth factor in endothelial and smooth muscle cells. Blood 101: 1857‐1863, 2003.
 974. Walshe TE, Saint‐Geniez M, Maharaj AS, Sekiyama E, Maldonado AE, D'Amore PA. TGF‐beta is required for vascular barrier function, endothelial survival and homeostasis of the adult microvasculature. PLoS ONE 4: e5149, 2009.
 975. Waltenberger J, Claessonwelsh L, Siegbahn A, Shibuya M, Heldin CH. Different signal‐transduction properties of Kdr and Flt1, 2 receptors for vascular endothelial growth‐factor. J Biol Chem 269: 26988‐26995, 1994.
 976. Waltenberger J, Lange J, Kranz A. Vascular endothelial growth factor‐A‐induced chemotaxis of monocytes is attenuated in patients with diabetes mellitus: A potential predictor for the individual capacity to develop collaterals. Circulation 102: 185‐190, 2000.
 977. Walther C, Mobius‐Winkler S, Linke A, Bruegel M, Thiery J, Schuler G, Halbrecht R. Regular exercise training compared with percutaneous intervention leads to a reduction of inflammatory markers and cardiovascular events in patients with coronary artery disease. Eur J Cardiovasc Prev Rehabil 15: 107‐112, 2008.
 978. Wang HJ, Li YL, Gao L, Zucker IH, Wang W. Alteration in skeletal muscle afferents in rats with chronic heart failure. J Physiol 588: 5033‐5047, 2010.
 979. Wang HJ, Pan YX, Wang WZ, Gao L, Zimmerman MC, Zucker IH, Wang W. Exercise training prevents the exaggerated exercise pressor reflex in rats with chronic heart failure. J Appl Physiol 108: 1365‐1375, 2010.
 980. Wang HJ, Pan YX, Wang WZ, Zucker IH, Wang W. NADPH oxidaase‐derived reactive oxygen species in skeletal muscle modulates the exercise pressor reflex. J Appl Physiol 107: 450‐459, 2009.
 981. Wang L, Zeng H, Wang P, Soker S, Mukhopadhyay D. Neuropilin‐1‐mediated vascular permeability factor/vascular endothelial growth factor‐dependent endothelial cell migration. J Biol Chem 278: 48848‐48860, 2003.
 982. Wang SH, Zhang HT, Dai XZ, Sealock R, Faber JE. Genetic architecture underlying variation in extent and remodeling of the collateral circulation. Circ Res 300: 558‐568, 2010.
 983. Watanabe K, Hasegawa Y, Yamashita H, Shimizu K, Ding Y, Abe M, Ohta H, Imagawa K, Hojo K, Maki H, Sonoda H, Sato Y. Vasohibin as an endothelium‐derived negative feedback regulator of angiogenesis. J Clin Invest 114: 898‐907, 2004.
 984. Waters RE, Terjung RL, Peters KG, Annex BH. Preclinical models of human peripheral arterial occlusive disease: Implications for investigation of therapeutic agents. [Review] [64 refs]. J Appl Physiol 97: 773‐780, 2004.
 985. Watson L, Ellis B, Leng GC. Exercise for intermittent claudication. Cochrane Database Syst Rev 8: CD000990, 2008.
 986. Watson NL, Sutton‐Tyrrell K, Youk AO, Boudreau RM, Mackey RH, Simonsick EM, Rosano C, Hardy SE, Windham BG, Harris TB, Nijjar SS, Lakatta EG, Atkinson HH, Johnson KC, Bauer DC, Nemwan AB. Arterial stiffness and gait speed in older adults with and without peripheral arterial disease. Am J Hypertens 24: 90‐95, 2011.
 987. Weihrauch D, Lohr NL, Mraovic B, Ludwig LM, Chilian WM, Pagel S, Warltier DC, Kersten JR. Chronic hyperglycemia attenuates coronary collateral development and impairs proliferative properties of myocardial interstitial fluid by production of angiostatin. Circulation 109: 2343‐2348, 2004.
 988. Westenbrink BD, Lip+¡ic E, van der Meer P, van der Hast P, Oeseburg H, Du Marchie Sarvaas GJ, Koster J, Voors AA, van Veldhuisen DJ, van Gilst WH, Schoemaker RG. Erythropoietin improves cardiac function through endothelial progenitor cell and vascular endothelial growth factor mediated neovascularization. Eur Heart J 28: 2018‐2027, 2007.
 989. Westvik TS, Fitzgerald TN, Muto A, Maloney SP, Pimiento JM, Fancher TT, Magri D, Westvik HH, Nishibe T, Velazquez OC, Dardik A. Limb ischemia after iliac ligation in aged mice stimulates angiogenesis without arteriogenesis. J Vasc Surg 49: 464‐473, 2009.
 990. White FC, Carroll SM, Magnet A, Bloor CM. Coronary collateral development in swine after coronary artery occlusion. Circ Res 71: 1490‐1500, 1992.
 991. Whyman MR, Fowkes FG, Kerracher EM, Gillespie IN, Lee AJ, Housley E, Ruckley CV. Randomised controlled trial of percutaneous transluminal angioplasty for intermittent claudication. Eur J Vasc Endovas Surg 12: 167‐172, 1996.
 992. Whyman MR, Fowkes FG, Kerracher EM, Gillespie IN, Lee AJ, Housley E, Ruckley CV. Is intermittent claudication improved by percutaneous transluminal angioplasty? A randomized controlled trial. J Vasc Surg 26: 551‐557, 1997.
 993. Williams CK, Li JL, Murga M, Harris AL, Tosato G. Up‐regulation of the Notch ligand Delta‐like 4 inhibits VEGF‐induced endothelial cell function. Blood 107: 931‐939, 2006.
 994. Williams J, Cartland D, Rudge J, Egginton S. VEGF trap abolishes shear stress‐ and overload‐dependent angiogenesis in skeletal muscle. Microcirc 13: 499‐509, 2006.
 995. Williams JL, Cartland D, Hussain A, Egginton S. A differential role for nitric oxide in two forms of physiological angiogenesis in mouse. J Physiol 570: 445‐454, 2006.
 996. Williams JL, Weichert A, Zakrzewicz A, Silva‐Azevedo L, Pries AR, Baum O, Egginton S. Differential gene and protein expression in abluminal sprouting and intraluminal splitting forms of angiogenesis. Clin Sci 110: 587‐595, 2006.
 997. Williams MA, Smith SA, DE OB, Mitchell JH, Garry MG. The group IV afferent neuron expresses multiple receptor alterations in cardiomyopathic rats: Evidence at the cannabinoid CB1 receptor. J Physiol 586: 835‐845, 2008.
 998. Wilson SE. Trials of endovascular treatment for superficial femoral artery occlusive lesions: A call for medically managed control patients. Ann Vasc Surg 24: 498‐502, 2010.
 999. Winder WW, Holloszy JO. Response of mitochondria of different types of skeletal muscle to thyrotoxicosis. Am J Physiol 232: C180‐C184, 1977.
 1000. Winder WW, Holmes BF, Rubink DS, Jensen EB, Chen M, Holloszy JO. Activation of AMP‐activated protein kinase increases mitochondrial enzymes in skeletal muscle. J Appl Physiol 88: 2219‐2226, 2000.
 1001. Woessner JF. The family of matrix metalloproteinases. Ann NY Acad Sci 732: 11‐21, 1994.
 1002. Wolf C, Cai WJ, Vosschulte R, Koltai S, Mousavipour D, Scholz D, Afsah‐Hedjri A, Schaper W, Schaper J. Vascular remodeling and altered protein expression during growth of coronary collateral arteries. J Mol Cell Cardiol 30: 2291‐2305, 1998.
 1003. Womack CJ, Ivey FM, Gardner AW, Macko RF. Fibrinolytic response to acute exercise in patients with peripheral arterial disease. Med Sci Sports Exer 33: 214‐219, 2001.
 1004. Womack CJ, Nagelkirk PR, Coughlin AM. Exercise‐induced chanegs in coagulation and fibrinolysis in healthy populations and patients with cardiovascular disease. Sports Med 33: 795‐807, 2003.
 1005. Womack CJ, Sieminski DJ, Katzel LI, Yataco A, Gardner AW. Improved walking economy in patients with peripheral arterial occlusive disease. Med Sci Sports Exer 29: 1286‐1290, 1997.
 1006. Woolard J, Bevan HS, Harper SJ, Bates DO. Molecular diversity of VEGF‐A as a regulator of its biological activity. Microcirc 16: 572‐592, 2009.
 1007. Woolard J, Wang WY, Bevan HS, Qiu Y, Morbidelli L, Pritchard‐Jones RO, Cui TG, Sugiono M, Waine E, Perrin R, Foster R, Digby‐Bell J, Shields JD, Whittles CE, Mushens RE, Gillatt DA, Ziche M, Harper SJ, Bates DO. VEGF165b, an inhibitory vascular endothelial growth factor splice variant: Mechanism of action, in vivo effect on angiogenesis and endogenous protein expression. Cancer Res 64: 7822‐7835, 2004.
 1008. Wright DC, Geiger PC, Han DH, Jones TE, Holloszy JO. Calcium induces increases in peroxisome proliferator‐activated receptor gamma coactivator‐1alpha and mitochondrial biogenesis by a pathway leading to p38 mitogen‐activated protein kinase activation. J Biol Chem 282: 18793‐18799, 2007.
 1009. Wright DC, Han DH, Garcia‐Roves PM, Geiger PC, Jones TE, Holloszy JO. Exercise‐induced mitochondrial biogenesis begins before the increase in muscle PGC‐1alpha expression. J Biol Chem 282: 194‐199, 2007.
 1010. Wu FT, Stefanini MO, Mac Gabhann F, Kontos CD, Annex BH, Popel AS. VEGF and soluble VEGF receptor‐1 (sFlt‐1) distributions in peripheral arterial disease: An in silico model. Am J Physiol 298: H2174‐H2191, 2010.
 1011. Wurdeman SR, Myers SA, Johanning JM, Pipinos II, Stergiou N. External work is deficient in both limgs of patients with unilateral PAD. Med Eng Phys 34: 000‐000, 2012.
 1012. Wustehube J, Bartol A, Liebler SS, Brutsch R, Zhu Y, Felbor U, Sure U, Augustin HG, Fischer A. Cerebral cavernous malformation protein CCM1 inhibits sprouting angiogenesis by activating DELTA‐NOTCH signaling. Proc Natl Acad Sci U S A 107: 12640‐12645, 2010.
 1013. Xing J, Gao Z, Lu J, Sinoway LI, Li J. Femoral artery occlusion augments TRPV1‐mediated sympathetic responsiveness. Am J Physiol 295: H1262‐H1269, 2008.
 1014. Xing J, Lu J, Li J. Contribution of nerve growth factor to augmented TRPV1 responses of muscle sensory neurons by femoral artery occlusion. Am J Physiol 296: H1380‐H1387, 2009.
 1015. Xing J, Sinoway LI, Li J. Differential responses of sensory neurones innervating glycolytic and oxidative muscle to protons and capsaicin. J Physiol 586: 3245‐3252, 2008.
 1016. Xu J, Rodriguez D, Petitclerc E, Kim JJ, Hangai M, Moon YS, Davis GE, Brooks PC, Yuen SM. Proteolytic exposure of a cryptic site within collagen type IV is required for angiogenesis and tumor growth in vivo. J Cell Biol 154: 1069‐1079, 2001.
 1017. Yan Z, Okutsu M, Akhtar YN, Lira VA. Regulation of exercise‐induced fiber type transformation, mitochondrial biogenesis, and angiogenesis in skeletal muscle. J Appl Physiol 110: 264‐274, 2011.
 1018. Yang HT, Deschenes MR, Ogilvie RW, Terjung RL. Basic fibroblast growth factor increases collateral blood flow in rats with femoral arterial ligation. Circ Res 79: 62‐69, 1996.
 1019. Yang HT, Feng Y, Allen LA, Protter A, Terjung RL. Efficacy and specificity of bFGF increased collateral flow in experimental peripheral arterial insufficiency. Am J Physiol 278: H1966‐H1973, 2000.
 1020. Yang HT, Feng Y. bFGF increases collateral blood flow in aged rats with femoral artery ligation. Am J Physiol 278: H85‐H93, 2000.
 1021. Yang HT, Laughlin MH, Terjung RL. Prior exercise training increases collateral‐dependent blood flow in rats after acute femoral artery occlusion. Am J Physiol 279: H1890‐H1897, 2000.
 1022. Yang HT, Ogilvie RW, Terjung RL. Low‐intensity training produces muscle adaptations in rats with femoral artery stenosis. J Appl Physiol 71: 1822‐1829, 1991.
 1023. Yang HT, Ogilvie RW, Terjung RL. Peripheral adaptations in trained aged rats with femoral artery stenosis. Circ Res 74: 235‐243, 1994.
 1024. Yang HT, Ogilvie RW, Terjung RL. Training increases collateral‐dependent muscle blood flow in aged rats. Am J Physiol 268: H1174‐H1180, 1995.
 1025. Yang HT, Ogilvie RW, Terjung RL. Heparin increases exercise‐induced collateral blood flow in rats with femoral artery ligation. Circ Res 76: 448‐456, 1995.
 1026. Yang HT, Ren J, Laughlin MH, Terjung RL. Prior exercise training produces NO‐dependent increases in collateral blood flow after acute arterial occlusion. Am J Physiol 282: H301‐H310, 2002.
 1027. Yang HT, Yan Z, Abraham JA, Terjung RL. VEGF(121)‐ and bFGF‐induced increase in collateral blood flow requires normal nitric oxide production. Am J Physiol 280: H1097‐H1104, 2001.
 1028. Yilmaz MB, Caldir V, Guray Y, Guray U, Altay H, Demirkan B, Cay S, Kisacik HL, Korkmaz S. Relation of coronary collateral vessel development in patients with a totally occluded right coronary artery to the metabolic syndrome. Am J Cardiol 97: 636‐639, 2006.
 1029. Yu J, de Muinck ED, Zhuang Z, Drinane M, Kauser K, Rubanyi GM, Qian HS, Murata T, Escalante B, Sessa WC. Endothelial nitric oxide synthase is critical for ischemic remodeling, mural cell recruitment, and blood flow reserve. Proc Natl Acad Sci U S A 102: 10999‐11004, 2005.
 1030. Yu Q, Stamenkovic I. Cell surface‐localized matrix metalloproteinase‐9 proteolytically activates TGF‐beta and promotes tumor invasion and angiogenesis. Genes Dev 14: 163‐176, 2000.
 1031. Yuan HT, Khankin EV, Karumanchi SA, Parikh SM. Angiopoietin 2 is a partial agonist/antagonist of Tie2 signaling in the endothelium. Mol Cell Biol 29: 2011‐2022, 2009.
 1032. Yue X, Tomanek RJ. Stimulation of coronary vasculogenesis/angiogenesis by hypoxia in cultured embryonic hearts. Dev Dyn 216: 28‐36, 1999.
 1033. Yun S, Dardik A, Haga M, Yamashita A, Yamaguchi S, Koh Y, Madri JA, Sumpio BE. Transcription factor Sp1 phosphorylation induced by shear stress inhibits membrane type 1‐matrix metalloprotinase expression in endothelium. J Biol Chem 277: 34808‐34814, 2002.
 1034. Zachary I, Gliki G. Signaling transduction mechanisms mediating biological actions of the vascular endothelial growth factor family. Cardiovasc Res 49: 568‐581, 2001.
 1035. Zbinden R, Zbinden S, Billinger M, Windecker S, Meier B, Seiler C. Influence of diabetes mellitus on coronary collateral flow: An answer to an old controversy. Heart 91: 1289‐1293, 2005.
 1036. Zetterquist S. The effect of active training on the nutritive blood flow in exercising ischemic legs. Scand J Clin Lab Invest 25: 101‐111, 1970.
 1037. Zhang J, Cao R, Zhang Y, Jia T, Cao Y, Wahlberg E. Differential roles of PDGFR‐alpha and PDGFR‐beta in angiogenesis and vessel stability. FASEB J 23: 153‐163, 2009.
 1038. Zhang K, Lu J, Mori T, Smith‐Powell L, Synold TW, Chen S, Wen W. Baicalin increases VEGF expression and angiogenesis by activating the ERR(alpha)/PGC‐1(alpha) pathway. Cardiovasc Res 89: 426‐435, 2011.
 1039. Zhang HT, Scott PA, Morbidelli L, Peak S, Moore J, Turley H, Harris AL, Ziche M, Bicknell R. The 121 amino acid isoform of vascular endothelial growth factor is more strongly tumorigenic than other splice variants in vivo. Br J Cancer 83: 63‐68, 2000.
 1040. Zhang Y, Furumura M, Morita E. Distinct signaling pathways confer different vascular responses to VEGF 121 and VEGF 165. Growth Factors 26: 125‐131, 2008.
 1041. Zhao M, New L, Kravchenko VV, Kato Y, Gram H, di Padova F, Olson EN, Ulevitch RJ, Han J. Regulation of the MEF2 family of transcription factors by p38. Mol Cell Biol 19: 21‐30, 1999.
 1042. Zheng H, Li YF, Wang W, Patel KP. Enhanced angiotensin‐mediated excitation of renal sympathetic nerve actvity within the paraventricular nucleus of anesthetized rats with heart failure. Am J Physiol 297: R1364‐R1374, 2009.
 1043. Zheng H, Yi YF, Cornish KG, Zucker IH, Patel KP. Exercise training improves endogenous nitric oxide mechanisms within the paraventricular nucleus in rats with heart failure. Am J Physiol 288: H2332‐H2341, 2005.
 1044. Zheng W, Christensen LP, Tomanek RJ. Differential effects of cyclic and static stretch on coronary microvascular endothelial cell receptors and vasculogenic/angiogenic responses. Am J Physiol 295: H794‐H800, 2008.
 1045. Zhou AL, Egginton S, Brown MD, Hudlicka O. Capillary growth in overloaded, hypertrophic adult rat skeletal muscle: An ultrastructural study. The Anatomical Record 252: 49‐63, 1998.
 1046. Zhou AL, Egginton S, Hudlicka O, Brown MD. Internal division of capillaries in rat skeletal muscle in response to chronic vasodilator treatment with a1‐antagonist prazosin. Cell Tissue Res 293: 293‐303, 1998.
 1047. Ziada AM, Hudlicka O, Tyler KR, Wright AJ. The effect of long‐term vasodilatation on capillary growth and performance in rabbit heart and skeletal muscle. Cardiovasc Res 18: 724‐732, 1984.
 1048. Ziche M, Morbidelli L, Choudhuri R, Zhang HT, Donnini S, Granger HJ, Bicknell R. Niric oxide synthase lies downstream from vascular endothelial growth factor‐induced but not basic fibroblast growth factor‐induced angiogenesis. J Clin Invest 99: 2625‐2634, 1997.
 1049. Ziegler MA, Distasi MR, Bills RG, Miller SJ, Alloosh M, Murphy MP, George A, A., Sturek M, Dalsing MC, Unthank JL. Marvels, mysteries, and misconceptions of vascular compensation to peripheral artery occlusion. Microcirc 17: 3‐20, 2010.
 1050. Zoladz JA, Korzeniewski B, Grassi B. Training‐induced acceleration of oxygen uptake kinetics in skeletal muscle: The underlying mechanisms. J Physiol Pharmacol 57: 67‐84, 2006.
 1051. Zucker IH. Novel mechanisms of sympathetic regulation on chronic heart failure. Hypertension 48: 1005‐1011, 2006.
 1052. Zucker IH, Patel KP, Schultz HD, Li YF, Wang W, Pliquett RU. Exercise training and sympathetic regulation in experimental heart failure. Exerc Sport Sci Rev 32: 107‐111, 2004.
 1053. Zucker IH, Wang W, Pliquett R, Liu JL, Patel KP. The regulation of sympathetic outflow in heart failure. The roles of angiotensin II, nitric oxide, and exercise training. Ann NY Acad Sci 940: 431‐443, 2001.
 1054. Zukowska Z, Pons J, Lee EW, Li L. Neuropeptide Y: A new mediator linking sympathetic nerves, blood vessels and immune system? Can J Physiol Pharmacol 81: 89‐94, 2003.
 1055. Zwetsloot KA, Westerkamp LM, Holmes BF, Gavin TP. AMPK regulates basal skeletal muscle capillarization and VEGF expression, but is not necessary for the angiogenic response to exercise. J Physiol 586: 6021‐6035, 2008.
Further Reading
 1. Schaper W, Schaper J. Arteriogenesis. Boston: Kluwer Academic Publishers, 2004, pp. 1‐377.
 2. Charkravarthy MV, Booth FW. Exercise. Philadelphia: Hanley & Belfus, 2003, pp. 1‐326.

Further Reading

Schaper W, Shaper J. Arteriogenesis. Boston: Kluwer Academic Publishers, 2004, p. 1-377.

Charkravarthy MV, Booth FW. Exercise. Philadelphia: Hanley & Belfus. 2003, p. 1-326.


Related Articles:

Molecular Mechanisms of Muscle Plasticity with Exercise
Mechanisms of Exercise‐Induced Mitochondrial Biogenesis in Skeletal Muscle: Implications for Health and Disease
Circulation to Skeletal Muscle
Skeletal Muscle Adaptability: Significance for Metabolism and Performance
Central Neural Control of Respiration and Circulation During Exercise
Lack of Exercise Is a Major Cause of Chronic Diseases

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Tara L. Haas, Pamela G. Lloyd, Hsiao‐Tung Yang, Ronald L. Terjung. Exercise Training and Peripheral Arterial Disease. Compr Physiol 2012, 2: 2933-3017. doi: 10.1002/cphy.c110065