Comprehensive Physiology Wiley Online Library

Hypothalamic‐Pituitary‐Adrenal Axis—Feedback Control

Full Article on Wiley Online Library



ABSTRACT

The hypothalamo‐pituitary‐adrenal axis (HPA) is responsible for stimulation of adrenal corticosteroids in response to stress. Negative feedback control by corticosteroids limits pituitary secretion of corticotropin, ACTH, and hypothalamic secretion of corticotropin‐releasing hormone, CRH, and vasopressin, AVP, resulting in regulation of both basal and stress‐induced ACTH secretion. The negative feedback effect of corticosteroids occurs by action of corticosteroids at mineralocorticoid receptors (MR) and/or glucocorticoid receptors (GRs) located in multiple sites in the brain and in the pituitary. The mechanisms of negative feedback vary according to the receptor type and location within the brain‐hypothalmo‐pituitary axis. A very rapid nongenomic action has been demonstrated for GR action on CRH neurons in the hypothalamus, and somewhat slower nongenomic effects are observed in the pituitary or other brain sites mediated by GR and/or MR. Corticosteroids also have genomic actions, including repression of the pro‐opiomelanocortin (POMC) gene in the pituitary and CRH and AVP genes in the hypothalamus. The rapid effect inhibits stimulated secretion, but requires a rapidly rising corticosteroid concentration. The more delayed inhibitory effect on stimulated secretion is dependent on the intensity of the stimulus and the magnitude of the corticosteroid feedback signal, but also the neuroanatomical pathways responsible for activating the HPA. The pathways for activation of some stressors may partially bypass hypothalamic feedback sites at the CRH neuron, whereas others may not involve forebrain sites; therefore, some physiological stressors may override or bypass negative feedback, and other psychological stressors may facilitate responses to subsequent stress. © 2015 American Physiological Society. Compr Physiol 5:1161‐1182, 2015.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1. Feedback effects of corticosteroids operate in several time domains. The most rapid effects are nongenomic, GR‐mediated effects in the hypothalamus, which appear within 3 to 5 min. Slightly slower effects of corticosteroids are observed within 10 min in the hippocampus; these are nongenomic MR‐mediated effects. Effects in the pituitary are observed by 10 to 20 min and inhibit CRH stimulated ACTH release. More delayed effects of corticosteroids in the pituitary have been shown that inhibit CRH stimulation of cAMP, cAMP‐stimulated CRH release, and CRH receptors on corticotropes. Inhibition of POMC and CRH transcription can begin as early as 30 min, but would be evident more slowly due to mRNA and protein turnover.
Figure 2. Figure 2. Location of mineralocorticoid receptors (MR, yellow) and glucocorticoid receptors (GR, red and green) in areas known to influence HPA activity. Direct inhibition of the HPA can occur through GR effects on corticotropes and GR effects on the CRH neurons. Corticosteroids also act in the hippocampus through MR and GR, to increase CA1 firing. Hippocampal excitation may inhibit PVN neurons through an inhibitory circuit involving GABAergic projection from the bed nucleus of the stria terminalis (BNST) to CRH neurons. Other potential inhibitory sites for GR action are in the prefrontal cortex and in the basolateral amygdala (BLA); projections from these nuclei is also relayed to PVN through the BNST. GR, and possibly MR, localized in the nucleus of the tractus solitaries may also exert inhibitory effects on CRH neuron activity. In contrast, GR in the central nucleus of the amygdala (CeA; shown in green) have a stimulatory effect on HPA activity.


Figure 1. Feedback effects of corticosteroids operate in several time domains. The most rapid effects are nongenomic, GR‐mediated effects in the hypothalamus, which appear within 3 to 5 min. Slightly slower effects of corticosteroids are observed within 10 min in the hippocampus; these are nongenomic MR‐mediated effects. Effects in the pituitary are observed by 10 to 20 min and inhibit CRH stimulated ACTH release. More delayed effects of corticosteroids in the pituitary have been shown that inhibit CRH stimulation of cAMP, cAMP‐stimulated CRH release, and CRH receptors on corticotropes. Inhibition of POMC and CRH transcription can begin as early as 30 min, but would be evident more slowly due to mRNA and protein turnover.


Figure 2. Location of mineralocorticoid receptors (MR, yellow) and glucocorticoid receptors (GR, red and green) in areas known to influence HPA activity. Direct inhibition of the HPA can occur through GR effects on corticotropes and GR effects on the CRH neurons. Corticosteroids also act in the hippocampus through MR and GR, to increase CA1 firing. Hippocampal excitation may inhibit PVN neurons through an inhibitory circuit involving GABAergic projection from the bed nucleus of the stria terminalis (BNST) to CRH neurons. Other potential inhibitory sites for GR action are in the prefrontal cortex and in the basolateral amygdala (BLA); projections from these nuclei is also relayed to PVN through the BNST. GR, and possibly MR, localized in the nucleus of the tractus solitaries may also exert inhibitory effects on CRH neuron activity. In contrast, GR in the central nucleus of the amygdala (CeA; shown in green) have a stimulatory effect on HPA activity.
References
 1.Abe K, Critchlow V. Effects of corticosterone, dexamethasone and surgical isolation of the medial basal hypothalamus on rapid feedback control of stress‐induced corticotropin secretion in female rats. Endocrinology 101: 498‐505, 1977.
 2.Abou‐Samra AB, Catt KJ, Aguilera G. Biphasic inhibition of adrenocorticotropin release by corticosterone in cultured anterior pituitary cells. Endocrinology 119: 972‐977, 1986a.
 3.Abou‐Samra AB, Catt KJ, Aguilera G. Role of arachidonic acid in the regulation of adrenocorticotropin release from rat anterior pituitary cell cultures. Endocrinology 119: 1427‐1431, 1986b.
 4.Akana SF, Dallman MF. Feedback and facilitation in the adrenocortical system: Unmasking facilitation by partial inhibition of the glucocorticoid response to prior stress. Endocrinology 131: 57‐68, 1992.
 5.Amatruda TT Jr., Holligsworth DR, D'Esopo ND, Upton GV, Bondy PK. A study of the mechanism of the steroid withdrawal syndrome. Evidence for integrity of the hypothalamic‐pituitary‐adrenal system. J Clin Endocrinol Metab 20: 339‐354, 1960.
 6.Aso E, Ozaita A, Valdizan EM, Ledent C, Pazos A, Maldonado R, Valverde O. BDNF impairment in the hippocampus is related to enhanced despair behavior in CB1 knockout mice. J Neurochem 105: 565‐572, 2008.
 7.Atkinson HC, Leggett JD, Wood SA, Castrique ES, Kershaw YM, Lightman SL. Regulation of the hypothalamic‐pituitary‐adrenal axis circadian rhythm by endocannabinoids is sexually diergic. Endocrinology 151: 3720‐3727, 2010.
 8.Atkinson HC, Wood SA, Castrique ES, Kershaw YM, Wiles CC, Lightman SL. Corticosteroids mediate fast feedback of the rat hypothalamic‐pituitary‐adrenal axis via the mineralocorticoid receptor. Am J Physiol Endocrinol Metab 294: E1011‐E1022, 2008.
 9.Autelitano DJ, Blum M, Roberts JL. Changes in rat pituitary nuclear and cytoplasmic pro‐opiomelanocortin RNAs associated with adrenalectomy and glucocorticoid replacement. Mol Cell Endocrinol 66: 171‐180, 1989.
 10.Barna I, Zelena D, Arszovszki AC, Ledent C. The role of endogenous cannabinoids in the hypothalamo‐pituitary‐adrenal axis regulation: In vivo and in vitro studies in CB1 receptor knockout mice. Life Sci 75: 2959‐2970, 2004.
 11.Bartholome B, Spies CM, Gaber T, Schuchmann S, Berki T, Kunkel D, Bienert M, Radbruch A, Burmester GR, Lauster R, Scheffold A, Buttgereit F. Membrane glucocorticoid receptors (mGCR) are expressed in normal human peripheral blood mononuclear cells and up‐regulated after in vitro stimulation and in patients with rheumatoid arthritis. FASEB J 18: 70‐80, 2004.
 12.Bechtold AG, Scheuer DA. Glucocorticoids act in the dorsal hindbrain to modulate baroreflex control of heart rate. Am J Physiol Regul Integr Comp Physiol 290: R1003‐R1011, 2006.
 13.Bell ME, Wood CE, Keller‐Wood M. Influence of reproductive state on pituitary‐adrenal activity in the ewe. Domest Anim Endocrinol 8: 245‐254, 1991.
 14.Bhatnagar S, Dallman M. Neuroanatomical basis for facilitation of hypothalamic‐pituitary‐adrenal responses to a novel stressor after chronic stress. Neuroscience 84: 1025‐1039, 1998.
 15.Bhatnagar S, Huber R, Nowak N, Trotter P. Lesions of the posterior paraventricular thalamus block habituation of hypothalamic‐pituitary‐adrenal responses to repeated restraint. J Neuroendocrinol 14: 403‐410, 2002.
 16.Bhatnagar S, Viau V, Chu A, Soriano L, Meijer OC, Dallman MF. A cholecystokinin‐mediated pathway to the paraventricular thalamus is recruited in chronically stressed rats and regulates hypothalamic‐pituitary‐adrenal function. J Neurosci 20: 5564‐5573, 2000.
 17.Bilezikjian LM, Vale WW. Glucocorticoids inhibit corticotropin‐releasing factor‐induced production of adenosine 3′,5′‐monophosphate in cultured anterior pituitary cells. Endocrinology 113: 657‐662, 1983.
 18.Bilezikjian LM, Woodgett JR, Hunter T, Vale WW. Phorbol ester‐induced down‐regulation of protein kinase C abolishes vasopressin‐mediated responses in rat anterior pituitary cells. Mol Endocrinol 1: 555‐560, 1987.
 19.Bilodeau S, Vallette‐Kasic S, Gauthier Y, Figarella‐Branger D, Brue T, Berthelet F, Lacroix A, Batista D, Stratakis C, Hanson J, Meij B, Drouin J. Role of Brg1 and HDAC2 in GR trans‐repression of the pituitary POMC gene and misexpression in Cushing disease. Genes Dev 20: 2871‐2886, 2006.
 20.Birnberg NC, Lissitzky JC, Hinman M, Herbert E. Glucocorticoids regulate proopiomelanocortin gene expression in vivo at the levels of transcription and secretion. Proc Natl Acad Sci U S A 80: 6982‐6986, 1983.
 21.Bisschop PH, Dekker MJ, Osterthun W, Kwakkel J, Anink JJ, Boelen A, Unmehopa UA, Koper JW, Lamberts SW, Stewart PM, Swaab DF, Fliers E. Expression of 11beta‐hydroxysteroid dehydrogenase type 1 in the human hypothalamus. J Neuroendocrinol 25: 425‐432, 2013.
 22.Boscaro M, Paoletta A, Scarpa E, Barzon L, Fusaro P, Fallo F, Sonino N. Age‐related changes in glucocorticoid fast feedback inhibition of adrenocorticotropin in man. J Clin Endocrinol Metab 83: 1380‐1383, 1998.
 23.Boudaba C, Szabo K, Tasker JG. Physiological mapping of local inhibitory inputs to the hypothalamic paraventricular nucleus. J Neurosci 16: 7151‐7160, 1996.
 24.Bradbury MJ, Akana SF, Dallman MF. Roles of type I and II corticosteroid receptors in regulation of basal activity in the hypothalamo‐pituitary‐adrenal axis during the diurnal trough and the peak: Evidence for a nonadditive effect of combined receptor occupation. Endocrinology 134: 1286‐1296, 1994.
 25.Bradbury MJ, Strack AM, Dallman MF. Lesions of the hippocampal efferent pathway (fimbria‐fornix) do not alter sensitivity of adrenocorticotropin to feedback inhibition by corticosterone in rats. Neuroendocrinology 58: 396‐407, 1993.
 26.Buckingham JC. Fifteenth Gaddum Memorial Lecture December 1994. Stress and the neuroendocrine‐immune axis: The pivotal role of glucocorticoids and lipocortin 1. Br J Pharmacol 118: 1‐19, 1996.
 27.Buckley TM, Mullen BC, Schatzberg AF. The acute effects of a mineralocorticoid receptor (MR) agonist on nocturnal hypothalamic‐adrenal‐pituitary (HPA) axis activity in healthy controls. Psychoneuroendocrinology 32: 859‐864, 2007.
 28.Carey MP, Deterd CH, deKonig J, Helmerhost F, DeKloet ER. The influence of ovarian steroids on hypothalamic‐pituitary‐adrenal regulation in the female rat. J Endocrinol 144: 311‐321, 1995.
 29.Carr BR, Parker CR, Madden JD, MacDonald PC, Porter JC. Maternal adrenocorticotropin and cortisol relationships throughout human pregnancy. Am J Obstet Gynecol 139: 416‐422, 1981.
 30.Carr DB, Wool C, Lydiard RB, Fisher J, Gelenberg A, Klerman G. Rate‐sensitive inhibition of ACTH release in depression. Am J Psychiatry 141: 590‐592, 1984.
 31.Carroll BJ, Curtis GC. Neuroendocrine identification of depressed patients. Aust N Z J Psychiatry 10: 13‐20, 1976.
 32.Carvalhaes‐Neto N, Huayllas MK, Ramos LR, Cendoroglo MS, Kater CE. Cortisol, DHEAS and aging: Resistance to cortisol suppression in frail institutionalized elderly. J Endocrinol Invest 26: 17‐22, 2003.
 33.Castro M, Elias LL, Elias PC, Moreira AC. A dose‐response study of salivary cortisol after dexamethasone suppression test in Cushing's disease and its potential use in the differential diagnosis of Cushing's syndrome. Clin Endocrinol (Oxf) 59: 800‐805, 2003.
 34.Childs GV, Morell JL, Niendorf A, Aguilera G. Cytochemical studies of corticotropin‐releasing factor (CRF) receptors in anterior lobe corticotropes: Binding, glucocorticoid regulation, and endocytosis of [biotinyl‐Ser1]CRF. Endocrinology 119: 2129‐2142, 1986.
 35.Childs GV, Unabia G. Rapid corticosterone inhibition of corticotropin‐releasing hormone binding and adrenocorticotropin release by enriched populations of corticotropes: Counteractions by arginine vasopressin and its second messengers. Endocrinology 126: 1967‐1975, 1990.
 36.Choi DC, Furay AR, Evanson NK, Ostrander MM, Ulrich‐Lai YM, Herman JP. Bed nucleus of the stria terminalis subregions differentially regulate hypothalamic‐pituitary‐adrenal axis activity: Implications for the integration of limbic inputs. J Neurosci 27: 2025‐2034, 2007.
 37.Choi DC, Furay AR, Evanson NK, Ulrich‐Lai YM, Nguyen MM, Ostrander MM, Herman JP. The role of the posterior medial bed nucleus of the stria terminalis in modulating hypothalamic‐pituitary‐adrenocortical axis responsiveness to acute and chronic stress. Psychoneuroendocrinology 33: 659‐669, 2008.
 38.Cole MA, Kalman BA, Pace TW, Topczewski F, Lowrey MJ, Spencer RL. Selective blockade of the mineralocorticoid receptor impairs hypothalamic‐pituitary‐adrenal axis expression of habituation. J Neuroendocrinol 12: 1034‐1042, 2000.
 39.Cole MA, Kim PJ, Kalman BA, Spencer RL. Dexamethasone suppression of corticosteroid secretion: Evaluation of the site of action by receptor measures and functional studies. Psychoneuroendocrinology 25: 151‐167, 2000.
 40.Cordero M, Brorsen BW, McFarlane D. Circadian and circannual rhythms of cortisol, ACTH, and alpha‐melanocyte‐stimulating hormone in healthy horses. Domest Anim Endocrinol 43: 317‐324, 2012.
 41.Cordon‐Cardo C, O'Brien JP, Casals D, Rittman‐Grauer L, Biedler JL, Melamed MR, Bertino JR. Multidrug‐resistance gene (P‐glycoprotein) is expressed by endothelial cells at blood‐brain barrier sites. Proc Natl Acad Sci U S A 86: 695‐698, 1989.
 42.Cota D. The role of the endocannabinoid system in the regulation of hypothalamic‐pituitary‐adrenal axis activity. J Neuroendocrinol 20(Suppl 1): 35‐38, 2008.
 43.Cota D, Steiner MA, Marsicano G, Cervino C, Herman JP, Grubler Y, Stalla J, Pasquali R, Lutz B, Stalla GK, Pagotto U. Requirement of cannabinoid receptor type 1 for the basal modulation of hypothalamic‐pituitary‐adrenal axis function. Endocrinology 148: 1574‐1581, 2007.
 44.Crapo L. Cushing's syndrome: A review of diagnostic tests. Metabolism 28: 955‐977, 1979.
 45.Crowe A, Tan AM. Oral and inhaled corticosteroids: Differences in P‐glycoprotein (ABCB1) mediated efflux. Toxicol Appl Pharmacol 260: 294‐302, 2012.
 46.Cullinan WE, Herman JP, Watson SJ. Ventral subicular interaction with the hypothalamic paraventricular nucleus: Evidence for a relay in the bed nucleus of the stria terminalis. J Comp Neurol 332: 1‐20, 1993.
 47.Cunningham ET Jr., Bohn MC, Sawchenko PE. Organization of adrenergic inputs to the paraventricular and supraoptic nuclei of the hypothalamus in the rat. J Comp Neurol 292: 651‐667, 1990.
 48.Cunningham ET Jr., Sawchenko PE. Anatomical specificity of noradrenergic inputs to the paraventricular and supraoptic nuclei of the rat hypothalamus. J Comp Neurol 274: 60‐76, 1988.
 49.Dallman MF. Stress update Adaptation of the hypothalamic‐pituitary‐adrenal axis to chronic stress. Trends Endocrinol Metab 4: 62‐69, 1993.
 50.Dallman MF. Fast glucocorticoid actions on brain: Back to the future. Front Neuroendocrinol 26: 103‐108, 2005.
 51.Dallman MF, Akana SF, Jacobson L, Levin N, Cascio CS, Shinsako J. Characterization of corticosterone feedback regulation of ACTH secretion. Ann‐N‐Y‐Acad‐Sci 512: 402‐414, 1987.
 52.Dallman MF, Akana SF, Strack AM, Scribner KS, Pecoraro N, la Fleur SE, Houshyar H, Gomez F. Chronic stress‐induced effects of corticosterone on brain: Direct and indirect. Ann N Y Acad Sci 1018: 141‐150, 2004.
 53.Dallman MF, Jones MT. Corticosteroid feedback control of ACTH secretion: Effect of stress‐induced corticosterone ssecretion on subsequent stress responses in the rat. Endocrinology 92: 1367‐1375, 1973.
 54.Dallman MF, Jones MT, Vernikos‐Danellis J, Ganong WF. Corticosteroid feedback control of ACTH secretion: Rapid effects of bilateral adrenalectomy on plasma ACTH in the rat. Endocrinology 91: 961‐968, 1972.
 55.Dallman MF, Makara GB, Roberts JL, Levin N, Blum M. Corticotrope response to removal of releasing factors and corticosteroids in vivo. Endocrinology 117: 2190‐2197, 1985.
 56.Dallman MF, Yates FE. Anatomical and functional mapping of central neural input and feedback pathways of the adrenocortical system. Mem Soc Endocrinol 17: 39‐72, 1968.
 57.Dallman MF, Yates FE. Dynamic asymmetries in the corticosteroid feedback path and distribution‐metabolism‐binding elements of the adrenocortical system. Ann N Y Acad Sci 156: 696‐721, 1969.
 58.Daly JR, Fletcher MR, Glass D, Chambers DJ, Bitensky L, Chayen J. Comparison of effects of long‐term corticotrophin and corticosteroid treatment on responses of plasma growth hormone, ACTH, and corticosteroid to hypoglycaemia. Br Med J 2: 521‐524, 1974.
 59.Daly JR, Loveridge N, Bitensky L, Chayen J. The cytochemical bioassay of corticotrophin. Clin Endocrinol (Oxf) 3: 311‐318, 1974.
 60.Daly JR, Myles AB, Bacon PA, Beardwell CG, Savage O. Pituitary adrenal function during corticosteroid withdrawal in rheumatoid arthritis. Ann Rheum Dis 26: 18‐25, 1967.
 61.Dayanithi G, Antoni FA. Rapid as well as delayed inhibitory effects of glucocorticoid hormones on pituitary adrenocorticotropic hormone release are mediated by type II glucocorticoid receptors and require newly synthesized messenger ribonucleic acid as well as protein. Endocrinology 125: 308‐313, 1989.
 62.de Kloet ER. Functional profile of the binary brain corticosteroid receptor system: Mediating, multitasking, coordinating, integrating. Eur J Pharmacol 719: 53‐62, 2013.
 63.de Kloet ER. From receptor balance to rational glucocorticoid therapy. Endocrinology 155: 2754‐2769, 2014.
 64.de Kloet ER, Fitzsimons CP, Datson NA, Meijer OC, Vreugdenhil E. Glucocorticoid signaling and stress‐related limbic susceptibility pathway: About receptors, transcription machinery and microRNA. Brain Res 1293: 129‐141, 2009.
 65.de Kloet ER, Karst H, Joels M. Corticosteroid hormones in the central stress response: Quick‐and‐slow. Front Neuroendocrinol 29: 268‐272, 2008.
 66.de Kloet ER, Oitzl MS, Joels M. Functional implications of brain corticosteroid receptor diversity. Cell Mol Neurobiol 13: 433‐455, 1993.
 67.de Kloet ER, Voorhuis TA, Leunissen JL, Koch B. Intracellular CBG‐like molecules in the rat pituitary. J Steroid Biochem 20: 367‐371, 1984.
 68.de Kloet ER, Vreugdenhil E, Oitzl MS, Joels M. Brain corticosteroid receptor balance in health and disease. Endocr Rev 19: 269‐301, 1998.
 69.De Souza EB, Van Loon GR. Rate‐sensitive glucocorticoid feedback inhibition of adrenocorticotropin and beta‐endorphin/beta‐lipotropin secretion in rats. Endocrinology 125: 2927‐2934, 1989.
 70.Deuschle M, Schweiger U, Gotthardt U, Weber B, Korner A, Schmider J, Standhardt H, Lammers CH, Krumm B, Heuser I. The combined dexamethasone/corticotropin‐releasing hormone stimulation test is more closely associated with features of diurnal activity of the hypothalamo‐pituitary‐adrenocortical system than the dexamethasone suppression test. Biol Psychiatry 43: 762‐766, 1998.
 71.Di S, Malcher‐Lopes R, Halmos KC, Tasker JG. Nongenomic glucocorticoid inhibition via endocannabinoid release in the hypothalamus: A fast feedback mechanism. J Neurosci 23: 4850‐4857, 2003.
 72.Di S, Malcher‐Lopes R, Marcheselli VL, Bazan NG, Tasker JG. Rapid glucocorticoid‐mediated endocannabinoid release and opposing regulation of glutamate and gamma‐aminobutyric acid inputs to hypothalamic magnocellular neurons. Endocrinology 146: 4292‐4301, 2005.
 73.Di S, Maxson MM, Franco A, Tasker JG. Glucocorticoids regulate glutamate and GABA synapse‐specific retrograde transmission via divergent nongenomic signaling pathways. J Neurosci 29: 393‐401, 2009.
 74.Diorio D, Viau V, Meaney MJ. The role of the medial prefrontal cortex (cingulate gyrus) in the regulation of hypothalamic‐pituitary‐adrenal responses to stress. J Neurosci 13: 3839‐3847, 1993.
 75.Drouin J, Maira M, Philips A. Novel mechanism of action for Nur77 and antagonism by glucocorticoids: A convergent mechanism for CRH activation and glucocorticoid repression of POMC gene transcription. J Steroid Biochem Mol Biol 65: 59‐63, 1998.
 76.Drouin J, Sun YL, Chamberland M, Gauthier Y, De LA, Nemer M, Schmidt TJ. Novel glucocorticoid receptor complex with DNA element of the hormone‐repressed POMC gene. EMBO J 12: 145‐156, 1993.
 77.Drouin J, Trifiro MA, Plante RK, Nemer M, Eriksson P, Wrange O. Glucocorticoid receptor binding to a specific DNA sequence is required for hormone‐dependent repression of pro‐opiomelanocortin gene transcription. Mol Cell Biol 9: 5305‐5314, 1989.
 78.Duvarci S, Pare D. Glucocorticoids enhance the excitability of principal basolateral amygdala neurons. J Neurosci 27: 4482‐4491, 2007.
 79.Eberwine JH, Roberts JL. Glucocorticoid regulation of pro‐opiomelanocortin gene transcription in the rat pituitary. J Biol Chem 259: 2166‐2170, 1984.
 80.Emmert MH, Herman JP. Differential forebrain c‐fos mRNA induction by ether inhalation and novelty: Evidence for distinctive stress pathways. Brain Res 845: 60‐67, 1999.
 81.Evanson NK, Tasker JG, Hill MN, Hillard CJ, Herman JP. Fast feedback inhibition of the HPA axis by glucocorticoids is mediated by endocannabinoid signaling. Endocrinology 151: 4811‐4819, 2010.
 82.Fehm HL, Voigt KH, Kummer G, Lang R, Pfeiffer EF. Differential and integral corticosteroid feedback effects on ACTH secretion in hypoadrenocorticism. J Clin Invest 63: 247‐253, 1979.
 83.Fehm HL, Voigt KH, Kummer G, Pfeiffer EF. Positive rate‐sensitive corticosteroid feedback mechanism of ACTH secretion in Cushing's disease. J Clin Invest 64: 102‐108, 1979.
 84.Feldman S, Weidenfeld J. Glucocorticoid receptor antagonists in the hippocampus modify the negative feedback following neural stimuli. Brain Res 821: 33‐37, 1999.
 85.Flak JN, Ostrander MM, Tasker JG, Herman JP. Chronic stress‐induced neurotransmitter plasticity in the PVN. J Comp Neurol 517: 156‐165, 2009.
 86.Fleischer N, Vale W. Inhibition of vasopressin‐induced ACTH release from the pituitary by glucocorticoids in vitro. Endocrinology 83: 1232‐1236, 1968.
 87.Furay AR, Bruestle AE, Herman JP. The role of the forebrain glucocorticoid receptor in acute and chronic stress. Endocrinology 149: 5482‐5490, 2008.
 88.Gagner JP, Drouin J. Opposite regulation of pro‐opiomelanocortin gene transcription by glucocorticoids and CRH. Mol and Cell Endocrinol 40: 25‐32, 1985.
 89.Gagner JP, Drouin J. Tissue‐specific regulation of pituitary proopiomelanocortin gene transcription by corticotropin‐releasing hormone, 3′,5′‐cyclic adenosine monophosphate, and glucocorticoids. Mol Endocrinol 1: 677‐682, 1987.
 90.Gesing A, Bilang‐Bleuel A, Droste SK, Linthorst AC, Holsboer F, Reul JM. Psychological stress increases hippocampal mineralocorticoid receptor levels: Involvement of corticotropin‐releasing hormone. J Neurosci 21: 4822‐4829, 2001.
 91.Ghosal S, Bundzikova‐Osacka J, Dolgas CM, Myers B, Herman JP. Glucocorticoid receptors in the nucleus of the solitary tract (NTS) decrease endocrine and behavioral stress responses. Psychoneuroendocrinology 45: 142‐153, 2014.
 92.Ginsberg AB, Campeau S, Day HE, Spencer RL. Acute glucocorticoid pretreatment suppresses stress‐induced hypothalamic‐pituitary‐adrenal axis hormone secretion and expression of corticotropin‐releasing hormone hnRNA but does not affect c‐fos mRNA or fos protein expression in the paraventricular nucleus of the hypothalamus. J Neuroendocrinol 15: 1075‐1083, 2003.
 93.Ginsberg AB, Pecoraro NC, Warne JP, Horneman HF, Dallman MF. Rapid alteration of stress‐induced hypothalamic‐pituitary‐adrenal hormone secretion in the rat: A comparison of glucocorticoids and cannabinoids. Stress 13: 248‐257, 2010.
 94.Gold PW, Chrousos GP. Organization of the stress system and its dysregulation in melancholic and atypical depression: High vs low CRH/NE states. Mol Psychiatry 7: 254‐275, 2002.
 95.Graber AL, Ney RL, Nicholson WE, Island DP, Liddle GW. Natural history of pituitary‐adrenal recovery following long‐term suppression with corticosteroids. J Clin Endocrinol Metab 25: 11‐16, 1965.
 96.Gray WD, Munson PL. The rapidity of the adrenocorticotropic response of the pituitary to the intravenous administration of histamine. Endocrinology 48: 471‐481, 1951.
 97.Griffen SC, Raff H. Vasopressin responses to hypoxia in conscious rats: Interaction with water restriction. J‐Endocrinol 125: 61‐66, 1990.
 98.Grissom N, Bhatnagar S. Habituation to repeated stress: Get used to it. Neurobiol Learn Mem 92: 215‐224, 2009.
 99.Guardiola‐Diaz HM, Kolinske JS, Gates LH, Seasholtz AF. Negative glucorticoid regulation of cyclic adenosine 3′,5′‐monophosphate‐stimulated corticotropin‐releasing hormone‐reporter expression in AtT‐20 cells. Mol Endocrinol 10: 317‐329, 1996.
 100.Hallahan C, Young DA, Munck A. Time course of early events in the action of glucocorticoids on rat thymus cells in vitro. Synthesis and turnover of a hypothetical cortisol‐induced protein inhibition of glucose metabolism and of a presumed ribonucleic acid. J Biol Chem 248: 2922‐2927, 1973.
 101.Haller J, Mikics E, Makara GB. The effects of non‐genomic glucocorticoid mechanisms on bodily functions and the central neural system. A critical evaluation of findings. Front Neuroendocrinol 29: 273‐291, 2008.
 102.Han F, Ozawa H, Matsuda K, Nishi M, Kawata M. Colocalization of mineralocorticoid receptor and glucocorticoid receptor in the hippocampus and hypothalamus. Neurosci Res 51: 371‐381, 2005.
 103.Han JZ, Lin W, Chen YZ. Inhibition of ATP‐induced calcium influx in HT4 cells by glucocorticoids: Involvement of protein kinase A. Acta Pharmacol Sin 26: 199‐204, 2005.
 104.Härfstrand A, Fuxe K, Cintra A, Agnati LF, Zini I, Wikström AC, Okret S, Yu ZY, Goldstein M, Steinbusch H, et al. Glucocorticoid receptor immunoreactivity in monoaminergic neurons of rat brain. Proc Natl Acad Sci U S A 83: 9779‐9783, 1986.
 105.Harris AP, Holmes MC, de Kloet ER, Chapman KE, Seckl JR. Mineralocorticoid and glucocorticoid receptor balance in control of HPA axis and behaviour. Psychoneuroendocrinology 38: 648‐658, 2012.
 106.Harris HJ, Kotelevtsev Y, Mullins JJ, Seckl JR, Holmes MC. Intracellular regeneration of glucocorticoids by 11beta‐hydroxysteroid dehydrogenase (11beta‐HSD)‐1 plays a key role in regulation of the hypothalamic‐pituitary‐adrenal axis: Analysis of 11beta‐HSD‐1‐deficient mice. Endocrinology 142: 114‐120, 2001.
 107.Hatzinger M, Z'Brun A, Hemmeter U, Seifritz E, Baumann F, Holsboer‐Trachsler E, Heuser IJ. Hypothalamic‐pituitary‐adrenal system function in patients with Alzheimer's disease. Neurobiol Aging 16: 205‐209, 1995.
 108.Hauger RL, Millan MA, Catt KJ, Aguilera G. Differential regulation of brain and pituitary corticotropin‐releasing factor receptors by corticosterone. Endocrinology 120: 1527‐1533, 1987.
 109.Heesch CM, Rogers RC. Effects of pregnancy and progesterone metabolites on regulation of sympathetic outflow. Clin Exper Pharm Physiol 22: 136‐142, 1995.
 110.Henley DE, Lightman SL. New insights into corticosteroid‐binding globulin and glucocorticoid delivery. Neuroscience 180: 1‐8, 2011.
 111.Herman JP. Regulation of adrenocorticosteroid receptor mRNA expression in the central nervous system. Cell Mol Neurobiol 13: 349‐372, 1993.
 112.Herman JP. In situ hybridization analysis of vasopressin gene transcription in the paraventricular and supraoptic nuclei of the rat: Regulation by stress and glucocorticoids. J Comp Neurol 363: 15‐27, 1995.
 113.Herman JP, Adams D, Prewitt C. Regulatory changes in neuroendocrine stress‐integrative circuitry produced by a variable stress paradigm. Neuroendocrinology 61: 180‐190, 1995.
 114.Herman JP, McKlveen JM, Solomon MB, Carvalho‐Netto E, Myers B. Neural regulation of the stress response: Glucocorticoid feedback mechanisms. Braz J Med Biol Res 45: 292‐298, 2012.
 115.Herman JP, Mueller NK. Role of the ventral subiculum in stress integration. Behav Brain Res 174: 215‐224, 2006.
 116.Herman JP, Prewitt CM, Cullinan WE. Neuronal circuit regulation of the hypothalamo‐pituitary‐adrenocortical stress axis. Crit Rev Neurobiol 10: 371‐394, 1996.
 117.Heuser IJ, Gotthardt U, Schweiger U, Schmider J, Lammers CH, Dettling M, Holsboer F. Age‐associated changes of pituitary‐adrenocortical hormone regulation in humans: Importance of gender. Neurobiol Aging 15: 227‐231, 1994.
 118.Heydendael W, Sharma K, Iyer V, Luz S, Piel D, Beck S, Bhatnagar S. Orexins/hypocretins act in the posterior paraventricular thalamic nucleus during repeated stress to regulate facilitation to novel stress. Endocrinology 152: 4738‐4752, 2011.
 119.Hill MN, Hillard CJ, McEwen BS. Alterations in corticolimbic dendritic morphology and emotional behavior in cannabinoid CB1 receptor‐deficient mice parallel the effects of chronic stress. Cereb Cortex 21: 2056‐2064, 2011.
 120.Hill MN, Patel S, Campolongo P, Tasker JG, Wotjak CT, Bains JS. Functional interactions between stress and the endocannabinoid system: From synaptic signaling to behavioral output. J Neurosci 30: 14980‐14986, 2010.
 121.Hill MN, Tasker JG. Endocannabinoid signaling, glucocorticoid‐mediated negative feedback, and regulation of the hypothalamic‐pituitary‐adrenal axis. Neuroscience 204: 5‐16, 2012.
 122.Holmes MC, Antoni FA, Catt KJ, Aguilera G. Predominant release of vasopressin vs. corticotropin‐releasing factor from the isolated median eminence after adrenalectomy. Neuroendocrinology 43: 245‐251, 1986.
 123.Hsu DT, Kirouac GJ, Zubieta JK, Bhatnagar S. Contributions of the paraventricular thalamic nucleus in the regulation of stress, motivation, and mood. Front Behav Neurosci 8: 73, 2014.
 124.Hu SB, Tannahill LA, Biswas S, Lightman SL. Release of corticotrophin‐releasing factor‐41, arginine vasopressin and oxytocin from rat fetal hypothalamic cells in culture: Response to activation of intracellular second messengers and to corticosteroids. J Endocrinol 132: 57‐65, 1992.
 125.Hu W, Zhang M, Czeh B, Flugge G, Zhang W. Stress impairs GABAergic network function in the hippocampus by activating nongenomic glucocorticoid receptors and affecting the integrity of the parvalbumin‐expressing neuronal network. Neuropsychopharmacology 35: 1693‐1707, 2010.
 126.Hudson WH, Youn C, Ortlund EA. The structural basis of direct glucocorticoid‐mediated transrepression. Nat Struct Mol Biol 20: 53‐58, 2013.
 127.Huizenga NA, Koper JW, de LP, Pols HA, Stolk RP, Grobbee DE, de Jong FH, Lamberts SW. Interperson variability but intraperson stability of baseline plasma cortisol concentrations, and its relation to feedback sensitivity of the hypothalamo‐pituitary‐adrenal axis to a low dose of dexamethasone in elderly individuals. J Clin Endocrinol Metab 83: 47‐54, 1998.
 128.Imaki T, Nahan JL, Rivier C, Sawchenko PE, Vale W. Differential regulation of corticotropin‐releasing factor mRNA in rat brain regions by glucocorticoids and stress. J Neurosci 11: 585‐599, 1991.
 129.Ingle DJ, Kendall EC. Atrophy of the adrenal cortex of the rat produced by the administration of large amounts of cortin. Science 86: 245, 1937.
 130.Jacobson L, Akana SF, Cascio CS, Scribner K, Shinsako J, Dallman MF. The adrenocortical system responds slowly to removal of corticosterone in the absence of concurrent stress. Endocrinology 1989: 2144‐2152, 1989.
 131.Jacobson L, Sapolsky R. The role of the hippocampus in feedback regulation of the hypothalamic‐pituitary‐adrenocortical axis. Endocr Rev 12: 118‐134, 1991.
 132.Jacobson L, Sharp FR, Dallman MF. Induction of fos‐like immunoreactivity in hypothalamic corticotropin‐releasing factor neurons after adrenalectomy in the rat. Endocrinology 126: 1709‐1719, 1990.
 133.Jaferi A, Bhatnagar S. Corticosterone can act at the posterior paraventricular thalamus to inhibit hypothalamic‐pituitary‐adrenal activity in animals that habituate to repeated stress. Endocrinology 147: 4917‐4930, 2006.
 134.Jenkins JS, MEAKIN JW, Nelson DH, THORN GW. Inhibition of adrenal steroid 11‐oxygenation in the dog. Science 128: 478‐480, 1958.
 135.Joels M, Hesen W, de Kloet ER. Mineralocorticoid hormones suppress serotonin‐induced hyperpolarization of rat hippocampal CA1 neurons. J Neurosci 11: 2288‐2294, 1991.
 136.Joels M, Krugers HJ, Lucassen PJ, Karst H. Corticosteroid effects on cellular physiology of limbic cells. Brain Res 1293: 91‐100, 2009.
 137.Joels M, Pasricha N, Karst H. The interplay between rapid and slow corticosteroid actions in brain. Eur J Pharmacol 719: 44‐52, 2013.
 138.Joels M, Sarabdjitsingh RA, Karst H. Unraveling the time domains of corticosteroid hormone influences on brain activity: Rapid, slow, and chronic modes. Pharmacol Rev 64: 901‐938, 2012.
 139.Joels M, Verkuyl JM, van RE. Hippocampal and hypothalamic function after chronic stress. Ann N Y Acad Sci 1007: 367‐378, 2003.
 140.John CD, Gavins FN, Buss NA, Cover PO, Buckingham JC. Annexin A1 and the formyl peptide receptor family: Neuroendocrine and metabolic aspects. Curr Opin Pharmacol 8: 765‐776, 2008.
 141.Johnson LK, Longnecker JP, Baxter JD, Dallman MF, Widmaier EP, Eberhardt NL. Glucocorticoid action: A mechanism involving nuclear and non‐nuclear pathways. Br‐J‐Dermatol 107: 6‐23, 1982.
 142.Jones MT, Brush FR, Neame RL. Characteristics of fast feedback control of corticotrophin release by corticosteroids. J Endocrinol 55: 489‐497, 1972.
 143.Jones MT, Gillham B. Factors involved in the regulation of adrenocorticotropic hormone/b‐lipotropic hormone. Physiol Rev 68: 743‐818, 1988.
 144.Jones MT, Hillhouse EW. Structure‐activity relationship and the mode of action of corticosteroid feedback on the secretion of corticotrophin‐releasing factor (corticoliberin). J Steroid Biochem 7: 1189‐1202, 1976.
 145.Jones MT, Hillhouse EW, Burden JL. Dynamics and mechanics of corticosteroid feedback at the hypothalamus and anterior pituitary gland. J Endocrinol 73: 405‐417, 1977a.
 146.Jones MT, Hillhouse EW, Burden JL. Structure‐activity relationships of corticosteroid feedback at the hypothalamic level. J Endocrinol 74: 415‐424, 1977b.
 147.Jones MT, Tiptaft EM. Structure‐activity relationship of various corticosteroids on the feedback control of corticotrophin secretion. Br J Pharmac 59: 35‐41, 1977.
 148.Jones MT, Tiptaft EM, Brush FR, Fergusson DAN, Neame RLB. Evidence for dual corticosteroid‐receptor mechanisms in the feedback control of adrenocorticotrophin secretion. J Endocr 60: 223‐233, 1974.
 149.Kageyama K, Suda T. Regulatory mechanisms underlying corticotropin‐releasing factor gene expression in the hypothalamus. Endocr J 56: 335‐344, 2009.
 150.Kageyama K, Suda T. Transcriptional regulation of hypothalamic corticotropin‐releasing factor gene. Vitam Horm 82: 301‐317, 2010.
 151.Kaneko M, Hiroshige T. Fast, rate‐sensitive corticosteroid negative feedback during stress. Am J Physiol 254: R39‐R45, 1978.
 152.Kant GJ, Eggleston T, Landman‐Roberts L, Kenion CC, Driver GC, Meyerhoff JL. Habituation to repeated stress is stressor specific. Pharmacol Biochem Behav 22: 631‐634, 1985.
 153.Karagianni N, Tsawdaroglou N. The c‐fos serum response element (SRE) confers negative response to glucocorticoids. Oncogene 9: 2327‐2334, 1994.
 154.Karssen AM, Meijer OC, van dS, I, Lucassen PJ, de Lange EC, de Boer AG, de Kloet ER. Multidrug resistance P‐glycoprotein hampers the access of cortisol but not of corticosterone to mouse and human brain. Endocrinology 142: 2686‐2694, 2001.
 155.Karst H, Berger S, Erdmann G, Schutz G, Joels M. Metaplasticity of amygdalar responses to the stress hormone corticosterone. Proc Natl Acad Sci U S A 107: 14449‐14454, 2010.
 156.Karst H, Berger S, Turiault M, Tronche F, Schutz G, Joels M. Mineralocorticoid receptors are indispensable for nongenomic modulation of hippocampal glutamate transmission by corticosterone. Proc Natl Acad Sci U S A 102: 19204‐19207, 2005.
 157.Karst H, Joels M. The induction of corticosteroid actions on membrane properties of hippocampal CA1 neurons requires protein synthesis. Neurosci Lett 130: 27‐31, 1991.
 158.Karst H, Joels M. Corticosterone slowly enhances miniature excitatory postsynaptic current amplitude in mice CA1 hippocampal cells. J Neurophysiol 94: 3479‐3486, 2005.
 159.Karst H, Karten YJ, Reichardt HM, de Kloet ER, Schutz G, Joels M. Corticosteroid actions in hippocampus require DNA binding of glucocorticoid receptor homodimers. Nat Neurosci 3: 977‐978, 2000.
 160.Karst H, Wadman WJ, Joels M. Corticosteroid receptor‐dependent modulation of calcium currents in rat hippocampal CA1 neurons. Brain Res 649: 234‐242, 1994.
 161.Kathol RG, Jaeckle RS, Lopez JF, Meller WH. Pathophysiology of HPA axis abnormalities in patients with major depression: An update. Am J Psychiatry 146: 311‐317, 1989.
 162.Keller‐Wood M. Control of canine ACTH by corticosteroids: Interaction between dose and time. Am J Physiol 254: R23‐R26, 1988.
 163.Keller‐Wood M. Fast feedback control of canine corticotropin by cortisol. Endocrinology 126: 1959‐1966, 1990.
 164.Keller‐Wood M. Evidence for reset of regulated cortisol in pregnancy: Studies in adrenalectomized ewes. Am‐J‐Physiol 274: R145‐R151, 1998.
 165.Keller‐Wood M, Bell ME. Evidence for rapid inhibition of ACTH by corticosteroids in dogs. Am J Physiol 255: R344‐R349, 1988.
 166.Keller‐Wood M, Dallman MF. Corticosteroid inhibition of ACTH secretion. Endocrine Reviews 5: 1‐22, 1984.
 167.Keller‐Wood M, Leeman E, Shinsako J, Dallman MF. Steroid inhibition of canine ACTH: In vivo evidence for feedback at the corticotrope. Am J Physiol 255: E241‐E246, 1988.
 168.Keller‐Wood M, Wood CE. Pregnancy alters cortisol feedback inhibition of stimulated ACTH: Studies in adrenalectomized ewes. Am J Physiol Regul Integr Comp Physiol 280: R1790‐R1798, 2001.
 169.Keller‐Wood M, Wood CE. Regulation of maternal ACTH in ovine pregnancy: Does progesterone play a role? Am J Physiol Endocrinol Metab 295: E913‐E920, 2008.
 170.Keller‐Wood ME, Shinsako J, Dallman MF. Feedback inhibition of adrenocorticotropic hormone by physiological increases in plasma corticosteroids in conscious dogs. J Clin Invest 71: 859‐866, 1983.
 171.Keller‐Wood ME, Shinsako J, Dallman MF. Inhibition of the adrenocorticotropin and corticosteroid responses to hypoglycemia after prior stress. Endocrinology 113: 491‐496, 1983.
 172.Kemppainen RJ, Sartin JL. Evidence for episodic but not circadian activity in plasma concentrations of adrenocorticotrophin, cortisol and thyroxine in dogs. Endocrinology 103: 219‐226, 1984.
 173.Kerfoot EC, Chattillion EA, Williams CL. Functional interactions between the nucleus tractus solitarius (NTS) and nucleus accumbens shell in modulating memory for arousing experiences. Neurobiol Learn Mem 89: 47‐60, 2008.
 174.Kerr DS, Campbell LW, Thibault O, Landfield PW. Hippocampal glucocorticoid receptor activation enhances voltage‐dependent Ca2+ conductances: Relevance to brain aging. Proc Natl Acad Sci U S A 89: 8527‐8531, 1992.
 175.Kolber BJ, Roberts MS, Howell MP, Wozniak DF, Sands MS, Muglia LJ. Central amygdala glucocorticoid receptor action promotes fear‐associated CRH activation and conditioning. Proc Natl Acad Sci U S A 105: 12004‐12009, 2008.
 176.Kovacs K, Kiss JZ, Makara GB. Glucocorticoid implants around the hypothalamic paraventricular nucleus prevent the increase of corticotropin‐releasing factor and arginine vasopressin immunostaining induced by adrenalectomy. Neuroendocrinology 44: 229‐234, 1986.
 177.Krug AW, Pojoga LH, Williams GH, Adler GK. Cell membrane‐associated mineralocorticoid receptors? New evidence. Hypertension 57: 1019‐1025, 2011.
 178.Kubli‐Garfias C. Chemical structure of corticosteroids and its relationship with their acute induction of lordosis in the female rat. Horm Behav 24: 443‐449, 1990.
 179.Kuwahara S, Arima H, Banno R, Sato I, Kondo N, Oiso Y. Regulation of vasopressin gene expression by cAMP and glucocorticoids in parvocellular neurons of the paraventricular nucleus in rat hypothalamic organotypic cultures. J Neurosci 23: 10231‐10237, 2003.
 180.Lachize S, Apostolakis EM, van der Laan S, Tijssen AM, Xu J, de Kloet ER, Meijer OC. Steroid receptor coactivator‐1 is necessary for regulation of corticotropin‐releasing hormone by chronic stress and glucocorticoids. Proc Natl Acad Sci U S A 106: 8038‐8042, 2009.
 181.Lammers CH, Garcia‐Borreguero D, Schmider J, Gotthardt U, Dettling M, Holsboer F, Heuser IJ. Combined dexamethasone/corticotropin‐releasing hormone test in patients with schizophrenia and in normal controls: II. Biol Psychiatry 38: 803‐807, 1995.
 182.Laryea G, Schutz G, Muglia LJ. Disrupting hypothalamic glucocorticoid receptors causes HPA axis hyperactivity and excess adiposity. Mol Endocrinol 27: 1655‐1665, 2013.
 183.Latchoumanin O, Mynard V, Devin‐Leclerc J, Dugue MA, Bertagna X, Catelli MG. Reversal of glucocorticoids‐dependent proopiomelanocortin gene inhibition by leukemia inhibitory factor. Endocrinology 148: 422‐432, 2007.
 184.Levin N, Shinsako J, Dallman MF. Corticosterone acts on the brain to inhibit adrenalectomy‐induced adrenocorticotropin secretion. Endocrinology 122: 694‐701, 1988.
 185.Liddle GW, Island D, Lance EM, Harris AP. Alterations of adrenal steroid patterns in man resulting from treatment with a chemical inhibitor of 11 beta‐hydroxylation. J Clin Endocrinol Metab 18: 906‐912, 1958.
 186.Lingis M, Richards EM, Keller‐Wood M. Differential effects of mineralocorticoid blockade on the hypothalamo‐pituitary‐adrenal axis in pregnant and nonpregnant ewes. Am J Physiol Endocrinol Metab 300: E592‐E599, 2011.
 187.Livanou T, Ferriman D, James VH. The response to stress after corticosteroid therapy. Proc R Soc Med 58: 1013‐1015, 1965.
 188.Lundblad JR, Roberts JL. Regulation of proopiomelanocortin gene expression in pituitary. Endocrine Reviews 9: 135‐158, 1988.
 189.Ma XM, Aguilera G. Differential regulation of corticotropin‐releasing hormone and vasopressin transcription by glucocorticoids. Endocrinology 140: 5642‐5650, 1999.
 190.Mahmoud SN, Scaccianoce S, Scraggs PR, Nicholson SA, Gillham B, Jones MT. Characteristics of corticosteroid inhibition of adrenocorticotrophin release from the anterior pituitary gland of the rat. J Endocrinol 102: 33‐42, 1984.
 191.Malcher‐Lopes R, Di S, Marcheselli VS, Weng FJ, Stuart CT, Bazan NG, Tasker JG. Opposing crosstalk between leptin and glucocorticoids rapidly modulates synaptic excitation via endocannabinoid release. J Neurosci 26: 6643‐6650, 2006.
 192.Malkoski SP, Dorin RI. Composite glucocorticoid regulation at a functionally defined negative glucocorticoid response element of the human corticotropin‐releasing hormone gene. Mol Endocrinol 13: 1629‐1644, 1999.
 193.McGaugh JL, Roozendaal B. Role of adrenal stress hormones in forming lasting memories in the brain. Curr Opin Neurobiol 12: 205‐210, 2002.
 194.McGill BE, Bundle SF, Yaylaoglu MB, Carson JP, Thaller C, Zoghbi HY. Enhanced anxiety and stress‐induced corticosterone release are associated with increased Crh expression in a mouse model of Rett syndrome. Proc Natl Acad Sci U S A 103: 18267‐18272, 2006.
 195.McHugh PR, Smith GP. Negative feedback in adrenocortical response to limbic stimulation in Macaca mulatta. Am J Physiol 213: 1445‐1450, 1967.
 196.Meijer OC, de Lange EC, Breimer DD, de Boer AG, Workel JO, de Kloet ER. Penetration of dexamethasone into brain glucocorticoid targets is enhanced in mdr1A P‐glycoprotein knockout mice. Endocrinology 139: 1789‐1793, 1998.
 197.Meinel S, Gekle M, Grossmann C. Mineralocorticoid receptor signaling: Crosstalk with membrane receptors and other modulators. Steroids 91C: 3‐10, 2014.
 198.Mello‐Carpes PB, Izquierdo I. The Nucleus of the Solitary Tract → Nucleus Paragigantocellularis → Locus Coeruleus → CA1 region of dorsal hippocampus pathway is important for consolidation of object recognition memory. Neurobiol Learn Mem 100: 56‐63, 2013.
 199.Mendel CM. The free hormone hypothesis: A physiologically based mathematical model. Endocr Rev 10: 232‐274, 1989.
 200.Mikics E, Barsy B, Barsvari B, Haller J. Behavioral specificity of non‐genomic glucocorticoid effects in rats: Effects on risk assessment in the elevated plus‐maze and the open‐field. Horm Behav 48: 152‐162, 2005.
 201.Miklos IH, Kovacs KJ. GABAergic innervation of corticotropin‐releasing hormone (CRH)‐secreting parvocellular neurons and its plasticity as demonstrated by quantitative immunoelectron microscopy. Neuroscience 113: 581‐592, 2002.
 202.Miller AH, Spencer RL, Pulera M, Kang S, McEwen BS, Stein M. Adrenal steroid receptor activation in rat brain and pituitary following dexamethasone: Implications for the dexamethasone suppression test. Biol Psychiatry 32: 850‐869, 1992.
 203.Mizoguchi K, Ikeda R, Shoji H, Tanaka Y, Maruyama W, Tabira T. Aging attenuates glucocorticoid negative feedback in rat brain.Neuroscience 159: 259‐270, 2009.
 204.Mizoguchi K, Yuzurihara M, Ishige A, Sasaki H, Chui DH, Tabira T. Chronic stress differentially regulates glucocorticoid negative feedback response in rats. Psychoneuroendocrinology 26: 443‐459, 2001.
 205.Modell S, Yassouridis A, Huber J, Holsboer F. Corticosteroid receptor function is decreased in depressed patients. Neuroendocrinology 65: 216‐222, 1997.
 206.Mopert B, Herbert Z, Caldwell JD, Jirikowski GF. Expression of corticosterone‐binding globulin in the rat hypothalamus. Horm Metab Res 38: 246‐252, 2006.
 207.Morphy MA, Fava GA, Perini GI, Molnar G, Zielezny M, Lisansky J. The dexamethasone suppression and metyrapone tests in depression. Psychiatry Res 15: 153‐158, 1985.
 208.Moura AM, Worcel M. Direct action of aldosterone on transmembrane 22Na efflux from arterial smooth muscle. Rapid and delayed effects. Hypertension 6: 425‐430, 1984.
 209.Mouri T, Itoi K, Takahashi K, Suda T, Murakami O, Yoshinaga K, Andoh N, Ohtani H, Masuda T, Sasano N. Colocalization of corticotropin‐releasing factor and vasopressin in the paraventricular nucleus of the human hypothalamus. Neuroendocrinology 57: 34‐39, 1993.
 210.Murphy BEP. Clinical evaluation of urinary cortisol determinations by competitive protein‐binding radioassay. J Clin Endocrinol 28: 343‐348, 1968.
 211.Myers B, McKlveen JM, Herman JP. Glucocorticoid actions on synapses, circuits, and behavior: Implications for the energetics of stress. Front Neuroendocrinol 35: 180‐196, 2014.
 212.Nakanishi S, Kita T, Taii S, Imura H, Numa S. Glucocorticoid effect on the level of corticotropin messenger RNA activity in rat pituitary. Proc Natl Acad Sci U S A 74: 3283‐3286, 1977.
 213.Nishi M, Kawata M. Brain corticosteroid receptor dynamics and trafficking: Implications from live cell imaging. Neuroscientist 12: 119‐133, 2006.
 214.Nishi M, Ogawa H, Ito T, Matsuda KI, Kawata M. Dynamic changes in subcellular localization of mineralocorticoid receptor in living cells: In comparison with glucocorticoid receptor using dual‐color labeling with green fluorescent protein spectral variants. Mol Endocrinol 15: 1077‐1092, 2001.
 215.Nolten WE, Rueckert PA. Elevated free cortisol index in pregnancy: Possible regulatory mechanisms. Am J Obstet Gynecol 139: 492‐498, 1981.
 216.O'Brien JT, Schweitzer I, Ames D, Tuckwell V, Mastwyk M. Cortisol suppression by dexamethasone in the healthy elderly: Effects of age, dexamethasone levels, and cognitive function. Biol Psychiatry 36: 389‐394, 1994.
 217.Oitzl MS, van Haarst AD, Sutanto W, de Kloet ER. Corticosterone, brain mineralocorticoid receptors (MRs) and the activity of the hypothalamic‐pituitary‐adrenal (HPA) axis: The Lewis rat as an example of increased central MR capacity and a hyporesponsive HPA axis. Psychoneuroendocrinology 20: 655‐675, 1995.
 218.Olijslagers JE, de Kloet ER, Elgersma Y, van Woerden GM, Joels M, Karst H. Rapid changes in hippocampal CA1 pyramidal cell function via pre‐ as well as postsynaptic membrane mineralocorticoid receptors. Eur J Neurosci 27: 2542‐2550, 2008.
 219.Osterlund C, Spencer RL. Corticosterone pretreatment suppresses stress‐induced hypothalamic‐pituitary‐adrenal axis activity via multiple actions that vary with time, site of action, and de novo protein synthesis. J Endocrinol 208: 311‐322, 2011.
 220.Otte C, Jahn H, Yassouridis A, Arlt J, Stober N, Maass P, Wiedemann K, Kellner M. The mineralocorticoid receptor agonist, fludrocortisone, inhibits pituitary‐adrenal activity in humans after pre‐treatment with metyrapone. Life Sci 73: 1835‐1845, 2003.
 221.Oxenkrug GF, Pomara N, McIntyre IM, Branconnier RJ, Stanley M, Gershon S. Aging and cortisol resistance to suppression by dexamethasone: A positive correlation. Psychiatry Res 10: 125‐130, 1983.
 222.Panaretto BA, Paterson JYF, Hills F. The relationship of the splanchnic, hepatic and renal clearance rates to the metabolic clearance rates of cortisol in conscious sheep. J Endocr 56: 285‐294, 1973.
 223.Pardy K, Adan RA, Carter DA, Seah V, Burbach JP, Murphy D. The identification of a cis‐acting element involved in cyclic 3′,5′‐adenosine monophosphate regulation of bovine vasopressin gene expression. J Biol Chem 267: 21746‐21752, 1992.
 224.Patel S, Roelke CT, Rademacher DJ, Cullinan WE, Hillard CJ. Endocannabinoid signaling negatively modulates stress‐induced activation of the hypothalamic‐pituitary‐adrenal axis. Endocrinology 145: 5431‐5438, 2004.
 225.Patel S, Roelke CT, Rademacher DJ, Hillard CJ. Inhibition of restraint stress‐induced neural and behavioural activation by endogenous cannabinoid signalling. Eur J Neurosci 21: 1057‐1069, 2005.
 226.Pavlov EP, Harman SM, Chrousos GP, Loriaux DL, Blackman MR. Responses of plasma adrenocorticotropin, cortisol, and dehydroepiandrosterone to ovine corticotropin‐releasing hormone in healthy aging men. J Clin Endocrinol Metab 62: 767‐772, 1986.
 227.Philips A, Maira M, Mullick A, Chamberland M, Lesage S, Hugo P, Drouin J. Antagonism between Nur77 and glucocorticoid receptor for control of transcription. Mol Cell Biol 17: 5952‐5959, 1997.
 228.Plotsky PM, Bruhn TO, Vale W. Evidence for multifactor regulation of the adrenocorticotropin secretory response to hemodynamic stimuli. Endocrinology 116: 633‐639, 1985a.
 229.Plotsky PM, Bruhn TO, Vale W. Hypophysiotropic regulation of adrenocorticotropin secretion in response to insulin‐induced hypoglycemia. Endocrinology 117: 323‐329, 1985b.
 230.Plotsky PM, Sawchenko PE. Hypophysial‐portal plasma levels, median eminence content, and immunohistochemical staining of corticotropin‐releasing factor, arginine vasopressin, and oxytocin after pharmacological adrenalectomy. Endocrinology 120: 1361‐1369, 1987.
 231.Pozzoli G, Bilezikjian LM, Perrin MH, Blount AL, Vale WW. Corticotropin‐releasing factor (CRF) and glucocorticoids modulate the expression of type 1 CRF receptor messenger ribonucleic acid in rat anterior pituitary cell cultures. Endocrinology 137: 65‐71, 1996.
 232.Rademacher DJ, Meier SE, Shi L, Ho WS, Jarrahian A, Hillard CJ. Effects of acute and repeated restraint stress on endocannabinoid content in the amygdala, ventral striatum, and medial prefrontal cortex in mice. Neuropharmacology 54: 108‐116, 2008.
 233.Radley JJ, Arias CM, Sawchenko PE. Regional differentiation of the medial prefrontal cortex in regulating adaptive responses to acute emotional stress. J Neurosci 26: 12967‐12976, 2006.
 234.Radley JJ, Gosselink KL, Sawchenko PE. A discrete GABAergic relay mediates medial prefrontal cortical inhibition of the neuroendocrine stress response. J Neurosci 29: 7330‐7340, 2009.
 235.Radley JJ, Sawchenko PE. A common substrate for prefrontal and hippocampal inhibition of the neuroendocrine stress response. J Neurosci 31: 9683‐9695, 2011.
 236.Raff H, Flemma RJ, Findling JW. Fast cortisol‐induced inhibition of the adrenocorticotropin response to surgery in humans. J‐Clin‐Endocrinol‐Metab 67: 1146‐1148, 1988.
 237.Raff H, Shinsako J, Keil LC, Dallman MF. Feedback inhibition of adrenocorticotropin and vasopressin responses to hypoxia by physiological increases in endogenous plasma corticosteroids in dogs. Endocrinology 114: 1245‐1249, 1984.
 238.Ratka A, Sutanto W, Bloemers M, de Kloet ER. On the role of brain mineralocorticoid (type I) and glucocorticoid (type II) receptors in neuroendocrine regulation. Neuroendocrinology 50: 117‐123, 1989.
 239.Ratman D, Vanden Berghe W, Dejager L, Libert C, Tavernier J, Beck IM, De BK. How glucocorticoid receptors modulate the activity of other transcription factors: A scope beyond tethering. Mol Cell Endocrinol 380: 41‐54, 2013.
 240.Reader SC, Alaghband‐Zadeh J, Daly JR, Robertson WR. Negative rate‐sensitive feedback effects on adrenocorticotrophin secretion by cortisol in normal subjects. J Endocrinol 92: 443‐448, 1982.
 241.Redei E. Immuno‐reactive and bioactive corticotropin‐releasing factor in rat thymus. Neuroendocrinology 55: 115‐118, 1992.
 242.Reiter MH, Vila G, Knosp E, Baumgartner‐Parzer SM, Wagner L, Stalla GK, Luger A. Opposite effects of serum‐ and glucocorticoid‐regulated kinase‐1 and glucocorticoids on POMC transcription and ACTH release. Am J Physiol Endocrinol Metab 301: E336‐E341, 2011.
 243.Reul JM, de Kloet ER, van Sluijs FJ, Rijnberk A, Rothuizen J. Binding characteristics of mineralocorticoid and glucocorticoid receptors in dog brain and pituitary. Endocrinology 127: 907‐915, 1990.
 244.Reul JM, Gesing A, Droste S, Stec IS, Weber A, Bachmann C, Bilang‐Bleuel A, Holsboer F, Linthorst AC. The brain mineralocorticoid receptor: Greedy for ligand, mysterious in function. Eur J Pharmacol 405: 235‐249, 2000.
 245.Reul JM, Probst JC, Skutella T, Hirschmann M, Stec IS, Montkowski A, Landgraf R, Holsboer F. Increased stress‐induced adrenocorticotropin response after long‐term intracerebroventricular treatment of rats with antisense mineralocorticoid receptor oligodeoxynucleotides. Neuroendocrinology 65: 189‐199, 1997.
 246.Reul JMH, DeKloet ER. Two receptor system for corticosterone in rat brain: Microdistribution and differential occupation. Endocrinology 117: 2505‐2511, 1985.
 247.Reul JMHM, DeKloet ER. Anatomical resolution of two types of corticosterone receptor sites in rat brain with in vitro autoradiography and computerized image analysis. J Steroid Biochem 24: 269‐272, 1986.
 248.Reynolds RM, Walker BR, Syddall HE, Andrew R, Wood PJ, Phillips DI. Is there a gender difference in the associations of birthweight and adult hypothalamic‐pituitary‐adrenal axis activity? Eur J Endocrinol 152: 249‐253, 2005.
 249.Richards EM, Hua Y, Keller‐Wood M. Pharmacology and physiology of ovine corticosteroid receptors. Neuroendocrinology 77: 2‐14, 2003.
 250.Rinaman L. Hindbrain noradrenergic A2 neurons: Diverse roles in autonomic, endocrine, cognitive, and behavioral functions. Am J Physiol Regul Integr Comp Physiol 300: R222‐R235, 2011.
 251.Robertson NM, Schulman G, Karnik S, Alnemri E, Litwack G. Demonstration of nuclear translocation of the mineralocorticoid receptor (MR) using an anti‐MR antibody and confocal laser scanning microscopy. Mol Endocrinol 7: 1226‐1239, 1993.
 252.Roesch DM, Keller‐Wood M. Differential effects of pregnancy on mineralocorticoid and glucocorticoid receptor availability and immunoreactivity in cortisol feedback sites. Neuroendocrinology 70: 55‐62, 1999.
 253.Roland BL, Sawchenko PE. Local origins of some GABAergic projections to the paraventricular and supraoptic nuclei of the hypothalamus in the rat. J Comp Neurol 332: 123‐143, 1993.
 254.Rothuizen J, Reul JM, van Sluijs FJ, Mol JA, Rijnberk A, de Kloet ER. Increased neuroendocrine reactivity and decreased brain mineralocorticoid receptor‐binding capacity in aged dogs. Endocrinology 132: 161‐168, 1993.
 255.Ruf K, Steiner FA. Steroid‐sensitive single neurons in rat hypothalamus and midbrain: Identification by microelectrophoresis. Science 156: 667‐669, 1967.
 256.Rupprecht R, Reul JM, van Steensel B, Spengler D, Soder M, Berning B, Holsboer F, Damm K. Pharmacological and functional characterization of human mineralocorticoid and glucocorticoid receptor ligands. Eur J Pharmacol 247: 145‐154, 1993.
 257.Rybakowski JK, Twardowska K. The dexamethasone/corticotropin‐releasing hormone test in depression in bipolar and unipolar affective illness. J Psychiatr Res 33: 363‐370, 1999.
 258.Sakellaris PC, Vernikos‐Danellis J. Alteration of pituitary‐adrenal dynamics induced by a water deprivation regimen. Physiol Behav 12: 1067‐1070, 1974.
 259.Saphier D, Feldman S. Iontophoresis of cortisol inhibits responses of identified paraventricular nucleus neurones to sciatic nerve stimulation. Brain Res 535: 159‐162, 1990.
 260.Sapolsky RM, Altmann J. Incidence of hypercortisolism and dexamethasone resistance increases with age among wild baboons. Biol Psychiatry 30: 1008‐1016, 1991.
 261.Sapolsky RM, Krey LC, McEwen BS. Glucocorticoid‐sensitive hippocampal neurons are involved in terminating the adrenocortical stress response. Proc Natl Acad Sci U S A 81: 6174‐6177, 1984.
 262.Sapolsky RM, Krey LC, McEwen BS. The adrenocortical axis in the aged rat: Impaired sensitivity to both fast and delayed feedback inhibition. Neurobiol Aging 7: 331‐335, 1986.
 263.Sarabdjitsingh RA, Conway‐Campbell BL, Leggett JD, Waite EJ, Meijer OC, de Kloet ER, Lightman SL. Stress responsiveness varies over the ultradian glucocorticoid cycle in a brain‐region‐specific manner. Endocrinology 151: 5369‐5379, 2010.
 264.Sato T, Sato M, Shinsako J, Dallman MF. Corticosterone‐induced changes in hypothalamic corticotropin‐releasing factor (CRF) content after stress. Endocrinology 97: 265‐274, 1975.
 265.Savic D, Knezevic G, Damjanovic S, Spiric Z, Matic G. Is there a biological difference between trauma‐related depression and PTSD? DST says ‘NO’. Psychoneuroendocrinology 37: 1516‐1520, 2012.
 266.Sawchenko PE, Swanson LW, Vale WW. Co‐expression of corticotropin‐releasing factor and vasopressin immunoreactivity in parvicellular neurosecretory neurons of the adrenalectomized rat. Proc Nat Acad Sci 81: 1883‐1887, 1984.
 267.Sayers G, Portanova R. Secretion of ACTH by isolated anterior pituitary cells: Kinetics of stimulation of corticotropin‐releasing factor and of inhibition by corticosterone. Endocrinology 94: 1723‐1730, 1974.
 268.Sayers G, Sayers MA. Regulation of pituitary adrenocorticotrophic activity during the response of the rat to acute stress. Endocrinology 40: 265‐273, 1947.
 269.Scheuer DA, Bechtold AG, Shank SS, Akana SF. Glucocorticoids act in the dorsal hindbrain to increase arterial pressure. Am J Physiol Heart Circ Physiol 286: H458‐H467, 2004.
 270.Schmider J, Lammers CH, Gotthardt U, Dettling M, Holsboer F, Heuser IJ. Combined dexamethasone/corticotropin‐releasing hormone test in acute and remitted manic patients, in acute depression, and in normal controls: I. Biol Psychiatry 38: 797‐802, 1995.
 271.Schmidt MV, Sterlemann V, Wagner K, Niederleitner B, Ganea K, Liebl C, Deussing JM, Berger S, Schutz G, Holsboer F, Muller MB. Postnatal glucocorticoid excess due to pituitary glucocorticoid receptor deficiency: Differential short‐ and long‐term consequences. Endocrinology 150: 2709‐2716, 2009.
 272.Schwartz J, Billestrup N, Perrin M, Rivier J, Vale W. Identification of corticotropin‐releasing factor (CRF) target cells and effects of dexamethasone on binding in anterior pituitary using a fluorescent analog of CRF. Endocrinology 119: 2376‐2382, 1986.
 273.Seckl JR, Chapman KE. Medical and physiological aspects of the 11beta‐hydroxysteroid dehydrogenase system. Eur J Biochem 249: 361‐364, 1997.
 274.Sharma A, Aoun P, Wigham J, Weist S, Veldhuis JD. Gender determines ACTH recovery from hypercortisolemia in healthy older humans. Metabolism 62: 1819‐1829, 2013.
 275.Sharma AN, Aoun P, Wigham JR, Weist SM, Veldhuis JD. Estradiol, but not testosterone, heightens cortisol‐mediated negative feedback on pulsatile ACTH secretion and ACTH approximate entropy in unstressed older men and women. Am J Physiol Regul Integr Comp Physiol 306: R627‐R635, 2014.
 276.Sharma D, Bhave S, Gregg E, Uht R. Dexamethasone induces a putative repressor complex and chromatin modifications in the CRH promoter. Mol Endocrinol 27: 1142‐1152, 2013.
 277.Shepard JD, Barron KW, Myers DA. Corticosterone delivery to the amygdala increases corticotropin‐releasing factor mRNA in the central amygdaloid nucleus and anxiety‐like behavior. Brain Res 861: 288‐295, 2000.
 278.Simonetta G, Walker DW, McMillen IC. Effect of feeding on the diurnal rhythm of plasma cortisol and adrenocorticotrophic hormone concentrations in the pregnant ewe and sheep fetus. Experimental Physiology 76: 219‐229, 1991.
 279.Spencer RL, Miller AH, Moday H, Stein M, McEwen BS. Diurnal differences in basal and acute stress levels of type I and type II adrenal steroid receptor activation in neural and immune tissues. Endocrinology 133: 1941‐1950, 1993.
 280.Spiga F, Walker JJ, Terry JR, Lightman SL. HPA axis‐rhythms. Compr Physiol 4: 1273‐1298, 2014.
 281.Steiner FA, Akert K, Ruf K. Steroid‐sensitive neurones in rat brain: Anatomical localization and responses to neurohumours and ACTH. Brain Res 12: 74‐85, 1969.
 282.Steiner MA, Marsicano G, Nestler EJ, Holsboer F, Lutz B, Wotjak CT. Antidepressant‐like behavioral effects of impaired cannabinoid receptor type 1 signaling coincide with exaggerated corticosterone secretion in mice. Psychoneuroendocrinology 33: 54‐67, 2008.
 283.Steiner MA, Wotjak CT. Role of the endocannabinoid system in regulation of the hypothalamic‐pituitary‐adrenocortical axis. Prog Brain Res 170: 397‐432, 2008.
 284.Strack AM, Bradbury MJ, Dallman MF. Corticosterone decreases nonshivering thermogenesis and increases lipid storage in brown adipose tissue. Am J Physiol 268: R183‐R191, 1995.
 285.Surjit M, Ganti KP, Mukherji A, Ye T, Hua G, Metzger D, Li M, Chambon P. Widespread negative response elements mediate direct repression by agonist‐liganded glucocorticoid receptor. Cell 145: 224‐241, 2011.
 286.Swanson LW, Sawchenko PE. Hypothalamic integration: Organization of the paraventricular and supraoptic nuclei. Annu Rev Neurosci 6: 269‐324, 1983.
 287.Takebe K, Kunita H, Sakakura M, Horiuchi Y, Mashimo K. Suppressive effect of dexamethasone on the rise of CRF activity in the median eminence induced by stress. Endocrinology 89: 1014‐1019, 1971.
 288.Tasker JG, Herman JP. Mechanisms of rapid glucocorticoid feedback inhibition of the hypothalamic‐pituitary‐adrenal axis. Stress 14: 398‐406, 2011.
 289.Tauchi M, Zhang R, D'Alessio DA, Stern JE, Herman JP. Distribution of glucagon‐like peptide‐1 immunoreactivity in the hypothalamic paraventricular and supraoptic nuclei. J Chem Neuroanat 36: 144‐149, 2008.
 290.Thrivikraman KV, Nemeroff CB, Plotsky PM. Sensitivity to glucocorticoid‐mediated fast‐feedback regulation of the hypothalamic‐pituitary‐adrenal axis is dependent upon stressor specific neurocircuitry. Brain Res 870: 87‐101, 2000.
 291.Tiwari S, Dong H, Kim EJ, Weintraub L, Epstein PM, Lerner A. Type 4 cAMP phosphodiesterase (PDE4) inhibitors augment glucocorticoid‐mediated apoptosis in B cell chronic lymphocytic leukemia (B‐CLL) in the absence of exogenous adenylyl cyclase stimulation. Biochem Pharmacol 69: 473‐483, 2005.
 292.Tuvnes FA, Steffenach HA, Murison R, Moser MB, Moser EI. Selective hippocampal lesions do not increase adrenocortical activity. J Neurosci 23: 4345‐4354, 2003.
 293.Ulrich‐Lai YM, Herman JP. Neural regulation of endocrine and autonomic stress responses. Nat Rev Neurosci 10: 397‐409, 2009.
 294.Ur E, Dinan TG, O'Keane V, Clare AW, McLoughlin L, Rees LH, Turner TH, Grossman A, Besser GM. Effect of metyrapone on the pituitary‐adrenal axis in depression: Relation to dexamethasone suppressor status. Neuroendocrinology 56: 533‐538, 1992.
 295.Uriguen L, Perez‐Rial S, Ledent C, Palomo T, Manzanares J. Impaired action of anxiolytic drugs in mice deficient in cannabinoid CB1 receptors. Neuropharmacology 46: 966‐973, 2004.
 296.van der Laan S, Lachize SB, Vreugdenhil E, de Kloet ER, Meijer OC. Nuclear receptor coregulators differentially modulate induction and glucocorticoid receptor‐mediated repression of the corticotropin‐releasing hormone gene. Endocrinology 149: 725‐732, 2008.
 297.van Haarst AD, Oitzl MS, de Kloet ER. Facilitation of feedback inhibition through blockade of glucocorticoid receptors in the hippocampus. Neurochem Res 22: 1323‐1328, 1997.
 298.Verkuyl JM, Hemby SE, Joels M. Chronic stress attenuates GABAergic inhibition and alters gene expression of parvocellular neurons in rat hypothalamus. Eur J Neurosci 20: 1665‐1673, 2004.
 299.Verkuyl JM, Joels M. Effect of adrenalectomy on miniature inhibitory postsynaptic currents in the paraventricular nucleus of the hypothalamus. J Neurophysiol 89: 237‐245, 2003.
 300.Walker JJ, Terry JR, Lightman SL. Origin of ultradian pulsatility in the hypothalamic‐pituitary‐adrenal axis. Proc Biol Sci 277: 1627‐1633, 2010.
 301.Waltman C, Blackman MR, Chrousos GP, Riemann C, Harman SM. Spontaneous and glucocorticoid‐inhibited adrenocorticotropic hormone and cortisol secretion are similar in healthy young and old men. J Clin Endocrinol Metab 73: 495‐502, 1991.
 302.Webster MJ, Knable MB, O'Grady J, Orthmann J, Weickert CS. Regional specificity of brain glucocorticoid receptor mRNA alterations in subjects with schizophrenia and mood disorders. Mol Psychiatry 7: 985‐994, 924, 2002.
 303.Whitnall MH, Key S, Gainer H. Vasopressin‐containing and vasopressin‐deficient subpopulations of corticotropin‐releasing factor axons are differentially affected by adrenalectomy. Endocrinology 120: 2180‐2182, 1987.
 304.Whitnall MH, Mezey E, Gainer H. Co‐localization of corticotropin‐releasing factor and vasopressin in median eminence neurosecretory vesicles. Nature 317: 248‐250, 1985.
 305.Widmaier EP, Dallman MF. The effects of corticotropin‐releasing factor on adrenocorticotropin secretion from perifused pituitaries in vitro: Rapid inhibition by glucocorticoids. Endocrinology 115: 2368‐2374, 1984.
 306.Wilkinson CW, Peskind ER, Raskind MA. Decreased hypothalamic‐pituitary‐adrenal axis sensitivity to cortisol feedback inhibition in human aging. Neuroendocrinology 65: 79‐90, 1997.
 307.Winnay JN, Xu J, O'Malley BW, Hammer GD. Steroid receptor coactivator‐1‐deficient mice exhibit altered hypothalamic‐pituitary‐adrenal axis function. Endocrinology 147: 1322‐1332, 2006.
 308.Wira C, Munck A. Specific glucocorticoid receptors in thymus cells. Localization in the nucleus and extraction of the cortisol‐receptor complex. J Biol Chem 245: 3436‐3438, 1970.
 309.Wolf OT, Dziobek I, McHugh P, Sweat V, de Leon MJ, Javier E, Convit A. Subjective memory complaints in aging are associated with elevated cortisol levels. Neurobiol Aging 26: 1357‐1363, 2005.
 310.Won JG, Jap TS, Chang SC, Ching KN, Chiang BN. Evidence for a delayed, integral, and proportional phase of glucocorticoid feedback on ACTH secretion in normal human volunteers. Metabolism 35: 254‐259, 1986.
 311.Wood CE. Absence of fast negative feedback control of ACTH and renin in fetal and adult sheep. Am J Physiol 250: R403‐R410, 1986.
 312.Wood CE, Shinsako J, Keil LC, Ramsay DJ, Dallman MF. Hormonal and hemodynamic responses to 15 ml/kg hemorrhage in conscious dogs: Responses correlate to body temperature. Proc Soc Exp Biol Med 167: 15‐18, 1981.
 313.Yates FE, Brennan RD, Urquhart J. Application of control systems theory to physiology. Adrenal glucocorticoid control system. Fed Proc 28: 71‐83, 1969.
 314.Yates FE, Leeman SE, Glenister DW, Dallman MF. Interaction between plasma corticosterone concentration and adrenocorticotropin‐releasing stimuli in the rat: Evidence for the reset of an endocrine feedback control. Endocrinology 69: 67‐80, 1961.
 315.Yehuda R, Giller EL, Southwick SM, Lowy MT, Mason JW. Hypothalamic‐pituitary‐adrenal dysfunction in posttraumatic stress disorder. Biol Psychiatry 30: 1031‐1048, 1991.
 316.Yehuda R, Halligan SL, Golier JA, Grossman R, Bierer LM. Effects of trauma exposure on the cortisol response to dexamethasone administration in PTSD and major depressive disorder. Psychoneuroendocrinology 29: 389‐404, 2004.
 317.Young EA, Akana S, Dallman MF. Decreased sensitivity to glucocorticoid fast feedback in chronically stressed rats. Neuroendocrinology 51: 536‐542, 1990.
 318.Young EA, Haskett RF, Murphy‐Weinberg V, Watson SJ, Akil H. Loss of glucocorticoid fast feedback in depression. Arch Gen Psychiatry 48: 693‐699, 1991.
 319.Young EA, Kwak SP, Kottak J. Negative feedback regulation following administration of chronic exogenous corticosterone. J Neuroendocrinol 7: 37‐45, 1995.
 320.Young EA, Lopez JF, Murphy‐Weinberg V, Watson SJ, Akil H. The role of mineralocorticoid receptors in hypothalamic‐pituitary‐adrenal axis regulation in humans. J Clin Endocrinol Metab 83: 3339‐3345, 1998.
 321.Young WS III, Mezey E, Siegel RE. Quantitative in situ hybridization histochemistry reveals increased levels of corticotropin‐releasing factor mRNA after adrenalectomy in rats. Neurosci Lett 70: 198‐203, 1986a.
 322.Young WS III, Mezey E, Siegel RE. Vasopressin and oxytocin mRNAs in adrenalectomized and Brattleboro rats: Analysis by quantitative in situ hybridization histochemistry. Brain Res 387: 231‐241, 1986b.
 323.Zhang R, Packard BA, Tauchi M, D'Alessio DA, Herman JP. Glucocorticoid regulation of preproglucagon transcription and RNA stability during stress. Proc Natl Acad Sci U S A 106: 5913‐5918, 2009.
 324.Ziegler DR, Herman JP. Neurocircuitry of stress integration: Anatomical pathways regulating the hypothalamo‐pituitary‐adrenocortical axis of the rat. Integr Comp Biol 42: 541‐551, 2002.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Maureen Keller‐Wood. Hypothalamic‐Pituitary‐Adrenal Axis—Feedback Control. Compr Physiol 2015, 5: 1161-1182. doi: 10.1002/cphy.c140065