Comprehensive Physiology Wiley Online Library

Thyroid Hormone and Cardioprotection

Full Article on Wiley Online Library



ABSTRACT

The heart is a major target of thyroid hormones, with maintenance of euthyroid hormone balance critical for proper function. In particular, chronic low thyroid function can eventually lead to dilated heart failure with impaired coronary blood flow. New evidence also suggests that heart diseases trigger a reduction in cardiac tissue thyroid hormone levels, a condition that may not be detectible using serum hormone assays. Many animal and clinical studies have demonstrated a high prevalence of low thyroid function in heart diseases with worse outcomes from this condition. Animal and human studies have also demonstrated many benefits from thyroid hormone treatment of heart diseases, particularly heart failure. Nonetheless, this potential treatment has not yet translated to patients due to a number of important concerns. The most serious concern involves the potential of accidental overdose leading to increased arrhythmias and sudden death. Several important clinical studies, which actually used excessive doses of thyroid hormone analogs, have played a major role in convincing the medical community that thyroid hormones are simply too dangerous to be considered for treatment in cardiac patients. Nonetheless, this issue has not gone away due primarily to overwhelmingly positive evidence for treatment benefits and a new understanding of the cellular and molecular mechanisms underlying those benefits. This review will first discuss the clinical evidence for the use of thyroid hormones as a cardioprotective agent and then provide an overview of the cellular and molecular mechanisms underlying beneficial changes from thyroid hormone treatment of heart diseases. © 2016 American Physiological Society. Compr Physiol 6:1199‐1219, 2016.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1. Summary of cardioprotective effects of thyroid hormones. Rajagopalan V, Gerdes AM. Role of thyroid hormones in ventricular remodeling. Curr Heart Fail Rep 12: 141‐149, 2015. With permission from Springer.
Figure 2. Figure 2. Actions of TH initiated at sites at the plasma membrane or cytosol and within the nucleus of myocytes, vascular smooth muscle, or endothelial cells or fibroblasts. Intracellular signaling cascades are activated by T3 or T4 binding to integrins or TRs localized to lipid‐enriched membrane microdomains or unknown intracellular sites. T3‐regulated genes are indicated showing effects that enhance cardiomyocyte contractility and calcium transients, decreased fibrosis, increased fuel efficiency, and mitochondrial biogenesis. Non‐nuclear responses of T3 result in activation of survival pathways, physiologic hypertrophy, decreased oxidative stress, and changes in plasma membrane ion currents.
Figure 3. Figure 3. Schematic representation of TR isoforms and their functional properties. Two genes encoding TR isoforms, THRA and THRB. The highly homologous DNA‐binding domains, TH‐binding domains, and activation domains are indicated. Numbers indicate amino acid position. M indicates methionine for translation initiation. tts is transcriptional start site. Regions of variable amino acid sequences are indicated by different patterned areas. NLS is nuclear localization signal. Reported molecular weights of proteins, DNA‐ and T3‐binding properties and transactivation (+) or repression (−) indicated.


Figure 1. Summary of cardioprotective effects of thyroid hormones. Rajagopalan V, Gerdes AM. Role of thyroid hormones in ventricular remodeling. Curr Heart Fail Rep 12: 141‐149, 2015. With permission from Springer.


Figure 2. Actions of TH initiated at sites at the plasma membrane or cytosol and within the nucleus of myocytes, vascular smooth muscle, or endothelial cells or fibroblasts. Intracellular signaling cascades are activated by T3 or T4 binding to integrins or TRs localized to lipid‐enriched membrane microdomains or unknown intracellular sites. T3‐regulated genes are indicated showing effects that enhance cardiomyocyte contractility and calcium transients, decreased fibrosis, increased fuel efficiency, and mitochondrial biogenesis. Non‐nuclear responses of T3 result in activation of survival pathways, physiologic hypertrophy, decreased oxidative stress, and changes in plasma membrane ion currents.


Figure 3. Schematic representation of TR isoforms and their functional properties. Two genes encoding TR isoforms, THRA and THRB. The highly homologous DNA‐binding domains, TH‐binding domains, and activation domains are indicated. Numbers indicate amino acid position. M indicates methionine for translation initiation. tts is transcriptional start site. Regions of variable amino acid sequences are indicated by different patterned areas. NLS is nuclear localization signal. Reported molecular weights of proteins, DNA‐ and T3‐binding properties and transactivation (+) or repression (−) indicated.
References
 1.Adamopoulos S, Gouziouta A, Mantzouratou P, Laoutaris ID, Dritsas A, Cokkinos DV, Mourouzis I, Sfyrakis P, Iervasi G, Pantos C. Thyroid hormone signalling is altered in response to physical training in patients with end‐stage heart failure and mechanical assist devices: Potential physiological consequences? Interact Cardiovasc Thorac Surg 17: 664‐668, 2013.
 2.Akella AB, Ding XL, Cheng R, Gulati J. Diminished Ca2+ sensitivity of skinned cardiac muscle contractility coincident with troponin T‐band shifts in the diabetic rat. Circ Res 76: 600‐606, 1995.
 3.Angel RC, Botta JA, Farias RN. High affinity l‐triiodothyronine binding to right‐side‐out and inside‐out vesicles from rat and human erythrocyte membrane. J Biol Chem 264: 19143‐19146, 1989.
 4.Arslan F, de Kleijn DP, Pasterkamp G. Innate immune signaling in cardiac ischemia. Nat Rev Cardiol 8: 292‐300, 2011.
 5.Astapova I, Hollenberg AN. The in vivo role of nuclear receptor corepressors in thyroid hormone action. Biochim Biophys Acta 1830: 3876‐3881, 2013.
 6.Attia RR, Connnaughton S, Boone LR, Wang F, Elam MB, Ness GC, Cook GA, Park EA. Regulation of pyruvate dehydrogenase kinase 4 (PDK4) by thyroid hormone: Role of the peroxisome proliferator‐activated receptor gamma coactivator (PGC‐1 alpha). J Biol Chem 285: 2375‐2385, 2010.
 7.Auer J, Berent R, Weber T, Lassnig E, Eber B. Thyroid function is associated with presence and severity of coronary atherosclerosis. Clin Cardiol 26: 569‐573, 2003.
 8.Bahouth SW, Cui X, Beauchamp MJ, Park EA. Thyroid hormone induces beta1‐adrenergic receptor gene transcription through a direct repeat separated by five nucleotides. J Mol Cell Cardiol 29: 3223‐3237, 1997.
 9.Bai SL, Campbell SE, Moore JA, Morales MC, Gerdes AM. Influence of age, growth, and sex on cardiac myocyte size and number in rats. Anat Rec 226: 207‐212, 1990.
 10.Baines CP. The cardiac mitochondrion: nexus of stress. Annu Rev Physiol 72: 61‐80, 2010.
 11.Bakiner O, Ertorer ME, Haydardedeoglu FE, Bozkirli E, Tutuncu NB, Demirag NG. Subclinical hypothyroidism is characterized by increased QT interval dispersion among women. Med Princ Pract 17: 390‐394, 2008.
 12.Barnes BO. Prophylaxis of ischaemic heart‐disease by thyroid therapy. Lancet 2: 149‐152, 1959.
 13.Barnes BO. On the genesis of atherosclerosis. J Am Geriatr Soc 21: 350‐354, 1973.
 14.Baumann CT, Maruvada P, Hager GL, Yen PM. Nuclear cytoplasmic shuttling by thyroid hormone receptors ‐ multiple protein interactions are required for nuclear retention. J Biol Chem 276: 11237‐11245, 2001.
 15.Baycan S, Erdogan D, Caliskan M, Pamuk BO, Ciftci O, Gullu H, Yildirir A, Guvener ND, Muderrisoglu H. Coronary flow reserve is impaired in subclinical hypothyroidism. Clin Cardiol 30: 562‐566, 2007.
 16.Belke DD, Gloss B, Swanson EA, Dillmann WH. Adeno‐associated virus‐mediated expression of thyroid hormone receptor isoforms‐alpha1 and ‐beta1 improves contractile function in pressure overload‐induced cardiac hypertrophy. Endocrinology 148: 2870‐2877, 2007.
 17.Bergh JJ, Lin HY, Lansing L, Mohamed SN, Davis FB, Mousa S, Davis PJ. Integrin alphaVbeta3 contains a cell surface receptor site for thyroid hormone that is linked to activation of mitogen‐activated protein kinase and induction of angiogenesis. Endocrinology 146: 2864‐2871, 2005.
 18.Binah O, Rubinstein I, Gilat E. Effects of thyroid hormone on the action potential and membrane currents of guinea pig ventricular myocytes. Pflugers Arch 409: 214‐216, 1987.
 19.Boelen A, Kwakkel J, Fliers E. Beyond low plasma T3: Local thyroid hormone metabolism during inflammation and infection. Endocr Rev 32: 670‐693, 2011.
 20.Brent GA. Mechanisms of thyroid hormone action. J Clin Invest 122: 3035‐3043, 2012.
 21.Bristow MR, Minobe WA, Raynolds MV, Port JD, Rasmussen R, Ray PE, Feldman AM. Reduced beta 1 receptor messenger RNA abundance in the failing human heart. J Clin Invest 92: 2737‐2745, 1993.
 22.Campbell SE, Gerdes AM. Regional changes in myocyte size during the reversal of thyroid‐induced cardiac hypertrophy. J Mol Cell Cardiol 20: 379‐387, 1988.
 23.Cao X, Kambe F, Moeller LC, Refetoff S, Seo H. Thyroid hormone induces rapid activation of Akt/protein kinase B‐mammalian target of rapamycin‐p70S6K cascade through phosphatidylinositol 3‐kinase in human fibroblasts. Mol Endocrinol 19: 102‐112, 2005.
 24.Carr AN, Kranias EG. Thyroid hormone regulation of calcium cycling proteins. Thyroid 12: 453‐457, 2002.
 25.Carrillo‐Sepulveda MA, Ceravolo GS, Fortes ZB, Carvalho MH, Tostes RC, Laurindo FR, Webb RC, Barreto‐Chaves ML. Thyroid hormone stimulates NO production via activation of the PI3K/Akt pathway in vascular myocytes. Cardiovasc Res 85: 560‐570, 2010.
 26.Chen J, Ortmeier SB, Savinova OV, Nareddy VB, Beyer AJ, Wang D, Gerdes AM. Thyroid hormone induces sprouting angiogenesis in adult heart of hypothyroid mice through the PDGF‐Akt pathway. J Cell Mol Med 16: 2726‐2735, 2012.
 27.Chen YF, Kobayashi S, Chen J, Redetzke RA, Said S, Liang Q, Gerdes AM. Short term triiodo‐l‐thyronine treatment inhibits cardiac myocyte apoptosis in border area after myocardial infarction in rats. J Mol Cell Cardiol 44: 180‐187, 2008.
 28.Chen YF, Redetzke RA, Sivertson RM, Coburn TS, Cypher LR, Gerdes AM. Post‐myocardial infarction left ventricular myocyte remodeling: Are there gender differences in rats? Cardiovasc Pathol 20: e189‐e195, 2011.
 29.Chen YF, Weltman NY, Li X, Youmans S, Krause D, Gerdes AM. Improvement of left ventricular remodeling after myocardial infarction with eight weeks l‐thyroxine treatment in rats. J Transl Med 11: 40, 2013.
 30.Cheng SY, Leonard JL, Davis PJ. Molecular aspects of thyroid hormone actions. Endocr Rev 31: 139‐170, 2010.
 31.Chuang CP, Jong YS, Wu CY, Lo HM. Impact of triiodothyronine and N‐terminal pro‐B‐type natriuretic peptide on the long‐term survival of critically ill patients with acute heart failure. Am J Cardiol 113: 845‐850, 2014.
 32.Cini G, Carpi A, Mechanick J, Cini L, Camici M, Galetta F, Giardino R, Russo MA, Iervasi G. Thyroid hormones and the cardiovascular system: Pathophysiology and interventions. Biomed Pharmacother 63: 742‐753, 2009.
 33.Cioffi F, Senese R, Lanni A, Goglia F. Thyroid hormones and mitochondria: With a brief look at derivatives and analogues. Mol Cell Endocrinol 379: 51‐61, 2013.
 34.Colantuoni A, Marchiafava PL, Lapi D, Forini FS, Iervasi G. Effects of tetraiodothyronine and triiodothyronine on hamster cheek pouch microcirculation. Am J Physiol Heart Circ Physiol 288: H1931‐H1936, 2005.
 35.Craelius W, Green WL, Harris DR. Acute effects of thyroid hormone on sodium currents in neonatal myocytes. Biosci Rep 10: 309‐315, 1990.
 36.Crunkhorn S, Patti ME. Links between thyroid hormone action, oxidative metabolism, and diabetes risk? Thyroid 18: 227‐237, 2008.
 37.d'Amati G, di Gioia CR, Mentuccia D, Pistilli D, Proietti‐Pannunzi L, Miraldi F, Gallo P, Celi FS. Increased expression of thyroid hormone receptor isoforms in end‐stage human congestive heart failure. J Clin Endocrinol Metab 86: 2080‐2084, 2001.
 38.Davidoff AJ, Rodgers RL. Insulin, thyroid hormone, and heart function of diabetic spontaneously hypertensive rat. Hypertension 15: 633‐642, 1990.
 39.Davis FB, Cody V, Davis PJ, Borzynski LJ, Blas SD. Stimulation by thyroid hormone analogues of red blood cell Ca2+‐ATPase activity in vitro. Correlations between hormone structure and biological activity in a human cell system. J Biol Chem 258: 12373‐12377, 1983.
 40.Davis FB, Mousa SA, O'Connor L, Mohamed S, Lin HY, Cao HJ, Davis PJ. Proangiogenic action of thyroid hormone is fibroblast growth factor‐dependent and is initiated at the cell surface. Circ Res 94: 1500‐1506, 2004.
 41.Davis PJ, Davis FB, Mousa SA. Thyroid hormone‐induced angiogenesis. Curr Cardiol Rev 5: 12‐16, 2009.
 42.Davis PJ, Leonard JL, Davis FB. Mechanisms of nongenomic actions of thyroid hormone. Front Neuroendocrinol 29: 211‐218, 2008.
 43.Davis PJ, Zhou M, Davis FB, Lansing L, Mousa SA, Lin HY. Mini‐review: Cell surface receptor for thyroid hormone and nongenomic regulation of ion fluxes in excitable cells. Physiol Behav 99: 237‐239, 2010.
 44.Dillmann WH. Cellular action of thyroid hormone on the heart. Thyroid 12: 447‐452, 2002.
 45.Dorn GW, 2nd. Apoptotic and non‐apoptotic programmed cardiomyocyte death in ventricular remodelling. Cardiovasc Res 81: 465‐473, 2009.
 46.Duntas LH, Orgiazzi J, Brabant G. The interface between thyroid and diabetes mellitus. Clin Endocrinol 75: 1‐9, 2011.
 47.Edgren J, von Knorring J, Lindy S, Turto H. Heart volume and myocardial connective tissue during development and regression of thyroxine‐induced cardiac hypertrophy in rats. Acta Physiol Scand 97: 514‐518, 1976.
 48.Engelhardt S, Bohm M, Erdmann E, Lohse MJ. Analysis of beta‐adrenergic receptor mRNA levels in human ventricular biopsy specimens by quantitative polymerase chain reactions: Progressive reduction of beta 1‐adrenergic receptor mRNA in heart failure. J Am Coll Cardiol 27: 146‐154, 1996.
 49.Evans RM, Mangelsdorf DJ. Nuclear receptors, RXR, and the Big Bang. Cell 157: 255‐266, 2014.
 50.Everett AW, Clark WA, Chizzonite RA, Zak R. Change in synthesis rates of alpha‐ and beta‐myosin heavy chains in rabbit heart after treatment with thyroid hormone. J Biol Chem 258: 2421‐2425, 1983.
 51.Flamant F, Gauthier K. Thyroid hormone receptors: The challenge of elucidating isotype‐specific functions and cell‐specific response. Biochim Biophys Acta 1830: 3900‐3907, 2013.
 52.Flamant F, Samarut J. Thyroid hormone receptors: Lessons from knockout and knock‐in mutant mice. Trends Endocrinol Metab 14: 85‐90, 2003.
 53.Fondell JD. The Mediator complex in thyroid hormone receptor action. Biochim Biophys Acta 1830: 3867‐3875, 2013.
 54.Forini F, Kusmic C, Nicolini G, Mariani L, Zucchi R, Matteucci M, Iervasi G, Pitto L. Triiodothyronine prevents cardiac ischemia/reperfusion mitochondrial impairment and cell loss by regulating miR30a/p53 axis. Endocrinology 155: 4581‐4590, 2014.
 55.Forini F, Lionetti V, Ardehali H, Pucci A, Cecchetti F, Ghanefar M, Nicolini G, Ichikawa Y, Nannipieri M, Recchia FA, Iervasi G. Early long‐term L‐T3 replacement rescues mitochondria and prevents ischemic cardiac remodelling in rats. J Cell Mol Med 15: 514‐524, 2011.
 56.Forini F, Nicolini G, Iervasi G. Mitochondria as key targets of cardioprotection in cardiac ischemic disease: Role of thyroid hormone triiodothyronine. Int J Mol Sci 16: 6312‐6336, 2015.
 57.Friberg L, Drvota V, Bjelak AH, Eggertsen G, Ahnve S. Association between increased levels of reverse triiodothyronine and mortality after acute myocardial infarction. Am J Med 111: 699‐703, 2001.
 58.Friberg L, Werner S, Eggertsen G, Ahnve S. Rapid down‐regulation of thyroid hormones in acute myocardial infarction: is it cardioprotective in patients with angina? Arch Intern Med 162: 1388‐1394, 2002.
 59.Fruhwald FM, Ramschak‐Schwarzer S, Pichler B, Watzinger N, Schumacher M, Zweiker R, Klein W, Eber B. Subclinical thyroid disorders in patients with dilated cardiomyopathy. Cardiology 88: 156‐159, 1997.
 60.Furuya F, Hanover JA, Cheng SY. Activation of phosphatidylinositol 3‐kinase signaling by a mutant thyroid hormone beta receptor. Proc Natl Acad Sci U S A 103: 1780‐1785, 2006.
 61.Furuya F, Lu C, Guigon CJ, Cheng SY. Nongenomic activation of phosphatidylinositol 3‐kinase signaling by thyroid hormone receptors. Steroids 74: 628‐634, 2009.
 62.Galo MG, Unates LE, Farias RN. Effect of membrane fatty acid composition on the action of thyroid hormones on (Ca2+ + Mg2+)‐adenosine triphosphatase from rat erythrocyte. J Biol Chem 256: 7113‐7114, 1981.
 63.Gencer B, Collet TH, Virgini V, Auer R, Rodondi N. Subclinical thyroid dysfunction and cardiovascular outcomes among prospective cohort studies. Endocr Metab Immune Disord Drug Targets 13: 4‐12, 2013.
 64.Gerdes AM. Cardiac myocyte remodeling in hypertrophy and progression to failure. J Card Fail 8: S264‐S268, 2002.
 65.Gerdes AM. How to improve the overall quality of cardiac morphometric data. Am J Physiol 309: H9‐H14, 2015.
 66.Gerdes AM. Restoration of thyroid hormone balance: A game changer in the treatment of heart failure? Am J Physiol 308: H1‐H10, 2015.
 67.Gerdes AM, Clark LC, Capasso JM. Regression of cardiac hypertrophy after closing an aortocaval fistula in rats. Am J Physiol 268: H2345‐H2351, 1995.
 68.Gerdes AM, Iervasi G. Thyroid replacement therapy and heart failure. Circulation 122: 385‐393, 2010.
 69.Gerdes AM, Kriseman J, Bishop SP. Changes in myocardial cell size and number during the development and reversal of hyperthyroidism in neonatal rats. Lab Invest 48: 598‐602, 1983.
 70.Gerdes AM, Moore JA, Bishop SP. Failure of propranolol to prevent chronic hyperthyroid induced cardiac hypertrophy and multifocal cellular necrosis in the rat. Can J Cardiol 1: 340‐345, 1985.
 71.Gerdes AM, Moore JA, Hines JM. Regional changes in myocyte size and number in propranolol‐treated hyperthyroid rats. Lab Invest 57: 708‐713, 1987.
 72.Gereben B, Zavacki AM, Ribich S, Kim BW, Huang SA, Simonides WS, Zeold A, Bianco AC. Cellular and molecular basis of deiodinase‐regulated thyroid hormone signaling. Endocr Rev 29: 898‐938, 2008.
 73.Gloss B, Trost S, Bluhm W, Swanson E, Clark R, Winkfein R, Janzen K, Giles W, Chassande O, Samarut J, Dillmann W. Cardiac ion channel expression and contractile function in mice with deletion of thyroid hormone receptor alpha or beta. Endocrinology 142: 544‐550, 2001.
 74.Goldenthal MJ, Ananthakrishnan R, Marin‐Garcia J. Nuclear‐mitochondrial cross‐talk in cardiomyocyte T3 signaling: a time‐course analysis. J Mol Cell Cardiol 39: 319‐326, 2005.
 75.Goldman S, McCarren M, Morkin E, Ladenson PW, Edson R, Warren S, Ohm J, Thai H, Churby L, Barnhill J, O'Brien T, Anand I, Warner A, Hattler B, Dunlap M, Erikson J, Shih MC, Lavori P. DITPA (3,5‐Diiodothyropropionic Acid), a thyroid hormone analog to treat heart failure: Phase II trial veterans affairs cooperative study. Circulation 119: 3093‐3100, 2009.
 76.Graettinger JS, Muenster JJ, Selverstone LA, Campbell JA. A correlation of clinical and hemodynamic studies in patients with hyperthyroidism with and without congestive heart failure. J Clin Invest 38: 1316‐1327, 1959.
 77.Gray RS, Borsey DQ, Seth J, Herd R, Brown NS, Clarke BF. Prevalence of subclinical thyroid failure in insulin‐dependent diabetes. J Clin Endocrinol Metab 50: 1034‐1037, 1980.
 78.Gulick J, Subramaniam A, Neumann J, Robbins J. Isolation and characterization of the mouse cardiac myosin heavy chain genes. J Biol Chem 266: 9180‐9185, 1991.
 79.Haentjens P, Van Meerhaeghe A, Poppe K, Velkeniers B. Subclinical thyroid dysfunction and mortality: An estimate of relative and absolute excess all‐cause mortality based on time‐to‐event data from cohort studies. Eur J Endocrinol 159: 329‐341, 2008.
 80.Hak AE, Pols HA, Visser TJ, Drexhage HA, Hofman A, Witteman JC. Subclinical hypothyroidism is an independent risk factor for atherosclerosis and myocardial infarction in elderly women: The Rotterdam Study. Ann Intern Med 132: 270‐278, 2000.
 81.Hamilton MA, Stevenson LW, Fonarow GC, Steimle A, Goldhaber JI, Child JS, Chopra IJ, Moriguchi JD, Hage A. Safety and hemodynamic effects of intravenous triiodothyronine in advanced congestive heart failure. Am J Cardiol 81: 443‐447, 1998.
 82.Hamilton MA, Stevenson LW, Luu M, Walden JA. Altered thyroid hormone metabolism in advanced heart failure. J Am Coll Cardiol 16: 91‐95, 1990.
 83.Harper ME, Seifert EL. Thyroid hormone effects on mitochondrial energetics. Thyroid 18: 145‐156, 2008.
 84.Hausenloy DJ, Yellon DM. New directions for protecting the heart against ischaemia‐reperfusion injury: Targeting the Reperfusion Injury Salvage Kinase (RISK)‐pathway. Cardiovasc Res 61: 448‐460, 2004.
 85.Hiroi Y, Kim HH, Ying H, Furuya F, Huang Z, Simoncini T, Noma K, Ueki K, Nguyen NH, Scanlan TS, Moskowitz MA, Cheng SY, Liao JK. Rapid nongenomic actions of thyroid hormone. Proc Natl Acad Sci U S A 103: 14104‐14109, 2006.
 86.Hu X, Lazar MA. Transcriptional repression by nuclear hormone receptors. Trends Endocrinol Metab 11: 6‐10, 2000.
 87.Huang SA, Bianco AC. Reawakened interest in type III iodothyronine deiodinase in critical illness and injury. Nat Clin Pract Endocrinol Metab 4: 148‐155, 2008.
 88.Hyyti OM, Ning XH, Buroker NE, Ge M, Portman MA. Thyroid hormone controls myocardial substrate metabolism through nuclear receptor‐mediated and rapid posttranscriptional mechanisms. Am J Physiol Endocrinol Metab 290: E372‐E379, 2006.
 89.Ichiki T. Thyroid hormone and atherosclerosis. Vascul Pharmacol 52: 151‐156, 2010.
 90.Iervasi G, Pingitore A, Landi P, Raciti M, Ripoli A, Scarlattini M, L'Abbate A, Donato L. Low‐T3 syndrome: A strong prognostic predictor of death in patients with heart disease. Circulation 107: 708‐713, 2003.
 91.Imaizumi M, Akahoshi M, Ichimaru S, Nakashima E, Hida A, Soda M, Usa T, Ashizawa K, Yokoyama N, Maeda R, Nagataki S, Eguchi K. Risk for ischemic heart disease and all‐cause mortality in subclinical hypothyroidism. J Clin Endocrinol Metab 89: 3365‐3370, 2004.
 92.Ito M, Roeder RG. The TRAP/SMCC/Mediator complex and thyroid hormone receptor function. Trends Endocrinol Metab 12: 127‐134, 2001.
 93.Izumo S, Lompre AM, Matsuoka R, Koren G, Schwartz K, Nadal‐Ginard B, Mahdavi V. Myosin heavy chain messenger RNA and protein isoform transitions during cardiac hypertrophy. Interaction between hemodynamic and thyroid hormone‐induced signals. J Clin Invest 79: 970‐977, 1987.
 94.Jakab G, Kiss E, Kranias EG, Edes I. Effect of thyroid status on basal phosphorylation of cardiac myofibrillar phosphoproteins in rats. Cardioscience 5: 19‐24, 1994.
 95.Jansen J, Friesema EC, Milici C, Visser TJ. Thyroid hormone transporters in health and disease. Thyroid 15: 757‐768, 2005.
 96.Jansen MS, Cook GA, Song S, Park EA. Thyroid hormone regulates carnitine palmitoyltransferase Ialpha gene expression through elements in the promoter and first intron. J Biol Chem 275: 34989‐34997, 2000.
 97.Janssen R, Zuidwijk MJ, Kuster DW, Muller A, Simonides WS. Thyroid hormone‐regulated cardiac microRNAs are predicted to suppress pathological hypertrophic signaling. Front Endocrinol (Lausanne) 5: 171, 2014.
 98.Johansson C, Gothe S, Forrest D, Vennstrom B, Thoren P. Cardiovascular phenotype and temperature control in mice lacking thyroid hormone receptor‐beta or both alpha1 and beta. Am J Physiol 276: H2006‐H2012, 1999.
 99.Johansson C, Koopmann R, Vennstrom B, Benndorf K. Accelerated inactivation of voltage‐dependent K+ outward current in cardiomyocytes from thyroid hormone receptor alpha1‐deficient mice. J Cardiovasc Electrophysiol 13: 44‐50, 2002.
 100.Kahaly GJ. Cardiovascular and atherogenic aspects of subclinical hypothyroidism. Thyroid 10: 665‐679, 2000.
 101.Kahaly GJ, Dillmann WH. Thyroid hormone action in the heart. Endocr Rev 26: 704‐728, 2005.
 102.Kajimoto M, Ledee DR, Xu C, Kajimoto H, Isern NG, Portman MA. Triiodothyronine activates lactate oxidation without impairing fatty acid oxidation and improves weaning from extracorporeal membrane oxygenation. Circ J 78: 2867‐2875, 2014.
 103.Kalofoutis C, Mourouzis I, Galanopoulos G, Dimopoulos A, Perimenis P, Spanou D, Cokkinos DV, Singh J, Pantos C. Thyroid hormone can favorably remodel the diabetic myocardium after acute myocardial infarction. Mol Cell Biochem 345: 161‐169, 2010.
 104.Kalyanaraman H, Schwappacher R, Joshua JS, Zhuang SH, Scott BT, Klos M, Casteel DE, Frangos JA, Dillmann W, Boss GR, Pilz RB. Nongenomic thyroid hormone signaling occurs through a plasma membrane‐localized receptor. Sci Signal 7: ra48, 2014.
 105.Kamitani T, Ikeda U, Muto S, Kawakami K, Nagano K, Tsuruya Y, Oguchi A, Yamamoto K, Hara Y, Kojima T, Medford RM, Shimada K. Regulation of Na,K‐ATPase gene expression by thyroid hormone in rat cardiocytes. Circ Res 71: 1457‐1464, 1992.
 106.Kapitola J, Vilimovska D. Inhibition of the early circulatory effects of triiodothyronine in rats by propranolol. Physiol Bohemoslov 30: 347‐351, 1981.
 107.Karch R, Neumann F, Ullrich R, Neumuller J, Podesser BK, Neumann M, Schreiner W. The spatial pattern of coronary capillaries in patients with dilated, ischemic, or inflammatory cardiomyopathy. Cardiovasc Pathol 14: 135‐144, 2005.
 108.Katzeff HL, Powell SR, Ojamaa K. Alterations in cardiac contractility and gene expression during low‐T3 syndrome: Prevention with T3. Am J Physiol 273: E951‐E956, 1997.
 109.Kenessey A, Ojamaa K. Ligand‐mediated decrease of thyroid hormone receptor‐alpha1 in cardiomyocytes by proteosome‐dependent degradation and altered mRNA stability. Am J Physiol Heart Circ Physiol 288: H813‐H821, 2005.
 110.Kenessey A, Ojamaa K. Thyroid hormone stimulates protein synthesis in the cardiomyocyte by activating the Akt‐mTOR and p70S6K pathways. J Biol Chem 281: 20666‐20672, 2006.
 111.Khalife WI, Tang YD, Kuzman JA, Thomas TA, Anderson BE, Said S, Tille P, Schlenker EH, Gerdes AM. Treatment of subclinical hypothyroidism reverses ischemia and prevents myocyte loss and progressive LV dysfunction in hamsters with dilated cardiomyopathy. Am J Physiol 289: H2409‐H2415, 2005.
 112.Kim EJ, Lyass A, Wang N, Massaro JM, Fox CS, Benjamin EJ, Magnani JW. Relation of hypothyroidism and incident atrial fibrillation (from the Framingham Heart Study). Am Heart J 167: 123‐126, 2014.
 113.Kim ES, Shin JA, Shin JY, Lim DJ, Moon SD, Son HY, Han JH. Association between low serum free thyroxine concentrations and coronary artery calcification in healthy euthyroid subjects. Thyroid 22: 870‐876, 2012.
 114.Kinugawa K, Jeong MY, Bristow MR, Long CS. Thyroid hormone induces cardiac myocyte hypertrophy in a thyroid hormone receptor alpha1‐specific manner that requires TAK1 and p38 mitogen‐activated protein kinase. Mol Endocrinol 19: 1618‐1628, 2005.
 115.Kinugawa K, Long CS, Bristow MR. Expression of TR isoforms in failing human heart. J Clin Endocrinol Metab 86: 5089‐5090, 2001.
 116.Kinugawa K, Minobe WA, Wood WM, Ridgway EC, Baxter JD, Ribeiro RC, Tawadrous MF, Lowes BA, Long CS, Bristow MR. Signaling pathways responsible for fetal gene induction in the failing human heart: Evidence for altered thyroid hormone receptor gene expression. Circulation 103: 1089‐1094, 2001.
 117.Kinugawa K, Yonekura K, Ribeiro RC, Eto Y, Aoyagi T, Baxter JD, Camacho SA, Bristow MR, Long CS, Simpson PC. Regulation of thyroid hormone receptor isoforms in physiological and pathological cardiac hypertrophy. Circ Res 89: 591‐598, 2001.
 118.Kiss E, Jakab G, Kranias EG, Edes I. Thyroid hormone‐induced alterations in phospholamban protein expression. Regulatory effects on sarcoplasmic reticulum Ca2+ transport and myocardial relaxation. Circ Res 75: 245‐251, 1994.
 119.Klein I, Danzi S. Thyroid disease and the heart. Circulation 116: 1725‐1735, 2007.
 120.Klein I, Ojamaa K. Thyroid hormone and the cardiovascular system. N Engl J Med 344: 501‐509, 2001.
 121.Klemperer JD, Klein I, Gomez M, Helm RE, Ojamaa K, Thomas SJ, Isom OW, Krieger K. Thyroid hormone treatment after coronary‐artery bypass surgery. N Engl J Med 333: 1522‐1527, 1995.
 122.Klemperer JD, Ojamaa K, Klein I. Thyroid hormone therapy in cardiovascular disease. Prog Cardiovasc Dis 38: 329‐336, 1996.
 123.Klemperer JD, Zelano J, Helm RE, Berman K, Ojamaa K, Klein I, Isom OW, Krieger K. Triiodothyronine improves left ventricular function without oxygen wasting effects after global hypothermic ischemia. J Thorac Cardiovasc Surg 109: 457‐465, 1995.
 124.Kountz WB. Vascular degeneration in hypothyroidism. AMA Arch Pathol 50: 765‐777, 1950.
 125.Krueger JJ, Ning XH, Argo BM, Hyyti O, Portman MA. Triiodothyronine and epinephrine rapidly modify myocardial substrate selection: A (13)C isotopomer analysis. Am J Physiol Endocrinol Metab 281: E983‐E990, 2001.
 126.Kuzman JA, Gerdes AM, Kobayashi S, Liang Q. Thyroid hormone activates Akt and prevents serum starvation‐induced cell death in neonatal rat cardiomyocytes. J Mol Cell Cardiol 39: 841‐844, 2005.
 127.Kuzman JA, Vogelsang KA, Thomas TA, Gerdes AM. l‐Thyroxine activates Akt signaling in the heart. J Mol Cell Cardiol 39: 251‐258, 2005.
 128.Kvetny J, Heldgaard PE, Bladbjerg EM, Gram J. Subclinical hypothyroidism is associated with a low‐grade inflammation, increased triglyceride levels and predicts cardiovascular disease in males below 50 years. Clin Endocrinol 61: 232‐238, 2004.
 129.Levin ER. Plasma membrane estrogen receptors. Trends Endocrinol Metab 20: 477‐482, 2009.
 130.Li F, Wang X, Capasso JM, Gerdes AM. Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J Mol Cell Cardiol 28: 1737‐1746, 1996.
 131.Light P, Shimoni Y, Harbison S, Giles W, French RJ. Hypothyroidism decreases the ATP sensitivity of KATP channels from rat heart. J Membr Biol 162: 217‐223, 1998.
 132.Lin HY, Tang HY, Shih A, Keating T, Cao G, Davis PJ, Davis FB. Thyroid hormone is a MAPK‐dependent growth factor for thyroid cancer cells and is anti‐apoptotic. Steroids 72: 180‐187, 2007.
 133.Liu B, Huang F, Gick G. Regulation of Na,K‐ATPase beta 1 mRNA content by thyroid hormone in neonatal rat cardiac myocytes. Cell Mol Biol Res 39: 221‐229, 1993.
 134.Liu Q, Clanachan AS, Lopaschuk GD. Acute effects of triiodothyronine on glucose and fatty acid metabolism during reperfusion of ischemic rat hearts. Am J Physiol 275: E392‐E399, 1998.
 135.Liu X, Zheng N, Shi YN, Yuan J, Li L. Thyroid hormone induced angiogenesis through the integrin alphavbeta3/protein kinase D/histone deacetylase 5 signaling pathway. J Mol Endocrinol 52: 245‐254, 2014.
 136.Liu Y, Sherer BA, Redetzke RA, Gerdes AM. Regulation of arteriolar density in adult myocardium during low thyroid conditions. Vascul Pharmacol 52: 146‐150, 2010.
 137.Liu Z, Gerdes AM. Influence of hypothyroidism and the reversal of hypothyroidism on hemodynamics and cell size in the adult rat heart. J Mol Cell Cardiol 22: 1339‐1348, 1990.
 138.Lortet S, Zimmer HG, Rossi A. Inotropic response of the rat heart during development and regression of triiodothyronine‐induced hypertrophy. J Cardiovasc Pharmacol 14: 707‐712, 1989.
 139.Lowes BD, Minobe W, Abraham WT, Rizeq MN, Bohlmeyer TJ, Quaife RA, Roden RL, Dutcher DL, Robertson AD, Voelkel NF, Badesch DB, Groves BM, Gilbert EM, Bristow MR. Changes in gene expression in the intact human heart. Downregulation of alpha‐myosin heavy chain in hypertrophied, failing ventricular myocardium. J Clin Invest 100: 2315‐2324, 1997.
 140.Luboshitzky R, Aviv A, Herer P, Lavie L. Risk factors for cardiovascular disease in women with subclinical hypothyroidism. Thyroid 12: 421‐425, 2002.
 141.Lubrano V, Pingitore A, Carpi A, Iervasi G. Relationship between triiodothyronine and proinflammatory cytokines in chronic heart failure. Biomed Pharmacother 64: 165‐169, 2010.
 142.Lymvaios I, Mourouzis I, Cokkinos DV, Dimopoulos MA, Toumanidis ST, Pantos C. Thyroid hormone and recovery of cardiac function in patients with acute myocardial infarction: A strong association? Eur J Endocrinol 165: 107‐114, 2011.
 143.Mackiewicz U, Maczewski M, Klemenska E, Brudek M, Konior A, Czarnowska E, Lewartowski B. Brief postinfarction calcineurin blockade affects left ventricular remodeling and Ca2+ handling in the rat. J Mol Cell Cardiol 48: 1307‐1315, 2010.
 144.Makino A, Suarez J, Wang H, Belke DD, Scott BT, Dillmann WH. Thyroid hormone receptor‐beta is associated with coronary angiogenesis during pathological cardiac hypertrophy. Endocrinology 150: 2008‐2015, 2009.
 145.Makino A, Wang H, Scott BT, Yuan JX, Dillmann WH. Thyroid hormone receptor‐alpha and vascular function. Am J Physiol Cell Physiol 302: C1346‐C1352, 2012.
 146.Mann DL. The emerging role of innate immunity in the heart and vascular system: For whom the cell tolls. Circ Res 108: 1133‐1145, 2011.
 147.Manowitz NR, Mayor GH, Klepper MJ, DeGroot LJ. Subclinical hypothyroidism and euthyroid sick syndrome in patients with moderate‐to‐severe congestive heart failure. Am J Ther 3: 797‐801, 1996.
 148.Mansen A, Tiselius C, Sand P, Fauconnier J, Westerblad H, Rydqvist B, Vennstrom B. Thyroid hormone receptor alpha can control action potential duration in mouse ventricular myocytes through the KCNE1 ion channel subunit. Acta Physiol (Oxf) 198: 133‐142, 2010.
 149.Mansen A, Yu FS, Forrest D, Larsson L, Vennstrom B. TRs have common and isoform‐specific functions in regulation of the cardiac myosin heavy chain genes. Mol Endocrinol 15: 2106‐2114, 2001.
 150.Marin‐Garcia J, Goldenthal MJ. Mitochondrial centrality in heart failure. Heart Fail Rev 13: 137‐150, 2008.
 151.Markham BE, Bahl JJ, Gustafson TA, Morkin E. Interaction of a protein factor within a thyroid hormone‐sensitive region of rat alpha‐myosin heavy chain gene. J Biol Chem 262: 12856‐12862, 1987.
 152.Martinez‐Comendador J, Marcos‐Vidal JM, Gualis J, Martin CE, Martin E, Otero J, Castano M. Subclinical hypothyroidism might increase the risk of postoperative atrial fibrillation after aortic valve replacement. Thorac Cardiovasc Surg, 2015 [Epub ahead of print].
 153.Meuwese CL, Carrero JJ, Cabezas‐Rodriguez I, Heimburger O, Barany P, Lindholm B, Qureshi AR, Ripsweden J, Dekker FW, Stenvinkel P. Nonthyroidal illness: A risk factor for coronary calcification and arterial stiffness in patients undergoing peritoneal dialysis? J Intern Med 274: 584‐593, 2013.
 154.Mitchell JE, Hellkamp AS, Mark DB, Anderson J, Johnson GW, Poole JE, Lee KL, Bardy GH. Thyroid function in heart failure and impact on mortality. JACC Heart Fail 1: 48‐55, 2013.
 155.Miyata S, Minobe W, Bristow MR, Leinwand LA. Myosin heavy chain isoform expression in the failing and nonfailing human heart. Circ Res 86: 386‐390, 2000.
 156.Modesti PA, Marchetta M, Gamberi T, Lucchese G, Maccherini M, Chiavarelli M, Modesti A. Reduced expression of thyroid hormone receptors and beta‐adrenergic receptors in human failing cardiomyocytes. Biochem Pharmacol 75: 900‐906, 2008.
 157.Moeller LC, Cao X, Dumitrescu AM, Seo H, Refetoff S. Thyroid hormone mediated changes in gene expression can be initiated by cytosolic action of the thyroid hormone receptor beta through the phosphatidylinositol 3‐kinase pathway. Nucl Recept Signal 4: e020, 2006.
 158.Moeller LC, Dumitrescu AM, Refetoff S. Cytosolic action of thyroid hormone leads to induction of hypoxia‐inducible factor‐1alpha and glycolytic genes. Mol Endocrinol 19: 2955‐2963, 2005.
 159.Mohammed SF, Hussain S, Mirzoyev SA, Edwards WD, Maleszewski JJ, Redfield MM. Coronary microvascular rarefaction and myocardial fibrosis in heart failure with preserved ejection fraction. Circulation 131: 550‐559, 2015.
 160.Moriscot AS, Sayen MR, Hartong R, Wu P, Dillmann WH. Transcription of the rat sarcoplasmic reticulum Ca2+ adenosine triphosphatase gene is increased by 3,5,3'‐triiodothyronine receptor isoform‐specific interactions with the myocyte‐specific enhancer factor‐2a. Endocrinology 138: 26‐32, 1997.
 161.Morkin E. Regulation of myosin heavy chain genes in the heart. Circulation 87: 1451‐1460, 1993.
 162.Moruzzi P, Doria E, Agostoni PG. Medium‐term effectiveness of l‐thyroxine treatment in idiopathic dilated cardiomyopathy. Am J Med 101: 461‐467, 1996.
 163.Moruzzi P, Doria E, Agostoni PG, Capacchione V, Sganzerla P. Usefulness of l‐thyroxine to improve cardiac and exercise performance in idiopathic dilated cardiomyopathy. Am J Cardiol 73: 374‐378, 1994.
 164.Mourouzis I, Forini F, Pantos C, Iervasi G. Thyroid hormone and cardiac disease: From basic concepts to clinical application. J Thyroid Res 2011: 958626, 2011.
 165.Mourouzis I, Giagourta I, Galanopoulos G, Mantzouratou P, Kostakou E, Kokkinos AD, Tentolouris N, Pantos C. Thyroid hormone improves the mechanical performance of the post‐infarcted diabetic myocardium: A response associated with up‐regulation of Akt/mTOR and AMPK activation. Metabolism 62: 1387‐1393, 2013.
 166.Mourouzis I, Kostakou E, Galanopoulos G, Mantzouratou P, Pantos C. Inhibition of thyroid hormone receptor alpha1 impairs post‐ischemic cardiac performance after myocardial infarction in mice. Mol Cell Biochem 379: 97‐105, 2013.
 167.Mousa SA, O'Connor LJ, Bergh JJ, Davis FB, Scanlan TS, Davis PJ. The proangiogenic action of thyroid hormone analogue GC‐1 is initiated at an integrin. J Cardiovasc Pharmacol 46: 356‐360, 2005.
 168.Mullur R, Liu YY, Brent GA. Thyroid hormone regulation of metabolism. Physiol Rev 94: 355‐382, 2014.
 169.Myerburg RJ, Kessler KM, Castellanos A. Sudden cardiac death: Epidemiology, transient risk, and intervention assessment. Ann Intern Med 119: 1187‐1197, 1993.
 170.Napoli R, Biondi B, Guardasole V, Matarazzo M, Pardo F, Angelini V, Fazio S, Sacca L. Impact of hyperthyroidism and its correction on vascular reactivity in humans. Circulation 104: 3076‐3080, 2001.
 171.Naqvi N, Li M, Calvert JW, Tejada T, Lambert JP, Wu J, Kesteven SH, Holman SR, Matsuda T, Lovelock JD, Howard WW, Iismaa SE, Chan AY, Crawford BH, Wagner MB, Martin DI, Lefer DJ, Graham RM, Husain A. A proliferative burst during preadolescence establishes the final cardiomyocyte number. Cell 157: 795‐807, 2014.
 172.Nicolini G, Pitto L, Kusmic C, Balzan S, Sabatino L, Iervasi G, Forini F. New insights into mechanisms of cardioprotection mediated by thyroid hormones. J Thyroid Res 2013: 264387, 2013.
 173.Novitzky D, Cooper DK. Thyroid hormone and the stunned myocardium. J Endocrinol 223: R1‐R8, 2014.
 174.Ochs N, Auer R, Bauer DC, Nanchen D, Gussekloo J, Cornuz J, Rodondi N. Meta‐analysis: Subclinical thyroid dysfunction and the risk for coronary heart disease and mortality. Ann Intern Med 148: 832‐845, 2008.
 175.Ojamaa K. Signaling mechanisms in thyroid hormone‐induced cardiac hypertrophy. Vascul Pharmacol 52: 113‐119, 2010.
 176.Ojamaa K, Balkman C, Klein IL. Acute effects of triiodothyronine on arterial smooth muscle cells. Ann Thorac Surg 56: S61‐S66; discussion S66‐S67, 1993.
 177.Ojamaa K, Kenessey A, Klein I. Thyroid hormone regulation of phospholamban phosphorylation in the rat heart. Endocrinology 141: 2139‐2144, 2000.
 178.Ojamaa K, Klemperer JD, Klein I. Acute effects of thyroid hormone on vascular smooth muscle. Thyroid 6: 505‐512, 1996.
 179.Ojamaa K, Klemperer JD, MacGilvray SS, Klein I, Samarel A. Thyroid hormone and hemodynamic regulation of beta‐myosin heavy chain promoter in the heart. Endocrinology 137: 802‐808, 1996.
 180.Ojamaa K, Sabet A, Kenessey A, Shenoy R, Klein I. Regulation of rat cardiac Kv1.5 gene expression by thyroid hormone is rapid and chamber specific. Endocrinology 140: 3170‐3176, 1999.
 181.Olivares EL, Marassi MP, Fortunato RS, da Silva AC, Costa‐e‐Sousa RH, Araujo IG, Mattos EC, Masuda MO, Mulcahey MA, Huang SA, Bianco AC, Carvalho DP. Thyroid function disturbance and type 3 iodothyronine deiodinase induction after myocardial infarction in rats a time course study. Endocrinology 148: 4786‐4792, 2007.
 182.Olson AK, Bouchard B, Ning XH, Isern N, Rosiers CD, Portman MA. Triiodothyronine increases myocardial function and pyruvate entry into the citric acid cycle after reperfusion in a model of infant cardiopulmonary bypass. Am J Physiol 302: H1086‐H1093, 2012.
 183.Opasich C, Pacini F, Ambrosino N, Riccardi PG, Febo O, Ferrari R, Cobelli F, Tavazzi L. Sick euthyroid syndrome in patients with moderate‐to‐severe chronic heart failure. Eur Heart J 17: 1860‐1866, 1996.
 184.Ortiga‐Carvalho TM, Sidhaye AR, Wondisford FE. Thyroid hormone receptors and resistance to thyroid hormone disorders. Nat Rev Endocrinol 10: 582‐591, 2014.
 185.Owan TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL, Redfield MM. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med 355: 251‐259, 2006.
 186.Pantos C, Dritsas A, Mourouzis I, Dimopoulos A, Karatasakis G, Athanassopoulos G, Mavrogeni S, Manginas A, Cokkinos DV. Thyroid hormone is a critical determinant of myocardial performance in patients with heart failure: Potential therapeutic implications. Eur J Endocrinol 157: 515‐520, 2007.
 187.Pantos C, Malliopoulou V, Paizis I, Moraitis P, Mourouzis I, Tzeis S, Karamanoli E, Cokkinos DD, Carageorgiou H, Varonos D, Cokkinos DV. Thyroid hormone and cardioprotection: Study of p38 MAPK and JNKs during ischaemia and at reperfusion in isolated rat heart. Mol Cell Biochem 242: 173‐180, 2003.
 188.Pantos C, Mourouzis I. Translating thyroid hormone effects into clinical practice: The relevance of thyroid hormone receptor alpha1 in cardiac repair. Heart Fail Rev 20: 273‐282, 2015.
 189.Pantos C, Mourouzis I, Cokkinos DV. Rebuilding the post‐infarcted myocardium by activating ‘physiologic’ hypertrophic signaling pathways: The thyroid hormone paradigm. Heart Fail Rev 15: 143‐154, 2010.
 190.Pantos C, Mourouzis I, Markakis K, Tsagoulis N, Panagiotou M, Cokkinos DV. Long‐term thyroid hormone administration reshapes left ventricular chamber and improves cardiac function after myocardial infarction in rats. Basic Res Cardiol 103: 308‐318, 2008.
 191.Pantos C, Mourouzis I, Saranteas T, Brozou V, Galanopoulos G, Kostopanagiotou G, Cokkinos DV. Acute T3 treatment protects the heart against ischemia‐reperfusion injury via TRalpha1 receptor. Mol Cell Biochem 353: 235‐241, 2011.
 192.Pantos C, Mourouzis I, Saranteas T, Clave G, Ligeret H, Noack‐Fraissignes P, Renard PY, Massonneau M, Perimenis P, Spanou D, Kostopanagiotou G, Cokkinos DV. Thyroid hormone improves postischaemic recovery of function while limiting apoptosis: A new therapeutic approach to support hemodynamics in the setting of ischaemia‐reperfusion? Basic Res Cardiol 104: 69‐77, 2009.
 193.Pantos C, Mourouzis I, Tsagoulis N, Markakis K, Galanopoulos G, Roukounakis N, Perimenis P, Liappas A, Cokkinos DV. Thyroid hormone at supra‐physiological dose optimizes cardiac geometry and improves cardiac function in rats with old myocardial infarction. J Physiol Pharmacol 60: 49‐56, 2009.
 194.Pantos C, Mourouzis I, Xinaris C, Kokkinos AD, Markakis K, Dimopoulos A, Panagiotou M, Saranteas T, Kostopanagiotou G, Cokkinos DV. Time‐dependent changes in the expression of thyroid hormone receptor alpha 1 in the myocardium after acute myocardial infarction: Possible implications in cardiac remodelling. Eur J Endocrinol 156: 415‐424, 2007.
 195.Pantos CI, Malliopoulou VA, Mourouzis IS, Karamanoli EP, Paizis IA, Steimberg N, Varonos DD, Cokkinos DV. Long‐term thyroxine administration protects the heart in a pattern similar to ischemic preconditioning. Thyroid 12: 325‐329, 2002.
 196.Park EA, Song S, Olive M, Roesler WJ. CCAAT‐enhancer‐binding protein alpha (C/EBP alpha) is required for the thyroid hormone but not the retinoic acid induction of phosphoenolpyruvate carboxykinase (PEPCK) gene transcription. Biochem J 322(Pt 1): 343‐349, 1997.
 197.Park KW, Dai HB, Ojamaa K, Lowenstein E, Klein I, Sellke FW. The direct vasomotor effect of thyroid hormones on rat skeletal muscle resistance arteries. Anesth Analg 85: 734‐738, 1997.
 198.Picou F, Fauquier T, Chatonnet F, Richard S, Flamant F. Deciphering direct and indirect influence of thyroid hormone with mouse genetics. Mol Endocrinol 28: 429‐441, 2014.
 199.Pingitore A, Chen Y, Gerdes AM, Iervasi G. Acute myocardial infarction and thyroid function: New pathophysiological and therapeutic perspectives. Ann Med 44: 745‐757, 2011.
 200.Pingitore A, Galli E, Barison A, Iervasi A, Scarlattini M, Nucci D, L'Abbate A, Mariotti R, Iervasi G. Acute effects of triiodothyronine (T3) replacement therapy in patients with chronic heart failure and low‐T3 syndrome: A randomized, placebo‐controlled study. J Clin Endocrinol Metab 93: 1351‐1358, 2008.
 201.Pingitore A, Landi P, Taddei MC, Ripoli A, L'Abbate A, Iervasi G. Triiodothyronine levels for risk stratification of patients with chronic heart failure. Am J Med 118: 132‐136, 2005.
 202.Pittman CS, Suda AK, Chambers JB, Jr., Ray GY. Impaired 3,5,3'‐triiodothyronine (T3) production in diabetic patients. Metabolism 28: 333‐338, 1979.
 203.Pol CJ, Muller A, Simonides WS. Cardiomyocyte‐specific inactivation of thyroid hormone in pathologic ventricular hypertrophy: An adaptative response or part of the problem? Heart Fail Rev 15: 133‐142, 2010.
 204.Pol CJ, Muller A, Zuidwijk MJ, van Deel ED, Kaptein E, Saba A, Marchini M, Zucchi R, Visser TJ, Paulus WJ, Duncker DJ, Simonides WS. Left‐ventricular remodeling after myocardial infarction is associated with a cardiomyocyte‐specific hypothyroid condition. Endocrinology 152: 669‐679, 2011.
 205.Portman MA. Thyroid hormone regulation of heart metabolism. Thyroid 18: 217‐225, 2008.
 206.Portman MA, Qian K, Krueger J, Ning XH. Direct action of T3 on phosphorylation potential in the sheep heart in vivo. Am J Physiol Heart Circ Physiol 288: H2484‐H2490, 2005.
 207.Razvi S, Ingoe L, Keeka G, Oates C, McMillan C, Weaver JU. The beneficial effect of l‐thyroxine on cardiovascular risk factors, endothelial function, and quality of life in subclinical hypothyroidism: randomized, crossover trial. J Clin Endocrinol Metab 92: 1715‐1723, 2007.
 208.Reed TD, Babu GJ, Ji Y, Zilberman A, Ver Heyen M, Wuytack F, Periasamy M. The expression of SR calcium transport ATPase and the Na(+)/Ca(2+)Exchanger are antithetically regulated during mouse cardiac development and in Hypo/hyperthyroidism. J Mol Cell Cardiol 32: 453‐464, 2000.
 209.Rodondi N, den Elzen WP, Bauer DC, Cappola AR, Razvi S, Walsh JP, Asvold BO, Iervasi G, Imaizumi M, Collet TH, Bremner A, Maisonneuve P, Sgarbi JA, Khaw KT, Vanderpump MP, Newman AB, Cornuz J, Franklyn JA, Westendorp RG, Vittinghoff E, Gussekloo J. Subclinical hypothyroidism and the risk of coronary heart disease and mortality. JAMA 304: 1365‐1374, 2010.
 210.Rosenfeld MG, Lunyak VV, Glass CK. Sensors and signals: A coactivator/corepressor/epigenetic code for integrating signal‐dependent programs of transcriptional response. Genes Dev 20: 1405‐1428, 2006.
 211.Roura S, Bayes‐Genis A. Vascular dysfunction in idiopathic dilated cardiomyopathy. Nat Rev Cardiol 6: 590‐598, 2009.
 212.Rudinger A, Mylotte KM, Davis PJ, Davis FB, Blas SD. Rabbit myocardial membrane Ca2+‐adenosine triphosphatase activity: Stimulation in vitro by thyroid hormone. Arch Biochem Biophys 229: 379‐385, 1984.
 213.Sadana P, Park EA. Characterization of the transactivation domain in the peroxisome‐proliferator‐activated receptor gamma co‐activator (PGC‐1). Biochem J 403: 511‐518, 2007.
 214.Saelim N, Holstein D, Chocron ES, Camacho P, Lechleiter JD. Inhibition of apoptotic potency by ligand stimulated thyroid hormone receptors located in mitochondria. Apoptosis 12: 1781‐1794, 2007.
 215.Saito I, Ito K, Saruta T. Hypothyroidism as a cause of hypertension. Hypertension 5: 112‐115, 1983.
 216.Sakaguchi Y, Cui G, Sen L. Acute effects of thyroid hormone on inward rectifier potassium channel currents in guinea pig ventricular myocytes. Endocrinology 137: 4744‐4751, 1996.
 217.Savinova OV, Liu Y, Aasen GA, Mao K, Weltman NY, Nedich BL, Liang Q, Gerdes AM. Thyroid hormone promotes remodeling of coronary resistance vessels. PLoS One 6: e25054, 2011.
 218.Sayen MR, Rohrer DK, Dillmann WH. Thyroid hormone response of slow and fast sarcoplasmic reticulum Ca2+ ATPase mRNA in striated muscle. Mol Cell Endocrinol 87: 87‐93, 1992.
 219.Schmidt‐Ott UM, Ascheim DD. Thyroid hormone and heart failure. Curr Heart Fail Rep 3: 114‐119, 2006.
 220.Schutkowski A, Wege N, Stangl GI, Konig B. Tissue‐specific expression of monocarboxylate transporters during fasting in mice. PLoS One 9: e112118, 2014.
 221.Segal J. Acute effect of thyroid hormone on the heart: An extranuclear increase in sugar uptake. J Mol Cell Cardiol 21: 323‐334, 1989.
 222.Segal J. Calcium is the first messenger for the action of thyroid hormone at the level of the plasma membrane: First evidence for an acute effect of thyroid hormone on calcium uptake in the heart. Endocrinology 126: 2693‐2702, 1990.
 223.Shenoy R, Klein I, Ojamaa K. Differential regulation of SR calcium transporters by thyroid hormone in rat atria and ventricles. Am J Physiol 281: H1690‐H1696, 2001.
 224.Shimoni Y, Fiset C, Clark RB, Dixon JE, McKinnon D, Giles WR. Thyroid hormone regulates postnatal expression of transient K+ channel isoforms in rat ventricle. J Physiol 500(Pt 1): 65‐73, 1997.
 225.Shimoni Y, Severson DL. Thyroid status and potassium currents in rat ventricular myocytes. Am J Physiol 268: H576‐H583, 1995.
 226.Simoncini T, Hafezi‐Moghadam A, Brazil DP, Ley K, Chin WW, Liao JK. Interaction of oestrogen receptor with the regulatory subunit of phosphatidylinositol‐3‐OH kinase. Nature 407: 538‐541, 2000.
 227.Simonides WS, Mulcahey MA, Redout EM, Muller A, Zuidwijk MJ, Visser TJ, Wassen FW, Crescenzi A, da‐Silva WS, Harney J, Engel FB, Obregon MJ, Larsen PR, Bianco AC, Huang SA. Hypoxia‐inducible factor induces local thyroid hormone inactivation during hypoxic‐ischemic disease in rats. J Clin Invest 118: 975‐983, 2008.
 228.Springeling T, Uitterdijk A, Rossi A, Gorsse‐Bakker C, Wielopolski PA, van der Giessen WJ, Krestin GP, de Feyter PJ, Duncker DJ, van Geuns RJ. Evolution of reperfusion post‐infarction ventricular remodeling: New MRI insights. Int J Cardiol 169: 354‐358, 2013.
 229.Stamler J. The coronary drug project—findings with regard to estrogen, dextrothyroxine, clofibrate and niacin. Adv Exp Med Biol 82: 52‐75, 1977.
 230.Storey NM, Gentile S, Ullah H, Russo A, Muessel M, Erxleben C, Armstrong DL. Rapid signaling at the plasma membrane by a nuclear receptor for thyroid hormone. Proc Natl Acad Sci U S A 103: 5197‐5201, 2006.
 231.Stoykov I, Zandieh‐Doulabi B, Moorman AF, Christoffels V, Wiersinga WM, Bakker O. Expression pattern and ontogenesis of thyroid hormone receptor isoforms in the mouse heart. J Endocrinol 189: 231‐245, 2006.
 232.Studer R, Reinecke H, Bilger J, Eschenhagen T, Bohm M, Hasenfuss G, Just H, Holtz J, Drexler H. Gene expression of the cardiac Na(+)‐Ca2+ exchanger in end‐stage human heart failure. Circ Res 75: 443‐453, 1994.
 233.Suarez J, Wang H, Scott BT, Ling H, Makino A, Swanson E, Brown JH, Suarez JA, Feinstein S, Diaz‐Juarez J, Dillmann WH. In vivo selective expression of thyroid hormone receptor alpha1 in endothelial cells attenuates myocardial injury in experimental myocardial infarction in mice. Am J Physiol Regul Integr Comp Physiol 307: R340‐R346, 2014.
 234.Sugden MC, Langdown ML, Harris RA, Holness MJ. Expression and regulation of pyruvate dehydrogenase kinase isoforms in the developing rat heart and in adulthood: Role of thyroid hormone status and lipid supply. Biochem J 352(Pt 3): 731‐738, 2000.
 235.Sun ZQ, Ojamaa K, Coetzee WA, Artman M, Klein I. Effects of thyroid hormone on action potential and repolarizing currents in rat ventricular myocytes. Am J Physiol Endocrinol Metab 278: E302‐E307, 2000.
 236.Sun ZQ, Ojamaa K, Nakamura TY, Artman M, Klein I, Coetzee WA. Thyroid hormone increases pacemaker activity in rat neonatal atrial myocytes. J Mol Cell Cardiol 33: 811‐824, 2001.
 237.Sylven C, Jansson E, Sotonyi P, Waagstein F, Barkhem T, Bronnegard M. Cardiac nuclear hormone receptor mRNA in heart failure in man. Life Sci 59: 1917‐1922, 1996.
 238.Tanase DM, Ionescu SD, Ouatu A, Ambarus V, Arsenescu‐Georgescu C. Risk assessment in the development of atrial fibrillation at patients with associate thyroid dysfunctions. Rev Med Chir Soc Med Nat Iasi 117: 623‐629, 2013.
 239.Tang YD, Kuzman JA, Said S, Anderson BE, Wang X, Gerdes AM. Low thyroid function leads to cardiac atrophy with chamber dilatation, impaired myocardial blood flow, loss of arterioles, and severe systolic dysfunction. Circulation 112: 3122‐3130, 2005.
 240.Tata JR. The road to nuclear receptors of thyroid hormone. Biochim Biophys Acta 1830: 3860‐3866, 2013.
 241.The coronary drug project. Design, methods, and baseline results. Circulation 47: I1‐I50, 1973.
 242.Thijssen‐Timmer DC, Schiphorst MP, Kwakkel J, Emter R, Kralli A, Wiersinga WM, Bakker O. PGC‐1alpha regulates the isoform mRNA ratio of the alternatively spliced thyroid hormone receptor alpha transcript. J Mol Endocrinol 37: 251‐257, 2006.
 243.Thomas TA, Kuzman JA, Anderson BE, Andersen SM, Schlenker EH, Holder MS, Gerdes AM. Thyroid hormones induce unique and potentially beneficial changes in cardiac myocyte shape in hypertensive rats near heart failure. Am J Physiol 288: H2118‐H2122, 2005.
 244.Traub‐Weidinger T, Graf S, Beheshti M, Ofluoglu S, Zettinig G, Khorsand A, Nekolla SG, Kletter K, Dudczak R, Pirich C. Coronary vasoreactivity in subjects with thyroid autoimmunity and subclinical hypothyroidism before and after supplementation with thyroxine. Thyroid 22: 245‐251, 2012.
 245.Trost SU, Belke DD, Bluhm WF, Meyer M, Swanson E, Dillmann WH. Overexpression of the sarcoplasmic reticulum Ca(2+)‐ATPase improves myocardial contractility in diabetic cardiomyopathy. Diabetes 51: 1166‐1171, 2002.
 246.Tseng FY, Lin WY, Lin CC, Lee LT, Li TC, Sung PK, Huang KC. Subclinical hypothyroidism is associated with increased risk for all‐cause and cardiovascular mortality in adults. J Am Coll Cardiol 60: 730‐737, 2012.
 247.Unal O, Erturk E, Ozkan H, Kiyici S, Guclu M, Ersoy C, Yener F, Imamoglu S. Effect of levothyroxine treatment on QT dispersion in patients with subclinical hypothyroidism. Endocr Pract 13: 711‐715, 2007.
 248.van den Heuvel AF, van Veldhuisen DJ, van der Wall EE, Blanksma PK, Siebelink HM, Vaalburg WM, van Gilst WH, Crijns HJ. Regional myocardial blood flow reserve impairment and metabolic changes suggesting myocardial ischemia in patients with idiopathic dilated cardiomyopathy. J Am Coll Cardiol 35: 19‐28, 2000.
 249.van Rooij E, Liu N, Olson EN. MicroRNAs flex their muscles. Trends Genet 24: 159‐166, 2008.
 250.van Rooij E, Quiat D, Johnson BA, Sutherland LB, Qi X, Richardson JA, Kelm RJ, Jr., Olson EN. A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev Cell 17: 662‐673, 2009.
 251.van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN. Control of stress‐dependent cardiac growth and gene expression by a microRNA. Science 316: 575‐579, 2007.
 252.Vargas F, Moreno JM, Rodriguez‐Gomez I, Wangensteen R, Osuna A, Alvarez‐Guerra M, Garcia‐Estan J. Vascular and renal function in experimental thyroid disorders. Eur J Endocrinol 154: 197‐212, 2006.
 253.Vargas F, Rodriguez‐Gomez I, Vargas‐Tendero P, Jimenez E, Montiel M. The renin‐angiotensin system in thyroid disorders and its role in cardiovascular and renal manifestations. J Endocrinol 213: 25‐36, 2012.
 254.Visser WE, Friesema EC, Visser TJ. Minireview: Thyroid hormone transporters: the knowns and the unknowns. Mol Endocrinol 25: 1‐14, 2011.
 255.Wajner SM, Goemann IM, Bueno AL, Larsen PR, Maia AL. IL‐6 promotes nonthyroidal illness syndrome by blocking thyroxine activation while promoting thyroid hormone inactivation in human cells. J Clin Invest 121: 1834‐1845, 2011.
 256.Wang W, Guan H, Gerdes AM, Iervasi G, Yang Y, Tang YD. Thyroid status, cardiac function, and mortality in patients with idiopathic dilated cardiomyopathy. J Clin Endocrinol Metab 100: 3210‐3218, 2015.
 257.Wang YG, Dedkova EN, Fiening JP, Ojamaa K, Blatter LA, Lipsius SL. Acute exposure to thyroid hormone increases Na+ current and intracellular Ca2+ in cat atrial myocytes. J Physiol 546: 491‐499, 2003.
 258.Wassen FW, Schiel AE, Kuiper GG, Kaptein E, Bakker O, Visser TJ, Simonides WS. Induction of thyroid hormone‐degrading deiodinase in cardiac hypertrophy and failure. Endocrinology 143: 2812‐2815, 2002.
 259.Watanabe H, Washizuka T, Komura S, Yoshida T, Hosaka Y, Hatada K, Aizawa Y, Chinushi M, Yamamoto T. Genomic and non‐genomic regulation of L‐type calcium channels in rat ventricle by thyroid hormone. Endocr Res 31: 59‐70, 2005.
 260.Weisser‐Thomas J, Kubo H, Hefner CA, Gaughan JP, McGowan BS, Ross R, Meyer M, Dillmann W, Houser SR. The Na+/Ca2+ exchanger/SR Ca2+ ATPase transport capacity regulates the contractility of normal and hypertrophied feline ventricular myocytes. J Card Fail 11: 380‐387, 2005.
 261.Weltman NY, Ojamaa K, Schlenker EH, Chen YF, Zucchi R, Saba A, Colligiani D, Rajagopalan V, Pol CJ, Gerdes AM. Low‐dose T(3) replacement restores depressed cardiac T(3) levels, preserves coronary microvasculature and attenuates cardiac dysfunction in experimental diabetes mellitus. Mol Med 20: 302‐312, 2014.
 262.Weltman NY, Pol CJ, Zhang Y, Wang Y, Koder A, Raza S, Zucchi R, Saba A, Colligiani D, Gerdes AM. Long‐term physiological T3 supplementation in hypertensive heart disease in rats. Am J Physiol 309: H1059‐H1065, 2015.
 263.Weltman NY, Wang D, Redetzke RA, Gerdes AM. Longstanding hyperthyroidism is associated with normal or enhanced intrinsic cardiomyocyte function despite decline in global cardiac function. PLoS One 7: e46655, 2012.
 264.Whelan RS, Kaplinskiy V, Kitsis RN. Cell death in the pathogenesis of heart disease: Mechanisms and significance. Annu Rev Physiol 72: 19‐44, 2010.
 265.Wickenden AD, Kaprielian R, Parker TG, Jones OT, Backx PH. Effects of development and thyroid hormone on K+ currents and K+ channel gene expression in rat ventricle. J Physiol 504(Pt 2): 271‐286, 1997.
 266.Wikstrom L, Johansson C, Salto C, Barlow C, Campos Barros A, Baas F, Forrest D, Thoren P, Vennstrom B. Abnormal heart rate and body temperature in mice lacking thyroid hormone receptor alpha 1. Embo J 17: 455‐461, 1998.
 267.Williams GR, Bassett JH. Deiodinases: The balance of thyroid hormone: Local control of thyroid hormone action: role of type 2 deiodinase. J Endocrinol 209: 261‐272, 2011.
 268.Worku B, Tortolani AJ, Gulkarov I, Isom OW, Klein I. Preoperative hypothyroidism is a risk factor for postoperative atrial fibrillation in cardiac surgical patients. J Card Surg 30: 307‐312, 2015.
 269.Wrutniak‐Cabello C, Casas F, Cabello G. Thyroid hormone action in mitochondria. J Mol Endocrinol 26: 67‐77, 2001.
 270.Xu B, Koenig RJ. Regulation of thyroid hormone receptor alpha2 RNA binding and subcellular localization by phosphorylation. Mol Cell Endocrinol 245: 147‐157, 2005.
 271.Yalcin Y, Carman D, Shao Y, Ismail‐Beigi F, Klein I, Ojamaa K. Regulation of Na/K‐ATPase gene expression by thyroid hormone and hyperkalemia in the heart. Thyroid 9: 53‐59, 1999.
 272.Yao J, Eghbali M. Decreased collagen gene expression and absence of fibrosis in thyroid hormone‐induced myocardial hypertrophy. Response of cardiac fibroblasts to thyroid hormone in vitro. Circ Res 71: 831‐839, 1992.
 273.Yao J, Eghbali M. Decreased collagen mRNA and regression of cardiac fibrosis in the ventricular myocardium of the tight skin mouse following thyroid hormone treatment. Cardiovasc Res 26: 603‐607, 1992.
 274.Yap N, Yu CL, Cheng SY. Modulation of the transcriptional activity of thyroid hormone receptors by the tumor suppressor p53. Proc Natl Acad Sci U S A 93: 4273‐4277, 1996.
 275.Yen PM. Physiological and molecular basis of thyroid hormone action. Physiol Rev 81: 1097‐1142, 2001.
 276.Yoon YS, Uchida S, Masuo O, Cejna M, Park JS, Gwon HC, Kirchmair R, Bahlman F, Walter D, Curry C, Hanley A, Isner JM, Losordo DW. Progressive attenuation of myocardial vascular endothelial growth factor expression is a seminal event in diabetic cardiomyopathy: Restoration of microvascular homeostasis and recovery of cardiac function in diabetic cardiomyopathy after replenishment of local vascular endothelial growth factor. Circulation 111: 2073‐2085, 2005.
 277.Young WF, Jr., Gorman CA, Jiang NS, Machacek D, Hay ID. l‐Thyroxine contamination of pharmaceutical d‐thyroxine: probable cause of therapeutic effect. Clin Pharmacol Ther 36: 781‐787, 1984.
 278.Zafeiridis A, Jeevanandam V, Houser SR, Margulies KB. Regression of cellular hypertrophy after left ventricular assist device support. Circulation 98: 656‐662, 1998.
 279.Zhang Y, Dedkov EI, Lee B, III, Li Y, Pun K, Gerdes AM. Thyroid hormone replacement therapy attenuates atrial remodeling and reduces atrial fibrillation inducibility in a rat myocardial infarction‐heart failure model. J Card Fail 20: 1012‐1019, 2014.
 280.Zhang Y, Dedkov EI, Teplitsky D, Weltman NY, Pol CJ, Rajagopalan V, Lee B, Gerdes AM. Both hypothyroidism and hyperthyroidism increase atrial fibrillation inducibility in rats. Circu Arrhythm Electrophysiol 6: 952‐959, 2013.
 281.Zhang Y, Kim BK, Chang Y, Ryu S, Cho J, Lee WY, Rhee EJ, Kwon MJ, Rampal S, Zhao D, Pastor‐Barriuso R, Lima JA, Shin H, Guallar E. Thyroid hormones and coronary artery calcification in euthyroid men and women. Arterioscler Thromb Vasc Biol 34: 2128‐2134, 2014.
 282.Zierhut W, Zimmer HG. Differential effects of triiodothyronine on rat left and right ventricular function and the influence of metoprolol. J Mol Cell Cardiol 21: 617‐624, 1989.
 283.Zimmer HG, Gerdes AM, Lortet S, Mall G. Changes in heart function and cardiac cell size in rats with chronic myocardial infarction. J Mol Cell Cardiol 22: 1231‐1243, 1990.
 284.Zinman T, Shneyvays V, Tribulova N, Manoach M, Shainberg A. Acute, nongenomic effect of thyroid hormones in preventing calcium overload in newborn rat cardiocytes. J Cell Physiol 207: 220‐231, 2006.
 285.Zoeller RT, Tan SW, Tyl RW. General background on the hypothalamic‐pituitary‐thyroid (HPT) axis. Crit Rev Toxicol 37: 11‐53, 2007.
 286.Zondek H. Das myxo‐demherz. Munch Med Wochenschr 65: 1180‐1182, 1918.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Anthony Martin Gerdes, Kaie Ojamaa. Thyroid Hormone and Cardioprotection. Compr Physiol 2016, 6: 1199-1219. doi: 10.1002/cphy.c150012