Comprehensive Physiology Wiley Online Library

Apelinergic System Structure and Function

Full Article on Wiley Online Library



ABSTRACT

Apelin and apela (ELABELA/ELA/Toddler) are two peptide ligands for a class A G‐protein‐coupled receptor named the apelin receptor (AR/APJ/APLNR). Ligand‐AR interactions have been implicated in regulation of the adipoinsular axis, cardiovascular system, and central nervous system alongside pathological processes. Each ligand may be processed into a variety of bioactive isoforms endogenously, with apelin ranging from 13 to 55 amino acids and apela from 11 to 32, typically being cleaved C‐terminal to dibasic proprotein convertase cleavage sites. The C‐terminal region of the respective precursor protein is retained and is responsible for receptor binding and subsequent activation. Interestingly, both apelin and apela exhibit isoform‐dependent variability in potency and efficacy under various physiological and pathological conditions, but most studies focus on a single isoform. Biophysical behavior and structural properties of apelin and apela isoforms show strong correlations with functional studies, with key motifs now well determined for apelin. Unlike its ligands, the AR has been relatively difficult to characterize by biophysical techniques, with most characterization to date being focused on effects of mutagenesis. This situation may improve following a recently reported AR crystal structure, but there are still barriers to overcome in terms of comprehensive biophysical study. In this review, we summarize the three components of the apelinergic system in terms of structure‐function correlation, with a particular focus on isoform‐dependent properties, underlining the potential for regulation of the system through multiple endogenous ligands and isoforms, isoform‐dependent pharmacological properties, and biological membrane‐mediated receptor interaction. © 2018 American Physiological Society. Compr Physiol 8:407‐450, 2018.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1. Human apelin receptor (AR) sequence illustrated in “snake plot” format, with seven transmembrane (TM) helices delineated. Additional structural features observed in the AR crystal structure () are illustrated: a short β‐sheet in the second extracellular loop; the eighth helix, immediately C‐terminal to TM7; and, the two extracellular domain disulfide linkages (denoted by distinct dagger symbols to link C19 to C281 and C102 to C181). Residues shown by mutagenesis to have functional importance are shown by filled circles. Important motifs common to class A GPCR activation () are shown by red circles: the Trp toggle (CWXP) in helix 6; the ionic lock (DRY) in helix 3; and, the NPXXY motif in TM7. Membrane interface positioning is as estimated by TMDET ().
Figure 2. Figure 2. Sequence comparison of the seven transmembrane (TM) regions of human apelin receptor (AR; colored red) with seven other GPCRs (human unless specified): bovine rhodopsin (Rh); fellow HIV‐1 coreceptors CCR5 and CXCR4; angiotensin‐II receptor isoform 1 (AT1); and, β2‐adrenergic receptor (β2AdR), adenosine A2A receptor and turkey β1‐adrenergic receptor (β1AdR). Alignments were performed using consensus residues defined by Baldwin et al. (). Boxes surround conserved/homologous residues in >4 (or 4 including AR) of the GPCRs. Numbering above the alignments refer to the standard GPCR numbering used in the GPCRDB project () with green highlights showing putative TM region, while numbering at each end of the sequence refers to the sequential numbering for the full‐length protein. Yellow highlights indicate residues in AR where mutagenesis has shown perturbation to either function or localization ().
Figure 3. Figure 3. Representations of the crystal structure of the apelin receptor in an inactive‐like state in complex with the agonistic apelin‐17 analog AMG3054 [PDB entry 5VBL; ()]. Cartoon and cylinder diagrams are colored from blue (N‐terminus) to red (C‐terminus), with the ligand shown as grey sticks. Surface representations colored (as indicated on lower right) from a charge of ‐2 as red to +2 as blue were generated using the PyMol (Schrödinger, Cambridge, MA) adaptive Poisson‐Boltzmann Solver plugin. Membrane positioning is as estimated by TMDET ().
Figure 4. Figure 4. Structural and topological comparison of the apelin receptor to four other class A GPCRs crystallized in inactive‐like conformations: rhodopsin, β2‐adrenergic receptor (β2AdR), β1‐adrenergic receptor (β1AdR), and adenosine A2A receptor. Left column: Comparison of GPCR architecture [see, e.g., Hanson et al. () for a detailed discussion of these comparator GPCRs] colored from blue (N‐terminus) to red (C‐terminus), with the corresponding PDB entry codes provided with cocrystallized, bound agonist/antagonist molecules given in brackets; retinal is present in the rhodopsin structure shown. Each GPCR is shown in a cartoon representation in the same orientation and with the same color scheme. Right column: Comparison of topologies with TM helix kinks identified as bends (black circles) or disruptions (black lines) and TM helices shown as colored rectangles with position and angle correct relative to membrane boundaries (blue lines). Topologies were determined by the MC‐HELAN algorithm () with TM orientation and membrane boundaries defined by the TMDET algorithm (). Residues at start and end of each TM region and at kinks are indicated (see also Fig. 2). Loops connecting TM helices are shown as black lines (independent of length), while the N‐ and C‐termini are not represented. Kink angles cannot be preserved in translation from 3D structure to 2D topology diagram, but are calculated correctly by MC‐HELAN.
Figure 5. Figure 5. Comparison of β2‐adrenergic receptor topology as a function of activation state. PDB entry is given, alongside its resolution and the nature of the bound ligand or effector protein. Topologies were predicted by MC‐HELAN () with TM helix kinks identified as bends (black circles) or disruptions (black lines) and TM helices shown as colored rectangles with position and angle correct relative to membrane boundaries (blue lines) defined by the TMDET algorithm ().
Figure 6. Figure 6. Sequence conservation of apelin. Residues that are fully conserved over the six illustrated species are indicated with a black background; partially conserved with varying shades of gray; and, variable positions with white.
Figure 7. Figure 7. Apelin processing pathways. (A) Previously theorized “apelin‐36 precursor” processing pathway. (B) Current “myriad” processing pathway theory based on new publications, which also identifies proapelin as apelin‐55 as an additional bioactive member of the apelinergic system. Note that this processing pathway does not show other post‐translational modifications such as ACE‐2‐mediated C‐terminal phenylalanine removal.
Figure 8. Figure 8. Apelinergic system expression and isoform localization profile. (A) Apelin, apela, and AR localization as a function of tissue/organ system. (B) Predominant apelin isoform(s) detected, to date, in specific organs or body fluids.
Figure 9. Figure 9. Summary of structure‐function correlations for apelin. Apelin‐17 is illustrated as it has been the most widely studied isoform in terms of biophysics and structure. Functional effects of mutagenesis or truncation are indicated directly on the peptide sequence (symbols denoted in the legend). For direct comparison, regions of apelin‐17 exhibiting structural convergence () and membrane‐interactive properties () are delineated alongside the segments of the apelin‐17 analog AMG3054 that interact with the AR in the cocrystal structure [PDB entry 5VBL ()].
Figure 10. Figure 10. Membrane catalysis hypothesis as applied to binding of apelin‐17 to the apelin receptor. Sequentially, () apelin is proposed to bind to the membrane, increasing the likelihood of () its interaction with and recognition by an unliganded apelin receptor (AR) on a cell surface followed by () receptor binding and activation. Structures of apelin‐17 in buffer [BMRB entry 20029 ()] and bound to SDS micelles (BMRB entry 20082 ()); and, of AR in absence of ligand with anionic patch residues E20 and D23 illustrated in orange () and bound to apelin‐17 analog AMG3054 [PDB entry: 5VBL ()] were employed.
Figure 11. Figure 11. Sequence conservation of apela. Residues that are fully conserved over the five illustrated species are indicated with a black background; partially conserved with varying shades of grey; and, variable positions with white. Hyphens indicate residues absent from a given species.
Figure 12. Figure 12. Comparison of apelin‐36 and apela‐32. (A) Sequence comparison of apelin‐36 (top) and apela‐32 (bottom). Dashed lines represent residues falling in similar positions implying the potential for similar structural and/or functional roles. (B) Comparison of amino acid composition.
Figure 13. Figure 13. Summary of structural and functional studies for apela. Apela‐32 is illustrated, although it should be noted that a number of studies have focused on shorter isoforms. Functional effects of mutagenesis or truncation are indicated directly on the peptide sequence (symbols denoted in the legend). Regions exhibiting structuring in the presence of the indicted type of micelle () are delineated.
Figure 14. Figure 14. Implications of membrane catalysis for the regulation of signaling. (A) Autocrine and (B) paracrine or endocrine signaling of apelin or apela (denoted as “AP”) isoforms may be regulated by variation in preferential membrane headgroup association. Ligand‐mediated apelin receptor (AR) activation is represented by G‐protein binding and subsequent ERK phosphorylation (pERK), although many other signaling pathways are possible (Tables 13 and 14).


Figure 1. Human apelin receptor (AR) sequence illustrated in “snake plot” format, with seven transmembrane (TM) helices delineated. Additional structural features observed in the AR crystal structure () are illustrated: a short β‐sheet in the second extracellular loop; the eighth helix, immediately C‐terminal to TM7; and, the two extracellular domain disulfide linkages (denoted by distinct dagger symbols to link C19 to C281 and C102 to C181). Residues shown by mutagenesis to have functional importance are shown by filled circles. Important motifs common to class A GPCR activation () are shown by red circles: the Trp toggle (CWXP) in helix 6; the ionic lock (DRY) in helix 3; and, the NPXXY motif in TM7. Membrane interface positioning is as estimated by TMDET ().


Figure 2. Sequence comparison of the seven transmembrane (TM) regions of human apelin receptor (AR; colored red) with seven other GPCRs (human unless specified): bovine rhodopsin (Rh); fellow HIV‐1 coreceptors CCR5 and CXCR4; angiotensin‐II receptor isoform 1 (AT1); and, β2‐adrenergic receptor (β2AdR), adenosine A2A receptor and turkey β1‐adrenergic receptor (β1AdR). Alignments were performed using consensus residues defined by Baldwin et al. (). Boxes surround conserved/homologous residues in >4 (or 4 including AR) of the GPCRs. Numbering above the alignments refer to the standard GPCR numbering used in the GPCRDB project () with green highlights showing putative TM region, while numbering at each end of the sequence refers to the sequential numbering for the full‐length protein. Yellow highlights indicate residues in AR where mutagenesis has shown perturbation to either function or localization ().


Figure 3. Representations of the crystal structure of the apelin receptor in an inactive‐like state in complex with the agonistic apelin‐17 analog AMG3054 [PDB entry 5VBL; ()]. Cartoon and cylinder diagrams are colored from blue (N‐terminus) to red (C‐terminus), with the ligand shown as grey sticks. Surface representations colored (as indicated on lower right) from a charge of ‐2 as red to +2 as blue were generated using the PyMol (Schrödinger, Cambridge, MA) adaptive Poisson‐Boltzmann Solver plugin. Membrane positioning is as estimated by TMDET ().


Figure 4. Structural and topological comparison of the apelin receptor to four other class A GPCRs crystallized in inactive‐like conformations: rhodopsin, β2‐adrenergic receptor (β2AdR), β1‐adrenergic receptor (β1AdR), and adenosine A2A receptor. Left column: Comparison of GPCR architecture [see, e.g., Hanson et al. () for a detailed discussion of these comparator GPCRs] colored from blue (N‐terminus) to red (C‐terminus), with the corresponding PDB entry codes provided with cocrystallized, bound agonist/antagonist molecules given in brackets; retinal is present in the rhodopsin structure shown. Each GPCR is shown in a cartoon representation in the same orientation and with the same color scheme. Right column: Comparison of topologies with TM helix kinks identified as bends (black circles) or disruptions (black lines) and TM helices shown as colored rectangles with position and angle correct relative to membrane boundaries (blue lines). Topologies were determined by the MC‐HELAN algorithm () with TM orientation and membrane boundaries defined by the TMDET algorithm (). Residues at start and end of each TM region and at kinks are indicated (see also Fig. 2). Loops connecting TM helices are shown as black lines (independent of length), while the N‐ and C‐termini are not represented. Kink angles cannot be preserved in translation from 3D structure to 2D topology diagram, but are calculated correctly by MC‐HELAN.


Figure 5. Comparison of β2‐adrenergic receptor topology as a function of activation state. PDB entry is given, alongside its resolution and the nature of the bound ligand or effector protein. Topologies were predicted by MC‐HELAN () with TM helix kinks identified as bends (black circles) or disruptions (black lines) and TM helices shown as colored rectangles with position and angle correct relative to membrane boundaries (blue lines) defined by the TMDET algorithm ().


Figure 6. Sequence conservation of apelin. Residues that are fully conserved over the six illustrated species are indicated with a black background; partially conserved with varying shades of gray; and, variable positions with white.


Figure 7. Apelin processing pathways. (A) Previously theorized “apelin‐36 precursor” processing pathway. (B) Current “myriad” processing pathway theory based on new publications, which also identifies proapelin as apelin‐55 as an additional bioactive member of the apelinergic system. Note that this processing pathway does not show other post‐translational modifications such as ACE‐2‐mediated C‐terminal phenylalanine removal.


Figure 8. Apelinergic system expression and isoform localization profile. (A) Apelin, apela, and AR localization as a function of tissue/organ system. (B) Predominant apelin isoform(s) detected, to date, in specific organs or body fluids.


Figure 9. Summary of structure‐function correlations for apelin. Apelin‐17 is illustrated as it has been the most widely studied isoform in terms of biophysics and structure. Functional effects of mutagenesis or truncation are indicated directly on the peptide sequence (symbols denoted in the legend). For direct comparison, regions of apelin‐17 exhibiting structural convergence () and membrane‐interactive properties () are delineated alongside the segments of the apelin‐17 analog AMG3054 that interact with the AR in the cocrystal structure [PDB entry 5VBL ()].


Figure 10. Membrane catalysis hypothesis as applied to binding of apelin‐17 to the apelin receptor. Sequentially, () apelin is proposed to bind to the membrane, increasing the likelihood of () its interaction with and recognition by an unliganded apelin receptor (AR) on a cell surface followed by () receptor binding and activation. Structures of apelin‐17 in buffer [BMRB entry 20029 ()] and bound to SDS micelles (BMRB entry 20082 ()); and, of AR in absence of ligand with anionic patch residues E20 and D23 illustrated in orange () and bound to apelin‐17 analog AMG3054 [PDB entry: 5VBL ()] were employed.


Figure 11. Sequence conservation of apela. Residues that are fully conserved over the five illustrated species are indicated with a black background; partially conserved with varying shades of grey; and, variable positions with white. Hyphens indicate residues absent from a given species.


Figure 12. Comparison of apelin‐36 and apela‐32. (A) Sequence comparison of apelin‐36 (top) and apela‐32 (bottom). Dashed lines represent residues falling in similar positions implying the potential for similar structural and/or functional roles. (B) Comparison of amino acid composition.


Figure 13. Summary of structural and functional studies for apela. Apela‐32 is illustrated, although it should be noted that a number of studies have focused on shorter isoforms. Functional effects of mutagenesis or truncation are indicated directly on the peptide sequence (symbols denoted in the legend). Regions exhibiting structuring in the presence of the indicted type of micelle () are delineated.


Figure 14. Implications of membrane catalysis for the regulation of signaling. (A) Autocrine and (B) paracrine or endocrine signaling of apelin or apela (denoted as “AP”) isoforms may be regulated by variation in preferential membrane headgroup association. Ligand‐mediated apelin receptor (AR) activation is represented by G‐protein binding and subsequent ERK phosphorylation (pERK), although many other signaling pathways are possible (Tables 13 and 14).
References
 1. Adam F , Khatib AM , Lopez JJ , Vatier C , Turpin S , Muscat A , Soulet F , Aries A , Jardin I , Bobe R , Stepanian A , de Prost D , Dray C , Rosado JA , Valet P , Feve B , Siegfried G . Apelin: An antithrombotic factor that inhibits platelet function. Blood 127: 908‐920, 2016.
 2. Akcilar R , Turgut S , Caner V , Akcilar A , Ayada C , Elmas L , Ozcan TO . Apelin effects on blood pressure and RAS in DOCA‐salt‐induced hypertensive rats. Clin Exp Hypertens 35: 550‐557, 2013.
 3. Akcilar R , Turgut S , Caner V , Akcilar A , Ayada C , Elmas L , Ozcan TO . The effects of apelin treatment on a rat model of type 2 diabetes. Adv Med Sci 60: 94‐100, 2015.
 4. Alastalo TP , Li M , Perez Vde J , Pham D , Sawada H , Wang JK , Koskenvuo M , Wang L , Freeman BA , Chang HY , Rabinovitch M . Disruption of PPARγ/β‐catenin‐mediated regulation of apelin impairs BMP‐induced mouse and human pulmonary arterial EC survival. J Clin Invest 121: 3735‐3746, 2011.
 5. Andersen CU , Markvardsen LH , Hilberg O , Simonsen U . Pulmonary apelin levels and effects in rats with hypoxic pulmonary hypertension. Respir Med 103: 1663‐1671, 2009.
 6. Apweiler R , Bairoch A , Wu CH , Barker WC , Boeckmann B , Ferro S , Gasteiger E , Huang H , Lopez R , Magrane M , Martin MJ , Natale DA , O'Donovan C , Redaschi N , Yeh LS . UniProt: The Universal Protein knowledgebase. Nucleic Acids Res 32: D115‐D119, 2004.
 7. Atluri P , Morine KJ , Liao GP , Panlilio CM , Berry MF , Hsu VM , Hiesinger W , Cohen JE , Joseph Woo Y . Ischemic heart failure enhances endogenous myocardial apelin and APJ receptor expression. Cell Mol Biol Lett 12: 127‐138, 2007.
 8. Attane C , Daviaud D , Dray C , Dusaulcy R , Masseboeuf M , Prevot D , Carpene C , Castan‐Laurell I , Valet P . Apelin stimulates glucose uptake but not lipolysis in human adipose tissue ex vivo . J Mol Endocrinol 46: 21‐28, 2011.
 9. Attane C , Foussal C , Le Gonidec S , Benani A , Daviaud D , Wanecq E , Guzman‐Ruiz R , Dray C , Bezaire V , Rancoule C , Kuba K , Ruiz‐Gayo M , Levade T , Penninger J , Burcelin R , Penicaud L , Valet P , Castan‐Laurell I . Apelin treatment increases complete fatty acid oxidation, mitochondrial oxidative capacity, and biogenesis in muscle of insulin‐resistant mice. Diabetes 61: 310‐320, 2012.
 10. Azizi M , Iturrioz X , Blanchard A , Peyrard S , De Mota N , Chartrel N , Vaudry H , Corvol P , Llorens‐Cortes C . Reciprocal regulation of plasma apelin and vasopressin by osmotic stimuli. J Am Soc Nephrol 19: 1015‐1024, 2008.
 11. Azizi Y , Faghihi M , Imani A , Roghani M , Nazari A . Post‐infarct treatment with [Pyr1]‐apelin‐13 reduces myocardial damage through reduction of oxidative injury and nitric oxide enhancement in the rat model of myocardial infarction. Peptides 46: 76‐82, 2013.
 12. Azizi Y , Faghihi M , Imani A , Roghani M , Zekri A , Mobasheri MB , Rastgar T , Moghimian M . Post‐infarct treatment with [Pyr(1)]apelin‐13 improves myocardial function by increasing neovascularization and overexpression of angiogenic growth factors in rats. Eur J Pharmacol 761: 101‐108, 2015.
 13. Azizi Y , Imani A , Fanaei H , Khamse S , Parvizi MR , Faghihi M . Post‐infarct treatment with [Pyr1]apelin‐13 exerts anti‐remodelling and anti‐apoptotic effects in rats' hearts. Kardiol Pol 75: 605‐613, 2017.
 14. Bai B , Cai X , Jiang Y , Karteris E , Chen J . Heterodimerization of apelin receptor and neurotensin receptor 1 induces phosphorylation of ERK(1/2) and cell proliferation via Gαq‐mediated mechanism. J Cell Mol Med 18: 2071‐2081, 2014.
 15. Bai B , Jiang Y , Cai X , Chen J . Dynamics of apelin receptor/G protein coupling in living cells. Exp Cell Res 328: 401‐409, 2014.
 16. Bai B , Tang J , Liu H , Chen J , Li Y , Song W . Apelin‐13 induces ERK1/2 but not p38 MAPK activation through coupling of the human apelin receptor to the Gi2 pathway. Acta Biochim Biophys Sin (Shanghai) 40: 311‐318, 2008.
 17. Baldwin JM , Schertler GF , Unger VM . An α‐carbon template for the transmembrane helices in the rhodopsin family of G‐protein‐coupled receptors. J Mol Biol 272: 144‐164, 1997.
 18. Barnes GD , Alam S , Carter G , Pedersen CM , Lee KM , Hubbard TJ , Veitch S , Jeong H , White A , Cruden NL , Huson L , Japp AG , Newby DE . Sustained cardiovascular actions of APJ agonism during renin‐angiotensin system activation and in patients with heart failure. Circ Heart Fail 6: 482‐491, 2013.
 19. Ben‐Shlomo I , Hsueh AJ . Three's company: Two or more unrelated receptors pair with the same ligand. Mol Endocrinol 19: 1097‐1109, 2005.
 20. Berry MF , Pirolli TJ , Jayasankar V , Burdick J , Morine KJ , Gardner TJ , Woo YJ . Apelin has in vivo inotropic effects on normal and failing hearts. Circulation 110: II187‐II193, 2004.
 21. Berta J , Hoda MA , Laszlo V , Rozsas A , Garay T , Torok S , Grusch M , Berger W , Paku S , Renyi‐Vamos F , Masri B , Tovari J , Groger M , Klepetko W , Hegedus B , Dome B . Apelin promotes lymphangiogenesis and lymph node metastasis. Oncotarget 5: 4426‐4437, 2014.
 22. Berta J , Kenessey I , Dobos J , Tovari J , Klepetko W , Jan Ankersmit H , Hegedus B , Renyi‐Vamos F , Varga J , Lorincz Z , Paku S , Ostoros G , Rozsas A , Timar J , Dome B . Apelin expression in human non‐small cell lung cancer: Role in angiogenesis and prognosis. J Thorac Oncol 5: 1120‐1129, 2010.
 23. Boal F , Roumegoux J , Alfarano C , Timotin A , Calise D , Anesia R , Drougard A , Knauf C , Lagente C , Roncalli J , Desmoulin F , Tronchere H , Valet P , Parini A , Kunduzova O . Apelin regulates FoxO3 translocation to mediate cardioprotective responses to myocardial injury and obesity. Sci Rep 5: 16104, 2015.
 24. Boal F , Timotin A , Roumegoux J , Alfarano C , Calise D , Anesia R , Parini A , Valet P , Tronchere H , Kunduzova O . Apelin‐13 administration protects against ischaemia/reperfusion‐mediated apoptosis through the FoxO1 pathway in high‐fat diet‐induced obesity. Br J Pharmacol 173: 1850‐1863, 2016.
 25. Brakch N , Rholam M , Boussetta H , Cohen P . Role of β‐turn in proteolytic processing of peptide hormone precursors at dibasic sites. Biochemistry 32: 4925‐4930, 1993.
 26. Brame AL , Maguire JJ , Yang P , Dyson A , Torella R , Cheriyan J , Singer M , Glen RC , Wilkinson IB , Davenport AP . Design, characterization, and first‐in‐human study of the vascular actions of a novel biased apelin receptor agonist. Hypertension 65: 834‐840, 2015.
 27. Busch R , Strohbach A , Pennewitz M , Lorenz F , Bahls M , Busch MC , Felix SB . Regulation of the endothelial apelin/APJ system by hemodynamic fluid flow. Cell Signal 27: 1286‐1296, 2015.
 28. Cayabyab M , Hinuma S , Farzan M , Choe H , Fukusumi S , Kitada C , Nishizawa N , Hosoya M , Nishimura O , Messele T , Pollakis G , Goudsmit J , Fujino M , Sodroski J . Apelin, the natural ligand of the orphan seven‐transmembrane receptor APJ, inhibits human immunodeficiency virus type 1 entry. J Virol 74: 11972‐11976, 2000.
 29. Ceraudo E , Galanth C , Carpentier E , Banegas‐Font I , Schonegge AM , Alvear‐Perez R , Iturrioz X , Bouvier M , Llorens‐Cortes C . Biased signaling favoring Gi over β‐arrestin promoted by an apelin fragment lacking the C‐terminal phenylalanine. J Biol Chem 289: 24599‐24610, 2014.
 30. Ceylan‐Isik AF , Kandadi MR , Xu X , Hua Y , Chicco AJ , Ren J , Nair S . Apelin administration ameliorates high fat diet‐induced cardiac hypertrophy and contractile dysfunction. J Mol Cell Cardiol 63: 4‐13, 2013.
 31. Chamberland C , Barajas‐Martinez H , Haufe V , Fecteau MH , Delabre JF , Burashnikov A , Antzelevitch C , Lesur O , Chraibi A , Sarret P , Dumaine R . Modulation of canine cardiac sodium current by apelin. J Mol Cell Cardiol 48: 694‐701, 2010.
 32. Chapman NA , Dupre DJ , Rainey JK . The apelin receptor: Physiology, pathology, cell signalling, and ligand modulation of a peptide‐activated class A GPCR. Biochem Cell Biol 92: 431‐440, 2014.
 33. Charles C . The apelin peptides as putative targets in cardiovascular drug discovery and development. Expert Opin Drug Discov 3: 51‐64, 2008.
 34. Charo DN , Ho M , Fajardo G , Kawana M , Kundu RK , Sheikh AY , Finsterbach TP , Leeper NJ , Ernst KV , Chen MM , Ho YD , Chun HJ , Bernstein D , Ashley EA , Quertermous T . Endogenous regulation of cardiovascular function by apelin‐APJ. Am J Physiol Heart Circ Physiol 297: H1904‐H1913, 2009.
 35. Chaves‐Almagro C , Castan‐Laurell I , Dray C , Knauf C , Valet P , Masri B . Apelin receptors: From signaling to antidiabetic strategy. Eur J Pharmacol 763: 149‐159, 2015.
 36. Chen H , Li J , Jiao L , Petersen RB , Li J , Peng A , Zheng L , Huang K . Apelin inhibits the development of diabetic nephropathy by regulating histone acetylation in Akita mouse. J Physiol 592: 505‐521, 2014.
 37. Chen H , Zheng C , Zhang X , Li J , Li J , Zheng L , Huang K . Apelin alleviates diabetes‐associated endoplasmic reticulum stress in the pancreas of Akita mice. Peptides 32: 1634‐1639, 2011.
 38. Chen L , Tao Y , Feng J , Jiang YR . Apelin protects primary rat retinal pericytes from chemical hypoxia‐induced apoptosis. J Ophthalmol 2015: 186946, 2015.
 39. Chen X , Bai B , Tian Y , Du H , Chen J . Identification of serine 348 on the apelin receptor as a novel regulatory phosphorylation site in apelin‐13‐induced G protein‐independent biased signaling. J Biol Chem 289: 31173‐31187, 2014.
 40. Cheng X , Cheng XS , Pang CC . Venous dilator effect of apelin, an endogenous peptide ligand for the orphan APJ receptor, in conscious rats. Eur J Pharmacol 470: 171‐175, 2003.
 41. Chng SC , Ho L , Tian J , Reversade B . ELABELA: A hormone essential for heart development signals via the apelin receptor. Dev Cell 27: 672‐680, 2013.
 42. Choe W , Albright A , Sulcove J , Jaffer S , Hesselgesser J , Lavi E , Crino P , Kolson DL . Functional expression of the seven‐transmembrane HIV‐1 co‐receptor APJ in neural cells. J Neurovirol 6(Suppl 1): S61‐69, 2000.
 43. Chu J , Zhang H , Huang X , Lin Y , Shen T , Chen B , Man Y , Wang S , Li J . Apelin ameliorates TNF‐α‐induced reduction of glycogen synthesis in the hepatocytes through G protein‐coupled receptor APJ. PLoS One 8: e57231, 2013.
 44. Chun E , Thompson AA , Liu W , Roth CB , Griffith MT , Katritch V , Kunken J , Xu F , Cherezov V , Hanson MA , Stevens RC . Fusion partner toolchest for the stabilization and crystallization of G protein‐coupled receptors. Structure 20: 967‐976, 2012.
 45. Chun HJ , Ali ZA , Kojima Y , Kundu RK , Sheikh AY , Agrawal R , Zheng L , Leeper NJ , Pearl NE , Patterson AJ , Anderson JP , Tsao PS , Lenardo MJ , Ashley EA , Quertermous T . Apelin signaling antagonizes Ang II effects in mouse models of atherosclerosis. J Clin Invest 118: 3343‐3354, 2008.
 46. Chung WJ , Cho A , Byun K , Moon J , Ge X , Seo HS , Moon E , Dash R , Yang PC . Apelin‐13 infusion salvages the peri‐infarct region to preserve cardiac function after severe myocardial injury. Int J Cardiol 222: 361‐367, 2016.
 47. Cirillo P , Ziviello F , Pellegrino G , Conte S , Cimmino G , Giaquinto A , Pacifico F , Leonardi A , Golino P , Trimarco B . The adipokine apelin‐13 induces expression of prothrombotic tissue factor. Thromb Haemost 113: 363‐372, 2015.
 48. Clarke KJ , Whitaker KW , Reyes TM . Diminished metabolic responses to centrally‐administered apelin‐13 in diet‐induced obese rats fed a high‐fat diet. J Neuroendocrinol 21: 83‐89, 2009.
 49. Contreras LM , de Almeida RF , Villalain J , Fedorov A , Prieto M . Interaction of α‐melanocyte stimulating hormone with binary phospholipid membranes: Structural changes and relevance of phase behavior. Biophys J 80: 2273‐2283, 2001.
 50. Cook DR , Gleichman AJ , Cross SA , Doshi S , Ho W , Jordan‐Sciutto KL , Lynch DR , Kolson DL . NMDA receptor modulation by the neuropeptide apelin: Implications for excitotoxic injury. J Neurochem 118: 1113‐1123, 2011.
 51. Cox CM , D'Agostino SL , Miller MK , Heimark RL , Krieg PA . Apelin, the ligand for the endothelial G‐protein‐coupled receptor, APJ, is a potent angiogenic factor required for normal vascular development of the frog embryo. Dev Biol 296: 177‐189, 2006.
 52. Cudnoch‐Jedrzejewska A , Gomolka R , Szczepanska‐Sadowska E , Czarzasta K , Wrzesien R , Koperski L , Puchalska L , Wsol A . High‐fat diet and chronic stress reduce central pressor and tachycardic effects of apelin in Sprague‐Dawley rats. Clin Exp Pharmacol Physiol 42: 52‐62, 2015.
 53. Cui RR , Mao DA , Yi L , Wang C , Zhang XX , Xie H , Wu XP , Liao XB , Zhou H , Meng JC , Yuan LQ , Liao EY . Apelin suppresses apoptosis of human vascular smooth muscle cells via APJ/PI3‐K/Akt signaling pathways. Amino Acids 39: 1193‐1200, 2010.
 54. Czarzasta K , Cudnoch‐Jedrzejewska A , Szczepanska‐Sadowska E , Fus L , Puchalska L , Gondek A , Dobruch J , Gomolka R , Wrzesien R , Zera T , Gornicka B , Kuch M . The role of apelin in central cardiovascular regulation in rats with post‐infarct heart failure maintained on a normal fat or high fat diet. Clin Exp Pharmacol Physiol 43: 983‐994, 2016.
 55. D'Aniello C , Lonardo E , Iaconis S , Guardiola O , Liguoro AM , Liguori GL , Autiero M , Carmeliet P , Minchiotti G . G protein‐coupled receptor APJ and its ligand apelin act downstream of Cripto to specify embryonic stem cells toward the cardiac lineage through extracellular signal‐regulated kinase/p70S6 kinase signaling pathway. Circ Res 105: 231‐238, 2009.
 56. Dai L , Smith PM , Kuksis M , Ferguson AV . Apelin acts in the subfornical organ to influence neuronal excitability and cardiovascular function. J Physiol 591: 3421‐3432, 2013.
 57. Dai T , Ramirez‐Correa G , Gao WD . Apelin increases contractility in failing cardiac muscle. Eur J Pharmacol 553: 222‐228, 2006.
 58. Day RT , Cavaglieri RC , Feliers D . Apelin retards the progression of diabetic nephropathy. Am J Physiol Renal Physiol 304: F788‐800, 2013.
 59. De Mota N , Lenkei Z , Llorens‐Cortes C . Cloning, pharmacological characterization and brain distribution of the rat apelin receptor. Neuroendocrinology 72: 400‐407, 2000.
 60. De Mota N , Reaux‐Le Goazigo A , El Messari S , Chartrel N , Roesch D , Dujardin C , Kordon C , Vaudry H , Moos F , Llorens‐Cortes C . Apelin, a potent diuretic neuropeptide counteracting vasopressin actions through inhibition of vasopressin neuron activity and vasopressin release. Proc Natl Acad Sci U S A 101: 10464‐10469, 2004.
 61. Deng C , Chen H , Yang N , Feng Y , Hsueh AJ . Apela regulates fluid homeostasis by binding to the APJ receptor to activate Gi signaling. J Biol Chem 290: 18261‐18268, 2015.
 62. Deshwar AR , Chng SC , Ho L , Reversade B , Scott IC . The apelin receptor enhances Nodal/TGFβ signaling to ensure proper cardiac development. Elife 5, pii: e13758, 2016.
 63. Deupi X , Standfuss J . Structural insights into agonist‐induced activation of G‐protein‐coupled receptors. Curr Opin Struct Biol 21: 541‐551, 2011.
 64. Dray C , Knauf C , Daviaud D , Waget A , Boucher J , Buleon M , Cani PD , Attane C , Guigne C , Carpene C , Burcelin R , Castan‐Laurell I , Valet P . Apelin stimulates glucose utilization in normal and obese insulin‐resistant mice. Cell Metab 8: 437‐445, 2008.
 65. Dray C , Sakar Y , Vinel C , Daviaud D , Masri B , Garrigues L , Wanecq E , Galvani S , Negre‐Salvayre A , Barak LS , Monsarrat B , Burlet‐Schiltz O , Valet P , Castan‐Laurell I , Ducroc R . The intestinal glucose‐apelin cycle controls carbohydrate absorption in mice. Gastroenterology 144: 771‐780, 2013.
 66. Drougard A , Duparc T , Brenachot X , Carneiro L , Gouaze A , Fournel A , Geurts L , Cadoudal T , Prats AC , Penicaud L , Vieau D , Lesage J , Leloup C , Benani A , Cani PD , Valet P , Knauf C . Hypothalamic apelin/reactive oxygen species signaling controls hepatic glucose metabolism in the onset of diabetes. Antioxid Redox Signal 20: 557‐573, 2014.
 67. Drougard A , Fournel A , Marlin A , Meunier E , Abot A , Bautzova T , Duparc T , Louche K , Batut A , Lucas A , Le‐Gonidec S , Lesage J , Fioramonti X , Moro C , Valet P , Cani PD , Knauf C . Central chronic apelin infusion decreases energy expenditure and thermogenesis in mice. Sci Rep 6: 31849, 2016.
 68. Duparc T , Colom A , Cani PD , Massaly N , Rastrelli S , Drougard A , Le Gonidec S , Mouledous L , Frances B , Leclercq I , Llorens‐Cortes C , Pospisilik JA , Delzenne NM , Valet P , Castan‐Laurell I , Knauf C . Central apelin controls glucose homeostasis via a nitric oxide‐dependent pathway in mice. Antioxid Redox Signal 15: 1477‐1496, 2011.
 69. Edinger AL , Hoffman TL , Sharron M , Lee B , Yi Y , Choe W , Kolson DL , Mitrovic B , Zhou Y , Faulds D , Collman RG , Hesselgesser J , Horuk R , Doms RW . An orphan seven‐transmembrane domain receptor expressed widely in the brain functions as a coreceptor for human immunodeficiency virus type 1 and simian immunodeficiency virus. J Virol 72: 7934‐7940, 1998.
 70. El Messari S , Iturrioz X , Fassot C , De Mota N , Roesch D , Llorens‐Cortes C . Functional dissociation of apelin receptor signaling and endocytosis: Implications for the effects of apelin on arterial blood pressure. J Neurochem 90: 1290‐1301, 2004.
 71. Evans NA , Groarke DA , Warrack J , Greenwood CJ , Dodgson K , Milligan G , Wilson S . Visualizing differences in ligand‐induced β‐arrestin‐GFP interactions and trafficking between three recently characterized G protein‐coupled receptors. J Neurochem 77: 476‐485, 2001.
 72. Fan X , Zhou N , Zhang X , Mukhtar M , Lu Z , Fang J , DuBois GC , Pomerantz RJ . Structural and functional study of the apelin‐13 peptide, an endogenous ligand of the HIV‐1 coreceptor, APJ. Biochemistry 42: 10163‐10168, 2003.
 73. Farkasfalvi K , Stagg MA , Coppen SR , Siedlecka U , Lee J , Soppa GK , Marczin N , Szokodi I , Yacoub MH , Terracciano CM . Direct effects of apelin on cardiomyocyte contractility and electrophysiology. Biochem Biophys Res Commun 357: 889‐895, 2007.
 74. Feng JH , Li WM , Wu XP , Tan XY , Gao YH , Han CL , Li SQ , Xie HN . Hemodynamic effect of apelin in a canine model of acute pulmonary thromboembolism. Peptides 31: 1772‐1778, 2010.
 75. Ferrante C , Orlando G , Recinella L , Leone S , Chiavaroli A , Di Nisio C , Shohreh R , Manippa F , Ricciuti A , Vacca M , Brunetti L . Central apelin‐13 administration modulates hypothalamic control of feeding. J Biol Regul Homeost Agents 30: 883‐888, 2016.
 76. Foldes G , Horkay F , Szokodi I , Vuolteenaho O , Ilves M , Lindstedt KA , Mayranpaa M , Sarman B , Seres L , Skoumal R , Lako‐Futo Z , deChatel R , Ruskoaho H , Toth M . Circulating and cardiac levels of apelin, the novel ligand of the orphan receptor APJ, in patients with heart failure. Biochem Biophys Res Commun 308: 480‐485, 2003.
 77. Fournel A , Drougard A , Duparc T , Marlin A , Brierley SM , Castro J , Le‐Gonidec S , Masri B , Colom A , Lucas A , Rousset P , Cenac N , Vergnolle N , Valet P , Cani PD , Knauf C . Apelin targets gut contraction to control glucose metabolism via the brain. Gut 66: 258‐269, 2017.
 78. Foussal C , Lairez O , Calise D , Pathak A , Guilbeau‐Frugier C , Valet P , Parini A , Kunduzova O . Activation of catalase by apelin prevents oxidative stress‐linked cardiac hypertrophy. FEBS Lett 584: 2363‐2370, 2010.
 79. Frier BC , Williams DB , Wright DC . The effects of apelin treatment on skeletal muscle mitochondrial content. Am J Physiol Regul Integr Comp Physiol 297: R1761‐1768, 2009.
 80. Galon‐Tilleman H , Yang H , Bednarek MA , Spurlock SM , Paavola KJ , Ko B , To C , Luo J , Tian H , Jermutus L , Grimsby J , Rondinone CM , Konkar A , Kaplan DD . Apelin‐36 modulates blood glucose and body weight independently of canonical APJ receptor signaling. J Biol Chem 292: 1925‐1933, 2017.
 81. Gerbier R , Alvear‐Perez R , Margathe JF , Flahault A , Couvineau P , Gao J , De Mota N , Dabire H , Li B , Ceraudo E , Hus‐Citharel A , Esteoulle L , Bisoo C , Hibert M , Berdeaux A , Iturrioz X , Bonnet D , Llorens‐Cortes C . Development of original metabolically stable apelin‐17 analogs with diuretic and cardiovascular effects. FASEB J 31: 687‐700, 2017.
 82. Gerbier R , Leroux V , Couvineau P , Alvear‐Perez R , Maigret B , Llorens‐Cortes C , Iturrioz X . New structural insights into the apelin receptor: Identification of key residues for apelin binding. FASEB J 29: 314‐322, 2015.
 83. Griffiths PR , Lolait SJ , Harris LE , Paton JFR , O'Carroll AM . Vasopressin V1a receptors mediate the hypertensive effects of [Pyr1]apelin‐13 in the rat rostral ventrolateral medulla. J Physiol 595: 3303‐3318, 2017.
 84. Gu Q , Zhai L , Feng X , Chen J , Miao Z , Ren L , Qian X , Yu J , Li Y , Xu X , Liu CF . Apelin‐36, a potent peptide, protects against ischemic brain injury by activating the PI3K/Akt pathway. Neurochem Int 63: 535‐540, 2013.
 85. Guo C , Liu Y , Zhao W , Wei S , Zhang X , Wang W , Zeng X . Apelin promotes diabetic nephropathy by inducing podocyte dysfunction via inhibiting proteasome activities. J Cell Mol Med 19: 2273‐2285, 2015.
 86. Guo L , Li Q , Wang W , Yu P , Pan H , Li P , Sun Y , Zhang J . Apelin inhibits insulin secretion in pancreatic β‐cells by activation of PI3‐kinase‐phosphodiesterase 3B. Endocr Res 34: 142‐154, 2009.
 87. Guo M , Chen F , Lin T , Peng Y , Li W , Zhu X , Lin L , Chen Y . Apelin‐13 decreases lipid storage in hypertrophic adipocytes in vitro through the upregulation of AQP7 expression by the PI3K signaling pathway. Med Sci Monit 20: 1345‐1352, 2014.
 88. Gurzu B , Petrescu BC , Costuleanu M , Petrescu G . Interactions between apelin and angiotensin II on rat portal vein. J Renin Angiotensin Aldosterone Syst 7: 212‐216, 2006.
 89. Habata Y , Fujii R , Hosoya M , Fukusumi S , Kawamata Y , Hinuma S , Kitada C , Nishizawa N , Murosaki S , Kurokawa T , Onda H , Tatemoto K , Fujino M . Apelin, the natural ligand of the orphan receptor APJ, is abundantly secreted in the colostrum. Biochim Biophys Acta 1452: 25‐35, 1999.
 90. Hamada J , Baasanjav A , Ono N , Murata K , Kako K , Ishida J , Fukamizu A . Possible involvement of downregulation of the apelin‐APJ system in doxorubicin‐induced cardiotoxicity. Am J Physiol Heart Circ Physiol 308: H931‐941, 2015.
 91. Hamada J , Kimura J , Ishida J , Kohda T , Morishita S , Ichihara S , Fukamizu A . Evaluation of novel cyclic analogues of apelin. Int J Mol Med 22: 547‐552, 2008.
 92. Han S , Wang G , Qiu S , de la Motte C , Wang HQ , Gomez G , Englander EW , Greeley GH, Jr . Increased colonic apelin production in rodents with experimental colitis and in humans with IBD. Regul Pept 142: 131‐137, 2007.
 93. Hanson MA , Stevens RC . Discovery of new GPCR biology: One receptor structure at a time. Structure 17: 8‐14, 2009.
 94. Hashimoto T , Kihara M , Imai N , Yoshida S , Shimoyamada H , Yasuzaki H , Ishida J , Toya Y , Kiuchi Y , Hirawa N , Tamura K , Yazawa T , Kitamura H , Fukamizu A , Umemura S . Requirement of apelin‐apelin receptor system for oxidative stress‐linked atherosclerosis. Am J Pathol 171: 1705‐1712, 2007.
 95. Hashimoto T , Kihara M , Ishida J , Imai N , Yoshida S , Toya Y , Fukamizu A , Kitamura H , Umemura S . Apelin stimulates myosin light chain phosphorylation in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 26: 1267‐1272, 2006.
 96. Helenius MH , Vattulainen S , Orcholski M , Aho J , Komulainen A , Taimen P , Wang L , de Jesus Perez VA , Koskenvuo JW , Alastalo TP . Suppression of endothelial CD39/ENTPD1 is associated with pulmonary vascular remodeling in pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 308: L1046‐1057, 2015.
 97. Higuchi K , Masaki T , Gotoh K , Chiba S , Katsuragi I , Tanaka K , Kakuma T , Yoshimatsu H . Apelin, an APJ receptor ligand, regulates body adiposity and favors the messenger ribonucleic acid expression of uncoupling proteins in mice. Endocrinology 148: 2690‐2697, 2007.
 98. Ho L , Tan SY , Wee S , Wu Y , Tan SJ , Ramakrishna NB , Chng SC , Nama S , Szczerbinska I , Chan YS , Avery S , Tsuneyoshi N , Ng HH , Gunaratne J , Dunn NR , Reversade B . ELABELA is an endogenous growth factor that sustains hESC self‐renewal via the PI3K/AKT pathway. Cell Stem Cell 17: 435‐447, 2015.
 99. Hoffmann M , Fiedor E , Ptak A . Bisphenol A and its derivatives tetrabromobisphenol A and tetrachlorobisphenol A induce apelin expression and secretion in ovarian cancer cells through a peroxisome proliferator‐activated receptor γ‐dependent mechanism. Toxicol Lett 269: 15‐22, 2017.
 100. Horn F , Bettler E , Oliveira L , Campagne F , Cohen FE , Vriend G . GPCRDB information system for G protein‐coupled receptors. Nucleic Acids Res 31: 294‐297, 2003.
 101. Hosoya M , Kawamata Y , Fukusumi S , Fujii R , Habata Y , Hinuma S , Kitada C , Honda S , Kurokawa T , Onda H , Nishimura O , Fujino M . Molecular and functional characteristics of APJ. Tissue distribution of mRNA and interaction with the endogenous ligand apelin. J Biol Chem 275: 21061‐21067, 2000.
 102. Hou J , Zhong T , Guo T , Miao C , Zhou C , Long H , Wu H , Zheng S , Wang L , Wang T . Apelin promotes mesenchymal stem cells survival and vascularization under hypoxic‐ischemic condition in vitro involving the upregulation of vascular endothelial growth factor. Exp Mol Pathol 102: 203‐209, 2017.
 103. Hu H , He L , Li L , Chen L . Apelin/APJ system as a therapeutic target in diabetes and its complications. Mol Genet Metab 119: 20‐27, 2016.
 104. Huang Q , Liu X , Cao C , Lei J , Han D , Chen G , Yu J , Chen L , Lv D , Li Z . Apelin‐13 induces autophagy in hepatoma HepG2 cells through ERK1/2 signaling pathway‐dependent upregulation of Beclin1. Oncol Lett 11: 1051‐1056, 2016.
 105. Huang SK , Shin K , Sarker M , Rainey JK . Apela exhibits isoform‐ and headgroup‐dependent modulation of micelle binding, peptide conformation and dynamics. Biochim Biophys Acta 1859: 767‐778, 2017.
 106. Hulme EC . GPCR activation: A mutagenic spotlight on crystal structures. Trends Pharmacol Sci 34: 67‐84, 2013.
 107. Hus‐Citharel A , Bodineau L , Frugiere A , Joubert F , Bouby N , Llorens‐Cortes C . Apelin counteracts vasopressin‐induced water reabsorption via cross talk between apelin and vasopressin receptor signaling pathways in the rat collecting duct. Endocrinology 155: 4483‐4493, 2014.
 108. Hus‐Citharel A , Bouby N , Frugiere A , Bodineau L , Gasc JM , Llorens‐Cortes C . Effect of apelin on glomerular hemodynamic function in the rat kidney. Kidney Int 74: 486‐494, 2008.
 109. Huynh J , Thomas WG , Aguilar MI , Pattenden LK . Role of helix 8 in G protein‐coupled receptors based on structure‐function studies on the type 1 angiotensin receptor. Mol Cell Endocrinol 302: 118‐127, 2009.
 110. Ishida J , Hashimoto T , Hashimoto Y , Nishiwaki S , Iguchi T , Harada S , Sugaya T , Matsuzaki H , Yamamoto R , Shiota N , Okunishi H , Kihara M , Umemura S , Sugiyama F , Yagami K , Kasuya Y , Mochizuki N , Fukamizu A . Regulatory roles for APJ, a seven‐transmembrane receptor related to angiotensin‐type 1 receptor in blood pressure in vivo . J Biol Chem 279: 26274‐26279, 2004.
 111. Ishimaru Y , Sumino A , Kajioka D , Shibagaki F , Yamamuro A , Yoshioka Y , Maeda S . Apelin protects against NMDA‐induced retinal neuronal death via an APJ receptor by activating Akt and ERK1/2, and suppressing TNF‐α expression in mice. J Pharmacol Sci 133: 34‐41, 2017.
 112. Iturrioz X , Alvear‐Perez R , De Mota N , Franchet C , Guillier F , Leroux V , Dabire H , Le Jouan M , Chabane H , Gerbier R , Bonnet D , Berdeaux A , Maigret B , Galzi JL , Hibert M , Llorens‐Cortes C . Identification and pharmacological properties of E339‐3D6, the first nonpeptidic apelin receptor agonist. FASEB J 24: 1506‐1517, 2010.
 113. Iturrioz X , Gerbier R , Leroux V , Alvear‐Perez R , Maigret B , Llorens‐Cortes C . By interacting with the C‐terminal Phe of apelin, Phe255 and Trp259 in helix VI of the apelin receptor are critical for internalization. J Biol Chem 285: 32627‐32637, 2010.
 114. Izgut‐Uysal VN , Gemici B , Birsen I , Acar N , Ustunel I . The effect of apelin on the functions of peritoneal macrophages. Physiol Res 66: 489‐496, 2017.
 115. Jacobson KA , Costanzi S . New insights for drug design from the X‐ray crystallographic structures of G‐protein‐coupled receptors. Mol Pharmacol 82: 361‐371, 2012.
 116. Japp AG , Cruden NL , Amer DA , Li VK , Goudie EB , Johnston NR , Sharma S , Neilson I , Webb DJ , Megson IL , Flapan AD , Newby DE . Vascular effects of apelin in vivo in man. J Am Coll Cardiol 52: 908‐913, 2008.
 117. Japp AG , Cruden NL , Barnes G , van Gemeren N , Mathews J , Adamson J , Johnston NR , Denvir MA , Megson IL , Flapan AD , Newby DE . Acute cardiovascular effects of apelin in humans: Potential role in patients with chronic heart failure. Circulation 121: 1818‐1827, 2010.
 118. Jaszberenyi M , Bujdoso E , Telegdy G . Behavioral, neuroendocrine and thermoregulatory actions of apelin‐13. Neuroscience 129: 811‐816, 2004.
 119. Jeong K , Oh Y , Kim SJ , Kim H , Park KC , Kim SS , Ha J , Kang I , Choe W . Apelin is transcriptionally regulated by ER stress‐induced ATF4 expression via a p38 MAPK‐dependent pathway. Apoptosis 19: 1399‐1410, 2014.
 120. Ji TH , Grossmann M , Ji I . G protein‐coupled receptors. I. Diversity of receptor‐ligand interactions. J Biol Chem 273: 17299‐17302, 1998.
 121. Jia YX , Lu ZF , Zhang J , Pan CS , Yang JH , Zhao J , Yu F , Duan XH , Tang CS , Qi YF . Apelin activates l‐arginine/nitric oxide synthase/nitric oxide pathway in rat aortas. Peptides 28: 2023‐2029, 2007.
 122. Jia YX , Pan CS , Zhang J , Geng B , Zhao J , Gerns H , Yang J , Chang JK , Tang CS , Qi YF . Apelin protects myocardial injury induced by isoproterenol in rats. Regul Pept 133: 147‐154, 2006.
 123. Jin W , Su X , Xu M , Liu Y , Shi J , Lu L , Niu W . Interactive association of five candidate polymorphisms in Apelin/APJ pathway with coronary artery disease among Chinese hypertensive patients. PLoS One 7: e51123, 2012.
 124. Juhl C , Els‐Heindl S , Schonauer R , Redlich G , Haaf E , Wunder F , Riedl B , Burkhardt N , Beck‐Sickinger AG , Bierer D . Development of potent and metabolically stable APJ ligands with high therapeutic potential. ChemMedChem, 2016.
 125. Kagiyama S , Fukuhara M , Matsumura K , Lin Y , Fujii K , Iida M . Central and peripheral cardiovascular actions of apelin in conscious rats. Regul Pept 125: 55‐59, 2005.
 126. Kalin RE , Kretz MP , Meyer AM , Kispert A , Heppner FL , Brandli AW . Paracrine and autocrine mechanisms of apelin signaling govern embryonic and tumor angiogenesis. Dev Biol 305: 599‐614, 2007.
 127. Kasai A , Shintani N , Oda M , Kakuda M , Hashimoto H , Matsuda T , Hinuma S , Baba A . Apelin is a novel angiogenic factor in retinal endothelial cells. Biochem Biophys Res Commun 325: 395‐400, 2004.
 128. Kawamata Y , Habata Y , Fukusumi S , Hosoya M , Fujii R , Hinuma S , Nishizawa N , Kitada C , Onda H , Nishimura O , Fujino M . Molecular properties of apelin: Tissue distribution and receptor binding. Biochim Biophys Acta 1538: 162‐171, 2001.
 129. Kenakin T , Miller LJ . Seven transmembrane receptors as shapeshifting proteins: The impact of allosteric modulation and functional selectivity on new drug discovery. Pharmacol Rev 62: 265‐304, 2010.
 130. Khaksari M , Aboutaleb N , Nasirinezhad F , Vakili A , Madjd Z . Apelin‐13 protects the brain against ischemic reperfusion injury and cerebral edema in a transient model of focal cerebral ischemia. J Mol Neurosci 48: 201‐208, 2012.
 131. Kleinz MJ , Davenport AP . Emerging roles of apelin in biology and medicine. Pharmacol Ther 107: 198‐211, 2005.
 132. Koguchi W , Kobayashi N , Takeshima H , Ishikawa M , Sugiyama F , Ishimitsu T . Cardioprotective effect of apelin‐13 on cardiac performance and remodeling in end‐stage heart failure. Circ J 76: 137‐144, 2012.
 133. Kojima Y , Kundu RK , Cox CM , Leeper NJ , Anderson JA , Chun HJ , Ali ZA , Ashley EA , Krieg PA , Quertermous T . Upregulation of the apelin‐APJ pathway promotes neointima formation in the carotid ligation model in mouse. Cardiovasc Res 87: 156‐165, 2010.
 134. Kumar P , Ashokan A , Aradhyam GK . Apelin binding to human APJ receptor leads to biased signaling. Biochim Biophys Acta 1864: 1748‐1756, 2016.
 135. Kunduzova O , Alet N , Delesque‐Touchard N , Millet L , Castan‐Laurell I , Muller C , Dray C , Schaeffer P , Herault JP , Savi P , Bono F , Valet P . Apelin/APJ signaling system: A potential link between adipose tissue and endothelial angiogenic processes. FASEB J 22: 4146‐4153, 2008.
 136. Kursunluoglu‐Akcilar R , Kilic‐Toprak E , Kilic‐Erkek O , Turgut S , Bor‐Kucukatay M . Apelin‐induced hemorheological alterations in DOCA‐salt hypertensive rats. Clin Hemorheol Microcirc 56: 75‐82, 2014.
 137. Kwon HB , Wang S , Helker CS , Rasouli SJ , Maischein HM , Offermanns S , Herzog W , Stainier DY . In vivo modulation of endothelial polarization by apelin receptor signalling. Nat Commun 7: 11805, 2016.
 138. Langelaan DN , Bebbington EM , Reddy T , Rainey JK . Structural insight into G‐protein coupled receptor binding by apelin. Biochemistry 48: 537‐548, 2009.
 139. Langelaan DN , Ngweniform P , Rainey JK . Biophysical characterization of G‐protein coupled receptor‐peptide ligand binding. Biochem Cell Biol 89: 98‐105, 2011.
 140. Langelaan DN , Pandey A , Sarker M , Rainey JK . Preserved transmembrane segment topology, structure, and dynamics in disparate micellar environments. J Phys Chem Lett 8: 2381‐2386, 2017.
 141. Langelaan DN , Rainey JK . Headgroup‐dependent membrane catalysis of apelin‐receptor interactions is likely. J Phys Chem B 113: 10465‐10471, 2009.
 142. Langelaan DN , Rainey JK . Membrane catalysis of peptide‐receptor binding. Biochem Cell Biol 88: 203‐210, 2010.
 143. Langelaan DN , Reddy T , Banks AW , Dellaire G , Dupre DJ , Rainey JK . Structural features of the apelin receptor N‐terminal tail and first transmembrane segment implicated in ligand binding and receptor trafficking. Biochim Biophys Acta 1828: 1471‐1483, 2013.
 144. Langelaan DN , Wieczorek M , Blouin C , Rainey JK . Improved helix and kink characterization in membrane proteins allows evaluation of kink sequence predictors. J Chem Inf Model 50: 2213‐2220, 2010.
 145. Lee DK , Cheng R , Nguyen T , Fan T , Kariyawasam AP , Liu Y , Osmond DH , George SR , O'Dowd BF . Characterization of apelin, the ligand for the APJ receptor. J Neurochem 74: 34‐41, 2000.
 146. Lee DK , Ferguson SS , George SR , O'Dowd BF . The fate of the internalized apelin receptor is determined by different isoforms of apelin mediating differential interaction with β‐arrestin. Biochem Biophys Res Commun 395: 185‐189, 2010.
 147. Lee DK , Saldivia VR , Nguyen T , Cheng R , George SR , O'Dowd BF . Modification of the terminal residue of apelin‐13 antagonizes its hypotensive action. Endocrinology 146: 231‐236, 2005.
 148. Li E , Deng H , Wang B , Fu W , You Y , Tian S . Apelin‐13 exerts antidepressant‐like and recognition memory improving activities in stressed rats. Eur Neuropsychopharmacol 26: 420‐430, 2016.
 149. Li F , Li L , Qin X , Pan W , Feng F , Chen F , Zhu B , Liao D , Tanowitz H , Albanese C , Chen L . Apelin‐induced vascular smooth muscle cell proliferation: The regulation of cyclin D1. Front Biosci 13: 3786‐3792, 2008.
 150. Li L , Li L , Xie F , Zhang Z , Guo Y , Tang G , Lv D , Lu Q , Chen L , Li J . Jagged‐1/Notch3 signaling transduction pathway is involved in apelin‐13‐induced vascular smooth muscle cells proliferation. Acta Biochim Biophys Sin (Shanghai) 45: 875‐881, 2013.
 151. Li L , Zeng H , Chen JX . Apelin‐13 increases myocardial progenitor cells and improves repair postmyocardial infarction. Am J Physiol Heart Circ Physiol 303: H605‐618, 2012.
 152. Li M , Gou H , Tripathi BK , Huang J , Jiang S , Dubois W , Waybright T , Lei M , Shi J , Zhou M , Huang J . An apela RNA‐containing negative feedback loop regulates p53‐mediated apoptosis in embryonic stem cells. Cell Stem Cell 16: 669‐683, 2015.
 153. Li WW , Niu WQ , Zhang Y , Wu S , Gao PJ , Zhu DL . Family‐based analysis of apelin and AGTRL1 gene polymorphisms with hypertension in Han Chinese. J Hypertens 27: 1194‐1201, 2009.
 154. Liao YC , Chou WW , Li YN , Chuang SC , Lin WY , Lakkakula BV , Yu ML , Juo SH . Apelin gene polymorphism influences apelin expression and obesity phenotypes in Chinese women. Am J Clin Nutr 94: 921‐928, 2011.
 155. Lin F , Wu H , Chen H , Xin Z , Yuan D , Wang T , Liu J , Gao Y , Zhang X , Zhou C , Wei R , Chen D , Yang S , Wang Y , Pu Y , Li Z . Molecular and physiological evidences for the role in appetite regulation of apelin and its receptor APJ in Ya‐fish (Schizothorax prenanti). Mol Cell Endocrinol 396: 46‐57, 2014.
 156. Liu C , Su T , Li F , Li L , Qin X , Pan W , Feng F , Chen F , Liao D , Chen L . PI3K/Akt signaling transduction pathway is involved in rat vascular smooth muscle cell proliferation induced by apelin‐13. Acta Biochim Biophys Sin (Shanghai) 42: 396‐402, 2010.
 157. Liu QF , Yu HW , Sun LL , You L , Tao GZ , Qu BZ . Apelin‐13 upregulates Egr‐1 expression in rat vascular smooth muscle cells through the PI3K/Akt and PKC signaling pathways. Biochem Biophys Res Commun 468: 617‐621, 2015.
 158. Liu QF , Yu HW , You L , Liu MX , Li KY , Tao GZ . Apelin‐13‐induced proliferation and migration induced of rat vascular smooth muscle cells is mediated by the upregulation of Egr‐1. Biochem Biophys Res Commun 439: 235‐240, 2013.
 159. Liu XY , Lu Q , Ouyang XP , Tang SL , Zhao GJ , Lv YC , He PP , Kuang HJ , Tang YY , Fu Y , Zhang DW , Tang CK . Apelin‐13 increases expression of ATP‐binding cassette transporter A1 via activating protein kinase C α signaling in THP‐1 macrophage‐derived foam cells. Atherosclerosis 226: 398‐407, 2013.
 160. Lopes SC , Fedorov A , Castanho MA . Lipidic membranes are potential “catalysts” in the ligand activity of the multifunctional pentapeptide neokyotorphin. Chembiochem 6: 697‐702, 2005.
 161. Lu Q , Jiang YR , Qian J , Tao Y . Apelin‐13 regulates proliferation, migration and survival of retinal Muller cells under hypoxia. Diabetes Res Clin Pract 99: 158‐167, 2013.
 162. Luo JW , Zheng X , Cheng GC , Ye QH , Deng YZ , Wu L . Resistin‐induced cardiomyocyte hypertrophy is inhibited by apelin through the inactivation of extracellular signal‐regulated kinase signaling pathway in H9c2 embryonic rat cardiomyocytes. Biomed Rep 5: 473‐478, 2016.
 163. Luo K , Long H , Xu B , Luo Y . Apelin attenuates postburn sepsis via a phosphatidylinositol 3‐kinase/protein kinase B dependent mechanism: A randomized animal study. Int J Surg 21: 22‐27, 2015.
 164. Lv D , Li L , Lu Q , Li Y , Xie F , Li H , Cao J , Liu M , Wu D , He L , Chen L . PAK1‐cofilin phosphorylation mediates human lung adenocarcinoma cells migration induced by apelin‐13. Clin Exp Pharmacol Physiol 43: 569‐579, 2016.
 165. Lv SY , Yang YJ , Qin YJ , Mo JR , Wang NB , Wang YJ , Chen Q . Central apelin‐13 inhibits food intake via the CRF receptor in mice. Peptides 33: 132‐138, 2012.
 166. Ma Y , Yue Y , Ma Y , Zhang Q , Zhou Q , Song Y , Shen Y , Li X , Ma X , Li C , Hanson MA , Han GW , Sickmier EA , Swaminath G , Zhao S , Stevens RC , Hu LA , Zhong W , Zhang M , Xu F . Structural basis for apelin control of the human apelin receptor. Structure 25: 858‐866 e854, 2017.
 167. Macaluso NJ , Glen RC . Exploring the ‘RPRL’ motif of apelin‐13 through molecular simulation and biological evaluation of cyclic peptide analogues. ChemMedChem 5: 1247‐1253, 2010.
 168. Macaluso NJ , Pitkin SL , Maguire JJ , Davenport AP , Glen RC . Discovery of a competitive apelin receptor (APJ) antagonist. ChemMedChem 6: 1017‐1023, 2011.
 169. Maguire JJ , Kleinz MJ , Pitkin SL , Davenport AP . [Pyr1]apelin‐13 identified as the predominant apelin isoform in the human heart: Vasoactive mechanisms and inotropic action in disease. Hypertension 54: 598‐604, 2009.
 170. Mandaliti W , Nepravishta R , Sinibaldi Vallebona P , Pica F , Garaci E , Paci M . Thymosin α1 interacts with exposed phosphatidylserine in membrane models and in cells and uses serum albumin as a carrier. Biochemistry 55: 1462‐1472, 2016.
 171. Masaki T , Yasuda T , Yoshimatsu H . Apelin‐13 microinjection into the paraventricular nucleus increased sympathetic nerve activity innervating brown adipose tissue in rats. Brain Res Bull 87: 540‐543, 2012.
 172. Masri B , Lahlou H , Mazarguil H , Knibiehler B , Audigier Y . Apelin (65‐77) activates extracellular signal‐regulated kinases via a PTX‐sensitive G protein. Biochem Biophys Res Commun 290: 539‐545, 2002.
 173. Masri B , Morin N , Cornu M , Knibiehler B , Audigier Y . Apelin (65‐77) activates p70 S6 kinase and is mitogenic for umbilical endothelial cells. FASEB J 18: 1909‐1911, 2004.
 174. Masri B , Morin N , Pedebernade L , Knibiehler B , Audigier Y . The apelin receptor is coupled to Gi1 or Gi2 protein and is differentially desensitized by apelin fragments. J Biol Chem 281: 18317‐18326, 2006.
 175. McKinnie SM , Fischer C , Tran KM , Wang W , Mosquera F , Oudit GY , Vederas JC . The metalloprotease neprilysin degrades and inactivates apelin peptides. Chembiochem 17: 1495‐1498, 2016.
 176. Medhurst AD , Jennings CA , Robbins MJ , Davis RP , Ellis C , Winborn KY , Lawrie KW , Hervieu G , Riley G , Bolaky JE , Herrity NC , Murdock P , Darker JG . Pharmacological and immunohistochemical characterization of the APJ receptor and its endogenous ligand apelin. J Neurochem 84: 1162‐1172, 2003.
 177. Mesmin C , Dubois M , Becher F , Fenaille F , Ezan E . Liquid chromatography/tandem mass spectrometry assay for the absolute quantification of the expected circulating apelin peptides in human plasma. Rapid Commun Mass Spectrom 24: 2875‐2884, 2010.
 178. Mesmin C , Fenaille F , Becher F , Tabet JC , Ezan E . Identification and characterization of apelin peptides in bovine colostrum and milk by liquid chromatography‐mass spectrometry. J Proteome Res 10: 5222‐5231, 2011.
 179. Miettinen KH , Magga J , Vuolteenaho O , Vanninen EJ , Punnonen KR , Ylitalo K , Tuomainen P , Peuhkurinen KJ . Utility of plasma apelin and other indices of cardiac dysfunction in the clinical assessment of patients with dilated cardiomyopathy. Regul Pept 140: 178‐184, 2007.
 180. Mitra J , Tang X , Almo SC , Shields D . Temperature‐induced conformational changes in prosomatostatin‐II: Implications for processing. Biochem J 334: 275‐282, 1998.
 181. Modgil A , Guo L , O'Rourke ST , Sun C . Apelin‐13 inhibits large‐conductance Ca2+‐activated K+ channels in cerebral artery smooth muscle cells via a PI3‐kinase dependent mechanism. PLoS One 8: e83051, 2013.
 182. Moon MJ , Oh DY , Moon JS , Kim DK , Hwang JI , Lee JY , Kim JI , Cho S , Kwon HB , Seong JY . Cloning and activation of the bullfrog apelin receptor: Gi/o coupling and high affinity for [Pro1]apelin‐13. Mol Cell Endocrinol 277: 51‐60, 2007.
 183. Morris KF , Johnson CS . Resolution of discrete and continuous molecular‐size distributions by means of diffusion‐ordered 2D NMR‐spectroscopy. J Am Chem Soc 115: 4291‐4299, 1993.
 184. Motta A , Andreotti G , Amodeo P , Strazzullo G , Castiglione Morelli MA . Solution structure of human calcitonin in membrane‐mimetic environment: The role of the amphipathic helix. Proteins 32: 314‐323, 1998.
 185. Murza A , Belleville K , Longpre JM , Sarret P , Marsault E . Stability and degradation patterns of chemically modified analogs of apelin‐13 in plasma and cerebrospinal fluid. Biopolymers 102: 297‐303, 2014.
 186. Murza A , Besserer‐Offroy E , Cote J , Berube P , Longpre JM , Dumaine R , Lesur O , Auger‐Messier M , Leduc R , Sarret P , Marsault E . C‐Terminal modifications of apelin‐13 significantly change ligand binding, receptor signaling, and hypotensive action. J Med Chem 58: 2431‐2440, 2015.
 187. Murza A , Parent A , Besserer‐Offroy E , Tremblay H , Karadereye F , Beaudet N , Leduc R , Sarret P , Marsault E . Elucidation of the structure‐activity relationships of apelin: Influence of unnatural amino acids on binding, signaling, and plasma stability. ChemMedChem 7: 318‐325, 2012.
 188. Murza A , Sainsily X , Coquerel D , Cote J , Marx P , Besserer‐Offroy E , Longpre JM , Laine J , Reversade B , Salvail D , Leduc R , Dumaine R , Lesur O , Auger‐Messier M , Sarret P , Marsault E . Discovery and structure‐activity relationship of a bioactive fragment of ELABELA that modulates vascular and cardiac functions. J Med Chem 59: 2962‐2972, 2016.
 189. Murza A , Sainsily X , Cote J , Bruneau‐Cossette L , Besserer‐Offroy E , Longpre JM , Leduc R , Dumaine R , Lesur O , Auger‐Messier M , Sarret P , Marsault E . Structure‐activity relationship of novel macrocyclic biased apelin receptor agonists. Org Biomol Chem 15: 449‐458, 2017.
 190. Najafipour H , Soltani Hekmat A , Nekooian AA , Esmaeili‐Mahani S . Apelin receptor expression in ischemic and non‐ischemic kidneys and cardiovascular responses to apelin in chronic two‐kidney‐one‐clip hypertension in rats. Regul Pept 178: 43‐50, 2012.
 191. Narayanan S , Harris DL , Maitra R , Runyon SP . Regulation of the apelinergic system and Its potential in cardiovascular disease: Peptides and small molecules as tools for discovery. J Med Chem 58: 7913‐7927, 2015.
 192. O'Carroll AM , Lolait SJ , Harris LE , Pope GR . The apelin receptor APJ: Journey from an orphan to a multifaceted regulator of homeostasis. J Endocrinol 219: R13‐35, 2013.
 193. O'Donnell LA , Agrawal A , Sabnekar P , Dichter MA , Lynch DR , Kolson DL . Apelin, an endogenous neuronal peptide, protects hippocampal neurons against excitotoxic injury. J Neurochem 102: 1905‐1917, 2007.
 194. O'Dowd BF , Heiber M , Chan A , Heng HH , Tsui LC , Kennedy JL , Shi X , Petronis A , George SR , Nguyen T . A human gene that shows identity with the gene encoding the angiotensin receptor is located on chromosome 11. Gene 136: 355‐360, 1993.
 195. O'Shea M , Hansen MJ , Tatemoto K , Morris MJ . Inhibitory effect of apelin‐12 on nocturnal food intake in the rat. Nutr Neurosci 6: 163‐167, 2003.
 196. Pandey A , Shin K , Patterson RE , Liu XQ , Rainey JK . Current strategies for protein production and purification enabling membrane protein structural biology. Biochem Cell Biol 94: 507‐527, 2016.
 197. Pang H , Han B , Yu T , Zong Z . Effect of apelin on the cardiac hemodynamics in hypertensive rats with heart failure. Int J Mol Med 34: 756‐764, 2014.
 198. Paskaradevan S , Scott IC . The Aplnr GPCR regulates myocardial progenitor development via a novel cell‐non‐autonomous, Gα(i/o) protein‐independent pathway. Biol Open 1: 275‐285, 2012.
 199. Pauli A , Norris ML , Valen E , Chew GL , Gagnon JA , Zimmerman S , Mitchell A , Ma J , Dubrulle J , Reyon D , Tsai SQ , Joung JK , Saghatelian A , Schier AF . Toddler: An embryonic signal that promotes cell movement via apelin receptors. Science 343: 1248636, 2014.
 200. Pchejetski D , Foussal C , Alfarano C , Lairez O , Calise D , Guilbeau‐Frugier C , Schaak S , Seguelas MH , Wanecq E , Valet P , Parini A , Kunduzova O . Apelin prevents cardiac fibroblast activation and collagen production through inhibition of sphingosine kinase 1. Eur Heart J 33: 2360‐2369, 2012.
 201. Peng X , Li F , Wang P , Jia S , Sun L , Huo H . Apelin‐13 induces MCF‐7 cell proliferation and invasion via phosphorylation of ERK1/2. Int J Mol Med 36: 733‐738, 2015.
 202. Penney CC , Volkoff H . Peripheral injections of cholecystokinin, apelin, ghrelin and orexin in cavefish (Astyanax fasciatus mexicanus): Effects on feeding and on the brain expression levels of tyrosine hydroxylase, mechanistic target of rapamycin and appetite‐related hormones. Gen Comp Endocrinol 196: 34‐40, 2014.
 203. Perjes A , Kilpio T , Ulvila J , Magga J , Alakoski T , Szabo Z , Vainio L , Halmetoja E , Vuolteenaho O , Petaja‐Repo U , Szokodi I , Kerkela R . Characterization of apela, a novel endogenous ligand of apelin receptor, in the adult heart. Basic Res Cardiol 111: 2, 2016.
 204. Perjes A , Skoumal R , Tenhunen O , Konyi A , Simon M , Horvath IG , Kerkela R , Ruskoaho H , Szokodi I . Apelin increases cardiac contractility via protein kinase Cϵ‐ and extracellular signal‐regulated kinase‐dependent mechanisms. PLoS One 9: e93473, 2014.
 205. Petrera A , Amstutz B , Gioia M , Hahnlein J , Baici A , Selchow P , Ferraris DM , Rizzi M , Sbardella D , Marini S , Coletta M , Sander P . Functional characterization of the Mycobacterium tuberculosis zinc metallopeptidase Zmp1 and identification of potential substrates. Biol Chem 393: 631‐640, 2012.
 206. Picault FX , Chaves‐Almagro C , Projetti F , Prats H , Masri B , Audigier Y . Tumour co‐expression of apelin and its receptor is the basis of an autocrine loop involved in the growth of colon adenocarcinomas. Eur J Cancer 50: 663‐674, 2014.
 207. Pisarenko O , Shulzhenko V , Studneva I , Pelogeykina Y , Timoshin A , Anesia R , Valet P , Parini A , Kunduzova O . Structural apelin analogues: Mitochondrial ROS inhibition and cardiometabolic protection in myocardial ischaemia reperfusion injury. Br J Pharmacol 172: 2933‐2945, 2015.
 208. Pisarenko OI , Lankin VZ , Konovalova GG , Serebryakova LI , Shulzhenko VS , Timoshin AA , Tskitishvili OV , Pelogeykina YA , Studneva IM . Apelin‐12 and its structural analog enhance antioxidant defense in experimental myocardial ischemia and reperfusion. Mol Cell Biochem 391: 241‐250, 2014.
 209. Pisarenko OI , Serebryakova LI , Pelogeykina YA , Studneva IM , Khatri DN , Tskitishvili OV , Bespalova Zh D , Az'muko AA , Sidorova MV , Pal'keeva ME . In vivo reduction of reperfusion injury to the heart with apelin‐12 peptide in rats. Bull Exp Biol Med 152: 79‐82, 2011.
 210. Pisarenko OI , Serebryakova LI , Studneva IM , Pelogeykina YA , Tskitishvili OV , Bespalova ZD , Sidorova MV , Az'muko AA , Khatri DN , Pal'keeva ME , Molokoedov AS . Effects of structural analogues of apelin‐12 in acute myocardial infarction in rats. J Pharmacol Pharmacother 4: 198‐203, 2013.
 211. Pitkin SL , Maguire JJ , Kuc RE , Davenport AP . Modulation of the apelin/APJ system in heart failure and atherosclerosis in man. Br J Pharmacol 160: 1785‐1795, 2010.
 212. Pope GR , Tilve S , McArdle CA , Lolait SJ , O'Carroll AM . Agonist‐induced internalization and desensitization of the apelin receptor. Mol Cell Endocrinol 437: 108‐119, 2016.
 213. Principe A , Melgar‐Lesmes P , Fernandez‐Varo G , del Arbol LR , Ros J , Morales‐Ruiz M , Bernardi M , Arroyo V , Jimenez W . The hepatic apelin system: A new therapeutic target for liver disease. Hepatology 48: 1193‐1201, 2008.
 214. Qin D , Zheng XX , Jiang YR . Apelin‐13 induces proliferation, migration, and collagen I mRNA expression in human RPE cells via PI3K/Akt and MEK/Erk signaling pathways. Mol Vis 19: 2227‐2236, 2013.
 215. Qin L , Kufareva I , Holden LG , Wang C , Zheng Y , Zhao C , Fenalti G , Wu H , Han GW , Cherezov V , Abagyan R , Stevens RC , Handel TM . Structural biology. Crystal structure of the chemokine receptor CXCR4 in complex with a viral chemokine. Science 347: 1117‐1122, 2015.
 216. Rastaldo R , Cappello S , Folino A , Berta GN , Sprio AE , Losano G , Samaja M , Pagliaro P . Apelin‐13 limits infarct size and improves cardiac postischemic mechanical recovery only if given after ischemia. Am J Physiol Heart Circ Physiol 300: H2308‐2315, 2011.
 217. Read C , Fitzpatrick CM , Yang P , Kuc RE , Maguire JJ , Glen RC , Foster RE , Davenport AP . Cardiac action of the first G protein biased small molecule apelin agonist. Biochem Pharmacol 116: 63‐72, 2016.
 218. Reaux A , De Mota N , Skultetyova I , Lenkei Z , El Messari S , Gallatz K , Corvol P , Palkovits M , Llorens‐Cortes C . Physiological role of a novel neuropeptide, apelin, and its receptor in the rat brain. J Neurochem 77: 1085‐1096, 2001.
 219. Ringstrom C , Nitert MD , Bennet H , Fex M , Valet P , Rehfeld JF , Friis‐Hansen L , Wierup N . Apelin is a novel islet peptide. Regul Pept 162: 44‐51, 2010.
 220. Sakamoto K , Murakami Y , Sawada S , Ushikubo H , Mori A , Nakahara T , Ishii K . Apelin‐36 is protective against N‐methyl‐d‐aspartic‐acid‐induced retinal ganglion cell death in the mice. Eur J Pharmacol 791: 213‐220, 2016.
 221. Salcedo A , Garijo J , Monge L , Fernandez N , Luis Garcia‐Villalon A , Sanchez Turrion V , Cuervas‐Mons V , Dieguez G . Apelin effects in human splanchnic arteries. Role of nitric oxide and prostanoids. Regul Pept 144: 50‐55, 2007.
 222. Samura M , Morikage N , Suehiro K , Tanaka Y , Nakamura T , Nishimoto A , Ueno K , Hosoyama T , Hamano K . Combinatorial treatment with apelin‐13 enhances the therapeutic efficacy of a preconditioned cell‐based therapy for peripheral ischemia. Sci Rep 6: 19379, 2016.
 223. Santoso P , Maejima Y , Kumamoto K , Takenoshita S , Shimomura K . Central action of ELABELA reduces food intake and activates arginine vasopressin and corticotropin‐releasing hormone neurons in the hypothalamic paraventricular nucleus. Neuroreport 26: 820‐826, 2015.
 224. Sargent DF , Schwyzer R . Membrane lipid phase as catalyst for peptide‐receptor interactions. Proc Natl Acad Sci U S A 83: 5774‐5778, 1986.
 225. Sawane M , Kajiya K , Kidoya H , Takagi M , Muramatsu F , Takakura N . Apelin inhibits diet‐induced obesity by enhancing lymphatic and blood vessel integrity. Diabetes 62: 1970‐1980, 2013.
 226. Sawane M , Kidoya H , Muramatsu F , Takakura N , Kajiya K . Apelin attenuates UVB‐induced edema and inflammation by promoting vessel function. Am J Pathol 179: 2691‐2697, 2011.
 227. Scimia MC , Hurtado C , Ray S , Metzler S , Wei K , Wang J , Woods CE , Purcell NH , Catalucci D , Akasaka T , Bueno OF , Vlasuk GP , Kaliman P , Bodmer R , Smith LH , Ashley E , Mercola M , Brown JH , Ruiz‐Lozano P . APJ acts as a dual receptor in cardiac hypertrophy. Nature 488: 394‐398, 2012.
 228. Scott IC , Masri B , D'Amico LA , Jin SW , Jungblut B , Wehman AM , Baier H , Audigier Y , Stainier DY . The G protein‐coupled receptor agtrl1b regulates early development of myocardial progenitors. Dev Cell 12: 403‐413, 2007.
 229. Seidah NG. The proprotein convertases, 20 years later. Methods Mol Biol 768: 23‐57, 2011.
 230. Seidah NG , Prat A . The biology and therapeutic targeting of the proprotein convertases. Nat Rev Drug Discov 11: 367‐383, 2012.
 231. Sensoy O , Weinstein H . A mechanistic role of helix 8 in GPCRs: Computational modeling of the dopamine D2 receptor interaction with the GIPC1‐PDZ‐domain. Biochim Biophys Acta 1848: 976‐983, 2015.
 232. Sentinelli F , Capoccia D , Bertoccini L , Barchetta I , Incani M , Coccia F , Manconi E , Lenzi A , Cossu E , Leonetti F , Cavallo MG , Baroni MG . Search for genetic variant in the apelin gene by resequencing and association study in European subjects. Genet Test Mol Biomarkers 20: 98‐102, 2016.
 233. Seyedabadi M , Goodchild AK , Pilowsky PM . Site‐specific effects of apelin‐13 in the rat medulla oblongata on arterial pressure and respiration. Auton Neurosci 101: 32‐38, 2002.
 234. Shan PF , Lu Y , Cui RR , Jiang Y , Yuan LQ , Liao EY . Apelin attenuates the osteoblastic differentiation of vascular smooth muscle cells. PLoS One 6: e17938, 2011.
 235. Shin K , Chapman NA , Sarker M , Kenward C , Huang SK , Weatherbee‐Martin N , Pandey A , Dupre DJ , Rainey JK . Bioactivity of the putative apelin proprotein expands the repertoire of apelin receptor ligands. Biochim Biophys Acta 1861: 1901‐1912, 2017.
 236. Shin K , Pandey A , Liu XQ , Anini Y , Rainey JK . Preferential apelin‐13 production by the proprotein convertase PCSK3 is implicated in obesity. FEBS Open Bio 3: 328‐333, 2013.
 237. Shoemaker BA , Portman JJ , Wolynes PG . Speeding molecular recognition by using the folding funnel: The fly‐casting mechanism. Proc Natl Acad Sci U S A 97: 8868‐8873, 2000.
 238. Simpkin JC , Yellon DM , Davidson SM , Lim SY , Wynne AM , Smith CC . Apelin‐13 and apelin‐36 exhibit direct cardioprotective activity against ischemia‐reperfusion injury. Basic Res Cardiol 102: 518‐528, 2007.
 239. Smith CC , Mocanu MM , Bowen J , Wynne AM , Simpkin JC , Dixon RA , Cooper MB , Yellon DM . Temporal changes in myocardial salvage kinases during reperfusion following ischemia: Studies involving the cardioprotective adipocytokine apelin. Cardiovasc Drugs Ther 21: 409‐414, 2007.
 240. Soliman M , Arafah M . Apelin protect against multiple organ injury following hemorrhagic shock and decrease the inflammatory response. Int J Appl Basic Med Res 5: 195‐199, 2015.
 241. Soltani Hekmat A , Najafipour H , Nekooian AA , Esmaeli‐Mahani S , Javanmardi K . Cardiovascular responses to apelin in two‐kidney‐one‐clip hypertensive rats and its receptor expression in ischemic and non‐ischemic kidneys. Regul Pept 172: 62‐68, 2011.
 242. Sorhede Winzell M , Magnusson C , Ahren B . The APJ receptor is expressed in pancreatic islets and its ligand, apelin, inhibits insulin secretion in mice. Regul Pept 131: 12‐17, 2005.
 243. Sun X , Iida S , Yoshikawa A , Senbonmatsu R , Imanaka K , Maruyama K , Nishimura S , Inagami T , Senbonmatsu T . Non‐activated APJ suppresses the angiotensin II type 1 receptor, whereas apelin‐activated APJ acts conversely. Hypertens Res 34: 701‐706, 2011.
 244. Sunter D , Hewson AK , Dickson SL . Intracerebroventricular injection of apelin‐13 reduces food intake in the rat. Neurosci Lett 353: 1‐4, 2003.
 245. Szokodi I , Tavi P , Foldes G , Voutilainen‐Myllyla S , Ilves M , Tokola H , Pikkarainen S , Piuhola J , Rysa J , Toth M , Ruskoaho H . Apelin, the novel endogenous ligand of the orphan receptor APJ, regulates cardiac contractility. Circ Res 91: 434‐440, 2002.
 246. Taheri S , Murphy K , Cohen M , Sujkovic E , Kennedy A , Dhillo W , Dakin C , Sajedi A , Ghatei M , Bloom S . The effects of centrally administered apelin‐13 on food intake, water intake and pituitary hormone release in rats. Biochem Biophys Res Commun 291: 1208‐1212, 2002.
 247. Tang SY , Xie H , Yuan LQ , Luo XH , Huang J , Cui RR , Zhou HD , Wu XP , Liao EY . Apelin stimulates proliferation and suppresses apoptosis of mouse osteoblastic cell line MC3T3‐E1 via JNK and PI3‐K/Akt signaling pathways. Peptides 28: 708‐718, 2007.
 248. Tao J , Zhu W , Li Y , Xin P , Li J , Liu M , Li J , Redington AN , Wei M . Apelin‐13 protects the heart against ischemia‐reperfusion injury through inhibition of ER‐dependent apoptotic pathways in a time‐dependent fashion. Am J Physiol Heart Circ Physiol 301: H1471‐1486, 2011.
 249. Tatemoto K , Hosoya M , Habata Y , Fujii R , Kakegawa T , Zou MX , Kawamata Y , Fukusumi S , Hinuma S , Kitada C , Kurokawa T , Onda H , Fujino M . Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor. Biochem Biophys Res Commun 251: 471‐476, 1998.
 250. Tatemoto K , Takayama K , Zou MX , Kumaki I , Zhang W , Kumano K , Fujimiya M . The novel peptide apelin lowers blood pressure via a nitric oxide‐dependent mechanism. Regul Pept 99: 87‐92, 2001.
 251. Tekin S , Erden Y , Sandal S , Etem Onalan E , Ozyalin F , Ozen H , Yilmaz B . Effects of apelin on reproductive functions: Relationship with feeding behavior and energy metabolism. Arch Physiol Biochem 123: 9‐15, 2017.
 252. Tempel D , de Boer M , van Deel ED , Haasdijk RA , Duncker DJ , Cheng C , Schulte‐Merker S , Duckers HJ . Apelin enhances cardiac neovascularization after myocardial infarction by recruiting aplnr+ circulating cells. Circ Res 111: 585‐598, 2012.
 253. Tesmer JJ . Hitchhiking on the heptahelical highway: Structure and function of 7TM receptor complexes. Nat Rev Mol Cell Biol 17: 439‐450, 2016.
 254. Than A , Cheng Y , Foh LC , Leow MK , Lim SC , Chuah YJ , Kang Y , Chen P . Apelin inhibits adipogenesis and lipolysis through distinct molecular pathways. Mol Cell Endocrinol 362: 227‐241, 2012.
 255. Than A , He HL , Chua SH , Xu D , Sun L , Leow MK , Chen P . Apelin enhances brown adipogenesis and browning of white adipocytes. J Biol Chem 290: 14679‐14691, 2015.
 256. Than A , Zhang X , Leow MK , Poh CL , Chong SK , Chen P . Apelin attenuates oxidative stress in human adipocytes. J Biol Chem 289: 3763‐3774, 2014.
 257. Trzaskowski B , Latek D , Yuan S , Ghoshdastider U , Debinski A , Filipek S . Action of molecular switches in GPCRs—theoretical and experimental studies. Curr Med Chem 19: 1090‐1109, 2012.
 258. Tusnady GE , Dosztanyi Z , Simon I . TMDET: Web server for detecting transmembrane regions of proteins by using their 3D coordinates. Bioinformatics 21: 1276‐1277, 2005.
 259. Tyndall JD , Pfeiffer B , Abbenante G , Fairlie DP . Over one hundred peptide‐activated G protein‐coupled receptors recognize ligands with turn structure. Chem Rev 105: 793‐826, 2005.
 260. Valle A , Hoggard N , Adams AC , Roca P , Speakman JR . Chronic central administration of apelin‐13 over 10 days increases food intake, body weight, locomotor activity and body temperature in C57BL/6 mice. J Neuroendocrinol 20: 79‐84, 2008.
 261. Van Coillie E , Proost P , Van Aelst I , Struyf S , Polfliet M , De Meester I , Harvey DJ , Van Damme J , Opdenakker G . Functional comparison of two human monocyte chemotactic protein‐2 isoforms, role of the amino‐terminal pyroglutamic acid and processing by CD26/dipeptidyl peptidase IV. Biochemistry 37: 12672‐12680, 1998.
 262. van Meer G , Voelker DR , Feigenson GW . Membrane lipids: Where they are and how they behave. Nat Rev Mol Cell Biol 9: 112‐124, 2008.
 263. Vermeire K , Schols D , Bell TW . Inhibitors of HIV infection via the cellular CD4 receptor. Curr Med Chem 13: 731‐743, 2006.
 264. Vickers C , Hales P , Kaushik V , Dick L , Gavin J , Tang J , Godbout K , Parsons T , Baronas E , Hsieh F , Acton S , Patane M , Nichols A , Tummino P . Hydrolysis of biological peptides by human angiotensin‐converting enzyme‐related carboxypeptidase. J Biol Chem 277: 14838‐14843, 2002.
 265. Volkoff H. Cloning and tissue distribution of appetite‐regulating peptides in pirapitinga (Piaractus brachypomus). J Anim Physiol Anim Nutr (Berl) 99: 987‐1001, 2015.
 266. Volkoff H , Wyatt JL . Apelin in goldfish (Carassius auratus): cloning, distribution and role in appetite regulation. Peptides 30: 1434‐1440, 2009.
 267. Wang C , Du JF , Wu F , Wang HC . Apelin decreases the SR Ca2+ content but enhances the amplitude of [Ca2+]i transient and contractions during twitches in isolated rat cardiac myocytes. Am J Physiol Heart Circ Physiol 294: H2540‐H2546, 2008.
 268. Wang C , Liu N , Luan R , Li Y , Wang D , Zou W , Xing Y , Tao L , Cao F , Wang H . Apelin protects sarcoplasmic reticulum function and cardiac performance in ischaemia‐reperfusion by attenuating oxidation of sarcoplasmic reticulum Ca2+‐ATPase and ryanodine receptor. Cardiovasc Res 100: 114‐124, 2013.
 269. Wang C , Wen J , Zhou Y , Li L , Cui X , Wang J , Pan L , Ye Z , Liu P , Wu L . Apelin induces vascular smooth muscle cells migration via a PI3K/Akt/FoxO3a/MMP‐2 pathway. Int J Biochem Cell Biol 69: 173‐182, 2015.
 270. Wang G , Anini Y , Wei W , Qi X , OCarroll AM , Mochizuki T , Wang HQ , Hellmich MR , Englander EW , Greeley GH, Jr . Apelin, a new enteric peptide: Localization in the gastrointestinal tract, ontogeny, and stimulation of gastric cell proliferation and of cholecystokinin secretion. Endocrinology 145: 1342‐1348, 2004.
 271. Wang M , Gupta RC , Rastogi S , Kohli S , Sabbah MS , Zhang K , Mohyi P , Hogie M , Fischer Y , Sabbah HN . Effects of acute intravenous infusion of apelin on left ventricular function in dogs with advanced heart failure. J Card Fail 19: 509‐516, 2013.
 272. Wang W , McKinnie SM , Farhan M , Paul M , McDonald T , McLean B , Llorens‐Cortes C , Hazra S , Murray AG , Vederas JC , Oudit GY . Angiotensin‐converting enzyme 2 metabolizes and partially inactivates Pyr‐apelin‐13 and apelin‐17: Physiological effects in the cardiovascular system. Hypertension 68: 365‐377, 2016.
 273. Wang XL , Tao Y , Lu Q , Jiang YR . Apelin supports primary rat retinal Muller cells under chemical hypoxia and glucose deprivation. Peptides 33: 298‐306, 2012.
 274. Wang Z , Yu D , Wang M , Wang Q , Kouznetsova J , Yang R , Qian K , Wu W , Shuldiner A , Sztalryd C , Zou M , Zheng W , Gong DW . Elabela‐apelin receptor signaling pathway is functional in mammalian systems. Sci Rep 5: 8170, 2015.
 275. Wattanachanya L , Lu WD , Kundu RK , Wang L , Abbott MJ , O'Carroll D , Quertermous T , Nissenson RA . Increased bone mass in mice lacking the adipokine apelin. Endocrinology 154: 2069‐2080, 2013.
 276. Wheatley M , Simms J , Hawtin SR , Wesley VJ , Wootten D , Conner M , Lawson Z , Conner AC , Baker A , Cashmore Y , Kendrick R , Parslow RA . Extracellular loops and ligand binding to a subfamily of Family A G‐protein‐coupled receptors. Biochem Soc Trans 35: 717‐720, 2007.
 277. Wu B , Chien EY , Mol CD , Fenalti G , Liu W , Katritch V , Abagyan R , Brooun A , Wells P , Bi FC , Hamel DJ , Kuhn P , Handel TM , Cherezov V , Stevens RC . Structures of the CXCR4 chemokine GPCR with small‐molecule and cyclic peptide antagonists. Science 330: 1066‐1071, 2010.
 278. Xie F , Liu W , Feng F , Li X , He L , Lv D , Qin X , Li L , Li L , Chen L . Apelin‐13 promotes cardiomyocyte hypertrophy via PI3K‐Akt‐ERK1/2‐p70S6K and PI3K‐induced autophagy. Acta Biochim Biophys Sin (Shanghai) 47: 969‐980, 2015.
 279. Xie H , Tang SY , Cui RR , Huang J , Ren XH , Yuan LQ , Lu Y , Yang M , Zhou HD , Wu XP , Luo XH , Liao EY . Apelin and its receptor are expressed in human osteoblasts. Regul Pept 134: 118‐125, 2006.
 280. Xie H , Yuan LQ , Luo XH , Huang J , Cui RR , Guo LJ , Zhou HD , Wu XP , Liao EY . Apelin suppresses apoptosis of human osteoblasts. Apoptosis 12: 247‐254, 2007.
 281. Xu S , Han P , Huang M , Wu JC , Chang C , Tsao PS , Yue P . In vivo, ex vivo, and in vitro studies on apelin's effect on myocardial glucose uptake. Peptides 37: 320‐326, 2012.
 282. Yang F , Bai Y , Jiang Y . Effects of apelin on RAW264.7 cells under both normal and hypoxic conditions. Peptides 69: 133‐143, 2015.
 283. Yang L , Su T , Lv D , Xie F , Liu W , Cao J , Sheikh IA , Qin X , Li L , Chen L . ERK1/2 mediates lung adenocarcinoma cell proliferation and autophagy induced by apelin‐13. Acta Biochim Biophys Sin (Shanghai) 46: 100‐111, 2014.
 284. Yang P , Kuc RE , Brame AL , Dyson A , Singer M , Glen RC , Cheriyan J , Wilkinson IB , Davenport AP , Maguire JJ . [Pyr1]Apelin‐13(1‐12) is a biologically active ACE2 metabolite of the endogenous cardiovascular peptide [Pyr1]Apelin‐13. Front Neurosci 11: 92, 2017.
 285. Yang P , Maguire JJ , Davenport AP . Apelin, Elabela/Toddler, and biased agonists as novel therapeutic agents in the cardiovascular system. Trends Pharmacol Sci 36: 560‐567, 2015.
 286. Yang P , Read C , Kuc RE , Buonincontri G , Southwood M , Torella R , Upton PD , Crosby A , Sawiak SJ , Carpenter TA , Glen RC , Morrell NW , Maguire JJ , Davenport AP . Elabela/Toddler is an endogenous agonist of the apelin APJ receptor in the adult cardiovascular system, and exogenous administration of the peptide compensates for the downregulation of its expression in pulmonary arterial hypertension. Circulation 135: 1160‐1173, 2017.
 287. Yang S , Li H , Tang L , Ge G , Ma J , Qiao Z , Liu H , Fang W . Apelin‐13 protects the heart against ischemia‐reperfusion injury through the RISK‐GSK‐3β‐mPTP pathway. Arch Med Sci 11: 1065‐1073, 2015.
 288. Yang X , Zhu W , Zhang P , Chen K , Zhao L , Li J , Wei M , Liu M . Apelin‐13 stimulates angiogenesis by promoting crosstalk between AMP‐activated protein kinase and Akt signaling in myocardial microvascular endothelial cells. Mol Med Rep 9: 1590‐1596, 2014.
 289. Yang Y , Zhang X , Cui H , Zhang C , Zhu C , Li L . Apelin‐13 protects the brain against ischemia/reperfusion injury through activating PI3K/Akt and ERK1/2 signaling pathways. Neurosci Lett 568: 44‐49, 2014.
 290. Yang Y , Zhang XJ , Li LT , Cui HY , Zhang C , Zhu CH , Miao JY . Apelin‐13 protects against apoptosis by activating AMP‐activated protein kinase pathway in ischemia stroke. Peptides 75: 96‐100, 2016.
 291. Yao F , Lv YC , Zhang M , Xie W , Tan YL , Gong D , Cheng HP , Liu D , Li L , Liu XY , Zheng XL , Tang CK . Apelin‐13 impedes foam cell formation by activating Class III PI3K/Beclin‐1‐mediated autophagic pathway. Biochem Biophys Res Commun 466: 637‐643, 2015.
 292. Yao F , Modgil A , Zhang Q , Pingili A , Singh N , O'Rourke ST , Sun C . Pressor effect of apelin‐13 in the rostral ventrolateral medulla: Role of NAD(P)H oxidase‐derived superoxide. J Pharmacol Exp Ther 336: 372‐380, 2011.
 293. Ye L , Van Eps N , Zimmer M , Ernst OP , Prosser RS . Activation of the A2A adenosine G‐protein‐coupled receptor by conformational selection. Nature 533: 265‐268, 2016.
 294. Yu QC , Hirst CE , Costa M , Ng ES , Schiesser JV , Gertow K , Stanley EG , Elefanty AG . APELIN promotes hematopoiesis from human embryonic stem cells. Blood 119: 6243‐6254, 2012.
 295. Yue P , Jin H , Aillaud M , Deng AC , Azuma J , Asagami T , Kundu RK , Reaven GM , Quertermous T , Tsao PS . Apelin is necessary for the maintenance of insulin sensitivity. Am J Physiol Endocrinol Metab 298: E59‐67, 2010.
 296. Yue P , Jin H , Xu S , Aillaud M , Deng AC , Azuma J , Kundu RK , Reaven GM , Quertermous T , Tsao PS . Apelin decreases lipolysis via G(q), G(i), and AMPK‐dependent mechanisms. Endocrinology 152: 59‐68, 2011.
 297. Zeng X , Yu SP , Taylor T , Ogle M , Wei L . Protective effect of apelin on cultured rat bone marrow mesenchymal stem cells against apoptosis. Stem Cell Res 8: 357‐367, 2012.
 298. Zeng XJ , Yu SP , Zhang L , Wei L . Neuroprotective effect of the endogenous neural peptide apelin in cultured mouse cortical neurons. Exp Cell Res 316: 1773‐1783, 2010.
 299. Zeng XJ , Zhang LK , Wang HX , Lu LQ , Ma LQ , Tang CS . Apelin protects heart against ischemia/reperfusion injury in rat. Peptides 30: 1144‐1152, 2009.
 300. Zeng XX , Wilm TP , Sepich DS , Solnica‐Krezel L . Apelin and its receptor control heart field formation during zebrafish gastrulation. Dev Cell 12: 391‐402, 2007.
 301. Zhang BH , Guo CX , Wang HX , Lu LQ , Wang YJ , Zhang LK , Du FH , Zeng XJ . Cardioprotective effects of adipokine apelin on myocardial infarction. Heart Vessels 29: 679‐689, 2014.
 302. Zhang BH , Wang W , Wang H , Yin J , Zeng XJ . Promoting effects of the adipokine, apelin, on diabetic nephropathy. PLoS One 8: e60457, 2013.
 303. Zhang F , Sun HJ , Xiong XQ , Chen Q , Li YH , Kang YM , Wang JJ , Gao XY , Zhu GQ . Apelin‐13 and APJ in paraventricular nucleus contribute to hypertension via sympathetic activation and vasopressin release in spontaneously hypertensive rats. Acta Physiol (Oxf) 212: 17‐27, 2014.
 304. Zhang H , Unal H , Desnoyer R , Han GW , Patel N , Katritch V , Karnik SS , Cherezov V , Stevens RC . Structural basis for ligand recognition and functional selectivity at angiotensin receptor. J Biol Chem 290: 29127‐29139, 2015.
 305. Zhang H , Unal H , Gati C , Han GW , Liu W , Zatsepin NA , James D , Wang D , Nelson G , Weierstall U , Sawaya MR , Xu Q , Messerschmidt M , Williams GJ , Boutet S , Yefanov OM , White TA , Wang C , Ishchenko A , Tirupula KC , Desnoyer R , Coe J , Conrad CE , Fromme P , Stevens RC , Katritch V , Karnik SS , Cherezov V . Structure of the angiotensin receptor revealed by serial femtosecond crystallography. Cell 161: 833‐844, 2015.
 306. Zhang NK , Cao Y , Zhu ZM , Zheng N , Wang L , Xu XH , Gao LR . Activation of endogenous cardiac stem cells by apelin‐13 in infarcted rat heart. Cell Transplant 25: 1645‐1652, 2016.
 307. Zhang Q , Yao F , Raizada MK , O'Rourke ST , Sun C . Apelin gene transfer into the rostral ventrolateral medulla induces chronic blood pressure elevation in normotensive rats. Circ Res 104: 1421‐1428, 2009.
 308. Zhang R , Hu C , Wang CR , Ma XJ , Bao YQ , Xu J , Lu JY , Qin W , Xiang KS , Jia WP . Association of apelin genetic variants with type 2 diabetes and related clinical features in Chinese Hans. Chin Med J (Engl) 122: 1273‐1276, 2009.
 309. Zhang R , Lu J , Hu C , Wang C , Yu W , Jiang F , Tang S , Bao Y , Xiang K , Jia W . Associations of common variants at APLN and hypertension in Chinese subjects with and without diabetes. Exp Diabetes Res 2012: 917496, 2012.
 310. Zhang Y , Maitra R , Harris DL , Dhungana S , Snyder R , Runyon SP . Identifying structural determinants of potency for analogs of apelin‐13: Integration of C‐terminal truncation with structure‐activity. Bioorg Med Chem 22: 2992‐2997, 2014.
 311. Zhang Z , Yu B , Tao GZ . Apelin protects against cardiomyocyte apoptosis induced by glucose deprivation. Chin Med J (Engl) 122: 2360‐2365, 2009.
 312. Zhen EY , Higgs RE , Gutierrez JA . Pyroglutamyl apelin‐13 identified as the major apelin isoform in human plasma. Anal Biochem 442: 1‐9, 2013.
 313. Zheng XT , Than A , Ananthanaraya A , Kim DH , Chen P . Graphene quantum dots as universal fluorophores and their use in revealing regulated trafficking of insulin receptors in adipocytes. ACS Nano 7: 6278‐6286, 2013.
 314. Zhou N , Fan X , Mukhtar M , Fang J , Patel CA , DuBois GC , Pomerantz RJ . Cell‐cell fusion and internalization of the CNS‐based, HIV‐1 co‐receptor, APJ. Virology 307: 22‐36, 2003.
 315. Zhou N , Fang J , Acheampong E , Mukhtar M , Pomerantz RJ . Binding of ALX40‐4C to APJ, a CNS‐based receptor, inhibits its utilization as a co‐receptor by HIV‐1. Virology 312: 196‐203, 2003.
 316. Zhou N , Zhang X , Fan X , Argyris E , Fang J , Acheampong E , DuBois GC , Pomerantz RJ . The N‐terminal domain of APJ, a CNS‐based coreceptor for HIV‐1, is essential for its receptor function and coreceptor activity. Virology 317: 84‐94, 2003.
 317. Zhou Y , Deng L , Zhao D , Chen L , Yao Z , Guo X , Liu X , Lv L , Leng B , Xu W , Qiao G , Shan H . MicroRNA‐503 promotes angiotensin II‐induced cardiac fibrosis by targeting apelin‐13. J Cell Mol Med 20: 495‐505, 2016.
 318. Zhu S , Sun F , Li W , Cao Y , Wang C , Wang Y , Liang D , Zhang R , Zhang S , Wang H , Cao F . Apelin stimulates glucose uptake through the PI3K/Akt pathway and improves insulin resistance in 3T3‐L1 adipocytes. Mol Cell Biochem 353: 305‐313, 2011.
 319. Zou MX , Liu HY , Haraguchi Y , Soda Y , Tatemoto K , Hoshino H . Apelin peptides block the entry of human immunodeficiency virus (HIV). FEBS Lett 473: 15‐18, 2000.
 320. Zou Y , Wang B , Fu W , Zhou S , Nie Y , Tian S . Apelin‐13 protects PC12 cells from corticosterone‐induced apoptosis through PI3K and ERKs activation. Neurochem Res 41: 1635‐1644, 2016.

 

Teaching Material

K. Shin, C. Kenward, J. K. Rainey. Apelinergic System Structure and Function. Compr Physiol. 8: 2018, 407-450.

Didactic Synopsis

Major Teaching Points:

  • The apelinergic system comprises two peptide ligands, apelin and apela, and their cognate G-protein-coupled receptor (GPCR), the apelin receptor.
  • The apelinergic system is widely distributed, with (patho)physiological effects ascribed, for example, in regulation of metabolism, the cardiovascular system, and the central nervous system.
  • Apelin and apela have multiple bioactive isoforms widely ranging in size.
  • Key motifs for each ligand have distinctive structural features, membrane-interactive properties, and functional effects.
  • Apelin and apela processing to different isoforms modulates biophysics, pharmacological properties, signaling, and receptor regulation.
  • Membrane-ligand interactions appear likely to facilitate recognition by and binding to the apelin receptor through the membrane catalysis mechanism.
  • Regulation of the apelinergic system may, thus, rely on: whether apelin or apela is produced in a given setting; balancing of isoform processing; cell surface composition; and, modulation of receptor level on the cell surface.

Didactic Legends

The figures—in a freely downloadable PowerPoint format—can be found on the Images tab along with the formal legends published in the article. The following legends to the same figures are written to be useful for teaching.

Figure 1. Teaching points: This figure demonstrates the topology of the apelin receptor. It has the canonical G-protein-coupled receptor (GPCR) topology with seven transmembrane helices, an extracellular N-terminal tail, intracellular C-terminal tail, and three loops connecting TM helices on each side of the membrane. Additional structural features determined crystallographically are also shown, including a b-sheet in the second extracellular loop and a short “8th helix” immediately following transmembrane helical segment 7. A number of studies have now also demonstrated functionally important residues through mutagenesis and functional study, as are highlighted.

Figure 2. Teaching points: The sequence of each of the seven apelin receptor transmembrane segments is compared to those known for several related class A GPCRs. Although sequence conservation is reasonably high, particularly for the angiotensin-II receptor isoform 1 (AT1), clear distinctions are apparent in all of these receptors. Correspondingly, although a canonical GPCR architecture is expected in each case, differences in structure, intramolecular dynamics, ligand binding, and activation mechanisms are not unexpected due to the variations in primary structuring.

Figure 3. Teaching points: The first apelin receptor crystal structure is illustrated. The apelin-17 analog, AMG3054, was bound to the receptor, as shown. The GPCR architecture is clear in the structure and analysis of its features allowed determination of the fact that the state observed is an “inactive-like” conformation despite the fact that AMG3054 is an agonist. This was likely due to the mutagenesis required to obtain a stable construct for crystallographic studies. An important feature is the high degree of anionic character on the extracellular face of the receptor, with a number of unoccupied grooves being apparent. These grooves have been postulated to provide natural binding sites for longer apelin isoforms.

Figure 4. Teaching points: The apelin receptor structure is compared to those of four other class A GPCRs, all crystallized in inactive-like conformations. Although the overall architecture is the same in all cases (cartoon illustrations in left-hand column), the topology of each GPCR in the transmembrane domain is distinct with some helices being more variable than others.

Figure 5. Teaching points: The topologies of four distinct crystallographically characterized states of the b2-adrenergic receptor, a relatively extensively characterized class A GPCR, are illustrated. Notably, even for a single GPCR, the topology in the transmembrane domain for the structural snapshots varies as a function of activation state.

Figure 6. Teaching points: The sequence alignment for pre(pro)apelin over a variety of species is shown. The N-terminal 22 residues are the predicted signal peptide, cleaved to produce a bioactive 55-residue form of apelin (apelin-55). Initially, apelin-55 was not believed to be bioactive and was referred to as proapelin. Alignment demonstrates very clearly that the C-terminal 12 residues are identical, directly corresponding to the requirement of these residues for receptor binding and activation. More variability is seen N-terminal to this region. Despite this variability, dibasic motifs associated with proprotein convertase processing are still frequently found, implying the potential of multiple isoforms being produced in all of the species compared.

Figure 7. Teaching points: Two apelin processing pathways are compared. In each case, the 77-residue pre(pro)protein is initially processed to produce a 55-residue form (apelin-55). Initially, this was believed to be an inactive proprotein, but subsequently apelin-55 secretion was demonstrated and it has now been shown to be bioactive. Despite this, apelin-55 may be processed intracellularly to shorter isoform(s) prior to secretion. Mechanisms by which shorter isoforms are produced remain ill characterized, with only two studies to date demonstrating that the proprotein convertase PCSK3 processes either apelin-55 or apelin-36. Further study is needed to flesh out these pathways.

Figure 8. Teaching points: Localization of each of the components of the apelinergic system is quite widespread (panel A). This is better characterized for apelin and the AR, given the recent discovery of apela. Tissue- and fluid-specific isolation of apelin isoforms has also been demonstrated (panel B). This has implications in terms of physiological function, given that distinct apelin isoforms lead to differences in downstream signaling and receptor regulation.

Figure 9. Teaching points: Motifs within the apelin-17 isoform are illustrated. The 12 residues in the C-terminal region of apelin that are widely conserved over many species demonstrate the most importance in terms of functional effects upon substitution or truncation, structural convergence, and membrane-interaction. The “RPRL” motif at the N-terminus of apelin-12 demonstrates structuring under a variety of conditions and is important in membrane interaction. In the AMG3054 analog, this region also interacts with an extracellular anionic groove. The C-terminal “GPMPF” motif exhibits distinct structural differences as a function of condition. In AMG3054, this region penetrates into the transmembrane domain of the AR, with a kink at the His. Also of note, the C-terminal Phe of apelin has a number of features ascribed in the literature. Signaling bias based upon its presence or absence appears to be the most likely source for these discrepancies.

Figure 10. Teaching points: The membrane catalysis hypothesis is illustrated using structural data from the apelinergic system. In the first step, the “RPRL” motif is modestly structured in solution and binds to membrane; this prestructuring would lead to a decreased entropic penalty upon membrane binding. The receptor encounter likelihood of the membrane-bound apelin is then increased due to the reduction of the diffusional search from a 3D to a 2D process, the increased local concentration of ligand on the membrane, and the induction of structuring, particularly at the apelin C-terminus (the MPF within the “GPMPF” motif). Upon receptor interaction and recognition, an additional conformational change will take place during binding. An anionic patch on the apelin receptor (AR) N-terminal tail may also facilitate this step. Binding is likely to be a two-step process. An initial binding step (not illustrated) is likely whereby the apelin N-terminal region interacts with the AR extracellular domain. This would facilitate a “fly casting” mechanism by which the C-terminal tail of apelin is facilitated in finding and penetrate into the transmembrane domain of the AR. A subsequent, additional conformational change is then likely to go from an inactive bound state (as observed crystallographically) to an active bound state.

Figure 11. Teaching points: The sequence alignment for preapela over a variety of species is shown. The N-terminal 22 residues are the predicted signal peptide, cleaved to produce a bioactive 32-residue form of apela. Alignment demonstrates very clearly that the C-terminal nine residues are identical, with a very high degree of conservation through the 13 C-terminal residues. As with apelin, this is indicative of the requirement of these residues for receptor binding and activation. Some additional variability is seen N-terminal to this region. Following the precedent of apelin, dibasic motifs associated with proprotein convertase processing are identical, implying the potential of the same sets of isoforms being produced in all of the species compared.

Figure 12. Teaching points: Apelin-36 and apela-32 exhibit similar, but nonidentical, amino acid compositions. A number of key motifs observed for one peptide may be translated to the other, as indicated by dashed lines. These, however, are frequently translated in position.

Figure 13. Teaching points: Motifs within the apela-32 isoform are illustrated. Although substitution and truncation studies have been more limited, to date, relative to apelin, a number of key sites for both binding and signaling have been identified (as illustrated.) Distinct regions of apela-32 also become structured, depending upon the surface charge properties of membrane-mimetic micelles employed.

Figure 14. Teaching points: This figure illustrates different possible fates of an apelin or apela (“AP”) ligand upon secretion. If there is a strong potential for interaction with the membrane of the cell from which it is secreted, this would bias toward autocrine signaling (A) through apelin receptor (AR) molecules on the same cell. Alternatively, the ligand may encounter and bind to a nearby cell (i.e., paracrine signaling) or more distant cell (i.e., endocrine signaling) as in panel B, exerting functional effects through AR on the cell in question. In any instance, further processing of the secreted peptide may take place prior to receptor interaction, either with cell surface localized proprotein convertases or other processing enzymes (autocrine, paracrine, or endocrine signaling) or with circulating enzymes (likely most applicable to endocrine signaling). The potential for postsecretion processing is not explicitly illustrated, but should be kept in mind as an important additional regulatory mechanism.

 


Related Articles:

Cardiovascular System
G Protein‐Coupled Receptors and the G Protein Family
Obesity
Posttranslational Processing of Gut Peptides
Membrane Proteins Structure and Dynamics by Nuclear Magnetic Resonance

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Kyungsoo Shin, Calem Kenward, Jan K. Rainey. Apelinergic System Structure and Function. Compr Physiol 2017, 8: 407-450. doi: 10.1002/cphy.c170028