Comprehensive Physiology Wiley Online Library

Tissue Engineering of the Microvasculature

Full Article on Wiley Online Library



ABSTRACT

The ability to generate new microvessels in desired numbers and at desired locations has been a long‐sought goal in vascular medicine, engineering, and biology. Historically, the need to revascularize ischemic tissues nonsurgically (so‐called therapeutic vascularization) served as the main driving force for the development of new methods of vascular growth. More recently, vascularization of engineered tissues and the generation of vascularized microphysiological systems have provided additional targets for these methods, and have required adaptation of therapeutic vascularization to biomaterial scaffolds and to microscale devices. Three complementary strategies have been investigated to engineer microvasculature: angiogenesis (the sprouting of existing vessels), vasculogenesis (the coalescence of adult or progenitor cells into vessels), and microfluidics (the vascularization of scaffolds that possess the open geometry of microvascular networks). Over the past several decades, vascularization techniques have grown tremendously in sophistication, from the crude implantation of arteries into myocardial tunnels by Vineberg in the 1940s, to the current use of micropatterning techniques to control the exact shape and placement of vessels within a scaffold. This review provides a broad historical view of methods to engineer the microvasculature, and offers a common framework for organizing and analyzing the numerous studies in this area of tissue engineering and regenerative medicine. © 2019 American Physiological Society. Compr Physiol 9:1155‐1212, 2019.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1. Vascularization strategies based on (A) angiogenesis into a graft, (B) vasculogenesis within a graft, and (C) direct seeding and perfusion of a microfluidic scaffold. GF, growth factor; ECM, extracellular matrix. Adapted, with permission, from (584).
Figure 2. Figure 2. Quantitative metrics of microvascular physiology. (A) Calculation of endothelial hydraulic conductivity relies on measurement of filtration speed as a function of vascular pressure. Reprinted with permission from (313). (B) Calculation of solute permeability relies on measurement of solute accumulation over time. Reproduced, with permission, from (227).
Figure 3. Figure 3. Binding of VEGFs to their receptors, the VEGFRs and neuropilins. Reproduced, with permission, from (247).
Figure 4. Figure 4. Diagram of the Vineberg procedure for vascularizing ischemic myocardium, using a carotid artery implant. RV, right ventricle; LV, left ventricle. Reproduced, with permission, from (479).
Figure 5. Figure 5. Dose‐dependent collateral growth 2 months after implantation of FGF2‐loaded heparin/alginate beads around occluded coronary arteries in the ischemic pig heart. bFGF, basic fibroblast growth factor (FGF2). Reproduced, with permission, from (350).
Figure 6. Figure 6. Density of vascular ingrowth into polyHEMA implants after 1 month. Reproduced, with permission, from (361).
Figure 7. Figure 7. Cellularity of fibrovascular ingrowth into porous PTFE chambers in the presence of various growth factors after 10 days. Reproduced, with permission, from (541).
Figure 8. Figure 8. Number of viable hepatocytes in PLGA sponge implants as a function of time. Hepatocytes were added directly to scaffolds before implantation; scaffolds were not prevascularized. Reproduced, with permission, from (388).
Figure 9. Figure 9. Strategy for vascularization of grafts from a surgically constructed arteriovenous (AV) loop. Angiogenesis from the loop invades into overlying tissue. A, artery; V, vein. Reproduced, with permission, from (137).
Figure 10. Figure 10. Generation of centimeter‐scale tissue with an arteriovenous (AV) loop in a polycarbonate chamber. (A) AV loop overlaid on a polycarbonate base. (B) Addition of rat cardiomyocytes and Matrigel around the AV loop. (C) Explant of pedicled myocardium that formed by 4 weeks. Scale bar refers to 1 cm. Reproduced, with permission, from (394).
Figure 11. Figure 11. VEGF‐driven angiogenesis into collagen gels in microfluidic devices. Treatment of devices with poly‐D‐lysine (PDL) enabled ECs to sprout from a monolayer toward a VEGF source. Arrows denote the direction of VEGF transport. Scale bars refer to 100 μm. EGM2mv, endothelial cell growth media. Reproduced, with permission, from (92).
Figure 12. Figure 12. Derivation and characterization of EPCs. (A) Spindle‐shaped EPCs that were derived from 1‐week‐old cultures of CD34‐enriched peripheral blood‐derived mononuclear cells. Reproduced with permission from (23). (B) Flow cytometry of EPCs and monocytes. EPCs express blood cell markers, including CD45 and the monocyte activation marker CD11c. Adapted, with permission, from (459).
Figure 13. Figure 13. Derivation and characterization of EOCs. (Left) Colony of cord blood‐derived EOCs that emerged after mononuclear cells were cultured for 9 days. (Right) Flow cytometry of EOCs. EOCs express EC markers, such as CD31 and CD144 (VE‐cadherin), but do not express markers of blood cells, such as CD45 and the macrophage/monocyte marker CD14. Adapted, with permission, from (232).
Figure 14. Figure 14. Incorporation of bone marrow‐derived, lacZ‐expressing EPCs at sites of ischemia. Sections were costained by X‐gal (blue) and for lectin (A) and CD31 (B). Scale bar refers to 25 μm. Reproduced, with permission, from (22).
Figure 15. Figure 15. Vascular mimicry in uveal melanoma. Red blood cells (top, arrowheads) fill vessel‐like structures that do not appear to be lined by ECs. Reproduced, with permission, from (358).
Figure 16. Figure 16. Fine structure of vessels that formed from normal and Bcl2‐expressing HUVECs in collagen‐fibronectin gels 1 month after implantation. (A) Implants of normal HUVECs. (B, C) Implants of Bcl2‐expressing HUVECs. The lumens are perfused with red blood cells (RBC); asterisks denote mural cells. Reproduced, with permission, from (494).
Figure 17. Figure 17. Organization of human microvascular ECs into blood and lymphatic vessels in a dermal graft after 2 weeks. Immunostains are shown for CD31, blood vessel marker laminin (Lam1,2), and lymphatic markers LYVE‐1 and podoplanin (hPDN). Scale bars refer to 100 μm. Adapted, with permission, from (360).
Figure 18. Figure 18. Transformation of endothelial aggregates into perfused vessels. (A) Random self‐organized HUVEC networks and patterned HUVEC cords, before and after implantation. (B) Two‐week‐old implants after perfusion with species‐specific lectins. Vessels in implants consist of ECs that are derived from graft (human, red) and host (mouse, green). Scale bars refer to 250 μm (A, upper left), 500 μm (A, upper middle and upper right), 100 μm (A, lower), and 150 μm (B). Reproduced, with permission, from (38).
Figure 19. Figure 19. Increase in perfused vascular density over time in subcutaneous polymer implants that contained adipose‐derived microvascular fragments (black circles) or that did not (clear circles). (Left) Vascular density near the surface of implants. (Right) Vascular density at the center of implants. Adapted, with permission, from (316).
Figure 20. Figure 20. Vascularized myocardial constructs that contained human cardiomyocytes, HUVECs, and mouse fibroblasts in a PLA/PLGA sponge after 2 weeks. (Left) Immunostain for human CD31 (red) and von Willebrand factor (green). (Right) Immunostain for human CD31 (brown). Reproduced, with permission, from (332).
Figure 21. Figure 21. Perfused vascular networks in microscale fibrin gels within microfluidic devices. Fibroblasts, in the same or separate gel, were included to promote vasculogenesis. In (B), the resulting networks were perfused with a solution of fluorescent dextran. Reproduced, with permission, from (277,395).
Figure 22. Figure 22. Branching vascular‐like pattern that was etched into a silicon wafer. Such patterns could be seeded with ECs to generate patterned cultures. Feature widths were on the order of ∼10 μm. Adapted, with permission, from (249).
Figure 23. Figure 23. Vascularization of a microfluidic type I collagen scaffold that was formed by combining a micropatterned and planar gel. Both en face and reconstructed 3D views of HUVEC‐seeded structures are shown. Scale bar refers to 100 μm. Reproduced, with permission, from (677).
Figure 24. Figure 24. Vascularization of a microfluidic type I collagen scaffold that was formed around a removable needle. (Top) Unseeded scaffold. (Bottom) Scaffold that was seeded with HUVECs. Insets show cross‐sectional views. Scale bar refers to 100 μm. Reproduced, with permission, from (90).
Figure 25. Figure 25. Vascularization of a microfluidic fibrin scaffold that was formed around a sacrificial 3D‐printed network of sugar‐based fibers. Channels were seeded with HUVECs (red), and the scaffold bulk contained 10T1/2 mouse fibroblasts (green). Scale bar refers to 1 mm. Reproduced, with permission, from (382).
Figure 26. Figure 26. Vascularization of a microfluidic polyethylene glycol gel that was patterned by photodegradation. (Left) Visualization of interconnected channels by perfusion with fluorescent dextran. (Right) 3D confocal reconstruction of a vascularized channel that was stained for ZO‐1 (green). Reproduced, with permission, from (196).
Figure 27. Figure 27. Perfusion‐decellularization of whole hearts preserves the vascular architecture. (A) Corrosion casts of native and decellularized hearts. Scale bars refer to 1 mm (top) and 250 μm (bottom). (B) Transplanted decellularized heart before and after reestablishment of blood flow. The recipient animal was heparinized to minimize thrombosis. Reproduced, with permission, from (424).
Figure 28. Figure 28. Physical mechanisms for stable vascularization of micro‐fluidic scaffolds. Maintenance of vascular adhesion can be viewed as (A) a balance of outward (stabilizing) and inward (destabilizing) stresses, including pressures, contractile stress, and adhesion stress, or as (B) a balance of adhesion (stabilizing) and stored elastic (destabilizing) energies. Adapted, with permission, from (643).


Figure 1. Vascularization strategies based on (A) angiogenesis into a graft, (B) vasculogenesis within a graft, and (C) direct seeding and perfusion of a microfluidic scaffold. GF, growth factor; ECM, extracellular matrix. Adapted, with permission, from (584).


Figure 2. Quantitative metrics of microvascular physiology. (A) Calculation of endothelial hydraulic conductivity relies on measurement of filtration speed as a function of vascular pressure. Reprinted with permission from (313). (B) Calculation of solute permeability relies on measurement of solute accumulation over time. Reproduced, with permission, from (227).


Figure 3. Binding of VEGFs to their receptors, the VEGFRs and neuropilins. Reproduced, with permission, from (247).


Figure 4. Diagram of the Vineberg procedure for vascularizing ischemic myocardium, using a carotid artery implant. RV, right ventricle; LV, left ventricle. Reproduced, with permission, from (479).


Figure 5. Dose‐dependent collateral growth 2 months after implantation of FGF2‐loaded heparin/alginate beads around occluded coronary arteries in the ischemic pig heart. bFGF, basic fibroblast growth factor (FGF2). Reproduced, with permission, from (350).


Figure 6. Density of vascular ingrowth into polyHEMA implants after 1 month. Reproduced, with permission, from (361).


Figure 7. Cellularity of fibrovascular ingrowth into porous PTFE chambers in the presence of various growth factors after 10 days. Reproduced, with permission, from (541).


Figure 8. Number of viable hepatocytes in PLGA sponge implants as a function of time. Hepatocytes were added directly to scaffolds before implantation; scaffolds were not prevascularized. Reproduced, with permission, from (388).


Figure 9. Strategy for vascularization of grafts from a surgically constructed arteriovenous (AV) loop. Angiogenesis from the loop invades into overlying tissue. A, artery; V, vein. Reproduced, with permission, from (137).


Figure 10. Generation of centimeter‐scale tissue with an arteriovenous (AV) loop in a polycarbonate chamber. (A) AV loop overlaid on a polycarbonate base. (B) Addition of rat cardiomyocytes and Matrigel around the AV loop. (C) Explant of pedicled myocardium that formed by 4 weeks. Scale bar refers to 1 cm. Reproduced, with permission, from (394).


Figure 11. VEGF‐driven angiogenesis into collagen gels in microfluidic devices. Treatment of devices with poly‐D‐lysine (PDL) enabled ECs to sprout from a monolayer toward a VEGF source. Arrows denote the direction of VEGF transport. Scale bars refer to 100 μm. EGM2mv, endothelial cell growth media. Reproduced, with permission, from (92).


Figure 12. Derivation and characterization of EPCs. (A) Spindle‐shaped EPCs that were derived from 1‐week‐old cultures of CD34‐enriched peripheral blood‐derived mononuclear cells. Reproduced with permission from (23). (B) Flow cytometry of EPCs and monocytes. EPCs express blood cell markers, including CD45 and the monocyte activation marker CD11c. Adapted, with permission, from (459).


Figure 13. Derivation and characterization of EOCs. (Left) Colony of cord blood‐derived EOCs that emerged after mononuclear cells were cultured for 9 days. (Right) Flow cytometry of EOCs. EOCs express EC markers, such as CD31 and CD144 (VE‐cadherin), but do not express markers of blood cells, such as CD45 and the macrophage/monocyte marker CD14. Adapted, with permission, from (232).


Figure 14. Incorporation of bone marrow‐derived, lacZ‐expressing EPCs at sites of ischemia. Sections were costained by X‐gal (blue) and for lectin (A) and CD31 (B). Scale bar refers to 25 μm. Reproduced, with permission, from (22).


Figure 15. Vascular mimicry in uveal melanoma. Red blood cells (top, arrowheads) fill vessel‐like structures that do not appear to be lined by ECs. Reproduced, with permission, from (358).


Figure 16. Fine structure of vessels that formed from normal and Bcl2‐expressing HUVECs in collagen‐fibronectin gels 1 month after implantation. (A) Implants of normal HUVECs. (B, C) Implants of Bcl2‐expressing HUVECs. The lumens are perfused with red blood cells (RBC); asterisks denote mural cells. Reproduced, with permission, from (494).


Figure 17. Organization of human microvascular ECs into blood and lymphatic vessels in a dermal graft after 2 weeks. Immunostains are shown for CD31, blood vessel marker laminin (Lam1,2), and lymphatic markers LYVE‐1 and podoplanin (hPDN). Scale bars refer to 100 μm. Adapted, with permission, from (360).


Figure 18. Transformation of endothelial aggregates into perfused vessels. (A) Random self‐organized HUVEC networks and patterned HUVEC cords, before and after implantation. (B) Two‐week‐old implants after perfusion with species‐specific lectins. Vessels in implants consist of ECs that are derived from graft (human, red) and host (mouse, green). Scale bars refer to 250 μm (A, upper left), 500 μm (A, upper middle and upper right), 100 μm (A, lower), and 150 μm (B). Reproduced, with permission, from (38).


Figure 19. Increase in perfused vascular density over time in subcutaneous polymer implants that contained adipose‐derived microvascular fragments (black circles) or that did not (clear circles). (Left) Vascular density near the surface of implants. (Right) Vascular density at the center of implants. Adapted, with permission, from (316).


Figure 20. Vascularized myocardial constructs that contained human cardiomyocytes, HUVECs, and mouse fibroblasts in a PLA/PLGA sponge after 2 weeks. (Left) Immunostain for human CD31 (red) and von Willebrand factor (green). (Right) Immunostain for human CD31 (brown). Reproduced, with permission, from (332).


Figure 21. Perfused vascular networks in microscale fibrin gels within microfluidic devices. Fibroblasts, in the same or separate gel, were included to promote vasculogenesis. In (B), the resulting networks were perfused with a solution of fluorescent dextran. Reproduced, with permission, from (277,395).


Figure 22. Branching vascular‐like pattern that was etched into a silicon wafer. Such patterns could be seeded with ECs to generate patterned cultures. Feature widths were on the order of ∼10 μm. Adapted, with permission, from (249).


Figure 23. Vascularization of a microfluidic type I collagen scaffold that was formed by combining a micropatterned and planar gel. Both en face and reconstructed 3D views of HUVEC‐seeded structures are shown. Scale bar refers to 100 μm. Reproduced, with permission, from (677).


Figure 24. Vascularization of a microfluidic type I collagen scaffold that was formed around a removable needle. (Top) Unseeded scaffold. (Bottom) Scaffold that was seeded with HUVECs. Insets show cross‐sectional views. Scale bar refers to 100 μm. Reproduced, with permission, from (90).


Figure 25. Vascularization of a microfluidic fibrin scaffold that was formed around a sacrificial 3D‐printed network of sugar‐based fibers. Channels were seeded with HUVECs (red), and the scaffold bulk contained 10T1/2 mouse fibroblasts (green). Scale bar refers to 1 mm. Reproduced, with permission, from (382).


Figure 26. Vascularization of a microfluidic polyethylene glycol gel that was patterned by photodegradation. (Left) Visualization of interconnected channels by perfusion with fluorescent dextran. (Right) 3D confocal reconstruction of a vascularized channel that was stained for ZO‐1 (green). Reproduced, with permission, from (196).


Figure 27. Perfusion‐decellularization of whole hearts preserves the vascular architecture. (A) Corrosion casts of native and decellularized hearts. Scale bars refer to 1 mm (top) and 250 μm (bottom). (B) Transplanted decellularized heart before and after reestablishment of blood flow. The recipient animal was heparinized to minimize thrombosis. Reproduced, with permission, from (424).


Figure 28. Physical mechanisms for stable vascularization of micro‐fluidic scaffolds. Maintenance of vascular adhesion can be viewed as (A) a balance of outward (stabilizing) and inward (destabilizing) stresses, including pressures, contractile stress, and adhesion stress, or as (B) a balance of adhesion (stabilizing) and stored elastic (destabilizing) energies. Adapted, with permission, from (643).
References
 1. Aicher A , Brenner W , Zuhayra M , Badorff C , Massoudi S , Assmus B , Eckey T , Henze E , Zeiher AM , Dimmeler S . Assessment of the tissue distribution of transplanted human endothelial progenitor cells by radioactive labeling. Circulation 107: 2134‐2139, 2003.
 2. Aicher A , Heeschen C , Mildner‐Rihm C , Urbich C , Ihling C , Technau‐Ihling K , Zeiher AM , Dimmeler S . Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat Med 9: 1370‐1376, 2003.
 3. Aicher A , Rentsch M , Sasaki K , Ellwart JW , Fändrich F , Siebert R , Cooke JP , Dimmeler S , Heeschen C . Nonbone marrow‐derived circulating progenitor cells contribute to postnatal neovascularization following tissue ischemia. Circ Res 100: 581‐589, 2007.
 4. Akahori T , Kobayashi A , Komaki M , Hattori H , Nakahama K‐I , Ichinose S , Abe M , Takeda S , Morita I . Implantation of capillary structure engineered by optical lithography improves hind limb ischemia in mice. Tissue Eng A 16: 953‐959, 2010.
 5. Akita S , Tamai N , Myoui A , Nishikawa M , Kaito T , Takaoka K , Yoshikawa H . Capillary vessel network integration by inserting a vascular pedicle enhances bone formation in tissue‐engineered bone using interconnected porous hydroxyapatite ceramics. Tissue Eng 10: 789‐795, 2004.
 6. Al‐Khaldi A , Al‐Sabti H , Galipeau J , Lachapelle K . Therapeutic angiogenesis using autologous bone marrow stromal cells: Improved blood flow in a chronic limb ischemia model. Ann Thorac Surg 75: 204‐209, 2003.
 7. Al‐Khaldi A , Eliopoulos N , Martineau D , Lejeune L , Lachapelle K , Galipeau J . Postnatal bone marrow stromal cells elicit a potent VEGF‐dependent neoangiogenic response in vivo . Gene Ther 10: 621‐629, 2003.
 8. Alajati A , Laib AM , Weber H , Boos AM , Bartol A , Ikenberg K , Korff T , Zentgraf H , Obodozie C , Graeser R , Christian S , Finkenzeller G , Stark GB , Héroult M , Augustin HG . Spheroid‐based engineering of a human vasculature in mice. Nat Methods 5: 439‐445, 2008.
 9. Alison MR , Poulsom R , Jeffery R , Dhillon AP , Quaglia A , Jacob J , Novelli M , Prentice G , Williamson J , Wright NA . Hepatocytes from non‐hepatic adult stem cells. Nature 406: 257, 2000.
 10. Alitalo K , Carmeliet P . Molecular mechanisms of lymphangiogenesis in health and disease. Cancer Cell 1: 219‐227, 2002.
 11. Allen P , Melero‐Martin J , Bischoff J . Type I collagen, fibrin and PuraMatrix matrices provide permissive environments for human endothelial and mesenchymal progenitor cells to form neovascular networks. J Tissue Eng Regen Med 5: e74‐e86, 2011.
 12. Anderson EM , Kwee BJ , Lewin SA , Raimondo T , Mehta M , Mooney DJ . Local delivery of VEGF and SDF enhances endothelial progenitor cell recruitment and resultant recovery from ischemia. Tissue Eng A 21: 1217‐1227, 2015.
 13. Anghelina M , Krishnan P , Moldovan L , Moldovan NI . Monocytes and macrophages form branched cell columns in Matrigel: Implications for a role in neovascularization. Stem Cells Dev 13: 665‐676, 2004.
 14. Anghelina M , Krishnan P , Moldovan L , Moldovan NI . Monocytes/macrophages cooperate with progenitor cells during neovascularization and tissue repair: Conversion of cell columns into fibrovascular bundles. Am J Pathol 168: 529‐541, 2006.
 15. Anisimov A , Tvorogov D , Alitalo A , Leppänen V‐M , An Y , Han EC , Orsenigo F , Gaál EI , Holopainen T , Koh YJ , Tammela T , Korpisalo P , Keskitalo S , Jeltsch M , Ylä‐Herttuala S , Dejana E , Koh GY , Choi C , Saharinen P , Alitalo K . Vascular endothelial growth factor‐angiopoietin chimera with improved properties for therapeutic angiogenesis. Circulation 127: 424‐434, 2013.
 16. Aoki M , Morishita R , Taniyama Y , Kida I , Moriguchi A , Matsumoto K , Nakamura T , Kaneda Y , Higaki J , Ogihara T . Angiogenesis induced by hepatocyte growth factor in non‐infarcted myocardium and infarcted myocardium: Up‐regulation of essential transcription factor for angiogenesis, ets. Gene Ther 7: 417‐427, 2000.
 17. Applegate MB , Coburn J , Partlow BP , Moreau JE , Mondia JP , Marelli B , Kaplan DL , Omenetto FG . Laser‐based three‐dimensional multiscale micropatterning of biocompatible hydrogels for customized tissue engineering scaffolds. Proc Natl Acad Sci USA 112: 12052‐12057, 2015.
 18. Arkudas A , Beier JP , Heidner K , Tjiawi J , Polykandriotis E , Srour S , Sturzl M , Horch RE , Kneser U . Axial prevascularization of porous matrices using an arteriovenous loop promotes survival and differentiation of transplanted autologous osteoblasts. Tissue Eng 13: 1549‐1560, 2007.
 19. Arkudas A , Lipp A , Buehrer G , Arnold I , Dafinova D , Brandl A , Beier JP , Körner C , Lyer S , Alexiou C , Kneser U , Horch RE . Pedicled transplantation of axially vascularized bone constructs in a critical size femoral defect. Tissue Eng A 24: 479‐492, 2018.
 20. Asahara T , Bauters C , Zheng LP , Takeshita S , Bunting S , Ferrara N , Symes JF , Isner JM . Synergistic effect of vascular endothelial growth factor and basic fibroblast growth factor on angiogenesis in vivo . Circulation 92: II365‐II371, 1995.
 21. Asahara T , Chen D , Takahashi T , Fujikawa K , Kearney M , Magner M , Yancopoulos GD , Isner JM . Tie2 receptor ligands, angiopoietin‐1 and angiopoietin‐2, modulate VEGF‐induced postnatal neovascularization. Circ Res 83: 233‐240, 1998.
 22. Asahara T , Masuda H , Takahashi T , Kalka C , Pastore C , Silver M , Kearne M , Magner M , Isner JM . Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85: 221‐228, 1999.
 23. Asahara T , Murohara T , Sullivan A , Silver M , van der Zee R , Li T , Witzenbichler B , Schatteman G , Isner JM . Isolation of putative progenitor endothelial cells for angiogenesis. Science 275: 964‐967, 1997.
 24. Asahara T , Takahashi T , Masuda H , Kalka C , Chen D , Iwaguro H , Inai Y , Silver M , Isner JM . VEGF contributes to postnatal neovascularization by mobilizing bone marrow‐derived endothelial progenitor cells. EMBO J 18: 3964‐3972, 1999.
 25. Asano T , Kaneko E , Shinozaki S , Imai Y , Shibayama M , Chiba T , Ai M , Kawakami A , Asaoka H , Nakayama T , Mano Y , Shimokado K . Hyperbaric oxygen induces basic fibroblast growth factor and hepatocyte growth factor expression, and enhances blood perfusion and muscle regeneration in mouse ischemic hind limbs. Circ J 71: 405‐411, 2007.
 26. Asano Y , Shimoda H , Matsusaki M , Akashi M . Transplantation of artificial human lymphatic vascular tissues fabricated using a cell‐accumulation technique and their engraftment in mouse tissue with vascular remodelling. J Tissue Eng Regen Med 12: e1501‐e1510, 2018.
 27. Asikainen TM , Waleh NS , Schneider BK , Clyman RI , White CW . Enhancement of angiogenic effectors through hypoxia‐inducible factor in preterm primate lung in vivo . Am J Physiol Lung Cell Mol Physiol 291: L588‐L595, 2006.
 28. Au P , Daheron LM , Duda DG , Cohen KS , Tyrrell JA , Lanning RM , Fukumura D , Scadden DT , Jain RK . Differential in vivo potential of endothelial progenitor cells from human umbilical cord blood and adult peripheral blood to form functional long‐lasting vessels. Blood 111: 1302‐1305, 2008.
 29. Au P , Tam J , Fukumura D , Jain RK . Bone marrow‐derived mesenchymal stem cells facilitate engineering of long‐lasting functional vasculature. Blood 111: 4551‐4558, 2008.
 30. Auerbach R , Lewis R , Shinners B , Kubai L , Akhtar N . Angiogenesis assays: A critical overview. Clin Chem 49: 32‐40, 2003.
 31. Avraham T , Clavin NW , Daluvoy SV , Fernandez J , Soares MA , Cordeiro AP , Mehrara BJ . Fibrosis is a key inhibitor of lymphatic regeneration. Plast Reconstr Surg 124: 438‐450, 2009.
 32. Badylak SF , Taylor D , Uygun K . Whole‐organ tissue engineering: Decellularization and recellularization of three‐dimensional matrix scaffolds. Annu Rev Biomed Eng 13: 27‐53, 2011.
 33. Baffour R , Berman J , Garb JL , Rhee SW , Kaufman J , Friedmann P . Enhanced angiogenesis and growth of collaterals by in vivo administration of recombinant basic fibroblast growth factor in a rabbit model of acute lower limb ischemia: Dose‐response effect of basic fibroblast growth factor. J Vasc Surg 16: 181‐191, 1992.
 34. Baird RJ . The reasons for patency and anastomosis formation of the internal mammary artery implant. Ann R Coll Physicians Surg Can 2: 172‐190, 1969.
 35. Banai S , Jaklitsch MT , Casscells W , Shou M , Shrivastav S , Correa R , Epstein SE , Unger EF . Effects of acidic fibroblast growth factor on normal and ischemic myocardium. Circ Res 69: 76‐85, 1991.
 36. Banai S , Jaklitsch MT , Shou M , Lazarous DF , Scheinowitz M , Biro S , Epstein SE , Unger EF . Angiogenic‐induced enhancement of collateral blood flow to ischemic myocardium by vascular endothelial growth factor in dogs. Circulation 89: 2183‐2189, 1994.
 37. Banfi A , von Degenfeld G , Gianni‐Barrera R , Reginato S , Merchant MJ , McDonald DM , Blau HM . Therapeutic angiogenesis due to balanced single‐vector delivery of VEGF and PDGF‐BB. FASEB J 26: 2486‐2497, 2012.
 38. Baranski JD , Chaturvedi RR , Stevens KR , Eyckmans J , Carvalho B , Solorzano RD , Yang MT , Miller JS , Bhatia SN , Chen CS . Geometric control of vascular networks to enhance engineered tissue integration and function. Proc Natl Acad Sci USA 110: 7586‐7591, 2013.
 39. Barreto‐Ortiz SF , Fradkin J , Eoh J , Trivero J , Davenport M , Ginn B , Mao H‐Q , Gerecht S . Fabrication of 3‐dimensional multicellular microvascular structures. FASEB J 29: 3302‐3314, 2015.
 40. Battler A , Scheinowitz M , Bor A , Hasdai D , Vered Z , Di Segni E , Varda‐Bloom N , Nass D , Engelberg S , Eldar M , Belkin M , Savion N . Intracoronary injection of basic fibroblast growth factor enhances angiogenesis in infarcted swine myocardium. J Am Coll Cardiol 22: 2001‐2006, 1993.
 41. Baum O , Da Silva‐Azevedo L , Willerding G , Wöckel A , Planitzer G , Gossrau R , Pries AR , Zakrzewicz A . Endothelial NOS is main mediator for shear stress‐dependent angiogenesis in skeletal muscle after prazosin administration. Am J Physiol Heart Circ Physiol 287: H2300‐H2308, 2004.
 42. Baumgartner I , Pieczek A , Manor O , Blair R , Kearney M , Walsh K , Isner JM . Constitutive expression of phVEGF165 after intramuscular gene transfer promotes collateral vessel development in patients with critical limb ischemia. Circulation 97: 1114‐1123, 1998.
 43. Bauters C , Asahara T , Zheng LP , Takeshita S , Bunting S , Ferrara N , Symes JF , Isner JM . Physiological assessment of augmented vascularity induced by VEGF in ischemic rabbit hindlimb. Am J Physiol 267: H1263‐H1271, 1994.
 44. Bauters C , Asahara T , Zheng LP , Takeshita S , Bunting S , Ferrara N , Symes JF , Isner JM . Site‐specific therapeutic angiogenesis after systemic administration of vascular endothelial growth factor. J Vasc Surg 21: 314‐324; discussion 324‐325, 1995.
 45. Baxter TJ , O'Brien BM , Henderson PN , Bennett RC . The histopathology of small vessels following microvascular repair. Br J Surg 59: 617‐622, 1972.
 46. Bayati S , Russell RC , Roth AC . Stimulation of angiogenesis to improve the viability of prefabricated flaps. Plast Reconstr Surg 101: 1290‐1295, 1998.
 47. Beck CS , Tichy VL , Moritz AR . Production of a collateral circulation to the heart. Proc Soc Exp Biol Med 32: 759‐761, 1935.
 48. Bellman S , Frank HA . Vascular channels established by implantation of a systemic artery into the myocardium. Ann Surg 147: 425‐442, 1958.
 49. Benjamin LE , Hemo I , Keshet E . A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF‐B and VEGF. Development 125: 1591‐1598, 1998.
 50. Berry MF , Engler AJ , Woo YJ , Pirolli TJ , Bish LT , Jayasankar V , Morine KJ , Gardner TJ , Discher DE , Sweeney HL . Mesenchymal stem cell injection after myocardial infarction improves myocardial compliance. Am J Physiol Heart Circ Physiol 290: H2196‐H2203, 2006.
 51. Bertassoni LE , Cecconi M , Manoharan V , Nikkhah M , Hjortnaes J , Cristino AL , Barabaschi G , Demarchi D , Dokmeci MR , Yang Y , Khademhosseini A . Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab Chip 14: 2202‐2211, 2014.
 52. Bir SC , Esaki J , Marui A , Sakaguchi H , Kevil CG , Ikeda T , Komeda M , Tabata Y , Sakata R . Therapeutic treatment with sustained‐release platelet‐rich plasma restores blood perfusion by augmenting ischemia‐induced angiogenesis and arteriogenesis in diabetic mice. J Vasc Res 48: 195‐205, 2011.
 53. Bissell MJ . Tumor plasticity allows vasculogenic mimicry, a novel form of angiogenic switch. A rose by any other name? Am J Pathol 155: 675‐679, 1999.
 54. Blanton MW , Hadad I , Johnstone BH , Mund JA , Rogers PI , Eppley BL , March KL . Adipose stromal cells and platelet‐rich plasma therapies synergistically increase revascularization during wound healing. Plast Reconstr Surg 123: 56S‐64S, 2009.
 55. Boland T , Mironov V , Gutowska A , Roth EA , Markwald RR . Cell and organ printing 2: fusion of cell aggregates in three‐dimensional gels. Anat Rec A 272: 497‐502, 2003.
 56. Borselli C , Storrie H , Benesch‐Lee F , Shvartsman D , Cezar C , Lichtman JW , Vandenburgh HH , Mooney DJ . Functional muscle regeneration with combined delivery of angiogenesis and myogenesis factors. Proc Natl Acad Sci USA 107: 3287‐3292, 2010.
 57. Brauker JH , Carr‐Brendel VE , Martinson LA , Crudele J , Johnston WD , Johnson RC . Neovascularization of synthetic membranes directed by membrane microarchitecture. J Biomed Mater Res 29: 1517‐1524, 1995.
 58. Brazelton TR , Rossi FMV , Keshet GI , Blau HM . From marrow to brain: Expression of neuronal phenotypes in adult mice. Science 290: 1775‐1779, 2000.
 59. Bridges CR . Myocardial laser revascularization: The controversy and the data. Ann Thorac Surg 69: 655‐662, 2000.
 60. Briquez PS , Clegg LE , Martino MM , Mac Gabhann F , Hubbell JA . Design principles for therapeutic angiogenic materials. Nat Rev Mater 1: 1‐15, 2016.
 61. Brown DM , Hong SP , Farrell CL , Pierce GF , Khouri RK . Platelet‐derived growth factor BB induces functional vascular anastomoses in vivo . Proc Natl Acad Sci USA 92: 5920‐5924, 1995.
 62. Brudno Y , Ennett‐Shepard AB , Chen RR , Aizenberg M , Mooney DJ . Enhancing microvascular formation and vessel maturation through temporal control over multiple pro‐angiogenic and pro‐maturation factors. Biomaterials 34: 9201‐9209, 2013.
 63. Buncke HJ, Jr. , McLean DH , George PT , Creech BJ , Chater NL , Commons GW . Thumb replacement: Great toe transplantation by microvascular anastomosis. Br J Plast Surg 26: 194‐201, 1973.
 64. Byambaa B , Annabi N , Yue K , Trujillo‐de Santiago G , Alvarez MM , Jia W , Kazemzadeh‐Narbat M , Shin SR , Tamayol A , Khademhosseini A . Bioprinted osteogenic and vasculogenic patterns for engineering 3D bone tissue. Adv Healthcare Mater 6: 1700015, 2017.
 65. Cabodi M , Choi NW , Gleghorn JP , Lee CS , Bonassar LJ , Stroock AD . A microfluidic biomaterial. J Am Chem Soc 127: 13788‐13789, 2005.
 66. Cabodi M , Cross VL , Qu Z , Havenstrite KL , Schwartz S , Stroock AD . An active wound dressing for controlled convective mass transfer with the wound bed. J Biomed Mater Res B 82: 210‐222, 2007.
 67. Cao L , Arany PR , Kim J , Rivera‐Feliciano J , Wang Y‐S , He Z , Rask‐Madsen C , King GL , Mooney DJ . Modulating Notch signaling to enhance neovascularization and reperfusion in diabetic mice. Biomaterials 31: 9048‐9056, 2010.
 68. Cao L , Arany PR , Wang Y‐S , Mooney DJ . Promoting angiogenesis via manipulation of VEGF responsiveness with notch signaling. Biomaterials 30: 4085‐4093, 2009.
 69. Cao R , Brakenhielm E , Pawliuk R , Wariaro D , Post MJ , Wahlberg E , Leboulch P , Cao Y . Angiogenic synergism, vascular stability and improvement of hind‐limb ischemia by a combination of PDGF‐BB and FGF‐2. Nat Med 9: 604‐613, 2003.
 70. Cao Y , Sun Z , Liao L , Meng Y , Han Q , Zhao RC . Human adipose tissue‐derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo . Biochem Biophys Res Commun 332: 370‐379, 2005.
 71. Carmeliet P . VEGF gene therapy: Stimulating angiogenesis or angioma‐genesis? Nat Med 6: 1102‐1103, 2000.
 72. Carramolino L , Fuentes J , García‐Andrés C , Azcoitia V , Riethmacher D , Torres M . Platelets play an essential role in separating the blood and lymphatic vasculatures during embryonic angiogenesis. Circ Res 106: 1197‐1201, 2010.
 73. Castro RF , Jackson KA , Goodell MA , Robertson CS , Liu H , Shine HD . Failure of bone marrow cells to transdifferentiate into neural cells in vivo . Science 297: 1299, 2002.
 74. Ceradini DJ , Kulkarni AR , Callaghan MJ , Tepper OM , Bastidas N , Kleinman ME , Capla JM , Galiano RD , Levine JP , Gurtner GC . Progenitor cell trafficking is regulated by hypoxic gradients through HIF‐1 induction of SDF‐1. Nat Med 10: 858‐864, 2004.
 75. Chae JK , Kim I , Lim ST , Chung MJ , Kim WH , Kim HG , Ko JK , Koh GY . Coadministration of angiopoietin‐1 and vascular endothelial growth factor enhances collateral vascularization. Arterioscler Thromb Vasc Biol 20: 2573‐2578, 2000.
 76. Chan KLS , Khankhel AH , Thompson RL , Coisman BJ , Wong KHK , Truslow JG , Tien J . Crosslinking of collagen scaffolds promotes blood and lymphatic vascular stability. J Biomed Mater Res A 102: 3186‐3195, 2014.
 77. Chavakis E , Aicher A , Heeschen C , Sasaki K , Kaiser R , El Makhfi N , Urbich C , Peters T , Scharffetter‐Kochanek K , Zeiher AM , Chavakis T , Dimmeler S . Role of β2‐integrins for homing and neovascularization capacity of endothelial progenitor cells. J Exp Med 201: 63‐72, 2005.
 78. Chen CS , Mrksich M , Huang S , Whitesides GM , Ingber DE . Geometric control of cell life and death. Science 276: 1425‐1428, 1997.
 79. Chen MB , Whisler JA , Jeon JS , Kamm RD . Mechanisms of tumor cell extravasation in an in vitro microvascular network platform. Integr Biol 5: 1262‐1271, 2013.
 80. Chen RR , Silva EA , Yuen WW , Mooney DJ . Spatio‐temporal VEGF and PDGF delivery patterns blood vessel formation and maturation. Pharm Res 24: 258‐264, 2007.
 81. Chen RR , Snow JK , Palmer JP , Lin AS , Duvall CL , Guldberg RE , Mooney DJ . Host immune competence and local ischemia affects the functionality of engineered vasculature. Microcirculation 14: 77‐88, 2007.
 82. Chen X , Aledia AS , Ghajar CM , Griffith CK , Putnam AJ , Hughes CCW , George SC . Prevascularization of a fibrin‐based tissue construct accelerates the formation of functional anastomosis with host vasculature. Tissue Eng A 15: 1363‐1371, 2009.
 83. Chen X , Aledia AS , Popson SA , Him L , Hughes CCW , George SC . Rapid anastomosis of endothelial progenitor cell‐derived vessels with host vasculature is promoted by a high density of cotransplanted fibroblasts. Tissue Eng A 16: 585‐594, 2010.
 84. Cho C‐H , Kammerer RA , Lee HJ , Steinmetz MO , Ryu YS , Lee SH , Yasunaga K , Kim K‐T , Kim I , Choi H‐H , Kim W , Kim SH , Park SK , Lee GM , Koh GY . COMP‐Ang1: A designed angiopoietin‐1 variant with nonleaky angiogenic activity. Proc Natl Acad Sci USA 101: 5547‐5552, 2004.
 85. Cho C‐H , Kim KE , Byun J , Jang H‐S , Kim D‐K , Baluk P , Baffert F , Lee GM , Mochizuki N , Kim J , Jeon BH , McDonald DM , Koh GY . Long‐term and sustained COMP‐Ang1 induces long‐lasting vascular enlargement and enhanced blood flow. Circ Res 97: 86‐94, 2005.
 86. Cho C‐H , Sung H‐K , Kim K‐T , Cheon HG , Oh GT , Hong HJ , Yoo O‐J , Koh GY . COMP‐angiopoietin‐1 promotes wound healing through enhanced angiogenesis, lymphangiogenesis, and blood flow in a diabetic mouse model. Proc Natl Acad Sci USA 103: 4946‐4951, 2006.
 87. Choi I , Lee S , Kyoung Chung H , Suk Lee Y , Eui Kim K , Choi D , Park EK , Yang D , Ecoiffier T , Monahan J , Chen W , Aguilar B , Lee HN , Yoo J , Koh CJ , Chen L , Wong AK , Hong Y‐K . 9‐cis retinoic acid promotes lymphangiogenesis and enhances lymphatic vessel regeneration: Therapeutic implications of 9‐cis retinoic acid for secondary lymphedema. Circulation 125: 872‐882, 2012.
 88. Choi K , Kennedy M , Kazarov A , Papadimitriou JC , Keller G . A common precursor for hematopoietic and endothelial cells. Development 125: 725‐732, 1998.
 89. Choi NW , Cabodi M , Held B , Gleghorn JP , Bonassar LJ , Stroock AD . Microfluidic scaffolds for tissue engineering. Nat Mater 6: 908‐915, 2007.
 90. Chrobak KM , Potter DR , Tien J . Formation of perfused, functional microvascular tubes in vitro . Microvasc Res 71: 185‐196, 2006.
 91. Chu VF , Giaid A , Kuang J , McGinn AN , Li CM , Pelletier MP , Chiu RC‐J . Angiogenesis in transmyocardial revascularization: Comparison of laser versus mechanical punctures. Ann Thorac Surg 68: 301‐307; discussion 307‐308, 1999.
 92. Chung S , Sudo R , Zervantonakis IK , Rimchala T , Kamm RD . Surface‐treatment‐induced three‐dimensional capillary morphogenesis in a microfluidic platform. Adv Mater 21: 4863‐4867, 2009.
 93. Clark ER , Clark EL . Observations on living preformed blood vessels as seen in a transparent chamber inserted into the rabbit's ear. Am J Anat 49: 441‐477, 1932.
 94. Clark ER , Clark EL . Observations on the new growth of lymphatic vessels as seen in transparent chambers introduced into the rabbit's ear. Am J Anat 51: 49‐87, 1932.
 95. Clark RA , Stone RD , Leung DYK , Silver I , Hohn DC , Hunt TK . Role of macrophages in wound healing. Surg Forum 27: 16‐18, 1976.
 96. Clark RAF . Wound repair: Basic biology to tissue engineering. In: Lanza R , Langer R , Vacanti JP , editors. Principles of Tissue Engineering. San Diego, CA: Academic Press, 2014, pp. 1595‐1617.
 97. Cleland JL , Duenas ET , Park A , Daugherty A , Kahn J , Kowalski J , Cuthbertson A . Development of poly‐(D,L‐lactide‐coglycolide) microsphere formulations containing recombinant human vascular endothelial growth factor to promote local angiogenesis. J Control Release 72: 13‐24, 2001.
 98. Conrad C , Niess H , Huss R , Huber S , von Luettichau I , Nelson PJ , Ott HC , Jauch K‐W , Bruns CJ . Multipotent mesenchymal stem cells acquire a lymphendothelial phenotype and enhance lymphatic regeneration in vivo . Circulation 119: 281‐289, 2009.
 99. Cooke JP , Losordo DW . Modulating the vascular response to limb ischemia: Angiogenic and cell therapies. Circ Res 116: 1561‐1578, 2015.
 100. Corral CJ , Siddiqui A , Wu L , Farrell CL , Lyons D , Mustoe TA . Vascular endothelial growth factor is more important than basic fibroblastic growth factor during ischemic wound healing. Arch Surg 134: 200‐205, 1999.
 101. Crisan M , Yap S , Casteilla L , Chen C‐W , Corselli M , Park TS , Andriolo G , Sun B , Zheng B , Zhang L , Norotte C , Teng P‐N , Traas J , Schugar R , Deasy BM , Badylak S , Bühring H‐J , Giacobino J‐P , Lazzari L , Huard J , Péault B . A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3: 301‐313, 2008.
 102. Crone C , Levitt DG . Capillary permeability to small solutes. In: Renkin EM , Michel CC , editors. Handbook of Physiology; Section 2: The Cardiovascular System. Bethesda, MD: American Physiological Society, 1984, pp. 411‐466.
 103. Cronin KJ , Messina A , Knight KR , Cooper‐White JJ , Stevens GW , Penington AJ , Morrison WA . New murine model of spontaneous autologous tissue engineering, combining an arteriovenous pedicle with matrix materials. Plast Reconstr Surg 113: 260‐269, 2004.
 104. Crosby JR , Kaminski WE , Schatteman G , Martin PJ , Raines EW , Seifert RA , Bowen‐Pope DF . Endothelial cells of hematopoietic origin make a significant contribution to adult blood vessel formation. Circ Res 87: 728‐730, 2000.
 105. Cross VL , Zheng Y , Won Choi N , Verbridge SS , Sutermaster BA , Bonassar LJ , Fischbach C , Stroock AD . Dense type I collagen matrices that support cellular remodeling and microfabrication for studies of tumor angiogenesis and vasculogenesis in vitro . Biomaterials 31: 8596‐8607, 2010.
 106. Cuevas P , Giménez‐Gallego G , Carceller F , Cuevas B , Crespo A . Single topical application of human recombinant basic fibroblast growth factor (rbFGF) promotes neovascularization in rat cerebral cortex. Surg Neurol 39: 380‐384, 1993.
 107. Cui X , Boland T . Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials 30: 6221‐6227, 2009.
 108. Curry FE . Mechanics and thermodynamics of transcapillary exchange. In: Renkin EM , Michel CC , editors. Handbook of Physiology; Section 2: The Cardiovascular System. Bethesda, MD: American Physiological Society, 1984, pp. 309‐374.
 109. Curry FE , Huxley VH , Sarelius IH . Techniques in the microcirculation: Measurement of permeability, pressure and flow. In: Linden RJ , editor. Techniques in the Life Sciences; Physiology Section. New York: Elsevier, 1983, pp. 1‐34.
 110. Curry FE , Michel CC . A fiber matrix model of capillary permeability. Microvasc Res 20: 96‐99, 1980.
 111. D'Amato RJ , Loughnan MS , Flynn E , Folkman J . Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci USA 91: 4082‐4085, 1994.
 112. Davani S , Marandin A , Mersin N , Royer B , Kantelip B , Hervé P , Etievent J‐P , Kantelip J‐P . Mesenchymal progenitor cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a rat cellular cardiomyoplasty model. Circulation 108: II‐253‐II‐258, 2003.
 113. Davies N , Dobner S , Bezuidenhout D , Schmidt C , Beck M , Zisch AH , Zilla P . The dosage dependence of VEGF stimulation on scaffold neovascularisation. Biomaterials 29: 3531‐3538, 2008.
 114. Davis S , Aldrich TH , Jones PF , Acheson A , Compton DL , Jain V , Ryan TE , Bruno J , Radziejewski C , Maisonpierre PC , Yancopoulos GD . Isolation of angiopoietin‐1, a ligand for the TIE2 receptor, by secretion‐trap expression cloning. Cell 87: 1161‐1169, 1996.
 115. De Falco E , Porcelli D , Torella AR , Straino S , Iachininoto MG , Orlandi A , Truffa S , Biglioli P , Napolitano M , Capogrossi MC , Pesce M . SDF‐1 involvement in endothelial phenotype and ischemia‐induced recruitment of bone marrow progenitor cells. Blood 104: 3472‐3482, 2004.
 116. Debels H , Galea L , Han X‐L , Palmer J , van Rooijen N , Morrison W , Abberton K . Macrophages play a key role in angiogenesis and adipogenesis in a mouse tissue engineering model. Tissue Eng A 19: 2615‐2625, 2013.
 117. des Rieux A , Ucakar B , Mupendwa BPK , Colau D , Feron O , Carmeliet P , Préat V . 3D systems delivering VEGF to promote angiogenesis for tissue engineering. J Control Release 150: 272‐278, 2011.
 118. Dobson DE , Kambe A , Block E , Dion T , Lu H , Castellot JJ, Jr. , Spiegelman BM . 1‐Butyryl‐glycerol: A novel angiogenesis factor secreted by differentiating adipocytes. Cell 61: 223‐230, 1990.
 119. Dolderer JH , Abberton KM , Thompson EW , Slavin JL , Stevens GW , Penington AJ , Morrison WA . Spontaneous large volume adipose tissue generation from a vascularized pedicled fat flap inside a chamber space. Tissue Eng 13: 673‐681, 2007.
 120. Domkowski PW , Biswas SS , Steenbergen C , Lowe JE . Histological evidence of angiogenesis 9 months after transmyocardial laser revascularization. Circulation 103: 469‐471, 2001.
 121. Doukas J , Chandler LA , Gonzalez AM , Gu D , Hoganson DK , Ma C , Nguyen T , Printz MA , Nesbit M , Herlyn M , Crombleholme TM , Aukerman SL , Sosnowski BA , Pierce GF . Matrix immobilization enhances the tissue repair activity of growth factor gene therapy vectors. Hum Gene Ther 12: 783‐798, 2001.
 122. Doulet M . Revascularization in ischemic heart with autologous bone marrow transplantation. Jpn J Cardiovasc Surg 26: 248‐253, 1997.
 123. Doulet M , Noishiki Y , Yamane Y , Takahashi K , Makoto M , Kondo J , Matsumoto A . Angiogenesis with bone marrow transplantation in subcutaneous layer. Jpn J Artif Organs 25: 486‐489, 1996.
 124. Downs K . Florence Sabin and the mechanism of blood vessel lumenization during vasculogenesis. Microcirculation 10: 5‐25, 2003.
 125. Edelberg JM , Lee SH , Kaur M , Tang L , Feirt NM , McCabe S , Bramwell O , Wong SC , Hong MK . Platelet‐derived growth factor‐AB limits the extent of myocardial infarction in a rat model: Feasibility of restoring impaired angiogenic capacity in the aging heart. Circulation 105: 608‐613, 2002.
 126. Edelberg JM , Tang L , Hattori K , Lyden D , Rafii S . Young adult bone marrow‐derived endothelial precursor cells restore aging‐impaired cardiac angiogenic function. Circ Res 90: E89‐E93, 2002.
 127. Edelman ER , Nugent MA , Smith LT , Karnovsky MJ . Basic fibroblast growth factor enhances the coupling of intimal hyperplasia and proliferation of vasa vasorum in injured rat arteries. J Clin Invest 89: 465‐473, 1992.
 128. Ehrbar M , Djonov VG , Schnell C , Tschanz SA , Martiny‐Baron G , Schenk U , Wood J , Burri PH , Hubbell JA , Zisch AH . Cell‐demanded liberation of VEGF121 from fibrin implants induces local and controlled blood vessel growth. Circ Res 94: 1124‐1132, 2004.
 129. Ehrbar M , Zeisberger SM , Raeber GP , Hubbell JA , Schnell C , Zisch AH . The role of actively released fibrin‐conjugated VEGF for VEGF receptor 2 gene activation and the enhancement of angiogenesis. Biomaterials 29: 1720‐1729, 2008.
 130. Enis DR , Shepherd BR , Wang Y , Qasim A , Shanahan CM , Weissberg PL , Kashgarian M , Pober JS , Schechner JS . Induction, differentiation, and remodeling of blood vessels after transplantation of Bcl‐2‐transduced endothelial cells. Proc Natl Acad Sci USA 102: 425‐430, 2005.
 131. Ennett AB , Kaigler D , Mooney DJ . Temporally regulated delivery of VEGF in vitro and in vivo . J Biomed Mater Res A 79: 176‐184, 2006.
 132. Eppley BL , Doucet M , Connolly DT , Feder J . Enhancement of angiogenesis by bFGF in mandibular bone graft healing in the rabbit. J Oral Maxillofac Surg 46: 391‐398, 1988.
 133. Epstein SE , Fuchs S , Zhou YF , Baffour R , Kornowski R . Therapeutic interventions for enhancing collateral development by administration of growth factors: Basic principles, early results and potential hazards. Cardiovasc Res 49: 532‐542, 2001.
 134. Epstein SE , Kornowski R , Fuchs S , Dvorak HF . Angiogenesis therapy: Amidst the hype, the neglected potential for serious side effects. Circulation 104: 115‐119, 2001.
 135. Epstein SE , Stabile E , Kinnaird T , Lee CW , Clavijo L , Burnett MS . Janus phenomenon: The interrelated tradeoffs inherent in therapies designed to enhance collateral formation and those designed to inhibit atherogenesis. Circulation 109: 2826‐2831, 2004.
 136. Erol OÖ . The transformation of a free skin graft into a vascularized pedicled flap. Plast Reconstr Surg 58: 470‐477, 1976.
 137. Erol OO , Spira M . New capillary bed formation with a surgically constructed arteriovenous fistula. Plast Reconstr Surg 66: 109‐115, 1980.
 138. Esaki J , Sakaguchi H , Marui A , Bir SC , Arai Y , Huang Y , Tsubota H , Kanaji T , Ikeda T , Sakata R . Local sustained release of prostaglandin E1 induces neovascularization in murine hindlimb ischemia. Circ J 73: 1330‐1336, 2009.
 139. Fan W , Crawford R , Xiao Y . Enhancing in vivo vascularized bone formation by cobalt chloride‐treated bone marrow stromal cells in a tissue engineered periosteum model. Biomaterials 31: 3580‐3589, 2010.
 140. Farrington‐Rock C , Crofts NJ , Doherty MJ , Ashton BA , Griffin‐Jones C , Canfield AE . Chondrogenic and adipogenic potential of microvascular pericytes. Circulation 110: 2226‐2232, 2004.
 141. Fasol R , Schumacher B , Schlaudraff K , Hauenstein K‐H , Seitelberger R . Experimental use of a modified fibrin glue to induce site‐directed angiogenesis from the aorta to the heart. J Thorac Cardiovasc Surg 107: 1432‐1439, 1994.
 142. Fehling HJ , Lacaud G , Kubo A , Kennedy M , Robertson S , Keller G , Kouskoff V . Tracking mesoderm induction and its specification to the hemangioblast during embryonic stem cell differentiation. Development 130: 4217‐4227, 2003.
 143. Ferrara N , Alitalo K . Clinical applications of angiogenic growth factors and their inhibitors. Nat Med 5: 1359‐1364, 1999.
 144. Ferrari G , Cusella‐De Angelis G , Coletta M , Paolucci E , Stornaiuolo A , Cossu G , Mavilio F . Muscle regeneration by bone marrow‐derived myogenic progenitors. Science 279: 1528‐1530, 1998.
 145. Findlay MW , Dolderer JH , Trost N , Craft RO , Cao Y , Cooper‐White J , Stevens G , Morrison WA . Tissue‐engineered breast reconstruction: Bridging the gap toward large‐volume tissue engineering in humans. Plast Reconstr Surg 128: 1206‐1215, 2011.
 146. Folkman J . Angiogenesis. Annu Rev Med 57: 1‐18, 2006.
 147. Folkman J , Haudenschild C . Angiogenesis in vitro . Nature 288: 551‐556, 1980.
 148. Folkman J , Klagsbrun M . Angiogenic factors. Science 235: 442‐447, 1987.
 149. Foubert P , Matrone G , Souttou B , Leré‐Déan C , Barateau V , Plouët J , Le Ricousse‐Roussanne S , Lévy BI , Silvestre J‐S , Tobelem G . Coadministration of endothelial and smooth muscle progenitor cells enhances the efficiency of proangiogenic cell‐based therapy. Circ Res 103: 751‐760, 2008.
 150. Frontini MJ , Nong Z , Gros R , Drangova M , O'Neil C , Rahman MN , Akawi O , Yin H , Ellis CG , Pickering JG . Fibroblast growth factor 9 delivery during angiogenesis produces durable, vasoresponsive microvessels wrapped by smooth muscle cells. Nat Biotechnol 29: 421‐427, 2011.
 151. Frueh FS , Später T , Lindenblatt N , Calcagni M , Giovanoli P , Scheuer C , Menger MD , Laschke MW . Adipose tissue‐derived microvascular fragments improve vascularization, lymphangiogenesis, and integration of dermal skin substitutes. J Invest Dermatol 137: 217‐227, 2017.
 152. Fujihara Y , Koyama H , Nishiyama N , Eguchi T , Takato T . Gene transfer of bFGF to recipient bed improves survival of ischemic skin flap. Br J Plast Surg 58: 511‐517, 2005.
 153. Fujihara Y , Koyama H , Ohba M , Tabata Y , Fujihara H , Yonehara Y , Takato T . Controlled delivery of bFGF to recipient bed enhances the vascularization and viability of an ischemic skin flap. Wound Repair Regen 16: 125‐131, 2008.
 154. Fujii T , Yonemitsu Y , Onimaru M , Tanii M , Nakano T , Egashira K , Takehara T , Inoue M , Hasegawa M , Kuwano H , Sueishi K . Nonendothelial mesenchymal cell‐derived MCP‐1 is required for FGF‐2‐mediated therapeutic neovascularization: Critical role of the inflammatory/arteriogenic pathway. Arterioscler Thromb Vasc Biol 26: 2483‐2489, 2006.
 155. Fukumura D , Gohongi T , Kadambi A , Izumi Y , Ang J , Yun C‐O , Buerk DG , Huang PL , Jain RK . Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor‐induced angiogenesis and vascular permeability. Proc Natl Acad Sci USA 98: 2604‐2609, 2001.
 156. Fukumura D , Ushiyama A , Duda DG , Xu L , Tam J , Krishna V , Chatterjee K , Garkavtsev I , Jain RK . Paracrine regulation of angiogenesis and adipocyte differentiation during in vivo adipogenesis. Circ Res 93: e88‐e97, 2003.
 157. Gale NW , Thurston G , Hackett SF , Renard R , Wang Q , McClain J , Martin C , Witte C , Witte MH , Jackson D , Suri C , Campochiaro PA , Wiegand SJ , Yancopoulos GD . Angiopoietin‐2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by Angiopoietin‐1. Dev Cell 3: 411‐423, 2002.
 158. Galeano M , Deodato B , Altavilla D , Cucinotta D , Arsic N , Marini H , Torre V , Giacca M , Squadrito F . Adeno‐associated viral vector‐mediated human vascular endothelial growth factor gene transfer stimulates angiogenesis and wound healing in the genetically diabetic mouse. Diabetologia 46: 546‐555, 2003.
 159. Galiano RD , Tepper OM , Pelo CR , Bhatt KA , Callaghan M , Bastidas N , Bunting S , Steinmetz HG , Gurtner GC . Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow‐derived cells. Am J Pathol 164: 1935‐1947, 2004.
 160. Galie PA , Nguyen D‐HT , Choi CK , Cohen DM , Janmey PA , Chen CS . Fluid shear stress threshold regulates angiogenic sprouting. Proc Natl Acad Sci USA 111: 7968‐7973, 2014.
 161. Gashev AA . Lymphatic vessels: Pressure‐ and flow‐dependent regulatory reactions. Ann NY Acad Sci 1131: 100‐109, 2008.
 162. Gaudiello E , Melly L , Cerino G , Boccardo S , Jalili‐Firoozinezhad S , Xu L , Eckstein F , Martin I , Kaufmann BA , Banfi A , Marsano A . Scaffold composition determines the angiogenic outcome of cell‐based vascular endothelial growth factor expression by modulating its microenvironmental distribution. Adv Healthcare Mater 6: 1700600, 2017.
 163. Gilbert TW , Sellaro TL , Badylak SF . Decellularization of tissues and organs. Biomaterials 27: 3675‐3683, 2006.
 164. Giordano FJ , Ping P , McKirnan MD , Nozaki S , DeMaria AN , Dillmann WH , Mathieu‐Costello O , Hammond HK . Intracoronary gene transfer of fibroblast growth factor‐5 increases blood flow and contractile function in an ischemic region of the heart. Nat Med 2: 534‐539, 1996.
 165. Gleadle JM , Ebert BL , Firth JD , Ratcliffe PJ . Regulation of angiogenic growth factor expression by hypoxia, transition metals, and chelating agents. Am J Physiol 268: C1362‐C1368, 1995.
 166. Goh S‐K , Bertera S , Olsen P , Candiello JE , Halfter W , Uechi G , Balasubramani M , Johnson SA , Sicari BM , Kollar E , Badylak SF , Banerjee I . Perfusion‐decellularized pancreas as a natural 3D scaffold for pancreatic tissue and whole organ engineering. Biomaterials 34: 6760‐6772, 2013.
 167. Goldberg MA , Schneider TJ . Similarities between the oxygen‐sensing mechanisms regulating the expression of vascular endothelial growth factor and erythropoietin. J Biol Chem 269: 4355‐4359, 1994.
 168. Golden AP , Tien J . Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element. Lab Chip 7: 720‐725, 2007.
 169. Goldman J , Conley KA , Raehl A , Bondy DM , Pytowski B , Swartz MA , Rutkowski JM , Jaroch DB , Ongstad EL . Regulation of lymphatic capillary regeneration by interstitial flow in skin. Am J Physiol Heart Circ Physiol 292: H2176‐H2183, 2007.
 170. Goldsmith HS . Omental transposition for peripheral vascular insufficiency. Rev Surg 24: 379‐380, 1967.
 171. Goldsmith HS . Long term evaluation of omental transposition for chronic lymphedema. Ann Surg 180: 847‐849, 1974.
 172. Goldsmith HS . Salvage of end stage ischemic extremities by intact omentum. Surgery 88: 732‐736, 1980.
 173. Goldsmith HS , Chen W‐F , Duckett SW . Brain vascularization by intact omentum. Arch Surg 106: 695‐698, 1973.
 174. Goldsmith HS , Griffith AL , Catsimpoolas N . Increased vascular perfusion after administration of an omental lipid fraction. Surg Gynecol Obstet 162: 579‐583, 1986.
 175. Goldsmith HS , Griffith AL , Kupferman A , Catsimpoolas N . Lipid angiogenic factor from omentum. JAMA 252: 2034‐2036, 1984.
 176. Golub JS , Kim Y , Duvall CL , Bellamkonda RV , Gupta D , Lin AS , Weiss D , Robert Taylor W , Guldberg RE . Sustained VEGF delivery via PLGA nanoparticles promotes vascular growth. Am J Physiol Heart Circ Physiol 298: H1959‐H1965, 2010.
 177. Gosain A , Matthies AM , Dovi JV , Barbul A , Gamelli RL , DiPietro LA . Exogenous pro‐angiogenic stimuli cannot prevent physiologic vessel regression. J Surg Res 135: 218‐225, 2006.
 178. Gospodarowicz D , Cheng J . Heparin protects basic and acidic FGF from inactivation. J Cell Physiol 128: 475‐484, 1986.
 179. Göthert JR , Gustin SE , van Eekelen JA , Schmidt U , Hall MA , Jane SM , Green AR , Göttgens B , Izon DJ , Begley CG . Genetically tagging endothelial cells in vivo: Bone marrow‐derived cells do not contribute to tumor endothelium. Blood 104: 1769‐1777, 2004.
 180. Graham AM , Sniderman A , Jothy S , Homan J , Symes JF . Staged reversal of venous flow for revascularization of the severely ischemic limb. J Surg Res 35: 11‐20, 1983.
 181. Grainger SJ , Carrion B , Ceccarelli J , Putnam AJ . Stromal cell identity influences the in vivo functionality of engineered capillary networks formed by co‐delivery of endothelial cells and stromal cells. Tissue Eng A 19: 1209‐1222, 2013.
 182. Groenman FA , Rutter M , Wang J , Caniggia I , Tibboel D , Post M . Effect of chemical stabilizers of hypoxia‐inducible factors on early lung development. Am J Physiol Lung Cell Mol Physiol 293: L557‐L567, 2007.
 183. Grunewald M , Avraham I , Dor Y , Bachar‐Lustig E , Itin A , Yung S , Chimenti S , Landsman L , Abramovitch R , Keshet E . VEGF‐induced adult neovascularization: Recruitment, retention, and role of accessory cells. Cell 124: 175‐189, 2006.
 184. Güc E , Briquez PS , Foretay D , Fankhauser MA , Hubbell JA , Kilarski WW , Swartz MA . Local induction of lymphangiogenesis with engineered fibrin‐binding VEGF‐C promotes wound healing by increasing immune cell trafficking and matrix remodeling. Biomaterials 131: 160‐175, 2017.
 185. Gulati R , Jevremovic D , Peterson TE , Chatterjee S , Shah V , Vile RG , Simari RD . Diverse origin and function of cells with endothelial phenotype obtained from adult human blood. Circ Res 93: 1023‐1025, 2003.
 186. Guo L , Pribaz JJ . Clinical flap prefabrication. Plast Reconstr Surg 124: 340e‐350e, 2009.
 187. Gupta R , Tongers J , Losordo DW . Human studies of angiogenic gene therapy. Circ Res 105: 724‐736, 2009.
 188. Hämäläinen KM , Määttä E , Piirainen H , Marianne S , Väisänen A , Ranta V‐P , Urtti A . Roles of acid/base nature and molecular weight in drug release from matrices of gelfoam and monoisopropyl ester of poly(vinyl methyl ether‐maleic anhydride). J Control Release 56: 273‐283, 1998.
 189. Han J‐K , Chang S‐H , Cho H‐J , Choi S‐B , Ahn H‐S , Lee J , Jeong H , Youn S‐W , Lee H‐J , Kwon Y‐W , Cho H‐J , Oh B‐H , Oettgen P , Park Y‐B , Kim H‐S . Direct conversion of adult skin fibroblasts to endothelial cells by defined factors. Circulation 130: 1168‐1178, 2014.
 190. Hao X , Silva EA , Månsson‐Broberg A , Grinnemo K‐H , Siddiqui AJ , Dellgren G , Wärdell E , Brodin LA , Mooney DJ , Sylvén C . Angiogenic effects of sequential release of VEGF‐A165 and PDGF‐BB with alginate hydrogels after myocardial infarction. Cardiovasc Res 75: 178‐185, 2007.
 191. Harada K , Friedman M , Lopez JJ , Wang SY , Li J , Prasad PV , Pearlman JD , Edelman ER , Sellke FW , Simons M . Vascular endothelial growth factor administration in chronic myocardial ischemia. Am J Physiol 270: H1791‐H1802, 1996.
 192. Harris LD , Kim B‐S , Mooney DJ . Open pore biodegradable matrices formed with gas foaming. J Biomed Mater Res 42: 396‐402, 1998.
 193. Harrison P , Cramer EM . Platelet α‐granules. Blood Rev 7: 52‐62, 1993.
 194. Heeschen C , Lehmann R , Honold J , Assmus B , Aicher A , Walter DH , Martin H , Zeiher AM , Dimmeler S . Profoundly reduced neovascularization capacity of bone marrow mononuclear cells derived from patients with chronic ischemic heart disease. Circulation 109: 1615‐1622, 2004.
 195. Heidenreich R , Murayama T , Silver M , Essl C , Asahara T , Röcken M , Breier G . Tracking adult neovascularization during ischemia and inflammation using Vegfr2‐LacZ reporter mice. J Vasc Res 45: 437‐444, 2008.
 196. Heintz KA , Bregenzer ME , Mantle JL , Lee KH , West JL , Slater JH . Fabrication of 3D biomimetic microfluidic networks in hydrogels. Adv Healthcare Mater 5: 2153‐2160, 2016.
 197. Hellström M , Phng L‐K , Hofmann JJ , Wallgard E , Coultas L , Lindblom P , Alva J , Nilsson A‐K , Karlsson L , Gaiano N , Yoon K , Rossant J , Iruela‐Arispe ML , Kalén M , Gerhardt H , Betsholtz C . Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445: 776‐780, 2007.
 198. Helm C‐LE , Fleury ME , Zisch AH , Boschetti F , Swartz MA . Synergy between interstitial flow and VEGF directs capillary morphogenesis in vitro through a gradient amplification mechanism. Proc Natl Acad Sci USA 102: 15779‐15784, 2005.
 199. Hendel RC , Henry TD , Rocha‐Singh K , Isner JM , Kereiakes DJ , Giordano FJ , Simons M , Bonow RO . Effect of intracoronary recombinant human vascular endothelial growth factor on myocardial perfusion: Evidence for a dose‐dependent effect. Circulation 101: 118‐121, 2000.
 200. Henderson PW , Nagineni VV , Harper A , Bavinck N , Sohn AM , Krijgh DD , Jimenez N , Weinstein AL , Spector JA . Development of an acellular bioengineered matrix with a dominant vascular pedicle. J Surg Res 164: 1‐5, 2010.
 201. Hendrix MJC , Seftor EA , Hess AR , Seftor REB . Vasculogenic mimicry and tumour‐cell plasticity: Lessons from melanoma. Nat Rev Cancer 3: 411‐421, 2003.
 202. Hendrix MJC , Seftor EA , Meltzer PS , Gardner LMG , Hess AR , Kirschmann DA , Schatteman GC , Seftor REB . Expression and functional significance of VE‐cadherin in aggressive human melanoma cells: Role in vasculogenic mimicry. Proc Natl Acad Sci USA 98: 8018‐8023, 2001.
 203. Hickey MJ , Wilson Y , Hurley JV , Morrison WA . Mode of vascularization of control and basic fibroblast growth factor‐stimulated prefabricated skin flaps. Plast Reconstr Surg 101: 1296‐1304; discussion 1305‐1306, 1998.
 204. Hijjawi J , Mogford JE , Chandler LA , Cross KJ , Said H , Sosnowski BA , Mustoe TA . Platelet‐derived growth factor B, but not fibroblast growth factor 2, plasmid DNA improves survival of ischemic myocutaneous flaps. Arch Surg 139: 142‐147, 2004.
 205. Hikimoto D , Nishiguchi A , Matsusaki M , Akashi M . High‐throughput blood‐ and lymph‐capillaries with open‐ended pores which allow the transport of drugs and cells. Adv Healthcare Mater 5: 1969‐1978, 2016.
 206. Hill JM , Zalos G , Halcox JP , Schenke WH , Waclawiw MA , Quyyumi AA , Finkel T . Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 348: 593‐600, 2003.
 207. Hiraoka Y , Yamashiro H , Yasuda K , Kimura Y , Inamoto T , Tabata Y . In situ regeneration of adipose tissue in rat fat pad by combining a collagen scaffold with gelatin microspheres containing basic fibroblast growth factor. Tissue Eng 12: 1475‐1487, 2006.
 208. Ho H‐KV , Jang JJ , Kaji S , Spektor G , Fong A , Yang P , Hu BS , Schatzman R , Quertermous T , Cooke JP . Developmental endothelial locus‐1 (Del‐1), a novel angiogenic protein: Its role in ischemia. Circulation 109: 1314‐1319, 2004.
 209. Höckel M , Burke JF . Angiotropin treatment prevents flap necrosis and enhances dermal regeneration in rabbits. Arch Surg 124: 693‐698, 1989.
 210. Höckel M , Jung W , Vaupel P , Rabes H , Khaledpour C , Wissler JH . Purified monocyte‐derived angiogenic substance (angiotropin) induces controlled angiogenesis associated with regulated tissue proliferation in rabbit skin. J Clin Invest 82: 1075‐1090, 1988.
 211. Höckel M , Schlenger K , Doctrow S , Kissel T , Vaupel P . Therapeutic angiogenesis. Arch Surg 128: 423‐429, 1993.
 212. Hofer SOP , Knight KM , Cooper‐White JJ , O'Connor AJ , Perera JM , Romeo‐Meeuw R , Penington AJ , Knight KR , Morrison WA , Messina A . Increasing the volume of vascularized tissue formation in engineered constructs: An experimental study in rats. Plast Reconstr Surg 111: 1186‐1192; discussion 1193‐1194, 2003.
 213. Hom DB , Baker SR , Graham LM , McClatchey KD . Utilizing angiogenic agents to expedite the neovascularization process in skin flaps. Laryngoscope 98: 521‐526, 1988.
 214. Hood JD , Bednarski M , Frausto R , Guccione S , Reisfeld RA , Xiang R , Cheresh DA . Tumor regression by targeted gene delivery to the neovasculature. Science 296: 2404‐2407, 2002.
 215. Hori Y , Tamai S , Okuda H , Sakamoto H , Takita T , Masuhara K . Blood vessel transplantation to bone. J Hand Surg 4: 23‐33, 1979.
 216. Hosaka A , Koyama H , Kushibiki T , Tabata Y , Nishiyama N , Miyata T , Shigematsu H , Takato T , Nagawa H . Gelatin hydrogel microspheres enable pinpoint delivery of basic fibroblast growth factor for the development of functional collateral vessels. Circulation 110: 3322‐3328, 2004.
 217. Hoshino S , Hamada O , Iwaya F , Takahira H , Honda K . Omental transplantation for chronic occlusive arterial diseases. Int Surg 64: 21‐29, 1979.
 218. Hsu Y‐H , Moya ML , Hughes CCW , George SC , Lee AP . A microfluidic platform for generating large‐scale nearly identical human microphysiological vascularized tissue arrays. Lab Chip 13: 2990‐2998, 2013.
 219. Huang Y‐C , Kaigler D , Rice KG , Krebsbach PH , Mooney DJ . Combined angiogenic and osteogenic factor delivery enhances bone marrow stromal cell‐driven bone regeneration. J Bone Miner Res 20: 848‐857, 2005.
 220. Huang Y , Marui A , Sakaguchi H , Esaki J , Arai Y , Hirose K , Bir SC , Horiuchi H , Maruyama T , Ikeda T , Tabata Y , Komeda M . Sustained release of prostaglandin E1 potentiates the impaired therapeutic angiogenesis by basic fibroblast growth factor in diabetic murine hindlimb ischemia. Circ J 72: 1693‐1699, 2008.
 221. Huber TL , Kouskoff V , Fehling HJ , Palis J , Keller G . Haemangioblast commitment is initiated in the primitive streak of the mouse embryo. Nature 432: 625‐630, 2004.
 222. Hudlicka O . What makes blood vessels grow? J Physiol 444: 1‐24, 1991.
 223. Hudlická O . Capillary growth: Role of mechanical factors. News Physiol Sci 3: 117‐120, 1988.
 224. Hudlická O . Development of microcirculation: Capillary growth and adaptation. In: Renkin EM , Michel CC , editors. Handbook of Physiology; Section 2: The Cardiovascular System. Bethesda, MD: American Physiological Society, 1984, pp. 165‐215.
 225. Hur J , Yang H‐M , Yoon C‐H , Lee C‐S , Park K‐W , Kim J‐H , Kim T‐Y , Kim J‐Y , Kang H‐J , Chae I‐H , Oh B‐H , Park Y‐B , Kim H‐S . Identification of a novel role of T cells in postnatal vasculogenesis: Characterization of endothelial progenitor cell colonies. Circulation 116: 1671‐1682, 2007.
 226. Hur J , Yoon CH , Kim HS , Choi JH , Kang HJ , Hwang KK , Oh BH , Lee MM , Park YB . Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arterioscler Thromb Vasc Biol 24: 288‐293, 2004.
 227. Huxley VH , Curry FE , Adamson RH . Quantitative fluorescence microscopy on single capillaries: α‐lactalbumin transport. Am J Physiol 252: H188‐H197, 1987.
 228. Ichioka S , Kudo S , Shibata M , Ando J , Sekiya N , Nakatsuka T . Bone marrow cell implantation improves flap viability after ischemia‐reperfusion injury. Ann Plast Surg 52: 414‐418, 2004.
 229. Ii M , Horii M , Yokoyama A , Shoji T , Mifune Y , Kawamoto A , Asahi M , Asahara T . Synergistic effect of adipose‐derived stem cell therapy and bone marrow progenitor recruitment in ischemic heart. Lab Invest 91: 539‐552, 2011.
 230. Ikenaga S , Hamano K , Nishida M , Kobayashi T , Li T‐S , Kobayashi S , Matsuzaki M , Zempo N , Esato K . Autologous bone marrow implantation induced angiogenesis and improved deteriorated exercise capacity in a rat ischemic hindlimb model. J Surg Res 96: 277‐283, 2001.
 231. Ingber DE , Folkman J . How does extracellular matrix control capillary morphogenesis? Cell 58: 803‐805, 1989.
 232. Ingram DA , Mead LE , Tanaka H , Meade V , Fenoglio A , Mortell K , Pollok K , Ferkowicz MJ , Gilley D , Yoder MC . Identification of a novel hierarchy of endothelial progenitor cells utilizing human peripheral and umbilical cord blood. Blood 104: 2752‐2760, 2004.
 233. Inoue N , Kondo T , Kobayashi K , Aoki M , Numaguchi Y , Shibuya M , Murohara T . Therapeutic angiogenesis using novel vascular endothelial growth factor‐E/human placental growth factor chimera genes. Arterioscler Thromb Vasc Biol 27: 99‐105, 2007.
 234. Isner JM , Pieczek A , Schainfeld R , Blair R , Haley L , Asahara T , Rosenfield K , Razvi S , Walsh K , Symes JF . Clinical evidence of angiogenesis after arterial gene transfer of phVEGF165 in patient with ischaemic limb. Lancet 348: 370‐374, 1996.
 235. Iwaguro H , Yamaguchi J , Kalka C , Murasawa S , Masuda H , Hayashi S , Silver M , Li T , Isner JM , Asahara T . Endothelial progenitor cell vascular endothelial growth factor gene transfer for vascular regeneration. Circulation 105: 732‐738, 2002.
 236. Iwakura A , Shastry S , Luedemann C , Hamada H , Kawamoto A , Kishore R , Zhu Y , Qin G , Silver M , Thorne T , Eaton L , Masuda H , Asahara T , Losordo DW . Estradiol enhances recovery after myocardial infarction by augmenting incorporation of bone marrow‐derived endothelial progenitor cells into sites of ischemia‐induced neovascularization via endothelial nitric oxide synthase‐mediated activation of matrix metalloproteinase‐9. Circulation 113: 1605‐1614, 2006.
 237. Iwasaki H , Kawamoto A , Ishikawa M , Oyamada A , Nakamori S , Nishimura H , Sadamoto K , Horii M , Matsumoto T , Murasawa S , Shibata T , Suehiro S , Asahara T . Dose‐dependent contribution of CD34‐positive cell transplantation to concurrent vasculogenesis and cardiomyogenesis for functional regenerative recovery after myocardial infarction. Circulation 113: 1311‐1325, 2006.
 238. Iwasawa M . Accelerated maturation in prefabricated flaps by transforming growth factor‐β: An experimental study in the rabbit. Ann Plast Surg 31: 72‐75, 1993.
 239. Iwase T , Nagaya N , Fujii T , Itoh T , Murakami S , Matsumoto T , Kangawa K , Kitamura S . Comparison of angiogenic potency between mesenchymal stem cells and mononuclear cells in a rat model of hindlimb ischemia. Cardiovasc Res 66: 543‐551, 2005.
 240. Jain RK . Normalization of tumor vasculature: An emerging concept in antiangiogenic therapy. Science 307: 58‐62, 2005.
 241. Jay SM , Shepherd BR , Bertram JP , Pober JS , Saltzman WM . Engineering of multifunctional gels integrating highly efficient growth factor delivery with endothelial cell transplantation. FASEB J 22: 2949‐2956, 2008.
 242. Jeltsch M , Kaipainen A , Joukov V , Meng X , Lakso M , Rauvala H , Swartz M , Fukumura D , Jain RK , Alitalo K . Hyperplasia of lymphatic vessels in VEGF‐C transgenic mice. Science 276: 1423‐1425, 1997.
 243. Jeon JS , Bersini S , Gilardi M , Dubini G , Charest JL , Moretti M , Kamm RD . Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation. Proc Natl Acad Sci USA 112: 214‐219, 2015.
 244. Jin DK , Shido K , Kopp H‐G , Petit I , Shmelkov SV , Young LM , Hooper AT , Amano H , Avecilla ST , Heissig B , Hattori K , Zhang F , Hicklin DJ , Wu Y , Zhu Z , Dunn A , Salari H , Werb Z , Hackett NR , Crystal RG , Lyden D , Rafii S . Cytokine‐mediated deployment of SDF‐1 induces revascularization through recruitment of CXCR4+ hemangiocytes. Nat Med 12: 557‐567, 2006.
 245. Jin H , Aiyer A , Su J , Borgstrom P , Stupack D , Friedlander M , Varner J . A homing mechanism for bone marrow‐derived progenitor cell recruitment to the neovasculature. J Clin Invest 116: 652‐662, 2006.
 246. Jusoh N , Oh S , Kim S , Kim J , Jeon NL . Microfluidic vascularized bone tissue model with hydroxyapatite‐incorporated extracellular matrix. Lab Chip 15: 3984‐3988, 2015.
 247. Jussila L , Alitalo K . Vascular growth factors and lymphangiogenesis. Physiol Rev 82: 673‐700, 2002.
 248. Kaigler D , Wang Z , Horger K , Mooney DJ , Krebsbach PH . VEGF scaffolds enhance angiogenesis and bone regeneration in irradiated osseous defects. J Bone Miner Res 21: 735‐744, 2006.
 249. Kaihara S , Borenstein J , Koka R , Lalan S , Ochoa ER , Ravens M , Pien H , Cunningham B , Vacanti JP . Silicon micromachining to tissue engineer branched vascular channels for liver fabrication. Tissue Eng 6: 105‐117, 2000.
 250. Kalka C , Masuda H , Takahashi T , Gordon R , Tepper O , Gravereaux E , Pieczek A , Iwaguro H , Hayashi S‐I , Isner JM , Asahara T . Vascular endothelial growth factor165 gene transfer augments circulating endothelial progenitor cells in human subjects. Circ Res 86: 1198‐1202, 2000.
 251. Kalka C , Masuda H , Takahashi T , Kalka‐Moll WM , Silver M , Kearney M , Li T , Isner JM , Asahara T . Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci USA 97: 3422‐3427, 2000.
 252. Kamihata H , Matsubara H , Nishiue T , Fujiyama S , Tsutsumi Y , Ozono R , Masaki H , Mori Y , Iba O , Tateishi E , Kosaki A , Shintani S , Murohara T , Imaizumi T , Iwasaka T . Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines. Circulation 104: 1046‐1052, 2001.
 253. Kanematsu A , Marui A , Yamamoto S , Ozeki M , Hirano Y , Yamamoto M , Ogawa O , Komeda M , Tabata Y . Type I collagen can function as a reservoir of basic fibroblast growth factor. J Control Release 99: 281‐292, 2004.
 254. Kang H‐W , Lee SJ , Ko IK , Kengla C , Yoo JJ , Atala A . A 3D bioprinting system to produce human‐scale tissue constructs with structural integrity. Nat Biotechnol 34: 312‐319, 2016.
 255. Kang K‐T , Allen P , Bischoff J . Bioengineered human vascular networks transplanted into secondary mice reconnect with the host vasculature and re‐establish perfusion. Blood 118: 6718‐6721, 2011.
 256. Kashiwagi S , Izumi Y , Gohongi T , Demou ZN , Xu L , Huang PL , Buerk DG , Munn LL , Jain RK , Fukumura D . NO mediates mural cell recruitment and vessel morphogenesis in murine melanomas and tissue‐engineered blood vessels. J Clin Invest 115: 1816‐1827, 2005.
 257. Kawaguchi N , Toriyama K , Nicodemou‐Lena E , Inou K , Torii S , Kitagawa Y . De novo adipogenesis in mice at the site of injection of basement membrane and basic fibroblast growth factor. Proc Natl Acad Sci USA 95: 1062‐1066, 1998.
 258. Kawamoto A , Gwon H‐C , Iwaguro H , Yamaguchi J‐I , Uchida S , Masuda H , Silver M , Ma H , Kearney M , Isner JM , Asahara T . Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation 103: 634‐637, 2001.
 259. Kawamoto A , Iwasaki H , Kusano K , Murayama T , Oyamada A , Silver M , Hulbert C , Gavin M , Hanley A , Ma H , Kearney M , Zak V , Asahara T , Losordo DW . CD34‐positive cells exhibit increased potency and safety for therapeutic neovascularization after myocardial infarction compared with total mononuclear cells. Circulation 114: 2163‐2169, 2006.
 260. Kawamoto A , Murayama T , Kusano K , Ii M , Tkebuchava T , Shintani S , Iwakura A , Johnson I , von Samson P , Hanley A , Gavin M , Curry C , Silver M , Ma H , Kearney M , Losordo DW . Synergistic effect of bone marrow mobilization and vascular endothelial growth factor‐2 gene therapy in myocardial ischemia. Circulation 110: 1398‐1405, 2004.
 261. Kawamoto A , Tkebuchava T , Yamaguchi J , Nishimura H , Yoon YS , Milliken C , Uchida S , Masuo O , Iwaguro H , Ma H , Hanley A , Silver M , Kearney M , Losordo DW , Isner JM , Asahara T . Intramyocardial transplantation of autologous endothelial progenitor cells for therapeutic neovascularization of myocardial ischemia. Circulation 107: 461‐468, 2003.
 262. Kelly JL , Findlay MW , Knight KR , Penington A , Thompson EW , Messina A , Morrison WA . Contact with existing adipose tissue is inductive for adipogenesis in Matrigel. Tissue Eng 12: 2041‐2047, 2006.
 263. Kempen DHR , Lu L , Heijink A , Hefferan TE , Creemers LB , Maran A , Yaszemski MJ , Dhert WJA . Effect of local sequential VEGF and BMP‐2 delivery on ectopic and orthotopic bone regeneration. Biomaterials 30: 2816‐2825, 2009.
 264. Kennedy M , D'Souza SL , Lynch‐Kattman M , Schwantz S , Keller G . Development of the hemangioblast defines the onset of hematopoiesis in human ES cell differentiation cultures. Blood 109: 2679‐2687, 2007.
 265. Kerbel RS , Benezra R , Lyden DC , Hattori K , Heissig B , Nolan DJ , Mittal V , Shaked Y , Dias S , Bertolini F , Rafii S . Endothelial progenitor cells are cellular hubs essential for neoangiogenesis of certain aggressive adenocarcinomas and metastatic transition but not adenomas. Proc Natl Acad Sci USA 105: E54; author reply E55, 2008.
 266. Kerjaschki D , Huttary N , Raab I , Regele H , Bojarski‐Nagy K , Bartel G , Kröber SM , Greinix H , Rosenmaier A , Karlhofer F , Wick N , Mazal PR . Lymphatic endothelial progenitor cells contribute to de novo lymphangiogenesis in human renal transplants. Nat Med 12: 230‐234, 2006.
 267. Kessel RG , Kardon RH . Tissues and Organs: A Text‐Atlas of Scanning Electron Microscopy. San Francisco, CA: W. H. Freeman, 1979.
 268. Khouri RK , Brown DM , Leal‐Khouri SM , Tark KC , Shaw WW . The effect of basic fibroblast growth factor on the neovascularisation process: Skin flap survival and staged flap transfers. Br J Plast Surg 44: 585‐588, 1991.
 269. Kilarski WW , Samolov B , Petersson L , Kvanta A , Gerwins P . Biomechanical regulation of blood vessel growth during tissue vascularization. Nat Med 15: 657‐664, 2009.
 270. Kim EJ , Li R‐K , Weisel RD , Mickle DAG , Jia Z‐Q , Tomita S , Sakai T , Yau TM . Angiogenesis by endothelial cell transplantation. J Thorac Cardiovasc Surg 122: 963‐971, 2001.
 271. Kim H‐Z , Jung K , Kim HM , Cheng Y , Koh GY . A designed angiopoietin‐2 variant, pentameric COMP‐Ang2, strongly activates Tie2 receptor and stimulates angiogenesis. Biochim Biophys Acta 1793: 772‐780, 2009.
 272. Kim J , Cao L , Shvartsman D , Silva EA , Mooney DJ . Targeted delivery of nanoparticles to ischemic muscle for imaging and therapeutic angiogenesis. Nano Lett 11: 694‐700, 2011.
 273. Kim JA , Kim HN , Im S‐K , Chung S , Kang JY , Choi N . Collagen‐based brain microvasculature model in vitro using three‐dimensional printed template. Biomicrofluidics 9: 024115, 2015.
 274. Kim KE , Cho C‐H , Kim H‐Z , Baluk P , McDonald DM , Koh GY . In vivo actions of angiopoietins on quiescent and remodeling blood and lymphatic vessels in mouse airways and skin. Arterioscler Thromb Vasc Biol 27: 564‐570, 2007.
 275. Kim S , Chung M , Ahn J , Lee S , Jeon NL . Interstitial flow regulates the angiogenic response and phenotype of endothelial cells in a 3D culture model. Lab Chip 16: 4189‐4199, 2016.
 276. Kim S , Chung M , Jeon NL . Three‐dimensional biomimetic model to reconstitute sprouting lymphangiogenesis in vitro . Biomaterials 78: 115‐128, 2016.
 277. Kim S , Lee H , Chung M , Jeon NL . Engineering of functional, perfusable 3D microvascular networks on a chip. Lab Chip 13: 1489‐1500, 2013.
 278. Kimura Y , Inamoto T , Tabata Y . Adipose tissue formation in collagen scaffolds with different biodegradabilities. J Biomater Sci Polym Ed 21: 463‐476, 2010.
 279. Kimura Y , Ozeki M , Inamoto T , Tabata Y . Adipose tissue engineering based on human preadipocytes combined with gelatin microspheres containing basic fibroblast growth factor. Biomaterials 24: 2513‐2521, 2003.
 280. Kingsnorth AN , Slavin J . Peptide growth factors and wound healing. Br J Surg 78: 1286‐1290, 1991.
 281. Kinnaird T , Stabile E , Burnett MS , Lee CW , Barr S , Fuchs S , Epstein SE . Marrow‐derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res 94: 678‐685, 2004.
 282. Kinnaird T , Stabile E , Burnett MS , Shou M , Lee CW , Barr S , Fuchs S , Epstein SE . Local delivery of marrow‐derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 109: 1543‐1549, 2004.
 283. Kleinman HK , Martin GR . Matrigel: Basement membrane matrix with biological activity. Semin Cancer Biol 15: 378‐386, 2005.
 284. Kloxin AM , Kasko AM , Salinas CN , Anseth KS . Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324: 59‐63, 2009.
 285. Kneser U , Polykandriotis E , Ohnolz J , Heidner K , Grabinger L , Euler S , Amann KU , Hess A , Brune K , Greil P , Stürzl M , Horch RE . Engineering of vascularized transplantable bone tissues: Induction of axial vascularization in an osteoconductive matrix using an arteriovenous loop. Tissue Eng 12: 1721‐1731, 2006.
 286. Kniazeva E , Kachgal S , Putnam AJ . Effects of extracellular matrix density and mesenchymal stem cells on neovascularization in vivo . Tissue Eng A 17: 905‐914, 2011.
 287. Ko IK , Peng L , Peloso A , Smith CJ , Dhal A , Deegan DB , Zimmerman C , Clouse C , Zhao W , Shupe TD , Soker S , Yoo JJ , Atala A . Bioengineered transplantable porcine livers with re‐endothelialized vasculature. Biomaterials 40: 72‐79, 2015.
 288. Kobayashi K , Kondo T , Inoue N , Aoki M , Mizuno M , Komori K , Yoshida J , Murohara T . Combination of in vivo angiopoietin‐1 gene transfer and autologous bone marrow cell implantation for functional therapeutic angiogenesis. Arterioscler Thromb Vasc Biol 26: 1465‐1472, 2006.
 289. Kobayashi T , Hamano K , Li T‐S , Katoh T , Kobayashi S , Matsuzaki M , Esato K . Enhancement of angiogenesis by the implantation of self bone marrow cells in a rat ischemic heart model. J Surg Res 89: 189‐195, 2000.
 290. Kocher AA , Schuster MD , Szabolcs MJ , Takuma S , Burkhoff D , Wang J , Homma S , Edwards NM , Itescu S . Neovascularization of ischemic myocardium by human bone‐marrow‐derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 7: 430‐436, 2001.
 291. Koffler J , Kaufman‐Francis K , Shandalov Y , Egozi D , Pavlov DA , Landesberg A , Levenberg S . Improved vascular organization enhances functional integration of engineered skeletal muscle grafts. Proc Natl Acad Sci USA 108: 14789‐14794, 2011.
 292. Koh YJ , Koh BI , Kim H , Joo HJ , Jin HK , Jeon J , Choi C , Lee DH , Chung JH , Cho C‐H , Park WS , Ryu J‐K , Suh JK , Koh GY . Stromal vascular fraction from adipose tissue forms profound vascular network through the dynamic reassembly of blood endothelial cells. Arterioscler Thromb Vasc Biol 31: 1141‐1150, 2011.
 293. Koike N , Fukumura D , Gralla O , Au P , Schechner JS , Jain RK . Creation of long‐lasting blood vessels. Nature 428: 138‐139, 2004.
 294. Kolesky DB , Homan KA , Skylar‐Scott MA , Lewis JA . Three‐dimensional bioprinting of thick vascularized tissues. Proc Natl Acad Sci USA 113: 3179‐3184, 2016.
 295. Kolesky DB , Truby RL , Gladman AS , Busbee TA , Homan KA , Lewis JA . 3D bioprinting of vascularized, heterogeneous cell‐laden tissue constructs. Adv Mater 26: 3124‐3130, 2014.
 296. Kondo K , Shintani S , Shibata R , Murakami H , Murakami R , Imaizumi M , Kitagawa Y , Murohara T . Implantation of adipose‐derived regenerative cells enhances ischemia‐induced angiogenesis. Arterioscler Thromb Vasc Biol 29: 61‐66, 2009.
 297. Kong HJ , Kim ES , Huang Y‐C , Mooney DJ . Design of biodegradable hydrogel for the local and sustained delivery of angiogenic plasmid DNA. Pharm Res 25: 1230‐1238, 2008.
 298. Korff T , Augustin HG . Tensional forces in fibrillar extracellular matrices control directional capillary sprouting. J Cell Sci 112: 3249‐3258, 1999.
 299. Korpisalo P , Karvinen H , Rissanen TT , Kilpijoki J , Marjomäki V , Baluk P , McDonald DM , Cao Y , Eriksson U , Alitalo K , Ylä‐Herttuala S . Vascular endothelial growth factor‐A and platelet‐derived growth factor‐B combination gene therapy prolongs angiogenic effects via recruitment of interstitial mononuclear cells and paracrine effects rather than improved pericyte coverage of angiogenic vessels. Circ Res 103: 1092‐1099, 2008.
 300. Koshima I , Yamamoto T , Narushima M , Mihara M , Iida T . Perforator flaps and supermicrosurgery. Clin Plast Surg 37: 683‐689, 2010.
 301. Krause DS , Theise ND , Collector MI , Henegariu O , Hwang S , Gardner R , Neutzel S , Sharkis SJ . Multi‐organ, multi‐lineage engraftment by a single bone marrow‐derived stem cell. Cell 105: 369‐377, 2001.
 302. Kryger Z , Zhang F , Dogan T , Cheng C , Lineaweaver WC , Buncke HJ . The effects of VEGF on survival of a random flap in the rat: Examination of various routes of administration. Br J Plast Surg 53: 234‐239, 2000.
 303. Kubota Y , Kishi K , Satoh H , Tanaka T , Nakajima H , Nakajima T . Transplanted endothelial progenitor cells augment the survival areas of rat dorsal flaps. Cell Transplant 12: 647‐657, 2003.
 304. Kubota Y , Kleinman HK , Martin GR , Lawley TJ . Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary‐like structures. J Cell Biol 107: 1589‐1598, 1988.
 305. Kumar VA , Liu Q , Wickremasinghe NC , Shi S , Cornwright TT , Deng Y , Azares A , Moore AN , Acevedo‐Jake AM , Agudo NR , Pan S , Woodside DG , Vanderslice P , Willerson JT , Dixon RA , Hartgerink JD . Treatment of hind limb ischemia using angiogenic peptide nanofibers. Biomaterials 98: 113‐119, 2016.
 306. Kumar VA , Taylor NL , Shi S , Wang BK , Jalan AA , Kang MK , Wickremasinghe NC , Hartgerink JD . Highly angiogenic peptide nanofibers. ACS Nano 9: 860‐868, 2015.
 307. Kunig AM , Balasubramaniam V , Markham NE , Morgan D , Montgomery G , Grover TR , Abman SH . Recombinant human VEGF treatment enhances alveolarization after hyperoxic lung injury in neonatal rats. Am J Physiol Lung Cell Mol Physiol 289: L529‐L535, 2005.
 308. Kurita J , Miyamoto M , Ishii Y , Aoyama J , Takagi G , Naito Z , Tabata Y , Ochi M , Shimizu K . Enhanced vascularization by controlled release of platelet‐rich plasma impregnated in biodegradable gelatin hydrogel. Ann Thorac Surg 92: 837‐844; discussion 844, 2011.
 309. Laham RJ , Oettgen P . Bone marrow transplantation for the heart: Fact or fiction? Lancet 361: 11‐12, 2003.
 310. Laham RJ , Rezaee M , Post M , Novicki D , Sellke FW , Pearlman JD , Simons M , Hung D . Intrapericardial delivery of fibroblast growth factor‐2 induces neovascularization in a porcine model of chronic myocardial ischemia. J Pharmacol Exp Ther 292: 795‐802, 2000.
 311. Lähteenvuo J , Ylä‐Herttuala S . Advances and challenges in cardiovascular gene therapy. Hum Gene Ther 28: 1024‐1032, 2017.
 312. Lähteenvuo JE , Lähteenvuo MT , Kivelä A , Rosenlew C , Falkevall A , Klar J , Heikura T , Rissanen TT , Vähäkangas E , Korpisalo P , Enholm B , Carmeliet P , Alitalo K , Eriksson U , Ylä‐Herttuala S . Vascular endothelial growth factor‐B induces myocardium‐specific angiogenesis and arteriogenesis via vascular endothelial growth factor receptor‐1‐ and neuropilin receptor‐1‐dependent mechanisms. Circulation 119: 845‐856, 2009.
 313. Landis EM . Micro‐injection studies of capillary permeability. II. The relation between capillary pressure and the rate at which fluid passes through the walls of single capillaries. Am J Physiol 82: 217‐238, 1927.
 314. Larsen M , Willems WF , Pelzer M , Friedrich PF , Yaszemski MJ , Bishop AT . Augmentation of surgical angiogenesis in vascularized bone allotransplants with host‐derived a/v bundle implantation, fibroblast growth factor‐2, and vascular endothelial growth factor administration. J Orthop Res 28: 1015‐1021, 2010.
 315. Laschke MW , Grässer C , Kleer S , Scheuer C , Eglin D , Alini M , Menger MD . Adipose tissue‐derived microvascular fragments from aged donors exhibit an impaired vascularisation capacity. Eur Cell Mater 28: 287‐298, 2014.
 316. Laschke MW , Kleer S , Scheuer C , Schuler S , Garcia P , Eglin D , Alini M , Menger MD . Vascularisation of porous scaffolds is improved by incorporation of adipose tissue‐derived microvascular fragments. Eur Cell Mater 24: 266‐277, 2012.
 317. Laschke MW , Mussawy H , Schuler S , Kazakov A , Rücker M , Eglin D , Alini M , Menger MD . Short‐term cultivation of in situ prevascularized tissue constructs accelerates inosculation of their preformed microvascular networks after implantation into the host tissue. Tissue Eng A 17: 841‐853, 2011.
 318. Lazarous DF , Scheinowitz M , Shou M , Hodge E , Rajanayagam S , Hunsberger S , Robison WG, Jr. , Stiber JA , Correa R , Epstein SE , Unger EF . Effects of chronic systemic administration of basic fibroblast growth factor on collateral development in the canine heart. Circulation 91: 145‐153, 1995.
 319. Lazarous DF , Shou M , Scheinowitz M , Hodge E , Thirumurti V , Kitsiou AN , Stiber JA , Lobo AD , Hunsberger S , Guetta E , Epstein SE , Unger EF . Comparative effects of basic fibroblast growth factor and vascular endothelial growth factor on coronary collateral development and the arterial response to injury. Circulation 94: 1074‐1082, 1996.
 320. Lazarous DF , Shou M , Stiber JA , Dadhania DM , Thirumurti V , Hodge E , Unger EF . Pharmacodynamics of basic fibroblast growth factor: Route of administration determines myocardial and systemic distribution. Cardiovasc Res 36: 78‐85, 1997.
 321. Le Ricousse‐Roussanne S , Barateau V , Contreres J‐O , Boval B , Kraus‐Berthier L , Tobelem G . Ex vivo differentiated endothelial and smooth muscle cells from human cord blood progenitors home to the angiogenic tumor vasculature. Cardiovasc Res 62: 176‐184, 2004.
 322. Leach JK , Kaigler D , Wang Z , Krebsbach PH , Mooney DJ . Coating of VEGF‐releasing scaffolds with bioactive glass for angiogenesis and bone regeneration. Biomaterials 27: 3249‐3255, 2006.
 323. Lee H , Cusick RA , Browne F , Ho Kim T , Ma PX , Utsunomiya H , Langer R , Vacanti JP . Local delivery of basic fibroblast growth factor increases both angiogenesis and engraftment of hepatocytes in tissue‐engineered polymer devices. Transplantation 73: 1589‐1593, 2002.
 324. Lee HJ , Cho C‐H , Hwang S‐J , Choi H‐H , Kim K‐T , Ahn SY , Kim J‐H , Oh J‐L , Lee GM , Koh GY . Biological characterization of angiopoietin‐3 and angiopoietin‐4. FASEB J 18: 1200‐1208, 2004.
 325. Lee J , Bhang SH , Park H , Kim B‐S , Lee KY . Active blood vessel formation in the ischemic hindlimb mouse model using a microsphere/hydrogel combination system. Pharm Res 27: 767‐774, 2010.
 326. Lee J , Lee KY . Local and sustained vascular endothelial growth factor delivery for angiogenesis using an injectable system. Pharm Res 26: 1739‐1744, 2009.
 327. Lee KY , Peters MC , Mooney DJ . Comparison of vascular endothelial growth factor and basic fibroblast growth factor on angiogenesis in SCID mice. J Control Release 87: 49‐56, 2003.
 328. Lee M‐J , Thangada S , Claffey KP , Ancellin N , Liu CH , Kluk M , Volpi M , Sha'afi RI , Hla T . Vascular endothelial cell adherens junction assembly and morphogenesis induced by sphingosine‐1‐phosphate. Cell 99: 301‐312, 1999.
 329. Lee RJ , Springer ML , Blanco‐Bose WE , Shaw R , Ursell PC , Blau HM . VEGF gene delivery to myocardium: Deleterious effects of unregulated expression. Circulation 102: 898‐901, 2000.
 330. Lee VK , Kim DY , Ngo H , Lee Y , Seo L , Yoo S‐S , Vincent PA , Dai G . Creating perfused functional vascular channels using 3D bio‐printing technology. Biomaterials 35: 8092‐8102, 2014.
 331. Lee VK , Lanzi AM , Ngo H , Yoo S‐S , Vincent PA , Dai G . Generation of multi‐scale vascular network system within 3D hydrogel using 3D bio‐printing technology. Cell Mol Bioeng 7: 460‐472, 2014.
 332. Lesman A , Habib M , Caspi O , Gepstein A , Arbel G , Levenberg S , Gepstein L . Transplantation of a tissue‐engineered human vascularized cardiac muscle. Tissue Eng A 16: 115‐125, 2010.
 333. Leung AD , Wong KHK , Tien J . Plasma expanders stabilize human microvessels in microfluidic scaffolds. J Biomed Mater Res A 100: 1815–1822, 2012.
 334. Levenberg S , Rouwkema J , Macdonald M , Garfein ES , Kohane DS , Darland DC , Marini R , van Blitterswijk CA , Mulligan RC , D'Amore PA , Langer R . Engineering vascularized skeletal muscle tissue. Nat Biotechnol 23: 879‐884, 2005.
 335. Li J , Post M , Volk R , Gao Y , Li M , Metais C , Sato K , Tsai J , Aird W , Rosenberg RD , Hampton TG , Sellke F , Carmeliet P , Simons M . PR39, a peptide regulator of angiogenesis. Nat Med 6: 49‐55, 2000.
 336. Li M‐T , Ruehle MA , Stevens HY , Servies N , Willett NJ , Karthikeyakannan S , Warren GL , Guldberg RE , Krishnan L . Skeletal myoblast‐seeded vascularized tissue scaffolds in the treatment of a large volumetric muscle defect in the rat biceps femoris muscle. Tissue Eng A 23: 989‐1000, 2017.
 337. Li R‐K , Mickle DAG , Weisel RD , Mohabeer MK , Zhang J , Rao V , Li G , Merante F , Jia Z‐Q . Natural history of fetal rat cardiomyocytes transplanted into adult rat myocardial scar tissue. Circulation 96: II‐179‐II‐186; discussion II‐186‐II‐187, 1997.
 338. Li X , Tjwa M , Moons L , Fons P , Noel A , Ny A , Zhou JM , Lennartsson J , Li H , Luttun A , Pontén A , Devy L , Bouché A , Oh H , Manderveld A , Blacher S , Communi D , Savi P , Bono F , Dewerchin M , Foidart J‐M , Autiero M , Herbert J‐M , Collen D , Heldin C‐H , Eriksson U , Carmeliet P . Revascularization of ischemic tissues by PDGF‐CC via effects on endothelial cells and their progenitors. J Clin Invest 115: 118‐127, 2005.
 339. Li X , Tjwa M , Van Hove I , Enholm B , Neven E , Paavonen K , Jeltsch M , Juan TD , Sievers RE , Chorianopoulos E , Wada H , Vanwildemeersch M , Noel A , Foidart J‐M , Springer ML , von Degenfeld G , Dewerchin M , Blau HM , Alitalo K , Eriksson U , Carmeliet P , Moons L . Reevaluation of the role of VEGF‐B suggests a restricted role in the revascularization of the ischemic myocardium. Arterioscler Thromb Vasc Biol 28: 1614‐1620, 2008.
 340. Li X , Xia J , Nicolescu CT , Massidda MW , Ryan TJ , Tien J . Engineering of microscale vascularized fat that responds to perfusion with lipoactive hormones. Biofabrication 11: 014101, 2019.
 341. Li X , Xu J , Nicolescu CT , Marinelli JT , Tien J . Generation, endothelialization, and microsurgical suture anastomosis of strong 1‐mm‐diameter collagen tubes. Tissue Eng A 23: 335‐344, 2017.
 342. Li Y , Song Y , Zhao L , Gaidosh G , Laties AM , Wen R . Direct labeling and visualization of blood vessels with lipophilic carbocyanine dye DiI. Nat Protoc 3: 1703‐1708, 2008.
 343. Lin R‐Z , Lee CN , Moreno‐Luna R , Neumeyer J , Piekarski B , Zhou P , Moses MA , Sachdev M , Pu WT , Emani S , Melero‐Martin JM . Host non‐inflammatory neutrophils mediate the engraftment of bioengineered vascular networks. Nat Biomed Eng 1: 0081, 2017.
 344. Lin Y , Weisdorf DJ , Solovey A , Hebbel RP . Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest 105: 71‐77, 2000.
 345. Lindblom P , Gerhardt H , Liebner S , Abramsson A , Enge M , Hellström M , Bäckström G , Fredriksson S , Landegren U , Nyström HC , Bergström G , Dejana E , Östman A , Lindahl P , Betsholtz C . Endothelial PDGF‐B retention is required for proper investment of pericytes in the microvessel wall. Genes Dev 17: 1835‐1840, 2003.
 346. Linville RM , Boland NF , Covarrubias G , Price GM , Tien J . Physical and chemical signals that promote vascularization of capillary‐scale channels. Cell Mol Bioeng 9: 73‐84, 2016.
 347. Linville RM , DeStefano JG , Sklar MB , Xu Z , Farrell AM , Bogorad MI , Chu C , Walczak P , Cheng L , Mahairaki V , Whartenby KA , Calabresi PA , Searson PC . Human iPSC‐derived blood‐brain barrier microvessels: Validation of barrier function and endothelial cell behavior. Biomaterials 190‐191: 24‐37, 2019.
 348. Lohela M , Heloterä H , Haiko P , Dumont DJ , Alitalo K . Transgenic induction of vascular endothelial growth factor‐C is strongly angiogenic in mouse embryos but leads to persistent lymphatic hyperplasia in adult tissues. Am J Pathol 173: 1891‐1901, 2008.
 349. Lokmic Z , Stillaert F , Morrison WA , Thompson EW , Mitchell GM . An arteriovenous loop in a protected space generates a permanent, highly vascular, tissue‐engineered construct. FASEB J 21: 511‐522, 2007.
 350. Lopez JJ , Edelman ER , Stamler A , Hibberd MG , Prasad P , Caputo RP , Carrozza JP , Douglas PS , Sellke FW , Simons M . Basic fibroblast growth factor in a porcine model of chronic myocardial ischemia: A comparison of angiographic, echocardiographic and coronary flow parameters. J Pharmacol Exp Ther 282: 385‐390, 1997.
 351. Losordo DW , Dimmeler S . Therapeutic angiogenesis and vasculogenesis for ischemic disease. Part I: Angiogenic cytokines. Circulation 109: 2487‐2491, 2004.
 352. Losordo DW , Vale PR , Symes JF , Dunnington CH , Esakof DD , Maysky M , Ashare AB , Lathi K , Isner JM . Gene therapy for myocardial angiogenesis: Initial clinical results with direct myocardial injection of phVEGF165 as sole therapy for myocardial ischemia. Circulation 98: 2800‐2804, 1998.
 353. Lu F , Li J , Gao J , Ogawa R , Ou C , Yang B , Fu B . Improvement of the survival of human autologous fat transplantation by using VEGF‐transfected adipose‐derived stem cells. Plast Reconstr Surg 124: 1437‐1446, 2009.
 354. Luttun A , Tjwa M , Moons L , Wu Y , Angelillo‐Scherrer A , Liao F , Nagy JA , Hooper A , Priller J , De Klerck B , Compernolle V , Daci E , Bohlen P , Dewerchin M , Herbert J‐M , Fava R , Matthys P , Carmeliet G , Collen D , Dvorak HF , Hicklin DJ , Carmeliet P . Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti‐Flt1. Nat Med 8: 831‐840, 2002.
 355. Lyden D , Hattori K , Dias S , Costa C , Blaikie P , Butros L , Chadburn A , Heissig B , Marks W , Witte L , Wu Y , Hicklin D , Zhu Z , Hackett NR , Crystal RG , Moore MA , Hajjar KA , Manova K , Benezra R , Rafii S . Impaired recruitment of bone‐marrow‐derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 7: 1194‐1201, 2001.
 356. Mäkinen T , Veikkola T , Mustjoki S , Karpanen T , Catimel B , Nice EC , Wise L , Mercer A , Kowalski H , Kerjaschki D , Stacker SA , Achen MG , Alitalo K . Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF‐C/D receptor VEGFR‐3. EMBO J 20: 4762‐4773, 2001.
 357. Malekan R , Reynolds C , Narula N , Kelley ST , Suzuki Y , Bridges CR . Angiogenesis in transmyocardial laser revascularization: A nonspecific response to injury. Circulation 98: II62‐II65; discussion II66, 1998.
 358. Maniotis AJ , Folberg R , Hess A , Seftor EA , Gardner LMG , Pe'er J , Trent JM , Meltzer PS , Hendrix MJC . Vascular channel formation by human melanoma cells in vivo and in vitro: Vasculogenic mimicry. Am J Pathol 155: 739‐752, 1999.
 359. Manson PN , Im MJ , Myers RAM , Hoopes JE . Improved capillaries by hyperbaric oxygen in skin flaps. Surg Forum 31: 564‐566, 1980.
 360. Marino D , Luginbühl J , Scola S , Meuli M , Reichmann E . Bioengineering dermo‐epidermal skin grafts with blood and lymphatic capillaries. Sci Transl Med 6: 221ra214, 2014.
 361. Marshall AJ , Irvin CA , Barker T , Sage EH , Hauch KD , Ratner BD . Biomaterials with tightly controlled pore size that promote vascular in‐growth. Polym Prepr 45: 100‐101, 2004.
 362. Martino MM , Briquez PS , Güç E , Tortelli F , Kilarski WW , Metzger S , Rice JJ , Kuhn GA , Müller R , Swartz MA , Hubbell JA . Growth factors engineered for super‐affinity to the extracellular matrix enhance tissue healing. Science 343: 885‐888, 2014.
 363. Marui A , Kanematsu A , Yamahara K , Doi K , Kushibiki T , Yamamoto M , Itoh H , Ikeda T , Tabata Y , Komeda M . Simultaneous application of basic fibroblast growth factor and hepatocyte growth factor to enhance the blood vessels formation. J Vasc Surg 41: 82‐90, 2005.
 364. Maruyama K , Ii M , Cursiefen C , Jackson DG , Keino H , Tomita M , Van Rooijen N , Takenaka H , D'Amore PA , Stein‐Streilein J , Losordo DW , Streilein JW . Inflammation‐induced lymphangiogenesis in the cornea arises from CD11b‐positive macrophages. J Clin Invest 115: 2363‐2372, 2005.
 365. Marx RE , Ehler WJ , Tayapongsak P , Pierce LW . Relationship of oxygen dose to angiogenesis induction in irradiated tissue. Am J Surg 160: 519‐524, 1990.
 366. Masaki I , Yonemitsu Y , Yamashita A , Sata S , Tanii M , Komori K , Nakagawa K , Hou X , Nagai Y , Hasegawa M , Sugimachi K , Sueishi K . Angiogenic gene therapy for experimental critical limb ischemia: Acceleration of limb loss by overexpression of vascular endothelial growth factor 165 but not of fibroblast growth factor‐2. Circ Res 90: 966‐973, 2002.
 367. McAuslan BR , Reilly WG , Hannan GN , Gole GA . Angiogenic factors and their assay: Activity of formyl methionyl leucyl phenylalanine, adenosine diphosphate, heparin, copper, and bovine endothelium stimulating factor. Microvasc Res 26: 323‐338, 1983.
 368. McCluer RH , Evans JE , Williams M , Griffith AL , Catsimpoolas N . Characterization of feline omentum lipids. Lipids 22: 229‐235, 1987.
 369. McDonald DM , Munn L , Jain RK . Vasculogenic mimicry: How convincing, how novel, and how significant? Am J Pathol 156: 383‐388, 2000.
 370. Meier P , Zierler KL . On the theory of the indicator‐dilution method for measurement of blood flow and volume. J Appl Physiol 6: 731‐744, 1954.
 371. Melero‐Martin JM , De Obaldia ME , Allen P , Dudley AC , Klagsbrun M , Bischoff J . Host myeloid cells are necessary for creating bioengineered human vascular networks in vivo . Tissue Eng A 16: 2457‐2466, 2010.
 372. Melero‐Martin JM , Khan ZA , Picard A , Wu X , Paruchuri S , Bischoff J . In vivo vasculogenic potential of human blood‐derived endothelial progenitor cells. Blood 109: 4761‐4768, 2007.
 373. Meltzer T , Myers B . The effect of hyperbaric oxygen on the bursting strength and rate of vascularization of skin wounds in the rat. Am Surg 52: 659‐662, 1986.
 374. Mertsching H , Schanz J , Steger V , Schandar M , Schenk M , Hansmann J , Dally I , Friedel G , Walles T . Generation and transplantation of an autologous vascularized bioartificial human tissue. Transplantation 88: 203‐210, 2009.
 375. Messina A , Bortolotto SK , Cassell OCS , Kelly J , Abberton KM , Morrison WA . Generation of a vascularized organoid using skeletal muscle as the inductive source. FASEB J 19: 1570‐1572, 2005.
 376. Mian R , Morrison WA , Hurley JV , Penington AJ , Romeo R , Tanaka Y , Knight KR . Formation of new tissue from an arteriovenous loop in the absence of added extracellular matrix. Tissue Eng 6: 595‐603, 2000.
 377. Michel CC . Fluid movements through capillary walls. In: Renkin EM , Michel CC , editors. Handbook of Physiology; Section 2: The Cardiovascular System. Bethesda, MD: American Physiological Society, 1984, pp. 375‐409.
 378. Michel CC , Curry FE . Microvascular permeability. Physiol Rev 79: 703‐761, 1999.
 379. Miles AA , Miles EM . Vascular reactions to histamine, histamine‐liberator and leukotaxine in the skin of guinea‐pigs. J Physiol 118: 228‐257, 1952.
 380. Milkiewicz M , Brown MD , Egginton S , Hudlicka O . Association between shear stress, angiogenesis, and VEGF in skeletal muscles in vivo . Microcirculation 8: 229‐241, 2001.
 381. Milkiewicz M , Pugh CW , Egginton S . Inhibition of endogenous HIF inactivation induces angiogenesis in ischaemic skeletal muscles of mice. J Physiol 560: 21‐26, 2004.
 382. Miller JS , Stevens KR , Yang MT , Baker BM , Nguyen D‐HT , Cohen DM , Toro E , Chen AA , Galie PA , Yu X , Chaturvedi R , Bhatia SN , Chen CS . Rapid casting of patterned vascular networks for perfusable engineered three‐dimensional tissues. Nat Mater 11: 768‐774, 2012.
 383. Mirabella T , MacArthur JW , Cheng D , Ozaki CK , Woo YJ , Yang M , Chen CS . 3D‐printed vascular networks direct therapeutic angiogenesis in ischaemia. Nat Biomed Eng 1: 0083, 2017.
 384. Miranville A , Heeschen C , Sengenès C , Curat CA , Busse R , Bouloumié A . Improvement of postnatal neovascularization by human adipose tissue‐derived stem cells. Circulation 110: 349‐355, 2004.
 385. Mironov V , Boland T , Trusk T , Forgacs G , Markwald RR . Organ printing: Computer‐aided jet‐based 3D tissue engineering. Trends Biotechnol 21: 157‐161, 2003.
 386. Modi S , Stanton AWB , Mortimer PS , Levick JR . Clinical assessment of human lymph flow using removal rate constants of interstitial macromolecules: A critical review of lymphoscintigraphy. Lymphat Res Biol 5: 183‐202, 2007.
 387. Montesano R , Orci L , Vassalli P . In vitro rapid organization of endothelial cells into capillary‐like networks is promoted by collagen matrices. J Cell Biol 97: 1648‐1652, 1983.
 388. Mooney DJ , Sano K , Kaufmann PM , Majahod K , Schloo B , Vacanti JP , Langer R . Long‐term engraftment of hepatocytes transplanted on biodegradable polymer sponges. J Biomed Mater Res 37: 413‐420, 1997.
 389. Moore MAS , Metcalf D . Ontogeny of the haemopoietic system: Yolk sac origin of in vivo and in vitro colony forming cells in the developing mouse embryo. Br J Haematol 18: 279‐296, 1970.
 390. Mori N , Morimoto Y , Takeuchi S . Skin integrated with perfusable vascular channels on a chip. Biomaterials 116: 48‐56, 2017.
 391. Morin KT , Smith AO , Davis GE , Tranquillo RT . Aligned human microvessels formed in 3D fibrin gel by constraint of gel contraction. Microvasc Res 90: 12‐22, 2013.
 392. Morin KT , Tranquillo RT . Guided sprouting from endothelial spheroids in fibrin gels aligned by magnetic fields and cell‐induced gel compaction. Biomaterials 32: 6111‐6118, 2011.
 393. Morrison WA , Marre D , Grinsell D , Batty A , Trost N , O'Connor AJ . Creation of a large adipose tissue construct in humans using a tissue‐engineering chamber: A step forward in the clinical application of soft tissue engineering. EBioMedicine 6: 238‐245, 2016.
 394. Morritt AN , Bortolotto SK , Dilley RJ , Han X , Kompa AR , McCombe D , Wright CE , Itescu S , Angus JA , Morrison WA . Cardiac tissue engineering in an in vivo vascularized chamber. Circulation 115: 353‐360, 2007.
 395. Moya ML , Hsu Y‐H , Lee AP , Hughes CCW , George SC . In vitro perfused human capillary networks. Tissue Eng C 19: 730‐737, 2013.
 396. Mühlhauser J , Merrill MJ , Pili R , Maeda H , Bacic M , Bewig B , Passaniti A , Edwards NA , Crystal RG , Capogrossi MC . VEGF165 expressed by a replication‐deficient recombinant adenovirus vector induces angiogenesis in vivo . Circ Res 77: 1077‐1086, 1995.
 397. Mühlhauser J , Pili R , Merrill MJ , Maeda H , Passaniti A , Crystal RG , Capogrossi MC . In vivo angiogenesis induced by recombinant adenovirus vectors coding either for secreted or nonsecreted forms of acidic fibroblast growth factor. Hum Gene Ther 6: 1457‐1465, 1995.
 398. Mund JA , Estes ML , Yoder MC , Ingram DA, Jr. , Case J . Flow cytometric identification and functional characterization of immature and mature circulating endothelial cells. Arterioscler Thromb Vasc Biol 32: 1045‐1053, 2012.
 399. Murayama T , Tepper OM , Silver M , Ma H , Losordo DW , Isner JM , Asahara T , Kalka C . Determination of bone marrow‐derived endothelial progenitor cell significance in angiogenic growth factor‐induced neovascularization in vivo . Exp Hematol 30: 967‐972, 2002.
 400. Murohara T , Asahara T , Silver M , Bauters C , Masuda H , Kalka C , Kearney M , Chen D , Symes JF , Fishman MC , Huang PL , Isner JM . Nitric oxide synthase modulates angiogenesis in response to tissue ischemia. J Clin Invest 101: 2567‐2578, 1998.
 401. Murohara T , Ikeda H , Duan J , Shintani S , Sasaki K , Eguchi H , Onitsuka I , Matsui K , Imaizumi T . Transplanted cord blood‐derived endothelial precursor cells augment postnatal neovascularization. J Clin Invest 105: 1527‐1536, 2000.
 402. Mustoe TA , Pierce GF , Morishima C , Deuel TF . Growth factor‐induced acceleration of tissue repair through direct and inductive activities in a rabbit dermal ulcer model. J Clin Invest 87: 694‐703, 1991.
 403. Mustoe TA , Pierce GF , Thomason A , Gramates P , Sporn MB , Deuel TF . Accelerated healing of incisional wounds in rats induced by transforming growth factor‐β. Science 237: 1333‐1336, 1987.
 404. Mustoe TA , Tae Ahn S , Tarpley JE , Pierce GF . Role of hypoxia in growth factor responses: Differential effects of basic fibroblast growth factor and platelet‐derived growth factor in an ischemic wound model. Wound Repair Regen 2: 277‐283, 1994.
 405. Nagy JA , Vasile E , Feng D , Sundberg C , Brown LF , Detmar MJ , Lawitts JA , Benjamin L , Tan X , Manseau EJ , Dvorak AM , Dvorak HF . Vascular permeability factor/vascular endothelial growth factor induces lymphangiogenesis as well as angiogenesis. J Exp Med 196: 1497‐1506, 2002.
 406. Nagy JA , Vasile E , Feng D , Sundberg C , Brown LF , Manseau EJ , Dvorak AM , Dvorak HF . VEGF‐A induces angiogenesis, arteriogenesis, lymphangiogenesis, and vascular malformations. Cold Spring Harb Symp Quant Biol 67: 227‐237, 2002.
 407. Nakasa T , Ishida O , Sunagawa T , Nakamae A , Yasunaga Y , Agung M , Ochi M . Prefabrication of vascularized bone graft using a combination of fibroblast growth factor‐2 and vascular bundle implantation into a novel interconnected porous calcium hydroxyapatite ceramic. J Biomed Mater Res A 75: 350‐355, 2005.
 408. Nakasa T , Ishida O , Sunagawa T , Nakamae A , Yokota K , Adachi N , Ochi M . Feasibility of prefabricated vascularized bone graft using the combination of FGF‐2 and vascular bundle implantation within hydroxyapatite for osteointegration. J Biomed Mater Res A 85: 1090‐1095, 2008.
 409. Nashimoto Y , Hayashi T , Kunita I , Nakamasu A , Torisawa Y , Nakayama M , Takigawa‐Imamura H , Kotera H , Nishiyama K , Miura T , Yokokawa R . Integrating perfusable vascular networks with a three‐dimensional tissue in a microfluidic device. Integr Biol 9: 506‐518, 2017.
 410. Ng CP , Helm CL , Swartz MA . Interstitial flow differentially stimulates blood and lymphatic endothelial cell morphogenesis in vitro . Microvasc Res 68: 258‐264, 2004.
 411. Nguyen D‐HT , Stapleton SC , Yang MT , Cha SS , Choi CK , Galie PA , Chen CS . Biomimetic model to reconstitute angiogenic sprouting morphogenesis in vitro . Proc Natl Acad Sci USA 110: 6712‐6717, 2013.
 412. Nicosia RF . Angiogenesis and the formation of lymphaticlike channels in cultures of thoracic duct. In Vitro Cell Dev Biol 23: 167‐174, 1987.
 413. Nicosia RF , Ottinetti A . Growth of microvessels in serum‐free matrix culture of rat aorta. A quantitative assay of angiogenesis in vitro . Lab Invest 63: 115‐122, 1990.
 414. Nih LR , Gojgini S , Carmichael ST , Segura T . Dual‐function injectable angiogenic biomaterial for the repair of brain tissue following stroke. Nat Mater 17: 642‐651, 2018.
 415. Nishikawa S‐I , Nishikawa S , Hirashima M , Matsuyoshi N , Kodama H . Progressive lineage analysis by cell sorting and culture identifies FLK1+VE‐cadherin+ cells at a diverging point of endothelial and hemopoietic lineages. Development 125: 1747‐1757, 1998.
 416. Nör JE , Peters MC , Christensen JB , Sutorik MM , Linn S , Khan MK , Addison CL , Mooney DJ , Polverini PJ . Engineering and characterization of functional human microvessels in immunodeficient mice. Lab Invest 81: 453‐463, 2001.
 417. Nottebaert M , Lane JM , Juhn A , Burstein A , Schneider R , Klein C , Sinn RS , Dowling C , Cornell C , Catsimpoolas N . Omental angiogenic lipid fraction and bone repair. An experimental study in the rat. J Orthop Res 7: 157‐169, 1989.
 418. Numaguchi Y , Sone T , Okumura K , Ishii M , Morita Y , Kubota R , Yokouchi K , Imai H , Harada M , Osanai H , Kondo T , Murohara T . The impact of the capability of circulating progenitor cell to differentiate on myocardial salvage in patients with primary acute myocardial infarction. Circulation 114: I114‐I119, 2006.
 419. O'Reilly MS , Holmgren L , Chen C , Folkman J . Angiostatin induces and sustains dormancy of human primary tumors in mice. Nat Med 2: 689‐692, 1996.
 420. Ogawa K , Asonuma K , Inomata Y , Kim I , Ikada Y , Tabata Y , Tanaka K . The efficacy of prevascularization by basic FGF for hepatocyte transplantation using polymer devices in rats. Cell Transplant 10: 723‐729, 2001.
 421. Oh S‐J , Jeltsch MM , Birkenhäger R , McCarthy JEG , Weich HA , Christ B , Alitalo K , Wilting J . VEGF and VEGF‐C: Specific induction of angiogenesis and lymphangiogenesis in the differentiated avian chorioallantoic membrane. Dev Biol 188: 96‐109, 1997.
 422. Orlic D , Kajstura J , Chimenti S , Jakoniuk I , Anderson SM , Li B , Pickel J , McKay R , Nadal‐Ginard B , Bodine DM , Leri A , Anversa P . Bone marrow cells regenerate infarcted myocardium. Nature 410: 701‐705, 2001.
 423. Ott HC , Clippinger B , Conrad C , Schuetz C , Pomerantseva I , Ikonomou L , Kotton D , Vacanti JP . Regeneration and orthotopic transplantation of a bioartificial lung. Nat Med 16: 927‐933, 2010.
 424. Ott HC , Matthiesen TS , Goh S‐K , Black LD , Kren SM , Netoff TI , Taylor DA . Perfusion‐decellularized matrix: Using nature's platform to engineer a bioartificial heart. Nat Med 14: 213‐221, 2008.
 425. Oyama O , Sugimoto N , Qi X , Takuwa N , Mizugishi K , Koizumi J , Takuwa Y . The lysophospholipid mediator sphingosine‐1‐phosphate promotes angiogenesis in vivo in ischaemic hindlimbs of mice. Cardiovasc Res 78: 301‐307, 2008.
 426. Ozawa CR , Banfi A , Glazer NL , Thurston G , Springer ML , Kraft PE , McDonald DM , Blau HM . Microenvironmental VEGF concentration, not total dose, determines a threshold between normal and aberrant angiogenesis. J Clin Invest 113: 516‐527, 2004.
 427. Padubidri A , Browne E, Jr . Effect of vascular endothelial growth factor (VEGF) on survival of random extension of axial pattern skin flaps in the rat. Ann Plast Surg 37: 604‐611, 1996.
 428. Pappenheimer JR , Soto‐Rivera A . Effective osmotic pressure of the plasma proteins and other quantities associated with the capillary circulation in the hindlimbs of cats and dogs. Am J Physiol 152: 471‐491, 1948.
 429. Passaniti A , Taylor RM , Pili R , Guo Y , Long PV , Haney JA , Pauly RR , Grant DS , Martin GR . A simple, quantitative method for assessing angiogenesis and antiangiogenic agents using reconstituted basement membrane, heparin, and fibroblast growth factor. Lab Invest 67: 519‐528, 1992.
 430. Pearlman JD , Hibberd MG , Chuang ML , Harada K , Lopez JJ , Gladstone SR , Friedman M , Sellke FW , Simons M . Magnetic resonance mapping demonstrates benefits of VEGF‐induced myocardial angiogenesis. Nat Med 1: 1085‐1089, 1995.
 431. Peichev M , Naiyer AJ , Pereira D , Zhu Z , Lane WJ , Williams M , Oz MC , Hicklin DJ , Witte L , Moore MA , Rafii S . Expression of VEGFR‐2 and AC133 by circulating human CD34+ cells identifies a population of functional endothelial precursors. Blood 95: 952‐958, 2000.
 432. Peirce SM , Price RJ , Skalak TC . Spatial and temporal control of angiogenesis and arterialization using focal applications of VEGF164 and Ang‐1* . Am J Physiol Heart Circ Physiol 286: H918‐H925, 2004.
 433. Pepper AR , Gala‐Lopez B , Pawlick R , Merani S , Kin T , Shapiro AMJ . A prevascularized subcutaneous device‐less site for islet and cellular transplantation. Nat Biotechnol 33: 518‐523, 2015.
 434. Pepper MS , Ferrara N , Orci L , Montesano R . Potent synergism between vascular endothelial growth factor and basic fibroblast growth factor in the induction of angiogenesis in vitro . Biochem Biophys Res Commun 189: 824‐831, 1992.
 435. Peters MC , Isenberg BC , Rowley JA , Mooney DJ . Release from alginate enhances the biological activity of vascular endothelial growth factor. J Biomater Sci Polym Ed 9: 1267‐1278, 1998.
 436. Peters MC , Polverini PJ , Mooney DJ . Engineering vascular networks in porous polymer matrices. J Biomed Mater Res 60: 668‐678, 2002.
 437. Petersen TH , Calle EA , Zhao L , Lee EJ , Gui L , Raredon MB , Gavrilov K , Yi T , Zhuang ZW , Breuer C , Herzog E , Niklason LE . Tissue‐engineered lungs for in vivo implantation. Science 329: 538‐541, 2010.
 438. Pettersson A , Nagy JA , Brown LF , Sundberg C , Morgan E , Jungles S , Carter R , Krieger JE , Manseau EJ , Harvey VS , Eckelhoefer IA , Feng D , Dvorak AM , Mulligan RC , Dvorak HF . Heterogeneity of the angiogenic response induced in different normal adult tissues by vascular permeability factor/vascular endothelial growth factor. Lab Invest 80: 99‐115, 2000.
 439. Phelps EA , Landázuri N , Thulé PM , Taylor WR , García AJ . Bioartificial matrices for therapeutic vascularization. Proc Natl Acad Sci USA 107: 3323‐3328, 2010.
 440. Pieper JS , Hafmans T , van Wachem PB , van Luyn MJA , Brouwer LA , Veerkamp JH , van Kuppevelt TH . Loading of collagen‐heparan sulfate matrices with bFGF promotes angiogenesis and tissue generation in rats. J Biomed Mater Res 62: 185‐194, 2002.
 441. Pierce GF , Tarpley JE , Yanagihara D , Mustoe TA , Fox GM , Thomason A . Platelet‐derived growth factor (BB homodimer), transforming growth factor‐β1, and basic fibroblast growth factor in dermal wound healing. Neovessel and matrix formation and cessation of repair. Am J Pathol 140: 1375‐1388, 1992.
 442. Piguet PF , Grau GE , Vassalli P . Subcutaneous perfusion of tumor necrosis factor induces local proliferation of fibroblasts, capillaries, and epidermal cells, or massive tissue necrosis. Am J Pathol 136: 103‐110, 1990.
 443. Pilia M , McDaniel JS , Guda T , Chen XK , Rhoads RP , Allen RE , Corona BT , Rathbone CR . Transplantation and perfusion of microvascular fragments in a rodent model of volumetric muscle loss injury. Eur Cell Mater 28: 11‐23; discussion 23‐24, 2014.
 444. Planat‐Benard V , Silvestre J‐S , Cousin B , André M , Nibbelink M , Tamarat R , Clergue M , Manneville C , Saillan‐Barreau C , Duriez M , Tedgui A , Levy B , Pénicaud L , Casteilla L . Plasticity of human adipose lineage cells toward endothelial cells: Physiological and therapeutic perspectives. Circulation 109: 656‐663, 2004.
 445. Polverini PJ , Cotran RS , Gimbrone MA, Jr. , Unanue ER . Activated macrophages induce vascular proliferation. Nature 269: 804‐806, 1977.
 446. Prasain N , Lee MR , Vemula S , Meador JL , Yoshimoto M , Ferkowicz MJ , Fett A , Gupta M , Rapp BM , Saadatzadeh MR , Ginsberg M , Elemento O , Lee Y , Voytik‐Harbin SL , Chung HM , Hong KS , Reid E , O'Neill CL , Medina RJ , Stitt AW , Murphy MP , Rafii S , Broxmeyer HE , Yoder MC . Differentiation of human pluripotent stem cells to cells similar to cord‐blood endothelial colony‐forming cells. Nat Biotechnol 32: 1151‐1157, 2014.
 447. Price GM , Chrobak KM , Tien J . Effect of cyclic AMP on barrier function of human lymphatic microvascular tubes. Microvasc Res 76: 46‐51, 2008.
 448. Price GM , Chu KK , Truslow JG , Tang‐Schomer MD , Golden AP , Mertz J , Tien J . Bonding of macromolecular hydrogels using perturbants. J Am Chem Soc 130: 6664‐6665, 2008.
 449. Price GM , Wong KHK , Truslow JG , Leung AD , Acharya C , Tien J . Effect of mechanical factors on the function of engineered human blood microvessels in microfluidic collagen gels. Biomaterials 31: 6182‐6189, 2010.
 450. Pu L‐Q , Sniderman AD , Arekat Z , Graham AM , Brassard R , Symes JF . Angiogenic growth factor and revascularization of the ischemic limb: Evaluation in a rabbit model. J Surg Res 54: 575‐583, 1993.
 451. Pu L‐Q , Sniderman AD , Brassard R , Lachapelle KJ , Graham AM , Lisbona R , Symes JF . Enhanced revascularization of the ischemic limb by angiogenic therapy. Circulation 88: 208‐215, 1993.
 452. Purhonen S , Palm J , Rossi D , Kaskenpää N , Rajantie I , Ylä‐Herttuala S , Alitalo K , Weissman IL , Salven P . Bone marrow‐derived circulating endothelial precursors do not contribute to vascular endothelium and are not needed for tumor growth. Proc Natl Acad Sci USA 105: 6620‐6625, 2008.
 453. Qiu Y , Ahn B , Sakurai Y , Hansen CE , Tran R , Mimche PN , Mannino RG , Ciciliano JC , Lamb TJ , Joiner CH , Ofori‐Acquah SF , Lam WA . Microvasculature‐on‐a‐chip for the long‐term study of endothelial barrier dysfunction and microvascular obstruction in disease. Nat Biomed Eng 2: 453–463, 2018.
 454. Rafii S , Butler JM , Ding B‐S . Angiocrine functions of organ‐specific endothelial cells. Nature 529: 316‐325, 2016.
 455. Raghavan S , Nelson CM , Baranski JD , Lim E , Chen CS . Geometrically controlled endothelial tubulogenesis in micropatterned gels. Tissue Eng A 16: 2255‐2263, 2010.
 456. Rana JS , Mannam A , Donnell‐Fink L , Gervino EV , Sellke FW , Laham RJ . Longevity of the placebo effect in the therapeutic angiogenesis and laser myocardial revascularization trials in patients with coronary heart disease. Am J Cardiol 95: 1456‐1459, 2005.
 457. Rashid MA , Akita S , Razzaque MS , Yoshimoto H , Ishihara H , Fujii T , Tanaka K , Taguchi T . Coadministration of basic fibroblast growth factor and sucrose octasulfate (sucralfate) facilitates the rat dorsal flap survival and viability. Plast Reconstr Surg 103: 941‐948, 1999.
 458. Raval Z , Losordo DW . Cell therapy of peripheral arterial disease: From experimental findings to clinical trials. Circ Res 112: 1288‐1302, 2013.
 459. Rehman J , Li J , Orschell CM , March KL . Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 107: 1164‐1169, 2003.
 460. Rehman J , Traktuev D , Li J , Merfeld‐Clauss S , Temm‐Grove CJ , Bovenkerk JE , Pell CL , Johnstone BH , Considine RV , March KL . Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 109: 1292‐1298, 2004.
 461. Richardson TP , Peters MC , Ennett AB , Mooney DJ . Polymeric system for dual growth factor delivery. Nat Biotechnol 19: 1029‐1034, 2001.
 462. Riemenschneider SB , Mattia DJ , Wendel JS , Schaefer JA , Ye L , Guzman PA , Tranquillo RT . Inosculation and perfusion of pre‐vascularized tissue patches containing aligned human microvessels after myocardial infarction. Biomaterials 97: 51‐61, 2016.
 463. Rigato M , Monami M , Fadini GP . Autologous cell therapy for peripheral arterial disease: Systematic review and meta‐analysis of randomized, nonrandomized, and noncontrolled studies. Circ Res 120: 1326‐1340, 2017.
 464. Rinsch C , Quinodoz P , Pittet B , Alizadeh N , Baetens D , Montandon D , Aebischer P , Pepper MS . Delivery of FGF‐2 but not VEGF by encapsulated genetically engineered myoblasts improves survival and vascularization in a model of acute skin flap ischemia. Gene Ther 8: 523‐533, 2001.
 465. Rippe B , Haraldsson B . Transport of macromolecules across microvascular walls: The two‐pore theory. Physiol Rev 74: 163‐219, 1994.
 466. Rissanen TT , Korpisalo P , Markkanen JE , Liimatainen T , Ordén M‐R , Kholová I , de Goede A , Heikura T , Gröhn OH , Ylä‐Herttuala S . Blood flow remodels growing vasculature during vascular endothelial growth factor gene therapy and determines between capillary arterialization and sprouting angiogenesis. Circulation 112: 3937‐3946, 2005.
 467. Rissanen TT , Markkanen JE , Arve K , Rutanen J , Kettunen MI , Vajanto I , Jauhiainen S , Cashion L , Gruchala M , Närvänen O , Taipale P , Kauppinen RA , Rubanyi GM , Ylä‐Herttuala S . Fibroblast growth factor 4 induces vascular permeability, angiogenesis and arteriogenesis in a rabbit hindlimb ischemia model. FASEB J 17: 100‐102, 2003.
 468. Rissanen TT , Markkanen JE , Gruchala M , Heikura T , Puranen A , Kettunen MI , Kholová I , Kauppinen RA , Achen MG , Stacker SA , Alitalo K , Ylä‐Herttuala S . VEGF‐D is the strongest angiogenic and lymphangiogenic effector among VEGFs delivered into skeletal muscle via adenoviruses. Circ Res 92: 1098‐1106, 2003.
 469. Rivard A , Fabre J‐E , Silver M , Chen D , Murohara T , Kearney M , Magner M , Asahara T , Isner JM . Age‐dependent impairment of angiogenesis. Circulation 99: 111‐120, 1999.
 470. Roberts AB , Sporn MB , Assoian RK , Smith JM , Roche NS , Wakefield LM , Heine UI , Liotta LA , Falanga V , Kehrl JH , Fauci AS . Transforming growth factor type β: Rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro . Proc Natl Acad Sci USA 83: 4167‐4171, 1986.
 471. Rophael JA , Craft RO , Palmer JA , Hussey AJ , Thomas GPL , Morrison WA , Penington AJ , Mitchell GM . Angiogenic growth factor synergism in a murine tissue engineering model of angiogenesis and adipogenesis. Am J Pathol 171: 2048‐2057, 2007.
 472. Rosenfeld D , Landau S , Shandalov Y , Raindel N , Freiman A , Shor E , Blinder Y , Vandenburgh HH , Mooney DJ , Levenberg S . Morphogenesis of 3D vascular networks is regulated by tensile forces. Proc Natl Acad Sci USA 113: 3215‐3220, 2016.
 473. Rubin PAD , Popham JK , Bilyk JR , Shore JW . Comparison of fibrovascular ingrowth into hydroxyapatite and porous polyethylene orbital implants. Ophthalmic Plast Reconstr Surg 10: 96‐103, 1994.
 474. Rück A , Sylvén C. “Improvement” in the placebo group could be due to regression to the mean as well as to sociobiologic factors. Am J Cardiol 97: 152‐153, 2006.
 475. Rufaihah AJ , Huang NF , Jamé S , Lee JC , Nguyen HN , Byers B , De A , Okogbaa J , Rollins M , Reijo‐Pera R , Gambhir SS , Cooke JP . Endothelial cells derived from human iPSCs increase capillary density and improve perfusion in a mouse model of peripheral arterial disease. Arterioscler Thromb Vasc Biol 31: e72‐e79, 2011.
 476. Saaristo A , Tammela T , Timonen J , Yla‐Herttuala S , Tukiainen E , Asko‐Seljavaara S , Alitalo K . Vascular endothelial growth factor‐C gene therapy restores lymphatic flow across incision wounds. FASEB J 18: 1707‐1709, 2004.
 477. Sabin FR . On the origin of the lymphatic system from the veins and the development of the lymph hearts and thoracic duct in the pig. Am J Anat 1: 367‐389, 1902.
 478. Sabin FR . The Origin and Development of the Lymphatic System. Baltimore, MD: The Johns Hopkins Press, 1913.
 479. Sabiston DC, Jr. , Fauteux JP , Blalock A . An experimental study of the fate of arterial implants in the left ventricular myocardium; with a comparison of similar implants in other organs. Ann Surg 145: 927‐938; discussion, 938‐942, 1957.
 480. Sacchi V , Mittermayr R , Hartinger J , Martino MM , Lorentz KM , Wolbank S , Hofmann A , Largo RA , Marschall JS , Groppa E , Gianni‐Barrera R , Ehrbar M , Hubbell JA , Redl H , Banfi A . Long‐lasting fibrin matrices ensure stable and functional angiogenesis by highly tunable, sustained delivery of recombinant VEGF164 . Proc Natl Acad Sci USA 111: 6952‐6957, 2014.
 481. Sacks GA , Sandler MP , Born ML , Clanton JA , Franklin JD , Partain CL . Lymphoscintigraphy as an adjunctive procedure in the perioperative assessment of patients undergoing microlymphaticovenous anastomoses. Clin Nucl Med 8: 309‐311, 1983.
 482. Saiura A , Sata M , Hirata Y , Nagai R , Makuuchi M . Circulating smooth muscle progenitor cells contribute to atherosclerosis. Nat Med 7: 382‐383, 2001.
 483. Sakaguchi K , Shimizu T , Horaguchi S , Sekine H , Yamato M , Umezu M , Okano T . In vitro engineering of vascularized tissue surrogates. Sci Rep 3: 1316, 2013.
 484. Sakakibara Y , Nishimura K , Tambara K , Yamamoto M , Lu F , Tabata Y , Komeda M . Prevascularization with gelatin microspheres containing basic fibroblast growth factor enhances the benefits of cardiomyocyte transplantation. J Thorac Cardiovasc Surg 124: 50‐56, 2002.
 485. Sakakibara Y , Tambara K , Sakaguchi G , Lu F , Yamamoto M , Nishimura K , Tabata Y , Komeda M . Toward surgical angiogenesis using slow‐released basic fibroblast growth factor. Eur J Cardiothorac Surg 24: 105‐111; discussion 112, 2003.
 486. Samuel R , Daheron L , Liao S , Vardam T , Kamoun WS , Batista A , Buecker C , Schäfer R , Han X , Au P , Scadden DT , Duda DG , Fukumura D , Jain RK . Generation of functionally competent and durable engineered blood vessels from human induced pluripotent stem cells. Proc Natl Acad Sci USA 110: 12774‐12779, 2013.
 487. Sandison JC . Observations on the growth of blood vessels as seen in the transparent chamber introduced into the rabbit's ear. Am J Anat 41: 475‐496, 1928.
 488. Sandison JC . The transparent chamber of the rabbit's ear, giving a complete description of improved technic of construction and introduction, and general account of growth and behavior of living cells and tissues as seen with the microscope. Am J Anat 41: 447‐473, 1928.
 489. Sata M , Tanaka K , Nagai R . Origin of smooth muscle progenitor cells: Different conclusions from different models. Circulation 107: e106; author reply e106‐e107, 2003.
 490. Sato K , Laham RJ , Pearlman JD , Novicki D , Sellke FW , Simons M , Post MJ . Efficacy of intracoronary versus intravenous FGF‐2 in a pig model of chronic myocardial ischemia. Ann Thorac Surg 70: 2113‐2118, 2000.
 491. Schaper J , König R , Franz D , Schaper W . The endothelial surface of growing coronary collateral arteries. Intimal margination and diapedesis of monocytes. A combined SEM and TEM study. Virchows Arch A Pathol Anat Pathol 370: 193‐205, 1976.
 492. Schaper W . Collateral circulation: Past and present. Basic Res Cardiol 104: 5‐21, 2009.
 493. Schechner JS , Crane SK , Wang F , Szeglin AM , Tellides G , Lorber MI , Bothwell ALM , Pober JS . Engraftment of a vascularized human skin equivalent. FASEB J 17: 2250‐2256, 2003.
 494. Schechner JS , Nath AK , Zheng L , Kluger MS , Hughes CC , Sierra‐Honigmann MR , Lorber MI , Tellides G , Kashgarian M , Bothwell AL , Pober JS . In vivo formation of complex microvessels lined by human endothelial cells in an immunodeficient mouse. Proc Natl Acad Sci USA 97: 9191‐9196, 2000.
 495. Schlaudraff K , Schumacher B , von Specht BU , Seitelberger R , Schlosser V , Fasol R . Growth of “new” coronary vascular structures by angiogenetic growth factors. Eur J Cardiothorac Surg 7: 637‐643; discussion 643‐644, 1993.
 496. Schmid‐Schönbein GW . Microlymphatics and lymph flow. Physiol Rev 70: 987‐1028, 1990.
 497. Schmidt‐Lucke C , Rössig L , Fichtlscherer S , Vasa M , Britten M , Kämper U , Dimmeler S , Zeiher AM . Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events: Proof of concept for the clinical importance of endogenous vascular repair. Circulation 111: 2981‐2987, 2005.
 498. Schumacher B , Pecher P , von Specht BU , Stegmann T . Induction of neoangiogenesis in ischemic myocardium by human growth factors: First clinical results of a new treatment of coronary heart disease. Circulation 97: 645‐650, 1998.
 499. Sefcik LS , Petrie Aronin CE , Botchwey EA . Engineering vascularized tissues using natural and synthetic small molecules. Organogenesis 4: 215‐227, 2008.
 500. Sellke FW , Laham RJ , Edelman ER , Pearlman JD , Simons M . Therapeutic angiogenesis with basic fibroblast growth factor: Technique and early results. Ann Thorac Surg 65: 1540‐1544, 1998.
 501. Semenza GL . Regulation of mammalian O2 homeostasis by hypoxia‐inducible factor 1. Annu Rev Cell Dev Biol 15: 551‐578, 1999.
 502. Seto Y , Inaba R , Okuyama T , Sassa F , Suzuki H , Fukuda J . Engineering of capillary‐like structures in tissue constructs by electrochemical detachment of cells. Biomaterials 31: 2209‐2215, 2010.
 503. Shandalov Y , Egozi D , Koffler J , Dado‐Rosenfeld D , Ben‐Shimol D , Freiman A , Shor E , Kabala A , Levenberg S . An engineered muscle flap for reconstruction of large soft tissue defects. Proc Natl Acad Sci USA 111: 6010‐6015, 2014.
 504. Sharkawy AA , Klitzman B , Truskey GA , Reichert WM . Engineering the tissue which encapsulates subcutaneous implants. I. Diffusion properties. J Biomed Mater Res 37: 401‐412, 1997.
 505. Sharkawy AA , Klitzman B , Truskey GA , Reichert WM . Engineering the tissue which encapsulates subcutaneous implants. II. Plasma‐tissue exchange properties. J Biomed Mater Res 40: 586‐597, 1998.
 506. Shea LD , Smiley E , Bonadio J , Mooney DJ . DNA delivery from polymer matrices for tissue engineering. Nat Biotechnol 17: 551‐554, 1999.
 507. Shepherd BR , Chen HY , Smith CM , Gruionu G , Williams SK , Hoying JB . Rapid perfusion and network remodeling in a microvascular construct after implantation. Arterioscler Thromb Vasc Biol 24: 898‐904, 2004.
 508. Shepherd BR , Enis DR , Wang F , Suarez Y , Pober JS , Schechner JS . Vascularization and engraftment of a human skin substitute using circulating progenitor cell‐derived endothelial cells. FASEB J 20: 1739‐1741, 2006.
 509. Shepherd BR , Hoying JB , Williams SK . Microvascular transplantation after acute myocardial infarction. Tissue Eng 13: 2871‐2879, 2007.
 510. Shi Q , Rafii S , Wu MH , Wijelath ES , Yu C , Ishida A , Fujita Y , Kothari S , Mohle R , Sauvage LR , Moore MA , Storb RF , Hammond WP . Evidence for circulating bone marrow‐derived endothelial cells. Blood 92: 362‐367, 1998.
 511. Shimizu K , Sugiyama S , Aikawa M , Fukumoto Y , Rabkin E , Libby P , Mitchell RN . Host bone‐marrow cells are a source of donor intimal smooth‐muscle‐like cells in murine aortic transplant arteriopathy. Nat Med 7: 738‐741, 2001.
 512. Shimizu T , Sekine H , Yang J , Isoi Y , Yamato M , Kikuchi A , Kobayashi E , Okano T . Polysurgery of cell sheet grafts overcomes diffusion limits to produce thick, vascularized myocardial tissues. FASEB J 20: 708‐710, 2006.
 513. Shimizu Y , Shibata R , Shintani S , Ishii M , Murohara T . Therapeutic lymphangiogenesis with implantation of adipose‐derived regenerative cells. J Am Heart Assoc 1: e000877, 2012.
 514. Shin S‐H , Lee J , Ahn D‐G , Lee KY . Co‐delivery of vascular endothelial growth factor and angiopoietin‐1 using injectable microsphere/hydrogel hybrid systems for therapeutic angiogenesis. Pharm Res 30: 2157‐2165, 2013.
 515. Shintani S , Murohara T , Ikeda H , Ueno T , Honma T , Katoh A , Sasaki K , Shimada T , Oike Y , Imaizumi T . Mobilization of endothelial progenitor cells in patients with acute myocardial infarction. Circulation 103: 2776‐2779, 2001.
 516. Shintani S , Murohara T , Ikeda H , Ueno T , Sasaki K , Duan J , Imaizumi T . Augmentation of postnatal neovascularization with autologous bone marrow transplantation. Circulation 103: 897‐903, 2001.
 517. Shizuru JA , Negrin RS , Weissman IL . Hematopoietic stem and progenitor cells: Clinical and preclinical regeneration of the hematolymphoid system. Annu Rev Med 56: 509‐538, 2005.
 518. Shoji T , Ii M , Mifune Y , Matsumoto T , Kawamoto A , Kwon S‐M , Kuroda T , Kuroda R , Kurosaka M , Asahara T . Local transplantation of human multipotent adipose‐derived stem cells accelerates fracture healing via enhanced osteogenesis and angiogenesis. Lab Invest 90: 637‐649, 2010.
 519. Sholley MM , Ferguson GP , Seibel HR , Montour JL , Wilson JD . Mechanisms of neovascularization. Vascular sprouting can occur without proliferation of endothelial cells. Lab Invest 51: 624‐634, 1984.
 520. Shrager JB . The Vineberg procedure: The immediate forerunner of coronary artery bypass grafting. Ann Thorac Surg 57: 1354‐1364, 1994.
 521. Shyu K‐G , Manor O , Magner M , Yancopoulos GD , Isner JM . Direct intramuscular injection of plasmid DNA encoding angiopoietin‐1 but not angiopoietin‐2 augments revascularization in the rabbit ischemic hindlimb. Circulation 98: 2081‐2087, 1998.
 522. Shyy Y‐J , Hsieh H‐J , Usami S , Chien S . Fluid shear stress induces a biphasic response of human monocyte chemotactic protein 1 gene expression in vascular endothelium. Proc Natl Acad Sci USA 91: 4678‐4682, 1994.
 523. Silva EA , Kim E‐S , Kong HJ , Mooney DJ . Material‐based deployment enhances efficacy of endothelial progenitor cells. Proc Natl Acad Sci USA 105: 14347‐14352, 2008.
 524. Silva EA , Mooney DJ . Effects of VEGF temporal and spatial presentation on angiogenesis. Biomaterials 31: 1235‐1241, 2010.
 525. Silva EA , Mooney DJ . Spatiotemporal control of vascular endothelial growth factor delivery from injectable hydrogels enhances angiogenesis. J Thromb Haemost 5: 590‐598, 2007.
 526. Silva GV , Litovsky S , Assad JAR , Sousa ALS , Martin BJ , Vela D , Coulter SC , Lin J , Ober J , Vaughn WK , Branco RVC , Oliveira EM , He R , Geng Y‐J , Willerson JT , Perin EC . Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation 111: 150‐156, 2005.
 527. Silverman KJ , Lund DP , Zetter BR , Lainey LL , Shahood JA , Freiman DG , Folkman J , Barger AC . Angiogenic activity of adipose tissue. Biochem Biophys Res Commun 153: 347‐352, 1988.
 528. Silvestre J‐S , Tamarat R , Ebrahimian TG , Le‐Roux A , Clergue M , Emmanuel F , Duriez M , Schwartz B , Branellec D , Lévy BI . Vascular endothelial growth factor‐B promotes in vivo angiogenesis. Circ Res 93: 114‐123, 2003.
 529. Simcock JW , Penington AJ , Morrison WA , Thompson EW , Mitchell GM . Endothelial precursor cells home to a vascularized tissue engineering chamber by application of the angiogenic chemokine CXCL12. Tissue Eng A 15: 655‐664, 2009.
 530. Simons M , Ware JA . Therapeutic angiogenesis in cardiovascular disease. Nat Rev Drug Discov 2: 863‐871, 2003.
 531. Simper D , Stalboerger PG , Panetta CJ , Wang S , Caplice NM . Smooth muscle progenitor cells in human blood. Circulation 106: 1199‐1204, 2002.
 532. Singhal M , Liu X , Inverso D , Jiang K , Dai J , He H , Bartels S , Li W , Abdul Pari AA , Gengenbacher N , Besemfelder E , Hui L , Augustin HG , Hu J . Endothelial cell fitness dictates the source of regenerating liver vasculature. J Exp Med 215: 2497‐2508, 2018.
 533. Slavin SA , Upton J , Kaplan WD , Van den Abbeele AD . An investigation of lymphatic function following free‐tissue transfer. Plast Reconstr Surg 99: 730‐741; discussion 742‐743, 1997.
 534. Slavin SA , Van den Abbeele AD , Losken A , Swartz MA , Jain RK . Return of lymphatic function after flap transfer for acute lymphedema. Ann Surg 229: 421‐427, 1999.
 535. Smith MK , Peters MC , Richardson TP , Garbern JC , Mooney DJ . Locally enhanced angiogenesis promotes transplanted cell survival. Tissue Eng 10: 63‐71, 2004.
 536. Sobrino A , Phan DTT , Datta R , Wang X , Hachey SJ , Romero‐López M , Gratton E , Lee AP , George SC , Hughes CCW . 3D microtumors in vitro supported by perfused vascular networks. Sci Rep 6: 31589, 2016.
 537. Soker S , Miao H‐Q , Nomi M , Takashima S , Klagsbrun M . VEGF165 mediates formation of complexes containing VEGFR‐2 and neuropilin‐1 that enhance VEGF165‐receptor binding. J Cell Biochem 85: 357‐368, 2002.
 538. Song JJ , Guyette JP , Gilpin SE , Gonzalez G , Vacanti JP , Ott HC . Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nat Med 19: 646‐651, 2013.
 539. Song JW , Munn LL . Fluid forces control endothelial sprouting. Proc Natl Acad Sci USA 108: 15342‐15347, 2011.
 540. Sooppan R , Paulsen SJ , Han J , Ta AH , Dinh P , Gaffey AC , Venkataraman C , Trubelja A , Hung G , Miller JS , Atluri P . In vivo anastomosis and perfusion of a three‐dimensionally‐printed construct containing microchannel networks. Tissue Eng C 22: 1‐7, 2016.
 541. Sprugel KH , McPherson JM , Clowes AW , Ross R . Effects of growth factors in vivo. I. Cell ingrowth into porous subcutaneous chambers. Am J Pathol 129: 601‐613, 1987.
 542. Stabler CT , Caires LC, Jr. , Mondrinos MJ , Marcinkiewicz C , Lazarovici P , Wolfson MR , Lelkes PI . Enhanced re‐endothelialization of decellularized rat lungs. Tissue Eng C 22: 439‐450, 2016.
 543. Stamm C , Westphal B , Kleine H‐D , Petzsch M , Kittner C , Klinge H , Schümichen C , Nienaber CA , Freund M , Steinhoff G . Autologous bone‐marrow stem‐cell transplantation for myocardial regeneration. Lancet 361: 45‐46, 2003.
 544. Steffens GC , Yao C , Prével P , Markowicz M , Schenck P , Noah EM , Pallua N . Modulation of angiogenic potential of collagen matrices by covalent incorporation of heparin and loading with vascular endothelial growth factor. Tissue Eng 10: 1502‐1509, 2004.
 545. Stellos K , Langer H , Daub K , Schoenberger T , Gauss A , Geisler T , Bigalke B , Mueller I , Schumm M , Schaefer I , Seizer P , Kraemer BF , Siegel‐Axel D , May AE , Lindemann S , Gawaz M . Platelet‐derived stromal cell‐derived factor‐1 regulates adhesion and promotes differentiation of human CD34+ cells to endothelial progenitor cells. Circulation 117: 206‐215, 2008.
 546. Stepnick DW , Peterson MK , Bodgan C , Davis J , Wasman J , Mailer K . Effects of tumor necrosis factor α and vascular permeability factor on neovascularization of the rabbit ear flap. Arch Otolaryngol Head Neck Surg 121: 667‐672, 1995.
 547. Stevens KR , Kreutziger KL , Dupras SK , Korte FS , Regnier M , Muskheli V , Nourse MB , Bendixen K , Reinecke H , Murry CE . Physiological function and transplantation of scaffold‐free and vascularized human cardiac muscle tissue. Proc Natl Acad Sci USA 106: 16568‐16573, 2009.
 548. Stevens KR , Scull MA , Ramanan V , Fortin CL , Chaturvedi RR , Knouse KA , Xiao JW , Fung C , Mirabella T , Chen AX , McCue MG , Yang MT , Fleming HE , Chung K , de Jong YP , Chen CS , Rice CM , Bhatia SN . In situ expansion of engineered human liver tissue in a mouse model of chronic liver disease. Sci Transl Med 9: pii: eaah5505, 2017.
 549. Stillaert F , Findlay M , Palmer J , Idrizi R , Cheang S , Messina A , Abberton K , Morrison W , Thompson EW . Host rather than graft origin of Matrigel‐induced adipose tissue in the murine tissue‐engineering chamber. Tissue Eng 13: 2291‐2300, 2007.
 550. Street J , Bao M , deGuzman L , Bunting S , Peale FV, Jr. , Ferrara N , Steinmetz H , Hoeffel J , Cleland JL , Daugherty A , van Bruggen N , Redmond HP , Carano RAD , Filvaroff EH . Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci USA 99: 9656‐9661, 2002.
 551. Sun Q , Chen RR , Shen Y , Mooney DJ , Rajagopalan S , Grossman PM . Sustained vascular endothelial growth factor delivery enhances angiogenesis and perfusion in ischemic hind limb. Pharm Res 22: 1110‐1116, 2005.
 552. Sun Q , Silva EA , Wang A , Fritton JC , Mooney DJ , Schaffler MB , Grossman PM , Rajagopalan S . Sustained release of multiple growth factors from injectable polymeric system as a novel therapeutic approach towards angiogenesis. Pharm Res 27: 264‐271, 2010.
 553. Sunderkötter C , Goebeler M , Schulze‐Osthoff K , Bhardwaj R , Sorg C . Macrophage‐derived angiogenesis factors. Pharmacol Ther 51: 195‐216, 1991.
 554. Suri C , Jones PF , Patan S , Bartunkova S , Maisonpierre PC , Davis S , Sato TN , Yancopoulos GD . Requisite role of angiopoietin‐1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87: 1171‐1180, 1996.
 555. Suuronen EJ , Price J , Veinot JP , Ascah K , Kapila V , Guo X‐W , Wong S , Mesana TG , Ruel M . Comparative effects of mesenchymal progenitor cells, endothelial progenitor cells, or their combination on myocardial infarct regeneration and cardiac function. J Thorac Cardiovasc Surg 134: 1249‐1258, 2007.
 556. Symes JF , Graham AM , Stein L , Sniderman AD . Salvage of a severely ischemic limb by arteriovenous revascularization: A case report. Can J Surg 27: 274‐277, 1984.
 557. Szuba A , Skobe M , Karkkainen MJ , Shin WS , Beynet DP , Rockson NB , Dakhil N , Spilman S , Goris ML , Strauss HW , Quertermous T , Alitalo K , Rockson SG . Therapeutic lymphangiogenesis with human recombinant VEGF‐C. FASEB J 16: 1985‐1987, 2002.
 558. Tabata Y , Hijikata S , Ikada Y . Enhanced vascularization and tissue granulation by basic fibroblast growth factor impregnated in gelatin hydrogels. J Control Release 31: 189‐199, 1994.
 559. Tabata Y , Hijikata S , Muniruzzaman M , Ikada Y . Neovascularization effect of biodegradable gelatin microspheres incorporating basic fibroblast growth factor. J Biomater Sci Polym Ed 10: 79‐94, 1999.
 560. Tabata Y , Ikada Y . Vascularization effect of basic fibroblast growth factor released from gelatin hydrogels with different biodegradabilities. Biomaterials 20: 2169‐2175, 1999.
 561. Tabata Y , Miyao M , Inamoto T , Ishii T , Hirano Y , Yamaoki Y , Ikada Y . De novo formation of adipose tissue by controlled release of basic fibroblast growth factor. Tissue Eng 6: 279‐289, 2000.
 562. Tabata Y , Miyao M , Ozeki M , Ikada Y . Controlled release of vascular endothelial growth factor by use of collagen hydrogels. J Biomater Sci Polym Ed 11: 915‐930, 2000.
 563. Tabata Y , Miyao M , Yamamoto M , Ikada Y . Vascularization into a porous sponge by sustained release of basic fibroblast growth factor. J Biomater Sci Polym Ed 10: 957‐968, 1999.
 564. Tabata Y , Nagano A , Ikada Y . Biodegradation of hydrogel carrier incorporating fibroblast growth factor. Tissue Eng 5: 127‐138, 1999.
 565. Tabata Y , Nagano A , Muniruzzaman M , Ikada Y . In vitro sorption and desorption of basic fibroblast growth factor from biodegradable hydrogels. Biomaterials 19: 1781‐1789, 1998.
 566. Takahashi T , Kalka C , Masuda H , Chen D , Silver M , Kearney M , Magner M , Isner JM , Asahara T . Ischemia‐ and cytokine‐induced mobilization of bone marrow‐derived endothelial progenitor cells for neovascularization. Nat Med 5: 434‐438, 1999.
 567. Takeshita S , Pu L‐Q , Stein LA , Sniderman AD , Bunting S , Ferrara N , Isner JM , Symes JF . Intramuscular administration of vascular endothelial growth factor induces dose‐dependent collateral artery augmentation in a rabbit model of chronic limb ischemia. Circulation 90: II228‐II234, 1994.
 568. Takeshita S , Rossow ST , Kearney M , Zheng LP , Bauters C , Bunting S , Ferrara N , Symes JF , Isner JM . Time course of increased cellular proliferation in collateral arteries after administration of vascular endothelial growth factor in a rabbit model of lower limb vascular insufficiency. Am J Pathol 147: 1649‐1660, 1995.
 569. Takeshita S , Tsurumi Y , Couffinahl T , Asahara T , Bauters C , Symes J , Ferrara N , Isner JM . Gene transfer of naked DNA encoding for three isoforms of vascular endothelial growth factor stimulates collateral development in vivo . Lab Invest 75: 487‐501, 1996.
 570. Takeshita S , Zheng LP , Brogi E , Kearney M , Pu L‐Q , Bunting S , Ferrara N , Symes JF , Isner JM . Therapeutic angiogenesis: A single intraarterial bolus of vascular endothelial growth factor augments revascularization in a rabbit ischemic hind limb model. J Clin Invest 93: 662‐670, 1994.
 571. Tammela T , Saaristo A , Holopainen T , Lyytikkä J , Kotronen A , Pitkonen M , Abo‐Ramadan U , Ylä‐Herttuala S , Petrova TV , Alitalo K . Therapeutic differentiation and maturation of lymphatic vessels after lymph node dissection and transplantation. Nat Med 13: 1458‐1466, 2007.
 572. Tanaka T , Kojima I , Ohse T , Ingelfinger JR , Adler S , Fujita T , Nangaku M . Cobalt promotes angiogenesis via hypoxia‐inducible factor and protects tubulointerstitium in the remnant kidney model. Lab Invest 85: 1292‐1307, 2005.
 573. Tanaka Y , Sung K‐C , Tsutsumi A , Ohba S , Ueda K , Morrison WA . Tissue engineering skin flaps: Which vascular carrier, arteriovenous shunt loop or arteriovenous bundle, has more potential for angiogenesis and tissue generation? Plast Reconstr Surg 112: 1636‐1644, 2003.
 574. Tanaka Y , Tsutsumi A , Crowe DM , Tajima S , Morrison WA . Generation of an autologous tissue (matrix) flap by combining an arteriovenous shunt loop with artificial skin in rats: Preliminary report. Br J Plast Surg 53: 51‐57, 2000.
 575. Tandara AA , Mustoe TA . Oxygen in wound healing–more than a nutrient. World J Surg 28: 294‐300, 2004.
 576. Tepper OM , Capla JM , Galiano RD , Ceradini DJ , Callaghan MJ , Kleinman ME , Gurtner GC . Adult vasculogenesis occurs through in situ recruitment, proliferation, and tubulization of circulating bone marrow‐derived cells. Blood 105: 1068‐1077, 2005.
 577. Thébaud B , Ladha F , Michelakis ED , Sawicka M , Thurston G , Eaton F , Hashimoto K , Harry G , Haromy A , Korbutt G , Archer SL . Vascular endothelial growth factor gene therapy increases survival, promotes lung angiogenesis, and prevents alveolar damage in hyperoxia‐induced lung injury: Evidence that angiogenesis participates in alveolarization. Circulation 112: 2477‐2486, 2005.
 578. Therriault D , Shepherd RF , White SR , Lewis JA . Fugitive inks for direct‐write assembly of three‐dimensional microvascular networks. Adv Mater 17: 395‐399, 2005.
 579. Thoma R . Über die histomechanik des gefäßsystems und die pathogenese der angiosklerose. Virchows Arch 204: 1‐74, 1911.
 580. Thompson JA , Anderson KD , DiPietro JM , Zwiebel JA , Zametta M , Anderson WF , Maciag T . Site‐directed neovessel formation in vivo . Science 241: 1349‐1352, 1988.
 581. Thompson RL , Margolis EA , Ryan TJ , Coisman BJ , Price GM , Wong KHK , Tien J . Design principles for lymphatic drainage of fluid and solutes from collagen scaffolds. J Biomed Mater Res A 106: 106‐114, 2018.
 582. Tian W , Rockson SG , Jiang X , Kim J , Begaye A , Shuffle EM , Tu AB , Cribb M , Nepiyushchikh Z , Feroze AH , Zamanian RT , Dhillon GS , Voelkel NF , Peters‐Golden M , Kitajewski J , Dixon JB , Nicolls MR . Leukotriene B4 antagonism ameliorates experimental lymphedema. Sci Transl Med 9: eaal3920, 2017.
 583. Tien J . Microfluidic approaches for engineering vasculature. Curr Opin Chem Eng 3: 36‐41, 2014.
 584. Tien J , Golden AP , Tang MD . Engineering of blood vessels. In: Shepro D , D'Amore PA , editors. Microvascular Research: Biology and Pathology. San Diego, CA: Elsevier Academic Press, 2006, pp. 1087‐1093.
 585. Tigges U , Hyer EG , Scharf J , Stallcup WB . FGF2‐dependent neovascularization of subcutaneous Matrigel plugs is initiated by bone marrow‐derived pericytes and macrophages. Development 135: 523‐532, 2008.
 586. Ting ACH , Craft RO , Palmer JA , Gerrand Y‐W , Penington AJ , Morrison WA , Mitchell GM . The adipogenic potential of various extracellular matrices under the influence of an angiogenic growth factor combination in a mouse tissue engineering chamber. Acta Biomater 10: 1907‐1918, 2014.
 587. Tomita S , Li R‐K , Weisel RD , Mickle DAG , Kim E‐J , Sakai T , Jia Z‐Q . Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 100: II247‐II256, 1999.
 588. Tomita S , Mickle DAG , Weisel RD , Jia Z‐Q , Tumiati LC , Allidina Y , Liu P , Li R‐K . Improved heart function with myogenesis and angiogenesis after autologous porcine bone marrow stromal cell transplantation. J Thorac Cardiovasc Surg 123: 1132‐1140, 2002.
 589. Tozer GM , Kanthou C , Baguley BC . Disrupting tumour blood vessels. Nat Rev Cancer 5: 423‐435, 2005.
 590. Traktuev DO , Merfeld‐Clauss S , Li J , Kolonin M , Arap W , Pasqualini R , Johnstone BH , March KL . A population of multipotent CD34‐positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ Res 102: 77‐85, 2008.
 591. Traktuev DO , Prater DN , Merfeld‐Clauss S , Sanjeevaiah AR , Saadatzadeh MR , Murphy M , Johnstone BH , Ingram DA , March KL . Robust functional vascular network formation in vivo by cooperation of adipose progenitor and endothelial cells. Circ Res 104: 1410‐1420, 2009.
 592. Tremblay P‐L , Hudon V , Berthod F , Germain L , Auger FA . Inosculation of tissue‐engineered capillaries with the host's vasculature in a reconstructed skin transplanted on mice. Am J Transplant 5: 1002‐1010, 2005.
 593. Trentin D , Hall H , Wechsler S , Hubbell JA . Peptide‐matrix‐mediated gene transfer of an oxygen‐insensitive hypoxia‐inducible factor‐1α variant for local induction of angiogenesis. Proc Natl Acad Sci USA 103: 2506‐2511, 2006.
 594. Tse H‐F , Kwong Y‐L , Chan JKF , Lo G , Ho C‐L , Lau C‐P . Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation. Lancet 361: 47‐49, 2003.
 595. Tsurumi Y , Takeshita S , Chen D , Kearney M , Rossow ST , Passeri J , Horowitz JR , Symes JF , Isner JM . Direct intramuscular gene transfer of naked DNA encoding vascular endothelial growth factor augments collateral development and tissue perfusion. Circulation 94: 3281‐3290, 1996.
 596. Uchida Y , Yanagisawa‐Miwa A , Nakamura F , Yamada K , Tomaru T , Kimura K , Morita T . Angiogenic therapy of acute myocardial infarction by intrapericardial injection of basic fibroblast growth factor and heparin sulfate: An experimental study. Am Heart J 130: 1182‐1188, 1995.
 597. Ueno H , Li J‐J , Masuda S , Qi Z , Yamamoto H , Takeshita A . Adenovirus‐mediated expression of the secreted form of basic fibroblast growth factor (FGF‐2) induces cellular proliferation and angiogenesis in vivo . Arterioscler Thromb Vasc Biol 17: 2453‐2460, 1997.
 598. Uitterdijk A , Springeling T , van Kranenburg M , van Duin RWB , Krabbendam‐Peters I , Gorsse‐Bakker C , Sneep S , van Haeren R , Verrijk R , van Geuns R‐JM , van der Giessen WJ , Markkula T , Duncker DJ , van Beusekom HMM . VEGF165A microsphere therapy for myocardial infarction suppresses acute cytokine release and increases microvascular density but does not improve cardiac function. Am J Physiol Heart Circ Physiol 309: H396‐H406, 2015.
 599. Unger EF . Experimental evaluation of coronary collateral development. Cardiovasc Res 49: 497‐506, 2001.
 600. Unger EF , Banai S , Shou M , Jaklitsch M , Hodge E , Correa R , Jaye M , Epstein SE . A model to assess interventions to improve collateral blood flow: Continuous administration of agents into the left coronary artery in dogs. Cardiovasc Res 27: 785‐791, 1993.
 601. Unger EF , Banai S , Shou M , Lazarous DF , Jaklitsch MT , Scheinowitz M , Correa R , Klingbeil C , Epstein SE . Basic fibroblast growth factor enhances myocardial collateral flow in a canine model. Am J Physiol 266: H1588‐H1595, 1994.
 602. Unger EF , Sheffield CD , Epstein SE . Creation of anastomoses between an extracardiac artery and the coronary circulation. Proof that myocardial angiogenesis occurs and can provide nutritional blood flow to the myocardium. Circulation 82: 1449‐1466, 1990.
 603. Unger EF , Sheffield CD , Epstein SE . Heparin promotes the formation of extracardiac to coronary anastomoses in a canine model. Am J Physiol 260: H1625‐H1634, 1991.
 604. Urbich C , Heeschen C , Aicher A , Dernbach E , Zeiher AM , Dimmeler S . Relevance of monocytic features for neovascularization capacity of circulating endothelial progenitor cells. Circulation 108: 2511‐2516, 2003.
 605. Uyama S , Kaufmann P‐M , Takeda T , Vacanti JP . Delivery of whole liver‐equivalent hepatocyte mass using polymer devices and hepatotrophic stimulation. Transplantation 55: 932‐935, 1993.
 606. Uygun BE , Soto‐Gutierrez A , Yagi H , Izamis M‐L , Guzzardi MA , Shulman C , Milwid J , Kobayashi N , Tilles A , Berthiaume F , Hertl M , Nahmias Y , Yarmush ML , Uygun K . Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med 16: 814‐820, 2010.
 607. Vajkoczy P , Blum S , Lamparter M , Mailhammer R , Erber R , Engelhardt B , Vestweber D , Hatzopoulos AK . Multistep nature of microvascular recruitment of ex vivo‐expanded embryonic endothelial progenitor cells during tumor angiogenesis. J Exp Med 197: 1755‐1765, 2003.
 608. Van Belle E , Witzenbichler B , Chen D , Silver M , Chang L , Schwall R , Isner JM . Potentiated angiogenic effect of scatter factor/hepatocyte growth factor via induction of vascular endothelial growth factor: The case for paracrine amplification of angiogenesis. Circulation 97: 381‐390, 1998.
 609. Vasa M , Fichtlscherer S , Aicher A , Adler K , Urbich C , Martin H , Zeiher AM , Dimmeler S . Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res 89: e1‐e7, 2001.
 610. Vashi AV , Abberton KM , Thomas GP , Morrison WA , O'Connor AJ , Cooper‐White JJ , Thompson EW . Adipose tissue engineering based on the controlled release of fibroblast growth factor‐2 in a collagen matrix. Tissue Eng 12: 3035‐3043, 2006.
 611. Vernon RB , Gooden MD , Lara SL , Wight TN . Native fibrillar collagen membranes of micron‐scale and submicron thicknesses for cell support and perfusion. Biomaterials 26: 1109‐1117, 2005.
 612. Vickerman V , Kamm RD . Mechanism of a flow‐gated angiogenesis switch: Early signaling events at cell‐matrix and cell‐cell junctions. Integr Biol 4: 863‐874, 2012.
 613. Vincent KA , Shyu K‐G , Luo Y , Magner M , Tio RA , Jiang C , Goldberg MA , Akita GY , Gregory RJ , Isner JM . Angiogenesis is induced in a rabbit model of hindlimb ischemia by naked DNA encoding an HIF‐1α/VP16 hybrid transcription factor. Circulation 102: 2255‐2261, 2000.
 614. Vineberg AM . Development of an anastomosis between the coronary vessels and a transplanted internal mammary artery. Can Med Assoc J 55: 117‐119, 1946.
 615. Vineberg AM , Jewett BL . Development of an anastomosis between the coronary vessels and a transplanted internal mammary artery. Can Med Assoc J 56: 609‐614, 1947.
 616. Vineberg AM , Shanks J , Pifarre R , Criollos R , Kato Y . Combined internal mammary artery implantation and free omental graft operation: A highly effective revascularization procedure (a study of 17 cases). Can Med Assoc J 90: 717‐722, 1964.
 617. Vlahos AE , Cober N , Sefton MV . Modular tissue engineering for the vascularization of subcutaneously transplanted pancreatic islets. Proc Natl Acad Sci USA 114: 9337‐9342, 2017.
 618. Vogt PM , Steinau HU , Spies M , Kall S , Steiert A , Boorboor P , Vaske B , Jokuszies A . Outcome of simultaneous and staged microvascular free tissue transfer connected to arteriovenous loops in areas lacking recipient vessels. Plast Reconstr Surg 120: 1568‐1575, 2007.
 619. von Degenfeld G , Banfi A , Springer ML , Wagner RA , Jacobi J , Ozawa CR , Merchant MJ , Cooke JP , Blau HM . Microenvironmental VEGF distribution is critical for stable and functional vessel growth in ischemia. FASEB J 20: 2657‐2659, 2006.
 620. Wagers AJ , Sherwood RI , Christensen JL , Weissman IL . Little evidence for developmental plasticity of adult hematopoietic stem cells. Science 297: 2256‐2259, 2002.
 621. Wake MC , Patrick CW, Jr. , Mikos AG . Pore morphology effects on the fibrovascular tissue growth in porous polymer substrates. Cell Transplant 3: 339‐343, 1994.
 622. Walton RL , Beahm EK , Wu L . De novo adipose formation in a vascularized engineered construct. Microsurgery 24: 378‐384, 2004.
 623. Wan C , Gilbert SR , Wang Y , Cao X , Shen X , Ramaswamy G , Jacobsen KA , Alaql ZS , Eberhardt AW , Gerstenfeld LC , Einhorn TA , Deng L , Clemens TL . Activation of the hypoxia‐inducible factor‐1α pathway accelerates bone regeneration. Proc Natl Acad Sci USA 105: 686‐691, 2008.
 624. Wang GL , Semenza GL . General involvement of hypoxia‐inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci USA 90: 4304‐4308, 1993.
 625. Wang X , Phan DTT , Sobrino A , George SC , Hughes CCW , Lee AP . Engineering anastomosis between living capillary networks and endothelial cell‐lined microfluidic channels. Lab Chip 16: 282‐290, 2016.
 626. Warnecke C , Griethe W , Weidemann A , Jürgensen JS , Willam C , Bachmann S , Ivashchenko Y , Wagner I , Frei U , Wiesener M , Eckardt K‐U . Activation of the hypoxia‐inducible factor‐pathway and stimulation of angiogenesis by application of prolyl hydroxylase inhibitors. FASEB J 17: 1186‐1188, 2003.
 627. Webber MJ , Tongers J , Newcomb CJ , Marquardt K‐T , Bauersachs J , Losordo DW , Stupp SI . Supramolecular nanostructures that mimic VEGF as a strategy for ischemic tissue repair. Proc Natl Acad Sci USA 108: 13438‐13443, 2011.
 628. Werner N , Kosiol S , Schiegl T , Ahlers P , Walenta K , Link A , Böhm M , Nickenig G . Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med 353: 999‐1007, 2005.
 629. Wiedeman MP . Architecture. In: Renkin EM , Michel CC , editors. Handbook of Physiology; Section 2: The Cardiovascular System. Bethesda, MD: American Physiological Society, 1984, pp. 11‐40.
 630. Wiedeman MP . Patterns of the arteriovenous pathways. In: Hamilton WF , editor. Handbook of Physiology; Section 2: Circulation. Bethesda, MD: American Physiological Society, 1963, pp. 891‐933.
 631. Wieghaus KA , Capitosti SM , Anderson CR , Price RJ , Blackman BR , Brown ML , Botchwey EA . Small molecule inducers of angiogenesis for tissue engineering. Tissue Eng 12: 1903‐1913, 2006.
 632. Wieman TJ , Smiell JM , Su Y . Efficacy and safety of a topical gel formulation of recombinant human platelet‐derived growth factor‐BB (becaplermin) in patients with chronic neuropathic diabetic ulcers. A phase III randomized placebo‐controlled double‐blind study. Diabetes Care 21: 822‐827, 1998.
 633. Wigle JT , Oliver G . Prox1 function is required for the development of the murine lymphatic system. Cell 98: 769‐778, 1999.
 634. Willems WF , Larsen M , Friedrich PF , Shogren KL , Bishop AT . Induction of angiogenesis and osteogenesis in surgically revascularized frozen bone allografts by sustained delivery of FGF‐2 and VEGF. J Orthop Res 30: 1556‐1562, 2012.
 635. Willems WF , Larsen M , Giusti G , Friedrich PF , Bishop AT . Revascularization and bone remodeling of frozen allografts stimulated by intramedullary sustained delivery of FGF‐2 and VEGF. J Orthop Res 29: 1431‐1436, 2011.
 636. Wilson JM . Adenoviruses as gene‐delivery vehicles. N Engl J Med 334: 1185‐1187, 1996.
 637. Wilson WC, Jr. , Boland T . Cell and organ printing 1: Protein and cell printers. Anat Rec A 272: 491‐496, 2003.
 638. Winter GD . Transcutaneous implants: Reactions of the skin‐implant interface. J Biomed Mater Res Symp 8: 99‐113, 1974.
 639. Witzenbichler B , Asahara T , Murohara T , Silver M , Spyridopoulos I , Magner M , Principe N , Kearney M , Hu J‐S , Isner JM . Vascular endothelial growth factor‐C (VEGF‐C/VEGF‐2) promotes angiogenesis in the setting of tissue ischemia. Am J Pathol 153: 381‐394, 1998.
 640. Wolff JA , Malone RW , Williams P , Chong W , Acsadi G , Jani A , Felgner PL . Direct gene transfer into mouse muscle in vivo . Science 247: 1465‐1468, 1990.
 641. Wong KHK , Chan JM , Kamm RD , Tien J . Microfluidic models of vascular functions. Annu Rev Biomed Eng 14: 205–230, 2012.
 642. Wong KHK , Truslow JG , Khankhel AH , Chan KLS , Tien J . Artificial lymphatic drainage systems for vascularized microfluidic scaffolds. J Biomed Mater Res A 101: 2181‐2190, 2013.
 643. Wong KHK , Truslow JG , Khankhel AH , Tien J . Biophysical mechanisms that govern the vascularization of microfluidic scaffolds. In: Brey EM , editor. Vascularization: Regenerative Medicine and Tissue Engineering. Boca Raton, FL: CRC Press, 2014, pp. 109‐124.
 644. Wong KHK , Truslow JG , Tien J . The role of cyclic AMP in normalizing the function of engineered human blood microvessels in microfluidic collagen gels. Biomaterials 31: 4706‐4714, 2010.
 645. Wu C , Zhou Y , Fan W , Han P , Chang J , Yuen J , Zhang M , Xiao Y . Hypoxia‐mimicking mesoporous bioactive glass scaffolds with controllable cobalt ion release for bone tissue engineering. Biomaterials 33: 2076‐2085, 2012.
 646. Wu L , Pierce GF , Ladin DA , Zhao LL , Rogers D , Mustoe TA . Effects of oxygen on wound responses to growth factors: Kaposi's FGF, but not basic FGF stimulates repair in ischemic wounds. Growth Factors 12: 29‐35, 1995.
 647. Wu L , Xia Y‐P , Roth SI , Gruskin E , Mustoe TA . Transforming growth factor‐β1 fails to stimulate wound healing and impairs its signal transduction in an aged ischemic ulcer model: Importance of oxygen and age. Am J Pathol 154: 301‐309, 1999.
 648. Wu W , DeConinck A , Lewis JA . Omnidirectional printing of 3D microvascular networks. Adv Mater 23: H178‐H183, 2011.
 649. Xia Y , Whitesides GM . Soft lithography. Angew Chem Int Ed 37: 551‐575, 1998.
 650. Yamaguchi J , Kusano KF , Masuo O , Kawamoto A , Silver M , Murasawa S , Bosch‐Marce M , Masuda H , Losordo DW , Isner JM , Asahara T . Stromal cell‐derived factor‐1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation 107: 1322‐1328, 2003.
 651. Yamashita J , Itoh H , Hirashima M , Ogawa M , Nishikawa S , Yurugi T , Naito M , Nakao K , Nishikawa S‐I . Flk1‐positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 408: 92‐96, 2000.
 652. Yanagisawa‐Miwa A , Uchida Y , Nakamura F , Tomaru T , Kido H , Kamijo T , Sugimoto T , Kaji K , Utsuyama M , Kurashima C , Ito H . Salvage of infarcted myocardium by angiogenic action of basic fibroblast growth factor. Science 257: 1401‐1403, 1992.
 653. Yannas IV , Lee E , Orgill DP , Skrabut EM , Murphy GF . Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin. Proc Natl Acad Sci USA 86: 933‐937, 1989.
 654. Yao C , Markowicz M , Pallua N , Noah EM , Steffens G . The effect of cross‐linking of collagen matrices on their angiogenic capability. Biomaterials 29: 66‐74, 2008.
 655. Yao L‐C , Testini C , Tvorogov D , Anisimov A , Vargas SO , Baluk P , Pytowski B , Claesson‐Welsh L , Alitalo K , McDonald DM . Pulmonary lymphangiectasia resulting from vascular endothelial growth factor‐C overexpression during a critical period. Circ Res 114: 806‐822, 2014.
 656. Yap KK , Yeoh GC , Morrison WA , Mitchell GM . The vascularised chamber as an in vivo bioreactor. Trends Biotechnol 36: 1011‐1024, 2018.
 657. Yau TM , Fung K , Weisel RD , Fujii T , Mickle DAG , Li R‐K . Enhanced myocardial angiogenesis by gene transfer with transplanted cells. Circulation 104: I‐218‐I‐222, 2001.
 658. Ye X , Lu L , Kolewe ME , Park H , Larson BL , Kim ES , Freed LE . A biodegradable microvessel scaffold as a framework to enable vascular support of engineered tissues. Biomaterials 34: 10007‐10015, 2013.
 659. Yeh ETH , Zhang S , Wu HD , Körbling M , Willerson JT , Estrov Z . Transdifferentiation of human peripheral blood CD34+‐enriched cell population into cardiomyocytes, endothelial cells, and smooth muscle cells in vivo . Circulation 108: 2070‐2073, 2003.
 660. Yoder MC , Mead LE , Prater D , Krier TR , Mroueh KN , Li F , Krasich R , Temm CJ , Prchal JT , Ingram DA . Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 109: 1801‐1809, 2007.
 661. Yoon C‐H , Hur J , Oh I‐Y , Park K‐W , Kim T‐Y , Shin J‐H , Kim J‐H , Lee C‐S , Chung J‐K , Park Y‐B , Kim H‐S . Intercellular adhesion molecule‐1 is upregulated in ischemic muscle, which mediates trafficking of endothelial progenitor cells. Arterioscler Thromb Vasc Biol 26: 1066‐1072, 2006.
 662. Yoon C‐H , Hur J , Park K‐W , Kim J‐H , Lee C‐S , Oh I‐Y , Kim T‐Y , Cho H‐J , Kang H‐J , Chae I‐H , Yang H‐K , Oh B‐H , Park Y‐B , Kim H‐S . Synergistic neovascularization by mixed transplantation of early endothelial progenitor cells and late outgrowth endothelial cells: The role of angiogenic cytokines and matrix metalloproteinases. Circulation 112: 1618‐1627, 2005.
 663. Yoon YS , Murayama T , Gravereaux E , Tkebuchava T , Silver M , Curry C , Wecker A , Kirchmair R , Hu CS , Kearney M , Ashare A , Jackson DG , Kubo H , Isner JM , Losordo DW . VEGF‐C gene therapy augments postnatal lymphangiogenesis and ameliorates secondary lymphedema. J Clin Invest 111: 717‐725, 2003.
 664. Youn S‐W , Lee S‐W , Lee J , Jeong H‐K , Suh J‐W , Yoon C‐H , Kang H‐J , Kim H‐Z , Koh G‐Y , Oh B‐H , Park Y‐B , Kim H‐S . COMP‐Ang1 stimulates HIF‐1α‐mediated SDF‐1 overexpression and recovers ischemic injury through BM‐derived progenitor cell recruitment. Blood 117: 4376‐4386, 2011.
 665. Yuan SY , Rigor RR . Regulation of Endothelial Barrier Function. San Rafael, CA: Morgan & Claypool Life Sciences, 2011.
 666. Yuen WW , Du NR , Chan CH , Silva EA , Mooney DJ . Mimicking nature by codelivery of stimulant and inhibitor to create temporally stable and spatially restricted angiogenic zones. Proc Natl Acad Sci USA 107: 17933‐17938, 2010.
 667. Zawieja DC . Contractile physiology of lymphatics. Lymphat Res Biol 7: 87‐96, 2009.
 668. Zhang B , Montgomery M , Chamberlain MD , Ogawa S , Korolj A , Pahnke A , Wells LA , Massé S , Kim J , Reis L , Momen A , Nunes SS , Wheeler AR , Nanthakumar K , Keller G , Sefton MV , Radisic M . Biodegradable scaffold with built‐in vasculature for organ‐on‐a‐chip engineering and direct surgical anastomosis. Nat Mater 15: 669‐678, 2016.
 669. Zhang F , Fischer K , Komorowska‐Timek E , Guo M , Cui D , Dorsett‐Martin W , Buncke HJ , Lineaweaver WC . Improvement of skin paddle survival by application of vascular endothelial growth factor in a rat TRAM flap model. Ann Plast Surg 46: 314‐319, 2001.
 670. Zhang F , Lei MP , Oswald TM , Pang Y , Blain B , Cai ZW , Lineaweaver WC . The effect of vascular endothelial growth factor on the healing of ischaemic skin wounds. Br J Plast Surg 56: 334‐341, 2003.
 671. Zhang F , Waller W , Lineaweaver WC . Growth factors and flap survival. Microsurgery 24: 162‐167, 2004.
 672. Zhang J , Ding L , Zhao Y , Sun W , Chen B , Lin H , Wang X , Zhang L , Xu B , Dai J . Collagen‐targeting vascular endothelial growth factor improves cardiac performance after myocardial infarction. Circulation 119: 1776‐1784, 2009.
 673. Zhang Q , Hubenak J , Iyyanki T , Alred E , Turza KC , Davis G , Chang EI , Branch‐Brooks CD , Beahm EK , Butler CE . Engineering vascularized soft tissue flaps in an animal model using human adipose‐derived stem cells and VEGF+PLGA/PEG microspheres on a collagen‐chitosan scaffold with a flow‐through vascular pedicle. Biomaterials 73: 198‐213, 2015.
 674. Zhang Q‐X , Magovern CJ , Mack CA , Budenbender KT , Ko W , Rosengart TK . Vascular endothelial growth factor is the major angiogenic factor in omentum: Mechanism of the omentum‐mediated angiogenesis. J Surg Res 67: 147‐154, 1997.
 675. Zhao LL , Davidson JD , Wee SC , Roth SI , Mustoe TA . Effect of hyperbaric oxygen and growth factors on rabbit ear ischemic ulcers. Arch Surg 129: 1043‐1049, 1994.
 676. Zheng W , Tammela T , Yamamoto M , Anisimov A , Holopainen T , Kaijalainen S , Karpanen T , Lehti K , Ylä‐Herttuala S , Alitalo K . Notch restricts lymphatic vessel sprouting induced by vascular endothelial growth factor. Blood 118: 1154‐1162, 2011.
 677. Zheng Y , Chen J , Craven M , Choi NW , Totorica S , Diaz‐Santana A , Kermani P , Hempstead B , Fischbach‐Teschl C , López JA , Stroock AD . In vitro microvessels for the study of angiogenesis and thrombosis. Proc Natl Acad Sci USA 109: 9342‐9347, 2012.
 678. Zheng Y , Henderson PW , Choi NW , Bonassar LJ , Spector JA , Stroock AD . Microstructured templates for directed growth and vascularization of soft tissue in vivo . Biomaterials 32: 5391‐5401, 2011.
 679. Zhong J , Eliceiri B , Stupack D , Penta K , Sakamoto G , Quertermous T , Coleman M , Boudreau N , Varner JA . Neovascularization of ischemic tissues by gene delivery of the extracellular matrix protein Del‐1. J Clin Invest 112: 30‐41, 2003.
 680. Zhou Q , Guo R , Wood R , Boyce BF , Liang Q , Wang Y‐J , Schwarz EM , Xing L . Vascular endothelial growth factor C attenuates joint damage in chronic inflammatory arthritis by accelerating local lymphatic drainage in mice. Arthritis Rheum 63: 2318‐2328, 2011.
 681. Zhuo Y , Li S‐H , Chen M‐S , Wu J , Kinkaid HYM , Fazel S , Weisel RD , Li R‐K . Aging impairs the angiogenic response to ischemic injury and the activity of implanted cells: Combined consequences for cell therapy in older recipients. J Thorac Cardiovasc Surg 139: 1286‐1294, 2010.
 682. Ziada AMAR , Hudlicka O , Tyler KR , Wright AJA . The effect of long‐term vasodilatation on capillary growth and performance in rabbit heart and skeletal muscle. Cardiovasc Res 18: 724‐732, 1984.
 683. Ziche M , Jones J , Gullino PM . Role of prostaglandin E1 and copper in angiogenesis. J Natl Cancer Inst 69: 475‐482, 1982.
 684. Ziche M , Morbidelli L , Choudhuri R , Zhang H‐T , Donnini S , Granger HJ , Bicknell R . Nitric oxide synthase lies downstream from vascular endothelial growth factor‐induced but not basic fibroblast growth factor‐induced angiogenesis. J Clin Invest 99: 2625‐2634, 1997.
 685. Ziegelhoeffer T , Fernandez B , Kostin S , Heil M , Voswinckel R , Helisch A , Schaper W . Bone marrow‐derived cells do not incorporate into the adult growing vasculature. Circ Res 94: 230‐238, 2004.
 686. Zierler KL . Circulation times and the theory of indicator‐dilution methods for determining blood flow and volume. In: Hamilton WF , editor. Handbook of Physiology; Section 2: Circulation. Bethesda, MD: American Physiological Society, 1963, pp. 585‐615.
 687. Zisch AH , Lutolf MP , Ehrbar M , Raeber GP , Rizzi SC , Davies N , Schmökel H , Bezuidenhout D , Djonov V , Zilla P , Hubbell JA . Cell‐demanded release of VEGF from synthetic, biointeractive cell ingrowth matrices for vascularized tissue growth. FASEB J 17: 2260‐2262, 2003.
 688. Zisch AH , Schenk U , Schense JC , Sakiyama‐Elbert SE , Hubbell JA . Covalently conjugated VEGF‐fibrin matrices for endothelialization. J Control Release 72: 101‐113, 2001.
 689. Zuk PA , Zhu M , Mizuno H , Huang J , Futrell JW , Katz AJ , Benhaim P , Lorenz HP , Hedrick MH . Multilineage cells from human adipose tissue: Implications for cell‐based therapies. Tissue Eng 7: 211‐228, 2001.
 690. Zweifach BW. Functional Behavior of the Microcirculation. Springfield, IL: Charles C. Thomas, 1961.

FURTHER READING

Briquez PS, Clegg LE, Martino MM, Mac Gabhann F, Hubbell JA. Design principles for therapeutic angiogenic materials. Nat Rev Mater 1: 1-15, 2016.

Cooke JP, Losordo DW. Modulating the vascular response to limb ischemia: angiogenic and cell therapies. Circ Res 116: 1561-1578, 2015.

Lähteenvuo J, Ylä-Herttuala S. Advances and challenges in cardiovascular gene therapy. Hum Gene Ther 28: 1024-1032, 2017.

Medina RJ, Barber CL, Sabatier F, Dignat-George F, Melero-Martin JM, Khosrotehrani K, Ohneda O, Randi AM, Chan JKY, Yamaguchi T, Van Hinsbergh VWM, Yoder MC, Stitt AW. Endothelial progenitors: a consensus statement on nomenclature. Stem Cells Transl Med 6: 1316-1320, 2017.

Park KM, Gerecht S. Harnessing developmental processes for vascular engineering and regeneration. Development 141: 2760-2769, 2014.

Tien J. Microfluidic approaches for engineering vasculature. Curr Opin Chem Eng 3: 36-41, 2014.

Yap KK, Yeoh GC, Morrison WA, Mitchell GM. The vascularised chamber as an in vivo bioreactor. Trends Biotechnol 36: 1011-1024, 2018.

Zheng W, Aspelund A, Alitalo K. Lymphangiogenic factors, mechanisms, and applications. J Clin Invest 124: 878-887, 2014.


 

 

 

 

Teaching Material

 

 

J. Tien. Tissue Engineering of the Microvasculature. Compr Physiol 9: 2019, 1153-1210.

Didactic Synopsis

Major Teaching Points:

  1. The ability to engineer microvasculature is crucial to the success of therapeutic vascularization and tissue engineering.
  2. Currently, the main strategies for engineering microvasculature are based on angiogenesis, vasculogenesis, and microfluidics.
  3. Engineered vasculature can be formed in an intrinsic or extrinsic manner.
  4. Local and sustained delivery of vascularizing signals usually leads to more robust formation of vascular networks, compared to systemic and transient delivery of the same signals.
  5. Biomaterial scaffolds can provide a means for local, controlled release of vascularizing signals and a space for vascular ingrowth.
  6. Widespread success of vascularization methods in laboratory and animal studies has yet to lead to clinically relevant therapies in humans.
  7. Didactic Legends

    The figures—in a freely downloadable PowerPoint format—can be found on the Images tab along with the formal legends published in the article. The following legends to the same figures are written to be useful for teaching.

    Figure 1 summarizes the different strategies used in engineering the microvasculature.

    Figure 2 shows examples of physiological data that can be used to obtain quantitative measures of vascular permeability to water and solutes.

    Figure 3 summarizes the members of the VEGF family and their cognate receptors and their effects on angiogenesis and lymphangiogenesis.

    Figure 4 illustrates the Vineberg procedure of vascularization, which is based on implantation of an artery into the ischemic tissue (myocardium).

    Figure 5 shows the increase in collateral vascular growth with implantation of FGF2-releasing beads in the ischemic pig heart.

    Figure 6 shows how the degree of vascular ingrowth into a scaffold depends on the pore size of the scaffold.

    Figure 7 shows that fibrovascular ingrowth into a scaffold can be induced by a variety of growth factors.

    Figure 8 shows that hepatocytes exhibit extremely low viability when implanted within a PLGA sponge and then transplanted in vivo.

    Figure 9 illustrates how to vascularize an overlying tissue (a skin graft) with an arteriovenous (AV) loop.

    Figure 10 shows an example of a centimeter-scale vascularized myocardium that formed after implanting cardiomyocytes with Matrigel around an arteriovenous (AV) loop in a polycarbonate chamber.

    Figure 11 shows that angiogenesis in microfluidic devices exhibits distinct phenotypes that correspond to the culture conditions.

    Figure 12 shows an image of EPCs and their associated expression of macrophage/monocyte-specific markers.

    Figure 13 shows an image of EOCs, their associated expression of EC-specific markers, and their lack of expression of macrophage/monocyte-specific markers.

    Figure 14 shows the incorporation of lacZ-positive EPCs into ischemic tissues.

    Figure 15 shows an example of vascular mimicry, in which blood fills structures that appear to lack an endothelial lining.

    Figure 16 shows vessels that formed within implants of HUVECs in a collagen/fibronectin gel.

    Figure 17 shows the generation of distinct blood and lymphatic vessels from a mixture of blood- and lymphatic vessel-derived ECs in a dermal graft.

    Figure 18 shows the development of aligned endothelial cords in vitro and their transformation into perfused microvessels in vivo.

    Figure 19 shows how microvascular fragments can generate perfused microvessels within a polymer implant over time.

    Figure 20 shows the generation of vascularized myocardial tissue from an implant of cardiomyocytes, HUVECs, and fibroblasts in a polymer scaffold.

    Figure 21 shows examples of vasculogenesis within EC-containing hydrogels in microfluidic devices.

    Figure 22 shows a lithographic pattern that was designed to mimic a branching vascular architecture.

    Figure 23 shows perfused microvessels that were formed within a microfluidic collagen gel that combined two separate gels to define the channels.

    Figure 24 shows a perfused microvessel that was formed within a microfluidic collagen gel that used removal of a needle to define the channel.

    Figure 25 shows a “tissue” that was formed around printed sacrificial fibers that dissolved to allow vascularization.

    Figure 26 shows an example of a vessel that was formed within a microfluidic polymer gel that used photodegradation to define the channel.

    Figure 27 shows corrosion casts of native and decellularized hearts and photographs of decellularized hearts before and after perfusion with blood.

    Figure 28 illustrates two complementary ways, based on a balance of stresses or energies, to analyze the stability of EC adhesion to a microfluidic scaffold.

 

 

 

 


Related Articles:

Angiogenesis
Physiology and Pathobiology of Microvascular Endothelium
Teaching Material

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Joe Tien. Tissue Engineering of the Microvasculature. Compr Physiol 2019, 9: 1155-1212. doi: 10.1002/cphy.c180037